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LOW-ORDERCLASSICAL RUNGE-KUTTAFORMULAS
WITH STEPSIZE CONTROL

AND THEIR APPLICATION TO SOMEHEATTRANSFERPROBLEMS

I.

.

.

o

INTRODUCTION

In an earlier report [ 1], the author derived fifth- to eighth-order RUNGE-

KUTTA formulas with stepsize control. In this paper, similar first- to

fourth-order formulas are developed.

Such low-order RUNGE-KUTTA formulas are of interest in some heat

transfer problems. It is well-known that the parabolic partial differential

equations of such problems can be reduced to ordinary differential equations.

For instance, by a discretization of the space variable(s) of the problem,

we obtain a system of ordinary differential equations with the time as the

independent variable. Such a system can then be integrated by RUNGE-

KUTTA methods.

However, it is also well-known that the application of RUNGE-KUTTA

methods to such problems is often very time-consuming. Higher-order

RUNGE-KUTTA formulas do not offer advantages in this respect, since

stability considerations, resulting from the exponential character of the

solution, exclude an increase of the integration stepsize that would make

such high-order formulas meaningful. Therefore, low-order RUNGE-

KUTTA formulas (second- or third-order) can be expected to solve such

problems more efficiently than any high-order formula. On the other hand,

they are potentially more efficient than the standard difference formulas

obtained by discretization of the space variable(s) as well as the time

variable.

For the efficiency of RUNGE-KUTTA formulas, it is essential that their
truncation errors be as small as possible, since the permissable integra-

tion stepsize is strongly dependent upon the magnitude of these errors.

Therefore, we have tried to establish RUNGE-KUTTA formulas with small

truncation errors.

.

SECTION I. FOURTH-ORDERFORMULAS

We consider the (vector) differential equation

y' = f(x,y) ,

and write for our RUNGE-KUTTA formula,

(1)



f = f(x o,yo )0

f = f +o_ h, fi
K 0 K

k=O

(_ =1,2,3,4,5) } (2)

and

,

4

= _v° +h _7"cK fK + 0(h 5)Y

K=05 12Y = Yo +h cA_fK + 0(h 6)
_:=0

(3)

with h as integration stepsize and (x ,yo ) as initial values. Equationso A

(3) imply that we try to determine the coefficients c_K , fi KX' cK ' c_ in

such a way that the first formula (3) represents a fourth-order, and the

second formula (3), a fifth-order RUNGE-KUTTA formula. The difference
^

y - y then represents an approximation for the leading (fifth- order) trun-

cation error term of our fourth-order RUNGE-KUTTA formula and can be

used easily for establishing a reliable stepsize control procedure for this

formula.

The coefficients a , [3 c K and cA have to satisfy certain equations ofKX' ' g

condition that can be obtained by TAYLOR expansions. These equations of

condition are well-known in the literature, see for example J.C. BUTCHER'_

paper ([2], Table 1), or a paper by this author ([1], Table I). For the

convenience of the reader, we list these equations here for a fifth-order

formula like the second equation (3).

Introducing the abbreviations:

k + fi X + fi KK-10_K-1 Xfigl °_1 K2 (_2 ..... K

(K = 2,3,4,5; X = i,2,3)

(4)

Table I contains the 17 equations of condition for our fifth-order formula.



TABLE 1. EQUATIONS OF CONDITION FOR FIFTH-ORDER FORMULA

5

(1,% ^%-1 = o
g=l

A v _5 A i
(11,1) Z_ c o_ - _ = 0

K=I

A _5 A 1
(111, l) L c_PKi 6

0

K---2

_,III,_, _l _ _ K 6

(1V, 1) _ A
a=3 K =

I

24
- 0

(IV,_) _ K=2 g PK2 24
- 0

A _li A i(IV, 3) _ c a - 0K P_I 8
g=2

(IV, _) "6 _=l _ _ 24

A

(v, 1)
g =4 g g k =2

(V, 2) -2 g_=3 cg \ X=2 flt<xPx2 120
- 0

i

120
- 0

3



TABLE I. (Concluded)

_=3 K \k=2 flKx_xP_I

1
- 0

4O

1 5 1

n K3 120
t/=2

- 0

c _ fi._ 1E)kl
K=3 K K =2

3O
- 0

A i 5A i-2(V,6) 2 c a P - 0K K2 30
tc=2

A l /_jWSA 1:)2 i(V, 7) _ _ _1 40 - 0
g=2

(v,_) 1_S_ _p 1 - o
2 _=2 K K K1 20 .

(v, _) ± _ cA_ 1
24 K= I _ I_ 120

- 0

The Roman numerals in front of the equations in Table I indicate the order

of the terms in the TAYLOR expansion.

A similar table holds for a fourth-order formula such as the first formula

(3). We obtain this table from Table I by omitting the fifth-order equations
A

(V,_) through (V,_) and replacing, in the remaining equations, c by c
g

and the upper limit 5 of the k-sums by 4. These remaining eight equations

might be denoted by (I, l) through (IV, 4).

4



All eight equations of this new table for a fourth-order formula and the 17
equations of Table I for a fifth-order formula have to be satisfied simultan-
eously.

7. For the following we assume

A
c 1 = 0, c 1 = 0, 0/4 = 1 (5)

We further assume that 0/2, 0/3, 0/5 are different from one another and from

0 and 1.

Equations (II, l), (III, 2), (IV, 4) then yield

1 20/_- i

c2 - 12 0/2 (0/3- 0/2)(i - 0/2)

i 20/$ - i (6)
c3 - 12 0/3 (0/2 - 0/3) (i - 0/3)

i 60/20/3 - 4(0/2+0/_) + 3

c4 - 12 (I - 0/2) (i - 0/3)

A A A
and equations (II, 1), (III, 2), (IV, 4), (V, _)

_2 - 61 100/_0/_ - 5(0/_+ 0/_) + 30/2(0/3 - _2)(i - 0/2)(0/5 - 0/2)

cA3 _0 100/20/5 - 5(0/2 + 0/5) + 30/3(0/2 - a3) (l - 0/3) (0/5 - 0/3)

(7)

i 300/20/_0/5 - 20(0/20/3 + 0/20/5 + 0/30/5) + 15(0/2 + 0/_ + 0/_) - 1

(0/2 - 1)(a3- i)(0/5 - i)

_5 _0 100/20/3 - 5(0/2 + 0/_) + 3
0/5(0/2 - 0/5) (0/3 - 0/5) ( 1 - 0/5)



° Furthermore, we make the following assumptions that greatly reduce the

number of equations of condition

(At)

i 2

P31 = _°_3

(A2)

I 3

P22 -- _ OZ2

P32 =

i

P42 - 3

1 3
P52 = _o_

(B) c2P21 + c3f_l + Ca/34i = 0

A
(B)

A
A2f321 + C3_ 31 + _4/341 ÷ A5/351 ---- 0

(6) A A
_20_2f_21 + C30_3/331 + _4/341 + C50_5f_51 = 0

From (AI) and (A2) the following identities result:

(III, l) = (III, 2) ; (IV, 2) - (IV, 4) ; (IV, 3) = 3(IV, 4)

A A A
(III,_) = (III,_) ; (IV, 2) - (IV, 4) ; (IV, 3) -- 3(IV, 4) ;

(v,9), - 3(V, 9) ; (V,_) - 6(V, 9)

A

By also using (B) and (B) we find the following identities :

(s)

(IV, 1) =- (IV, 2)

A A A A A A

(IV, I) =- (IV, 2) ; (V, 2) -= (V, 4) ; (V, 3) - 3(V, 4)

and finally by also taking into account assumption (C)

(9)

A A

(v, 5) =- (v, 6) (lo)

A
Therefore, equations (I, 1) ; (I,_) ; (V,_) ; (V, 4) are the only remaining

equations of condition.

