GEOS I TRACKING STATION POSITIONS ON THE SAO STANDARD EARTH (C-5)

by
Francis J. Lerch and James G. Marsh Goddard Space Flight Center
and
Maurice D. D'Aria and Ronald L. Brooks
Wolf Research and Development Corporation

GEOS I TRACKING STATION POSITIONS ON THE SAO STANDARD EARTH（C－5）
By Francis J．Lerch and James G．Marsh
Goddard Space Flight Center Greenbelt，Md．
and
Maurice D．D＇Aria and Ronald L．Brooks
Wolf Research and Development Corporation
Applied Sciences Department
Bladensburg，Md．

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Abstract

For the purpose of long-arc satellite data reduction and intercomparison, all GEOS I participating tracking stations have been transformed to a common datum. The common datum selected is the Smithsonian Astrophysical Observatory (SAO) Standard Earth C-5 model, in which the Baker-Nunn station positions are used as the controlling stations for all other stations to be transformed.

Descriptions and formulation are presented to effect the transformations from major and isolated datums. An empirical transformation technique is explained in detail which may be employed advantageously when datum shifts ($\Delta \mathrm{X}, \Delta \mathrm{Y}, \Delta \mathrm{Z}$) are not known or when the control stations within a local datum have been allowed to adjust independently on the world datum (SAO C-5). The transformation of local datum station coordinates is important to perform, since the datum shifts are quite large. For example, on the North American Datum the center-of-mass shift to the C-5 Standard Earth is approximately 250 meters. The center-of-mass coordinates of the SAO C-5 Baker-Nunn stations are assessed by SAO as having approximately $20-$ meter accuracy. Original and transformed station positions are presented in geodetic and Cartesian coordinates.

CONTENTS

Abstract ii
INTRODUCTION 1
COORDINATE TRANSFORMATION 2
ISOLATED DATUMS 2
PARAMETERS OF ORIGINAL DATUMS 2
STATION POSITIONS 3
References 17
Bibliography 17
Appendix A-Transformation Procedure 19
Appendix B-Comparison of Multi-Station Transformation and Molodenskiy's Transformation Formulas 27
Appendix C-Uncertainty of Transformed Positions 31
Appendix D-Sources of Positions 35

GEOS I TRACKING STATION POSITIONS ON THE SAO STANDARD EARTH (C-5)

by
Francis J. Lerch and James G. Marsh
Goddard Space Flight Center
and
Maurice D. D'Aria and Ronald L. Brooks
Wolf Research and Development Corporation

INTRODUCTION

This report presents the transformed station coordinates on the SAO C-5 Standard Earth for over 100 GEOS tracking stations that have been used in the long-arc orbital intercomparison effort. These station positions were derived by shifting the given local station datum coordinates onto the C-5 model. The procedures for transforming the station coordinates are briefly discussed in the next three sections, prior to the list of station coordinates presented in the final section. A more complete description and analysis of the procedure are provided in the appendixes.

The second section presents a general description of the transformation, and Appendix A contains a detailed description of the procedure. The third section discusses an ellipsoidal transformation for stations on isolated datums, with a more detailed explanation being given in Appendix A. The fourth section presents the ellipsoidal parameters of the local datums. The original and transformed C-5 station positions in geodetic and Cartesian coordinates are presented in the fifth section. The stations are grouped according to their tracking network.

Appendix B contains a comparison of transformation of positions by the Molodenskiy correction and transformation by the procedure utilized in this report. Appendix C contains the uncertainty estimates of the derived C-5 positions.

The list of sources of original positions is contained in Appendix D. Tables 11 to 20 in the fifth section carry symbols designating the source for those stations within the network. If the source of a station is different than for the network, it is so indicated opposite the station name.

A list of proper names for all stations designated in this report by their standard six-letter code may be found in Tables 21 to 30 of the fifth section.

COORDINATE TRANSFORMATION

The station transformations to the SAO C-5 Standard Earth ($\mathrm{a}_{\mathrm{e}}=6378165,1 / \mathrm{f}=298.25$) utilized the Cartesian coordinates. This transformation is based on the differences between the SAO Baker-Nunn original datum Cartesian coordinates and their derived C-5 mass-centered coordinates. This position difference is referred to as the datum shift. Once the datum shift has been derived for a Baker-Nunn station, this shift is then applied to derive the SAO Standard Earth coordinates for tracking stations that have positions given in the same original datum as the BakerNunn station and are tied to the Baker-Nunn station through conventional surface surveys. A weighting scheme is used where more than one Baker-Nunn station is located on the same datum, since these individual stations show slightly different datum shifts. The weight is chosen to be inversely proportional to the distance between the Baker-Nunn station and the tracking station to be transformed. The transformation, referred to as a Multi-Station Transformation, is discussed in detail in Appendix A.

The first 14 SAO Baker-Nunn stations listed in Table 1 of the fifth section are used as the major control stations for determining datum shifts. Their associated original datums are designated in the table. All stations except 11 stations as indicated in the next section have been transformed by the Multi-Station Transformation.

isOLATED DATUMS

An ellipsoidal transformation from the local reference ellipsoid to the C-5 ellipsoid is presented in the last section of Appendix A. It is performed for a tracking station on a datum for which there is no Baker-Nunn control station. Usually this situation occurs when a station is on an isolated datum such as the Tananarive Datum. This ellipsoidal transformation will provide for a center-of-mass shift ($\Delta \mathrm{X}, \Delta \mathrm{Y}, \Delta \mathrm{Z}$) if knowledge of it can be obtained. When knowledge of the center-of-mass shift is not available, the geodetic coordinates of latitude, longitude, and height in the local datum are used as such on the C-5 Datum. This latter condition is generally the case. For this report, 11 stations fell into this latter category and are so designated by the footnote "MSL" where they occur in Tables 11 to 20, which give the geodetic coordinates for all stations. The derived center-of-mass Cartesian coordinates are taken from the geodetic coordinates referenced to the $\mathbf{C - 5}$ ellipsoid.

PARAMETERS OF ORIGINAL DATUMS

In order to effect any transformation, the parameters of the original datums must be known as well as the geodetic latitude, longitude, and height.

Listed below are the original datums and their parameters in which the stations were originally surveyed.

	Semimajor Axis	
Datum Name	$\underline{\text { (meters) }}$	$\underline{1 / \mathrm{f}}$
		294.9787
North American (N.A.)	6378206.4	297.0
European	6378388.0	299.1528
Tokyo	6377397.2	297.0
Argentinean	6378388.0	298.3
Mercury	6378166.0	297.0
Madagascar	6378388.0	298.25
Australian Nat'l.	6378160.0	294.9787
Old Hawaiian	6378206.4	300.8017
Indian	6377276.3	293.4663
Arc (Cape)	6378249.1	297.0
1966 Canton ASTRO	6378388.0	297.0
Johnston Island 1961	6378388.0	297.0
Midway ASTRO 1961	6378388.0	294.9787
Navy IBEN ASTRO 1947	6378206.4	297.0
Provisional DOS	6378388.0	297.0
ASTRO 1962, 65 Allen Sodano Lt.	6378388.0	297.0
1966 SECOR ASTRO	6378388.0	293.4663
Viti Levu 1916	6378249.1	294.9787
Corrego Alegre	6378206.4	294.9787
USGS 1962 ASTRO	6378206.4	299.1528

STATION POSITIONS

Tables 1 to 10, following, list alternately the Cartesian coordinates in the original datum and the SAO C-5 Datum. The datums are specified in the last column.

Tables 11 to 20 list alternately the original surveyed ellipsoidal position and the SAO C-5 ellipsoidal position. (All positions are expressed in east longitude.) Tables 11, 15, 16, and 20 contain symbols designating the source of original station coordinates. The symbols are defined in Appendix D with a list of source information.

Estimates of the accuracy of the derived station coordinates on the C-5 Standard Earth are presented in Appendix C. These are based on the uncertainty that SAO has established for its Baker-Nunn stations, combined with the uncertainty of the survey ties of these stations to the Baker-Nunn network.

The C-5 positions for 1TANAN and MADGAR (Reference 1) have been derived by the station estimation technique contained in the Orbit Determination Program NONAME (Reference 2).

Table 1
SAO - Optical.

Name	Station Number	$\underset{\text { (meters) }}{\mathrm{X}}$	$\underset{\text { (meters) }}{\mathrm{Y}}$	$\begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}$	Datum
10RGAN	9001	$\begin{array}{\|l} -1535725 \\ -1535761 \end{array}$	$\left\|\begin{array}{\|} -5167147 \\ -5167003 \end{array}\right\|$	$\begin{aligned} & 3400867 \\ & 3401046 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \mathrm{C}-5 \end{aligned}$
1OLFAN	9002	$\begin{aligned} & 5056254 \\ & 5056134 \end{aligned}$	$\begin{aligned} & 2716631 \\ & 2716489 \end{aligned}$	$\begin{aligned} & -2775468 \\ & -2775820 \end{aligned}$	$\begin{aligned} & \text { Arc (Cape) } \\ & \text { C-5 } \end{aligned}$
WOOMER	9003	$\left\|\begin{array}{\|l\|} -3983661 \\ -3983756 \end{array}\right\|$	$\begin{aligned} & 3743135 \\ & 3743107 \end{aligned}$	$\begin{array}{\|l\|} \hline-3275679 \\ -3275598 \end{array}$	Australian $\mathrm{C}-5$
1SPAIN	9004	$\begin{aligned} & 5105682 \\ & 5105601 \end{aligned}$	$\begin{array}{\|l} \hline-555119 \\ -555233 \end{array}$	$\begin{aligned} & 3769797 \\ & 3769680 \end{aligned}$	European $\mathrm{C}-5$
1TOKYO	9005	$\left\|\begin{array}{\|} -3946554 \\ -3946703 \end{array}\right\|$	$\begin{aligned} & 3365774 \\ & 3366291 \end{aligned}$	$\begin{aligned} & 3698151 \\ & 3698849 \end{aligned}$	$\begin{aligned} & \text { Tokyo } \\ & \text { C-5 } \end{aligned}$
1NATOL	9006	$\begin{aligned} & 1018270 \\ & 1018207 \end{aligned}$	$\begin{aligned} & 5471237 \\ & 5471109 \end{aligned}$	$\begin{aligned} & 3109767 \\ & 3109619 \end{aligned}$	$\begin{aligned} & \text { European } \\ & \text { C-5 } \end{aligned}$
IQUIPA	9007	$\begin{aligned} & 1942774 \\ & 1942772 \end{aligned}$	$\begin{array}{\|l\|} -5804204 \\ -5804087 \end{array}$	$\begin{aligned} & -1797088 \\ & -1796964 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
1SHRAZ	9008	$\begin{aligned} & 3376973 \\ & 3376887 \end{aligned}$	$\begin{aligned} & 4404130 \\ & 4403992 \end{aligned}$	$\begin{aligned} & 3136414 \\ & 3136259 \end{aligned}$	European C-5
1CURAC	9009	$\begin{aligned} & 2251830 \\ & 2251824 \end{aligned}$	$\begin{array}{\|} -5817059 \\ -5316924 \end{array}$	$\begin{aligned} & 1326988 \\ & 1327166 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
1JUPTR	9010	$\begin{aligned} & 976310 \\ & 976284 \end{aligned}$	$\left\|\begin{array}{\|c\|} -5601550 \\ -5601398 \end{array}\right\|$	$\begin{aligned} & 2880068 \\ & 2880247 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1VILDO	9011	$\begin{aligned} & 2280741 \\ & 2280579 \end{aligned}$	$\mid-4914695$	$\begin{array}{\|} -3355481 \\ -3355462 \end{array}$	Argentinean $C-5$
1MAUIO	9012	$\begin{array}{\|l} -5466112 \\ -5466064 \end{array}$	$\begin{array}{\|l\|} \hline-2404012 \\ -2404279 \end{array}$	$\begin{aligned} & 2242372 \\ & 2242174 \end{aligned}$	Old Hawaiian C-5

Name	Station Number	X (meters)	Y (meters)	Z (meters)	Datum
OSLONR	9426	3121370	592748	5512832 3121280	European (m92629
5512704	C-5				

*These SAO station positions were derived by using the weighting scheme described in the section, "Coordinate Transformation."

Table 2
STADAN - Optical.

Name	Station Number	$\underset{\text { (meters) }}{\mathrm{X}}$	$\begin{gathered} \mathrm{Y} \\ \text { (meters) } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}$	Datum
1BPOIN	1021	$\begin{aligned} & 1118061 \\ & 1118039 \end{aligned}$	-4876471 -4876328	$\begin{array}{r} 3942793 \\ 3942966 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
1FTMYR	1022	$\begin{aligned} & \hline 807883 \\ & 807858 \end{aligned}$	$\begin{array}{\|l\|} \hline-5652136 \\ -5651987 \\ \hline \end{array}$	$\begin{aligned} & \hline 2833327 \\ & 2833504 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N} . \mathrm{A} . \\ \mathrm{C}-5 \end{gathered}$
100MER	1024	$\begin{array}{\|l\|} \hline-3977160 \\ -3977255 \end{array}$	$\begin{array}{r} 3725702 \\ 3725675 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-3303132 \\ -3303051 \\ \hline \end{array}$	$\begin{aligned} & \text { Australian } \\ & \text { C-5 } \end{aligned}$
1QUITO	1025	$\begin{aligned} & \hline 1263614 \\ & 1263601 \end{aligned}$	$\left\|\begin{array}{\|l\|} -6255122 \\ -6254988 \end{array}\right\|$	$\begin{aligned} & -69082 \\ & -68920 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1LIMAP	1026	$\begin{aligned} & 1388815 \\ & 1388807 \end{aligned}$	$\begin{array}{\|l\|} \hline-6088540 \\ -6088413 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1293432 \\ -1293287 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
1SATAG	1028	$\begin{aligned} & 1769705 \\ & 1769694 \end{aligned}$	$\begin{array}{\|l\|} \hline-5044753 \\ -5044624 \\ \hline \end{array}$	$\begin{aligned} & -3468417 \\ & -3468267 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1MOJAV	1030	$\begin{aligned} & \hline-2357214 \\ & -2357242 \end{aligned}$	$\begin{array}{\|l\|} \hline-4646474 \\ -4646332 \\ \hline \end{array}$	$\begin{aligned} & \hline 3668134 \\ & 3668308 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1JOBUR	1031	5084923 5084803	$\begin{aligned} & 2670522 \\ & 2670380 \end{aligned}$	$\begin{array}{\|l\|} \hline-2767849 \\ -2768201 \\ \hline \end{array}$	$\begin{aligned} & \text { Arc (Cape) } \\ & \text { C-5 } \end{aligned}$
1NEWFL	1032	$\begin{array}{r} 2602801 \\ 2602782 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-3419301 \\ -3419160 \\ \hline \end{array}$	$\begin{aligned} & 4697476 \\ & 4697646 \end{aligned}$	$\begin{aligned} & \hline \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
1COLEG	1033	$\begin{array}{\|l\|} \hline-2299237 \\ -2299259 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1445840 \\ -1445700 \end{array}$	$\begin{aligned} & 5751627 \\ & 5751796 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
1GFORK	1034	$\begin{array}{\|l} \hline-521679 \\ -521703 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-4242197 \\ -4242055 \\ \hline \end{array}$	$\begin{aligned} & 4718543 \\ & 4718715 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
1WNKFL	1035	$\begin{aligned} & 3983320 \\ & 3983237 \end{aligned}$	$\begin{aligned} & -48386 \\ & -48505 \end{aligned}$	$\begin{aligned} & 4964737 \\ & 4964606 \end{aligned}$	$\begin{aligned} & \text { European } \\ & \mathrm{C}-5 \end{aligned}$
1ROSMA	1042	$\begin{aligned} & 647539 \\ & 647516 \end{aligned}$	$\begin{array}{\|l\|} \hline-5178082 \\ -5177937 \\ \hline \end{array}$	$\begin{aligned} & 3656533 \\ & 3656707 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
1TANAN	1043	$\begin{aligned} & 4092050 \\ & 4091879 \end{aligned}$	$\begin{aligned} & 4434532 \\ & 4434279 \end{aligned}$	$\begin{array}{\|l\|} \hline-2064612 \\ -2064767 \end{array}$	$\begin{aligned} & \text { Tananarive } \\ & \text { C-5 } \end{aligned}$

Table 3
STADAN - R/R.

