N69-31783

NASA CR-96008

AIRCRAFT STABILITY AND CONTROL DATA

By Gary L. Teper

April 1969

Distribution of this report is provided in the interest of information exchange and should not be construed as endorsement by NASA of the material presented. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 2-4478 by

Systems Technology, Inc. Hawthorne, California

for

Ames Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARIMENT OF COMMERCE SPRINGFIELD, VA. 22161

·

FOREWORD

This report was prepared under Contract NAS2-4478 between Systems Technology, Inc., Hawthorne, California and the National Aeronautics and Space Administration. The MASA project monitor was L. W. Taylor. The STI project engineer was Gary L. Teper.

The author gratefully acknowledges the aid of the STI staff in collecting, interpreting, and organizing the data. The author also wishes to acknowledge the fine work of the STI publications department in the preparation of this report.

ABSTRACT

Data of interest to handling qualities investigators is presented for various current aircraft. Included are those required to obtain transfer functions for the aircraft's response to control inputs. Where possible, an analytical description of the aircraft's stability augmentor is given, and also the complete flight envelope of each aircraft is covered for its most common configuration and loading. Computed transfer functions for various flight conditions are included.

CONTENTS

																				Page
I.	INTROD	UCI	ION	Γ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
II.	A-7A	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	٠	3
III.	A-4D	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	27
IV.	F - 106B	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	49
ν.	T - 38	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	57
VI.	F-5A	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	65
VII.	F - 104	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	73
VIII.	F 105B	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	81
IX.	B - 58	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	91
Χ.	NAVION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	99
XI.	DC-8	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	105
APPEN	DIX A.	АХ	IS	SYS	STEI	MS,	SYI	MBO:	ß,	ANI	D	ERI	VAT	IVE	DE	FIN	ITI	ons	•	A-1
APPEN	DIX B.	TF DE	RANS CRIV	SFOF 7AT]	RMA. EVES	TIOI 5 T(0 B0	F NO DY	I– MC XA	DIM IS	ENS: •	ION.	AL	STA: •	BII,	TTY	AX •	IS	•	B - 1
APPEN	DIX C.	E6 CC	l'AU I U DI	TOP SIN(IS (J NI	OF 1 JMEI	MOT : RAT(ION DRS	, T	RANS	SFEI	RF.	UNC	TIO •	NS,	AN.	D.	•	•	C-1

.

SECTION I

INTRODUCTION

The purpose of this document is to provide handling qualities investigators with readily usable data on various current aircraft. Included are those data required to obtain transfer functions relating the aircraft's response to control inputs. An analytical description of the aircraft's stability augmentor is also given.

For those aircraft for which complete information was available, the following summarizes the contents and presentation:

- 1. A general description is given, including:
 - a. Three-view drawing and reference geometry.
 - b. Flight envelope.
 - c. Nominal configuration (weight, inertias, and c.g. location).
 - d. References.
 - e. Basic data sources.
- 2. A block diagram of the augmentor showing feedbacks, gains, and scheduling.
- 3. Trim angle-of-attack and elevator versus Mach number and altitude.
- 4. Longitudinal and lateral nondimensional stability derivatives* versus Mach number and altitude for the trimmed nominal configuration.
- 5. Geometrical parameters, longitudinal and lateral dimensional derivatives, and longitudinal and lateral transfer functions for the nominal configuration at various flight conditions. These data are usually given for body-fixed centerline axes (body axes).

For the remaining aircraft, some portion of the above is presented as dictated by the limits of the available data.

^{*}These are given for the axis system of the data source.

The intention has been to make this report completely self-consistent insofar as symbols, nomenclature, definitions, etc. The system used is described in three appendices. Appendix A covers axis systems, symbols and notation, and definitions of nondimensional and dimensional stability derivatives. Appendix B gives the axis system transformations for the derivatives. Appendix C includes the aircraft equations of motion and transfer functions used herein.

While complete coverage of each aircraft including only the "latest" and "best" data would be desirable, the major criterion used was that the data be immediately accessible to the author. This is why only isolated flight conditions are given for some aircraft, and also why, as those people more intimately familiar with each particular aircraft will recognize, the data presented may represent an early estimate in the design process and perhaps the "nominal configuration" is one which never left the drawing board. The data have been reviewed and, although not all those presented indicate unquestionable trends, those data known to be based on only early "guesstimates" or showing unreasonable trends have been deleted. As to how well the data can be expected to match the flying aircraft, it is assumed that those for whom this document is intended know well the difficulties of obtaining derivatives from flight test data. Every attempt has been made to insure reliable translation, interpretation, and transcription of the data from their source documents.

The manufacturers of the aircraft described herein can not be held accountable for the information presented, nor would they be bound to concur in any conclusions with respect to their aircraft which might be derived from its use.

'IR-176-1

JECTION II

A--7A

Figure II-1

NOMINAL CRUISE CONFIGURATION **Clean Airplane** 60% Fuel W = 21,889 lbs CG at 30% MGC $I_x = 13,635$ Slug ft² Body Iy = 58,966 Slug ft² Ref. $I_z = 67,560$ Slug ft² Axes I_{xz} = 2,933 Slug ft² REFERENCE GEOMETRY $S = 375 ft^2$

FLIGHT ENVELOPE

REFERENCES

c = 10.8 ft

b = 38.7ft

- I) LTV Vought Aeronautics Div. Rept. No. 2-53310/5R-1981, "A-7A Aerodynamics Data Report", 21 May 1965 (U)
- 2) LTV Vought Aeronautics Div. Rept. No. 2-53310/5R-5121, Rev. I, "A-7A Estimated Flying Qualities," 20 August 1965(C)
- 3) LTV Vought Aeronautics Div., "Updated A-7A Aircraft Lateral-Directional Cruise Device Configuration Data, 25 Augut 1967

Some Lateral-Directional Derivatives Adjusted After Flight Test

~

ROLL AXIS

YAW AXIS

Figure II-2. A-7A Stability Augmentation System

TR-176-1

TR-176-1

.14 15,000 ft .12 C_D .08 Sea Level .04 35,000ft 01 .2 .6 1.0 4 .8 1.2 Μ

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TABLE II-A

GEOMETRICAL PARAMETERS FOR THE A-7A

Note: Data for body-fixed centerline axis, clean flexible airplane

S = 375 ft², b = 38.7 ft, c = 10.8 ft W = 21,889 lb, m = 680 slugs, c.g. at 30 percent MGC $I_x = 13,635 \text{ slug-ft}^2$, $I_y = 58,966 \text{ slug-ft}^2$, $I_z = 67,560 \text{ slug-ft}^2$, $I_{xz} = 2,933 \text{ slug-ft}^2$

				FLIG	HT CONDITI	ON			
	1	2	3	4	5	6	7	8	9
h (ft)	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
M (-)	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
a (ft/sec)	1,117	1,117	1,117	1,058	1,058	1,058	1,058	973.3	973.3
$\rho (slugs/ft^3)$	0.002378	0.002378	0.002378	0.001496	0.001496	0.001496	0.001496	0.000736	0.000736
$V_{T_O} (ft/sec)$	279	670	1,005	317	635	952	1,164	584	876
$\overline{q} = \rho V_{T_0}^2 / 2(lb/ft^2)$	91.5	534	1,200	75.3	301	677	1,010	126	283
$\alpha_0^{}$ (deg)	11.2	2.9	2.1	13.3	4.0	2.5	2.9	7.5	3.8
$U_{o} (ft/sec)$	274	669	1,004	309	633	951	1,163	579	874
W_{O} (ft/sec)	54.2	33.9	36.8	72.9	44.3	41.5	58.9	76.2	58.1
$\delta_{e_O} (de_g)$	-7.4	-3.35	-3.8	-8.8	-3.8	-3.85	-4.95	-5.4	<u>_4</u> .4
$\gamma_0 (deg)$	0	0	0	0	0	0	0	0	0

TR-176-1

Ŋ

TABLE II-B

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE A-7A

Note: Data are for body-fixed centerline axis, clean flexible airplane

				FLI	GHT CONDITI	ON			
	1	2	3	4	5	6	7	8	9
h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
Xw	0.0145	-0.0568	-0.0284	0.00464	0.0537	0.0339	0.0386	0.0146	0.0316
X _u	0.0162	-0.0123	-0.0732	0.00501	-0.00620	-0.0440	-0.0431	0.00337	-0.0193
X _{ðe}	5.75	8.34	11.6	5.63	6.96	9.13	11.2	5.70	6.61
Zw	-0.779	-1.92	-3.40	-0.545	-1.16	-2.12	-2.34	-0.554	-1.01
Zu	-0.0814	-0.00244	0.0184	-0.0857	-0.0244	0.00279	0.0353	-0.0392	-0.0223
Z _{ðe}	-29.0	-165	-318	-23.8	-99.6	-209	-220	-43.2	-99.4
M_{W}	-0.00982	-0.0232	-0.0402	-0.00777	-0.0143	-0.0292	-0.0639	-0.00711	-0.0150
$M_{\overline{W}}^{{\boldsymbol{\cdot}}}$	-0.000286	-0.000308	-0.000370	-0.000178	-0.000210	-0.000280	+0.000332	-0.000111	-0.000163
Mq	-0.466	-1.11	-1.57	-0.340	-0.696	-1.07	-1.31	-0.330	-0.539
Mu	0.00201	0.00137	0.00118	0.00183	0.00104	-0.00194	0.00245	0.000873	-0.00160
M∂e	-5.44	-30.6	-58.6	-4.52	-18.9	-41.7	-44.2	-8.19	-20.2

TABLE II-C

LATERAL DIMENSIONAL DERIVATIVES FOR THE A-7A

Note: Data are for body-fixed centerline axes, clean flexible airplane

		<u> </u>		FLJ	CHT CONDITI	EON			
	1	2	3	24.	5	6	7	8	9
h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
Yv	-0.162	-0.314	-0.514	-0.122	-0.187	-0.310	-0.435	-0.0847	-0.145
Υ <mark>*</mark> а.	-0.00274	-0.0105	-0.00857	-0.00150	-0.00655	-0.00691	-0.00216	-0.00267	-0.00427
Yőr	0.0430	0.0769	0.0626	0.0307	0.0537	0.0550	0.0192	0.0267	0.0347
L's	-11.9	-44.8	-98.0	-8.79	-29.2	-66.0	-71.2	-14.9	-30.6
Ľ ŗ	-2.00	-4.46	-9.75	-1.38	-2.73	-6.19	-7.31	-1.40	-3.00
L'r	1.18	1.15	1.38	0.857	0.868	0.843	0.859	0.599	0.563
Lôa	5.34	28.4	25.2	3.75	17.6	24.1	12.5	7.96	14.2
Ŀśr	2.22	11.4	13.2	1.82	7.27	11.2	7.27	3.09	6.55
N _B	1.28	5.74	17.2	0.948	3.12	10.2	21.9	1.38	4.72
N.p	-0.0870	-0.168	-0.319	-0.0310	-0.116	-0.207	-0.169	-0.0799	-0.112
N'r	0.369	-0.905	-1.54	-0.271	-0.541	-0.975	-1.33	-0.247	-0.455
Noa.	0.402	2.08	1.56	0.280	1.37	1.64	1.04	0.652	1.01
Når	-1.93	-8.61	-11.1	-1.56	-5.54	-8.80	-4.83	-2.54	-5.11

TR-176-1

Note:	Data for body-fixed	d centerline a	xes, clean flex	tible airplane											
· · · ·		FLIGHT CONDITION													
	1	2	3	4	5	6	7								
h	0	0	0	15,000	15,000	15,000	15,000								
м	0.25	0.6	0.0	0.3	.0.6	0.0	1 1 1								

		1	2	3	4	5	6	7	8	9
	h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
	м	0.25	0.6	0.9	0.3	·0.6	0.9	1.1	0.6	0.9
	t _{sp}	0.367	0.383	0.395	0.277	0.316	0,316	0.185	0.225	0.230
	ω _{sp}	1.76	4.21	6.76	1.63	3.15	5.48	8.81	2.08	3.68
	$\zeta_{\mathbf{p}} (1/T_{\mathbf{p}_1})$	0.0594	0.100	0.790	0.118	0.0620	(0.0888)	0.589	وبليل.0	(0.0616)
	$\omega_{p} (1/T_{p_{2}})$	0.156	0.0698	0.0472	0.140	0.0710	(0.0513)	0.0372	0.0751	(-0.0501)
	A ₀	-5.43	-30.6	-58.4	-45.1	-18.8	-41.6	-44.3	-8.18	-20.2
θ Nδe	$1/T_{\theta_1}$	-0.0214	0.0122	0.0728	-0.00823	0.00716	0.0443	0.0422	-0.00316	0.0202
	1/T ₀₂	0.731	1.79	3.19	0.506	1.09	1.97	2.02	0.516	0.933
	Au	5.75	8.34	11.6	5.63	6.96	9.13	11.2	5.70	6.61
.,u	$1/T_{u_1}$	51.1	125	186	8.5	120	190	234	109	177
ы Цер	ζ_{u} (1/Tu ₂)	(0.411)	0.665	(1.22)	(0.369)	0.627	0.854	(0.899)	0.925	0.753
ļ	$\omega_{u} (1/T_{u_{3}})$	(1.03)	1.30	(2.28)	(0.587)	0.890	1.24	(1.23)	0.466	0.719
	Aw	-29.0	-165	-318	-23.8	99.6	-209	-220	-43.2	99.4
, w	1/T _{W1}	51.7	126	187	58.9	121	191	234	110	178
[№] ôe	$\zeta_w (1/T_{w_2})$	-0.110	0.239	(-0.00603)	0.0444	0.0567	(-0.00939)	(-0.0131)	-0.0553	0.419
	ω_{w} (1/T _{W3})	0.105	0.0210	(0.0773)	0.0990	0.0386	(0.0518)	(0.0530)	0.0494	0.0219
	An	29.6	165	318	24.5	99.8	209	221	43.6	99.7
No	'/Tn1	-0.0624	0.00956	0.0719	-0.0549	0.00225	0.0431	0.0412	0.0154	0.0173
" ^o e	1/Th ₂	6.21	15.6	25.3	5.41	11.8	20.0	22.2	7.64	13.2
	1/Th3	-5.57	-14.3	23.3	-4.92	-11.0	-18.7	-21.2	-7.22	-12.5
	Aaz	-29.0	-165	318	-23.8	-99.6	-209	-220	-43.2	-99.4
	1/Taz1	-0.00998	-0.00248	-0.00117	-0.00417	-0.00405	-0.00147	-0.00139	-0.00170	-0.00250
$N_{\delta e}^{a_z}$	1/Taz2	-0.0506	0.0120	0.0729	-0.0497	0.00627	0.0445	0.0425	-0.0136	0.0197
CG	1/Taz3	6.33	15.6	25.3	5.55	11.8	20.0	22.2	7.69	13.2

