General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

PROTON ENTRY INTC THE MAGNETOSPHERE ON MAY 26, 1967

D. J. WILLIAMS
C. O. BOSTROM

APRIL 1969

Proton Entry into the Nagnetosphere on May 26, 1967

D. J. Williams

Goddard Space Flight Center Greenbelt, Maryland
and
C. O. Bositrom

Johns Hopkins University Applied Physics Laboratory Silver Spring, Moryland

Abstract

Low energy proton observations orer the polar cap and in the interplanetary and magnetosheath regions are compared during Yay $26,1967$. The results indicate that at this tine the entry of low energy solar protons into the magnetosphere was controlled by a diftusion process. It also appears that the protons aad access to the entire figure- 8 current pattern In the geomagnetic tail and diffused into the two approximstely sircular cylinders containing the ileld lines frcim the northern and southern polar caps. A first approximation value of $10^{15}-10^{16} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ is obtained for the radial diffusion coefficient, $D_{1 r}$, in the tail. No value can be derived for the diffusion coefficient along the field line, $D_{z z}$, with the present data. Consequently, in the present case, only a rough upper limit of $\mathrm{L} \leqslant(420-2400) \mathrm{R}_{\mathrm{E}}$ is obtained for the distance to the region where low energy protons are diffused into the tail.

Abstract

We present evidence in this note that diffusion effects can play a major role in the entry of 10 energy protons into the magnetosphere, Ti.se resuits also indicate that the entire figure -8 pattern of the geomagnetic tail current system [Axford et al., 196́5; Dessler and Juday, 1965] is rapidly exposed to any available solar protan fluxes.

The data of intorest are simultaneous proton observations in the interpianetary medium and over the nortbern polar cap during the solar proton event of May 23, 1967. The interplanetary measurements are from the Explorer 34 satellite and give the intensities of 1-10 Mev protons. The polar cap measurements are from satellite 196338 C and present the intensities of $1.2-8.5 \mathrm{Nev}$ protons at 1100 km altitude. The local time orientation of both satellites is shown in Figure 1. Data is presented only for times when Expa-orer 34 was near apogee and statistically significant count rates were observed over the polar cap. This period is indicated by the solid partion of the Explorer 34 orbit in Figure 1. The time period to be discussed is shown in Figure 2 where both the intexplanetary and polar cap proton intensities are plotted. Explorer 34 data are averaged over 15 minutes. The 13 polar cap passes obtained during this period are shown as polar cap averages for invariant latitudes, Λ, greater than 70°. Local times for these passes are also indicated and the passes to be discussed in detai.. are numbered from one to ten. For reference a plot of $D_{S T}$ values is included in the figure.

In addition we have summarized in Figure 2 the magnetic field configuration external to the magnetosphere at wais time. These magnetic field data are from Explorer 33 at ~ 0248 hours local time and at $65 \mathrm{R}_{\mathrm{E}}$ and from Explorer 34 [Fairfield, Behannon, Ness, personal commnication; Behamnon at gl., 1968]. During this time the magnetosphere was imiedded In a relativeiy steady field which changed from strongly southward ($\theta>-45^{\circ}$) to strongly northward $\left(\theta \geqslant 60^{\circ}\right)$ at ~ 1330 hours.

In spite of an unfortunate gap in the data, Figure 2 indicates that a small increase in the intensity of low energy interplanetary protons began at ~ 0230 hours on May 26. The sequence of five polar cap passes spanning this increase (numbers 1-5) are shown in Figure 3a. The latitude profiles over the polar region are shown along with simultareous and unnormalized interplanetary fluxes. Figure 3b presents similar data for passes six through 10.

Similarieies and discrepancies have been observed previously in comparing the polar cap and interplanetary time histories of low energy proton intensities 「Williams and Bostrciil 1967; Krimigis et al., 1967]. The absolute unnormalized fluxes shown in Figure 2 point out that while general similarities exist between these two regions, significant differences in the respective time histories do occur. In particular it is seen that, a) the ratio of polar cap to interplanetary fluxes varies by a factor of ~ 3 during the period shown, and b) the significant decrease in
the interplanetary fluxes occurring at ~ 1120 hours (Figure 2) is not observable over the polar ap except possibly as a slower steady decrease. These features do nct support the existence at these times of a readily accessible polar cap region as in an open magnetospheric consiguration. They are qualitatively consistent with low energy protorn access to the polar cap being controlled bs a diffusion process.