Name	Station Number	X (meters)	Y (meters)	Z (meters)	Datum		
MADGAR	1122	4091559 4091387	4434388 4434137	-2065964	-2066118	Cananarive	C-5
:---							

Table 4
Navy TRANET - Doppler.

Name	Station Number	$\left\|\begin{array}{c} \mathrm{X} \\ \text { (meters) } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{Y} \\ \text { (meters) } \end{gathered}\right.$	$\begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}$	Datum
LASHAM	2006	$\begin{aligned} & 4005569 \\ & 4005486 \end{aligned}$	$\begin{aligned} & -71656 \\ & -71776 \end{aligned}$	$\begin{array}{r} 4946799 \\ 4946667 \end{array}$	European C-5
SANHES	2008	$\begin{aligned} & 4084014 \\ & 4083963 \end{aligned}$	$\begin{array}{\|} -4209856 \\ -4209804 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-2498933 \\ -2499088 \\ \hline \end{array}$	$\begin{array}{\|l} \text { Corrego Alegre } \\ \text { C-5 } \end{array}$
PHILIP	2011	$\left.\begin{array}{\|l\|} \hline-3087865 \\ -3088014 \end{array} \right\rvert\,$	5332447 5332964	$\begin{aligned} & \hline 1638097 \\ & 1638795 \end{aligned}$	$\begin{aligned} & \text { Tokyo } \\ & \mathrm{C}-5 \end{aligned}$
SMTHFD	2012	$\left.\begin{array}{\|} \hline-3942109 \\ -3942204 \end{array} \right\rvert\,$	$\begin{aligned} & 3468907 \\ & 3468880 \end{aligned}$	$\begin{array}{\|l\|} \hline-3608342 \\ -3608261 \\ \hline \end{array}$	$\begin{aligned} & \text { Australian } \\ & \mathrm{C}-5 \end{aligned}$
MISAWA	2013	$\begin{array}{\|l\|} \hline-3779496 \\ -3779645 \\ \hline \end{array}$	$\begin{aligned} & 3024198 \\ & 3024715 \end{aligned}$	$\begin{aligned} & 4138313 \\ & 4139011 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tokyo } \\ & \text { C-5 } \end{aligned}$
ANCHOR	2014	$\begin{array}{\|l\|} \hline-2656169 \\ -2656190 \end{array},$	$\begin{array}{\|l\|} \hline-1544504 \\ -1544364 \end{array}$	$\begin{aligned} & 5570468 \\ & 5570638 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
TAFUNA	2017	$\begin{aligned} & -6100005 \\ & -6099951 \end{aligned}$	$\begin{array}{\|l\|} \hline-997516 \\ -997507 \end{array}$	$\left\|\begin{array}{\|c\|} \hline-1568353 \\ -1568456 \end{array}\right\|$	$\begin{aligned} & \text { USGS } 1962 \text { ASTRO } \\ & \text { C-5 } \end{aligned}$
THULEG	2018	$\begin{aligned} & 538387 \\ & 539367 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline-1388492 \\ -1388352 \end{array} \right\rvert\,$	$\begin{array}{r} 6180847 \\ 6181017 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
MCMRDO	2019	$\begin{array}{\|} -1310731 \\ -1310762 \end{array}$	$\begin{aligned} & 310481 \\ & 310421 \end{aligned}$	$\begin{array}{\|l\|} \hline-6213364 \\ -6213370 \end{array}$	$\begin{aligned} & \text { Mercury } \\ & \text { C-5 } \end{aligned}$
WAHIWA	2100	$\begin{array}{\|l\|} \hline-5504191 \\ -5504143 \end{array},$	$\begin{array}{\|l\|} \hline-2223857 \\ -2224124 \\ \hline \end{array}$	$\begin{aligned} & 2325479 \\ & 2325281 \end{aligned}$	$\begin{aligned} & \text { Old Hawaiian } \\ & \text { C-5 } \end{aligned}$
LACRES	2103	$\begin{array}{\|l\|} \hline-1556192 \\ -1556228 \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline-5169592 \\ -5169448 \end{array} \right\rvert\,$	$\begin{aligned} & 3387072 \\ & 3387251 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \\ & \hline \end{aligned}$
LASHM2	2106	$\begin{aligned} & 4005531 \\ & 4005448 \end{aligned}$	$\begin{array}{\|l\|} \hline-71662 \\ -71781 \\ \hline \end{array}$	$\begin{aligned} & 4946835 \\ & 4946704 \end{aligned}$	$\begin{aligned} & \text { European } \\ & \text { C-5 } \\ & \hline \end{aligned}$
APLMND	2111	$\begin{aligned} & \hline 1122567 \\ & 1122545 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-4823230 \\ -4823087 \\ \hline \end{array}$	$\begin{aligned} & 4006287 \\ & 4006460 \end{aligned}$	$\begin{aligned} & \hline \text { N.A. } \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
PRETOR	2115	$\begin{aligned} & \hline 5052053 \\ & 5051989 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2725719 \\ & 2725610 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} -2774355 \\ -2774515 \end{array}$	$\begin{aligned} & \begin{array}{l} \text { European } \\ \text { C-5 } \end{array} \\ & \hline \end{aligned}$
SHEMYA	2739	$\begin{array}{\|l\|} \hline-3851525 \\ -3851546 \\ \hline \end{array}$	$\begin{aligned} & 397046 \\ & 397185 \end{aligned}$	$\begin{aligned} & 5051365 \\ & 5051533 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
BELTSV	2742	$\begin{aligned} & \hline 1130805 \\ & 1130783 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-4830982 \\ -4830839 \\ \hline \end{array}$	$\begin{aligned} & \hline 3994535 \\ & 3994708 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { N.A. } \\ \text { C-5 } \\ \hline \end{array}$
STNVIL	2745	$\begin{array}{\|c} -78775 \\ -78799 \end{array}$	$\left.\begin{array}{\|l\|} \hline-5328202 \\ -5328059 \end{array} \right\rvert\,$	$\begin{aligned} & 3493275 \\ & 3493449 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$

Table 5
Air Force - Optical.

Name	Station Number	$\left\|\begin{array}{c} \mathrm{X} \\ \text { (meters) } \end{array}\right\|$	$\begin{gathered} \mathbf{Y} \\ \text { (meters) } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}$	Datum	Name	Station Number	$\begin{gathered} \mathrm{X} \\ \text { (meters) } \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { (meters) } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}$	Datum
ANTIGA	3106	$\begin{aligned} & 2881872 \\ & 2881858 \end{aligned}$	$\left\|\begin{array}{c} -5372329 \\ -5372192 \end{array}\right\|$	$\begin{aligned} & 1868347 \\ & 1868518 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$	TWINOK	3452	$\begin{array}{\|l\|l\|} -647883 \\ -647910 \end{array}$	$\begin{gathered} -5117438 \\ -5117296 \end{gathered}$	$\begin{aligned} & 3739390 \\ & 3739464 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
GRNVLE	3333	$\left\lvert\, \begin{aligned} & -93222 \\ & -93246 \end{aligned}\right.$	$\begin{array}{\|l\|} -5324617 \\ -5324473 \end{array}$	$\begin{aligned} & 3498350 \\ & 3498524 \end{aligned}$	$\begin{aligned} & \mathrm{N} . A . \\ & \mathrm{C}-5 \end{aligned}$	ROTHGR	3453	$\begin{aligned} & 3931622 \\ & 3931539 \end{aligned}$	$\begin{aligned} & 658045 \\ & 657925 \end{aligned}$	$\begin{aligned} & 4962958 \\ & 4962825 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { European } \\ \text { C-5 } \end{array}$
GRVILL	3334	$\begin{array}{\|l\|} -84958 \\ -84982 \end{array}$	$\left\lvert\, \begin{aligned} & -5328100 \\ & -5327957 \end{aligned}\right.$	$\begin{aligned} & 3493285 \\ & 3493459 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$	ATHNGR	3463	$\begin{aligned} & 4613521 \\ & 4613441 \end{aligned}$	2029197 2029074	3896034 3895897	European $\mathrm{C}-5$
USAFAC	3400	$\|-1275174\|$	$\begin{aligned} & -4798165 \\ & -4798023 \end{aligned}$	3994038 3994212	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$	TORRSP	3464	$\begin{aligned} & 4849671 \\ & 4849590 \end{aligned}$	$\begin{array}{\|l\|} -289982 \\ -290099 \end{array}$	$\begin{aligned} & 4119838 \\ & 4119713 \end{aligned}$	European $\mathrm{C}-5$
BEDFRD	3401	1513182 1513161	$\begin{aligned} & -4463731 \\ & -4463589 \end{aligned}$	$\begin{aligned} & 4282876 \\ & 4283048 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$	CHOFUJ	3465	$\left\|\begin{array}{l} -3946476 \\ -3946625 \end{array}\right\|$	$\begin{aligned} & 3366244 \\ & 3366761 \end{aligned}$	3697793 3698491	$\begin{aligned} & \text { Tokyo } \\ & \text { C-5 } \end{aligned}$
SEMMES	3402	$\begin{aligned} & 167290 \\ & 167267 \end{aligned}$	$\begin{aligned} & -5482122 \\ & -5481977 \end{aligned}$	3244863 3245037	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$	KINDLY	3471	$\begin{aligned} & 2305568 \\ & 2305550 \end{aligned}$	$\left\|\begin{array}{l} -4873771 \\ -4873630 \end{array}\right\|$	3396167 3396339	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
SWANIS	3404	$\begin{aligned} & 642541 \\ & 642522 \end{aligned}$	$\left\|\begin{array}{l} -6054110 \\ -6053968 \end{array}\right\|$	$\begin{aligned} & 1895518 \\ & 1895690 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$	HUNTER	3648	$\begin{gathered} 832594 \\ 832571 \end{gathered}$	$\left\|\begin{array}{\|} -5349690 \\ -5349544 \end{array}\right\|$	$\begin{aligned} & 3360414 \\ & 3360589 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
GRDTRK	3405	$\begin{aligned} & 1919530 \\ & 1919513 \end{aligned}$	$\begin{array}{\|l} -5621245 \\ -5621104 \end{array}$	$\begin{aligned} & 2315617 \\ & 2315790 \end{aligned}$	$\begin{array}{\|l\|l} \text { N. A. } \\ \text { C-5 } \end{array}$	JUPRAF	3649	$\begin{aligned} & 976326 \\ & 976300 \end{aligned}$	$\left\|\begin{array}{\|} -5601521 \\ -5601369 \end{array}\right\|$	$\begin{aligned} & 2880117 \\ & 2880296 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
CURACO	3406	$\begin{aligned} & 2251862 \\ & 2251856 \end{aligned}$	$\left\lvert\, \begin{array}{\|l} -5817042 \\ -5816907 \end{array}\right.$	$\begin{aligned} & 1327005 \\ & 1327183 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { N. A. } \\ \text { C-5 } \\ \hline \end{array}$	ABERDN	3657	$\begin{aligned} & 1186826 \\ & 1186805 \end{aligned}$	$\begin{array}{\|l\|} -4785340 \\ -4785198 \end{array}$	$\begin{aligned} & 4032705 \\ & 4032877 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
TRNDAD	3407	$\begin{aligned} & 2979970 \\ & 2979958 \end{aligned}$	$\left\lvert\, \begin{array}{\|l} -5513661 \\ -5513525 \end{array}\right.$	$\begin{aligned} & 1181004 \\ & 1181174 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$	HOMEST	3861	961793 961768	$\begin{aligned} & -5679315 \\ & -5679166 \end{aligned}$	$\begin{aligned} & 2729709 \\ & 2729886 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
GRANFK	3451	$\begin{aligned} & -549867 \\ & -549891 \end{aligned}$	-4245208	$\begin{aligned} & 4712728 \\ & 4712900 \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { N. A. } \\ \hline \mathrm{C}-5 \end{array}$	CHYWYN	3902	$\begin{gathered} -1234669 \\ -1234696 \end{gathered}$	$\left\lvert\, \begin{aligned} & -4651355 \\ & -4651213 \end{aligned}\right.$	$\begin{aligned} & 4174612 \\ & 4174787 \end{aligned}$	$\begin{array}{l\|l} \text { N. A. } \\ \text { C-5 } \end{array}$

Table 6
Army Map Service - SECOR.

Name	Station Number	$\begin{gathered} \text { X } \\ \text { (meters) } \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { (meters) } \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}$	Datum
HERNDN	5001	$\begin{aligned} & 1088886 \\ & 1088864 \end{aligned}$	$\begin{aligned} & -4843081 \\ & -4842938 \end{aligned}$	$\begin{aligned} & 3991661 \\ & 3991834 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
CUBCAL	5200	$\left\|\begin{array}{l} -2447563 \\ -2447591 \end{array}\right\|$	-4776104 -4775962	3435208 3435381	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
LARSON	5201	$\left\|\begin{array}{\|c\|} \hline-2127657 \\ -2127682 \end{array}\right\|$	$\left.\begin{array}{\|l\|} \hline-3786277 \\ -3786136 \end{array} \right\rvert\,$	$\begin{aligned} & 4655697 \\ & 4655869 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
WRGTON	5202	$\begin{array}{\|l} -449777 \\ -449801 \end{array}$	$\left\|\begin{array}{l} -4600953 \\ -4600811 \end{array}\right\|$	$\begin{aligned} & 4380165 \\ & 4380339 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \mathrm{C}-5 \end{aligned}$
GREENV	5333	$\begin{array}{\|l\|} \hline-84973 \\ -84997 \\ \hline \end{array}$	$\left\|\begin{array}{l} -5328093 \\ -5327950 \end{array}\right\|$	$\begin{aligned} & 3493295 \\ & 3493469 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
TRUKIS	5401	$\left\|\begin{array}{l} -5576059 \\ -5576019 \end{array}\right\|$	2984593 2984572	822651 822707	Navy IBEN ASTRO 1947 C-5
SWALLO	5402	$\left\|\begin{array}{\|} -6097581 \\ -6097365 \end{array}\right\|$	$\begin{aligned} & 1486531 \\ & 1486479 \end{aligned}$	$\left\|\begin{array}{l} -1133574 \\ -1133566 \end{array}\right\|$	1966 SECOR ASTRO C-5
KUSAIE	5403	-6074637 -6074423	$\begin{aligned} & 1854309 \\ & 1854243 \end{aligned}$	$\begin{gathered} 584756 \\ 584752 \end{gathered}$	ASTRO 1962, 65 Allen Sodano Lt. C-5
GIZ 200	5404	$\left\|\begin{array}{\|} -5805647 \\ -5805442 \end{array}\right\|$	$\begin{aligned} & 2485478 \\ & 2485390 \end{aligned}$	$\left\lvert\, \begin{aligned} & -892157 \\ & -892151 \end{aligned}\right.$	Provisional DOS C-5
TARAWA	5405	$\begin{array}{\|l\|} \hline-6328119 \\ -6327898 \\ \hline \end{array}$	$\begin{aligned} & 784867 \\ & 784840 \end{aligned}$	$\begin{aligned} & 150557 \\ & 150556 \end{aligned}$	$\begin{aligned} & 1966 \text { SECOR ASTRO } \\ & \text { C-5 } \end{aligned}$
NANDIS	5406	$\left\|\begin{array}{l} -6070252 \\ -6070141 \end{array}\right\|$	$\begin{aligned} & 270257 \\ & 270252 \end{aligned}$	$\begin{array}{\|l\|} \hline-1932795 \\ -1932972 \end{array}$	$\begin{aligned} & \text { Viti Levu } 1916 \\ & \text { C-5 } \end{aligned}$
CANTON	5407	$\left\|\begin{array}{\|l\|} -6304576 \\ -6304356 \end{array}\right\| .$	$\begin{aligned} & -917349 \\ & -917317 \end{aligned}$	$\left\lvert\, \begin{aligned} & -306696 \\ & -306694 \end{aligned}\right.$	1966 Canton ASTRO C-5

Name	Station Number	$\left\|\begin{array}{c} \mathrm{X} \\ \text { (meters) } \end{array}\right\|$	$\begin{gathered} \mathrm{Y} \\ \text { (meters) } \end{gathered}$	$\left\|\begin{array}{c} \mathrm{Z} \\ \text { (meters) } \end{array}\right\|$	Datum
JONSTN	5408	$\|-6008188\|$	$\begin{array}{\|l} -1111188 \\ -1111148 \end{array}$	$\begin{aligned} & 1824371 \\ & 1824356 \end{aligned}$	Johnston Island 1961 $C-5$
MIDWA Y	5410	-5619131 -5618917	$\begin{array}{\|l\|l} -258153 \\ -258143 \end{array}$	$\begin{aligned} & 2996972 \\ & 2996742 \end{aligned}$	Midway ASTRO 1962 C-5
MAUTHI	5411	$\begin{array}{\|l\|} \hline-5468070 \\ -5468023 \end{array}$	$\begin{array}{\|l} -2381140 \\ -2381407 \end{array}$	$\begin{aligned} & 2253375 \\ & 2253177 \end{aligned}$	Old Hawaiian C-5
FTWART	5648	$\begin{aligned} & 794718 \\ & 794695 \end{aligned}$	$\left\lvert\, \begin{gathered} -5360197 \\ -5360051 \end{gathered}\right.$	$\begin{aligned} & 3352909 \\ & 3353084 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
HNTAFB	5649	$\begin{array}{r} 832517 \\ 832494 \\ \hline \end{array}$	$\begin{aligned} & -5349741 \\ & -5349595 \\ & \hline \end{aligned}$	$\begin{aligned} & 3360372 \\ & 3360547 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
HOMEFL	5861	$\begin{aligned} & 963494 \\ & 963469 \end{aligned}$	$\begin{array}{\|l} -5679880 \\ -5679731 \\ \hline \end{array}$	$\begin{array}{\|l\|} 2727945 \\ 2728122 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$

Table 7
USC\&GS - Optical.

