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A  SEMIEMPIRICAL  COLLISION MODEL FOR PLASMAS 

By Willard E. Meador 
Langley  Research  Center 

SUMMARY 

A  collision  model  similar  in  many  respects  to  that of a Lorentz  gas is developed 
for  plasmas. Two assumptions are made: (1) the  totality of interparticle  force laws 
(including  electron-electron)  can  be  replaced with a single  parameter  determined by the 
unique ratio of generalized  electric  field to temperature  gradient  that  can  exist  in a 
bounded,  nonmagnetic,  and currentless  plasma of given  composition; (2) the  electron 
dynamics  governed by such  an  average  potential are Lorentz-like  in  the  sense  that  the 
effective  electron  collision  partners  behave as heavy scattering  centers.  With the  col- 
lision  model  thus  specified  and  held  fixed,  the  first-order  kinetic  equation is solved 
exactly  for a succession of more  complex  plasma  conditions;  the  corresponding  distribu- 
tion  functions a re   used  to predict  such  diverse  properties as entropy,  entropy  and  diffu- 
sion  relaxation  times,  electromagnetic  tensor  conductivities,  thermal  conductivity,  and 
thermal diffusion.  Since  the results  are  generally  comparable  to  the  third Sonine  approx- 
imation  and  nearly  always  better  than  the  second  approximation  (thermal  conductivity 
excepted)  for a fully  ionized  gas,  the  method  apparently  provides  an  adequate  scheme  for 
utilizing  experimental  data when microscopic  coll ision  parameters  are  scarcely known 
(e.g.,  electron-neutral-atom  forces)  and  for  directly  extending  previous  calculations to 
more  complex  conditions.  Interesting  sidelights  include  the  discovery  that  the  elementary 
mean-free-path  formulation of the  Hall  conductivity is left intact  for  small  magnetic  fields 
if the  familiar  collision  time is replaced by a new definition  associated with entropy 
relaxation. 

INTRODUCTION 

In  the  past few years,  many  authors  have  discussed statistical models as approxi- 
mations to  Boltzmann  collision  integrals  for  solving  problems  in  rarefied  gas  dynamics 
(e.g.,  ref. 1). The  philosophy is summarized  briefly as follows:  Whereas  the  exact  col- 
lision  integrals treat in  detail  the  geometry of every  binary  encounter,  the  essential fea- 
tures  can  be  described  almost as well by first taking a statist ical   average  over  these 
encounters.  Aside  from  providing  validity  tests  for  various  approximate  distribution 
functions,  the  models  could  prove  useful  in  their own right  for  such  purposes as adapting 
kinetic  theory  to  experimental  data  in Lieu  of unknown microscopic  parameters,   directly 



extending  previous  calculations  to  more  complex  gas  conditions (e.g.,  the  extension of 
nonmagnetic  results  to  electromagnetic  fields),  and  solving  problems  that  do not respond 
to classical perturbation  methods.  In  addition,  the  flux  expressions  derived  from  simple 
models  are  often far more  concise  than  those  from  polynomial  expansions  and are there- 
fore  easier to  interpret. 

Although some of the  concepts  can  be  generalized  to  neutral  gases,  the  present 
investigation is concerned  entirely  with  plasmas  and  particularly with those  processes 
controlled by electrons.  The  development of a simple  collision  model  and  therefrom a 
reliable  semiempirical  electron  distribution  function is motivated by the  following  con- 
siderations: 

(1) Electron-electron  encounters  prevent  closed-form  solutions of the  Boltzmann 
equation  and  thus  obscure  important  characteristics  that  might  be  better  understood  in a 
more  empirical  scheme. 

(2) Most of the electron-neutral-atom  interaction  potentials  are  scarcely known. 

However,  one  must  recognize  that  the  experimental  data  readily  accessible  from  plasmas 
are very  limited  and,  consequently,  questions arise as to  the  type of data,  the  amount of 
data  necessary  for  given  purposes,  and  the  theoretical  framework  in which  the  data  are 
best  represented.  Information  theory (ref. l), for  example,  maximizes  the  observer's 
uncertainty  about all plasma  properties  except  those  actually  measured,  but  the  entropy 
and  distribution  function,  and so forth, so determined  bear  little  resemblance to the  true 
quantities i f  the  experimental  constraints are inadequate.  Besides  the  usual  conservation 
requirements,  prior  knowledge is ultimately  assumed  in  reference 1 of all second-order 
velocity  moments  (including  off-diagonal  elements)  in a multicomponent  mixture  and  also 
the  interparticle  force  laws  for  the  specification, though  somewhat  arbitrarily, of certain 
other  parameters.  Such methods are of little  value when a purpose of the  semiempirical  
procedure is to  avoid unknown potentials. 

The  problem  then is to  enhance  the  adequacy of a small  number of practical  con- 
straints,   at   least   one of which supplants  theoretical  cross  sections, by somehow  intro- 
ducing a bias  in  the  observer's  attitude  toward  things not measured.  Some  indication of 
the  proper  bias  can  be  deduced  from  the  Boltzmann  equation if a sufficiently  simple  col- 
lision  model is adopted.  The  intent of the  present  research is to  develop  such a model 
based on the  following  assumptions: (1) the  totality of interparticle  force  laws  (including 
electron-electron)  can  be  replaced  with a single  parameter  determined by the  unique  ratio 
of generalized  electric  field  to  temperature  gradient  that  can exist in a bounded,  nonmag- 
netic,  and  currentless  plasma of given  composition; (2) the  electron  dynamics  governed by 
this  average  potential are Lorentz-like  in  the  sense  that  the  effective  electron  collision 
partners  behave as heavy scattering  centers.  With the  collision  model  thus  specified  and 
held  fixed,  the  first-order  Chapman-Enskog  equation is solved  exactly for  a succession 
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of more  complex  plasma  conditions;  the  corresponding  distribution  functions are used  to 
predict  such  diverse  quantities as entropy,  entropy  and  diffusion  relaxation  times, elec- 
tromagnetic  tensor  conductivities,  thermal  conductivity,  and  thermal  diffusion. 