These results are further supported when the individual polar cap passes are considered in detail as in Figure 3 a where we show a time sequence of five passes (1-5 in Figure 2) obtained during a period in which a slight increase occurred in the interplanetary intensities. Here is clearly seen a time history of polar cap protons which progresses from pass 1 where the interisities tend to increase toward the polar cap, to passes 2, 3, and 4 which show a profile peaked near the auroral regions and having a minimum at the highest latitujes, to pass 5 which shows a distribution much more uniform over all latitudes sampled. Figure 30 continues this polar cap time history (passes 6-10) through an additional smail interplanetary increase occurring at ~ 1520 hours (Figure 2).

These data are consistent with diffusion into the geomagnetic tail being the primary mode of entry of low energy protons into the magnetosphere at this time. Such a process has been discussed originaily by Michei [1965] in considering cosmic ray cutoffs and by Michel and Dessler [1965] in considering polar cap absorption inhomogeneities. The general features of the polar cap observations can be explained by the magnetotail configuration shown in Figure 4a,b. A figure-8 tail current system derlate two approximately cylindrical surfaces which when counled withethoper
rotation of the earin contain the field lines connecting to the low latitude edge of the northern and southern polar caps [Dessler and Juday, 1965; Axford et ai., 1965]. Diffusion into the tail region should produce polar cap profiles which are initially peaked in the auroral regions and which gradually fill in the high latitude polar cap region in mach the same manner as show in Figure 3. Such profiles are not rare and have been reported previously [Bostrom et al., 1967; Zmuda et al., 1967; Elake et al., 1968].

On the nightside hemisphere the magnetopause field lines for the configuration sketched in Figure 4 a connect to the auroral oval. The situation is less clear on the dayside hemisphere particularly near the noon meridian. During average geomagnetic conditions, field lines from the dayside auroral oval do seem to be those passing through the magnetopeuse neutral region and on back to the tail [Fairfield, 1968]. However, it is difficult to move the latitude of the neutral point to the low latitudes where aurcra and low energy solar protons are observed during magnetically active periods. The exposure of these low latitucie regions to the tail does seem possible in the nightside hemisphere [W12liams and Hess, 1966; Williams, 1967].

A rough estimate of the magnitude of the diffusion coefficient may be obtained by considering diffusion into a long cylinder of radius a, (Figure 4a), which has an initial internal density of zero and in which diffusion is purely radial. Figure 4c presents the solution to this problem by shoring the radial density profile for several different times following the application of an external and steady source of strength n_{0} [Crank, 1957].

The similarity of the radial profiles in Figure $4 c$ to the polar cap profiles of Figure 3 is readily apparent. (Note that $r / a=0$ correspends roughly to $A=\pi / 2$ and $r / a=1$ to the nightside auroral oral.) The ratio of polar sap to auroral orel intensities will be assumed to yield n / n_{0}, the ratio of internal to external densities, at $r / a=0$. Figure 4 c thus yields the appropriate value of $D t / a^{2}$ from which D can be obtained.

Pass 4 in Figure 3 gives a polar cap to auroral region ratio of $n / n_{0} \approx 0 . \%$. From Figure $4 c$ we obtain a value of $\mathrm{Dt} / \mathrm{a}^{2} \sim 0.15$. Due to the gap in the Explorer 34 intensities, the appropriate value of t can oniy be estimated from Figure 2 as $t \approx 1.5-5$ hours. Using $a=20 R_{E}$ gives $D=1.4(10)^{15}-4.0(10)^{15} \mathrm{~cm}^{2} / \mathrm{sec}$. This range of values represents an upper limit to the diffusion coefficient as the polar cap to auroral region raiio contains an unknown bacieground intensity from protons present at the time of the interplanetary increase.