Name	Station Number	X (meters)	Y (meters)	Z (meters)		Datum
BELTVL	6002	1130798	-4830988	3994522	N. A.	
1130777	-4830845	3994695	C-5			

Table 8
SPEOPT - Optical.

Name	Station Number	$\left\lvert\, \begin{gathered} \mathrm{X} \\ \text { (meters) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \mathrm{Y} \\ \text { (meters) } \end{gathered}\right.$	$\begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}$	Datum
1 UNDAK	7034	$\begin{aligned} & -521679 \\ & -521703 \end{aligned}$	$\begin{aligned} & -4242198 \\ & -4242055 \end{aligned}$	$\begin{aligned} & 4718543 \\ & 4718713 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1EDINB	7036	$\begin{aligned} & -828465 \\ & -828490 \end{aligned}$	$\begin{array}{\|l\|} \hline-5657605 \\ -5657462 \end{array}$	$\begin{aligned} & 2816640 \\ & 2816814 \end{aligned}$	$\begin{aligned} & \text { N. A } \\ & \mathrm{C}-5 \end{aligned}$
1COLBA	7037	$\begin{array}{\|l\|} \hline-191261 \\ -191286 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-4967427 \\ -4967285 \end{array}$	$\begin{aligned} & 3983084 \\ & 3983257 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1BERMD	7039	$\begin{aligned} & 2308226 \\ & 2308207 \end{aligned}$	$\begin{array}{\|l} -4873758 \\ -4873617 \end{array}$	$\begin{aligned} & 3394383 \\ & 3394555 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1 PURIO	7040	$\begin{aligned} & 2465089 \\ & 2465076 \end{aligned}$	$\begin{aligned} & -5535082 \\ & -5534945 \end{aligned}$	$\begin{aligned} & 1985346 \\ & 1985519 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1GSFCP	7043	$\begin{aligned} & 1130742 \\ & 1130720 \end{aligned}$	$\begin{array}{\|l\|} \hline-4831487 \\ -4831344 \\ \hline \end{array}$	$\begin{aligned} & 3993952 \\ & 3994125 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1CKVLE	7044	$\begin{aligned} & 380205 \\ & 380182 \end{aligned}$	$\left\lvert\, \begin{array}{\|} -4992848 \\ -4992705 \end{array}\right.$	$\begin{aligned} & 3937659 \\ & 3937832 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1DENVR	7045	$\left\|\begin{array}{c} -1240450 \\ -1240478 \end{array}\right\|$	$\begin{array}{\|} -4760380 \\ -4760237 \end{array}$	$\begin{aligned} & 4048805 \\ & 4048979 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1JUM24	7071	976293 976267	$\left\|\begin{array}{l} -5601555 \\ -5601403 \end{array}\right\|$	$\begin{array}{\|l\|} 2880061 \\ 2880240 \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}\right.$
1JUM40	7072	976297 976271	$\begin{aligned} & -5601549 \\ & -5601397 \end{aligned}$	$\begin{aligned} & 2880072 \\ & 2880251 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1JUPC1	7073	976303 976277	$\begin{aligned} & -5601545 \\ & -5601393 \end{aligned}$	$\begin{aligned} & 2880068 \\ & 2880247 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
$1 \mathrm{JUBC4}$	7074	$\begin{aligned} & 976304 \\ & 976278 \end{aligned}$	$\begin{array}{r} -5601545 \\ -5601393 \\ \hline \end{array}$	$\begin{aligned} & 2880076 \\ & 2880255 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1SUDBR	7075	$\begin{aligned} & 692646 \\ & 692624 \end{aligned}$	-4347227	$4 \begin{aligned} & 4600299 \\ & 4600472 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
1JAMAC	7076	$\begin{aligned} & 1384188 \\ & 1384171 \end{aligned}$	$\begin{array}{r} -5905827 \\ -5905686 \\ \hline \end{array}$	$\begin{aligned} & 1966368 \\ & 1966540 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$

Table 9
SPEOPT - Laser.

Name	Station Number	$\begin{gathered} \mathrm{X} \\ \text { (meters) } \end{gathered}$	$\underset{\text { (meters) }}{\mathrm{Y}}$	$\left\lvert\, \begin{gathered} \mathrm{Z} \\ \text { (meters) } \end{gathered}\right.$	Datum
GODLAS	7050	$\begin{aligned} & 1130704 \\ & 1130683 \end{aligned}$	$\left\lvert\, \begin{aligned} & -4831524 \\ & -4831381 \end{aligned}\right.$	$\left\|\begin{array}{l} 3993921 \\ 3994094 \end{array}\right\|$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
ROSLAS	7051	$\begin{aligned} & 647209 \\ & 647186 \end{aligned}$	$\begin{aligned} & -5178458 \\ & -5178314 \end{aligned}$	$\begin{aligned} & 3656001 \\ & 3656175 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$

Table 10
International - Optical.

Name	Station Number	X (meters)	Y (meters)	Z (meters)	Datum
DELFTH	8009	3923486 3923402	300006 299886	5003096 5002964	European C-5
ZIMWLD*	8010	4330631 4331308	567523	567505	4632712 4633101
Berne C-5					
MALVRN	8011	3920251 3920168	-134625	-134744	5012852 5012721
European					
C-5					

*The C-5 position was derived from the C-6 position, which was obtained from SAO.

Table 11
SAO - Optical - Source A.*

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
10RGAN	9001	$\begin{aligned} & 32^{\circ} 25^{\prime} 24!\cdot 56 \\ & 32^{\circ} 25^{\prime} 24!!70 \end{aligned}$	$\begin{aligned} & 253^{\circ} 26^{\prime} 51!17 \\ & 253^{\circ} 26^{\prime} 48^{\prime}!29 \end{aligned}$	$\begin{aligned} & 1649 \\ & 1610 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \mathrm{C}-5 \end{aligned}$
1OLFAN	9002	$\begin{aligned} & -25^{\circ} 57 \text { '33! } 85 \\ & -25^{\circ} 57 \prime 37!67 \end{aligned}$	$\begin{aligned} & 2^{\circ} 14^{\prime} 53!91 \\ & 28^{\circ} 14^{\circ} 51!45 \end{aligned}$	$\begin{aligned} & 1562 \\ & 1560 \end{aligned}$	$\begin{aligned} & \text { Arc (Cape) } \\ & \text { C-5 } \end{aligned}$
WOOMER	9003	$\begin{aligned} & -31^{\circ} 06{ }^{\prime} 07!26 \\ & -31^{\circ} 06^{\prime} 04!14 \end{aligned}$	$\begin{aligned} & 136^{\circ} 46^{\prime} 58^{\prime \prime} 70 \\ & 136^{\circ} 47^{\prime} 01!93 \end{aligned}$	$\begin{aligned} & 162 \\ & 158 \end{aligned}$	$\begin{aligned} & \text { Australian } \\ & \mathrm{C}-5 \end{aligned}$
1SPAIN	9004	$\begin{aligned} & 36^{\circ} 27^{\prime} 51!24 \\ & 36^{\circ} 27^{\prime} 46!68 \end{aligned}$	$\begin{aligned} & 353^{\circ} 47^{\prime} 41!47 \\ & 353^{\circ} 47^{\prime} 36!55 \end{aligned}$	$\begin{array}{r} 7 \\ 56 \end{array}$	$\begin{aligned} & \text { European } \\ & \text { C-5 } \\ & \hline \end{aligned}$
1TOKYO	9005	$\begin{aligned} & 35^{\circ} 40^{\prime} 11!!08 \\ & 35^{\circ} 40^{\prime} 23!!03 \end{aligned}$	$\begin{aligned} & 139^{\circ} 32^{\prime} 28!!22 \\ & 139^{\circ} 32^{\prime} 16^{\prime \prime}!42 \end{aligned}$	$\begin{aligned} & 58 \\ & 84 \end{aligned}$	$\begin{aligned} & \text { Tokyo } \\ & \text { C-5 } \end{aligned}$
1 NATOL	9006	$\begin{aligned} & 29^{\circ} 21^{\prime} 38^{\prime}: 90 \\ & 29^{\circ} 21^{\prime} 34!38 \end{aligned}$	$\begin{aligned} & 79^{\circ} 27^{\prime} 25^{\prime}: 61 \\ & 79^{\circ} 27^{\prime} 27^{\prime}!05 \end{aligned}$	$\begin{aligned} & 1847 \\ & 1855 \end{aligned}$	$\begin{aligned} & \text { European } \\ & \mathrm{C}-5 \end{aligned}$
1QUIPA	9007	$\begin{aligned} & -16^{\circ} 28^{\prime} 05!09 \\ & -16^{\circ} 27^{\prime} 58^{\prime!}!04 \\ & \hline \end{aligned}$	$\begin{aligned} & 288^{\circ} 30^{\prime} 22!84 \\ & 288^{\circ} 30^{\prime} 24!\cdot! \end{aligned}$	$\begin{array}{r} 2600 \\ 2479 \\ \hline \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1SHRAZ	9008	$\begin{aligned} & 29^{\circ} 38^{\prime} 17!90 \\ & 29^{\circ} 38^{\prime} 13!59 \end{aligned}$	$\begin{aligned} & 52^{\circ} 31^{\prime} 11^{\prime \prime} 80 \\ & 52^{\circ} 31^{\prime} 11^{\prime!} 20 \end{aligned}$	$\begin{aligned} & 1578 \\ & 1561 \\ & \hline \end{aligned}$	European
1CURAC	9009	$\begin{aligned} & 12^{\circ} 05^{\prime} 21!55 \\ & 12^{\circ} 05^{\prime} 24!!93 \end{aligned}$	$\begin{aligned} & 291^{\circ} 09^{\prime} 42!55 \\ & 291^{\circ} 09^{\prime} 43!97 \end{aligned}$	$\begin{array}{r} 23 \\ -33 \end{array}$	$\begin{array}{\|l\|} \hline \text { N. A. } \\ \text { C-5 } \\ \hline \end{array}$
$1 J U P T R$	9010	$\begin{aligned} & 27^{\circ} 01^{\prime} 13!\cdot 00 \\ & 27^{\circ} 01^{1} 14!23 \end{aligned}$	$\begin{aligned} & 279^{\circ} 53^{\prime} 12!92 \\ & 279^{\circ} 53^{\prime} 12!95 \end{aligned}$	$\begin{array}{r} 26 \\ -36 \end{array}$	$\begin{array}{\|l\|l} \text { N. A. } \\ \text { C-5 } \end{array}$
1VILDO	9011	$\begin{aligned} & -31^{\circ} 56 ' 36!53 \\ & -31^{\circ} 56^{\prime} 36!35 \end{aligned}$	$\begin{aligned} & 294^{\circ} 53^{\prime} 39!82 \\ & 294^{\circ} 53^{\prime} 36!11 \end{aligned}$	$\begin{aligned} & 598 \\ & 636 \end{aligned}$	$\begin{aligned} & \text { Argentinean } \\ & \mathrm{C}-5 \end{aligned}$
1MAUО	9012	$20^{\circ}{ }_{42}{ }^{\prime} 37!49$	$\begin{aligned} & 203^{\circ} 44^{\prime} 24^{\prime}!11 \\ & 203^{\circ} 44^{\prime} 33^{\prime}!23 \end{aligned}$	$\begin{aligned} & 3027 \\ & 3027 \end{aligned}$	Old Hawaiian C-5
AUSBAK	9023	$\begin{aligned} & -31^{\circ} 23^{\prime} 30!82 \\ & -31^{\circ} 23^{\prime} 27!69 \\ & \hline \end{aligned}$	$\begin{aligned} & 136^{\circ} 52^{\prime} 39!\cdot 02 \\ & 136^{\circ} 52^{\prime} 42!23 \end{aligned}$	$\begin{array}{r} 141 \\ 137 \\ \hline \end{array}$	$\begin{aligned} & \text { Australian } \\ & \mathrm{C}-5 \end{aligned}$

Source	Name	Sta- tion No.	Latitude	Longitude	Geodetic Height (meters)	Datum
	OSLONR	9426	$\begin{aligned} & 60^{\circ} 12^{\prime} 40^{\prime}!38 \\ & 60^{\circ} 12^{\prime} 38^{\prime}!88 \end{aligned}$	$\begin{aligned} & 10^{\circ} 45^{\prime} 08^{\prime \prime} 74 \\ & 10^{\circ} 45^{\prime} 02^{\prime \prime} 26 \end{aligned}$	$\begin{aligned} & 585 \\ & 573 \end{aligned}$	European $\mathrm{C}-5$
I	NATALB \dagger	9029	$\begin{aligned} & -05^{\circ} 55^{\prime} 50^{\prime \prime}: 00 \\ & -05^{\circ} 55^{\prime} 43^{\prime}!49 \end{aligned}$	$\begin{aligned} & 324^{\circ} 50^{\prime} 18^{\prime \prime} 00 \\ & 324^{\circ} 50^{\prime} 21^{\prime}!30 \end{aligned}$	$\begin{array}{r} 112 \\ 45 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
D	AGASSI \dagger	9050	$\begin{aligned} & 42^{\circ} 30^{\prime} 20^{\prime \prime}: 97 \\ & 42^{\circ} 30^{\prime} 20^{\prime}!51 \end{aligned}$	$\begin{aligned} & 288^{\circ} 26^{\prime} 28^{\prime \prime} 77 \\ & 288^{\circ} 26^{\prime} 29^{\prime \prime} 79 \end{aligned}$	$\begin{aligned} & 193 \\ & 138 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
I	COLDLK \dagger	9424	$\begin{aligned} & 54^{\circ} 44^{\prime} 38^{\prime}!02 \\ & 54^{\circ} 44^{\prime} 37!26 \end{aligned}$	$\begin{aligned} & 249^{\circ} 57^{\prime} 25^{\prime}!85 \\ & 249^{\circ} 57^{\prime} 21!90 \end{aligned}$	$\begin{aligned} & 597 \\ & 548 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
I	EDWAFB \dagger	9425	$\begin{aligned} & 34^{\circ} 57^{\prime} 50!68 \\ & 34^{\circ} 577^{\prime} 50!17 \end{aligned}$	$\begin{aligned} & 242^{\circ} 05^{\prime} 11^{\prime \prime} 39 \\ & 242^{\circ} 05^{\prime} 07^{\prime}!80 \end{aligned}$	$\begin{aligned} & 784 \\ & 754 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
I	RIGLAT \dagger	9428	$\begin{aligned} & 56^{\circ} 56^{\prime} 54^{\prime} 40 \\ & 56^{\circ} 56^{\prime} 52^{\prime} \div 37 \end{aligned}$	$\begin{aligned} & 24^{\circ} 03^{\prime} 42^{\prime}!00 \\ & 24^{\circ} 03^{\prime} 37 \div 49 \end{aligned}$	$\begin{array}{r} 5 \\ -15 \end{array}$	European $\mathrm{C}-5$
I	POTDAM \dagger	9429	$\begin{aligned} & 52^{\circ} 22^{\prime} 55{ }^{\prime}!00 \\ & 52^{\circ} 22^{\prime} 522^{\prime}!33 \end{aligned}$	$\begin{aligned} & 13^{\circ} 04^{\prime} 01!00 \\ & 13^{\circ} 03^{\prime} 55!80 \end{aligned}$	$\begin{aligned} & 111 \\ & 106 \end{aligned}$	European $\mid C-5$
I	ZVENIG \dagger	9430	$\begin{aligned} & 55^{\circ} 41^{\prime} 377^{\prime}: 70 \\ & 55^{\circ} 41^{\prime} 36^{\prime}!17 \end{aligned}$	$\begin{aligned} & 36^{\circ} 46^{\prime} 03^{\prime}!00 \\ & 36^{\circ} 46^{\prime} 00^{\prime}!17 \end{aligned}$	$\begin{aligned} & 145 \\ & 114 \end{aligned}$	European C-5

\dagger These SAO station positions were derived by using the weighting scheme described in the section, "Coordinate Transformation."