-5.08

-11.0

-18.7

--21.3

e

-7.28

-12.5

-23.3

-5.73

-14.3

 $1/T_{\mathbf{a}_{\mathbf{z}_{4}}}$

TABLE II-D ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE A-7A

TR-176-1

TABLE II-E

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE A-7A

Note: Data for body-fixed centerline axes, clean flexible airplane

					FI	LIGHT CONDITION	I			
		1	2	3	4	5	6	7	8	9
l	h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
	М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
	1/T ₈	0.0462	0.0411	0.0180	0.0449	0.0435	0.0214	0.0102	0.0319	0.0191
	1/T _R	1.62	4.46	9.75	0.968	2.71	6.17	7.15	1.28	2.92
	ζa	0.237	0.202	0.218	0.231	0.156	0.175	0.189	0.114	0.128
	۵	1.81	2.91	4.68	1.65	2.29	3.66	5.03	1.81	2,58
	Ap	5.34	28.4	25.2	3.75	17.6	. 24.1	12.5	7.96	14.2
NP	1/T _{P1}	-0.0219	-0.00234	-0.00113	-0.0232	-0.00347	-0.00144	-0.00137	-0.00718	0.00241
" ⁸ a	ζp	0.217	0.217	0.222	0.191	0.173	0.176	0.173	0.122	0.124
	цр Ф	1.49	3.05	4.91	1.27	2.34	3.87	5.33	1.62	2.64
	Α _φ	5.42	28.5	25.2	3.81	17.7	24.1	12.6	8.04	14.3
Ν _δ α	ζ _φ	0.210	0.217	0.222	0.183	0.173	0.177	0.175	0.119	0.124
-	ω _φ	1.51	3.05	4.91	1.29	2.34	3.87	5.32	1.62	2.64
	Ar	0.402	2.08	1.56	0.280	1.37	1.64	1.04	0.652	1.01
NT	1/T _{r1}	0.596	1.12	1.13	0.445	0.777	0.944	0.581	0.420	0.593
" ⁸ a.	٢r	0.0852	0.287	0.597	0.146	0.151	0.446	0.638	0.0198	0.193
	۳	2.35	2.29	3.26	2.18	2.13	2.78	3.98	2.03	2.45
	Α _β	-0.00274	0.0105	-0.00857	-0.00150	-0.00655	0.00691	-0.00216	-0.00267	-0.00427
	1/T _{β1} (ζ _β)	(0.885)	3.26	7.76	(0.726)	2.21	5.77	10.7	0.793	(0.872)
^{мб} а.	$1/T_{\beta_2}(\omega_{\beta})$	(0.667)	-0.627	-0.254	(0.471)	-1.63	-0.245	-0.113	0.422	(10.6)
	1/T _{β3}	-233	63.1	78.2	-391	23.2	86.8	188	-147	-0.545
	A _{ay}	-0.766	-7.06	-8.61	-0.477	-4.16	-6.58	-2.51	-1.56	-0.0374
	$1/T_{ay_1} (\zeta_{ay_2})$	(0.943)	2.29	-1.16	(0.758)	1,32	-0.596	-0.146	0.290	(0.801)
$N_{\delta_{a}}^{a_{y}}$	1/T a_{y2} (ω_{ay2})	(0.648)	5.92	-1.84	(0.461)	3.12	-2.66	-7.93	0.961	(2.34)
CG	$ζ_{\mathbf{a}_{\mathbf{y}}}$ (1/T _{ayj})	0.0896	-0. 810	(3.65)	0.0673	-0.294	(3.79)	0.897	0.0499	-0.113
	$\omega_{\mathbf{a}_{\mathbf{y}}} (1/T_{\mathbf{a}_{\mathbf{y}_{\mathbf{i}}}})$	6.37	1.76	(10.7)	7.10	1.99	(-6.63)	9.31	3.92	1.30

TR-176-1

R

TABLE II-F

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE A-7A

Note: Data for body-fixed centerline axes, clean flexible airplane

			FLIGHT CONDITION											
		1	2	3	<u>1</u> 4.	5	6	7	8	9				
	h	0	0	0	15,000	15,000	15,000	15 ,000	35,000	35,000				
	М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9				
	1/T _s	0.0462	0.0411	0.0180	0.0419	0.0435	0.0214	0.0102	0.0319	0.0191				
Δ	1/T _R	1.62	4.46	9.75	0.968	2 .7 1	6.17	7.15	1.28	2.92				
	ζđ	0.237	0.202	0.218	0.231	0.156	0.175	0.189	0.114	0.128				
	ω _ά ,	1.81	2.91	4.68	1.65	2.29	3.66	5.03	1.81	2.58				
	Ap	2.22	11.4	13.2	18.2	7.27	11.2	7.27	3.09	6.55				
,,P	1/Tp1	-0.0224	-0,00242	-0.00117	-0.0237	0.00352	-0.00147	-0.00141	-0.00723	-0.00243				
^N or	1/T _{p2}	2.68	5.35	8.31	2.33	4.31	6.63	5.56	3.16	4.39				
	1/T _{P3}	-3.38	-5.31	-7.88	-2.79	-4.45	-6.33	4.55	-3.44	-4.38				
	Α _φ	1.84	10.9	12.8	1.45	6.89	10.8	7.03	2.75	6.21				
$\mathtt{N}^\phi_{\delta_{\mathbf{r}}}$	1/T ₀₁	2.78	5.37	8.29	2,48	4.35	6.64	5.53	3.27	4.43				
	1/T _{Q2}	-4.11	-5.53	-8.18	-3.48	-4.68	-6.57	-4.76	-3.79	-4.61				
	Ar	-1.93	-8.61	-11.1	-1.56	-5.54	-8.80	-4.83	-2.54	-5.11				
r	1/Tr1	1.13	4.33	9.87	0.553	2.35	6.12	7.31	0.578	2.64				
^N ôr	ζr	0.538	0.475	0.674	0.414	0.473	0 . 5 3 5	0.790	0.440	0.526				
	ω _r	1.02	0.642	0.502	1,17	0.735	0.541	0.381	1.12	0.585				
	Α _β	0.0430	0.0769	0.0626	0.0307	0.0537	0.0550	0.0192	0.0267	0.0347				
"β	1/Iβ1	-0.0624	-0.00199	0.000266	-0. 0603	0.00616	0.000578	0.00271	-0.0178	-0.00216				
δ _r	1/T _{β2}	1.73	4.45	9.76	1.14	2.70	6.17	7.11	1.32	2.94				
	1/T _{B3}	54.7	120	186	63.6	113	170	272	110	160				
	Aay	12.0	51.5	62.9	9.74	34.1	52.3	22.4	15.6	30.4				
	1/Tay1	-0.123	-0.0145	-0.00502	-0.108	-0.0227	-0.00654	0.000648	-0.0436	-0.0107				
Nδr Nδr	1/Tay2	1.87	4.43	9•57	1.27	2.69	6.16	7.06	1.36	2.97				
CG	1/Tay3	-2.00	-4.97	-7.84	-1.96	-3.69	-5.78	-8.91	-2.28	3.81				
	1/Tay4	2.60	5.92	9•57	2,45	4.30	6.80	10.5	2.61	4.30				

TR-1-6-1

SECTION III

A-4D

Figure III-1

A-4D

REFERENCE GEUMEIR

S = 260 ft² c = I0.8 ft

b = 27.5 ft

REFERENCES

- Abzug, M.J. and R.L. Faith, <u>Aerodynamic Data for Model</u> <u>A4D-1 Operational Flight Trainer</u>, Douglas Aircraft Co. Report ES-26104, November 1, 1955
- 2) Johnston, D.E. and D.H. Weir, <u>Study of Pilot-Vehicle-Controller</u> Integration for A Minimum Complexity AFCS, Systems Technology, Inc. Technical Report No.127–1, July 1964

BASIC DATA SOURCES

Wind Tunnel Test

2

 \mathfrak{C}

 κ_{θ}^{*} , $\kappa_{a_{z}}^{\prime}$: Scheduled for indicated airspeed

System used on the A4D-2N model only.

Control stick steering mode shown

ROLL

:

K_p: Gain in deg/deg/sec,scheduled for indicated air speed

. .

K_r : Gain in deg/deg/sec, scheduled for indicated air speed

Figure III-2. A-4D - Stability Augmentation System

TR-176-1

29

Note:

TR-175-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-170-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TR-176-1

TABLE III-A

GEOMETRICAL PARAMETERS FOR THE A-4D

Note: Data are for body-fixed centerline axis, cruise configuration.

 $S = 260 \text{ ft}^2$, b = 27.5 ft, c = 10.8 ft

W = 17,578 lbs, m = 546 slugs, c.g. at 25% MAC

 $I_x = 8,780 \text{ slug-ft}^2$, $I_y = 25,900 \text{ slug-ft}^2$, $I_z = 28,500 \text{ slug-ft}^2$, $I_{xz} = -4,070 \text{ slug-ft}^2$

		FLIGHT CONDITION											
	1	2	3	24	5	6	7	8					
h (ft)	0	0	15,000	15,000	15,000	15,000	35,000	35,000					
M (-)	0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9					
a (ft/sec)	1117	1117	1058	1058	1058	1058	973.3	973•3					
$_{\rm o} ({\rm slugs/ft}^3)$	0.002378	0.002378	0.001496	0.001496	0.001496	0.001496	0.000736	0.000736					
V _{To} (ft/sec)	447	950	423	635	9 52	1058	584	876					
$\overline{q} = \rho V_T \frac{2}{2} / 2 (lb/ft^2)$	237	945	13 ¹ 4	301	677	836	126	283					
α_0 (deg)	4.7	0.4	8.9	3.4	0.70	0.40	8.8	2.9					
U _O (ft/sec)	446	950	418	634	952	1058	577	875					
W _O (ft/sec)	36.6	6.6	65.4	37.7	11.6	7.4	89.3	44.3					
γ_{0} (deg)	0	0	0	0	0	0	0	0					

TABLE III-B

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE A-4D

Note: Data are for body-fixed centerline axes, clean flexible airplane.

				FLIGHT C	ONDITION			
	1	2	3	4	5	6	7	8
h	C	0	15,000	15,000	15,000	15,000	35,000	35,000
М	0. ¹ +	0.85	0.4	0.6	0.9	1.0	0.6	0.9
Xw	0.0687	-0.0215	0.052	0.0422	-0.0303	-0.0251	0.0227	-0.0212
X _u	-0.00934	-0.0298	0.000877	-0.00938	-0.0615	-0.1343	0.000806	-0.0282
X _{ðe}	7.612	-33.9 ^{½4}	6.068	7.396	-19.723	-15.289	6.288	-3.873
Z _w	-0.899	-2.23	-0.535	-0.822	-1.478	-1.892	-0.3874	-0.677
Zu	-0.0765	-0.0982	0.0704	-0.0533	-0.1174	-0.0487	-0.0525	-0.0869
^Z ∂e	-42.08	-188.28	-22.273	-56.68	-103.23	-94.606	-23.037	-43.149
Mw	-0.0228	-0.0502	-0.0131	-0.0204	-0.0379	-0.1072	-0.00908	-0.01735
M	-0.000763	-0.00131	-0.000476	-0.000555	-0.000902	-0.000683	-0.000270	0.000443
Mq	-1.151	-2.936	-0.670	-1.071	-1.93	-2.455	-0.1-84	-0.876
Mu	0.00232	0.00340	0.00253	0.00162	-0.00906	0.00263	0.001824	-0.00412
M _õ e	-13.728	-63.987	-7.400	-19.456	-33.809	-31.773	-8.096	-14.084

TR-176-1

.

TABLE III-C

LATERAL DIMENSIONAL DERIVATIVES FOR THE A-4D

Note: Data are for body-fixed centerline axes, clean flexible airplane.

				FLIGHT (CONDITION			
	1	2	3	24	5	6	7	8
h	0	0	15,000	15,000	15,000	15,000	35,000	35,000
М	0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9
Yv	-0.2484	-0.5755	-0.1476	-0.228	-0.3628	-0.358	-0.103 ⁴	-0.1596
Y _ð *	-0.00582	-0.00807	-0.00188	-0.0038	-0.00556	0.00207	-0.000819	-0.002763
Yor*	0.044	0.0898	0.02561	0.03958	0.0549	0.049	0.01791	0.02487
Ľβ	-29.71	-118.1	-17.52	-35.95	-82.086	-82.02	-17.557	-40.7
Ľŗ	-1.813	-3.844	-1.111	-1.566	-2.503	-2.708	-0.761	-1.167
Ŀŗ	0.8731	1.776	0.613	0.812	1.208	1.113	0.475	0.6227
Lôa	17.2	64.359	8.99	21.203	39.282	44.89	8.1704	16.85
L _{or}	8.217	37.214	4.309	10.398	22.103	22.943	4.1675	8.717
N_{β}^{\dagger}	13.203	67.279	6.706	16.629	42.527	39.85	6.352	17.31
Np	-0.029	0.02953	-0.0348	-0.02173	0.01647	-0.0260	-0.02513	-0.00539
Nr'	-0.5761	-1. ⁴	-0.3432	-0.5144	-0.899	-0.88	-0.2468	-0.3893
Nga	1.4875	5.484	0.538	1.769	17.43	3.212	0.5703	1.399
N _{ðr}	-6.1953	-26.642	-3.280	-7.78	-16.36	-16.562	-3.16	-6.744

TR-176-1

 $l_{+}l_{+}$

TABLE III-D

ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE A-4D

Note: Data are for body-fixed centerline axes, clean flexible airplane.

		·			FLIGHT	CONDITION			
		1	2	3	4.	5	6	7	8
h		0	0	15,000	15,000	15,000	15,000	35,000	35,000
м		0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9
	ζ _{sp}	0.352	0.435	0.2838	0.301	0.3435	0.233	0.214	0.2478
	ωsp	3.39	7.348	2.445	3.718	6.232	10.857	2.358	3.951
	$\zeta_{p}(1/T_{p_{1}})$	0.0735	0.195	0.682	0.086	(0.0683 5)	(0.02574)	0.0859	(-0.050)
	ω _p (1/T _{p2})	0.1035	0.08615	0.1105	0.0747	(0.1101)	(0.1019)	0.0822	(0.0563)
	A ₀	-13.726	-63.98	-7.4	-19.456	-33.805	-33.771	-8.096	-14.083
$\mathtt{N}^{\theta}_{\delta_{e}}$	1/T ₀₁	0.0141	0.0319	0.00353	0.0112	0.0526	0.1284	-0.000615	0.02184
	1/T ₀₂	0.8234	2.079	0.489	0.76	1.362	1.572	0.3591	0.6259
	A _u	7.628	-34.074	6.076	7.408	-19.776	-15.32	6.293	-3.878
u Na	1/Tu1	66 . 931	-12.608	80.193	99. 8	-20.49	-13.172	115.28	-160.9
" ^o e	$\zeta_{u}(1/T_{u_{2}})$	0.584	(2.615)	0.725	0.638	(0.98)	0.49	0.8554	(0.3383)
	യ <mark>വ (1/Tuz</mark>)	0.8481	(3.813)	0.4926	0.8042	(3.733)	2.824	0.3595	(1.337)
	Aw	-42.08		-22.274	-56.68	-103.23	-94.606	-23.034	-43.149
W No	1/T _{W1}	149.77	325.77	139 . 54	218.67	313.69	357.77	203.34	286.42
f"∂e	$\zeta_{W}(1/T_{W_{2}})$	0.0614	0.2653	-0.0172	0.0835	0.4915	(0.01471)	-0.0238	0.249
	$ω_w(1/T_{w_z})$	0.0761	0.0602	0.0771	0.0538	0.0546	(0.1127)	0.0565	0.0516
	A _h	42.565	188.04	22.946	57.02	102.98	94.496	23.728	42.898
h	1/Th ₁	0.00122	0.0299	-0.0208	0.00436	0.050	0.1270	-0.01842	0.01593
" ^о е	1/Th2	11.623	27.426	8.454	13.376	21.62	24.916	8.5806	13.782
	1/Th3	-10.415	-24.502	-7.712	-12.282	-19.671	-22.453	-8.048	-12,892
	Aaz	-42.08	-188.28	-22.274	-56.68	-103.23	-94.606	-23.037	-43.149
	$1/T_{a_{z_1}}$	-0.0085	-0.00025	-0.0228	-0.00404	-0.000431	-0.000214	-0.0181	-0.00227
$\mathtt{N^{a_z}_{\delta e}}$	$1/T_{a_{z_2}}$	0.00962	0.0301	0.00187	0.00835	0.05043	0,127	-0.000296	0.01805
	1/Tazz	11.668	27.412	8,,56	13.405	21.597	24.903	8.7174	13.762
	$1/T_{a_{Z_{l_i}}}$	-10.471	24.484	-7.84	-12.321	-19.645	-22.437	-8.203	-12.868

TR-176-1

TABLE III-E

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE A-4D

Note: Data for body-fixed centerline axes, clean flexible airplane.

