General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

X-643-69-127 PREPRINT

NASA TH X-63509

THERMAL AND TIDAL EFFECT ON THE LIBRATION OF MERCURY

HAN-SHOU LIU

N 69-2	2156
ACCESSION NUMBER)	(GHRU)
(PAGES)	20 (CODE)
MARA CR OR TMX OR AD NUMBER	(CATEGORY)

MARCH 1969

GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

X-643-69-127

PREPRINT

THERMAL AND TIDAL EFFECT ON THE

LIBRATION OF MERCURY

Han-Shou Liu

Special Projects Branch

March 1969

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

THERMAL AND TIDAL EFFECT ON THE

「御皇をはたいで、御中ののをある」

「ない」ではないで、「ないない」では、「ない」では、「ない」では、「ない」では、「ない」では、

LIBRATION OF MERCURY

Han-Shou Liu

Special Projects Branch

ABSTRACT

It is shown that the influences of the thermal and tidal effects on Mercury's libration are in an equilibrium condition with the periods of rotation and revolution of Mercury locked in the 3:2 resonant state.

の一部の使用でいたなななななない

CONTENTS

•

	Page
Abstract	ii
INTRODUCTION	1
BASIC EQUATIONS	1
ANALYSIS	3
CONCLUDING REMARKS	6
REFERENCES	6

iii

THERMAL AND TIDAL EFFECT ON THE LIBRATION OF MERCURY

INTRODUCTION

Liu (Liu, 1968a; Liu, 1968b) has shown that the trapping of Mercury's rotational period into a 3:2 resonance lock with its orbital period was originally affected by the thermal contraction of the figure of Mercury during solidification. In the present paper the analysis of the contribution of the two thermal bulges to the dynamic stabilization of the planet's libration is given. Attention is focused on the balance of the influence of the tidal and thermal effect on the libration of Mercury after solidification.

BASIC EQUATIONS

After solidification, the thermal contraction of the figure of Mercury from loss of heat must be exceedingly small and the thermal bulges considered by Liu (Liu, 1968a; Liu 1968b) can grow because the apparent circulational motion at successive perihelia has been converted to a librational motion. The variation with time of the fractional difference $\left[B_{(t)} - A_{(t)}\right]/C$ in Mercury's equatorial moments of inertia is

$$\frac{B_{(t)} - A_{(t)}}{C} = \lambda + \frac{3(2 - 5\beta^3 + 3\beta^5)}{100(1 + \beta + \beta^2)} \cdot \alpha \cdot \Delta T$$
(1)

in which α is the coefficient of linear thermal expansion, ΔT the difference in surface temperature between the regions around the perihelion and the aphelion

1

axes of Mercury, and $\beta = (\Re_m - y)/\Re_m$ where \Re_m is Mercury's radius and y the depth of solar heating. The value of λ has been estimated as $\lambda \ge 5 \times 10^{-5}$ and the rate of increasing of $[B_{(t)} - A_{(t)}]/C$ is about 10^{-21} sec.⁻¹ (Liu and O'Keefe, 1965; Liu, 1968a; Liu, 1968b).

In considering the bodily tidal torque we have recourse to the estimation by Jeffreys. (Jeffreys, 1959).

$$N = \frac{1}{50} \cdot \frac{18}{5} \pi G \rho \frac{M_s^2}{M_m^2} \cdot \frac{\Re_m^6 (1 + e \cos f)^6}{a^6 (1 - e^2)^6} \cdot C \cdot Sin(2\epsilon)$$
(2)

where G is the gravitational constant, ρ density, M_s mass of the Sun, M_m mass of Mercury, f the true anomaly, a the semimajor axis, e the orbital eccentricity and ϵ the phase lag of the conventional equilibrium tides.

The orientation of Mercury relative to the Sun, ϕ , is then governed by (Liu and O'Keefe, 1965)

$$\frac{d^2\varphi}{df^2} - \frac{2e \operatorname{Sin} f}{1 + e \cos f} \left(\frac{d\varphi}{df} + 1 \right) + \frac{3(\lambda + \Delta \lambda)}{2(1 + e \cos f)} \cdot \operatorname{Sin} 2\varphi = -\frac{N}{n^2 C} \cdot \frac{(1 - e^2)^3}{(1 + e \cos f)^4}$$
(3)

in which

AL PROPERTY AND ADDRESS

$$\Delta \lambda = \frac{3(2-5\beta^3+3\beta^5)}{100(1+\beta+\beta^2)} \cdot \alpha \cdot \Delta T$$

and n is the mean orbital angular velocity.