Table 12
STADAN - Optical - Source B.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1BPOIN	1021	$\begin{aligned} & 38^{\circ} 25^{\prime} 49^{\prime} \cdot 63 \\ & 38^{\circ} 25^{\prime} 49^{\prime \prime}: 44 \end{aligned}$	$\begin{aligned} & 282^{\circ} 54^{\prime} 48^{\prime}: 23 \\ & 282^{\circ} 54^{\prime} 48^{\prime}: 65 \end{aligned}$	$\begin{array}{r} 5 \\ -50 \end{array}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
1FTMYR	1022	$\begin{aligned} & 26^{\circ} 32^{\prime} 511^{\prime}: 89 \\ & 26^{\circ} 32^{\prime} 53^{\prime}: 08 \end{aligned}$	$\begin{aligned} & 278^{\circ} 08^{\prime} 03^{\prime \prime} 93 \\ & 278^{\circ} 08^{\prime} 03^{\prime}!80 \end{aligned}$	$\begin{array}{r} 19 \\ -42 \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
100MER	1024	$\begin{array}{\|l\|} -31^{\circ} 23^{\prime} 30!!07 \\ -31^{\circ} 23^{\prime} 26!: 96 \end{array}$	$\begin{aligned} & 136^{\circ} 52^{\prime} 111^{\prime} 05 \\ & 136^{\circ} 52^{\prime} 144^{\prime} 25 \end{aligned}$	$\begin{aligned} & 152 \\ & 148 \end{aligned}$	Australian $C-5$
1QUITO	1025	$\begin{aligned} & -0^{\circ} 37 ' 28!: 00 \\ & -0^{\circ} 37^{\prime} 22^{\prime}: 63 \end{aligned}$	$\begin{aligned} & 281^{\circ} 25^{\prime} 14^{\prime}: 81 \\ & 281^{\circ} 25^{\prime} 15^{\prime}!23 \end{aligned}$	$\begin{aligned} & 3649 \\ & 3554 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
1 LIMAP	1026	$\begin{aligned} & -11^{\circ} 46^{\prime} 44^{\prime} \cdot 43 \\ & -11^{\circ} 46^{\prime} 37:^{\prime} 56 \end{aligned}$	$\begin{aligned} & 282^{\circ} 50^{\prime} 58^{\prime}: 23 \\ & 282^{\circ} 50^{\prime} 58!^{\prime} 86 \end{aligned}$	$\begin{array}{r} 155 \\ 34 \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
ISATAG	1028	$\begin{aligned} & -33^{\circ} 09^{\prime} 07: 66 \\ & -33^{\circ} 08^{\prime} 58^{\circ}: 76 \end{aligned}$	$\begin{aligned} & 289^{\circ} 19^{\prime} 51^{\prime}: 35 \\ & 289^{\circ} 19^{\prime} 52^{\prime}!59 \end{aligned}$	$\begin{aligned} & 922 \\ & 705 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1 MOJAV	1030	$\begin{aligned} & 35^{\circ} 19^{\prime} 48^{\prime \prime}: 09 \\ & 35^{\circ} 19^{\prime} 47^{\prime}!57 \end{aligned}$	$\begin{aligned} & 243^{\circ} 06^{\prime} 02!73 \\ & 243^{\circ} 05^{\prime} 59^{\prime \prime} 18 \end{aligned}$	$\begin{aligned} & 905 \\ & 874 \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
1JOBUR	1031	$\begin{array}{\|l\|} \hline-25^{\circ} 52^{\prime} 58: 86 \\ -25^{\circ} 53^{\prime} 02 \div 70 \end{array}$	$\begin{aligned} & 27^{\circ} 42^{\prime} 27^{\prime}: 93 \\ & 27^{\circ} 42^{\prime} 25^{\prime \prime}: 41 \end{aligned}$	$\begin{aligned} & 1530 \\ & 1546 \end{aligned}$	$\begin{aligned} & \text { Arc (Cape) } \\ & \text { C-5 } \end{aligned}$
1NEWFL	1032	$\begin{aligned} & 47^{\circ} 44^{\prime} 29^{\prime!} 74 \\ & 47^{\circ} 44^{\prime} 28^{\prime!} 73 \end{aligned}$	$\begin{aligned} & 307^{\circ} 16^{\prime} 43^{\prime}: 37 \\ & 307^{\circ} 16^{\prime} 46^{\prime}: 67 \end{aligned}$	$\begin{array}{r} 104 \\ 58 \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
1COLEG	1033	$\begin{aligned} & 64^{\circ} 52^{\prime} 19^{\prime \prime}: 72 \\ & 64^{\circ} 52^{\prime} 17^{\prime}!78 \end{aligned}$	$\begin{aligned} & 212^{\circ} 09^{\prime} 477^{\prime}: 17 \\ & 212^{\circ} 09^{\prime} 37^{\prime}: 29 \end{aligned}$	$\begin{aligned} & 162 \\ & 139 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
1GFORK	1034	$\begin{aligned} & 48^{\circ} 01 ' 21^{\prime}: 40 \\ & 48^{\circ} 01 ' 20^{\prime}!81 \end{aligned}$	$\begin{aligned} & 262^{\circ} 50^{\prime 2} 21.56 \\ & 262^{\circ} 59^{\prime \prime} 19.55 \end{aligned}$	$\begin{aligned} & 253 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1WNKFL	1035	$\begin{aligned} & 51^{\circ} 26^{\prime} 44^{\prime}!12 \\ & 51^{\circ} 26^{\prime} 40!!67 \end{aligned}$	$359^{\circ} 18^{\prime} 14^{\prime} .62$ $359^{\circ} 18^{\prime} 08^{\prime} .35$	$\begin{aligned} & \hline 62 \\ & 76 \end{aligned}$	European C-5
1ROSMA	1042	$\begin{aligned} & 35^{\circ} 12^{\prime} 06!93 \\ & 35^{\circ} 12^{\prime} 07!03 \end{aligned}$	$\begin{aligned} & 277^{\circ} 07 \text { '41:!01 } \\ & 277^{\circ} 07^{\prime} 40!81 \end{aligned}$	$\begin{aligned} & 914 \\ & 857 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1TANAN	1043	$\left[\begin{array}{l} -19^{\circ} 00^{\prime} 27!\cdot 09 \\ -19^{\circ} 00^{\prime} 33!26 \end{array}\right.$	$\begin{aligned} & 47^{\circ} 18^{\prime} 00^{\prime \prime} 46 \\ & 47^{\circ} 17^{\prime} 58^{\prime} .89 \end{aligned}$	$\begin{aligned} & 1377 \\ & 1355 \end{aligned}$	$\begin{aligned} & \text { Tananarive } \\ & \text { C-5 } \end{aligned}$

Table 13
STADAN - R/R - Source B.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
MADGAR	1122	$\left[\begin{array}{l} -19^{\circ} 01^{\prime} 13^{\prime \prime} .32 \\ -19^{\circ} 01^{\prime} 19^{\prime} .41 \end{array}\right.$	$\begin{aligned} & 47^{\circ} 18^{\prime} 09^{\prime!}: 45 \\ & 47^{\circ} 18^{\prime} 07^{\prime}!96 \end{aligned}$	$\begin{aligned} & 1403 \\ & 1382 \end{aligned}$	$\begin{aligned} & \text { Tananarive } \\ & \text { C-5 } \end{aligned}$
ROSRAN	1126	$\begin{aligned} & 35^{\circ} 11^{\prime} 45^{\prime}!05 \\ & 35^{\circ} 11^{\prime} 45!15 \end{aligned}$	$\begin{aligned} & 277^{\circ} 07{ }^{\prime} 26!23 \\ & 277^{\circ} 07^{\prime} 26!\cdot 02 \end{aligned}$	$\begin{aligned} & 880 \\ & 823 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
CARVON	1152	$\begin{aligned} & -24^{\circ} 54^{\prime} 14^{\prime}: 86 \\ & -24^{\circ} 54^{\prime} 12^{\prime} \cdot 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 113^{\circ} 42^{\prime} 55^{\prime}: 06 \\ & 113^{\circ} 42^{\prime} 58^{\prime}: 54 \end{aligned}$	$\begin{aligned} & 38 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Australian } \\ & C-5 \end{aligned}$

Table 14
Navy TRANET - Doppler - Source C.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
LASHAM	2006	$\begin{aligned} & 51^{\circ} 11^{\prime} 10^{\prime}: 62 \\ & 51^{\circ} 11^{\prime} 07!12 \\ & \hline \end{aligned}$	$\begin{aligned} & 358^{\circ} 58^{\prime} 30^{\prime}!51 \\ & 358^{\circ} 58^{\prime} 24^{\prime}!25 \\ & \hline \end{aligned}$	$\begin{aligned} & 182 \\ & 196 \end{aligned}$	European $\mathrm{C}-5$
SANHES	2008	$\begin{aligned} & -23^{\circ} 13^{\prime} 01^{\prime} 74 \\ & -23^{\circ} 13^{\prime} 01 \because 74 \end{aligned}$	$\begin{aligned} & 314^{\circ} 07^{\prime} 50!59 \\ & 314^{\circ} 07^{\prime} 50^{\prime}!59 \\ & \hline \end{aligned}$	$\begin{aligned} & 608^{*} \\ & 608 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Corrego } \\ \text { Alegre } \\ \text { C-5 } \\ \hline \end{array}$
PHILIP	2011	$\begin{aligned} & 14^{\circ} 58^{\prime} 577^{\prime} .79 \\ & 14^{\circ} 59^{\prime} 16^{\prime} .42 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 120^{\circ} 04^{\prime} 25^{\prime}!98 \\ 120^{\circ} 04^{\prime} 21 \end{array}$	$\begin{array}{r} 8 \\ -70 \\ \hline \end{array}$	$\begin{aligned} & \text { Tokyo } \\ & \text { C-5 } \\ & \hline \end{aligned}$
SMTHFD	2012	$\begin{aligned} & -34^{\circ} 40^{\prime} 31!31 \\ & -34^{\circ} 40^{\prime} 28^{\prime}!16 \end{aligned}$	$\begin{aligned} & 138^{\circ} 39^{\prime} 12!39 \\ & 138^{\circ} 39^{\prime} 15^{\prime}!66 \end{aligned}$	$\begin{array}{r} 39 \\ 31 \\ \hline \end{array}$	$\begin{aligned} & \text { Australian } \\ & \text { C-5 } \end{aligned}$
MISAW'A	2013	$\begin{aligned} & 40^{\circ} 43^{\prime} 04^{\prime}!63 \\ & 40^{\circ} 43^{\prime} 14: 63 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 141^{\circ} 20^{\prime} 04^{\prime \prime} 69 \\ 141^{\circ} 19^{\prime} 51^{\prime}: 45 \\ \hline \end{array}$	$\begin{array}{r} -10 \\ 38 \\ \hline \end{array}$	$\begin{aligned} & \text { Tokyo } \\ & \text { C-5 } \\ & \hline \end{aligned}$
ANCHOR	2014	$\begin{aligned} & 61^{\circ} 177^{\prime} 01!98 \\ & 61^{\circ} 16^{\prime} 59: 60 \\ & \hline \end{aligned}$	$\begin{array}{\|} 210^{\circ} 10^{\prime} 37!46 \\ 210^{\circ} 10^{\prime} 28^{\prime}: 60 \\ \hline \end{array}$	$\begin{aligned} & 61 \\ & 44 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N.A } \\ & \text { C-5 } \end{aligned}$
TAFUNA	2017	$\begin{aligned} & -14^{\circ} 19^{\prime} 50^{\prime}: 19 \\ & -14^{\circ} 19^{\prime} 50^{\prime}: 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 189^{\circ} 17^{\prime} 13^{\prime}!96 \\ & 189^{\circ} 17^{\prime} 13^{\prime}!96 \end{aligned}$	$6 *$ 6	USGS 1962 ASTRO $\mathrm{C}-5$
THULEG	2018	$\begin{aligned} & 70^{\circ} 32^{\prime} 18^{\prime} \cdot 62 \\ & 76^{\circ} 32^{\prime} 20!!^{\prime} 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 291^{\circ} 13^{\prime} 46^{\prime}: 72 \\ & 291^{\circ} 13^{\prime} 51^{\prime}: 07 \\ & \hline \end{aligned}$	$\begin{array}{r} 43 \\ -7 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { N. A. } \\ & \text { C-5 } \end{aligned}$
MCMRDO	2019	$\begin{aligned} & -77^{\circ} 50^{\prime} 51!00 \\ & -77^{\circ} 50^{\prime} 50^{\prime} 58 \\ & \hline \end{aligned}$	$\begin{aligned} & 166^{\circ} 40^{\prime} 25^{\prime}!00 \\ & 166^{\circ} 40^{\prime} 35^{\prime}!02 \\ & \hline \end{aligned}$	$\begin{array}{r} -43 \\ -29 \\ \hline \end{array}$	$\begin{aligned} & \text { Mercury } \\ & \text { C-5 } \end{aligned}$
WAHINA	2100	$\begin{aligned} & 21^{\circ} 31^{\prime} 26^{\prime}: 86 \\ & 21^{\circ} 31^{\prime} 14^{\prime}: 95 \\ & \hline \end{aligned}$	$\begin{aligned} & 202^{\circ} 00^{\prime} 00^{\prime}!63 \\ & 202^{\circ} 00^{\prime} 09!83 \\ & \hline \end{aligned}$	$\begin{array}{r} 380 \\ 368 \\ \hline \end{array}$	Old Hawaian $\mathrm{C}-5$
LACRES	2103	$\begin{aligned} & 32^{\circ} 16^{\prime} 433^{\prime} 75 \\ & 32^{\circ} 16^{\prime} 43: 91 \end{aligned}$	$\begin{aligned} & 253^{\circ} 14^{\prime} 48!.25 \\ & 253^{\circ} 14^{\prime} 45^{\prime}: 34 \end{aligned}$	$\begin{aligned} & 1201 \\ & 1162 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
LASHM12	2106	$\begin{aligned} & 51^{\circ} 11^{\prime} 12!32 \\ & 51^{\circ} 11^{\prime} 08^{\prime}!82 \\ & \hline \end{aligned}$	$\begin{aligned} & 358^{\circ} 58^{\prime} 30^{\prime \prime} 21 \\ & 358^{\circ} 58^{\prime} 23!95 \\ & \hline \end{aligned}$	$\begin{aligned} & 187 \\ & 201 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { European } \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
A PLMND	2111	$\begin{aligned} & 39^{\circ} 09^{\prime} 47!83 \\ & 39^{\circ} 09^{\prime} 47!59 \\ & \hline \end{aligned}$	$\begin{aligned} & 283^{\circ} 06^{\prime} 11: 07 \\ & 283^{\circ} 06^{\prime} 11: 52 \\ & \hline \end{aligned}$	$\begin{array}{r} 146 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
PRETOR	2115	$\begin{aligned} & -25^{\circ} 56^{\prime}+6^{\prime} 09 \\ & -25^{\circ} 56^{\prime} 49^{\prime}: 97 \end{aligned}$	$\begin{aligned} & 28^{\circ} 20^{\prime} 53^{\prime} .00 \\ & 28^{\circ} 20^{\prime} 50^{\prime}: 67 \end{aligned}$	$\begin{aligned} & 1417 \\ & 1595 \end{aligned}$	European C-5
SHEMYA	2739	$\begin{aligned} & 52^{\circ} 43^{\prime} 01!52 \\ & 52^{\circ} 42^{\prime} 56^{\prime} \cdot 52 \\ & \hline \end{aligned}$	$\begin{aligned} & 174^{\circ} 06^{\prime} 51143 \\ & 174^{\circ} 06^{\prime} 44!^{\prime} 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
BELT'SV	2742	$\begin{aligned} & 39^{\circ} 01^{\prime} 39^{\prime \prime} 46 \\ & 39^{\circ} 01^{\prime} 39^{\prime}: 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 283^{\circ} 10^{\prime} 277^{\prime} 25 \\ & 283^{\circ} 10^{\prime} 27^{\prime}: 72 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ -5 \\ \hline \end{array}$	$\begin{aligned} & \text { N. A } \\ & \text { C- } 5 \\ & \hline \end{aligned}$
STNVIL	2745	$\begin{aligned} & 33^{\circ} 25 \text { '31!57 } \\ & 33^{\circ} 25 \cdot 31: 76 \\ & \hline \end{aligned}$	$\begin{aligned} & 269^{\circ} 09^{\prime} 10^{\prime} 770 \\ & 269^{\circ} 09^{\prime} 09^{\prime \prime} 66 \end{aligned}$	$\begin{array}{r} 44 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5. } \end{aligned}$