Since  the  results are generally  comparable  to  the  third Sonine  approximation  and 
nearly  always  better  than  the  second  approximation  (thermal  conductivity  excepted)  for a 
fully  ionized  gas,  the  method  apparently  provides  an  adequate  scheme  for  utilizing  exper- 
imental data in  multicomponent  partially  ionized  plasmas  and  for  directly  extending  pre- 
vious  calculations  to  more  complex  conditions.  Interesting  sidelights  include  the dis- 
covery  that  the  elementary  mean-free-path  formulation of the  Hall  conductivity is left 
intact  for  small  magnetic  fields i f  the  familiar  collision  time is replaced by a new defi- 
nition  associated  with  entropy  relaxation. 

For simplicity,  it  is assumed  herein  that  heavy  particles  (e.g.,  ions  and  neutral 
atoms) are infinitely  massive  and are at rest relative  to  the  laboratory. 

SYMBOLS 

parameter  such  that a = 0 refers   to  a Lorentz  fully  ionized  plasma  and 
a = 2112 r e fe r s  to a real  fully  ionized  plasma 

impact  parameter 

magnetic field 

unit  vector  in  direction of magnetic  field 

particle  velocity 

functions  defined  in  equation  (C2) 

negative of electron  charge 

electric  field 

distribution  function 

Maxwellian  distribution  function 

function  defined in  equation (5) 
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enthalpy f l u x  

unit  vector  in x-, y-,  and  z-direction,  respectively, of Cartesian  coordinate 
system 

integral  defined by  equation (C8) 

electron  current  density 

Boltzmann's  constant 

parameter  in  the  collision  model  defined by equation (C7) 

particle  mass 

particle  number  density 

electron  partial   pressure 

kinetic  energy  flux 

combination R I S - ~ R ~ ~ R ~ ~  

limit of Iij integral as w 

entropy  density 

equilibrium  entropy  density 

of Rij  integrals 

approaches  zero 

collisional  production rate of entropy  density 

time 

electron  temperature 

measure of average  energy with  which electrons  emerge  from  encounters 
with  effective  collision  partners j 

t 
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ue  j 
-c 

X 

-c 

Y 

YE 

Y T  

6 

6E 

6T 

E 

-c 
€ 

electron  diffusion  velocity 

integration  variable 

reduced  electron  diffusion  velocity 

reduced  average  velocity with  which electrons  emerge  from  encounters with 
effective  collision  partners j 

reduced  electron  particle  velocity 

Spitzer-Hzrm  reduction  factor  for  scalar  electrical  conductivity 

Spitzer-HZrm  reduction  factor  for  thermal  diffusion 

variational  operator 

Spitzer-Hgrm  reduction  factor  for  kinetic  energy  flux  due  to  electric  field 
and/or  pressure  gradient 

Spitzer-Hgrm  reduction  factor  for  thermal  conductivity 

azimuthal  angle  in  collision  dynamics 

effective  electron  driving  force  (generalized  electric  field)  defined by 
equation (C4) 

component of 2 parallel  to  magnetic  field 

component of 7 perpendicular to  magnetic  field 

electron  diffusion  energy  density 

total  nonrandom  electron  energy  density 

polar  angle  in  spherical  coordinates 
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ii Lagrangian  multiplier 

5 effective  interaction  parameter  for  electron  collisions 

U scalar electrical conductivity 

7 I parallel  (to  magnetic  field)  conductivity, 7 1  = (T 

O 1  
perpendicular  (to  magnetic  field)  conductivity 

OH Hall  conductivity 

a+) exact  first-order  conductivity (infinite Sonine  approximation)  for a Lorentz 
gas 

7 collision  time  equal  to ru(l), that is, f i r s t  Sonine  approximation  to T~ 

7 S  collision  time  based  on  entropy  relaxation 

collision  time  deduced  from  scalar  electrical  conductivity 

cp azimuthal  angle  in  spherical  coordinates 

qe electron  first-order  perturbation  function 

X scattering  angle 

w cyclotron  frequency  for  electrons 

Subscripts: 

C specifies  effect  due  to  collisions 

e electrons 

i index 
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index;  also  particles of type j 

Lorentz  gas,  that is, no  electron-electron  collisions 

Arguments 1, 2, 3, . . ., 00 refer to  level of Sonine  approximation. 

P r imes  with symbols refer to  quantities after a collision. 

The  notation <A) refers to  average of quantity  A  over  velocity  space. 