ANALYSIS

Let us choose the time τ reckoned from perihelion and related to the orbital period divided by 2π

$$\tau_{(f)} = 2 \tan^{-1} \left(\frac{1-e}{1+e} \right)^{1/2} \tan \frac{f}{2} - \frac{e(1-e^2)^{1/2} \operatorname{Sin} f}{1+e \cos f}$$
(4)

As a new unknown function, we take the angle of rotation Ψ between the axis of the two thermal bulges and the radius vector of the perihelion

$$\Psi = \mathbf{f} + \boldsymbol{\phi} \tag{5}$$

Equation (3) takes the form

$$\frac{d^2\Psi}{d\tau^2} + \frac{3(\lambda + \Delta\lambda)}{2} \cdot \frac{(1 + e\cos f)^3}{(1 - e^2)^3} \sin 2(\Psi - f) = -\frac{N}{n^2 C}$$
(6)

The solution of Equation (6) may be sought in the form

$$\Psi = \Omega \tau + \delta$$

where Ω is a constant and δ is an unknown function. The resonances occur at $2\Omega = m$ if m is an integer and δ is, then, the angle of libration. To obtain an approximate solution we average it over a period of 2π . For m = 3, Equation (6) becomes

$$\frac{\mathrm{d}^2 \,\delta}{\mathrm{d}\tau^2} + \frac{2 \cdot 1}{2} \,(\lambda + \Delta \lambda) \,\,\mathrm{Sin}(2\delta) = -10^{-9} \,\,\mathrm{Sin}(2\epsilon) \tag{7}$$

In the derivation of Equation (7), the following values were adopted:

$$e = 0.2$$

 $G = 6.7 \times 10^{-8} \text{ dyn. } \text{Cm}^2 \cdot \text{g}^{-2}$
 $\rho = 5.0 \text{ g} \cdot \text{Cm}^{-3}$
 $n = 1.2 \times 10^{-6} \text{ rad. } \cdot \text{Sec}^{-1}$
 $M_s/M_m = 6.0 \times 10^{-6}$
 $R_m/a = 4.1 \times 10^{-5}$

The average process also included the effect of the sign of the phase lag which depends on the sign of $d\phi/d\tau$. In Equation (7) the value of $\lambda + \Delta\lambda$ is about 5×10^{-5} and the tidal torque is much less than the maximum restoring thermal torque. Therefore, the rotation of Mercury at the 3:2 resonance state is seen to be stable.

The first integral of Equation (7) is

$$\frac{1}{2}\left(\frac{\mathrm{d}\delta}{\mathrm{d}\tau}\right)^2 - \frac{2.1}{4}\left(\lambda + \Delta\lambda\right) \operatorname{Cos}(2\delta) = -10^{-9} \operatorname{Sin}(2\epsilon) \cdot \delta + \mathbf{E}_0 \qquad (8)$$

where E_0 is a constant.

Differentiating Equation (8) with respect to t, we obtain

$$\frac{1}{2} \frac{d}{dt} \left(\frac{d\delta}{dt}\right)^2 - \frac{2 \cdot \ln^2}{4} (\lambda + \Delta \lambda) \frac{d \operatorname{Cos}(2\delta)}{dt}$$
$$= \frac{2 \cdot \ln^2}{4} \cdot \frac{d(\Delta \lambda)}{dt} \cdot \operatorname{Cos}(2\delta) - 10^{-9} n^2 \operatorname{Sin}(2\epsilon) \frac{d\delta}{dt} \tag{9}$$

4

Hence,

$$\frac{d\mathbf{E}}{dt} = \frac{d\mathbf{E} \text{ (thermal effect)}}{dt} - \frac{d\mathbf{E} \text{ (tidal effect)}}{dt}$$
(10)

in which

$$\frac{d\mathbf{E} \text{ (thermal effect)}}{dt} = \frac{2 \cdot 1}{4} n^2 \cdot \mathbf{C} \cdot \cos(2\delta) \cdot \frac{d(\Delta \lambda)}{dt}$$
(11)

and

and the state of the second second

$$-\frac{dE (tidal effect)}{dt} = -10^{-9} n^2 \cdot C \cdot Sin(2\epsilon) \frac{d\delta}{dt}$$
(12)

For small librational angle δ and $d(\Delta_{\rm c})/dt$ = $10^{-21}~{\rm Sec^{-1}}$, the result of Equation (11) is

$$\frac{dE \ (thermal \ effect)}{dt} = 0 \ (10^{10} \ erg. \ Sec^{-1})$$

For Sin(2 ϵ) \simeq 5 × 10⁻³ and d δ /dt \leq 10⁻³ n, the result of Equation (12) is

11 ชนิยอนจะผู้น้ำจากสมบั และให้หมดมีเป

Contrational Contraction

$$-\frac{dE (tidal effect)}{dt} = -0 (10^{10} erg. \cdot Sec^{-1})$$

It is seen that the thermal expansion effect works against the tidal effect on Mercury's libration at a rate of 10^{10} erg. Sec⁻¹. This is of the same order of magnitude as the rate of the librational dissipation for the bodily tidal friction of Mercury.

CONCLUDING REMARKS

We have shown that the influences of the thermal and tidal effect on Mercury's libration are in an equilibrium condition with the periods of rotation and revolution of Mercury locked in the 3:2 state. With regard to the interaction of the thermal effect, tidal friction and gravitation, we conclude that the growth rate of the thermal bulges on Mercury's surface contributes dynamically to the stabilization of the planet's libration.

REFERENCES

H. Jeffress, The Earth, Cambridge University Press, 1959.

- H. S. Liu, On the Figure of Mercury, GSFC X-643-68-306, Goddard Space Flight Center, May 1968(a); Also submitted for publication, 1968(a).
- H. S. Liu, Mercury Has Two Permanent Thermal Bulges, <u>Science</u>, 159, 306-307, 1968(b).
- H. S. Liu and J. A. O'Keefe, Theory of Rotation for the Planet Mercury, <u>Science</u>, 150, 1717, 1965.

 $\mathbf{6}$