6



The first two equations determine the coefficients co
do not enter our equations _! condition.

A
and c that otherwise

O

A A

The remaining equations (V, i) and (V, 4) have to be solved together

with our assumptions (Ai) , (A2), (B), (B) _ and (_)°

9. From the first equations (Ai) and (A2), the following relations are obtained:

2
_,i -- _ _2 (11)

3

The second equations (Ai) and (A2) yield

3( 2= (3c_2 - 2c_3)P31 _ c_2

(_-'2_ 2 (_3 - _2)
/332 = \c_2/

The third equations (Ai) and (A2), together with (B), determine the

coefficients fl41, fi42, fi43- We find the following expressions for these

coefficients:

3 i 6_2o_3 - 6oz2_ 3 + 2e_ 3 - o_2
P41 - " --r "

4 _2 6_2_3 - 4(_2 + _3) + 3

1 1-c_ 2 2c_ - 4c_2c_3 + c_2 + o_2
°

f_42 - a_ " a3-a2 6o_2o_3 - 4(o_2+a3) + 3

i (i - _2) (i - _) 2_ - i
• o

fl43 -- _3 _3 - OZ2 6_2c_3 - 4(c_2 + °_3)

A A

Elimination of _5 from (B) and (C) leads to the following relation:

A A A

C2(C_5 - C_2)_2_ + C3(0_5- C_3)f_31 + C4(_5- 1)_41 0

A A A

Introducing the above computed values for e 2 , c3, c 4, _21 , _31 , and fi4i

(15) leads to a relation between _2, c_a, and c_5.

(13)

.(14)

(15)

into



with

M(25 = N

M (6_2_3 - 4_2 - 4(23+ 3)(30_2_ - 30_ - 10_I + 5_2_3)

+ (6(2_(23_ 6(22(23+2(23_(22)(30(22(22_ 20(22(23_ 200_2+ 15(23)

N = (6(22_ 3 - 4(22 - 4(23 + 3) ( 160_2(2 2 - 15(21(2 23 - 6(22 + 3(22(23)

+ (6-_(23- 6(22(23+2(23- (22)(20(22(21- 15(22(23- t5(2_+ t2(2

It is easily verified that

(16)

(17)

M = 0 (t8)

for any value of (22 and (23 -

Because of ( 16), only such values as (22 and (23 are possible that also lead

to

N = 0 (19)

Equation (19) represents a restrictive relation between (22 and (23. This

relation can be reduced to

1 (2_
(23 - 2 " 5(22 - 4(22 + 1 (20)

10. We use relation (20) to eliminate (23 from the expressions for our RUNGE-

KUTTA coefficients as obtained in Nos. 7, 8, and 9. The elimination results

in

i (22
(23

2 5(222 - 4(22 + i

l i 5(2_- 5_ + i
C 2 = -- •

2 i0(2_ - 8(22 + 16 (22( I - (22)

(21)

8



2 1

c3 - 3 " o_2(5o_2- 2)

(5_ - 4a2+ 1) 3
lOc_ - 8c_2 + I

1 lOc_ 2 - 12c_ 2 + 3

c4 - 6 " (i - c_2)(5c_2 - 2)

3

P21 = ¥_2

3 15c_ 2- 12_ 2+ 2

fi3l - 16 c_2" (5c_- 4c_2+ i)3

i lOc_ - 8c_ + i

/332 - 8 c_2 " (50_ - 4c_2+ 1) _

3 1
fi41 - 4 i0_- 12_2 + 3

1 I -a2
fl42 - 2 _

fl43 -- - 2 •

6o_- 7sa_+ 31_- 4
(lOa_- 12a2+ 3)(10a_ - 8a2 + 1)

(1 - o_2) (5o_ 2 - 2) (2a2 - i) (5e_22 - 40_2 + 1)2

(21)

(continued)

11. The weight factors _2 through _ of the fifth-order formula can now be

expressed by _2 and _5 :

A
C2 60

10_5(5_ 2- 5(_2+ 1) - (30(_ 2 - 29c_2+ 6)
• _( 10_ - S_2 + 1)( 1 - _2)(_5 - _2)

A 4

c3 - 15 "
(5a2-4a2+ 1)415o_5(2c_2- 1) - (_5_-?)4_

(_2(10_ 2 - 8_2+ 1)(5_ -2)(2c_2 1)[2_5 _ 2+1) -o.'21

^ 1
C 4 - 6O

10(2o_ - 1) (10o_ - 12_2+ 3)_5 - (150o_ - 260_ + 141o_ 2 - 24)

(1 - a2) (5a2- 2)(2(_ 2 - i)(1 - a 5)

A 1 (5c_l - 2)(lOe_ - 12a_ + 3)
- • 2 4_ 2+ 1)_ -a21ca 60 as(l - aS) (0_ 2 - a 5) [2(5a2 - 5

22)



12. We still have to determine the coefficients fi51, fl 52, _53, /354 Of our fifth-

order formula. From equation (B) we find fi51 • The fourth equations (AI)

and (A2) together with equation (V,_), determine the coefficients fi_2, fi53,

fi54. It can be shown that equation (V, _') is then also satisfied for any

value of c_2 and c_5 .

This concludes the computation of our RUNGE-KUTTA coefficients, since

c and cA can be determined from (I, i) or (I,_) respectively, and the
O O

coefficients PKo (i{ = I, 2, 3, 4, 5) can be obtained from the standard equations

K-I

fiKX = _K (K =1'2'3'4'5) (23)
k=0

13. Our RUNGE-KUTTA coefficients contain two arbitrary parameters, (22 and

_5. We shall show that we can reduce the truncation error of our fourth-

order formula by a proper choice of the parameter _2 - From Table I, it

follows that the leading term (the fifth-order term) of the truncation error

consists of nine sub-terms. These sub-terms are certain expressions

built up by the partial derivatives of the right-hand sides of the differential

equation (i). These sub-terms are multiplied by certain numerical fac-

tors T I through T 9. For these factors, we find from equations V, _)

through (V,_) of Table I, replacing cA by c and the upper limit 5 of the

K-sums by 4, K K

TI = c4fi43fi32P21

T2

T 9

120

%2 xPx2 120
K=3 K \X= 2

4

1 _ G4 i24 oK K 120
K=I

(24)

l0



14.