*MSL.

Table 15
Air Force - Optical - Source I.*

| Source | Name | Station
 No. | Latitude | Longitude | Geodetic
 Height
 (meters) | Datum |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | (

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
	TWINOK	3452	$\begin{array}{\|l\|l} 36^{\circ} 07 ' 25!69 \\ 36^{\circ} 07 \\ \hline \end{array}$	$\begin{array}{\|l\|} 262^{\circ} 47 \gamma^{\prime} 04!48 \\ 262^{\circ} 47 \\ \hline \end{array}$	$\begin{aligned} & 312 \\ & 262 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
	ROTHGR	3453	$\begin{aligned} & 51^{\circ} 25^{\prime} 00!00 \\ & 51^{\circ} 24^{\prime} 577^{\prime} 05 \end{aligned}$	$\begin{aligned} & 9^{\circ} 30^{\prime} 06!00 \\ & 9^{\circ} 30^{\prime} 00!58 \end{aligned}$	$\begin{aligned} & 351 \\ & 352 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { European } \\ & \mathrm{C}-5 \end{aligned}\right.$
	ATHNGR	3463	$\begin{aligned} & 37^{\circ} 53^{\prime} 30!00 \\ & 37^{\circ} 53^{\prime} 26^{\prime} 007 \end{aligned}$	$\begin{aligned} & 23^{\circ} 44^{\prime} 30!00 \\ & 23^{\circ} 44 \text { '26! } 73 \end{aligned}$	$\begin{aligned} & 16 \\ & 23 \end{aligned}$	$\left\|\begin{array}{c} \text { European } \\ \mathrm{C}-5 \end{array}\right\|$
	TORRSP	3464	$\begin{array}{\|l} 40^{\circ} 29^{\prime} 18!53 \\ 40^{\circ} 29^{\prime} 14!1 \end{array}$	$\begin{aligned} & 356^{\circ} 344^{\prime} 41!24 \\ & 356^{\circ} 34^{\prime} 36!06 \end{aligned}$	$\begin{gathered} 588 \\ 635 \end{gathered}$	European C-5
	CHOFUJ	3465	$\begin{aligned} & 35^{\circ} 39^{\prime} 577^{\prime \prime} 00 \\ & 35^{\circ} 40^{\prime} 08^{\prime \prime} 96 \end{aligned}$	$\begin{aligned} & 139^{\circ} 322^{\prime} 12!00 \\ & 139^{\circ} 32^{\prime} 00^{\prime}!19 \end{aligned}$	$\begin{aligned} & 49 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { Tokyo } \\ & \text { C-5 } \end{aligned}$
	KINDLY	3471	$\begin{aligned} & 32^{\circ} 22^{\prime} 57!!30 \\ & 32^{\circ} 22^{\prime} 57^{\prime}!41 \end{aligned}$	$\begin{array}{\|l} 295^{\circ} 19^{\prime} 00^{\prime}!46 \\ 295^{\circ} 19^{\prime} 02 \div 09 \end{array}$	$\begin{array}{r} 26 \\ -23 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
E	HUNTER	3648	$\begin{aligned} & 32^{\circ} 00^{\prime} 05!87 \\ & 32^{\circ} 00^{\prime} 06!32 \end{aligned}$	$\begin{aligned} & 278^{\circ} 50^{\prime} 46!36 \\ & 278^{\circ} 50^{\prime} 46!32 \end{aligned}$	$\begin{array}{r} 17 \\ -40 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
	JUPRAF	3649	$\begin{aligned} & 27^{\circ} 01 \text { '14! } 180 \\ & 27^{\circ} 01^{\prime} 16!" 02 \end{aligned}$	$\begin{aligned} & 279^{\circ} 53^{\prime} 13!\cdot 72 \\ & 279^{\circ} 53^{\prime} 13!\cdot 72 \end{aligned}$	$\begin{array}{r} 26 \\ -37 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
E	ABERDN	3657	$\begin{aligned} & 39^{\circ} 28^{\prime} 18^{\prime \prime} 97 \\ & 39^{\circ} 28^{\prime} 18^{\prime \prime} 71 \end{aligned}$	$\begin{aligned} & 283^{\circ} 55^{\prime} 44^{\prime}!56 \\ & 283^{\circ} 55^{\prime} 45!{ }^{\prime} 10 \end{aligned}$	$\begin{array}{r} 4 \\ -51 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
E	HOMEST	3861	$\left\lvert\, \begin{aligned} & 25^{\circ} 30^{\prime} 24^{\prime \prime} 69 \\ & 25^{\circ} 30^{\prime} 26^{\prime}: 02 \end{aligned}\right.$	$\begin{aligned} & 279^{\circ} 36^{\prime} 42!\cdot 69 \\ & 279^{\circ} 36^{\prime} 42!\cdot 70 \end{aligned}$	$\begin{array}{r} 18 \\ -44 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
	CHYWYN	3902	$\begin{array}{\|l\|} 41^{\circ} 07 \\ 41^{\circ} 07 \\ \hline \end{array} 9^{\prime} 58^{\prime}!20$	$\begin{aligned} & 255^{\circ} 08^{\prime} 02!65 \\ & 255^{\circ} 07^{\prime} 59!94 \end{aligned}$	$\begin{aligned} & 1890 \\ & 1845 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$

*Unless "Source" is specified otherwise.

Table 16
Army Map Service - SECOR - Source H.*

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
G	HERNDN	5001	$\begin{aligned} & 38^{\circ} 59^{\prime} 37!69 \\ & 38^{\circ} 59^{\prime} 37!47 \end{aligned}$	$\begin{aligned} & 282^{\circ} 40^{\prime} 16^{\prime} \cdot 68 \\ & 282^{\circ} 40^{\prime} 17!!08 \end{aligned}$	$\begin{array}{r} 119 \\ 64 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
I	CUBCAL	5200	$\begin{aligned} & 32^{\circ} 48^{\prime} 00^{\prime} \cdot 00 \\ & 32^{\circ} 47^{\prime} 59^{\prime} \cdot 74 \end{aligned}$	$\left\{\begin{array}{l} 242^{\circ} 52^{\prime} 00 \cdot: 00 \\ 242^{\circ} 51^{\prime} 56^{\prime!} 55 \end{array}\right.$	$\begin{array}{r} 101 \\ 71 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
I	LARSON	5201	$\begin{aligned} & 47^{\circ} 11^{\prime} 00^{\prime} 00 \\ & 47^{\circ} 10^{\prime} 58^{\prime}!76 \end{aligned}$	$\begin{aligned} & 240^{\circ} 40^{\prime} 00!\cdot 00 \\ & 240^{\circ} 39^{\prime} 55^{\prime}!68 \end{aligned}$	$\begin{aligned} & 354 \\ & 319 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
I	WRGTON	5202	$\begin{aligned} & 43^{\circ} 39^{\prime} 00^{\prime} \cdot 00 \\ & 43^{\circ} 38^{\prime} 59^{\prime \prime} \cdot 49 \end{aligned}$	$\begin{aligned} & 264^{\circ} 25^{\prime} 00^{\prime}!00 \\ & 264^{\circ} 24^{\prime} 58^{\prime}!27 \end{aligned}$	$\begin{aligned} & 481 \\ & 428 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
G	GREENV	5333	$\begin{aligned} & 33^{\circ} 25^{\prime} 322^{\prime}: 34 \\ & 33^{\circ} 25^{\prime} 322^{\prime} \cdot 53 \end{aligned}$	$\begin{aligned} & 269^{\circ} 05^{\prime} 10 \cdot!78 \\ & 269^{\circ} 05^{\prime} 09^{\prime} \cdot 73 \end{aligned}$	$\begin{array}{r} 43 \\ -10 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}-5 \end{aligned}$
	TRUKIS	5401	$\begin{aligned} & 7^{\circ} 27^{\prime} 39!30 \\ & 7^{\circ} 27^{\prime} 39^{!}!30 \end{aligned}$	$151^{\circ} 50^{\prime} 31^{\prime}!28$ $151^{\circ} 50^{\prime} 31!!28$	$\begin{aligned} & 5^{* *} \\ & 5 \end{aligned}$	Navy IBEN ASTRO 1947 C-5
	SWALLO	5402	$\begin{aligned} & -10^{\circ} 18^{\prime} 21^{\prime}: 42 \\ & -10^{\circ} 18^{\prime} 21^{\prime}: 42 \end{aligned}$	$\begin{aligned} & 166^{\circ} 17^{\prime} 56!\cdot 79 \\ & 166^{\circ} 17 \prime 56^{\prime} \cdot 79 \end{aligned}$	$\begin{aligned} & 9 * * \\ & 9 \end{aligned}$	$\begin{aligned} & 1966 \text { SECOR } \\ & \text { ASTRO } \\ & \mathrm{C}-5 \end{aligned}$
	KUSAIE	5403	$5^{\circ} 17^{\prime} 44^{\prime}!43$ $5^{\circ} 17^{\prime} 44^{\prime}!43$	$\begin{aligned} & 163^{\circ} 01^{\prime} 29!: 88 \\ & 163^{\circ} 01^{\prime} 29!\cdot 88 \end{aligned}$	$7 * *$ 7	ASTRO1962, 65, Allen Sodano Lt. C-5
	GIZZOO	5404	$\begin{aligned} & -8^{\circ} 05^{\prime} 40^{\prime} \cdot 58 \\ & -8^{\circ} 05^{\prime} 40^{\prime} \cdot 58 \end{aligned}$	$\begin{aligned} & 156^{\circ} 49^{\prime} 24^{\prime}!82 \\ & 156^{\circ} 49^{\prime} 24^{\prime}: 82 \end{aligned}$	$\begin{aligned} & 49 * * \\ & 49 \end{aligned}$	Provisional DOS $\mathrm{C}-5$
	TARAWA	5405	$\begin{aligned} & 1^{\circ} 21^{\prime} 42!\cdot 13 \\ & 1^{\circ} 21^{\prime} 42!\cdot 13 \end{aligned}$	$\begin{aligned} & 1.72^{\circ} 55^{\prime} 47!\cdot 26 \\ & 172^{\circ} 55^{\prime} 47^{\prime}!26 \end{aligned}$	$7 * *$ 7	1966 SECOR ASTRO C-5

*Unless "Source" is specified otherwise.
**MSL.

Table 16-Continued

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
	NANDIS	5406	$\begin{aligned} & -17^{\circ} 45^{\prime} 31!: 01 \\ & -17^{\circ} 45^{\prime} 31!!01 \end{aligned}$	$177^{\circ} 27^{\prime} 02!!83$ $177^{\circ} 27^{\prime} 02!: 83$	$\begin{aligned} & 17^{* *} \\ & 17 \end{aligned}$	Viti Levu 1916 C-5
	CANTON	5407	$\begin{aligned} & -2^{\circ} 46^{\prime} 28^{\prime}!99 \\ & -2^{\circ} 46^{\prime} 28^{\prime}!99 \end{aligned}$	$\begin{aligned} & 188^{\circ} 16^{\prime} 43^{\prime}: 47 \\ & 188^{\circ} 16^{\prime} 43^{\prime}!47 \end{aligned}$	$6 * *^{*}$ 6	$\begin{aligned} & 1966 \text { Canton } \\ & \text { ASTRO } \\ & \text { C-5 } \end{aligned}$
	JONSTN	5408	$\begin{aligned} & 16^{\circ} 43^{\prime} 51^{\prime} 68 \\ & 16^{\circ} 43^{\prime} 51!68 \end{aligned}$	$190^{\circ} 28^{1} 41^{\prime} \cdot 55$ $190^{\circ} 28^{\prime} 41^{\prime} \cdot 55$	$\begin{aligned} & 6^{* *} \\ & 6 \end{aligned}$	Johnston Island 1961 C-5
	MIDWAY	5410	$\begin{aligned} & 28^{\circ} 12^{\prime} 32^{\prime}!06 \\ & 28^{\circ} 12^{\prime} 32^{\prime}!06 \end{aligned}$	$\begin{aligned} & 182^{\circ} 37 \prime 49!\cdot 53 \\ & 182^{\circ} 37 \prime 49!\cdot 53 \end{aligned}$	$\begin{aligned} & 6 * * \\ & 6 \end{aligned}$	$\begin{aligned} & \text { Midway } \\ & \text { ASTRO } 1961 \\ & \text { C-5 } \end{aligned}$
	MAUIHI	5411	$\begin{aligned} & 20^{\circ} 49^{\prime} 37!\cdot 00 \\ & 20^{\circ} 49^{\prime} 25 \cdot 14 \end{aligned}$	$203^{\circ} 31^{\prime} 52!\cdot 77$ $203^{\circ} 32^{\prime} 01^{\prime!}: 88$	32 31	Old Hawaiian C-5
G	FTWART	5648	$\begin{aligned} & 31^{\circ} 55^{\prime} 188^{\prime} 41 \\ & 31^{\circ} 55^{\prime} 188^{\prime}: 86 \end{aligned}$	$\begin{aligned} & 278^{\circ} 26^{\prime} 00^{\prime}: 26 \\ & 278^{\circ} 26^{\prime} 00^{\prime}: 18 \end{aligned}$	$\begin{array}{r} 29 \\ -27 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
G	HNTAFB	5649	$\begin{aligned} & 32^{\circ} 00^{\prime} 04^{\prime} \cdot 04 \\ & 32^{\circ} 00^{\prime} 04^{\prime} \cdot 49 \end{aligned}$	$\begin{aligned} & 278^{\circ} 50^{\prime} 43^{\prime}!17 \\ & 278^{\circ} 50^{\prime} 43!13 \end{aligned}$	$\begin{array}{r} 27 \\ -30 \end{array}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \end{aligned}$
G	HOMEFL	5861	$\begin{aligned} & 25^{\circ} 29^{\prime} 21^{\prime} \cdot 18 \\ & 25^{\circ} 29^{\prime} 22^{\prime} \cdot 51 \end{aligned}$	$\left\lvert\, \begin{aligned} & 279^{\circ} 37^{\prime} 39^{\prime} \cdot 35 \\ & 279^{\circ} 37^{\prime} 39^{\prime} \cdot 37 \end{aligned}\right.$	$\begin{array}{r} 18 \\ -44 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \mathrm{C}_{5} 5 \end{aligned}$