					FLIGHT CO	ONDITION			
		1	2	3	4	5	6	7	8
h		0	0	15,000	15,000	15,000	15,000	35,000	35,000
М		0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9
	1/T _s	0.00914	0.00568	0.00508	0.00595	0.00658	0.00726	0.00432	0.0067
	1/T _R	1.744	3.81	1.0152	1.5346	2.48	2.772	0.7013	1.137
4	ζ _d	0.112	0.1207	0.0949	0.0885	0.0966	0.09123	0.0676	0.065
	۵d	3.955	8.293	3.058	4.342	6.618	6.392	2.996	4.403
	A _p	17.199	64.36	8,988	21.203	39.282	44.89	8.17	16.85
лър	1/Tp1	-0.00572	-0.000233	-0.01182	-0.003	-0.00041	-0.000211	-0.0085	-0.00185
^N õa.	ζp	0.1149	0.121	0.0977	0.0923	0.1015	0.0968	0.0717	0.0669
	ար	3.986	8.845	2.779	4.442	8.914	6.787	2.742	4.553
	Α _φ	17.321	64.398	9.073	21.308	39.495	44.91	8.259	16.921
$N_{\delta_{a}}^{\Phi}$	ζ _φ	0.1149	0.121	0.0951	0.0924	0.1021	0.0968	0.070	0.067
	ω _φ	3.985	8.843	2.798	4.439	8.891	6.785	2.76	4.55
	A _r	1.4875	5.484	0.5376	1.769	17.427	3.212	0.5703	1.39
,r	1/T _r	0.9025	4.364	0.4868	0.873	2.601	3.054	0.3565	0.739
тба	ζr	0.1024	0.0571	0.0185	0.0847	0.0946	-0.0646	0.017	0.0695
	ω _r	3.767	2.655	4.475	3.694	1.521	2.523	4.073	3.519
	Α _β	-6.00582	-0.00807	-0.001883	-0.0038	-0.00556	0.00207	-0.000819	-0.00276
"β	$1/T_{\beta 1}(\zeta_{\beta})$	-2.178	-0.1615	(0.9834)	-0.723	-0.0447	-0.2036	(0.974)	-0.369
™§a.	$1/T_{\beta_2}(\omega_\beta)$	3.287	4.156	(0.5504)	1.704	2.537	2.2264	(0.4294)	1.368
	1/T _{β3}	19.185	625.29	-456	134.95	3048.0	-1396.8	-838.16	197.67
	A _{ay}	-2.66	-7.665	-0.7967	-2.413	-5.294	2.193	-0.4781	-2.42
8.	$1/T_{ay_1}(\zeta_{ay_2})$	(0.7012)	-0.1975	0.3891	(-0.8875)	-0.0468	0.1843	0.3626	-0.903
Noa	$1/T_{\mathbf{a}_{\mathbf{y}_2}}(\omega_{\mathbf{a}_{\mathbf{y}_2}})$	(1.923)	4.248	0.6872	(2.2183)	2.54	2.266	0.4622	1.651
CG	$\zeta_{a_{y_3}}(1/T_{a_{y_3}})$	0.0505	(-16.43)	0.0215	(1.869)	(-32.14)	0.0324	0.00935	(-2.903)
	$\omega_{\mathbf{a}_{\mathbf{y}_{\mathbfy}_{\mathbf$	3.049	(17.628)	8.743	(4.149)	(33.046)	23.254	9.772	(3.712)

TR-176-1

. 4

TABLE III-F

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE A-4D

Note: Data for body-fixed centerline axes, clean flexible airplane.

		FLIGHT CONDITION									
		1	2	3	4	5	6	- 7	8		
h		0	0	15,000	15,000	15,000	15,000	35,000	35,000		
М		0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9		
	$1/T_{s}$	0.00914	0.00568	0.00508	0.00595	0.00658	0.00726	0.00432	0.0067		
	1/T _R	1.744	3.81	1.0152	1.5346	2.48	2.772	0,7013	1.137		
Δ	ζa	0.112	0.1207	0.0949	0.0885	0.0966	0.09123	0.0676	0.065		
	ωđ	3.955	8.293	3.058	4.342	6.618	6.392	2 .99 6	4.403		
	Ap	8.217	37.214	4.309	10 .398	22.103	22.944	4.167	8.717		
ъ.р	1/T _{p1}	-0.00576	-0.000236	-0.0119	0.003	-0.000412	-0.000212	-0.00851	-0.00186		
r	1/Tp2	3.0425	4.375	2.532	3.208	4.359	4.534	2.587	3.743		
	1/Tp3	-3.029	-3.957	-2.6	-3.207	-4.196	-4.275	-2.664	-3.79		
	Α _φ	7708	37.028	3.795	9.936	21.9	22.83	3.678	8.375		
$\mathtt{N}^{\phi}_{\delta_{r}}$	1/T _{@1}	3.0 86	4.376	2.642	3.248	4.378	4.539	2.725	3.797		
	1/T _{Q2}	-3.211	-3.98	-2.902	-3.33	-4.227	-4.293	-2.936	-3.90		
	Ar	6.195	-26.642	-3.28	-7.78	-16.362	-16.562	-3.159	-6.744		
"r	$1/T_r$	1.5484	3.815	0.615	1.348	2.495	2.786	0.393	0.930		
" ^o r	ζr	0.3075	0.363	0.308	0.272	0.1783	0.1828	0.207	0.20		
	ω _r	0.7438	0.463	1.032	0.718	0.578	0.5411	1.128	0.850		
	Aβ	0.044	0.09	0 .02 56	0.0396	0.0549	0.049	0.0179	0.0249		
"β	$1/T_{\beta_1}$	0.00945	0.00133	-0.0209	-0.0067	-0.000324	0.000941	-0.0175	-0.00539		
" ^δ r	1/T ₆₂	1.7532	3.812	1.0312	1.537	2.485	2.76	0.711	1.145		
	1/T _{β3}	156.02	300.91	153.0	212.32	303.67	342.14	210.23	289.01		
	A _{ay}	20.1	85.33	10.835	25.134	52.296	51.83	10.459	21.784		
	1/Tay1	-0.0219	-0.00154	-0.039	-0.0147	-0.00486	-0.00224	-0.0326	-0.0141		
$N_{\delta_{\mathbf{r}}}^{\mathbf{a}_{\mathbf{y}}}$	1/Tay2	1.760	3.814	1.043	1.54	2.489	2.752	0.717	1.150		
	1/Tay3	5.14	10.957	3.864	5.73	8.618	9.465	3.733	5.385		
	1/Tay14	-4.49	-9.526	-3. 415	-5.174	-7.7	-8.63	-3.411	-4.964		

TR-176-1

· ,

PRECEDING PAGE BLANK NOT FILMED.

SECTION IV

F-106B

Preceding page blank

. .

.

Figure IV-1

F-106B

REFERENCE GEOMETRY

- $S = 695 \, ft^2$
- c = 23.755 f
- b = 38.13 ft

REFERENCES:

Weyel, A.E., A.H. Terp, C.A.Lunder, <u>Description of F-106B Aircraft</u> to <u>Be Used as a Variable Stability Trainer</u>, Service Engineering Div., Kelly AFB, Exhibit SANE-86, 9 Dec. 1963

Collette, J.G.R., General Dynamics, Convair, A Compilation of F-106 Data From Various Convair Reports Contained in Letter, 14 May 1963

Figure IV-2. F-106 --- Stability Augmentation System

Dynamic Pressure, \overline{q}_c , lbs/ft²

TR-176-1

TABLE IV-A

GEOMETRICAL PARAMETERS FOR THE F-106B

Note: Data are for body-fixed centerline axes

8 = 695, b = 38.13, c = 23.755, cockpit location: $l_x = 17.5$, $l_z = -3.35$

						FLIGHT CO	NDITION					
	1	2*	3	4	5	6	7	8	9	10	11	12
h (ft)	20,000	20,000	20,000	S.L.	S.L.	20,000	S.L.	20,000	40,000	20,000	40,000	40,000
м (—)	0.755	0.755	0.755	0.2	0.4	0.4	0.9	0.9	0.9	1.4	1.4	2.0
a (ft/sec)	1,037	1,037	1,037	1,116	1,116	1,037	1,116	1,037	968	1,037	968	96 8
$\rho (slugs/ft^3)$	0.001267	0.001267	0.001267	0.002377	0.002377	0.001267	0.002377	0.001267	0.000587	0.001267	0.000587	0.000587
V _{To} (ft/sec)	785	785	785	223.2	446.4	414	1004.4	933	871	1,450	1,355	1,936
$\overline{q} = \rho V_T^2 / 2 (1b/ft^2)$	392	392	392	59.3	237.2	108.6	1,199	551	223	1,332	549	1,100
W (1b)	35,000	30,000	28,000	25,500	29,776	29,776	29,776	29,776	29,776	29,776	29,776	29,776
Mass (slugs)	1,090	931	870	791.9	924.7	924.7	924.7	924.7	924.7	924.7	924.7	924.7
I _x (slug-ft ²)	25,490	18,744	15,809	15,800	18,634	18,634	18,634	18,634	18,634	18,634	18,634	18,634
Iy (slug-ft ²)	195,156	185,300	177,645	160,783	177,858	177,858	177,858	`1 77,8 58	177,858	177,858	1 77,8 58	177,858
I _z (slug-ft ²)	215,262	198,707	187,115	170,301	191,236	191,236	191,236	191,236	191,236	191,236	191,236	191,236
I _{XZ} (slug-ft ²)	4947-1	.5310.9	6015.4	5,727	5,539	5,539	5,539	5,539	5,539	5,539	5,539	5,539
≭_{CG}/ c	0.29	0.305	0.26	0.305	0.305	0.305	0.305	0.305	0.305	0.305	0.305	0.305
α ₀ (deg)	4.42	4.04	3.88	18.0	4.9	11.0	2.0	2.7	5.4	1.2	2.70	1.2
ar (deg)	0	0	0	0	0	0	0	0	0	0	0	0
θ_0 (deg)	4.42	4.04	3.88	18.0	4.9	11.0	2.0	2.7	5.4	1.2	2.7	1.2
U _O (ft/sec)	784	784	784	212	445	406	400 و 1	933	868	1,450	1,555	1,936
W _o (ft/sec)	60. 6	55+4	53.1	73	40	80	3 6	դեր	82	30	64	40

1

*Optimum design condition

TR-176-1

TABLE IV-B

LATERAL DIMENSIONAL DERIVATIVES FOR THE F-106B

Note: Data are for body-fixed centerline axes Static aeroelastic corrections are included

						FLIGHT CO	NDITION					
	1	2	3	4	5	6	7	8	9	10	11	12
h	20,000	20,000	20,000	S.L.	S.L.	20,000	S.L.	20,000	40,000	20,000	40,000	40,000
м	0.755	0.755	0.755	0.2	0.4	0.4	0.9	0.9	0.9	1.4	1.4	2.0
Y _v	-0.207	-0.239	-0.259	-0.126	-0.237	0.109	0.561	-0.277	-0.112	-0.423	-0.182	-0.217
YĚ	0.0799	0.0926	0.100	0.0492	0.0865	0.0443	0.175	0.108	0.0523	0.0470	0.0287	0.0128
Yår	0.0347	0.0402	0.0435	0.0280	0.0438	0.0225	0.0669	0.0392	0.0185	0.0235	0.00898	0 .00 940
L ⁱ	-6.61	-8.78	-10.1	-20.0	-22.3	-19.2	-51,.2	-27.6	-18.9	-116	-55.1	-60.5
L.	-1.69	-2.30	-2.74	-1.22	-2.35	-1.08	-5.14	-1.89	-1.23	-4.25	-2.05	-2.69
	1.22	1.64	1.91	3.51	2.86	2.12	4.56	2.59	1.60	2.63	1.36	2.65
L ₆ ,	7.06	9.51	11.1	2.08	6.17	2.97	19.5	11.1	5.07	7.31	4.18	5.23
Lóa	-44.7	-61 .1	-73.0	-13.3	-39.1	-19.5	-105	-71.2	-34.7	-36.4	-26.2	-26.1
NB	5.07	5.42	5.68	-0.192	2.17	0.506	16.0	7.50	2.79	18.9	7•78	11.1
N ['] D	-0.0307	-0.0527	-0.0787	-0.0351	-0.0582	-0.0261	-0.135	-0.0442	-0.0301	-0.113	-0.0512	-0.0684
Nr	-0.472	-0.498	-0.513	-0.199	-0.472	-0.218	-1.27	-0.627	-0.263	-0.823	-0.364	-0.376
Non	-2.55	-2.68	-2.75	-0.505	-1.63	-0.792	-6.16	-3.28	-1.44	-2.90	-1.45	-1.91
No.	-5.09	-6.03	-7.01	-1.12	-3.51	-1.69	-15•4	-9.34	-3.85	-7.54	-4.59	-3.64

TR-
د
76-1

			Flight Condition										
		1	2	3	4	5	6	7	8	9	10	11	12
Mach No Altitud C G Weight uc, deg	., М е, h	0.755 20,000 29 35,000 4.42	0.755 20,000 30.5 30,000 4.04	0.755 20,000 26 28,000 3.88	0.2 S.L. 30.5 25,500 18.0	0.4 S.L. 30.5 29,776 4.9	0.4 20,000 30.5 29,776 11.0	0.9 S.L. 30.5 29,776 2.0	0.9 20,000 30.5 29,776 2.7	0,9 40,000 30.5 29,776 5.4	1.4 20,000 30.5 29,776 1.2	1.4 40,000 30.5 29,776 2.7	2.0 40,000 30.5 29,776 1.2
Δ_{lat}	1/T ₆ 1/T _R ^ω D ζ _D	-0.0170 1.60 2.37 0.164	-0.0166 2.19 2.47 0.175	-0.0164 2.62 2.54 0.178	0.169 0.592 2.42 0.162	0.032 2.09 2.01 0.233	0.080 0.678 2.00 0.162	-0.004 5.03 4.34 0.224	-0.006 1.84 3.01 0.159	0.001 1.05 2.12 0.129	0.010 4.39 4.73 0.116	0.010 1.97 3.22 0.095	-0.003 2.76 3.57 0.074
p/ð _a	Ap _a 1/Tp _a ωp _a ζp _a	-44.7 -0.00310 2.44 0.171	-61 .1 -0.00282 2.53 0.181	-73.0 -0.00270 2.61 0.186	-13.3 -0.041 1.24 0.298	-39.1 -0.006 2.08 0.245	-19.5 -0.014 1.48 0.192	-105 -0.001 4.96 0.260	-71.2 -0.002 3.37 0.191	-34.7 -0.003 2.22 0.132	-36.4 -0.0005 6.59 0.147	-26.2 -0.001 4.19 0.101	-26.1 -0.0003 4.43 0.112
φ,′δ _{8.}	Αφ <u>a</u> ωφ _a ζφ _a	-45.1 2.43 0.172	-61.5 2.53 0.182	-73.5 2.61 0.188	-13.6 1.27 0.277	-39.4 2.08 0.245	-19.8 1.49 0.188	-106 4.95 0.262	-71 .7 3.37 0.191	-35.0 2.22 0.132	-36. 6 6.58 0.148	-26.4 4.18 0.102	-26.2 4.43 0.112
r/ð _a	$\begin{array}{c} A_{r_{a}} \\ 1/T_{r_{a}} \\ \omega_{r_{a}} \\ \zeta_{r_{a}} \end{array}$	-5.09 0.591 1.88 0.254	-6.03 0.672 1.97 0.318	-7.01 0.716 1.99 0.348	-1.12 0.430 2.32 0.110	-3.51 0.949 1.87 0.250	-1.69 0.406 2.15 0.109	-15.4 2.64 1.40 0.700	-9.34 0.837 1.87 0.242	-3.85 0.411 1.98 0.157	-7.54 2.68 1.31 0.506	-4.59 0.569 2.04 0.324	-3.64 1.26 1.36 0.410
β/δ _a	$\begin{array}{c} A_{\beta_{\mathbf{B}}} \\ 1/T_{\beta_{\mathbf{B}_1}} \\ 1/T_{\beta_{\mathbf{B}_2}}(\omega_{\mathbf{B}_{\mathbf{B}}}) \\ 1/T_{\beta_{\mathbf{B}_{\mathbf{A}_3}}}(\zeta_{\beta_{\mathbf{B}}}) \end{array}$	0.0799 -0.295 2.35 20.6	0.0926 -0.281 3.56 18.0	0.100 -0.271 3.83 20.3	0.049 -61.7 (0.543 (0.898	0.086 -1.57 (3.91) (0.580)	0.044 -45.4 (0.548) (0.759)	0.175 -0.116 4.78 67.9	0.108 -0.231 1.70 56.3	0.052 -0.445 2.26 10.8	0.047 -0.042 3.88 145	0.029 -0.006 2.05 117	0.013 -0.045 2.35 243
a _y /δ _a (CG)	$\begin{array}{c} A_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_$	62.9 (1.79) (0.792) (0.935) (-0.358)	72.9 (2.19) (0.819) (0.925) (-0.427)	78.9 (2.40) (0.881) (0.950) (-0.511)	11.6 (3.68) (0.973 (0.461 (0.959	38.8 (1.59) (0.828)) (1.54) (0.0622)	18.7 (2.97) (0.0837) (0.440) (0.910)	176 -0.243 6.07 -3.47 4.05	101 -0.729 1.52 -1.63 3.35	45.8 (1.64) (0.184) (0.677) (0.657)	68.3 -0.079 3.38 -5.62 7.39	39.0 -0.115 2.19 -3.07 3.41	24.8 -0.061 2.17 -5.93 6.88
a'y/δ _a (cockpit)	$\begin{array}{c} A_{aa} \\ 1/Taa_1 \\ 1/Tda_2 \\ aa_{a2} \\ aa_2 \\ aa_2 \\ aa_2 \end{array}$	-176 -0.324 0.481 2.53 0.110	-237 -0.336 0.551 2.61 0.109	-288 -0.337 0.584 2.69 0.108	-52.5 -1.12 0.334 1.30 0.541	-154 -0.589 0.574 2.11 0.219	-76.1 -0.719 0.289 1.42 0.326	-446 -0.197 1.51 5.25 0.093	-301 -0.275 0.567 3.60 0.115	-138 -0.291 0.277 2.25 0.114	-186 -0.071 1.28 6.66 0.078	-129 -0.083 0.536 4.22 0.067	-126 -0.055 0.859 4.75 7 0.050