15.

Naturally, it is desirable to find RUNGE-KUTTA formulas with small

numerical factors T 1 through T 9 to make the leading term of the local trun-

cation error small.

Since we can express all RUNGE-KUTTA coefficients that enter the right-

hand sides of (24) by (22 alone, the factors T l, • • • , T9 can finally be written

as functions of (22. The computation results in the following values for these

factors:

1 (5(22 - 2) (4(2_ - 1)
T 1 = -T5 - 240 5(2_ - 4(22 + 1

T2 - 31T3 = T4 = _ T6 _ 43T7 - 23T8 = 4T9

1 (5(22- 2)(10(2_ - 12(22 + 3)

720 5(25 - 4(22 + I

(25)

2

We see from (25) that all factors T i, . • • , T9 would become zero for (22 = -_

Because of (20), this value (22 leads to (23 = 1. It can, however, be shown

easily that (23 =.(24 = 1 leads to contradictions in the equations (II, 1), (III, 2),

(IV, 4) and (II,_), (III,_), (IV, 5), (V,_) • Therefore, we have to exclude

2
the value (22 - 5

Another interesting choice of (22 would result from

lOa_ - i2a2 + 3 = 0 (26)

If (26) would hold, all error factors in the second group of (25) would

become zero.

Because of (26), it would follow from (21),

c 4 = 0
(27)

It can be shown easily that for the values (22 resulting from (26) and for

c 4 = 0, equation (B) cannot be satisfied.

ii



/

1 _ 0. 845
Therefore, we also have to discard the values _2 ---- _ (6 ±_f-6)
resulting from (26). _ 0. 355

However, by choosing for o_2a value close to one of the above values, say

close to 0. 355, we can expect that at least the error factors in the second

group of (25) will become small.

16.

We shall consider two choices for (_2 that are reasonably close to 0. 355 and

i
lead to relatively simple RUNGE-KUTTA coefficients, namely cz2 = _ and

3

_2 - 8 The choice of _5 in our formulas remains arbitrary.

1
Choosing o_2 = _ leads to the RUNGE-KUTTA coefficients of Table II.

TABLE II. COEFFICIENTS FOR RK4(5), FORMULA i

\

2

3

4

5

K

2

9

i

3

3

4

5

6

2

9

i

12

69

128

i7

i2

65

432

1

4

243

128

27

4

5

16

fikk

2 3 4

135

64

27 16

5 15

13 4 5

i6 27 144

A
C C

K g

i 47

9 450

0 0

9 12

20 25

16 32

45 225

i I

12 30

6

25

Subtracting the last two columns of Table II from one another, one finds

as approximation for the leading term of the local truncation error of our
fourth-order formula

12



(1 3 16 1TE = _'_ f f2 + + - f5 ho i oo _ f3 _--6f4

We also list the error factors T l through T 9 of our formula 1:

1 1 1 1

T1 - 480 ' T2 - 4320 ' T3 - 1440 ' T4 - 4320

1 1 1 1
T5 - 480 ' T6 - 4320 ' T7 - 5760 ' T8 - 2880'

1
T9 - 17280

(28)

.(29)

17.
3

For our second choice, o_2 -- 8 ' we find the RUNGE-KUTTA coefficients
of Table III.

TABLE Ill. COEFFICIENTS FOR RK4(5), FORMULA 2

p
K KX

0 0 0

2

3

4

5

1 1

4 4

3 3

8 32

12 1932

13 2197

439

216

1 8

2 27

0 1 2 3

9

32

7200

2197

-8

7296

2197

368O

513

3544

2565

845

4104

1859

4104

4

A
C C

K K

25 16

216 135

0 0

1408 6656

2565 12825

2197 28561

4104 56430

1 9

5 5O

Ii

40

2

55

13



For the leading term of the local truncation error we obtain from Table III
the approximation

2187 i 2 )
i 128 f2 + f3 f4 h (30)TE = - 3-_fo + 4275 75240 50 - -_f5

This formula 2 has the following error factors:

I i i 1

Ti - 780' T2 - 12480 ' T3 - 4160' T4 = 12480 '

1 1 1

T5 - 780' T6 - 12480 ' T7 - 16640 '

1 1
T 8 - T 9 -8320 ' 49920

(31)

18.

We notice that the error factors (31) of our second formula are somewhat

smaller than the corresponding terms (29) of our first formula.

We should like to mention that another RK4(5) -formula was derived by

D. SARAFYAN ( [3], p. 4). His fourth-order formula is based upon only

four (instead of five) evaluations of the differential equations. Therefore,

his fourth-order formula has larger error terms than our formulas.

Since SARAFYAN's formula is published in an internal Technical Report

and therefore is not easily accessible, we present SARAFYAN's formula

as Table IV.

From Table IV it follows for the leading term of the local truncation error

TE = ( 1 f 2 1 27 125+ f2 + f4 f5 h8 o 3- T6 f3 56 336\ /
(32)

The error factors T i through T 9 for SARAFYAN's formula read as follows:

1 1 1 1
TI - 120 ' T2 - 480 ' T3 - 240 ' T4 = - 720 '

1 1 1 1

T5 - 120' T6 - 480' T7 - 960' T8 - 480'

T 9 2880

(33)

14



TABLE IV. COEFFICIENTS FOR SARAFYAN'S RK4(5) -FORMULA

1

4

K

0 0

1

2

1

2

2

3

1

5

1

2

1

4

0

7

27

28

625

i 2

1

4

-1

10

27

i

5

2

546

625

3

1

27

54

625

4

378

625

C
K

1

6

2

3

l

6

A
C

K

i

24

0

0

5

48

27

56

125

336

i9.

If we compare (33) with (31), we notice that in (31) the factors T I and T 5

2
are only -_ of the corresponding factors of (33); the other factors of (31)

are even smaller compared with the corresponding factors of (33).

i
For our RK4(5)-formula number i, the error factors are -_ (or better) of
the corresponding error factors of SARAFYAN.

Because of the smaller error factors we may expect that our RK4(5)

formulas I and 2 operate somewhat more economically than SARAFYAN's

formula. Numerical experiments on an electronic computer have confirmed

these expectations.

It is interesting to compare the error factors of SARAFYAN's formula

with those of KUTTA's ( [4], p. 443) standard fourth-order formula of
Table V.

15



TABLE V. COEFFICIENTS FOR KUTTA'S RK4-FORMULA

0

o_ _X cK K

0 1 2

1
0 0

6

1 1 1

2
1 1 1

0 _

2 2 3

1
3 1 0 0 I

6

The computation shows that KUTTA's error factors are identical with the

error factors (33) of SARAFYAN, except for T?, which in the case of

i
KUTTA's formulas has to be replaced by 160

20.

Therefore, SARAFYAN's formula, in general, will not reduce substantially

the number of integTation steps required by KUTTA's formula. However,

it will reduce the computer time, since it requires only six evaluations per

step compared to seven in KUTTA's formula, if the latter one is applied

with the standard stepsize control procedure (recomputation of two steps

as one step with double stepsize) .