THE COLLISION MODEL 

Derivation of Model 

The  Boltzmann  collision  integral (ref. 2) for a two-component  Lorentz  plasma  (no 
electron-electron  encounters) is written  to  first  order  and  for  fixed  scattering  centers j 
as 

where  primed  symbols  refer to quantities  after a collision (as opposed to unprimed  sym- 
bols  for  quantities  before a collision), fe(0) is the Maxwellian  distribution  function  for 
electrons  given by 

7 is the  reduced  electron  particle  velocity  expressed as 

and qe is the  electron  perturbation  function  defined by 

fe = fe(0) (1 + qe) (4) 
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Equation (1) is further  simplified by observing  that qe is always  dependent upon 
7 in  the  following  manner (ref. 3) for  the  assumptions  stated  in  the last paragraph of the 
Introduction: 

qe = g(y,fields  and  gradients) 7 ( 5) 

Accordingly, 

i f  5 is the  power  in  the  electron-heavy-particle  inverse  power  interaction  potential. 
(See  appendix A.) The  parameter K embraces a collection of thermodynamic  param- 
eters  and  also  may  be a function of 5. 

No matter how many  heavy  components  the  plasma  contains,  the  assumption  that 5 
can  be s o  adjusted as to  make  the far right  side of equation (6) a fair representation of 
the  sum of all electron-heavy-particle  collision  integrals  appears  justified. It seems 
less  likely,  on  the  other  hand,  because of the  more  complex  integrals,  that  electron- 
electron  encounters  can  be  thus  included.  Nevertheless, 

is adopted as the  complete ( j  = e  included)  real-gas  collision  model,  the  validity of which 
will  be  tested by macroscopic  comparisons.  This  collision  model  definitely  establishes 
K and 5 as empirical  parameters  and  has  an  advantage  over  other  simple  models  in 
that 5 is immediately  identifiable  and  (afe/at)c is the  exact  first-order  expression 

i f  the  plasma is truly  Lorentz  with  particles of only a single  heavy  species  serving as 
active  electron  scattering  centers.  This  condition  holds  true  either  for a slightly  ionized 
pure  gas  (negligible  electron-electron  and  electron-ion  effects)  or  for  full  ionization with 
large  ionic  charge. 

I t  is further  evident  that  equation (7) reduces  to  the well-known  Krook  model  (cf., 
ref. 4  and  appendix B) only when 5 = 4.  The  present  method is thus a generalization of 
Krook's  work  and  shows  his  model  to  be  restricted  to  Maxwellian  molecules ( 5  = 4) for a 
Lorentz  plasma  and  to  the first Sonine  approximation  to  the  Chapman-Enskog  solution 
(ref. 2  and,  also,  appendix B) for a real  gas.  Since  the first Sonine  approximation is 
completely  inadequate  in its description of many  plasma  features,  the  additional y- 

dependent  factor  in  equation (7) should  constitute a major  improvement. 
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Determination of K and 5 
Appendix  C provides  the exact solution of the  Chapman-Enskog  first-order  perturba- 

tion  equation  corresponding  to  the  collision  model of equation (7) and  to  the  application of 
a pressure  gradient  and  an  electromagnetic  field  to a zero  temperature  gradient  plasma. 
Of more  immediate  interest,  however, is the  nonmagnetic  plasma,  the  perturbation  func- 
tion  for  which is found by setting w equal  to  zero  in  equation (C9) and  using  Ohm's  law 
j = -eneve = CJE to  write 
+ -c  -c 

The  Rij  integrals are defined  in  appendix  C  and 

is the  reduced  electron  diffusion  velocity. 

In  addition, K is determined  for  equation ((27) by the  requirement  that  the  velocity 
moment of qe, which  originally  depended  on K, must  yield  the  correct  electron  diffusion. 
Therefore,  from  equation (7) 

where ro. is the  familiar  collision  time  defined  in  terms of the  el.ectrica1  conductivity 

Only 5 remains  unspecified  and,  therefore,  the  entire  burden of accounting  for  the  aver- 
age  interparticle  collision  properties falls on  that  parameter. 

It seems  reasonable  to  propose  that  an  adequate  value of 5 is obtained  by  requiring 
the  energy  moment of equation (8) to  duplicate  the  experimental  kinetic  energy  flux s'. 
One  therefore  computes 

the  energy-flux-enthalpy-flux  difference 

I It 



for  future  reference,  and  finally 

from  either  equation (12) o r  equation  (13).  Each  expression refers explicitly  to  the  non- 
magnetic,  zero-temperature-gradient gas. 

Equations (10) and  (14) with  ne, Te, and measurements of p and (y") repre-  
sent  the  complete  semiempirical  collision  model. Although  equation (14) obviously  does 
not refer  to  the bounded,  nonmagnetic,  and currentless  plasma  postulated  in  the  Introduc- 
tion  for  the  determination of E, the two sets of conditions are subsequently  shown  to  be 
exactly  equivalent  in  that  respect - that is, the  values found for 4; are  identical  in  the 
two situations.  Also, 4; may not be  the  power  in  any  particular  inverse  power  interac- 
tion  potential,  nor is it necessary  to  suppose  that  the  constituent  force  laws are of that 
type.  Macroscopic  data  have  replaced  the  microscopic  dynamics. 

+ 

As mentioned  previously,  the  special  plasma  conditions  underlying  equation (14) 
se rve  only  to  fix  experimentally  the  numerical  value of 6 ,  which is constant  for a given 
se t  of plasma  constituents.  The  electron  first-order  perturbation  function qe therefore 
remains  the  lone  condition-dependent  function  in  equation (lo),  and i t   must  be  determined 
separately  for  each  problem  considered.  The  procedure is always  the  same: 

Replace  the  Boltzmann  collision  integrals with  equation (lo),  substitute  the  appropri- 
ate  fields  and  gradients  into  the  first-order  kinetic  equation,  and  solve  the  resulting 
expression  exactly. 