. 4

TABLE IV-C AILERON LATERAL TRANSFER FUNCTION FACTORS FOR BASIC F-106B

		Flight Condition											
		1	2	3	4	5	6	7	8	9	10	11	12
Mach Altit C G Weigh q, lb	No., M Jude, h lt /ft ²	0.755 20,000 29 35,000 392	0.755 20,000 30.5 30,000 392	0.755 20,000 26 20,000 392	0.2 S.L. 30.5 25,500 59	0.4 S.L. 30.5 29,776 237	0.4 20,000 30 .5 29,776 109	0.9 S.L. 30.5 29,776 1,199	0.9 20,000 30.5 29,776 551	0.9 20,000 30.5 29,776 223	1.4 20,000 30.5 29,776 1,332	1.4 40,000 30.5 29,776 549	2.0 40,000 30.5 29,776 1,100
$\Delta_{\texttt{lat}}$	1/T _B 1/T _R	-0.0170 1.60 2.37	-0.0166 2.19 2.47	-0.0164 2.62 2.54	0.169 0.592 2.42	0.032 2.09 2.01	0.080 0.678 2.00	-0.004 5.03 4.34	-0.006 1.84 3.01	0.001 1.05 2.12	0.010 4. <i>3</i> 9 4.73	0.010 1.97 3.22	-0.003 2.76 3.57
	ւր Հը	0.164	0.175	0.178	0.162	0.233	0.162	0.224	0.159	0.129	0.116	0.095	0.074
p/8r		7.06 -0.00314 (1.64) (0.0633)	9.51 -0.00286 (1.72) (0.0701)	11.1 -0.00275 (1.79) (0.0736)	2.08 -0.043 1.88 -2.64	6.17 -0.006 1.85 -2.05	2.97 -0.015 1.97 -2.34	19.5 -0.351 -0.001 0.565	11.1 -0.782 -0.002 0.829	5.07 -0.003 1.54 -1.69	7.31 -0.0005 5.13 -5.29	4.18 -0.001 3.35 -3.40	5.23 -0.0003 3.10 -3.58
ϕ/δ_r	$\begin{array}{c} A_{\phi_{\mathbf{r}}} \\ 1/T_{\phi_{\mathbf{r}_1}}(\omega_{\phi_{\mathbf{r}}}) \\ 1/T_{\phi_{\mathbf{r}_2}}(\zeta_{\phi_{\mathbf{r}}}) \end{array}$	6.86 (1.67) (0.0468)	9.32 (1.74) (0.0545)	10.9 (1.81) (0.0582)	1.92 -2.98 1.99	6.03 -2.12 1.85	2.81 -2.49 2.02	19•3 -0•406 0•555	11.0 -0.808 0.823	4.94 -1.74 1.55	7.25 -5.34 5.13	4.11 -3.45 3.37	5.19 -3.61 3.10
r/ð _r	A_{rr} $1/T_{rr1}$ $\omega_{rr}(1/T_{rr2})$ $\zeta_{rr}(1/T_{rr3})$	-2.55 -0.436 (0.349) (2.00)	-2.68 -0.431 (0.365) (2.71)	-2.75 -0.427 (0.375) (3.28	-0.505 0.442 2.48 0.214	-1.63 2.18 0.680 0.415	-0.792 0.430 1.74 0.243	-6.16 5.57 (0.383) (0.0062)	-3.28 2.00 0.190 0.582	-1.44 0.735 0.674 0.502	-2.90 4.28 0.592 0.435	-1.45 1.43 .736 .610	-1.91 2.71 0.430 0.384
₿/ðr	$\begin{array}{c} A_{\beta_{\mathbf{r}}} \\ 1/\mathbf{I}_{\beta_{\mathbf{r}_{1}}} \\ 1/\mathbf{I}_{\beta_{\mathbf{r}_{2}}} \\ 1/\mathbf{I}_{\beta_{\mathbf{r}_{3}}} \end{array}$	0.0347 -0.00111 1.56 89.5	0.0402 -0.000727 2.11 83.8	0.0435 -0.000530 2.53 81.1	0.028 -0.259 0.690 41.3	0.0438 -0.033 2.07 50.4	0.023 -0.086 0.780 60.0	0.067 -0.004 5.08 104	0.039 -0.009 1.85 97.8	0.019 -0.021 1.07 103	0.024 -0.003 4.36 130	0.009 -0.004 1.98 184	0.009 -0.010 2.74 215
a _y /δ _r (CG)	$ \begin{vmatrix} A_{ar} & & \\ 1/T_{ar_1}(\omega_{ar_1})_1 \\ 1/T_{ar_2}(\zeta_{ar_1})_1 \\ 1/T_{ar_3}(\omega_{ar_1})_2 \\ 1/T_{ar_4}(\zeta_{ar_1})_2 \end{vmatrix} $	27.3 0.00612 1.53 -3.30 3.92	31.6 0.00656 2.04 -3.41 4.16	34.2 0.00679 2.44 -3.49 4.29	6.57 (1.02) (0.986) (1.21) -(0.243)	19.6 -0.067 2.05 -2.42 3.25	9.52 -0.333 0.904 -1.16 1.88	67.2 -0.004 6.89 -5.65 5.17	36.6 -0.010 1.85 -3.92 4.59	16.2 -0.034 1.08 -2.44 2.88	34.1 -0.012 4.29 -5.37 6.16	12.2 -0.011 1.99 -4.59 5.02	18.2 -0.012 2.74 -5.65 5.99
a'y/8 _r (cockpit)	$\begin{array}{c} A_{ar}^{i} \\ 1/T_{ar1}^{i} \\ 1/T_{ar2}^{i} \\ (a_{ar1}^{i})^{1/T_{ar3}^{i}} \\ (c_{ar1}^{i})^{1/T_{ar4}^{i}} \end{array}$	6.40 0.0646 8.81 (3.05) (0.890)	16.6 0.00670 -6.05 (2.99) (0.730)	23.3 0.00693 -5.56 (3.08) (0.663)	4.71 -0.300 0.402 -5.38 ~3.26	11.8 -0.061 -6.36 (2.17) (0.949	5.60 -0.135 0.428 -5.47 3.55	24.9 -0.004 -16.1 (5.81) (0.703)	16.5 -0.010 2.69 -8.13 3.39	8.03 -0.031 0.844 -5.89 3.35	7.89 -0.012 3.35 -21.5 8.69	0.784 -0.010 1.33 -51.0 10.9	2.32 -0.012 2.50 -34.4 8.54

TABLE IV-D RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR BASIC F-106B .

:

TR-176-1

J. J

1 I

PRECEDING PAGE BLANK NOT FILMED.

SECTION V

T-38

film Colorador de la composition Anno 1990 - Colorador de la compositione Preceding page blank

~

Figure V-1

<u>T-38</u>

NOMINAL CRUISE CONFIGURATION

Clean Airplane W = 9000lbs CG at 23% MGC I_x = 1438 slug-ft² I_y = 25,874 slug-ft² I_z = 26,779 slug-ft² I_{xz} = 0 (assumed) Body Ref. Axes

REFERENCE GEOMETRY

- $S = 170 \, ft^2$
- c = 7.73 ft
- b = 25.25 ft

REFERENCES

i) <u>T-38 Dynamic Stability</u>, Norair Report NAI 58-704, April 1959

BASIC DATA SOURCES

Wind Tunnel Tests

X Lateral transfer functions given for these flight conditions

SCHEDULED GAINS

TR-176-1

TABLE V-A

• . .

GEOMETRICAL PARAMETERS FOR THE T-38

Note: Data for body-fixed centerline axes, cruise configuration

 $S = 170 \text{ ft}^2$, b = 25.25 ft, c = 7.73 ft

W = 10,000 lbs, m - 311.0 slugs, c.g. at 23% MAC

Τ	= 4.40) slug-ft ² .	I =	30,000	slug-ft ² ,	I_ =	34,000	slug-ft ² ,	L	= 0
\mathbf{x}^{\perp}	- +,+0	J DIUG-IO,	ту –	20,000	DIGE-IC)	z	219000	×=~~6 = •)	~xz	-

	FLIGHT CONDITION							
	1	2	3	4	5	6	7	8
h (ft)	0	0	0	25,000	25,000	50,000	50,000	40,000
M (-)	0.6	0.8	1.0	0.4	1.0	0.8	1.0	1.25
a (ft/sec)	1117	1117	1117	1016	1016	968.5	968•5	968.5
$\rho (slug/ft^3)$	0.002378	0.002378	0.002378	0.001065	0.001065	0.000367	0.000367	0.000585
V_{T_O} (ft/sec)	670	893	1117	406	1016	774	968.5	1210
$\overline{q} = \rho V_{T_0}^2 / 2 (lb/ft^2)$	535	950	1482	88	550	109	170	424
$\alpha_0^{}$ (deg)	1.1	0.8	0.6	8.7	1.5	5.0	3.1	1.2
γ_0 (deg)	0	0	0	0	0	0	0	0
U _O (ft/sec)	669.8	892.8	1116.8	401.2	1015.7	771.3	965	1209.7
W _O (ft/sec)	12.7	12•5	11.7	61.3	26.6	67.4	52.3	25.3

TABLE V-B

LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE T-38

Note: Data are for body fixed centerline axes, cruise configuration

	FLIGHT CONDITION							
	1	2	3	4	5	6	7.	8
h (ft)	0	0	0	25,000	25,000	50,000	50,000	40,000
M (-)	0.6	0.8	1.0	0. <u>)</u> ;	1.0	0.8	1.0	1.25
$V_{T_O} (ft/sec)$	670	893	1117	406	1017	77 ¹ ;	968	1210
cy _β	-0.715	-1.27	-1.35	-1.26	-1.35	-1.26	-1.41	-1.20
C _{yða}	0	0	0	0	0	0	0	0
C _{yor}	0.155	0.172	0.103	0.160	0.132	0.183	0.126	0.097
C _{ℓβ}	-0. 057	-0.063	-0.085	-0.097	-0.086	-0.086	-0.080	-0.052
C _{lp}	-0.320	-0.330	-0.275	-0.270	-0.365	-0.335	-0.390	-0.295
C _{lr}	0.080	0.095	0.110	0.155	0.115	0.140	0.135	0.130
C _{lba}	0.037	0.030	0.0069	0.040	0.026	0.053	0.032	0.019
C _{lor}	0.016	0.018	0.012	0.017	0.015	0.021	0.016	0.0103
Cn _β	0.262	0.315	0.332	0.240	0.335	0.286	0.340	0.310
C _{np}	0.076	0.078	0.084	0.085	0.078	0.052	0.070	0.076
C _n ,	-0.470	-0.435	-0.490	-0.340	-0.490	-0.380	-0.500	-0.53
Cn _{ba}	0.013	0.0143	0.0126	0.0069	0.0126	0.0149	0.0137	0.0149
Cnor	-0.092	-0.092	-0.063	-0.103	-0.086	-0.106	-0.086	-0.060

TR-176-1

TABLE V-C

2

Note: Data are for body-fixed centerline axes, cruise configuration										
	FLIGHT CONDITION									
	1	2	3	4	5	6	7	8		
h (ft)	0	0	0	25,000	25,000	50,000	50,000	40,000		
M (-)	0.6	0.8	1.0	0.4	1.0	0.8	1.0	1.25		
Y _v	-0.311	-0.737	-0.98	-0.151	-0.4	-0.0982	-0.137	-0.232		
Y [*] a	0	0	0	0	0	0	0	0		
Yår	0.0675	0.1	0.075	0.191	0.0391	0.0143	0.0122	0.0188		
L' B	-29.69	-58.29	-123.03	-8.491	-46.24	-9.293	-13.46	-21.73		
L'p	-3.14	-4.316	-4.5	-0.727	-2.435	-0.588	-0.8544	-1.286		
L'r	0.785	1.242	1.8	0.417	0.767	0.246	0.296	0.567		
Loa	19.27	27.75	9•987	3.503	13•98	5•727	5.383	7•941		
L'ôr	8.334	16.65	17.37	1.489	8.065	2.269	2.691	4.305		
Ν¦	17.65	37.71	62.18	2.72	23.31	4.0	7.402	16.77		
N'p	0.0965	0.132	0.178	0.296	0.0673	0.0118	0.0198	0.0429		
N _r '	-0.597	-0.736	-1.037	-0.1185	-0.423	-0.086	-0.142	-0.30		
No _a	0.876	1.712	2.36	0.0782	0.877	0.2084	0.298	0.806		
Ngr	-6.2	-11.01	-11.8	-1.167	-5.984	-1.482	-1.872	-3.245		

LATERAL DIMENSIONAL DERIVATIVES FOR THE T-38

TABLE V-D

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE T-38 $\,$

Note: Data for body-fixed centerline axes, cruise configuration

		FLIGHT CONDITION							
		1	2	3	4	5	6	7	8
h		0	0	0	25,000	25,000	50,000	50,000	40,000
М		0.6	0.8	1.0	0.4	1.0	0.8	1.0	1.25
Δ	1/T _S	0.0025	-0.0014	0.00141	-0.013	0.00016	-0.00594	-0.0031	-0.0043
	$1/T_{\rm R}$	3.0197	4.145	4.185	0.605	2.275	0.548	0.803	1.236
	ζ _đ	0.121	0.133	0.146	0.102	0.1	0.0527	0.0585	0.0705
	ω _d	4.251	6.2	7•97	1.98	4.94	2.187	2.847	4•151
	Ap	19.273	27.75	10.0	3.50	13.98	5.727	5•383	7•941
n Na	1/T _{p1}	-0.00091	-0.0005	-0.0003	-0.012	-0.00082	-0.00362	-0.0018	-0.000554
a	ζ _p	0.108	0.12	0.127	0.0852	0.085	0.0473	0.052	0.0675
	ωp	4.382	6.473	9.628	1.703	5.137	2.081	2.856	4.365
	Α _φ	19•29	27.78	10.01	3.515	14.0	5•745	5.4	7•96
${\rm N}^{\phi}_{\delta_a}$	$1/T_{\phi_1}(\zeta_{\phi})$	(0.108)	(0.12)	(0.127)	(0.0829)	(0.0853)	(0.047)	(0.0522)	(0.068)
	1/T _{φ2} (ω _φ)	(4.381)	(6.471)	(9.617)	(1.719)	(5•135)	(2.086)	(2.856)	(4.361)
	Ar	0.876	1.712	2.36	0.782	0.877	0.2084	0.298	0.806
"r	1/T _r	4.439	5.405	4.80	0.535	1.52	0.484	0.638	1.401
^{no} a	ζ _r	0.267	0.423	0.47	0.192	0.405	0.0827	0.129	0.143
	ω _r	2.127	2.113	1.523	4.345	2.95	3.19	2.765	1.884
β Nδ _a	Α _β	-0.511	-1.323	-2.255	0.446	-0.511	0.289	-0.0074	-0.64
	$1/T_{\beta_1}(\zeta_{\beta})$	-0.167	-0.0832	-0.0353	(0.706)	-0.0843	(0.58)	-0.21	0.066
	$1/T_{\beta 2}(\omega_{\beta})$	6.926	7.439	5.334	(0.287)	4.90	(0.283)	18.624	1.795
	1/T _{β3}								