We might mention that we have presented general RUNGE-KUTTA trans-

formation formulas with stepsize control in two earlier papers [5], [6],

In the special case of a fourth-order formula these general formulas do not

require any differentiation and can also be written in the form of classical

RUNGE-KUTTA formulas.

SECTION II. THIRD-ORDER FORMULAS

21. Since a fourth-order RUNGE-KUTTA formula requires four evaluations

(per step) of the differential equations, one might expect a pair of RUNGE-

KUTTA formulas RK3(4) to require four evaluations also.

16



However, it can be shown easily that four evaluations are not sufficient to

define the pair RK3(4). The equations of condition lead to contradictions

in the case of four evaluations. We therefore allow for five evaluations

per step.

However, it is possible to choose the fifth evaluation in such a way that this

evaluation can be taken over as the first evaluation for the next step. There-

by the number of evaluations per step again will be reduced to four, except

for the very first step, when the integration is started.

Since the derivation of the RK3(4) -formulas is very similar to the deriva-

tion of the RK4(5) -formulas of Section I, we may omit some details and

present the main results only.

22. The equations of condition, as they hold for a fourth-order formula, are

listed in Table VI.

TABLE Vl. EQUATIONS OF CONDITION FOR FOURTH-ORDER FORMULA

A _ 4A

(I, 1) ) c - 1 = 0
K

g=0

4 AA w i

(II, 1) __j cK_g 2
K=l

- 0

n 4 I
(iii,i) _ cAPK KI 6

g=2

A i 4 i

(::I,2): _ cA__2_- -s
K=i

- 0

= 0

(IV,i) _ : _Pxi
g =3 _ =2

A 1 4 1
(iv,2) : y,_ pK _2 24

K=2

1
- 0

24

0

17



TABLE VI. (Concluded)

tIv, 1COL = 0
' K K 8

K=2

(IV, 4) 6- " K K 24 = 0
t_=l

23.

A similar table for a third-order formula is obtained from Table VI by

omitting the fourth-order equations of condition and replacing, in theA
remaining equations, c by c and the upper limit 4 of the K-sums by 3.

K K

We denote the remaining four equations for the third-order RUNGE-KUTTA

formula by (I, 1), (II, 1), (III, l), and (III, 2).

Again assuming that the conditions (5) hold and that c_2 , c_3 are different

from one another and from 0 and I, we find from (II, i) and (III, 2) :

i 3_ - 2
C 2 ---- -- •

6 oe2(oe a - o_2)

i 3c_ - 2

c3 = 6 o_3(o_ 2 - a3)

(34)

A A A

and from (II, 1), (III, 2), (IV, 4):

A 1 2c_ - 1
c2 = 1--'2 " a2(a3 - a2)(1 - a2)

A I 2a a - I
C 3 ---- _ o

12 a3(a2 - a3)(i - a3)

A

C 4 =
I__ . 6aa(_ a- 4(c_ a+ aa) + 3

12 (i - a2)(l - a3)

(35)

24. To bring the remaining equations of condition into a form that can be

handled more easily, we make, similar to Section I, the further assump-

tions

18



P21-

(A) P31

i
P41 2

25.

A

(B)  2P21 + Z3P31 + '84P41= o

A

(D) /340 = Co, fi41 -- Cl -- 0, /342 = C2, _43 = C3

The assumption (_)) is required if the fifth evaluation is to be taken over

as the first evaluation for the next step.

A A

From the assumptions (A), (B), (D), it follows immediately that the

remaining equations of condition reduce to

A ^ o A i i
(IV, 2) c3fi32_ _ + c 4 • -3 12

(A) 1 2
/331_I + /3320_2 - 2 _3

A A A

(B) c2/321 + c3/331 -- 0

(36)

A

The first equation (A) expresses /321_i by _2. From equation (IV, 2) we

obtain /332 as a function of _2 and _3, since 63 and _4 are given as functions

of _2 and _3 by (35).

The second equation (A) can then serve to find /3310._i as function of _2 and

OL 3 •

A

The equation (B), finally, represents a restrictive condition that must hold

between _2 and _3 to make the equations of condition compatible. The

computation results in the following restrictive condition:

19



i o_
°_3 = _ " 3_ - 3(_ 2 + 1 (37)

Eliminating _3 from the coefficients of our third-order formula, these

coefficients become functions of _2 only. We find the following expressions

for them:

1 1 12(_
c2 - 6 o_ " 6o_ 2

2 i (3_ - 2)(3_ - 3_+ i)2

c3 = 3" _ 6c_. - 6o_ 2 + 1

P21o i--E

1 _ (3o_ - 1)(3_ - 2)-- 2 3P31c_i 8 (3o_2 - 3o_2 + 1)

i 6(_ - 6_+ i

_32 -- 80_2 (3e_ 2 - 3e_2 + 1)3

(38)

26. We now consider the error factors for our third-order formula and try to

make these error factors small by a proper choice of _2 •

From Table V we find the following four error factors:

TI = c3 fl32 P21 24

1 i

T2 = _. (C2 P22 ÷ C 3P32) 24

i

T 3 -- c2o_2P21 + c3o_3P31 -

T4 - 6 24

(39)

2O



or, if we insert (38) into (39)"

T 1
1 (2_- 1)(3_ - 1)

24 3_- 3_ 2 + i

1 _2(2_2- l) 1 (3_- 1)(2_- l)

T2 = _ai " 3_- 3_ 2+ 1 ' 24 3_ 3_ 2+ 1

i (_ - 1)(2_ - l) 2
T a - 8 3_- 3_ 2 + i

1 (_- 1)(2_2- 1) 2

T4 - 24 3_- 3_ 2+ 1

(40)

27.

28.

From the second equation (40), it follows that we can make T 2 = 0 by

choosing

3_ 2 - I (41)
OZ1 --

3_2

i
This means for this

All four error factors would become zero for o_2 -- 2 "

choice of _2, our third-order formula would actually become a fourth-order

formula. Our pair RK3(4) of RUNGE-KUTTA formulas of the third- and of

the fourth-order would degenerate into one fourth-order formula.

i
However, by choosing for 0/2 a value close to _, we obtain RK3(4) -formu-
las with small error factors (40). We give two examples for such formulas

with small error factors.

4
=-- we obtain the RUNGE-KUTTA coefficients of Table VII.Choosing 0/2 9

For the leading term of the local truncation error we find from Table VII

5 27 245 f3 1 f4)
TE = _--:-:-_f - _-77"_f2 + 1872 12o _lt)

h

For the four error factors of the formula of Table VII we obtain

(42)

i 5 5

Ti - i68 ' T 2 = 0 , T3 - 1512 ' T4 - 4536
(43)
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TABLE VII. COEFFICIENTS FOR RK3(4), FORMULA i

0

2

3

4

O/
K

0

I

4

4

9

6

7

0

0

i

4

81

57

98

i

6

32

81

432
h

343

1053

686

27

52

49

156

e
K

1

6

0

27

52

49

156

A
C

K

43

288

0

243

416

343

1872

i

12

29.
7

Another suitable choice for _2 would be c_2- 15 "

list the RUNGE-KUTTA coefficients in Table VIII.