Simple diffusion the ory gives the following relation between the diffusion coefficient, the mean free path ℓ, and the particle velocity v,

$$
D=\frac{1}{3} v v
$$

If we consider v to be the actual particle velocity, we obtain for a 1 Mev proton $\left(v_{p}=1.3(10)^{9} \mathrm{~cm} \mathrm{sec}^{-1}\right)$ with the above values of D,

$$
\ell=3(10)^{6}-9(10)^{6} \mathrm{~cm}
$$

This value is approximately 100 times smaller than the gyroradius, p, of a 1 Mey proton in a 20 y field $\left(p=7(10)^{8} \mathrm{~cm}\right)$.

The acove value of t is misleading in the sense that it physically applies to radial diffusion (i.e., mction across the field lines) and does not take into account the particle's motion down the fleld line. F wever, this small value for the mean free path does indicats the difficulty of motion across field lines for these low energ protons in the tail. This can be seen directly in "igare 3 where a polar cap equilibriun aistribution is approached only after several bours following an Interrlisnetary disturbance.

An alternative and equivalent description of this diffusion process in the tail is obtained by assuming for effective scattering from magnetic irregularifies, a value of 2 approximately equal to the gyroradius 「Parker, 1904. This yields an effective radial velocity, $v_{r} \sim .01 v_{p}$ and again indicates that these particles travel along the field lines much easier than across field lines.

While these results show the importance of diffusion in the geomagnetic tail, a more accurate description requires the use of a tensor rather than a scalar diffusion coefficient. However; the principal axes of diffusion are defined by the approximate cylindrical geometry of the tail and only the components $D_{r r}$ and $D_{z z}$ should have to be considered. The present data indicate that as a first approximation $\mathrm{D}_{\mathrm{rr}} \sim 10^{15}-10^{16} \mathrm{~cm}^{2} / \mathrm{sec}$ in the region where diffusion is a indior transport mechanism. The relative magnitude of $D_{z z}$ depends on the assumptions employed in estimating pitch angle scattering effects.

As the above analysis gives no information about $D_{z z}$, it can give no accurate estimate on the "length" of the tail, i.e., the distance to the region where particles begin to be dificused into the magnetosphere. However, an orier of magnitude upper limit may be obtained by assuming rectilinear motion of the protons down the "length" of the tail to the auroral regions where they first appear. Passes 8 and io in Figure 3 occur after proton intensity increases are observed at Explorer 34. The auroral region data of passes 8 and 10 were obtained ~ 40 minutes and 7 minutes respectively from the attainment of maximum fluxes at Explorer 34. Pass 8 shows a peak intensity in the auroral region and thus has responded to the interplanetary increase. Pass 10 shows no such response. Consequentiy, assuming rectilinear propagation for 1 Mev protons, we obtain an upper limit for the tail length, L, of

$$
L \leq(420-2400) R_{E}
$$

Evidence :rr the existence of a geomagnetic tail has been obtained in this range [NFss et al, 1967; Wolfe et al, 1967; Mariani and Hess, 1969]. However, the region of entry for low energy solar protons into the tail may be cioser to the earth and in the present case depends on the wiknown magnitude of $\mathrm{D}_{z z}$.

The observation by Montgomery and Singer [1969] that low energy solar proton fluxes are much more isotropic within the magnetotail than those outside the magnetopause also supports the existence of a diffusive process acting within the geomagnetic tail. The polar cap proton fluxes shown
in Figures 2 and 3, and reported polar cap electron fluxes Vampola, $1969]$ are also isotropic outside of the loss cone and are indicative of diffusive processes.

Delayed access of low energy solar protons to the geomagnetic tail has been reported [Kane et al, 1968; Montgomery and Singer, 1969]. The lack of a strong energy dependence in the observed delay times Montgomery and Singer, 1969$]$ may be evidence against diffusion effects. However, it is not clear tinat the radial diffusion coefficient should exhibit a pronounced energy dependence in the energy range where the proton gyroradius is much smailer than the radius of the tail (for example, if ℓ \sim constant, $\left.D_{r y} \sim \sqrt{B}\right)$.