Table 17
USC\&GS - Optical - Source F.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
BELTVL	6002	$\begin{aligned} & 39^{\circ} 01^{\prime} 39^{\prime}!03 \\ & 39^{\circ} 01^{\prime} 38^{\prime}!80 \end{aligned}$	$\begin{aligned} & 283^{\circ} 10^{\prime} 26^{\prime!} 94 \\ & 283^{\circ} 10^{\prime} 27!40 \end{aligned}$	$\begin{array}{r} 45 \\ -10 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
ASTRMD	6100	$\begin{aligned} & 39^{\circ} 01^{\prime} 39^{\prime} .72 \\ & 39^{\circ} 01^{\prime} 399^{\prime} 49 \end{aligned}$	$\begin{aligned} & 283^{\circ} 10^{\prime} 27^{\prime}!83 \\ & 283^{\circ} 10^{\prime} 28^{\prime}!29 \end{aligned}$	$\begin{array}{r} 45 \\ -10 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
TIMINS	6113	$\begin{aligned} & 48^{\circ} 33^{\prime} 56^{\prime}!17 \\ & 48^{\circ} 33^{\prime} 55^{\prime}!70 \end{aligned}$	$\begin{aligned} & 278^{\circ} 37 ' 44^{\prime}!54 \\ & 278^{\circ} 37^{\prime} 44^{\prime} .49 \end{aligned}$	$\begin{aligned} & 290 \\ & 232 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$

Table 18
SPEOPT - Optical - Source B.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1UNDAK	7034	$\begin{aligned} & 48^{\circ} 01^{\prime} 21^{\prime!} 40 \\ & 48^{\circ} 01^{\prime} 20^{\prime}!81 \end{aligned}$	$\begin{aligned} & 262^{\circ} 59^{\prime} 21^{\prime \prime} 56 \\ & 262^{\circ} 59^{\prime} 19^{\prime \prime} .55 \\ & \hline \end{aligned}$	$\begin{aligned} & 255 \\ & 201 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1EDINB	7036	$\begin{array}{r} 26^{\circ} 22^{\prime} 45^{\prime}!44 \\ 26^{\circ} 22^{\prime} 46^{\prime}!35 \\ \hline \end{array}$	$\begin{aligned} & 261^{\circ} 40^{\prime} 09^{\prime} .03 \\ & 261^{\circ} 40^{\prime} 07^{\prime} .34 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{A} . \\ & \mathrm{C}-5 \\ & \hline \end{aligned}$
1COLBA	7037	$\begin{aligned} & 38^{\circ} 53^{\prime} 36^{\prime}!07 \\ & 38^{\circ} 53^{\prime} 35^{\prime}!81 \\ & \hline \end{aligned}$	$\begin{aligned} & 267^{\circ} 47^{\prime} 42!12 \\ & 267^{\circ} 47^{\prime} 40^{\prime} .85 \end{aligned}$	$\begin{aligned} & 271 \\ & 218 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1BERMD	7039	$\begin{aligned} & 32^{\circ} 21^{\prime} 48^{\prime}!83 \\ & 32^{\circ} 21^{\prime} 48^{\prime \prime} .94 \\ & \hline \end{aligned}$	$\begin{aligned} & 295^{\circ} 20^{\prime} 32^{\prime \prime} 56 \\ & 295^{\circ} 20^{\prime} 34^{\prime} .18 \\ & \hline \end{aligned}$	$\begin{array}{r} 21 \\ -28 \\ \hline \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1 PURIO	7040	$\begin{aligned} & 18^{\circ} 15^{\prime} 26^{\prime} \cdot 22 \\ & 18^{\circ} 15^{\prime} 28^{\prime}!30 \\ & \hline \end{aligned}$	$\begin{aligned} & 294^{\circ} 00^{\prime} 22^{\prime}: 17 \\ & 294^{\circ} 00^{\prime} 23^{\prime} \cdot 63 \\ & \hline \end{aligned}$	$\begin{array}{r} 58 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
1GSFCP	7043	$\begin{aligned} & 39^{\circ} 01^{\prime} 15^{\prime \prime}!01 \\ & 39^{\circ} 01^{\prime} 14^{\prime!} \cdot 78 \end{aligned}$	$\begin{aligned} & 283^{\circ} 10^{\prime} 19^{\prime}!93 \\ & 283^{\circ} 10^{\prime} 20^{\prime!} 39 \end{aligned}$	54	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1CKVLE	7044	$\begin{aligned} & 38^{\circ} 22^{\prime} 12^{\prime}: 50 \\ & 38^{\circ} 22^{\prime} 12^{\prime}: 33 \end{aligned}$	$\begin{aligned} & 274^{\circ} 21^{\prime} 16^{\prime} .81 \\ & 274^{\circ} 21^{\prime} 16^{\prime \prime} .28 \\ & \hline \end{aligned}$	$\begin{aligned} & 187 \\ & 131 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { C-5 } \end{aligned}$
1DENVR	7045	$\begin{aligned} & 39^{\circ} 38^{\prime} 48^{\prime}!03 \\ & 39^{\circ} 38^{\prime} 47^{\prime}!54 \\ & \hline \end{aligned}$	$\begin{aligned} & 255^{\circ} 23^{\prime} 41^{\prime}!19 \\ & 255^{\circ} 23^{\prime} 38^{\prime}!52 \end{aligned}$	$\begin{aligned} & 1796 \\ & 1751 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1JUM24	7071	$\begin{aligned} & 27^{\circ} 01^{\prime} 12^{\prime}!77 \\ & 27^{\circ} 01^{\prime} 14^{\prime} .00 \end{aligned}$	$\begin{aligned} & 279^{\circ} 53^{\prime} 12^{\prime}!31 \\ & 279^{\circ} 53^{\prime} 12^{\prime} .30 \end{aligned}$	$\begin{array}{r} 25 \\ -38 \\ \hline \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1JUM40	7072	$\begin{aligned} & 27^{\circ} 01^{\prime} 13^{\prime \prime} 17 \\ & 27^{\circ} 01^{\prime} 14^{\prime \prime} 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 279^{\circ} 53^{\prime} 12^{\prime} .49 \\ & 279^{\circ} 53^{\prime} 12^{\prime}: 49 \end{aligned}$	$\begin{array}{r} 25 \\ -38 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1JUPC1	7073	$\begin{aligned} & 27^{\circ} 01^{\prime} 13^{\prime \prime} 11 \\ & 27^{\circ} 01^{\prime} 14^{\prime}!33 \end{aligned}$	$\begin{aligned} & 279^{\circ} 53^{\prime} 12^{\prime} .72 \\ & 279^{\circ} 53^{\prime} 12^{\prime} .72 \\ & \hline \end{aligned}$	$\begin{array}{r} 22 \\ -41 \\ \hline \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1JUBC4	7074	$\begin{aligned} & 27^{\circ} 01^{\prime} 13^{\prime!} 33 \\ & 27^{\circ} 01^{\prime} 14^{\prime}: 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 279^{\circ} 53^{\prime} 12^{\prime} .76 \\ & 279^{\circ} 53^{\prime} 12^{\prime}!76 \end{aligned}$	$\begin{array}{r} 25 \\ -38 \end{array}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$
1SUDBR	7075	$\begin{aligned} & 46^{\circ} 27^{\prime} 20^{\prime}!99 \\ & 46^{\circ} 27^{\prime} 20^{\prime \prime} 52 \end{aligned}$	$\begin{aligned} & 279^{\circ} 03^{\prime} 10^{\prime}!35 \\ & 279^{\circ} 03^{\prime} 10^{\prime \prime} 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 281 \\ & 224 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \\ & \hline \end{aligned}$
1JAMAC	7076	$\begin{aligned} & 18^{\circ} 04^{\prime} 31!!98 \\ & 18^{\circ} 04^{\prime} 34^{\prime}!20 \end{aligned}$	$\begin{aligned} & 283^{\circ} 11^{\prime} 26^{\prime}!52 \\ & 283^{\circ} 11^{\prime} 27^{\prime}: 03 \end{aligned}$	$\begin{aligned} & 485 \\ & 423 \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { C-5 } \end{aligned}$

Table 20
International - Optical - Source I.*

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
	DELFTH	8009	$52^{\circ} 00^{\prime} 09{ }^{\prime \prime} 24$ $52^{\circ} 00^{\prime} 06!12$	$\begin{aligned} & 4^{\circ} 22^{\prime} 21!23 \\ & 4^{\circ} 22^{\prime} 15!30 \end{aligned}$	$\begin{aligned} & 23 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { European } \\ & \text { C-5 } \end{aligned}$
D	ZIMWLD**	8010	$\begin{aligned} & 46^{\circ} 52^{\prime} 41!77 \\ & 46^{\circ} 52^{\prime} 36^{\prime}!73 \end{aligned}$	$\begin{aligned} & 7^{\circ} 27^{\prime} 57^{\prime \prime} 56 \\ & 7^{\circ} 27^{\prime} 52!54 \end{aligned}$	$\begin{aligned} & 903 \\ & 907 \end{aligned}$	$\begin{aligned} & \text { Berne } \\ & \mathrm{C}-5 \end{aligned}$
	MALVRN	8011	$\begin{aligned} & 52^{\circ} 08^{\prime} 39^{\prime}!12 \\ & 52^{\circ} 08^{\prime} 35!68 \end{aligned}$	$\begin{aligned} & 358^{\circ} 01^{\prime} 59^{\prime}!49 \\ & 358^{\circ} 011^{\prime} 53!03 \end{aligned}$	$\begin{aligned} & 111 \\ & 125 \end{aligned}$	European C-5

*Unless "Source" is specified otherwise.
**The C-5 position was derived from the C-6 position.

Table 21
SAO - Optical.

Name	Station Number	Location
1ORGAN	9001	Organ Pass, New Mexico
1OLFAN	9002	Olifantsfontein, South Africa
WOOMER	9003	Woomera, Australia
ISPAIN	9004	San Fernando, Spain
1TOKYO	9005	Tokyo, Japan
1NATOL	9006	Naini Tal, India
1QUIPA	9007	Arequipa, Peru
1SHRAZ	9008	Shiraz, Iran
1CURAC	9009	Curacao, Lesser Antilles
1JUPTR	9010	Jupiter, Florida
1 VILDO	9011	Villa Dolores, Argentina
1 MAUIO	9012	Maui, Hawaii
OSLONR	9426	Oslo, Norway
AUSBAK	9023	Woomera, Australia
NATALB	9029	Natal, Brazil
AGASSI	9050	Cambridge, Massachusetts
COLDLK	9424	Cold Lake, Alberta
EDWAFB	9425	Edwards AFB, California
RIGLAT	9428	Riga, Latvia
POTDAM	9429	Potsdam, Germany
ZVENIG	9430	Zvenigorod, Russia

Table 22
STADAN - Optical.

Name	Station Number	Location
1BPOIN	1021	Blossom Point, Maryland
1FTMYR	1022	Fort Myers, Florida
1OOMER	1024	Woomera, Australia
1QUITO	1025	Quito, Ecuador
1LIMAP	1026	Lima, Peru
1SATAG	1028	Santiago, Chile
1MOJAV	1030	Mojave, California
1JOBUR	1031	Johannesburg, Union of South Africa
1NEWFL	1032	St. John's, Newfoundland
1COLEG	1033	College, Alaska
1GFORK	1034	East Grand Forks, Minnesota
1WNKFL	1035	Winkfield, England
1ROSMA	1042	Rosman, North Carolina
1TANAN	1043	Tananarive, Madagascar

Table 23
STADAN - R/R.

Name	Station Number	Location
MADGAR	1122	Tananarive, Madagascar
ROSRAN	1126	Rosman, North Carolina
CARVON	1152	Carnarvon, Australia

Table 24
Navy TRANET - Doppler.

Name	Station Number	Location
LASHAM	2006	Lasham, England
SANHES	2008	Sao Jose dos Campos, Brazil
PHILIP	2011	San Miquel, Philippines
SMTHFD	2012	Smithfield, Australia
MISAWA	2013	Misawa, Japan
ANCHOR	2014	Anchorage, Alaska
TAFUNA	2017	Tafuna, American Samoa
THULEG	2018	Thule, Greenland *
MCMRDO	2019	McMurdo Sound, Antarctica
WAHIWA	2100	South Point, Hawaii
LACRES	2103	Las Cruces, New Mexico
LASHM2	2106	Lasham, England
APLMND	2111	APL Howard County, Maryland
PRETOR	2115	Pretoria, Union of South Africa
SHEMYA	2739	Shemya Island, Alaska
BELTSV	2742	Beltsville, Maryland
STNVIL	2745	Stoneville, Mississippi

Table 25
Air Force - Optical.

Name	Station Number	Location
ANTIGA	3106	Antigua Island, Lesser Antilles
GRNVLE	3333	Stoneville, Mississippi
GRVILL	3334	Stoneville, Mississippi
USAFAC	3400	Colorado Springs, Colorado
BEDFRD	3401	L. G. Hanscom Field, Massachusetts
SEMMES	3402	Semmes Island, Georgia
SWANIS	3404	Swan Island, Caribbean Sea
GRDTRK	3405	Grand Turk, Caicos Islands
CURACO	3406	Curacao, Lesser Antilles
TRNDAD	3407	Trinidad Island
GRANFK	3451	Grand Forks, North Dakota
TWINOK	3452	Twin Oaks, Oklahoma
ROTHGR	3453	Rothwesten, West Germany
ATHNGR	3463	Athens, Greece
TORRSP	3464	Torrejon de Ardoz, Spain
CHOFUJ	3465	Chofu, Japan
KINDLY	3471	Kindley AFB, Bermuda
HUNTER	3648	Hunter AFB, Georgia
JUPRAF	3649	Jupiter, Florida
ABERDN	3657	Aberdeen, Maryland
HOMEST	3861	Homestead AFB, Florida
CHYWYN	3902	Cheyenne, Wyoming

Table 26
Army Map Service - SECOR

Name	Station Number	Location
HERNDN	5001	Herndon, Virginia
CUBCAL	5200	San Diego, California
LARSON	5201	Moses Lake, Washington
WRGTON	5202	Worthington, Minnesota
GREENV	5333	Greenville, Mississippi
TRUKIS	5401	Truk Island, Caroline Islands
SWALLO	5402	Swallow Island, Santa Cruz Islands
KUSAIE	5403	Kusaie Island, Caroline Islands
GIZZOO	5404	Gizzoo, Gonzongo, Solomon Islands
TARAWA	5405	Tarawa, Gilbert Islands
NANDIS	5406	Nandi, Viti Levu, Fiji IsIands
CANTON	5407	Canton Island, Phoenix Islands
JONSTN	5408	Johnston Island, Pacific Ocean
MIDWAY	5410	Eastern Island, Midway Islands
MAUIHI	5411	Maui, Hawaii
FTWART	5648	Fort Stewart, Georgia
HNTAFB	5649	Hunter AFB, Georgia
HOMEFL	5861	Homestead AFB, Florida

Table 27
USC\&GS - Optical.