For this value of c_2 we

TABLE VIII. COEFFICIENTS FOR RK3(4) , FORMULA 2

2

3

4

O_
K

0

0 0

2 2

7 7

7 77

15 900

35 805

38 1444

79
1

490

343

90O

77175

54872

fit_X

97125

54872

2175

3626

2166

9065

C
K

79

49O

2175

3626

2166

9065

A
C

K

229

1470

0

i125

1813

13718

81585

i

18
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For the formula of Table VIII we obtain

4 75 f2 + - f4TE = fo 3626 81585 f3

and the four error factors

I I i

TI - 228' T 2 = 0 , T 3 855 ' T4 = - "2565

(44)

(45)

30. For comparison, we list KUTTA's third-order formula ( [ 4], p. 440)

Table IX. His formula reads:

TABLE IX. COEFFICIENTS FOR KUTTA'S RK3-FORMULA

K k

0

0

i

2

0 0

i i

2 2

i -i

C
K

i

6

2

3

i

6

in

It has the following error factors:

i T 2 = 0 T3_ i T 4 = 0
Ti - 24 ' ' 24'

(46)

Comparing (43) and (45) with (46), we see that the largest value of (43)

i 2
is only -_ and the largest value of (45) only -_ of the largest value of
( 46).

Therefore, our formulas of Table VII and Table VIII can be expected to

be more economical than KUTTA's RK3-formula.

Since KUTTA's formula does not provide for a stepsize control, it requires

five evaluations per step if operated with the standard stepsize procedure

(recomputation of two steps as one step with double stepsize).
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SECTION III. SECOND-ORDER FORMULAS

3i. Allowing for four evaluations per step for an RK2(3) -formula, we list

in Table X the equations of condition for a third-order formula.

TABLE X. EQUATIONS OF CONDITION FOR THIRD-ORDER FORMULA

A 3

(I,l) _ Ac - i = 0
K

K--0

A _3A 1
(n, 1) L cK K 2

_=1

A 3 i

K _i 6
K=2

= 0

^ i _w3_ _2 I(IIl, 2) _ K K 6
_ 0

K=I

32. We want to use the fourth evaluation of the differential equations as

the first evaluation for the next step. This requires the conditions

o_3 = i, fi30 = Co, fi31 = ci, fi32 = c2 (47)

where the c's are the weight factors of the second-order formula, which is
v

obtained from the first two equations of Table IX, replacing ĉ by c and
V

the upper index 3 of K-sums by 2. We denote those equations for the

second-order formula by (I, i) and (If, i).

Furthermore, we assume

A

c 1 =. 0 (48)
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33.

and

(A)
1321 - 2

1
P31 - 2

A
 ocausoof( . tio (i and(ii,,2,becomeidontical.There,ore,
we can omit equation (HI, _') Table X.

From equations (n, and (III, ^we obtain, because of c 1 = 0 and a3 = l,

n i i
0 2 -- --o

6 a2(1 - a2)

A i 2 - 3a]
C 3 --

6 1 - O_2

(49)

34. Let us now consider the error factors of our second-order formula. From

the last two equations of Table X, we obtain for the two error factors the

expressions

1

T i = c 2fi21o_1 -

1 (Cl_ 2 + c20z_) 1
T2 - 2 -

(50)

Because of the first equation (A), we can write for the first equation ( 50),

1 c2°z 2 1 T2 1 cl°z ] (51)T1 - 2 - 6- = 2

or,

T2 - T I --

From (52), it follows that T 2 ¢ T l, assuming c 1 ¢ 0 .

(52)
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For the following, we might assume

T2 = -T I

By a proper choice of 0/I and 0/2we try to make T1and T2
small.

(53)

- T 1sufficiently

From (5i), (52), and (53) we find

i C2_2 1 1TI = _ 6- 4

or

2
2 + 2c2  -

3 (54)

Equation (54) and equation (II, 2) represent a system of two linear equa-
tions for c I and c 2 .

The system has the solution

1 2 - 3_
C 1 = -- .

3 _1(_1-2_2)

i 3a I - 4
C 2 --

6 a2(a I - 2a2)

(55)

Introducing the expression (55) for c 2 into (5i) yields

T1 _ i 3a 2 - 2
12 0/i (56)o_ 1 - 20/2

35. From equation ( 56), it follows that we could make T 1 = T 2 = 0 by choosing
2

0/2 - 3 " However, as in the case of our third-order formula RK3(4), our

pair of RUNGE-KUTTA formulas RK2(3) would then degenerate into a
single third-order formula.

2

However, by choosing o/2 close to _, we might obtain a suitable pair

of RK2(3) -formulas with small error factors T l and T 2 .
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Choosing c_2 -
I

27 and c_1 - we find the RUNGE-KUTTA coefficients
40 4 '

of Table XI as follows.

TABLE XI. COEFFICIENTS FOR RK2(3)

0

0L
K

0

1

4

27

4O

0

1

4

189

800

214

891

i 2

729

8O0

1 650

33 891

C
K

214

891

l

33

650

891

A
e

K

533

2i06

0

800

i053

l

78

36.

From Table XI we find for the leading term of the local truncation error

the approximation

( 1)23 i 350 f2 + f3
TE = - _f0 + _-_fi 11583 7-8

The error factors for our RK2(3) -formula would read

h (57)

i
i T2 = + (58)

T1 - 2112' 21i2

It is well-known that second-order RUNGE-KUTTA formulas RK2 can be

obtained by two evaluations only. It is also possible to provide a stepsize

control procedure by a third evaluation. We list in Table XII an example

for such a RK2(3) -formula.

For the truncation error we find from Table XII the approximation

TE = f0 + _fl - -_f2 h
(59)
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TABLE XII. COEFFICIENTS FOR RK2(3), BASED ON THREE EVALUATIONS

0

(2
t(

i

2

0

i

4

fiKX

i

4

C
K

i

2

i

2

A
C

K

i

6

i

6

2

3

The error factors for the formula of Table XII would read

i i

TI - 6 ' T2 - 12 (60)

It is interesting to note that KUTTA's third-order formula (Table IX) can
]

also be operated as a second-order formula RK2(3) with stepsize control.

We have to change only the weight factors of the formula, considering the
A

c -values of Table IX as c -values of the RK2(3) -formula and using c o = 0
K K

c i = i as its c -values.
K

Comparing (58) with (60), we notice that the error factors of our formula
i

of Table Xi are only _ of the larger error factor (60) . Therefore, we

may again expect our formula of Table XI to be more economical than the

formula of Table XII, since the formula of Table XI also requires only three

evaluations per step (except for the very first integration step).

