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ABSTRACT

It is shown that the influences of the thermal and tidal effects on Mercury's

libration are in an equilibrium condition with the periods of rotation and revolu-

tion of Mercury locked in the 3:2 resonant state.
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THERMAL AND TIDAL EFFECT ON THE

LIBRATION OF MERCURY

INTRODUCTION

Liu (Liu, 1968a; Liu, 1968b) has shown that the trapping of Mercury's rota-

tional period into a 3:2 resonance lock with its orbital period was originally

affected by the thermal contraction of the figure of Mercury during solidifica-

tion. In the present paper the analysis of the contribution of the two thermal

bulges to the dynamic stabilization of the planet's libration is given. Attention

is focused on the balance of the influence of the tidal and thermal effect on the

libration of Mercury after solidification.

BASIC EQUATIONS

After solidification, the thermal contraction of the figure of Mercury from

loss of heat must be exceedingly small and the thermal bulges considered by

Liu (Liu, 1968a; Liu 1968b) can grow because the apparent circulational motion

at successive perihelia has been converted to a librotional motion. The varia-

tion with time of the fractional difference I B ( t ) -A(t) I/C  in Mercury's equa-

torial moments of inertia is

B^ t - A^ t 	+ A2 - 5,83 + 3{35), a • AT
(1)

C	 1001 +/3 +Q2)

in which a is the coefficient of linear thermal expansion, AT the difference in

surface temperature between the regions around the perihelion and the aphelion
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axes of Mercury, and 3 - (Rm -- y)/Rm where R. is Mercury's radius and y the

depth of solar heating. The value of X has been estimated as X > 5 x 10 - 5 and

the rate of increasing of IB ( t - A ( t Yc is about 10 - 21 sec. -' (Liu and

O'Keefe, 1965; Liu, 1968a; Liu, 1968b).

In considering the bodily tidal torque we have recourse to the estimation by

Jeffreys. (Jeffreys, 1959).

M2
1	 18	 g

N =	 —5 M M

Rm6 (1 + e cos f) 6

a6(1 -e2)6 C • Sin(2E)	 (2)

where G is the gravitational constant, p density, M S mass of the Sun, M m mass

of Mercury, f the true anomaly, a the semimajor axis, a the orbital eccen-

tricity and E the phase lag of the conventional equilibrium tides.

The orientation of Mercury relative to the Sun, 0, is then governed by (Liu

and O ' Keefe, 1965)

d2 cp _ 2e Sin f &D	 3(,\ +1k)	 N	 (1- e2 3	 (3)
df2	 1 + eeosf

 /
4
&D	 3(,\

 + 2( 1+e cos f) 2^ 7-- 2	 ) an C (1+coos f)

in which

= 3(2-5,83 +3,85) 	DT
100 1 +,8 +,31)  

•a

and n is the mean orbital angular velocity.
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ANALYSIS

Let us choose the time T reckoned from perihelion and related to the

orbital period divided by 27T

2 t an-
1 /1 - e) 1/2	 f	 e(1 -e2)1/2 Sin f	

(4)T f	 =	 i\ 1 + e	 tan 2-	 1+ e cos 

As a new unknown function, we t-akc• the angle of rotation T between the axis

of the two thermal bulges and the radius vector of the perihelion

IF = f +'^
	

(5)

Equation (3) takes the form

d2 %p	 3(k+AX) (1+e cos f) 3	N
+	 Sin 2(T - f) _ -	 (6)

dr 2 	2	 ( 1 -e 2 ) 3	n2 C

The solution of Equation (6) may be sought in the fora_

T = ar + 8

where i1 is a constant and 8 is an unknown function. The resonances occur at

2f2 = m if m is an integer and 8 is, then, the angle of libration. To obtain an

approximate solution we average it over a period of 27T. For m = 3, Equation

(6) becomes

d 22 + 2 2 1 (2` +, )X) Sin ( 28) _ - 10-9 Sin(2F)	 (7)
-r 2
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In the derivation of Equation (7), the following values were adopted:

e = 0.2

G = 6.7 x 10 - 8 dyn. Cm2 . g - 2

p = 5.0 g • Cm -3

n = 1.2 x 10 -6 rad. • Sec -1

M s /Mm = 6.0x 106

R.//a = 4.1 x 10-5

The average process also included the effect of the sign of the phase lag which

depends on the sign of dT/dT. In Equation (7) the value of k + AX is about

5 x 10-5 and the tidal torque is much less than the maximum restoring thermal

torque. Therefore, the rotation of Mercury at the 3:2 resonance state is seen

to be stable.

The first integral of Equation (7) is

1 td6 2	 2.1
2  UT-) - 4 ( X +L\,) Cos(26) _ - 10 -9 Sin(2e) • S + E o	 (8)

where E o is a constant.

Differentiating Equation (8) with respect to t, we obtain

I ddb 2	 2 - ln'	 d Cos(26 )
2 dt Cdt	 4	 ( A +L`)	 dt

2 • 1n 2 d(&\,)	 &
4	 • -t • Cos(26) - 10 - 9 n 2 Sin(2E) Ut-	 (9)
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Hence,

dE	 dE (thermal effect) - dE (tidal effect)	
(10)UT	 dt	 dt

in which

dE (thermal effect) _ 2 • 1	 d(/S )
t	 -	 4 n 2 • C • Cos( 26) —F—	 (11)

and

_ dE (tidal effect) _	 &

dt	 - - 10 -9 n2 • C . Sin( 2E) -t 	(12)

For small librational angle b and d(N,) /dt = 10- 21 Sec-1 , the result of Equa-

tion (11) is

dE (thermal effect)
dt	 - 0 (10 10 erg. •Sec" 1)

For Sin ( 2e) '- 5 x 10" 3 and db/dt < 10" s n, the result of Equation (12) is

dE (tidal effect
-	 dt —^ • _ - 0 (10 10 erg. • Sec" 1 )

It is seen that the thermal expansion effect works against the tidal effect on

Mercury 's libration at a rate of 10 1 ° erg. Sec 1 . This is of the same order of

magnitude as the rate of the librational dissipation for the bodily tidal friction

of Mercury.
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CONCLUDING REMARKS

We i,ave shown that the influerces of the i;hermal and tidal effect on

Mercury's libration are in an equilibrium condition with the periods of rotation

and revolution of Mercury locked in the 3:2 state. With regard to the interaction

of the thcrmal effect, tidal friction and gravitation, we conclude that the growth

ra:,c of tiff: therir.,a bulges on Mercury's surface contributes dynamically to the

tabilizaidon of the plane's libration.
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