TR-176-1

TABLE V-E

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE T-38

Note: Data are for body-fixed centerline axes, cruise configuration. FLIGHT CONDITION 6 8 2 3 4 7 1 5 h 0 0 0 25,000 25,000 50,000 50,000 40,000 0.4 0.8 0:8 1.0 1.0 1.0 1.25 М 0.6 -0.00594 -0.0043 $1/T_{s}$ 0.0025 -0.0014 0.00141 -0.013 0.00016 -0.0031 $1/T_{\rm R}$ 4.145 4.185 0.605 2.275 0.548 0.803 1.236 3.0197 Δ 0.133 0.146 0.102 0.527 0.585 0.0705 0.121 0.1 ζđ 4.94 4.251 6.2 7.97 1.98 2.187 2.847 4.151 ωđ 4.305 8.33 16.65 1.49 8.065 2.27 2.691 17.37 Ap $1/T_{p_{1}}$ -0.00092 -0.00082 -0.0005 -0.0003 -0.0119 -0.00361 **-0.00**18 -0.000583 Nor Nor $1/T_{p_2} (\zeta_p)$ -2.07 -0.797 -4.522 -2.06 -3.311 -1.454 -1.395 (0.0081)2.154 1.10 4.79 1.905 3.341 1.423 1.408 1/T_{p3} (ω_p) (0.605)8.215 16.5 17.245 1.31 7.91 2.14 2.59 4.237 A_Φ $N_{\delta_r}^{\phi} \left[1/T_{\phi_1} \left(\zeta_{\phi} \right) \right]$ -1.443 -2.11 -0.827 -4.557 -2.293 -3.372 -1.526 (-0.0103) 4.79 3.350 1.451 1.42 (0.608)1.09 1.994 $1/T_{\varphi_2} (\omega_{\varphi})$ 2.15 -6.2 -11.01 -11.8 -1.167 -5.984 -1.482 -1.872 -3.245 Ar $1/T_{r_1}$ 3.0 4.114 4.196 0.519 0.78 0.561 2.252 -0.0571 Nor $\zeta_r (1/T_{r_p})$ 0.206 (0.0302)0.674 0.14 0.373 0.11 0.196 (0.193) $\omega_r (1/T_{r3})$ (0.367)0.465 0.833 0.456 0.502 0.346 (1.23)0.309 0.0748 0.0191 0.0143 0.0122 0.188 0.067 0.0998 0.0391 Aβ ${}^{\beta}_{N\delta_r}$ 1/T_{β1} -0.0041 -0.00063 -0.0016 -0.00212 -0.0372 -0.0034 -0.0107 -0.0052 4.205 2.302 0.558 0.810 ^{1/T}β2 2.994 4.075 0.655 1.23 113.63 161.56 159.0 117.48 164.64 178.02 $1/T_{\beta 3}$ 94.93 72.21 45.24 11.08 11.88 Aay 89.16 83.53 7.852 39.77 22.72

 $1/T_{ay1}$

 $1/T_{ay_2}$

 $1/T_{a_{y_z}}$

 $1/T_{a_{y_{4}}}$

 ${}^{a_y}_{\delta_r}$

CG

-0.0057

3.89

-3.027

2.882

-0.0018

3.795

-6.248

7.327

-0.00447

4.223

-9.098

10.416

-0.0496

0.683

-2.525

2.736

-0.00561

2.322

-5.987

6.529

-0.014

0.565

-2.536

2.66

-0.0063

0.813

-3.709

3.90

-0.00398

1.226 -4.732

5.096

SECTION VI

F-5A

Figure VI-1

CONFIGURATIONS

- GAR-8-GAR-8 on wing tips
- I Centerline Tank 150.gal. tanks at W.S. 85 750 lb. stores at W.S. 114.5 50 gal. tip tanks
- I-A as I with 50% fuel
- II 2000 lb centerline store 1000 lb stores at W.S. 85 750 lb stores at W.S. 114.5 50 gal. tip tanks

REFERENCE GEOMETRY

- S = 170 ft²
- b = 25.25 ft
- c = 7.75 ft

REFERENCE

 Jex, H.R. and J.Nakagawa, Typical F-5A Longitudinal Aerodynamic Data and Transfer Functions for 14 Conditions, Systems Technology, Inc., Technical Memorandum No. 239-4, March 1964

BASIC DATA SOURCES

Wind tunnel tests with corrections made per flight test.

K₂

80

100

 $\frac{40}{\text{Impact Pressure , }\overline{q}_{c} , \text{Ibs/ft}^2}$

Figure VI-2. F-5A - Stability Augmentation System

67

0

-20L

20

:

-

TABLE VI-A

GEOMETRICAL PARAMETERS FOR THE F-5A

Hote: $S = 170 \text{ ft}^2$, b = 25.25 ft, c = 7.73 ft, $\xi_0 = 0.5 \text{ deg}$

Data ar	e for	body-fixed	stability	axes.
---------	-------	------------	-----------	-------

							FL	GHT CONDITIO	N		······································				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Configurations	GAR-8	gar-8	gar-8	GAR-8 + Dive Brake	GAR-8 Flaps + Slats	I + Flaps	I	I-A + Dive Brake	MK 84 G + TT Empty	TT Empty	I-A	I-A	II 50% Fuel	II 50% Fuel
	h (ft)	40,000	40,000	0	20,000	0	o	30,000	20,000	o	o	o	0	0	0
	M	0.875	1.25	0.875	1.40	0.204	0.286	0.8	0.875	0.875	0.875	0.70	0.70	0.50	0.50
88	7 ₀ (deg)	0	0	o	-60	o	o	o	-60	o	o	0	0	o	0
	$\mathbf{E}_{\mathbf{x}} = \mathbf{L}/\mathbf{W} \cos \gamma_{\mathbf{O}}$	1.0	1.0	1.0	0.5	1.0	1.0	1.0	0.5	1.0	4.0	1.0	4.0	1.0	2.0
	α_0 (deg)	3.2	1.0	0.8	0	12	12	9.0	2.8	1.2	2.8	2.8	7.0	հ.կ	8.0
	WTo (ft/sec)	850	1210	980	1450	228	320	796	910	980	980	784	784	560	560
	q (1b/ft ²)	210	428	1130	1340	61.9	122	282	521	1,130	1,130	725	725	370	370
	W (lbs)	10,000	10,000	10,000	10,000	10,000	19,000	17,000	14,000	14,000	12,000	14,000	14,000	17,000	17,000
	x _{e₄g.} /ē	0.22	0.22	0.22	0.22	0.22	0.14	0.12	0.15	.03	0.17	0.15	0.15	0.13	0.13
	m (slugs)	311	311	311	311	311	590	528	435	435	373	435	435	528	528
	δ _{eo} (deg)	-1.15	-1.80	-0.45	1.02	-4.28	-6.26	-2.57	0,52	-1.55	-2.62	-1.13	-4.62	-2.86	-5.77
	Iy (slug-ft ²)	30,000	30,000	30,000	30,000	31,000	34,600	34,600	37,900	38,700	37,100	37,900	37,900	34,400	34,400
	l _x (Pilot)	12.0	12.0	12.0	12.0	12.0	11.4	11.2	11.4	10.5	11.6	11.4	11.4	11.3	11.3

.

TABLE VI-B

.

LONGITUDINAL NONDIMENSIONAL DERIVATIVES FOR THE F-5A

TR-
1
-7
Č٧
1
Ч

3

69

Note: Data are for body-fixed stability axes

							FLIGHT CO	NDITION						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CONFIGURATION	gar-8	GAR-8	gar-8	GAR-8 + Dive Brake	GAR-8 Flaps + Slats	I + Flaps	I	I-A + Dive Brake	MK 84 6 + TT Empty	TT Empty	I-A 50% Fuel	I-A	II 50% Fuel	II 50% Fuel
h (ft)	40 ,00 0	40,000	0	20,000	0	o	30,000	20,000	o	0	0	0	0	0
M	0.875	1.25	0.875	1.40	0.204	0.286	0.8	0.875	0.875	0.875	0.70	0.70	0.50	0.50
γ_0 (deg)	0	0	0	-60	0	0	0	60	0	0	0	0	0	0
с _L	0.280	0,132	0.052	0.022	0.95	0.92	0.355	0.079	0.072	0.248	0.113	0.452	0.27	• 0.54
c _D	0.0279	0.0451	0.0178	0.0540	0.180	0.180	0.0422	0.0272	0.0191	0.0234	0.0232	0.0411	0.0347	0.0588
α _O (deg)	3.2	1.0	0.8	0	12	12	9.0	2.8	1.2	2.8	2.8	7.0	4.4	8.0
δ_{e_0} (deg)	-1.15	-1.80	-0.45	1,02	-4.28	-6.26	-2.57	0.52	-1.55	-2.62	-1.13	-4.62	-2.86	-5.77
$C_{L_{CL}}$ (1/rad)	5 .38	5.38	5 . 38	4.35	3.32	3.84	4.58	4.81	4.06	4.18	4.75	4.41	4.75	3.84
C_{L_q} (1/rad)	7.8	5.5	7.8	3.8	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3
C _{IM}	0.40	-0.70	0.40	-0.6	0	0	-0.25	0.40	0	-0.50	0	0	0	0
$C_{L_{6e}} (1/rad)^{*}$	1.03	0.745	0.888	0.602	0.745	0.802	0.888	0.888	0.916	0.916	0.831	0.831	0.831	0.831
$C_{D_{q_i}}(1/rad)$	0.339	1.97	0.0362	-0.0195	1.37	1.20	0.352	0.0268	0.0232	0.196	0.0640	0.406	0.264	0.472
C_{D_q} (1/rad)	0	0	0	o	C	0	0	0	0	0	0	0	0	0
с _{DM}	0.0450	0	0.030	0	0	0	0.100	0.030	0.030	0.045	0	0	0	0.050
$C_{D_{\delta_e}}$ (1/rad)	0	0	0	0	0.172	0.172	0	0	с	0	0	0	0	0
C _{mo}	0.000902	0.00146	0.000575	0.001745	0.00582	0.0214	0.001695	0.00651	0.001235	0.0001756	0.00225	0.00398	0.0525	0.00890
$C_{m_{\alpha}} (1/rad)^{**}$	-0.367	-1.46	-0.367	-1.47	-0.745	-0.974	-0-691	-0.481	-1.03	-0.618	-0.539	-0.630	-0.686	-0.670
$C_{m_{CL}^{\bullet}}$ (1/rad)	-1.2	3	-0.7	2.30	-0.005	-0.005	-0.50	-1.0	-0.7	-0.7	-0.10	-0.10	-0.10	-0.10
$C_{m_q} (1/rad)^*$	-10.2	-9	-9.7	-6.9	-6.8	-6.8	-9.5	11.5	-9.7	-9.7	7.8	-7.8	-6.8	6.8
с _{ты}	-0.050	-0.100	0	-0.010	0	0	0.020	-0.270	-0.300	0.16	0	0	0	0
$C_{m_{\delta_{e}}}(1/rad)^*$	-1.55	-1.29	-1.46	-1.08	-1.26	-1.20	-1.39	-1.44	-1.54	-1.54	-1.24	-1.24	-1.20	-1.20
91/9W (1ps)	600	3500	2000	1250	-1470	950	1400	0	2000	-2000	-1150	550	-2000	-950

^{*}Derivatives take into account the elastic mode at 0.25c.

**Corrected for c.g. shift.

TABLE VI-C

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE F-5A

Note: Data are for body-fixed stability axes, quasi-steady aeroelastic corrections included.

.

					<u></u>		FLIGHT CONDITI	ON						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Configurations	GAR-8	GAR-8	GAR-8	GAR-8 + Dive Brake	GAR-8 Flaps +Slats	I + Flaps	I	I-A + Dive Brake	MK 84 62 + TT Empty	TT Empty	I-A	I-A	II 50% Fuel	II 50% Fuel
h (ft)	40,000	40,000	0	20,000	0	0	30,000	20,000	0	0	0	0	0	0
м	0.875	1.25	.875	1.40	0.204	0.286	0.8	0.875	0.875	0.875	0.70	0.70	0.50	0.50
X. (1/sec)	-0.00803	-0.0126	0.0101	0.0209	-0.0609	-0.0301	0.000338	0.0117	0.0222	0.0276	0.0178	0.0167	0.00128	0.0144
X _u * (1/sec)	-0.0109	-0.00589	-0.0452	-0.0505	0.0564	-0.0401	-0.0158	-0.0362	-0.0335	-0.0505	-0.0192	-0.0309	-0.0182	-0.0319
Zw (1/sec)	-0.734	-1.05	-3.44	-2.22	-0.508	-0.431	-0.521	-1.10	-1.86	-2.23	-1.74	-1.61	-1.02	-0.828
Z t (1/sec)	-0.124	0.118	-0.289	0.401	-0.276	-0.197	-0.0575	-0.114	-0.0656	-0.0310	-0.0822	-0.327	-0.115	-0.229
Z_{δ_e} (ft/sec ² /rad)	-119	-175	-555	-439	-24.1	-26.9	-78.6	-181	-409	-475	-236	-235	-99.1	-97.7
M _w (1/sec-ft)	-0.00399	-0.0227	-9.0187	-0.0593	-0.00838	-0.0138	-0.00852	-0.00961	-0.0408	-0.0253	-0.0174	. -0 •0202	-0.0174	-0.0169
M # (1/ft)	-0.0000595	0.000149	-0.000141	0.000247	0	0	-0.0000327	-0.0000851	-0.000109	-0.000114	-0.0000159	-0.0000159	-0.0000176	-0.0000176
M _q (1/sec)	-0.429	-0.540	-1.92	-1.08	-0.296	-0.372	-0.488	-0.888	-1.48	-1.55	-0.973	-0.969	-0.667	-0.662
M _u [*] (1/sec-ft)	-0.000462	-0.00193	0.0000737	-0.000534	0.000142	0.000626	0.000325	-0.00499	-0.0103	0.00585	0.000166	0.000266	0.000327	0.000477
$M_{\delta_{e}} (1/sec^{2}/rad)$	-14-3	-24.2	-73-1	-63.2	-3.16	-5-31	-14.5	-26.1	-59• ⁸	-62.1	-31.3	-31.0	-17.0	-16.7

Note: The transfer functions given in Table E.5c) are based on the above derivatives and the equations of Appendix C with additional corrections made for Inertial Bending as follows:

$$(\omega_{sp}^2)_{IB} = \frac{(\omega_{sp}^2)_R + U_0 K_{a_z} (Z_0 M_w - Z_w M_0)}{1 - K_{a_z} Z_0}$$
$$(\omega_{sp}^2)_R \qquad 1$$

$$(\text{DC gain})_{IB} = \frac{(\omega_{SD}^2)_R}{(\omega_{SD}^2)_{IB}} \cdot \frac{1}{(1 - K_{a_Z} Z_6)} \cdot (\text{DC gain})_R$$

 $(First coefficient)_{IB} = \frac{1}{(1 - K_{a_2} Z_6)} \cdot (first coefficient)_R \qquad K_{a_2} = -0.000162 rad/ft/sec^2$

٠

where subscript IB $_{\Xi}$ corrected value

R = rigid-body + quasi-steady aeroelastic corrections

TABLE VI-D

LONGITUDINAL TRANSFER FUNCTIONS FOR THE F-5A

Note: Data are for body-fixed stability axes; corrections have been made

.