SECTION IV. FIRST-ORDERFORMULA

37. If we base our RUNGE-KUTTA formula RKI (2) upon three evaluations per

step, we obtain for the second-order formula the following equations of

condition.
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TABLE XIII. EQUATIONS OF CONDITION FOR SECOND-ORDER FORMULA

A v_2A

(I, 1) ? c - 1 = 0
K

K=0

A va2A 1

(II, i) _ c 0
K K 2

K=I

Since we intend to use the third evaluation again as the first evaluation for

the next step, we require

oz2 = 1, fi20 = Co, f121 = cl (61)

where c o and c i are the weight factors of the first-order formula, which is^
obtained from the first equation of Table XIII, replacing c by c and the

P P

upper index 2 of the K-sum by i. Let us denote this equation for the first-

order formula by (I, I).

A
Obviously, there is only one error factor TI, obtained from (II, i) as:

1 (62)

We have to make this error factor small to obtain an efficient RKI(2) -

formula. However, we should not make T 1 zero, since our pair of formulas

RK1 (2) would degenerate for T 1 = 0 into one second-order formula. We

choose as coefficients the values of Table XIV:

TABLE XIV. COEFFICIENTS FOR RKI(2)

0

2

O_
K

l

2

I

2

i

256

P
K_

255

256

e
K

l

256

255

256

which clearly satisfy equations (I, i), (I, f), and (II, _ ).

A
C

K

i

5i2

255

256

l

512
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For the approximate truncation error we find

i
TE - 512 (f0 - f2)h, (63)

38.

and the error factor T i becomes

i (64)TI - 5i2

EULER-CAUCHY's method can be considered as a first-order RUNGE-
KUTTA formula, requiring only one evaluation per step. The method can
even be operated as a RUNGE-KUTTA formula RKI (2) without additional
evaluations by adding a second evaluation that can again be taken over as the
first evaluation for the next step.

The resulting pair of formulas is shown in Table XV.

TABLE X_. EULER-CAUCHY'S METHOD AS RKI(2)

K

0

PK_
C

K

A
O

K

1

2

1

2

The second-order formula RK2 of Table XV is obviously the so-called

modified EULER-CAUCHY method.

Table XV yields as approximate truncation error

i
TE - 2 (f0 - fl) h (65)

The error factor for the RKI (2) -formula of Table XV becomes

TI
i (66)
2

3O



Comparison of (64) and (66) clearly shows that our formula of Table XIV
will be more efficient than the formula of Table XV. Even the one additional
evaluation per step required by our formula of Table XIV, in general, will
not outweigh the advantage of the much smaller error factor.

We shall present a numerical example in Section V.

SECTHONV. A NUMERUCAL EXAMPLE

(ORDINARY DIFFERENTIAL EQUATIONS)

39.

40.

In this section we present the numerical results of our new formulas for

the same example that we considered in our earlier NASA report ( [ i], po 30) :

y' - 2xy • logz , z' = 2xz " fogy

Initial values: x 0 = 0, Y0 = e , z 0 = i

cos(x 2) sin(x 2)
Exact solution: y = e , z = e

(67)

For reasons of comparison, we also include the results for some formulas

of other authors. Our results are presented in Table XVI, the results of

our new formulas being marked by an asterisk (*).

The numerical integration of problem (67) was executed on an IBM-7094

computer. All methods listed in Table XVI were run in single precision

(eight decimal digits) and with the same tolerance (10 -8) for the local

truncation error. Since the first-order formulas require a very small

stepsize, we ran these formulas only up to x = 5; for the higher-order

formulas the integration was performed up to x = 25.

Table XVI shows that the small error factors of our new formulas (;'.-')

make themselves felt in a considerable reduction of the number of integra-

tion steps and, therefore, of the computer time required for our problem.

The greatest reduction gained was for our first- and second-order formulas.
i i

For these formulas we required only about _ and about _- of the computer

time of the corresponding conventional formulas. In the case of the third-
i

order formula, we could cut the computer time to less than _, compared
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50
b&

(*)

TABLE XVI. COMPARISON OF THE VARIOUS METHODS FOR EXAMPLE (67)

Method

EULER-CAUCHY (Table XV)

RKI(2) (Table XIV)

RK2(3) (Table XII) 2

RK2(3) (Table Xl) 2

KUTTA (Table IX) 3

RK3(4) (Table VII) 3

RK3(4) (Table VIII} 3

KUTTA (Table V)

SARAFYAN (Table IV)

RK4(5) (Table ID

RK4(5) (Table III)

Order

of

Method

Number

of

Evaluations

Per Step

f

max

25

25

25

25

25

25

25

25

25

Results for x = x (Tolerance: 10 -8)
max

A

Number

of

Steps

269 956

16 871

243 510

37 493

41 862

23 225

22 054

16 010

14 746

ii 059

9 947

Total

Number

of

Evaluations

269 956

33 742

730 530

112 479

209 310

92 900

88 216

112 070

88 476

66 354

59 682

Running

Time

(rain)

on

IBM-7094

2.90

0.32

6.43

1.13

1.91

0.90

0.85

0.95

0.81

0.68

0.58

Accumulated Errors in y and z

Ay Az

+0. 3018

+0. 1926

+0.1458

-0.1874

+0.2190

-0.2611

-0.2578

+0.1881

-0.1546

+0.1222

+0.2041

• 10 -4

-0.2945

-0.1543

-0.1781

10 TM -0.8330

10 -5 -0.4664

10 -5 +0.1639

10 -5 +0.1474

10 -5 +0.2207

10 -5 -0.2086

10 -5 +0.2015

10 -5 +0.2512

• 10 -3

• 10-5

• 10-5

• 10 -4

• 10 -4

• 10-4

• i0-e

• 10 -4

• 10 -4



with KUTTA's formula. For fourth-order formulas our gains are more

modest. Out second fourth-order formula (Table III), however, still

3
requires only ahout -_ of the computer time of KUTTA's formula and about
3
-- of the time of SARAFYAN's formula.
4

The accuracy of our new formulas is about the same as that of the conven-

tional formulas, except for the case of the first-order formulas. In this

case we gain one more decimal digit with our new formula. Because the

number of steps required by our new formula is only about 1-_

.I

of the

number of steps of EULER-CAUCHY's formula, we do not accumulate

round-off errors as heavily as the latter formula.

Compared with the conventional RUNGE-KUTTA formulas our new formulas

offer results of the same accuracy in a fraction of the computer time.

Therefore, our new formulas might be of interest for the numerical inte-

gration of ordinary differential equations.

Moreover, we shall show in the following sections of this paper that they

can also be applied successfully to certain partial differential equations of

the parabolic type.

SECTION Vl. APPLICATION TO HEAT TRANSFER PROBLEMS

41. Let us consider the one-dimensional heat transfer problem

Initial Condition: t = 0 :

t

Boundary Conditions:} x = 0 :

/ X = 1 :

u(x,O) = uo(x)

u(O,t) = bo(t)

u(i,t) = bl(t)

(68)

The first equation of (68) represents the simplest partial differential equa-

tion of the parabolic type.
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Problem (68) requires finding a quantity u (usually the temperature) as
function of the space variable x and the time variable to

The existence of a solution of the problem (68) can be shown, under proper

assumptions, by Fourier series methods. See, for example, the textbook

by CARSLAW and JAEGER ( [7], pp. 76-88)° A quite elementary proof of

the uniqueness of the solution of (68) is given in a textbook by BIEBERBACH

([8], pp. 352-353).