Illustrations  and  tests of this  theory are Frovided  herein. 

A NEW COLLISION TIME 

As a preliminary  to  the first application  and  test of the  above  semiempirical  theory, 
i t  is instructive  to  compute  the rate at which collisions  produce  entropy  density kc; 
accordingly,  from  equations (8) and (10) 

The  rate of dissipation of the  diffusion  energy  density Ed is then  related  to  that  energy by 

It  thus  appears  that ra measures  quite  adequately  the  relaxation  time scale for  
entropy,  at least to  the  extent  that Ed represents  the  complete  nonrandom  electron 
energy  density.  But i t  will now be  shown  that  this  condition  does  not  hold.  The  best way 
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of defining  the  total  nonrandom  electron  energy  density Et is through  the  following rela- 
tion  involving the difference  between  the  entropy  density s and its  equilibrium  value 
S (0) : 

The far right  side of equation (17) is obtained  from  the  substitution of equation (8) for qe 
and R for  R I ~ - ~ R o ~ R ~ ~ .  (See  appendix C.) 

A convenient  connection  between  equations (16) and (17) and  the  concepts of i r revers -  
ible  thermodynamics is provided by Onsager's  fundamental  principle, which states  that  the 
collisional  production  rate of entropy  density is a maximum  (ref. 5, pp. 116 and 145-148). 
See  also  appendix D where  it  is shown  that  the  present  distribution  function  can  be  obtained 
by the  maximization of kc subject  to  the  constraint  that is known. This  principle 
suggests a new collision  time  in  equation (16) of the  form 

so that  the  entire Et is subject  to  dissipation  in  the  manner 

Since T ~ / T ~  exceeds  unity  (fig. 1) for  all but  Maxwellian  molecules (5 = 4), 
entropy  equilibrization  generally  must  lag  that of electron  diffusion. Such behavior is not 
surprising  in view of the  many  collisions  normally  required  to  produce  randomization. 
E. A. Mason of Brown  University  has  suggested  the  possibility of 7s - rO being a cor-  
rection  for  the  so-called  persistence of velocities  in  free-flight  or  free-path  theory. If 
this  suggestion is valid,  the  nonrandom  energy E t  - Ed might  be  explained  in t e rms  of the 
"memory" of an  electron,  that is, the  time  required  for  an  electron to forget  its  original 
speed  and  direction.  In  any  event,  the  method  for  calculating T~ is well  prescribed by 
the  relation 

and  the  parameter is shown  to  occur  naturally  in  the  Hall  conductivity  discussed 
subsequently. 
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F igu re  1.- Ratio of COlliSiOn times  as  a  function of effective  collision  parameter. 

Meanwhile,  the  ratio T~/T* can  be  computed  and  compared by several  methods as 
a f i r s t   t es t  of the  semiempirical  distribution  function. It is convenient  for  this  purpose 
to express  equation (14) in   terms of the  Spitzer-Hiirm  relations  (ref. 6) 

between  real  and  Lorentz  plasmas  operating  under  identical  electric  field  and  thermody- 
namic  conditions.  Hence, 
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Although the  data  necessary  for  experimental  verification of equations (10) and  (23) 
are not  available',  one  can  still  check  their  accuracy  on  the  basis of the  Spitzer-Hgrm 
exact  first-order  solution  for a fully  ionized  gas.  The  parameters y E  = 0.5816 and 
eE = 0.4652 are known for  this  plasma, as is the  Lorentz  quantity 

(Y2gL = 4 p t  

from  equation (12)  with ,$ = 1; consequently, ,$ has  the  value 

Electron-electron  effects are therefore  quite  substantial  in  their  adjustment of the  origi- 
nal ( t ;  = 1) electron-ion  force law. This  result  implies  that  the  subsequent  tests of equa- 
tions  (10)  and  (25) are indeed  meaningful,  even though the  plasma is without neutral 
components. 

The  integrals  comprising  R  in  equation (18) were  computed  numerically  for  the 
value of 5 of eqdation  (25)  to  yield R04 = 0.66467,  R13 = 1.2113,  and R22 = 2.6461; 
accordingly, 

In  like  manner,  substitution  into  equation (20) of equation (C11) of appendix  C  with w = 0 
gives  the  second Sonine  approximation 

Ts(2) - 16.a2 + 104a + 259 = 1.259 
70(2) 16a2 + 104a + 169 
" 

when a equals   2lI2 which corresponds  to  the  real  plasma. Although the  agreement is 
already  reasonable, it is much  improved by a similar  comparison with  the  third  Sonine 
approximation 

" 's(~) - 20736a4 + 173952a3 ~- + 518392a2 + 370856a + 93169 = 1.207 
20736a4 + 173952a3 + 427312a2 + 262136a + 47089 

(28) 

obtained  from  the  matrix  elements of Schweitzer  and  Mitchner (ref. 3). 

The  advantage of the present  technique is even  more  pronounced  for  the  Lorentz  gas 
( t ;  = 1) for which  equation (18) yields  the  exact  first-order  result 
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315n - 
512 70 

= - - 1.933 

as compared with the  values 

which correspond  to a = 0 in  equations (27) and  (28).  Equations  (26)  to (30) also  i l lus- 
trate  the  large  sensitivity of rs/rO to  the  effective  interaction  potential ([ = 1.6674 
and l), as do the  following  ratios  from  equation (18) representing  Maxwellian (t ;  = 4), 
Coulombic (t; = l), and  rigid-sphere (t ;  = 00) forces,  respectively: 

Similar  conclusions  apply as well  to  other  plasma  properties (e.g. , thermal  and  magnetic), 
so that  the  previously  stated  purpose of using  experimental  data  to  avoid  scarcely known 
collision  parameters  indeed  has  merit. 