Name	Station Number	Location
BELTVL	6002	Beltsville, Maryland
ASTRMD	6100	Beltsville, Maryland
TIMINS	6113	Timmins, Ontario

Table 28
SPEOPT - Optical.

Name	Station Number	Location
1UNDAK	7034	Univ. North Dakota, Grand Forks, North Dakota
1EDINB	7036	Edinburg, Texas
1COLBA	7037	Columbia, Missouri
1BERMD	7039	Bermuda Island
1PURIO	7040	San Juan, Puerto Rico
1GSFCP	7043	GSFC, Greenbelt, Maryland
1CKVLE	7044	Clarksville, Indiana
1DENVR	7045	Denver, Colorado
1JUM24	7071	Jupiter, Florida
1JUM40	7072	Jupiter, Florida
1JUPC1	7073	Jupiter, Florida
1JUBC4	7074	Jupiter, Florida
1SUDBR	7075	Sudbury, Ontario
1JAMAC	7076	Jamaica, B. W. I.

Table 29
SPEOPT - Laser.

Name	Station Number	Location
GODLAS	7050	GSFC, Greenbelt, Maryland
ROSLAS	7051	Rosman, North Carolina

Table 30
International - Optical.

Name	Station Number	Location
DELFTH	8009	Delft, Holland
ZIMWLD	8010	Berne, Switzerland
MALVRN	8011	Malvern, England

Goddard Space Flight Center
National Aeronautics and Space Administration Greenbelt, Maryland, August 16, 1968 311-07-21-01-51

REFERENCES

1. Lerch, F. J., Doll, C. E., Moss, S. J., and O'Neill, B., 'The Determination and Comparison of the GRARR MADGAR Site Location," NASA Technical Note D-5033, August 1968.
2. "Interim Status Report on Program Development and GEOS-A Data Analysis," by Wolf Research and Development Corporation, Bladensburg, Md., for NASA-GSFC, Contract NAS5-9756-44A, 55, 71, August 1967.

BIBLIOGRAPHY

Bomford, G., "Geodesy," Clarendon Press, Oxford, 1962.
D'Aria, M. D., 'Estimate of STADAN, SPEOPT, and Air Force Optical Station Positions on the SAO Standard Earth Models," prepared by Wolf Research and Development Corporation, Bladensburg, Md., for NASA-GSFC, June 1967.

Fischer, I., "An Astrogeodetic World Datum from Geoidal Heights Based on the Flattening f = 1/298.3," J. Geophys. Res. 65 (7), July 1960.

Fischer, I., and Slutsky, M., Conversion Graphs for an Astrogeodetic World Datum, Army Map Service, Technical Report No. 51, February 1964.

Fischer, I., Slutsky, M., Shirley, R., and Wyatt, P., Geoid Charts of North and Central America, Army Map Service, Technical Report No. 62, October 1967.

Geodetic Coordinates Manual, USAF Eastern Test Range, Parts I and II, January 1967.
Goddard Directory of Tracking Station Locations, prepared under NASA Contract for Data Operations Branch, Manned Flight Operations Division, Tracking and Data Systems Directorate, GSFC, by Geonautics Inc., NASA TM X-55775, August 1966.

Lundquist, C. A., and Veis, G., "Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth," SAO Special Report No. 200, Vol. 1, 1966.

Murray, D. E., and Schmitz, F. H., "Results of Tests Involving Transformation of Geodetic Data Between Ellipsoids," Turner Air Force Base, Georgia, Technical Report No. 1, March 1966.

Simmons, L. G., 'How Accurate is First-Order Triangulation?", U. S. Coast and Geodetic Survey, The Journal, April 1950.

Veis, G., "A Comparison of Station Positions Obtained from Photographic and Radio Tracking Data," SAO Report, October 1966.

Veis, G., "Geodetic Uses of Artificial Satellites," Smithsonian Contributions to Astrophysics, Vol. 3, No. 9, 1960.
|IIIIIIIIII.

Appendix A

Transformation Procedure

Description of the Smithsonian Astrophysical Observatory (SAO) Standard Earth Parameters-C-5 and C-6 Systems

The SAO Standard Earth reference system is a geocentric (earth's center-of-mass) terrestrial system. The Z -axis is oriented in the direction of the mean pole of $1900-1905$; the $\mathrm{X}-\mathrm{Z}$ plane 75° 03 '55'.'94 east of the U. S. Naval Observatory.

The scale for the Standard Earth is defined by the adopted value of GM used in the reductions, since only directions were introduced in the solution. The value used by SAO for GM in its solution accounts for the difference between the C-5 and C-6 solutions.

Kepler's third law states:

$$
T=2 \pi\left(\frac{a^{3}}{G M}\right)^{1 / 2}
$$

where
$T=$ period of orbit
a = semimajor axis of equatorial orbit or earth radius.

In the Baker-Nunn camera system, where the measured parameter is basically the period of the orbit, one must ascertain the relationship between GM and "a" and show how a change in one will affect the other if the period is constant. This can be stated as

$$
\mathrm{dT}=\pi\left(\frac{\mathrm{a}^{3}}{\mathrm{GM}}\right)^{-1 / 2}\left[\frac{3 a^{2}}{G M} \mathrm{da}-\frac{\mathrm{a}^{3}}{\mathrm{GM}^{2}} \mathrm{~d}(\mathrm{GM})\right]=0 .
$$

from which

$$
\frac{d(G M)}{3 G M}=\frac{d a}{a} .
$$

In the C-5 solution, the value of GM used by SAO was $3.986032 \times 10^{20} \mathrm{~cm}^{3} \mathrm{sec}^{-2}$. In the $\mathrm{C}-6$ solution, SAO used the value of GM which was determined by the Jet Propulsion Laboratory from
observations of Rangers 6, 7, 8, 9 and Mariner 4. The value adopted for GM was (3.986013 $\pm 0.00001) \times 10^{20} \mathrm{~cm}^{3} \mathrm{sec}^{-2}$, which in effect reduced the scale of the $\mathrm{C}-5$ system by a factor of $-(1.6 \pm 0.8) \times 10^{-6}$. To make the C-5 coordinates compatible with this new CM value, the $\mathrm{C}-5$ coordinates must be multiplied by the factor $0.9999984 \pm\left(8 \times 10^{-7}\right)$.

The parameters for the two systems are as follows:

$$
\begin{aligned}
& \quad \text { C-5 System } \\
& \mathrm{a}_{\mathrm{e}}=6378165 \text { meters } \\
& \mathrm{f}=1 / 298.25 \\
& \mathrm{GM}=3.986032 \times 10^{20} \mathrm{~cm}^{3} \mathrm{sec}^{-2} \\
& \quad \mathrm{C}-6 \text { System } \\
& \mathrm{a}_{\mathrm{e}}=6378155 \text { meters } \\
& \mathrm{f}=1 / 298.25 \\
& \mathrm{GM}=3.986013 \times 10^{20} \mathrm{~cm}^{3} \mathrm{sec}^{-2}
\end{aligned}
$$

Station Position Transformation

To ascertain the a priori estimates of the tracking station positions and of their respective uncertainties relative to the geocenter, knowledge of the following is essential:
a. Baker-Nunn camera station positions on the original datum.
b. Baker-Nunn camera station positions on the SAO C-5 and/or C-6 system.
c. The positions of the various tracking sites on their original datums.
d. Intra-datum survey connections between the Baker-Nunn locations and the various tracking sites.
e. The estimated surface survey uncertainty between the Baker-Nunn site and the tracking site.

The method used to effect this transformation has been checked (see Appendix B) to ascertain its compatibility with the equivalent transformation formulas commonly used to compute datum shifts. It should be noted that the method explained herein can be applied to another unified world datum when similar data are available as in the above items (a.-e.).

Many of the original survey summary sheets for the stations that were to be transformed contained height above mean sea level instead of the local reference ellipsoid. Since the procedure requires geodetic height, it was necessary to refer to geoid contour maps for the geoid heights of these stations. The geoid contour maps were readily available for the major datums; however, for those stations on isolated datums no geoid height could be ascertained. Consequently only the height above mean sea level was used for these transformations.

Figure A1 illustrates the relationship that exists with the geoid, the ellipsoid, and the gravimetrically determined ellipsoid. The geoid height may be either positive or negative, depending on whether the geoid is above or below the relative ellipsoid at that point. The algebraic sum of the geoid height and the height above mean sea level yields the geodetic height.

In the Cartesian coordinate system in three dimensions, the coordinates are determined as follows in spherical coordinates:

$$
\begin{aligned}
& X=r \cos \phi \cos \lambda, \\
& Y=r \cos \phi \sin \lambda, \\
& Z=r \sin \phi .
\end{aligned}
$$

In Figure A2, a datum transformation is represented by the two ellipsoids. It is assumed that parallelism exists between the respective axes. The datum shift is represented by the change in origin. The old datum is represented by the prime; thus

$$
\begin{aligned}
& \Delta X=X-X^{\prime} \\
& \Delta Y=Y-Y^{\prime} \\
& \Delta Z=Z-Z^{\prime}
\end{aligned}
$$

where X, Y, Z are given above and

$$
\begin{aligned}
& X^{\prime}=r^{\prime} \cos \phi^{\prime} \cos \lambda^{\prime}, \\
& Y^{\prime}=r^{\prime} \cos \phi^{\prime} \sin \lambda^{\prime}, \\
& Z^{\prime}=r^{\prime} \sin \phi^{\prime} .
\end{aligned}
$$

Figure Al-Relationship of the geoid, ellipsoid, and earth-mass-centered ellipsoid.

Figure A2-Ellipsoids of relative datums.

Substituting the above, we get

```
\DeltaX = r cos \phi cos\lambda- r' cos \mp@subsup{\phi}{}{\prime}}\operatorname{cos}\mp@subsup{\lambda}{}{\prime}
\DeltaY = r cos \phi sin}\lambda-\mp@subsup{r}{}{\prime}\operatorname{cos}\mp@subsup{\phi}{}{\prime}\operatorname{sin}\mp@subsup{\lambda}{}{\prime}
```


The station shift equations ($\Delta \mathrm{X}, \Delta \mathrm{Y}, \Delta \mathrm{Z}$), given above in spherical coordinates, normally employ geodetic coordinates, which are presented in the following section.

Transformation of Geodetic Positions $[\phi, \lambda, H$) to Three-Dimensional Cartesian Coordinates

The coordinates of the Baker-Nunn stations are furnished in both the ellipsoidal and threedimensional Cartesian coordinate systems. However, the positions of all the other tracking stations are given in ellipsoidal coordinates. This necessitates the calculation of the three-dimensional Cartesian coordinates for these stations. This is accomplished by the following equations:

$$
\begin{aligned}
& X=(\nu+H) \cos \phi \cos \lambda, \\
& Y=(\nu+H) \cos \phi \sin \lambda, \\
& Z=\left[\nu\left(1-e^{2}\right)+H\right] \sin \phi,
\end{aligned}
$$

where
$\phi=$ geodetic latitude,
$\lambda=$ geodetic longitude,
$\nu=$ radius of curvature in the prime vertical

$$
\frac{a_{e}}{\left(1-\mathrm{e}^{2} \sin ^{2} \phi\right)^{1 / 2}},
$$

$a_{e}=$ semimajor axis of reference ellipsoid,
$\mathrm{H}=$ geodetic height (mean sea level plus geoid height), and
$e=$ eccentricity of reference ellipsoid.

The orientation of the Cartesian coordinate system is the same as that described in the first section of this Appendix.

Multi-Station Transformation

The Multi-Station Transformation was used on practically all of the stations transformed to the C-5 Datum in this report. This transformation, defined below, was applied to stations where there existed at least one Baker-Nunn station on the same local datum. Most of the stations that were shifted had more than one Baker-Nunn station on the datum. This is especially true for the stations on the North American Datum because of their large number. Each Baker-Nunn station within the same datum may determine a unique shift for a station on that datum, as seen, for example, in the table below for the North American Datum. The shift is given as the difference between the Cartesian coordinates ($\Delta X, \Delta Y, \Delta Z$) of the Baker-Nunn station on the original survey datum and on the C-5 Datum. The Multi-Station Transformation uses a weighted average of the respective shifts, where the weights are inversely proportional to the distance between each of the Baker-Nunn stations and the stations to be transformed. Thus the transformation allows for the differential shift, as seen in the table below, among the four Baker-Nunn stations on the North American Datum.

The following example demonstrates the procedure and weighting scheme utilized in a multistation transformation* for the station 1UNDAK on the North American Datum.

The original North American Datum (NAD) position for 1UNDAK was transformed to the following Cartesian coordinates:
$\mathrm{x}=-521679$ meters
$\mathrm{Y}=-4242198$ meters
$z=4718543$ meters.
The following Δ 's represent the shifts of the Baker-Nunn stations from NAD to SAO C-5:

	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$	ΔZ
(1) 1ORGAN	-36 meters	$+\mathbf{Z 4 4}$	$+\mathbf{1 7 9}$
(2) 1JUPTR	-26 meters	$+\mathbf{1 5 2}$	$+\mathbf{1 7 9}$
(3) 1CURAC	-6 meters	+135	$+\mathbf{1 7 8}$
(4) 1QUIPA	-2 meters	+117	$+\mathbf{1 2 4}$

Since the effect of each Baker-Nunn station is inversely proportional to its distance from 1 UNDAK, we then compute the respective distances and weights ($\mathrm{w} \mathrm{)}$.

Station	$\underline{\text { Distance }}$	$\underline{W_{N}}$	$\underline{W_{N} / \Sigma W_{N}}$
1ORGAN	1909518 meters	1.00000000	0.42631206
1JUPTR	2754834 meters	0.69315174	0.29549894
1CURAC	4766268 meters	0.40063168	0.17079411
1QUIPA	7579973 meters	0.25191610	0.10739487

[^0]We then add the respective Δ^{\prime} 's to the coordinates of 1 UNDAK and obtain the following unweighted C-5 positions:

$$
\begin{array}{lll}
P_{1}\left(X_{1}\right)=-521715 & P_{1}\left(Y_{1}\right)=-4242054 & P_{1}\left(Z_{1}\right)=4718722 \\
P_{2}\left(X_{2}\right)=-521705 & P_{2}\left(X_{2}\right)=-4242046 & P_{2}\left(Z_{2}\right)=4718722 \\
P_{3}\left(X_{3}\right)=-521685 & P_{3}\left(Y_{3}\right)=-4242063 & P_{3}\left(Z_{3}\right)=4718721 \\
P_{4}\left(X_{4}\right)=-521681 & P_{4}\left(Y_{4}\right)=-4242081 & P_{4}\left(Z_{4}\right)=4718667
\end{array}
$$

The basic equation to determine the final weighted position for 1 UNDAK is:

$$
P(X, Y, Z)=P_{1}\left(X_{1}, Y_{1}, Z_{1}\right) \frac{W_{1}}{W_{1}+W_{2}+W_{3}+W_{4}}+P_{2}\left(X_{2}, Y_{2}, Z_{2}\right) \frac{W_{2}}{W_{1}+W_{2}+W_{3}+W_{4}}+\cdots+P_{N}\left(X_{N}, Y_{N}, Z_{N}\right) \frac{W_{N}}{\sum W_{N}},
$$

where
$P_{N}\left(X_{N}, Y_{N}, Z_{N}\right)=$ unweighted position of 1UNDAK,

$$
\mathrm{w}_{\mathrm{N}}=\text { weight for each respective station. }
$$

After substitution, the final weighted C-5 position of 1UNDAK in Cartesian coordinates is:

$$
\begin{aligned}
& X=-521703 \text { meters } \\
& Y=-4242055 \text { meters } \\
& Z=4718713 \text { meters }
\end{aligned}
$$

or in elliptical coordinates:

$$
\begin{aligned}
\phi & =48^{\circ} 01^{\prime} 20.810 \mathrm{~N} \\
\lambda & =262^{\circ} 59^{\prime} 19.553 \mathrm{E} \\
\mathrm{H} & =201.466 \text { meters. }
\end{aligned}
$$

In a single station transformation, the total shift of the Baker-Nunn station is applied to those stations that are on the same original datum as the Baker-Nunn. Thus the weighting scheme is not necessary, as only one Baker-Nunn station is on the original datum.