42. Replacing both derivatives of the first equation (68) by finite differences,

one obtains the well-known difference equation

u. - u. u - 2u. + u.
i, j+l I, j i+l, j I, j i-I, j

k = h 2 (69)

with k = At and h = Ax.

Equation (69) is widely used for obtaining numerical solutions of problem

(68), since this is the simplest explicit approach to the problem.

In applying (69) one has to pay attention to the fact that the mesh sizes h

and k have to satisfy the well-known stability condition

k 1

= 2 (70)

The condition (70) represents a certain restriction for the time mesh k

if the space mesh h is given.

To preserve a reasonable accuracy of the results one has to apply a small

space mesh h. In some problems the time mesh k, resulting from ( 70),

may then become prohibitively small.

Furthermore, one has to consider that the mesh size k, resulting from

( 70), will guarantee the stability of the results, but no estimate of the

local truncation error can be obtained from (70) .

43. There exist other difference methods without stability restrictions, for

example, the explicit method of DU FORT-FRANKEL [ 9] :
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44.

u. - u. u - (ui, + u. _1) + u.
1, j+l 1, j-1 = i+l,j j+l 1, j 1-1,j

2k h_
, (71)

or the implicit method of CRANK-NICOLSON [ 10] :

u. -u. [ -2u +u1, j+l 1, j 1 Ui+l, j+l i,j+I i-l, j+l

k -- 2 / h2

ui+l, J - 2u. + /1, j ui-l' J (72)
+ h 2 !

However, other difficulties occur in the application of these two methods.

The method of DU FORT-FRANKEL is a three-level method (time levels

j-l, j, j+l) requiring a special starting procedure and additional consid-
erations for a stepsize change of the time step. In the case of the implicit

method of CRANK-NICOLSON, one has to solve a system of linear equa-

tions of the triple-diagonal form for each time step.

Although these difficulties might not be considered too serious, these

methods again do not furnish an estimate of the local truncation error.

Since they have no stability restrictions, an increased danger exists in

that the integration could be performed with too large a time step. If this

is the case, one would lose any accuracy, and, after a certain number of

time steps, the computed u-values would bear little resemblence to the

solution of the problem.

Equations (72) and (69) have identical left-hand sides; they approximate the

8u
time derivative _ by the same first-order accurate, finite difference.

Therefore, the time integration of the CRANK-NICOLSON method cannot

be more accurate than in the ease of the explicit method (69).

If one wants to take full advantage of the accuracy that modern electronic

computers are capable of, a more accurate approximation of the partial

derivatives in the heat transfer equation -- first equation (68) -- and a

current stepsize control for the integration become absolute necessities.

A convenient way to achieve these objectives consists of converting the

heat transfer equation into a system of ordinary differential equations

by replacing the space derivative only by a finite difference. The resulting

system of ordinary differential equations can then be integrated by RUNGE-

KUTTA methods.
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This is not a new procedure; it was suggested long ago by D. R. HARTREE
and collaborators ( [11] and It2], p. 254). They suggest replacing the first
equation (68) by the system

du.(r)
1

dT - U.l@ 1 (7) - 2u.(T)I + ui_ 1 (r) = 52ui(T) (7"3)

t
with T = .--_ .

h"

_2 u

Naturally, one can apply a better approximation to -_x by using higher-
order central differences, resulting in

45.

du. (r)
, 1

1 _ 5ou.(r ) t 54u.(r )+ a_u.(r ) _ +....
dr 1 - 1--'-2 i -_ 1

(74)

Formula (74) is suggested in GOODWIN's book ( [13], p. i13).

In equations (73) and (74) the authors used the standard fourth-order

RUNGE-KUTTA formula (Table V) for the numerical integration.

GOODWIN ( [13], pp. 114-115) and FOX ( [14], pp. 2401241) point out that

the fourth-order RUNGE-KUTTA method offers few advantages compared

with the explicit difference formula (69), since the stability restriction

of the RUNGE-KUTTA method is only slightly better (r < 0.7 instead of

r < 0.5). On the other hand, the RUNGE-KUTTA method requires con-

siderably more computer time per time step than formula (69). There-

fore, it might seem questionable whether RUNGE-KUTTA methods are

really worthwhile for application to problems such as (68).

We feel that the explicit difference method (69) certainly has its merits

when applied to the computationally simple problem (68) and when requir-

ing a moderate accuracy only.

However, the new low-order RUNGE-KUTTA formulas with s tepsize control

that are presented in this paper show the application of RUNGE-KUTTA

formulas to parabolic partial differential equations in a different light,

especially in connection with the use of highly accurate electronic computers.

For our numerical computations we used an eight-decimal digit computer

(IBM-7094), and, when applying our new RUNGE-KUTTA formulas to heat
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46.

47.

48.

transfer problems, we required that the local truncation error became
negligible. This means we required that the local truncation error
not contribute to the eight leading digits that the computer carries.

By doing so, we were able, when using higher-order central differences
for the space derivatives, to obtain by means of our new RUNGE-KUTTA
formulas, five to six good digits, even after a considerable number of
integration steps. ( See the examples in Section VII. ) We found that these
somewhat severe accuracy requirements could be well-satisfied by our
low-order RUNGE-KUTTA methods and that we did not run into stability
problems with these low-order methods since our accuracy requirements
are much sharper than the stability requirements of our formulas.

Comparing the explicit difference method (69) with EULER-CAUCHY_s
method (Table XV), we see that both methods are identical as far as the
time integration is concerned. Since the method of Table XV yields a
convenient stepsize control procedure we have substituted EULER-CAUCHY's
method of Table XV, for the explicit difference method (69).

Naturally, the explicit difference method and any RUNGE-KUTTA method
can be run in a fraction of the computer time if we apply less severe
accuracy restrictions, for example, if we apply the stability restriction
only. However, such a relaxation of the accuracy restriction would result
in a severe loss of accuracy.

The RUNGE-KUTTA methods are not restricted to the simple problem (68).
They can be applied to more involved one-dimensional heat transfer prob-
lems, as outlined in the next section. Multi-dimensional heat transfer
problems can also be made amenable to RUNGE-KUTTA methods when
replacing all space derivatives by proper finite differences.