It is further  observed  that  the  first Sonine  approximation  always  gives  unity  for 
rS/r0,  regardless of 5, and so do equations  (27)  and (28) when a is very  large.  Since 
large  values of a absolve  the  ions of their  scattering  responsibilities,  such  results  sup- 
port  the well-known claim  that  the  first Sonine  approximation is adequate  for  pure  gases 
and for  mixtures with small   mass  disparit ies.  

THE MAGNETIC PROBLEM 

A more  exacting  test of equations  (10)  and (14) o r  (25) is obtained by the  application 
of an  electromagnetic  field.  As  explained  earlier,  the  method will be  useful  for  directly 
extending  nonmagnetic  measurements  and  previous  nonmagnetic  calculations to  the  full 
field i f  the  specification of 5 in   t e rms  of the  nonmagnetic energy-flux-diffusion-velocity 
ratio is adequate.  Again  the  fully  ionized  gas is considered,  although  one  should  recognize 
that  other  types of plasmas  merely  involve  different  empirical  or  theoretical  values of  yE 
and  6~  in  equation  (25). 

The  complete  first-order  solution of the  electronic  Lorentz-like  Boltzmann  equation 
for  a plasma  in  an  electromagnetic  field is derived  in  appendix  C, as is the  current  density 
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Additional  notation  includes  the  parallel  (to fi), perpendicular,  and  Hall  conductivities 
(oII, al, and aH, , the  cyclotron  frequency w = eB  me, and  the  integral I 

The  limit of this  integral, as w approaches  zero, is Rij.  One  can  also  write  the  fol- 
lowing  combination of equations (18) and  (32) : 

Since Iij and  Rij are  identical  when quadratic  and  higher  powers of W T ~  a r e  
neglected,  equation  (34)  becomes 

for  small  magnetic  fields;  likewise,  the  second Sonine  approximation of equations  (27) 
and (C12) yields  the  same  formal  result.  These  results are interesting  for  at  least two 
reasons: (1) the  appearance of T~ rather than T~ in  the  Hall  conductivity  indicates a 
preference  for  the  relaxation  time of entropy  over  that of diffusion; (2) except  for  the new 
collision  time,  equation  (35) is exactly  Spitzer's  formula  for  the  simple  mean-free-path 
current  density  (ref. 7; see  also  appendix  E). In  addition, a comparison of the  numerical 
resul ts  of equations  (26)  to (30) suggests  that  the  present  technique  for  computing oH to 
linear W T ~  might  be  better  than  the  third Sonine  approximation. 

Although  equation  (34) still  provides  the  most  concise  description,  the  quadratic  acd 
higher  effects of large  magnetic  fields are difficult  to  interpret.  Even so, the  conductiv- 
i ty  ratios  are found quite  easily  from  equation (32) by using  the  nonmagnetic  value of 5 
from  equation (25) and yE(m) = 0.5816 in  the  following  formulas: 

and 
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for  the  extension of Spitzer  and  Hiirm's scalar conductivity (ref. 6) to  the  electromagnetic 
tensor  conductivity at several   values of w'r. 

Also  listed  in  tables I and 11 are calculations  from  the  f irst  Sonine  expressions (see 
appendix E) 

and  the  second,  third,  and sixth approximations of Kaneko  (ref. 8). Besides  yE(l) = 3 ~ / 3 2  
from  reference  6, a few conversion  factors  are  necessary:  the ~ ~ ( 1 )  of equation (38) is 
equal  to  the T of tables I and I1 and  each  entry  in  table I of reference 8 should  be  multi- 
plied  by  *yE(l),  where  the  minus  sign is used  in  the  Hall  conductivity. 

The  comparisons  are  generally  favorable  and  show  equations (36) and  (37)  to  be 
nearly  always  superior  to  the  second Sonine  approximation.  One  can  thus  proceed with 
some  assurance  to  the  extensions  and  semiempirical  applications  originally  intended  for 
the  present  method. 

1.0 
2.0 
4.0 
6.0 

TABLE I.- PERPENDICULAR CONDUCTIVITIES 

0.295 0.569 0.574 
.283 .45a .468 
.236 .236 .253 
.147 . loo . lo6  
.0589 ,0406 .0367 
.0173 .0147 .0126 

.0080 .0073 .0066 

?The  first-order  collision  time 7 
"- . "  ~ 

0.581 
.471 
.256 
.110 
.0381 
.0117 
.0057 

is related tc 

0.582 
.471 
.266 
.118 
.0393 
.0111 
.0051 

r m  by 
the  ratio T ~ / T  = 32(3n)-1yE,  where  yE is given i n  reference  6; 
in  particular, YE(-) yields ru/T = 1.975 for the  conversion of 
the  independent  variable  in  equation  (36). 
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1.0 
2.0 
4.0 
6.0 

TABLE 11.- HALL CONDUCTIVITIES 

0.000 0.000 0.000 0.000 0.000 
.057 .220 .215 .217 .212 
.118 .266 .271 .271 .268 
.147 .193 .207 .208 .214 
.118 .117 .123 .127 .132 
.0693 .OW2 .0673 .06a9 . 0 7 n  
.0478 .0469 .0466 ,0471 .0483 

tThe  f irst-order  coll ision  t ime T is related to T~ by 
-~ - " . 

the  ratio r u b  = 32(3s)-'yE, where YE is given  in  reference 6; 
in  particular, yE(m)  yields ru/r = 1.975 for  the  conversion of 
the  independent  variable in  equation  (37). 