Ellipsoidal Transformation

When a tracking station to be transformed is on an isolated datum or a datum on which there is no Baker-Nunn site, but for which there is some knowledge of the center-of-mass shift, a Molodenskiy ellipsoidal transformation is provided.

Transformation between datums may be accomplished with the following equations:*

$$
\begin{aligned}
\Delta H & =\Delta X \cos \phi \cos \lambda+\Delta Y \cos \phi \sin \lambda+\Delta Z \sin \phi+(a \Delta f+f \Delta a) \sin ^{2} \phi-\Delta a, \\
\Delta \phi^{\prime \prime} & =206265[-\Delta X \sin \phi \cos \lambda-\Delta Y \sin \phi \sin \lambda+\Delta Z \cos \phi(a \Delta f+f \Delta a) \sin 2 \phi] / R_{m}, \\
\Delta \lambda^{\prime \prime} & =206265(-\Delta X \sin \lambda+\Delta Y \cos \lambda) / R_{n} \cos \phi,
\end{aligned}
$$

where

$$
R_{m}=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right)^{3 / 2}} ; \quad R_{n}=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{1 / 2}}
$$

```
\(\Delta X, \Delta Y, \Delta Z=\) shifts of ellipsoid centers from one ellipsoid to another,
    a = semimajor axis,
    \(\mathrm{f}=\) flattening,
    \(\Delta a=\) new (a) minus old (a),
    \(\Delta \mathrm{f}=\) new minus old flattening,
    \(\mathrm{e}^{2}=2 \mathrm{f}-\mathrm{f}^{2}\),
    \(\phi=\) latitude of tracking station on original datum, and
    \(\lambda=\) longitude of tracking station on original datum.
```

For isolated datums such as the Pacific SECOR sites, $\Delta X, \Delta Y, \Delta Z$ are unknown. The local datum geodetic coordinates are then taken as the C-5 geodetic coordinates. Then the Cartesian coordinates are derived from the geodetic coordinates on the $\mathrm{C}-5$ ellipsoid.

Further, on isolated datums the geoid separations are generally not known. So, rather than consider the mean sea level (MSL) survey height to be the geodetic station height, we have carried over the MSL height to the transformed position.

[^1]
Appendix B

Comparison of Multi-Station Transformation and Molodenskiy's Transformation Formulas

The multi-station transformation presented in Appendix A, fourth section, derives the station shift and associated world datum Cartesian coordinates and geodetic coordinates. The Molodenskiy transformation presented in Appendix A, fifth section, provides the adjusted differences of the geodetic coordinates between the old and new datum when given the station shift $\Delta X, \Delta Y, \Delta Z$ (or the center-of-mass shift between the old and new datum). Results on the geodetic station coordinates using a common world datum for these two transformations may be compared and will provide a compatibility check on the computational procedures. Results are already available in the Goddard Directory of Tracking Station Locations for the Mercury Datum, including the original and final datum geodetic and Cartesian station coordinates. The Molodenskiy transformation was used in obtaining the Mercury Datum geodetic coordinates in the Goddard Directory, where each local datum center-of-mass shift ($\Delta x, \Delta y, \Delta Z$) was provided by the Army Map Service. Since only a constant station shift within a datum is employed in obtaining the results for the Mercury datum, the comparison is somewhat limited; but the computations for the multi-station transformation proceeded in the same general manner as with the C-5 datum. It is noted that the Molodenskiy transformation is based on a first-order Taylor series expansion and the agreement found below in the comparison of results serves to check on the adequacy of this approximation.

Ten STADAN tracking stations on the North American Datum were transformed to the Mercury Datum, using results both from the formulas of Molodenskiy and from the weighted multi-station technique. Four Baker-Nunn stations on the Mercury Datum were used as controlling stations for the multi-station transformation. The position relationships of the STADAN and Baker-Nunn sites are shown in Figure B1.

The results, as indicated in Tables B1 and B2, show very good agreement. In Tables B1 and B2 the coordinates above the line are the positions as derived by the weighted multi-station shift, and the coordinates below the line are derived by the standard transformation formulas used in the Goddard Station Directory. Inspection of Table B1 reveals that the largest difference in the X, Y, and Z coordinates is one meter. In Table B2, which shows the geodetic coordinates for the same stations, the largest difference is approximately four meters.

The weighted multi-station technique may be employed advantageously when datum shifts ($\Delta \mathrm{x}$, $\Delta \mathrm{Y}, \Delta \mathrm{Z}$) are not known or, as in the case of the SAO C-5 Datum, the stations have been allowed to adjust independently. Differential shifts within a datum are more realistic than assuming one set of $\Delta \mathrm{X}, \Delta \mathrm{Y}, \Delta \mathrm{Z}^{\prime} \mathrm{s}$, particularly for a large area datum such as the North American Datum.

Figure B1-Station location for transformation comparisons.

Table B1
Comparison of Transformed Cartesian Coordinates.

Station	X (meters)	Y (meters)	Z (meters)
1GFORK	$\frac{-521677}{-521676}$	$\frac{-4242087}{-4242086}$	$\begin{array}{r} +4718767 \\ \hline+4718768 \end{array}$
1 MOJAV	$\frac{-2357212}{-2357211}$	$\frac{-4646363}{-4646363}$	$\begin{array}{r} +3668359 \\ \hline+3668358 \end{array}$
1BPOIN	$\frac{+1118063}{+1118064}$	$\frac{-4876360}{-4876360}$	$\frac{+3943017}{+3943018}$
1NEWFL	+2602804	$\frac{-3419190}{-3419189}$	$\begin{array}{r} +4697701 \\ \hline+4697701 \end{array}$
1FTMYR	$\begin{array}{r}+807885 \\ \hline+807886\end{array}$	$\frac{-5652024}{-5652025}$	$\begin{array}{r}+2833551 \\ \hline+2833552\end{array}$
1QUITO	$\underline{+1263617}$	$\frac{-6255012}{-6255011}$	$\frac{-68856}{-68856}$
1 LIMAP	$\frac{+1388818}{+1388819}$	$\frac{-6088430}{-6088429}$	$\frac{-1293206}{-1293206}$
1SATAG	+1769708	$\frac{-5044643}{-5044642}$	$\frac{-3468192}{-3468192}$
1COLEG	$\frac{-2299235}{-2299234}$	$\frac{-1445729}{-1445729}$	$\begin{array}{r}+5751851 \\ \hline+5751852\end{array}$
1ROSMA	+647541	$\frac{-5177971}{-5177971}$	$\frac{+3656758}{+3656758}$

Table B2
Comparison of Transformed Geodetic Coordinates.

Station	ϕ	λ	H (meters)
1GFORK	$\begin{array}{r} 48^{\circ} 01^{\prime} 21!27 \\ 21^{\prime}!18 \end{array}$	$\begin{array}{r} 262^{\circ} 59^{\prime} 21!!01 \\ 21^{\prime}!04 \end{array}$	$\begin{aligned} & 258 \\ & 255 \end{aligned}$
1 MOJAV	$\begin{array}{r} 35^{\circ} 19^{\prime} 48^{\prime}!66 \\ 48^{\prime}!55 \end{array}$	$\begin{array}{r} 243^{\circ} 06^{\prime} 00^{\prime}!81 \\ 00^{\prime}!84 \end{array}$	$\begin{aligned} & 916 \\ & 914 \end{aligned}$
1B POIN	$\begin{array}{r} 38^{\circ} 25^{\prime} 50!!01 \\ 49!!91 \end{array}$	$\begin{array}{r} 282^{\circ} 54^{\prime} 49!33 \\ 49!36 \end{array}$	$\begin{array}{r} 11 \\ 8 \end{array}$
1NEWFL	$\begin{array}{r} 47^{\circ} 44^{\prime} 29^{\prime \prime} .05 \\ 28^{\prime}!95 \end{array}$	$\begin{array}{r} 307^{\circ} 16^{\prime} 46^{\prime}!64 \\ 46^{\prime \prime} 70 \end{array}$	$\begin{aligned} & 124 \\ & 121 \end{aligned}$
1FTMYR	$\begin{array}{r} 26^{\circ} 32^{\prime} 53^{\prime} \cdot 85 \\ 53!.76 \end{array}$	$\begin{array}{r} 278^{\circ} 08^{\prime} 04^{\prime!} 56 \\ 04^{\prime}!60 \end{array}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$
1QUITO	$\begin{array}{r} -0^{\circ} 37^{\prime} 20^{\prime} .55 \\ 20^{\prime}!54 \end{array}$	$\begin{array}{r} 281^{\circ} 25^{\prime} 15!\cdot 58 \\ 15^{\prime} \cdot 61 \end{array}$	3581 3579
1 LIMAP	$\begin{array}{r} -11^{\circ} 46^{\prime} 34^{\prime}!89 \\ 34^{\prime}!84 \end{array}$	$\begin{array}{r} 282^{\circ} 50^{\prime} 59^{\prime \prime} 11 \\ 59^{\prime}!13 \end{array}$	$\begin{aligned} & 36 \\ & 34 \end{aligned}$
1SATAG	$\begin{array}{r} -33^{\circ} 08^{\prime} 56^{\prime}: 32 \\ 56^{!}!23 \end{array}$	$\begin{array}{r} 289^{\circ} 199^{\prime} 52^{\prime \prime} 84 \\ 52^{\prime!} 87 \end{array}$	$\begin{aligned} & 683 \\ & 680 \end{aligned}$
1COLEG	$\begin{array}{r} 64^{\circ} 52^{\prime} 18^{\prime \prime} .68 \\ 18^{\prime}!62 \end{array}$	$\begin{array}{r} 212^{\circ} 09^{\prime} 40^{\prime!} 17 \\ 40^{\prime}!15 \end{array}$	$\begin{aligned} & 187 \\ & 183 \end{aligned}$
1ROSMA	$\begin{array}{r} 35^{\circ} 12^{\prime} 07!69 \\ 07!59 \end{array}$	$\begin{array}{r} 277^{\circ} 07^{\prime} 41^{\prime!} 63 \\ 41!66 \end{array}$	$\begin{aligned} & 916 \\ & 914 \end{aligned}$

Appendix C
 Uncertainty of Transformed Positions

After the tracking station coordinates have been derived in the SAO Standard Earth reference system, we can derive estimates of the uncertainty in these positions relative to the geocenter (earth's center of mass). The total uncertainties are derived from two sources:

1) Uncertainty of the Baker-Nunn station coordinates relative to the geocenter.
2) Relative position accuracy between the Baker-Nunn stations and the station to be transformed.

Source A (Appendix D) states that the uncertainty of any Baker-Nunn station relative to the geocenter is approximately $\mathbf{1 5 - 2 0}$ meters.

In order to derive a priori estimates of the uncertainty in the tracking station position relative to the Baker-Nunn sites, an empirical formula developed by L. Simmons, USC\&GS, is utilized to describe the accuracy of first-order triangulation. The formula states that the relative accuracy between two points connected by conventional first-order triangulation (minimum of 1 part in $\mathbf{2 5 , 0 0 0}$ for closure in length after conditions equations are applied) is approximately

$$
\frac{1}{20000 \sqrt[3]{M}}
$$

where
$M=$ the distance between the two stations in statute miles.

As an example, consider two stations 1000 miles apart and connected by standard triangulation. The proportional accuracy would therefore be 1 part in 200,000 , or approximately 26.4 ft . This means that the relative uncertainty between the stations caused by surface survey errors is approximately 26 ft ., or 8 meters.

The total position uncertainty becomes:

$$
\sigma_{g}=\left(\sigma_{\mathrm{bn}}^{2}+\sigma_{s}^{2}\right)^{1 / 2}
$$

where
$\sigma_{\mathrm{g}}=$ uncertainty of the transformed tracking station position relative to the geocenter,
$\sigma_{\mathrm{bn}}=$ uncertainty of the Baker-Nunn site relative to the geocenter, and $\sigma_{\mathrm{s}}=$ surface survey uncertainty as defined by L. Simmons.

For determining the maximum uncertainty of a transformed position, we will use the maximum value for $\sigma_{b n}$ (20 meters), while σ_{s} will vary depending upon the distance of the transformed station from a Baker-Nunn site.

No uncertainty in the transformed C-5 positions is given for those stations that are on isolated datums. Simmons' rule is based on conventional surface survey ties, which do not exist for these isolated datum stations.

The uncertainties of the transformed $\mathrm{C}-5$ positions are listed in Table C1.

Table C1
Uncertainty of C-5 Derived Positions.

Station	Station No.	Uncertainty (meters)
Special SAO - Optical		
NATALB	9029	25
AGASSI	9050	22
COLDLK	9424	23
EDWAFB	9425	21
RIGLAT	9428	21
POTDAM	9429	21
ZVENIG	9430	22

Station	Station No.	Uncertainty (meters)		
Navy TRANET - Doppler (Continued)				
WAHIWA	2100	20		
LACRES	2103	20		
LASHM2	2106	21		
APLMND	2111	21		
PRETOR	2115	20		

Station	Station No.	Uncertainty (meters)
Army Map Service - SECOR (Continued)		
NANDIS	5406	*
CANTON	5407	*
JONSTN	5408	*
MIDWAY	5410	*
MAUIHI	5411	20
FTWART	5648	20
HNTAFB	5649	20
HOMEFL	5861	20
USC\&GS - Optical		
BELTVL	6002	21
ASTRMD	6100	21
TIMINS	6113	23
SPEOPT - Optical		
1UNDAK	7034	22
1EDINB	7036	21
1COLBA	7037	21
1 BERMD	7039	22
1 PURIO	7040	21
1GSFCP	7043	21
1CKVLE	7044	21
1 DENVR	7045	21
1JUM24	7071	20
1 JUM40	7072	20
$1 \mathrm{JUPC1}$	7073	20
$1 \mathrm{JUBC4}$	7074	20
1SUDBR	7075	22
1JAMAC	7076	21
SPEOPT - Laser		
ROSLAS	7051	21
GODLAS	7050	21
International - Optical		
DELFTH	8009	21
MALVRN	8011	21
ZIMWLD	8010	*

*Not given (isolated datum station).
\qquad

Appendix D

Sources of Positions

The following sources were used to obtain the original datum positions:

Symbol

A
Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth; C. A. Lundquist and G. Veis, Smithsonian Astrophysical Observatory Special Report No. 200, Vol. 1, 1966.

B Goddard Directory of Tracking Station Locations; August 1966; Goddard Space Flight Center.

C NWL-8 Geodetic Parameters Based on Doppler Satellite Observations; July 1967; R. Anderle and S. Smith, Naval Weapons Laboratory.

Since the above official documents did not contain all those positions to be transformed, it was necessary to contact other sources for the positions of the remaining stations. These sources are:

Symbol
Source
D Private communication with personnel at SAO (K. Haramundanis, B. Miller, A. Girnius).

E Private communication with 1381 Geodetic Survey Squadron, USAF (S. Tischler).
F Private communication with personnel at USC\&GS (B. Stevens).
G Private communication with personnel at U. S. Army Engineers Topographic Laboratories (L. Gambino).

H Private communication with NASA Space Science Data Center (J. Johns, D. Tidwell).

I
General Station Data Sheet - GEOS-A Project Manager, NASA Headquarters.

[^0]: *The multi-station transformation as described herein is contained in the TRANS program developed by Wolf Research and Development Corporation under NASA contract.

[^1]: *This formulation is contained within the DELU program which was developed under NASA contract by Wolf Research and Development Corporation.