for Inertial Bending

		FLIGHT CONDITION													
-		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	h (ft) M \bar{n}_{z}/γ_{o} (deg)	40,000 0.875 1.0/0	40,000 1.25 1.0/0	0 0.875 1.0/0	20,000 1.40 0.5/-60	0 0.204 1.0/0	0 0.286 1.0/0	30,000 0.8 1.0/0	20,000 0.875 0.5/-60	0 0.875 1.0/0	0 0.875 4.0/0	0 0.70 1.0/0	0 0.70 4.0/0	0 0.50 1.0/0	0 0.50 2.0/0
	Wt.	10,000	10,000	10,000	10,000	10,000	19,000 0.14	17,000 0.12	14,000 0.15	14,000 0.03	12,000 0.17	14,000 0,15	14,000 0,15	0,13	0,13
	C-G	2 30	5.84	5.65	11.4	1.43	2.14	2.82	3.78	8,05	7.39	4.81	4.95	3,50	3.36
	da ₩	0.266	0.121	0.325	0.128	0.286	0.188	0.182	0,270	0.215	0.262	0.283	0.262	0.243	0.223
\triangle	Sap m (1/m)	0.0367	(-0.0721)	0.0856	(-0.0346)	0.197	0.147	0.0553	(-0.0530)	(-0.0964)	0.126	0.0601	0.115	0.0852	0.118
	$m_{\rm p} (1/1_{\rm p1})$	0.0761	(0,0750)	0.257	(0,104)	0.108	0,142	0.153	(0.116)	(0.128)	0.197	0.157	0.129	0.106	0.132
	sp (17-p2)		05.0	Roli	69.7	3.16	-5 81	-14 6	-26 0	-64.0	-67.0	-32.6	-32.2	-17.3	-17.0
N ⁰	^A θe	-14.0	-2).0	-00.4 0.0461	0.0457	0.0170	0.0223	0.0159	0.0371	0.0334	0,0516	0.0202	0.0348	0.0184	0.0367
сe	1/10e1	0.703	0.885	3, 30	1.81	0.484	0,379	0,474	1.03	1.58	2.04	1.60	1.46	0.921	0.724
	" ¹⁹ e2		0.000	5150									1.00	0.170	• 1ú
Na	Aue	0.970	2.26	-6.15	-9.91	1.47	0.810	-0.0269	-2.19	-9.74	-14-1	-4.20	-4.06	-0.150	-1.44
⁻ⁿ ⊘e	1/Tue1	0.580	0.602	4.72	-1.95	0.312	0.280	0.478	2.91	4.68	9.53	2.79	2.42	0.942 hoto	0.909
	1/Tue2	586	523	-294	100	98.6	273	-17,450	-68.6	-71.4	-92.0	-157	-154	-4210	-200
	Awe	-121	-180	-610	-474	-24.1	-26.9	-79-5	-186	-438	-513	-246	-244	-101	-99.7
NW	1/Twe1	\$03	168	1 31	210	29.5	62.1	146	131	145	129	105	104	96.3	95.6
-" ^o e	ω_{w_e} (1/T _{we2})	0.0673	(-0.0563)	0.0969	(-0.0338)	0.199	0.143	0.0492	0.0501	(-0.00410)	0.0496	0.0583	0.116	0.0820	0.116
	ζ _{we} (1/T _{we3})	0.0809	(0.0622)	0.233	(0.103)	0.139	0.139	0.161	0.666	(0.0376)	0.509	0.165	0.132	0.111	0.137
	Ahe	121	180	610	238	24.1	26.9	79.5	93.4	438	513	246	244	101	99•7
h	1/The1	0.00309	0.0117	0.0432	0.0680	-0.0718	-0.337	0.0108	0.0661	0.0335	0.0503	0.0180	0.0253	0.0110	c.c180
f"°e	1/The2	-8.23	-12.0	-19.6	-18.8	-3.39	-4.50	-8.04	-11.0	-14.3	-15.3	-12.4	-11.9	-9.05	-7.98
	1/The3	8.72	12.4	21.7	19.6	3.81	4.95	8.56	12.0	15.9	17.0	13.4	12.8	9.73	8.67
	Aze	54.0	120	353	346	13.8	33.6	84.8	119	233	264	125	124	94.6	93.2
a'	$1/T'_{z_{e_1}}(\omega'_{z_{e_1}})$	0	0	0	0.0177	0	0	0	(0.0338)	0	0	0	0	0	0
l [№] δe	$1/T_{z_{e_2}}^{1}(\zeta_{z_{e_2}}^{1})$	0.00309	0.0117	0.0432	0.0499	-0.0714	-0.0336	0.0108	(0.984)	0.0335	0.0503	0.0180	0.0254	0.0110	0.0180
(10:7 ~	-\ ^w ze	12.8	15.0	27.1	22.7	4.76	4.23	8.03	14.5	20.6	22.5	18.1	17.2	9.70	8.60
(r + + 0)	د. ^ر ين	0.0476	0.0559	0.101	0.0720	0.0871	0.0505	0.0276	0.0381	0.0379	0.0618	0.0781	0.0699	0.0613	0.0468

. TR-176-1

• .

PRECEDING PAGE BLANK NOT F

SECTION VII

F-104

Preceding page blank

Figure VII-1

F-104

FLIGHT CONDITIONS

		I	2	3	4	5
		Takeoff	Start Crui se	End Cruise	V _{MAX}	V _{MAX} Sea Level
	h (ft)	Sea Level	30,000	30,000	30,000	Sea Level
	M	.273	.84	1.0	1.9	1,36
	W(Ib)	24,000	23,310	14,960	15,000	15,000
	× _{CG} /c	.046	.040	.18	.18	.18
External	Tip	On	On	Clean	Clean	Clean
Tanks	Pylon	On	On	Clean	Clean	Clean
Flaps 1	Leading Edge	-15°	-3°	-3°	-3°	-3°
	Trailing Edge	15°	15°	0°	0°	0°

Note: Lateral data not available

.S = 196 ft²

b = 21.9ft

c = 9.53 ft

,

¥.

Б

REFERENCES

Unpublished Data

PITCH :

<u>ROLL</u>:

<u>YAW</u>:

Figure VII-2. F-104 - Stability Augmentation System

TR-176-1

TABLE VII-A

GEOMETRICAL AND INERTIAL PARAMETERS FOR THE F-104

Note: Data are for body-fixed stability axes

S = 196.1 \texttt{ft}^2 , c = 9.53 <code>ft</code> , <code>b</code> = 21.9 <code>ft</code>

		FLIG	HT CONDITI	NC	
	1 TAKEOFF	2 START CRUISE	3 END CRUISE	4 V _{max}	5 V _{max} SEA LEVEL
h (ft)	Sea Level	30,000	30,000	30,000	Sea Level
M (-)	0.273	0.84	1.0	1.9	1.36
a (ft/sec)	1117	995	995	995	1117
$_{ m ho}$ (slugs/ft ³)	0.00238	0.000889	0.000889	0.000889	0.00238
$v_{T_o} (ft/sec)$	305	836	995	1892	1519
$\bar{q} = \rho V^2/2 (lb/ft^2)$	110.5	310	44O	1590	2740
W (lb)	24,000	23,310	14,960	15,000	15,000
m (slugs)	746	724.5	465	466	466
$I_y (slug-ft^2)$	65,000	64,500	56,650	56,650	56,650
x _{c.g.} /ē	0.046	0.040	0.18	0.18	0.18
α_0 (deg)	19.6	4.0	2.0	1.4	1.1
γ_{O} (deg)	10	0	0	0	0
θ_0 (deg)	29.6	4.0	2.0	1.4	1.1

TABLE VII-B

LONGITUDINAL NONDIMENSIONAL DERIVATIVES FOR THE $F-10^{\rm l}_{\rm H}$

Note:	Data	are	for	bodv-fixed	stabilitv	axes.
10000.	Dana	arc	TOT	Doug-T TYOU	DOUDTTTO	001000.

		FI	JIGHT CONDITI	ION	
	1	2	3	չ,	5
h (ft)	0	30,000	30 , 000	30,000	0
M (-)	0.237	0.84	1.0	1.9	1.36
C_{L}	1.125	0.342	0.1375	0.0383	0.0278
CD	0.185	0.0365	0.04	0.041	0.045
$C_{L_{\alpha}}$	¹ 4• ¹ 4 ¹ 4	4.97	5.10	2.92	4.18
$^{C}L_{\alpha}^{\bullet}$	0	0	0	0	0
CLM	0	0	0	0	0
$c_{L_{\delta e}}$	0.762	1.015	1.071	0.6925	0.8035
C _D a	0	0.1094	0.0255	0	0
$C_{D_{M}}$	0	0.038	0.040	0.042	0.045
c _{D₆e}	0	0	. 0	0	0
$C_{m_{\alpha}}$	-1.496	-1.319	-1. 564	-1.255	-1.80
$c_{m_{\alpha}^{\bullet}}$	-3.44	-3.90	-4.99	-3.04	-2.005
с _т М	0	0	0	0	0
C _{mq}	-5.615	-8.03	8.60	-4.59	-6.825

TABLE VII-C

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE F-104

Note: Data are for body-fixed stability axes.

		FLI	GHT CONDITI	ON	
	1 TAKEOFF	2 START CRUISE	3 END CRUISE	4 V _{max}	5 V _{max} SEA LEVEL
h (ft)	Sea Level	30,000	30,000	30,000	Sea Level
M (-)	0.273	0.84	1.0	1.9	1.36
X _u (1/sec)	-0.0352	-0.0106	-0.0224	-0.0573	-0.115
X _w (1/sec)	0.107	0.0234	0.0209	0.0136	0.0211
$X_{\delta_{e}} [(ft/sec^2)/rad]$	0	0	0	0	0
Z _u (1/sec)	-0.214	-0.0688	-0.0513	-0.0271	-0.0422
Z^{\bullet}_{W} (-)	0	0	0	0	0
Z_{W} (1/sec)	-0.440	-0.504	-0.959	-1.05	-3.21
$Z_{\delta_e} [(ft/sec^2)/rad]$	- 22 . 1	-85.3	- 199	<u> </u>	-927
M_u (1/sec-ft)	0	0	0	0	0
M_W^{\bullet} (1/ft)	-0.00056	-0.000239	-0.000349	-0.000212	-0.000375
M_W (1/sec-ft)	-0.0156	-0.0142	-0.0228	0.0348	-0.107
M_q (1/sec)	-0.279	-0.412	-0.598	0.607	-1. 9 ¹ +
M _{ôe} (1/sec ²)	-4.67	-17.8	-30.8	-57.2	-140

TABLE VII-D

ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE F-104

Note: Data are for body-fixed stability axes

				FLIGHT	CONDITION	
		1 TAKEOFF	2 START CRUISE	3 END CRUISE	4 V _{max}	5 V _{max} SEA LEVEL
Mach No.	, M (-)	0.273	0.84	1.0	1.9	1.36
Altitude	e, h (ft)	Sea Level	30,000	30,000	30,000	Sea Level
CG (%	c)	4.6	4.0	18	18	18
Weight,	W (lb)	24,000	23,310	14,960	15,000	15,000
ζsp		0.206	0.161	0.197	0.126	0.220
Δlong	ω _{sp}	2.21	3.48	4.83	8.16	13.0
20118	$\zeta_{p} (1/T_{p_{1}})$	0.0532	0.102	0.277	(0.00959)	(0.0080 8)
	$\omega_{p} (1/T_{p_{2}})$	0.145	0.051	0.0402	(0. 0 477)	(0.107)
	Α _θ	-4.66	_17.8	-30.7	-57.1	-140
Nô	1/T ₀₁	0.133	0.0144	0.0237	0.0578	0.115
ve	1/T ₀₂	0.269	0.432	0.812	0.767	2.51
	Au	-2.37	-2.00	-4.15	-6.29	-19.6
"u	1/Tu ₁	-0.0391	1.11	2.26	3.61	24.8
^N ∂e	1/Tu2	6.17	-113	-85.7	-62.2	-23.2
	A _w	-22.1	-85.3	-199	-464	-927
	1/T _{w1}	64.7	175	155	234	231
$N_{\delta e}^{w}$	$\zeta_{w} (1/T_{w2})$	0.0566	0.102	0.275	(0.00967)	(0.00833)
	$\omega_{W} (1/T_{W_{z}})$	0.147	0.0514	0.0407	(0.0476)	(0.107)
	A'n	21.8	85.3	199	464	927
	1/T _{h1}	0.0185	0.00816	0.0217	0.0571	0.115
N ^ň e	1/T _{h2}	5.21	9.03	11.7	13.9	25.2
	1/Th3	-4.76	-8.41	-10.7	-12.9	-22.7

SECTION VIII

F-105B

Preceding page blank

Figure VIII-1

FLIGHT CONDITIONS

. .

		1*	2*	3	4	5
		Takeoff	Start Cruise	End Cruise	Power Approach	V _{MAX}
	h (ft)	Sea Level	35,000	35,000	Sea Level	40,000
	M	.261	.9	.9	.241	2.1
	W(Ib)	41,230	41,230	35,370	30,000	35,370
	×cg/c	.295	.295	.308	.308	.308
External	Centerline	1-650 gal.	l-650gal.	Clean	Clean	Clean
Tanks	Wing Pylon	2-450gal.	2-450gal.	Clean	Clean	Clean
Flaps	Leading Edge	20°	0	0	20°	0
	Trailing Edge	46°	0	0	46°	0

* Lateral data not available at these conditions

REFERENCE GEOMETRY

- $S = 385 \, ft^2$
- b = 34.9 ft
- c = 11.5 ft

REFERENCES

Unpublished Data

PITCH:

Figure VIII-2. F-105 - Stability Augmentation System

TABLE VIII-A

GEOMETRICAL AND INERTIAL PARAMETERS FOR THE F-105B

Note: Inertia data are for principal axes.

 $s = 385 \text{ ft}^2$, b = 34.9 ft, c = 11.5 ft

		FLIGH	IT CONDITI	ION	
	1 TAKEOFF	2 START CRUISE	3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN
h (ft)	Sea Level	35,000	35,000	Sea Level	40,000
M (-)	0.261	0.9	0.9	0.241	2.1
a (ft/sec)	1117	973.3	973.3	1117	968.5
$_{ m ho}$ (slugs/ft ³)	0.00237	0.000738	0.000738	0.00237	0.000587
V_{T_O} (ft/sec)	291	875	875	269	2030
$\overline{q} = \rho V^2/2 (lb/ft^2)$	100	283	283	86	1210
W (lb)	41,230	41,230	35,370	30,000	35,370
m (slugs)	1280	1280	1098	932	1098
I_x (slug-ft ²)	8,700	8,700	10,300	12,600	10,300
$I_y (slug-ft^2)$	140,000	140,000	140,000	140,000	140,000
I_z (slug-ft ²)	185,000	185,000	181,000	177,000	181,000
I_{xz} (slug-ft ²)	0	0	0	0	0
x _{c.g.} /ē	0.295	0.295	0.308	0.308	0.308
α_{o} (deg)	7.4	7.2	7.0	5.2	3.5
$\gamma_{o}^{}$ (deg)	10.0	0	0	-5.0	0
θ_{O} (deg)	17.4	7.2	7.0	0.2	3.5

TABLE VIII-B

LONGITUDINAL DIMERSIONAL DERIVATIVES FOR THE F-105B

Note: Data are for body-fixed stability axes.

		FLIGHT CONDITION							
	l TAKEOFF	2 START CRUISE	3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN				
h (ft)	Sea Level	35,000	35,000	Sea Level	40,000				
M (-)	0.261	0.9	0.9	0.241	2.1				
X _u (1/sec)	-0.029	-0.00582	-0.00565	-0.0263	-0.00751				
X _w (1/sec)	0.0793	0.00693	0.0264	0.086	0.0132				
$X_{\delta_e} [(ft/sec^2)/rad]$	0	0	0	0	0				
Z_u (1/sec)	-0.1585	-0.01386	-0.0527	-0.1719	-0.0265				
$Z_{W}^{\bullet}(-)$	0	0	0	0	0				
Z_{W} (1/sec)	-0.311	-0.4	-0.466	-0.406	-0.590				
$Z_{\delta_e} [(ft/sec^2)/rad]$	-17.3	-65.19	-75.97	-19.88	-135.9				
M_u (1/sec-ft)	-0.0000119	0	0 -	-0.0000101	-0.0000198				
M_{W}^{\bullet} (1/ft)	-0.000259	-0.000117	-0.000117	-0.000259	-0.00000535				
$M_{\rm W}$ (1/sec-ft)	-0.00575	-0.00819	-0.00468	-0.00324	-0.01252				
M_q (1/sec)	-0.345	-0.485	-0.485	-0.319	-0.303				
$M_{\delta_e} (1/sec^2)$	-2.60	-12.03	-12.03	-2.703	-21.0				

TABLE VIII-C

LATERAL DIMENSIONAL DERIVATIVES FOR THE F-105B

	FL	IGHT CONDIT	ION
	3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN
h (ft)	35,000	Sea Level	40,000
M (-)	0.9	0.241	2.1
$Y_V (1/sec)$	-0.1497	-0.1878	-0.213
$Y_{\delta_a^*}$ [(1/sec)/rad]	-0.00173	-0.0021	-0.00221
$Y_{\delta_r^*}$ [(1/sec)/rad]	0.0234	0.0241	0.0837
$L_{\beta}^{-}(1/\text{sec}^{2})$	-41.1	-21.5	-139.8
L'p (1/sec)	-2.8	-1.185	-3.14
L_{r}^{i} (1/sec)	1.709	1.251	1.966
$L_{\delta a}$ (1/sec ²)	10.71	3.72	26.5
L_{δ_r} (1/sec ²)	14.37	2.86	12.97
N_{β} (1/sec ²)	12.39	4.38	18.81
N'_p (1/sec)	0.324	0.0725	0.1341
N_r (1/sec)	-0.382	-0.242	-0.386
$\mathbb{N}_{\delta a}$ (1/sec ²)	-1.086	-0.277	-1.339
$N_{\delta r}$ (1/sec ²)	-4.71	-0.975	-1.989

Note: Data are for body-fixed stability axes, lateral data not available for flight conditions 1 and 2.

TABLE VIII-D

ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE F-105B

Note: Data are for body-fixed stability axes.