TEMPERATURE  EFFECTS 

Thermal  Conduction 

Temperature  gradients  provide  third  and  fourth  checks of the  collision  model of 
equations (10) and (14) o r  (25) through  comparisons with Spitzer  and  Hiirm's  thermal  con- 
ductivity  and  thermal  diffusion. 

By a procedure  similar  to  that  used  in  appendix  C,  the  Lorentz-like  first-order 
Boltzmann  equation  for a plasma  subject  to a temperature  gradient (but no pressure   g ra-  
dient)  can  be  written 

The  solution of equation  (39) is 

which yields,  respectively,  the  real  and  Lorentz (5 = 1) kinetic-energy fluxes 

- 1  q = - neme (Ce2?e) = -k2Teo(e<)-2(52 + 55 + 4)VTe 
2 

and 

and,  hence,  the  Spitzer-Hzrm  thermal  reduction  factor 

If the  same  value of 5 is substituted  into  equation (43)  which  was  derived  previously 
in  equation  (25)  for  the  nonmagnetic zero-temperature-gradient problem,  there  results 

ST(< = 1.6674) = 0.3162 (44) 

This  time,  however,  the  comparisons  with  Spitzer  and  Hgrm's  exact  value of 0.2252 and 
Kaneko's  second  Sonine  approximation of 0.1906 are fairly  poor.  Even so, the  value  in 
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equation (44) is better  than  the  corresponding  Krook  number of 0.0736 obtained  from  the 
substitution  (see  appendix B) of ~ ~ ( 1 )  and 5 = 4 into  equation  (43). 

Thermal Diffusion 

Spitzer  and  HZrm's  thermal  diffusion  reduction  factor yT also  can  be  derived 
from  equation (40)  by f i r s t  taking  the  velocity  moment  and  then  comparing real and 
Lorentz  plasmas  in  the  manner of equations  (41)  to  (43).  The  pertinent  expressions  are 

-c 

j = ko(2eg)-l(4 - t)VTe 

and 

Despite  the  excellent  agreement  between  the  value  in  equation  (47)  and  the  exact 
value (ref. 6) of 0.2727,  the  preceding  calculation is a valid  test of equations  (10)  and  (14) 
only in  that  it  demonstrates  the  automatic  incorporation by the  present  model of Onsager's 
reciprocal  relations  (ref. 9, pp. 704-717). This  fact is illustrated  quite  directly by the 
following  manipulation of equation  (13) for no temperature  gradient  and of equations (41) 
and (45) for only a temperature  gradient: 

q - h = -  " 5k2Te(t2 + 55 + 4)  VTC - - 5  nekTeve -c 

,252 2 

ok2Te(S2 + 55 + 4) 5kTe -. 
- " 

e25 2 
~- VTe + - 

2e j 

- 5k2Te2(952 + 16) 
" V In Te 

4e2t2 
(4 9) 
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The  linear  combination 

so that  the  matrix  representation of equations  (50)  and  (51) 

clearly  reveals  the  symmetry  between  the  off-diagonal  elements. 

The  fact  that  Onsager's  reciprocal  relations are guaranteed  in  the  present  proce- 
dure is, of course,  another  important  advantage  over  several  previous  models.  In  par- 
ticular,  the  Krook  model  (appendix B), even though it  technically  satisfies  the  reciprocal 
requirements,  does so in a trivial  fashion  because  it   predicts  zero  values  for  the off- 
diagonal  matrix  elements by forcing ( to  equal 4. 

ALTERNATE DETERMINATION O F  ( 

Equation  (51)  immediately  suggests a more  convenient  experimental  method  for 
determining  the  value of 5 in  equation  (10)  than  the  method  offered by equation  (14). If 
a temperature  gradient  alone is initially  applied  to  an  enclosed  plasma, a secondary  gen- 
eralized  electric  field 5 will  build  up  until  the  current  produced by the  temperature 
gradient is canceled  (ref. 7, p. 144).  The  final  stationary  state so obtained  corresponds 
to ?= 0 in  equation  (51)  and  hence  to  the  following  expression  for 5 i n   t e rms  of the 
balancing E and VT,: -c 

( = 4  1" ( (53) 
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The  values of .$ obtained  from  equation (53) are, of course,  numerically  equivalent  to 
those  obtained  from  equation (14) because of the  guaranteed  satisfaction  in  the  present 
technique of Onsager's  reciprocal  relations. 

As i n  equation  (14) ~ the  conditions  underlying  equation (53) are   assumed only for  the 
purpose of establishing 5, which remains  fixed  irrespective of subsequent  conditions  and 
forms of cpe i f  the  plasma  constituents do not change. It is difficult  to  imagine a s im- 
pler  experimental  procedure  for  completely  defining  the  collision  model  than  that of 
equation (53) and a corresponding  one  for  the  determination of T~ in  equation  (10).  The 
latter  involves  measurements of a field-induced  electric  current  and  the  subsequent  use 
of Ohm's  law  and  equation (1 1). 