SECTION Vll. TWO NUMERICAL EXAMPLES

(HEAT TRANSFER PROBLEMS)

49. In this section we present numerical results of our new RUNGE-KUTTA

formulas for two one-dimensional heat transfer problems. In both prob-

lems the exact solution is available so that the errors of our formulas can

be stated.
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First problem"

u i e '2

at = -4 " 2+x _"

Initial Condition:

Boundary Conditions: t

Exact Solution:

Et = 0 • u = 2 1 log(2- X 2

au
x = 0 : - 0

ax

x=l : u=2+log(l+t)

u= 2+log(1 +t) - 21og(2-x 2)

(75)

D2 u

Using higher-order central differences when replacing _ by finite

differences, the partial differential equation of our problem is converted

into the following system of ordinary differential equations:

du.(r) . e 2 -ui(r) { 1 64ui1 _ i x2 • e 62ui(_- ) (T)dT 4 2 + 12
1

1 /+ _ 66u'(z)l - +" " "

(76)

The introduction of the fourth-, sixth-, . . . order differences in (76)

makes necessary some extrapolation in the vicinity of the boundary line

x = I. When including the fourth-order differences only, we have assumed

that the sixth-order differences are constant in the vicinity of x = i.

Correspondingly, the eighth-order differences are assumed to be constant

if sixth-order differences are still carried in (76) . For x = 0 no extrap-

olation is needed since the problem is symmetric with respect to x = 0.

For our computation we divided the x-interval < 0, i > into 16 equal parts

I t
(h = ]-_ ) The numerical integration of (76) with respect to y = -_

was performed with a tolerance of 10 -8 on an eight-decimal digit computer.

The stepsize control procedure was applied for x = 0 only.

Table XVII shows the results for t = 100, obtained with some of our new

formulas. Under the heading "Method" of Table XVII we have also indicated

the order of the highest central difference 52 , 64, or 6_ carried in (76).
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TABLE XVII. COMPARISON OF VARIOUS RUNGE-KUTTA METHODS
FOR PROBLEM (75)

Method

EULER-CAUCHY (Table XV)

RKI(2) (Table XIV) -- 52

RK2(3) (Table XI) -- 62

RK3(4) (Table VIII) -- 52

_ 62

EULER.-CAUCHY (Table XV)

RKI(2) (TableXIV) -- 54

RK2(3) (Table XI) -- 54

RK3(4) (Table VIII) -- 64

--64

EULER-CAUCHY (Table XV)

RKI(2) (Table XIV) -- 56

RK2(3) (Table XI) -- 56

RK3(4) (Table VIII) -- 56

_ 66

Order

of

Method

Results for t = 100 (Tolerance: 10-8; h = 1_ )

f
Number Running Time Accumulated Error"

of

Steps

30 721

1 924

822

1 036

30 715

1 998

1 070

1 305

30 712

2 072

I 227

1 520

(min)

on IBM-7094

1.75

0.22

0.23

0.33

2.07

0.28

0.36

0.50

2.33

0.39

0.45

0.61

(maximum)

in u

0.1408 • 10 -2

0.1452 • 10 -2

0.1425 - 10 -2

0.1424 • 10 -2

-0.3767 • 10 -4

-0.1991 • 10 -4

-0.1961 • 10 -4

-0.2086 • 10 -4

-0.2068 • 10 -4

-0.1848. 10 -5

-0.3636. 10 -5

-0.4947. 10 -5

From Table XVII one recognizes immediately the gain of accuracy obtained

by taking into account the fourth- and sixth-order central differences in

(76) . The results clearly suggest that at least the fourth-order central

differences should be included in the computation.

The table also shows that our new RUNGE-KUTTA methods give about the

same or more accurate results in a fraction of the time required by EULER-

CAUCHY's method, which is identical with the explicit difference formula

(69).

However, our third-order formula is already slower on the computer than

our first- and second-order formulas. The trend continues: our fourth-

order formula is again slower than our third-order formula, etc.

This confirms the experience that other authors have had with fourth-

order RUNGE-KUTTA formulas, which are too slow for heat transfer

problems and cannot compete with our new lower-order RUNGE-KUTTA

formulas.
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50. We present another example:

Second problem:

flu O2u flu

Ot 0x "2- fix

InitialCondition: t

Boundary Conditions :

uI(Iogu) 2 + Iogu - I ]

cosx
0 : u=e

cos ( t 2)

X = 0 : u=ex = 1 : u=e c°s(l+t_)

cos( x+t 2)
Exact Solution: u = e

(77)

0u

In this example we have to replace fix by finite differences also. Taking

into account higher-order central differences, we replace the partial dif-

ferential equation of our problem with the following system of ordinary

differential equations :

du. (T) 16 i i ({UI(T) 1d_'l = 2ui(r) - -i_ 54u'(T)l + -_ 5 .

[( ) 1 (5" (r)- 52ui_1(_-))+ h 3° T ui+l(T) -Ui_l(r) -_ _ui+ 1

+ 3---o r) - 5 (r)

+ h2" u (_')l [(l°gui(T))'_'+ l°gui(T)- 1]

(78)

The numerical integration of (78) is performed in the same way as in our

first problem. However, our new problem requires some extrapolating

for x = 0 also; and the stepsize control procedure is now performed for

1
X --

2

4O

\,,



Table XVIII shows our results for t = 5. These results are quite similar

to those for our first problem. The computer time for our new RUNGE-

KUTTA formulas is, however, here a considerably smaller fraction of the

computer time of the explicit difference formula (EULER-CAUCHY's

formula) .

TABLE XVIII.

Me th od

COMPARISON OF VARIOUS RUNGE-KUTTA METHODS

FOR PROBLEM (77)

1
Results for t = 5 (Tolerance: 10-8; h = _-_ )

EULER-CAUCHY (Table Xv)

RKI(2) (Table XIV) -- 52

RK2(3} (Table X]) -- 62

RK3(4) (Table VIII) -- 62

_ 52

04EULER-CAUCHY (Table XV --

RKI(2) (TableXlV) -- 64

RK2(3) (Table XI) -- 64

RK3(4) (Table VIII) -- 64

Order

of

Method

_6
EULER-CAUCHY (Table XV) -- o

RKI(2) (Table XIV) -- 6 6

RK2(3) (Table XI) -- 6 6

RK3(4) (Table VIII) -- 6 6

f A __

Number

of

Steps

235 354

14 737

2 142

2 519

235 388

14 906

2 695

3 334

235 372

14 971

2 812

3 677

Running Time

(min)

on IBM-7094

19.46

2.47

0.87

I. 03

22.87

2.93

1.08

1.91

25.32

3.25

1.50

2.38

Accumulated Error

(maximum)

in u

0.6313 • i0 -3

0.6711 • i0 -3

0.7065 • I0 -3

0.6745 • 10 -3

-0.4032 • i0 -4

-0.3516 • i0 -5

0.3994 • 10 -5

0.3129 • i0 -5

-0.5391 • 10 -5

-0.4351 • 10 -5

-0.3427 • 10 -5

-0.11;32 • 10 -5

51. In both examples, our new low-order RUNGE-KUTTA formulas proved to

be considerably faster and of equal or better accuracy than the conventional

explicit difference formula (69) . This is not too suprising if one realizes

that (69) is a formula of first-order accuracy only, and that its truncation

error factor is 256 times as large as the error factor of our first-order

formula RKI(2) of Table XIV.

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

MarshaI1 Space Flight Center, Alabama 358i2, April 15, 1969

129-04-03-00-62
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