			FLI	GHT CONDITI	ION	
		1 TAKEOFF	2 START CRUISE	3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN
Mach No	., M (-)	0.261	0.9	0.9	0.241	2.1
Altitud	e h (ft)	Sea Level	35,000	35,000	Sea Level	40,000
CG (%	<u>c</u>)	29.5	29.5	30.8	30.2	30.8
Weight,	W (lb)	41,230	41,230	35,370	30,000	35,370
	$\zeta_{\rm sp}$	0.281	0.1819	0.253	0.398	0.0893
Δ.	αsp	1.338	2.71	2.08	0.998	5.06
Long	ζp	0.0297	0.1295	0.0631	0.1016	0.1869
	φw	0.1247	0.0223	0.0429	0.1342	0.0201
	A ₀	-2.60	-12.03	-12.02	-2.70	-21.0
$\mathtt{N}^{\theta}_{\delta_{\textbf{e}}}$	1/T ₀₁	0.1026	0.0061	0.00891	0.0742	0.00827
	1/Т _{Ө2}	0.200	0.355	0.433	0.335	0.508
	A _u	-1.367	-0.452	-2.002	-1.708	-1.792
$\mathbb{N}^{u}_{\delta e}$	1/T _{u1}	1.018	0.438	1.511	1.266	2.94
	1/T _{u2}	-17.0	-696	-55.8	-15.02	-65.2
	A _w	-17.27	-65.2	-76.0	-19.88	-135.9
N ^W	1/T _{w1}	44.2	162	-139	36.9	315
" ^o e	ζw	0.0372	0.129	0.0642	0.1258	0.1838
	ww.	0.1287	0.0225	0.044	0.1435	0.0204
	A'n	17.28	65.2	76.0	19.88	135.9
$\mathbf{N}_{\mathbf{s}}^{\mathbf{h}}$	1/Th ₁	0.01292	0.00466	0.00439	0.01094	0.00737
⁺" ^o e	1/T _{h2}	-3.37	-7.29	-7.48	-3.49	-12.49
	1/Th ₃	3.80	7.88	8.07	3.89	12.8

TABLE VIII-E

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE F-105B

		FLIGHT CONDITION				
		3 END CRUISE CLEAN	ل POWER APPROACH CLEAN	5 V _{max} CLEAN		
Mach No., M (-)		0.9	0.241	2.1		
Altitu	de, h (ft)	35,000	Sea Level	40,000		
CG (% <u>ट</u>)	30.8	30.2	30.8		
Weight	, W (lb)	35,370	30,000	35,370		
α_{o} (deg)		7.0	5.2	3.5		
	1/T _S	-0.00870	0.000676	0.00631		
Δ_{lat}	1/T _R	2.13	1.382	2.95		
	ζd	0.184	0.0545	0.1531		
	۵	3.29	2.13	4.16		
	Ap	10.71	3.72	26.5		
л ^р	1/T _{p1}	0	0.0103	0		
™∂a	ζp	0.0635	0.101	0.0744		
	ωp	2.87	1.674	3.44		
	Ar	-1.086	-0.277	-1.339		
N	1/T _{r1}	-1.524	-1.503	-1.3		
Moa	ζr	0.465	0.564	0.600		
	^ω r	1.398	1.718	1.686		
	Α _β	-0.00174	-0.00210	-0.00221		
NB	1/T _{β1}	-622	0.1427	0.1379		
" ⁰ a	1/Ι _{β2} (ζ _β)	(-0.0573)	1.655	0.658		
	$1/T_{\beta 3} (\omega_{\beta})$	(0.276)	-133.7	601		

Note: Data are for body-fixed stability axes; lateral data not available for flight conditions 1 and 2.

TABLE VIII-F

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE F-105B

		· F]	FLIGHT CONDITION			
		3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} Clean		
Mach No	р., М (—)	0.9	0.9 0.241			
Altitud	le, h (ft)	35,000	Sea Level	40,000		
CG (<i>1</i> टि)	30.8	30.2	30.8		
Weight	, W (lb)	35,370	30,000	35,370		
α_{o} (deg)		7.0	5.2	3.5		
	$1/T_{s}$	-0.00870	0.000676	0.00631		
$\Delta_{ m lat}$	$1/T_{R}$	2.13	1.382	2.45		
	ζa.	0.184	0.0545	0.1531		
	and	3.29	2.13	4.16		
	Ap	14.37	2.86	12.97		
n ^b	1/T _{p1}	0	0.0103	0		
ⁿ ôr	1/T _{p2}	-1.109	-1.82	-1.499		
	1/T _{p3}	1.014	1.63	1.738		
	Ar	-4.71	-0.975	-1.989		
r	1/T _{r1}	1.848	1.463	2.31		
" ^o r	ζr	0.1028	-0.246	0.1601		
	⁽¹⁾ r	0.259	0.838	0.342		
	Α _β	0.0233	0.0241	0.00538		
NB	1/Τ _{β1}	-0.0103	-0.0395	0.00369		
" ^ŏ r	1/T ₆₂	1.927	1.371	2.36		
	1/T _{β3}	203	40.6	370		

Note: Data are for body-fixed stability axes; lateral data not available for flight conditions 1 and 2.

: : پ

-IK NOT FILMED

PRECEDING PAG

٠

...

SECTION IX

B-58

Preceding page blank

Figure IX-1

<u>B-58</u>

NOMINAL CRUISE CONFIGURATION

FLIGHT CONDITIONS

See Table IX-A

REFERENCE GEOMETRY

- S = 1542 ft²
- b = 56.8 ft
- c = 36.2 ft

REFERENCES

 Bright, B.E., Ellington, J.D., "Application of the Limit-Cycle Selfadaptive Concept to the B-58 Lateral Directional Stability Augmentation System."
 Thesis, Air Force Institute of Technology, GGC/EE/64-5, May 1964

 \bigcirc

2) Anon. "B-58 Flight Control System", Gen. Dyn. Fort Worth, FZE-4-049, Nov. 1962

3) Jones , L.S., "U.S. Bombers BI-B70" Aero Publishing Inc. , 1962

SOURCE

Unknown

The Augmentation System for this airplane is known to have undergone several modifications. The system shown is of 1962 vintage as documented in G.D.Convair Report FZE 4-052, Dec. 1962, being the latest available data

Figure IX-2. B-58 - Stability Augmentation System

TABLE IX-A

GEOMETRICAL PARAMETERS FOR THE B-58

Note: Data for body-fixed stability axes, cruise configuration.

 $S = 1,542 \text{ ft}^2$; b = 56.82 ft: c = 36.17 ft

			FL	GHT CONDITIC	ON		
	1	2	3	Ц	5	6	7
h (ft)	0	0	0	40,000	44,200	30,000	40,000
M (-)	0.32	0.91	0.91	0.91	2.0	0.98	1.2
a (ft/sec)	1117	1117	1117	968	968	995	968
o (slug/ft ³)	0.002377	0.002377	0.002377	0.000585	0.000478	0.000889	0.000585
V _{To} (ft/sec)	357	1016	1016	881	1936	975	1162
$\overline{q} = {}_{O}V_{T_{O}}^{2}/2 (lb/ft^{2})$	152	1227	1227	228	900	423	396
W (lbs)	150,000	90,000	150,000	150,000	150,000	150,000	150,000
m (slugs)	4655	2788	4655	4655	4655	4655	4655
I_x (slug-ft ²)	430,070	335,3 ⁴⁴	386,860	363 , 365	362,502	361,275	361,484
I_y (slug-ft ²)	1,045,000	649,892	1,045,000	1,045,000	1,045,000	1,045,000	1,045,000
I_z (slug-ft ²)	1,402,030	950,080	1,445,230	1,206,610	1,208,110	1,207,210	1,208,490
I_{XZ} (slug-ft ²)	-215,646	19,250	51,375	-39,871	27,186	10,722	-553
γ_{o} (deg)	0	0	0	0	0	0.	0
x _{CG} /c	0.28	0.28	0.28	0.30	0.33	0.33	0.33

TR-176-1

TABLE IX-B

1

LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE B-58

Note: Data are for body-fixed stability axes, cruise configuration.

		·····	FLI	GHT CONDITI	ON		
	1	2	3	24	5	6	7
h (ft)	0	0	0	40,000	44,200	30,000	40,000
M (-)	0.32	0.91	0.91	0.91	2.0	0.98	1.2
v_{T_O} (ft/sec)	357.3	1016	1016	880.9	1936.2	975	1161.7
c _{y_β}	-0.6395	-0.6375	-0.674	-0.7665	-0.6275	-0.732	-0.801
C _{yôa}	0.1511	0.08655	0.0890	0.1790	0.0187	0.1862	0.179 1
Cybr	0.0929	0.0527	0.05725	0.0954	0.0232	0.08075	0.0545
C _l b	-0. 1584	-0.0551	-0.0851	-0.1345	-0.03942	-0.1096	-0.1158
C _{lp}	-0.1936	-0.1585	-0.1576	-0.2173	-0.2317	-0.2107	-0.2238
C _{lr}	0.04479	0.08568	0.08553	0.1102	0.07207	0.09543	0.1071
C _{lõa}	-0.1112	-0.04043	-0.03892	-0.1041	-0.01782	-0.0729	-0.0010
C _{lor}	0.001927	0.00729	0.007395	0.01227	0.003115	0.01328	0.0078
C _{n_β}	0.1014	0.1242	0.0624	0.1029	0.03207	0.0788	0.1117
Cnp	-0.1143	-0.01082	-0.02935	-0.06118	0.01241	-0.03713	-0.04215
Cnr	-0.2494	-0.2449	-0.2312	-0.2868	-0.2132	-0.2611	-0.2823
c _{nôa}	-0.0405	-0.03318	-0.03317	-0.0664	-0.02038	-0.0725	-0.09275
Cnor	-0.06415	-0.03561	-0.03563	-0.0633	-0.01382	-0.0530	-0.03255

TR-176-1

TABLE IX-C

LATERAL DIMENSIONAL DERIVATIVES FOR THE B-58

Note: Data for body-fixed stability axes, cruise configuration.

		FLIGHT CONDITION									
	1	2	3	4	5	6	7				
h (ft)	0	0	0	40,000	44,200	30,000	40,000				
M (-)	0.32	0.91	0.91	0.91	2.0	0.98	1.2				
Y _v	-0.09	-0.426	-0.27	 0.0654	-0.0962	-0.105	-0.09				
Y _{ða}	0.0212	0.0578	0.0356	0.0153	0.00287	0.0267	0.0201				
Y _δ *	0.0131	0.0382	0.0229	0.00814	0.00356	0.0116	0.00613				
$\mathbb{L}_{\beta}^{!}$	-5.828	-16.875	-23.14	-7.575	-8.394	-11.163	-11.08				
Lp	-0.469	-1.424	-1.238	-0.381	-0.736	-0.63	-0.524				
L _r '	0.221	0.724	0.603	0.212	0.214	0.278	0.251				
Loa	-3.516	-13.19	 11.19 ⁴	- 5•597	-3.965	-7.538	-0.953				
L _{or}	0.395	2.108	1.71	0.789	0.608	1.313	0.748				
$\mathbb{N}_{\beta}^{\dagger}$	1.858	13.71	3.818	1.946	1.895	2.317	3.202				
Np'	-0.0141	-0.0631	-0.105	-0.02	-0.00473	-0.0388	-0.0293				
Nr	-0.222	-0.76	-0.459	-0.159	-0.198	-0.231	-0.198				
$N_{\delta a}^{'}$	0.157	-4.021	-2.865	-0.909	-1.413	-2.29	-2.654				
Nör	-0.669	-3.986	-2.589	-1.069	-0.884	-1.614	-0.932				

ι

TABLE IX-D

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE B-58

Note:	Data are	for	body-fixed	stability	axes,	cruise	configuration
-------	----------	-----	------------	-----------	-------	--------	---------------

			<u></u>	FLIG	HT CONDIT	ION		
		1	2	3	4	5	6	7
h (f	t)	0	0	0	40,000	44,200	30,000	40,000
м (—)	0.32	0.91	0•91	0.91	2.0	0.98	1.2
	1/T _S	0.058	0.00426	0.0334	0.026	0.0134	0.029	0.017
Δ	1/T _R	0.698	1.527	1.75	0.556	0.802	0.885	0.687
	ζ _a	0.009	0.144	0.044	0.0086	0.0772	0.0165	0.0296
	₽¢	1.403	3.756	2.12 6	1.42	1.40	1•58	1.81
	Ap	-3.516	-13.19	-11.194	-5.597	-3.965	-7.538	-0.953
"р	1/T _{p1}	0	0	0	0	0	0	0
"రిజ	ζ _p	0.132	0.168	0.152	0.0784	0.085	0.096	0.104
	φ ^μ	1.274	4.391	3.151	1.786	2.217	2.398	5.85
	A _r	0.157	-4.021	-2.865	-0.909	-1.413	-2.29	-2.654
r Ngg	1/T _R	-1.148	1.881	1.498	1.002	0.983	1.082	0.934
	ζ _r	0.678	-0.213	0.249	-0.420	-0.174	-0.331	0.295
	ω _r	1.677	1.021	0.897	0.845	0.481	0.757	0.602
	Α _β	0.0212	0.0578	0.0356	0.0153	0.00287	0.0267	0.0202
ß	$1/T_{\beta_1}(\zeta_{\beta})$	0.1624	-0.0838	0.0941	-0.191	-0.0184	-0.073	-0.0171
" ^o a	1/T _{β2} (ω _β)	2.1616	1.198	0.798	0.226	0.695	0.467	0.520
	1/T _{β3}	-9.008	70.64	81.472	60.03	493.37	86.15	131.87
.,a.,	Aay	7•594	58.73	36.17	13.46	5.55	26.063	23.42
N83	$1/T_{ay_1} (\zeta_{ay_2})$	0.12	-0.210	-0.183	0.15	-0.02	-0.161	-0.036
	$1/T_{a_{y_2}} (\omega_{a_{y_2}})$	1.009	0.948	0.593	1.839	0.69	0.35	0.458
GG	$\zeta_{a_{y_{3}}}$ (1/Tay3)	-0.127	(-3.3)	(-3.608)	-0.852	(-6.618)	(-2 .2 55)	(-2.8)
	ω_{ay3} (1/Tay4)	1.733	(4.744)	(4.896)	0.85	(6.883)	(2.927)	(3.097)

TABLE IX-E

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE B-58

Note: Data for body-fixed stability axes, cruise configuration

		FLIGHT CONDITION						
		1	2	3	4	5	6	7
h (ft)		0	0	0	40,000	44,200	30,000	40,000
м (-)		0.32	0.91	0•91	0.91	2.0	0.98	1.2
Δ	1/T ₈	0.058	0.00426	0.0334	0.026	0.0134	0.029	0.017
	1/T _R	0.698	1.527	1.75	0.556	0.802	0.885	0.687
	ζ _đ	0.009	0.144	0.044	0.0086	0.0772	0.0165	0.0296
	^щ а	1.403	3. 756	2.126	1.42	1.40	1•58	1.81
	A _p	0.395	2.108	1.711	0.789	0.608	1.313	0.748
p	1/Tp ₁	0	0	0	0	0	0	0
" ⁸ p	1/T _{p2}	-2.969	-4.554	-5.859	-2.959	-3.247	-3.433	-3.319
	1/T _{p3}	2.713	4.065	5 •3 65	2.818	3.181	3.329	3.204
	A _r	-0.669	-3•986	-2.589	-1.069	-0.884	-1.614	-0.932
ŗ	1/T _r	0.964	1.607	1.615	0.786	0.901	1.0	0.88
" ⁸ r	ζ _r	0.3 26	0.167	-0.0561	-0.317	-0.10	-0.226	-0.255
	ω _r	0.665	0.436	0.636	0.534	0.362	0.553	0.518
	Α _β	0.0131	0.0382	0.0229	0.00814	0.00355	0.0116	0.00613
Įβ	1/I _{β1}	-0.0149	-0.00685	-0.00709	-0.008	-0.00171	-0.0043	-0.00445
Nor	1/T _{β2}	0.546	1•482	1•337	0.431	0.753	0.693	0.574
	1/T _{B3}	51 •3 55	150.05	113.43	131.44	248.84	139•37	152.06
	A _{ay}	4.669	38.813	23.266	7.173	6.886	11.303	7.126
	$1/T_{a_{y_1}}(\zeta_{a_{y_2}})$	-0.0966	-0.0122	-0.0167	-0.0225	-0.0032	-0.0135	-0.0131
Nor Nor	$1/T_{ay_2} (\omega_{ay_2})$	0.446	1.46	1.243	0.394	0.748	0.649	0.537
CG	ζ_{ay_3} (1/T _{ay3})	(-1.486)	(5•179)	(-4.926)	(-2.492)	(-4•597)	(-3.394)	(-3.14)
	ω_{ay3} (1/T _{ay4})	(1.828)	(5•915)	(5•398)	(2.662)	(4.788)	(3.62)	(3.338)

TR-176-1

SECTION X

NAVION

NAVION

NOMINAL FLIGHT CONDITION

$$\begin{split} h(ft) &= 0 \ ; \ M = .158 \ ; \ V_{T_0} = 176 \ ft/sec \\ W &= 2750 \ lbs \\ CG \ at \ 29.5 \ \% \ MAC \\ I_x &= 1048 \ slug \ ft^2 \\ I_y &= 3000 \ slug \ ft^2 \\ I_z &= 3530 \ slug \ ft^2 \\ I_{xz} &= 0 \end{split}$$