Vampola [1969] has recently reported observations of energetic electrons over the poiar regions which characterized by a featureless polar cap profile. It is difficult to interpret the electror data at this time in terms of a magnetospheric configuration due to a lack of sufficient simultaneous electron data in the interplanetary medium. Structural effects might be easily missed if electron diffusion could proceed much more rapidly than proton Jiffusion. Note that the proton profiles become flat and featureless (Passes 5 and 6, Figure 3) as equilibrium is approached.

The rapid access of low energy protons to the entire figure- 8 current pattern and resulting diffusion intc ne cylinders (arrows in Figure 4b) can qualitatively account for the app arance of peak proton intensities in the auroral regions and the latitude spread ($\sim 10^{\circ}$) of this peak. However, it should be noted that such a configuration is unable to quantitatively account for observed 10 energy proton cutoffs, particularly on the dayside hemisphere.

The ready access of low energy solar protans to $6.6 \mathrm{R}_{\mathrm{E}}$ [Lanzerotti, 1968 j may be directly related to their arpearance in the neutral sheet. The diffusion eqects discussed by Lanzeroteti [1968] may in this case be related to diffusion through the "cusp" region and not to radial diffusion through the tail.

In summary we have presented data for a time period in which the entry of low energy protons into the geomagnetic tail and their appearance over the polar regions was governed by a diffusion process. However, as discussed previously [Williams and Bostrom, 1968], the access of these low energy solar protons to the geomagnetic tail and polar cap regicns depends strongly upon the magnetospheric configuration, which in turn depends upon the external boundary conditions imposed by the interplanetary medium. We thus expect to observe strong variations in the manner ir. which low energy solar protons enter the magnetosphere. Inmediate access, delayed access, and even a mixed mode [Montgomery and̉ Singer, 1969] are possible at different-times.

Of interest is the fact that the present evidence for diffusive effects occurred during a period when a strong southward interplanetary field was present (Figure 2). It thus seems that a southward interplanetary field may not be sufficient cause for immediate access of solar protons into the magnetosphere.

References

Axford, W. I., H. E. Petschek, and G. Le. Siscoe, "The tail of the magnetosphere", J. Geophys. Res., 70, 1231-1236, 1965.

Behannon, K. W., D. H. Fairfield, and N. F. Fess, "Trajectories of Explorers 33, 34, and 35, July 1956-July 1968', Goddard Space Flight, Center Report X-616-68-372, September 1908.

Blake, J. B., G. A. Paulikas, and S. C. Feeden, "Latitude invensity structure and pitch angle distributions of low energy solar cosmic rays at lor altituden, J. Geophys. Res., 73, 4927-4934, 1969.
Bostrom, C. O., J. W. Kohl, and A: J. Zmida, The solar proton events of Auyu-t 29 and September 2, 1966", Trans. Am. Geophys. Union; 48, 178, 1967.

Crank, J., "The mathematics of diffusion", Oxford University Press, 1957.

Dessler, A. J. and R. D. Juday, "Configuration of auroral radiation in space", Planet. Space Sci., 13, 63-72, 1965.
Fairfieid, D. H., "Average magnetic field configuration of the outer magnetosphere", J. Geophys. Res., 73, 7329-7338, 1968.

Kane, S. R., J. R. Winckler, and D. J. Hoffman, "Observations of screening of solar cosmic rays by the outer magnetosphere ${ }^{n}$, Planet. Space Sci., 16, 1381-1404, 1968.

Krimigis, S. M., J. A. Van Allen, and T. P. Armstrong, "Simultaneous observations of solar protons inside and outside the magnetosphere", Phys. Rev. Letters, 18, 1204-1207, 1967.

Lanzerotti, L. J., "Penetration of solar protons and alphas to the geomagnetic equator", Phys. Rev. Letters, 21, 929-933, 1967.

Mariani, F. and N. F. Ness, "Observation of a fllamentary geomagnetic tail at 500 earth radii by Pioneer 8", Goddard Space Flight Center Report X-616-69-54, 1969.
Michel, F. C., "Efiect of magnetospheric tail on cosmic-ray cut-offs": Planet. Space Sci., 13, 753-760, 1965.