CONCLUDING REMARKS 

The  collision  model  derived  herein  has  been  shown  to  predict  quite  adequately  such 
diverse  plasma  properties as entropy,  entropy  and  diffasion  relaxation  times,  electro- 
magnetic  tensor  conductivities,  and  either  thermal  diffusion or  off-diagonal  kinetic-energy 
flux.  The  model  thus  provides a satisfactory  scheme  for  utilizing  macroscopic  experi- 
mental  data when microscopic  parameters  (e.g.,  electron-neutral-atom  force  laws) are 
scarcely known and for  directly  extending  previous  calculations  to  more  complex  condi- 
tions  (e.g.,  to  the  full  electromagnetic  field). Only  the  simplest  measurements,  that is, 
electron  diffusion  and  static  field  and  temperature  conditions, are required  for  the first 
application.  In  addition,  the  closed-form  distribution  functions are easier  to interpret  
than  the  functions  from  polynomial  expansions  and  reveal,  for  example,  the  natural 
appearance of entropy  relaxation  in Hall  conductivities. 

Generalizations of this  technique  can  apparently be made to higher  perturbation 
orders.  Certain  modifications  to  the  equations  defining  the  collision  model  and  to  the 
kinetic  equations are   necessary,  of course, but  the  manipulations  should  be  much  easier 
in  a Lorentz-like  framework  than with the  more  exact  Boltzmann  collision  integrals. 
Perhaps one o r  two second-order  constraints will suffice  to  overcome  Chapman-Enskog 
convergence  difficulties  just as the  introduction of an  effective  collision  parameter .$ 
(empirical)  overcame  electron-electron  difficulties ill the  present  report. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton,  Va.,  February 3 ,  1969, 
123-02-01-01-23. 
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APPENDIX  A 

COLLISION  INTEGRALS 

It is shown in  this  appendix  that  the last par t  of equation (6) follows  directly  from 
the  second  part when the  electron-heavy-particle  interaction  potential  can  be  written as 
the  inverse 5-power of the  separation  distance. 

The first step  in  such a development is the  formulation of the  reduced  electron  par- 
ticle velocity after a collision  in  terms of the  reduced  electron  particle  velocity 
before  the  collision 7 and  the  corresponding  scattering or deflection  angle x. This 
straightforward  exercise  in  geometry  yields 

7-71 = (1 - cos x)T-  y sin x i(sin cp cos E + cos e cos cp sin E )  r 
n - j(cos cp cos E - cos 8 s in  cp sin E )  - k  sin 8 sin E] n 

(AI) 

where 0 and cp are  the  polar  and  azimuthal  angles,  respectively, of 7 in  spherical 
coordinates  and E is the  azimuthal  angle of with respect  to  the  direction of r'. 

Accordingly,  equation (6) may  be  derived as follows with the  aid of equation  (5): 

1/2 
= -2nn jy fe (o )cpe ( - )  2kTe lf(l - cos X)b db 

The  remaining  integral  involves, of course,  the  detailed  collision  dynamics,  but  that  cal- 
culation  has  already  been  performed  for  the  inverse  power  potential by Hirschfelder, 
Curtiss,  and  Bird  (ref.  9, pp. 546-549). Their  results  can  be  written 

so that 
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APPENDIX A 

It must  be  mentioned,  however,  that  the  Coulomb  potential (< = 1) satisfies equa- 
tion (A3) only if a cut-off (usually  the  Debye  length)  replaces  the  upper  limit of the  inte- 
gral  and i f  the y2 appearing  in  the  argument of the  logarithm  in  equation (8.3-8) of ref- 
erence 9 is replaced by its average  value  over all collisions.  Both  practices are rather  
standard  in  the  current  literature. 
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APPENDIX B 

THE KROOK COLLISION MODEL 

Holway (ref. 1) has  used  some  concepts  from  information  theory  to  derive  the  Krook 
collision  model  defined  by 

More  specifically,  he  obtained  this  result by means of a variational  procedure  based  on 
the  maximization of entropy  subject  to  mass  conservation and  to  experimental  knowledge 
of the  average  velocity Zej and  the  average  energy 3kTej/2  with  which electrons 

emerge  from  encounters with their  effective  collision  partners j .  The  pertinent  rela- 
tions are equations (46) to (49) of reference 1, from which i t  is evident  that  Tej  equals 
the  electron  temperature  Te  in  the  first  Chapman-Enskog  perturbation  order. 

Other  first-order  expressions  include 

and  the  following  linear  expansion of equation (Bl):  

where Fej and 7 a r e  the  reduced  velocities 

and 

The  present  objective is to determine 
equation 

--E.-- e afe(O) - - 
me a Fe 

qe from  the  corresponding  perturbation 



APPENDIX B 

for  an  applied  electric  field. If E is related  to  the  reduced  electron  diffusion  velocity 
+ 

through  Ohm’s  law 

there  results 

and 

V e  

The  definition 

is used with equation  (B10)  to  yield 

and 

and  with  equations  (B3)  and (B13) to  yield 

The  physical  interpretation of equations (B13) and  (B14),  and  therefore  the  first- 
order  Krook  model, is clear:  They  correspond  either  to  the first Sonine  approximation  to 
a real plasma  or to  the  exact  first-order  solution  for a Lorentz  gas (no electron-electron 
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collisions)  composed of Maxwellian  molecules.  Neither is adequate.  Also  in  line  with 
these  conclusions is the  observation  from  equation (10) that 6 = 4 and T~ = T0(1) must 
be  employed  in  the  collision  model of this  paper if  Krook  model  type of resu l t s   a re  
desired. 
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APPENDIX  C 