References (Continued)

Michel, F. C. and A. J. Dessler, "Fhysical significance of inhomogeneities
 1965.

Montgowery, M. D. and S. Singer, "Penetration of solar energetic protons into the magnetotail", J. Geophys. Res., 75, Jume 1969.

Hess, K. F., C. S. Scearce, and S. C. Cantarano, "Yrobably observations of the geomagnetic tail at $10^{3} \mathrm{R}_{\mathrm{E}}$ by Pioneer $7^{\prime \prime}$, J. GeophyB. Res., 72, 3769-3776, 1967.

Parker, E. H., "The scattering of chargec particles by Jagnetic irregularities", J. Geophys. Res., 69, 1755-1759, 1964.

Vanpola, A. L., "Energetic electrons-at latitudes above the outer-zone cutoff", J. Geophys. Res.; 74, 1254-1269, 1969.

Williams, D. J., and I. F. Hess, "Simaltaneous trapped electron and magnetic tail field observations", Jo Geophys. Res., 71, 5117-5128, 1966.
Williams, D. J., "On the low-altitude trapped electron boundary collapse during magnetic storms", J. Geophys. Res., 72, 1644-1646, 1967.

Williams, D. J, and C. O. Bostrom, mithe February 5, 1965 solar proton event. 2. Low energy sciar protons and their relation to the magnetóphere", J. Eeophys. Res., 72, 4497-4506, 1967.
Wolfe, J. H., R. W. Silva, D. D. Makibbin, and R. H. Mason, "Preliminary observations of a geomagnetic wake at 1000 earth radil", J. Geophys. Res.: 72, 4577-4581, 1967.

Zmuda, A. J., J. W. Kohl, and C. O. Bostrom, "The solar proton event of Septenber 2, 1966: day and night latitude profiles", Trans. Am. Geophys. Union, 48, 178, 1967.

Acknorledgements

We gratefuliy acknowledge the belpful discussions beld with Doctucs J. F. Arens, D. H. Fairileld, and S. M. Krimigis. He also thank Doctors D. F. Fairfield and F. F. Fess and Mi. K. W. Behannon for the use of magnetic fleld data from Explorers 33 and 34 .

This work wes supported in part by the Rational Aercnautics and Space Administration under DPR Fo. F/-1-009-004(021), and in part by the Navai Ordnance Systems Comand, Department of the Havy, under contract HO. 62-0604-c.

Figure Captions

Figure 1:

Figure 2: Time history of 1-10 Mev protons observed at high altitudes ($\geq 28.2 \mathrm{H}_{\mathrm{E}}$) and $1.2-8.5 \mathrm{Mev}$ protons observed at 1100 km over the northern poliar cap. The high altituie date are plotted as 15 -minute averages and the polar cap data are averages for irvariant latitúdes $>70^{\circ}$. The data show are absolute and unormalized fluxes. Orientation of the interplanetary magnetic fleld with respect to the ecliptic plane is indicated. Iunbered polar cap passes are those discussed in detail.

Figure 3: High latitude proton intensity profiles from 1963 38C for (a) passes 1-5 and (b) passes 6-10 fron Figure 2. Simultaneous Explorer 34 Gata shown where available. Flux values are unnormalized. Explarer 34 altitude $\geqslant 32 \mathrm{R}_{\mathrm{E}}$. Brror bars show statistical uncertainties.

Figure 4: (a) Sketch of magnetospheric configuration; (b) The current pattern in the tail region (after Axford et al., 1965, and Dessler and Juday; 1965). Heavy arrows indicate current flow and light arrows indicate proton diffusion; (c) Resulting radial diffusion pattern in a long cylipder of radius a, with initial internal density of zero, following application of an external density, n_{0}. The internal density distribution, n / n_{0}, is shown as a function of r / a for various :alues of Dt/a2 where $\mathrm{D}=$ diffusion coefficient and $\mathrm{t}=$ time following application of the external density, n_{0}. From (a) it can be seen that these radial profiles transform to polar cap latituae profiles in the following approximate way: $r / a=0$ corresponds to $\Lambda=\pi / 2$ and $r / a=1$ corresponds to the auroral region.