CHAPMAN-ENSKOG SOLUTIONS 

The  standard  Chapman-Enskog  first-order  perturbation  equation  (ref. 2) for  elec- 
trons  can  be  written as follows for pressure  gradients  and  an  applied  electromagnetic 
field ?? and B, no temperature  gradients,  infinitely  massive  heavy  particles at r e s t  
relative  to  the  laboratory,  and  the  collision  model of equation (7): 

-L 

Since 

qe = -[Dl(y)7+  Dz(y)?x 6 + D3(y)7. 6 4  7 

is a standard  solution  (ref. 3) of equation  (Cl),   there  results 

upon  taking  the  spatial  and  velocity  derivatives of fe(O) and  defining  the  effective  driving 
force as 

" 
E = E + (ene) Vpe -1 (C 4) 

It is readily  confirmed by equating  coefficients of 7, ?x 6, and 7 . BB in  equa- 
A A  

tion (C3) that  the  exact  closed-form  solution is 

where 711 and 7 a r e  the  components of 7 which are   paral le l  and  perpendicular, 

respectively,  to B. The  current  density  then  becomes 
1 

A 
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APPENDIX C 

so that 

e2neR13 - R13 
meGR04 7 ~ R 0 4  

K =  " 

Other  definitions  include  the  electrical  conductivity (T = e2neT0/me  and  the  integrals 

and qj = Iij(w = 0). 

Except  for  the  determination of 5, the  following  expressions  thus  represent  the 
complete  specification of the zero-temperature-gradient plasma: 

and 

Also  discussed  in  the  main body of the  report  are the  corresponding  second Sonine 
approximation  formulas  derived  from  the  matrix  elements of Schweitzer  and  Mitchner 
(ref. 3). If the  parameter a is introduced  in  these  expressions  for  the  purpose of 
describing  the  Lorentz  (a = 0) and real = 21/2) plasmas  simultaneously,  there  results 

+ E(4a + 2 3 ) ~ 2  + 8a2 + 22a - 43 B X . y 
4a  + 13 1- } - 

I 



and 

APPENDIX C 

r 1 

Only  the  linear  terms  have  been  retained i n  an W T ~  expansion. 
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APPENDIX D 

THE ONSAGER MAXIMIZATION PRINCIPLE 

It is shown in  this  appendix  that  the  perturbation  function of equation (8) can  be 
deduced  from  Onsager's  principle  on  the  maximization of the  collisional  production rate 
of entropy  density (ref. 5). The  mathematical  statement of this  principle is as follows: 

i n  which  equation (7) is substituted  for  the  collision  integrals. 

If the  diffusion  velocity is taken  to  be  the  only  nonequilibrium 
which qe depends,  the  perturbation  function  can  be  varied  arbitrarily 
subject  to  the  constraint 

parameter on 
in  equation  (Dl) 

Accordingly,  the  application of the  method of Lagrange  multipliers  to  equations 
(D2) yields 

and 

Since  equation (D4) is identical with  equation ( 8 ) ,  Onsager's  maximization  principle 
is embodied  in  the  Boltzmann  equation.  It is further  suggested  that  the  present  varia- 
tional  procedure  may  be  more  efficient  than  the  maximization of entropy  used  in  informa- 
tion  theory  (ref.  l). At least equation  (Dl) is based upon an  objective  physical  theory, 
whereas  the  alternate  technique refers to  the  uncertainty of the  observer  and  provides 
only an  upper  limit  to  the  true  entropy  unless  the  constraints  form a complete set for 
describing  the  macroscopic state of the  system. 
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APPENDIX E 

THE  MEAN-FREE-PATH MODEL 

The  electron  equation of motion  (ref. 7, p. 28) in  the  mean-free-path statistical 
model  can  be  written as follows  for infinite ionic  mass,  an  ionic  charge  number of unity, 
and  zero-plasma-flow  velocity: 

r 1 

It is observed,  however,  from  the  macroscopic  equations of  continuity  and  energy  transfer 
that  the  time  derivatives of both particle  density  and  temperature are second  order  in  that  
they  involve  products of gradients  and  squares  and  divergences of the  electron  diffusion 
velocity;  consequently,  since  the  partial  time  derivative of equation (2) involves  only 
ane/at  and  aTe/at,  there  can  be no time  derivative  on  the left side of the  first-order 
Chapman-Enskog  perturbation  equation  (see  appendix C). This  argument  means  that  the 
a j at  appearing  in  reference 7 must  be  set  to  zero  for  comparisons  with  the  present 
report. 
7 

The  cross  product of equation  (El)  and B' and  the  subsequent  combination with 
equations (11) and (El)  yield 

the  solution of which is 

A  further  combination of equation  (E3) with equation (El)  then  gives 

and  the  tensor  conductivities 

= 
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Except  for  the  substitution of 7s for Tu, equation  (E4) is the  same as equa- 
tion (35) to  linear W T ~  Equation  (E4) also  gives  the  first Sonine approximation  to 7 
when u assumes  the  corresponding  value u(1). 
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Publications  include  conference proceedings, 
monographs,  data  compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY  UTILIZATION 
PUBLICATIONS: Information  on technology 
used by NASA  that may be of particular 
interest i n  commercial and other non-aerospace 
applications.  Publications  include  Tech Briefs, 
Technology Utilization Reports and  Notes, 
and Technology Surveys. 

Details  on  the  availability of these  publications  may  be  obtained from: 

SCIENTIFIC  AND  TECHNICAL  INFORMATION  DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 
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