REFERENCE GEOMETRY

S = 184 ft² c = 5.7 ft b = 33.4 ft

TABLE X-A

TABLE X-B

TABLE X-C

GEOMETRICAL PARAMETERS FOR THE NAVION

LONGITUDINAL NONDIMENSIONAL LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE NAVION DERIVATIVES FOR THE NAVION

Note: Data for body stability axes, leve	y-fixed el flight	Note: Data	are for	Note: Data are for stability		
$s (ft^2)$	180	stab	ility axes	axes		
b (ft)	33.4	1	FLIGHT CONDITION		FLIGHT CONDITION	
c (ft)	5.7		1		1	
W (lb)	2,750	h (ft)	0	h (ft)	0	
m (slugs)	85.4	M (-)	0.158	M (-)	0.158	
c.g. (% MAC)	29.5	CL	0.41	V _{To} (ft/sec)	176	
$I_x (slug-ft^2)$	1,048	CD	0.05	α_0 (deg)		
$I_y (slug-ft^2)$	3,000	сг ^а	4.44	C _{yβ}	-0.564	
I_z (slug-ft ²)	3,530	CLå	0	C _{y8a}	0	
I _{xz}	0	CLM	0	Cyor	0.157	
h (ft)	0	C _{Lôe}	0.355	Clp	-0.074	
М	0.158	CD ^a	0.330	C _{<i>l</i>p}	-0.410	
a (ft/sec)	1117	C _{DM}	0	C _{<i>l</i>_r}	0.107	
$_{ m ho}~({ m slugs/ft}^3)$	0.002378	c _{Dðe}	0	Cloa	0.1342	
V_{T_O} (ft/sec)	176	C _{ma}	-0.683	C _{lor}	0.0118	
$\overline{q} = \rho V_{T_0}^2 / 2 (lb/ft^2)$	36.8	C _m .	-4.36	C _{n_β}	0.0701	
α_0 (deg)	0.6	C _{mM}	0	Cnp	-0.0575	
$\gamma_0^{}$ (deg)	0	C _{mq}	-9.96	C _{nr}	-0.125	
		_		C _{noa}	-0.00346	
				Cn _{8r}	-0.0717	

TABLE X-D

TABLE X-E

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE NAVION LATERAL DIMENSIONAL DERIVATIVES FOR THE NAVION

	FLT. COND.
Xw	0.03607
х _и	-0.0451
X _{õe}	0
Zw	-2.0244
Zu	-0.3697
$z_{\delta e}$	-28.17
M _w	-0.04997
M. ₩	-0.005165
Мq	-2.0767
Mu	0
м _{бе}	-11.1892

	FLT. COND.
Yv	-0.2543
$Y^*_{\delta_a}$	0
Yőr	0.0708
L_{β} .	-15.982
Ľp	-8.402
L_{Γ}^{\prime}	2.193
Lδ'a	28.984
L _{őr}	2.548
$\mathbb{N}_{\beta}^{\dagger}$	4.495
Np'	-0.3498
N_r	-0.7605
N _{ða} '	-0.2218
N _{or} '	-4.597

TR-176-1
TUDED V	<	JF
---------	---	----

TABLE X-G

TRANSFER FUNCTION FACTORS FOR THE NAVION

ELEVATOR LONGTTUDINAL AILERON LATERAL TRANSFER RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE NAVION

FUNCTION FACTORS FOR THE NAVION

		FLT. COND.			FLT. COND.			FLT. COND.
	$t_{\rm sp}$	0.6957		$1/T_{\rm s}$	0.00876		1/T _s	0.00876
Δ	$^{ m (n)}{ m sp}$	3.6083		1/T _R	8.435		$1/T_{R}$	8.135
	$t_{\rm p}$	0.0801		ζd	0.20 ^j i		ζd	0.204
	q ⁽¹⁾	0.2137		b ⁽¹⁾	2.385		ba d	2.385
	A ₍₎	-11.0 ⁹¹⁹		Ap	28,98 ⁾ ı		Ap	2.548
$\mathtt{N}^{0}_{\delta_{\mathbf{e}}}$	1/T ₍₎₁	0.05231	n	1/T _{D1}	0	n ^p	1/T _{p1}	0
	1/T ₀₂	1.9164	NEa	ζp	0.2336	Light L	1/T _{p2}	-6.991
	A _u	-1.0161		ωp	2.136		1/T _{P3}	3.6064
N ^u Se	1/T _{u1}	2.401		Δ	-0.2218		Ar	-4.597
	1/T _{u2}	-280.39		ጥ 1 / ም	-1 253	, r	1/T _r	8.639
	A _W	-28.171	$N_{\delta_a}^r$	' ^{/ בר} 1	1.5/3	وريمر	ζr	0.1335
W	1/T _W	71.984		'/'r2	「・ノ・・ノ 5月 071		⁽¹⁾ r	0.5345
e ^م ر	ζ _w	0.0862		'/ ' r3	J4.011		Α _β	0.0707
	⁽¹⁾ w	0.2563	ß	Α _β	0.2218	MB	1/T _{β1}	-0.0366
	A _h .	28.171	Noa	1/Τ _{β1}	0.2285	101	' 1/T _{β2}	8.795
h	1/T _{h1}	-10.108		^{1/T} β2	77.78		1/T _{β3}	65.352
"^e	1/T _{h2}	0.0165					Aay	12.485
	1/T _{h3}	13.122					1/T _{ay1}	-0.0591
	Aaz	-28.171				$N_{\delta_1}^{a_1}$	$1/T_{ay_2}$	8.335
$\mathtt{N^{a_z}_{\delta e}}$	$1/T_{a_z}$	0				CG	1/Tay3	-3.0074
	$1/T_{a_{Z_2}}$	-10.108					1/Tay14	3.894
ℓ _X =0	$1/T_{az_3}$	0.0165						
CG	1/T _{az)4}	13.122						

PRECEDING PAGE BLANK NOT FILMED.

SECTION XI

DC-8

Preceding page blank

Figure XI-1

<u>DC-8</u>

FLIGHT CONDITIONS

Flight Condition	Approach	Holding	Cruise	V _{NE}	
h(ft)	0	15,000	33,000	33,000	
M	0.219	0.443	0.84	0.88	
W(lbs)	190,000	190,000	230,000	230,000	
I_{χ} (slug - ft ²)	3.09x10 ⁶	3.11×10 ⁶	3.77 × 10 ⁶	3.77×10 ⁶	
I _v (slug-ft ²)	2.94×106	2.94×10 ⁶	3.56×10 ⁶	3.56×10 ⁶	Stability
I_z (slug-ft ²)	5.58×10 ⁶	5.88×10 ⁶	7.13 x 10 ⁶	7.13 x 10 ⁶	
I_{xz} (siug-ft ²)	28×103	-64.5 x 103	45×10 ³	53.7 x 10 ³	ŕ
X _{cg} lē	0.15	0.15	0.15	0.15	

٠

.

106

REFERENCE GEOMETRY

 $S = 2600 \text{ ft}^2$

b = 142.3 ft

c = 23 ft

<u>REFERENCES</u> : Unpublished Data

TABLE XI-A

GEOMETRICAL AND INERTIAL PARAMETERS FOR THE DC-8

Note: Data are for body-fixed stability axes

S = 2600 ft² , b = 142.3 ft , c = 23 ft , γ_0 = 0 deg

	FLIGHT CONDITION				
	1 APPROACH	2 HOLDING	3 CRUISE	14 V _{NE}	
h (ft)	0	15,000	33,000	33,000	
M (-)	0.218	0.443	0.84	0.88	
a (ft/sec)	1117	1058	982	982	
$\rho (slugs/ft^3)$	0.002378	0.001496	0.000795	0.000795	
V _{To} (ft/sec)	243.5	468.2	824.2	863.46	
$\bar{q} = {}_{\odot}V^2/2 (lb/ft^2)$	71.02	163.97	270.0	296.36	
W (lb)	190,000	190,000	230,000	230,000	
m (slugs)	5900	5900	7143	7143	
I_x (slug-ft ²)	3,090,000	3,110,000	3,770,000	3,770,000	
I_y (slug-ft ²)	2,940,000	2,9 ¹ 40,000	3,560,000	3,560,000	
I_{z} (slug-ft ²)	5,580,000	5,880,000	7,130,000	1,130,000	
I_{xz} (slug-ft ²)	28,000	6 ¹ +,500	45,000	53,700	
x_{CG}/c	0.15	0.15	0.15	0.15	
θ_{O} (deg)	0	0	0	0	
U _o (ft/sec)	243.5	468.2	824.2	863.46	
W _o (ft/sec)	0	0	0	0	
$\delta_{\mathbf{F}}$ (deg)	35	0	0	0	

TABLE XI-B

LONGITUDINAL NONDIMENSIONAL DERIVATIVES FOR THE DC-8

Note:	Data	are	for	b

a are for body-fixed stability axes.

	FLIGHT CONDITION					
	1	2	3	4		
h	0	15,000	33,000	33,000		
М	0.218	0.443	0.840	0.88		
Cl'	0.98	0.42	0.308	0.279		
CD	0.1095	0.0224	0.0188	0.0276		
CLa	4.81	4.8762	6.7442	6.8989		
$c_{L^{\bullet}_{\alpha}}$	0	0	0	0		
CLM	0.02	0.048	0	-1.2		
c _{Lõe}	0.328	0.328	0.352	0.358		
CDa	0.487	0.212	0.2719	0.4862		
C _{DM}	0.0202	0.00208	0.1005	0.3653		
CDoe	0	-0.9712	0	0		
Cma	-1.478	-1.5013	-2.017	-2.413		
C _{må}	-3.84	-4.10	-6.62	-6.83		
C _{mm}	-0.006	-0.02	0.17	-0.50		
C _{mq}	-0.00117	-0.9712	-14.6	-15.2		

TABLE XI-C

LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE DC-8

Note: Data are for body-fixed stability axes

	FLIGHT CONDITION					
	1	2	3	4		
h (ft)	0	15,000	33,000	33,000		
M (-)	0.218	0.443	0.84	0.88		
v_{T_O} (ft/sec)	243.5	468.2	824.2	863.46		
с _у _β	-0.87268	-0.6532	-0.7277	-0.7449		
Cyba	0	0	0	0		
Cyðr	0.18651	0.18651	0.18651	0.18651		
C _Ø B	-0.15815	-0.13752	-0.16732	-0.17362		
Cl	-0.385	0.416	-0.516	-0.538		
C _{lr}	0.248	0.132	0.147	0.146		
Cloa	-0.08595	-0.08308	-0.07965	-0.07907		
Clor	0.02189	0.019195	0.021086	0.02166		
c _{n_b}	0.1633	0.12319	0.15471	0.16044		
C _{np}	-0.0873	-0.0307	-0.0107	-0.00587		
C _{nr}	-0.196	-0.161	-0.190	-0.199		
c _{nða}	-0.0106	0.00354	-0.003701	-0.003999		
^C no _r	-0.08337	-0.08337	-0.08337	-0.08337		

TABLE XI-D

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE DC-8 $\,$

Note: Data are for body-fixed stability axes

	FLIGHT CONDITION				
	1	2	3	<u>L</u> i.	
h (ft)	0	15,000	33,000	33,000	
M (-)	0.218	0.443	0.84	0.88	
T _u (1/sec)	-0.000595	-0.0000846	0.000599	0.000733	
X _{u gero} (1/sec)	-0.02851	-0.00707	-0.0145	0.0471	
X _u (1/sec)	-0.0291	-0.00714	-0.01 ¹ 4	-0.0463	
X_{W} (1/sec)	0.0629	0.0321	0.0043	-0.0259	
$X_{\delta_{e}} [(ft/sec^2)/rad]$	О	0	0	0	
$Z_{u_{gero}}(1/sec)$	0.2506	-0.1329	-0.0735	0 0622	
Z_u (1/sec)	-0.2506	-0.1329	-0.0735	0 0622	
$\mathbb{Z}^{\bullet}_{\mathrm{W}}$ (-)	0	0	0	0	
Z_{W} (1/sec)	-0.6277	-0.756	0.806	0.865	
$Z_{\delta_e} [(ft/sec^2)/rad]$	-10.19	-23.7	-34.6	-38.6	
$M_{u_{gero}}(1/sec-ft)$	-0.0000077	-0.000063	-0.000786	0.00254	
M _u (1/sec-ft)	-0.00000'77	-0.000063	-0.000 786	-0.00254	
$M_{\dot{W}}$ (1/ft)	-0.001068	-0.00072	-0.00051	-0.00052	
M_{W} (1/sec-ft)	-0.0087	-0.0107	0.0111	-0.0139	
$M_{\rm q}$ (1/sec)	0.7924	-0.991	-0.924	-1.008	
$M_{\delta_e} (1/sec^2)$	-1.35	-3.24	-4.59	-2.12	
	X				

TK-176-1

TABLE XI-E

LATERAL DIMENSIONAL DERIVATIVES FOR THE DC-8 $\,$

Note:	Data	are	for	body-fixed	stability	axes

		FLIGHT CONDITION					
	1	2	3	4			
h (ft)	0	15,000	33,000	33,000			
M (-)	0.218	0.443	0.84	0.88			
Y_v (1/sec)	-0.1113	-0.1008	0.0868	-0.0931			
$Y_{\delta_{\mathbf{a}}^{*}}$ [(1/sec)/rad]	0	0	0	0			
$Y_{\delta_r}^*$ [(1/sec)/rad]	0.0238	0.0288	0.0222	0.0233			
$I_{\rm B}^{1}$ (1/sec ²)	-1.328	-2.71	4.41	-5.02			
L_{p}' (1/sec)	-0.951	-1.232	-1.181	-1.29			
L_{r}^{\prime} (1/sec)	0.609	0.397	0.334	0.346			
$L_{\delta a}$ (1/sec ²)	-0.726	-1.62	-2.11	-2.3			
L_{δ_r} (1/sec ²)	0.1813	0.392	0.549	0.612			
N_{B}^{\prime} (1/sec ²)	0.757	1.301	2.14	2.43			
N_{p}' (1/sec)	-0.124	0.0346	-0.0204	-0.01715			
N_r^{\dagger} (1/sec)	-0.265	-0.257	-0.228	-0.25			
$N_{\delta a}$ (1/sec ²)	-0.0532	-0.01875	-0.0652	-0.0788			
N_{δ_r} (1/sec ²)	-0.389	-0.864	-0.01164	-1.277			
1 ⁺	1						

TR-176-1

TABLE XI-F

ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE DC-8

Note: Data are for body-fixed stability axes

			FLIGHT CO	NDITION	
		1	2	3	4
Mach No	э., M (-)	0.218	0.443	0.84	0.88
Altitud	le, h (ft)	0	15,000	33,000	33,000
CG (%	, ē)	15	15	15	15
Weight,	W (1b)	190,000	190,000	230,000	230,000
	ζ _{sp}	0.522	0.434	0.342	0.325
<u>^-</u>	ωsp	1.619	2.40	3.15	3.59
⊔Toug	ζ _p (1/T _{p1})	0.06 0 6	0.0310	0.241	(-0.0708)
	$\omega_{\rm p} (1/T_{\rm p_2})$	0.1635	0.0877	0.0243	(0.108)
	A ₀	-1.338	-3.22	-4.57	-5.1
Ns	1/Tθ1	0.0605	0.01354	0.01436	0.0493
^o e	1/T ₀₂	0.535	0.675	0.725	0.76
	Au	-0.641	-0.761	0.1489	1.00
u Ns	1/T _{u1}	1.08	1.279	0.816	0.449
^{no} e	1/Tu2	-35.3	-72.7	-879	279
	A _W	-10.19	-23.7	-34.6	-38.6
	1/T _{w1}	33.0	65.0	110.2	0.0364
$^{N\delta}e$	ζ_{W} (1/T _{W2})	0.0781	0.037	0.1362	(0.0827)
	$\omega_{W} (1/T_{W3})$	0.1798	0.0947	0.0511	(115.5)
	A _h	10.19	23.7	34.6	38.6
/ b	1/Th1	-3.75	-5.95	-8.24	-8.63
$^{N\delta}e$	$1/Th_2$	0.00182	-0.000026	0.0107	0.0531
	$1/T_{h_{\mathcal{J}}}^{\bullet}$	4.83	7.29	9.59	100.9
i .	A_{a_z}	-10.19	-23.7	-34.6	-38.6
$N_{\delta e}^{a_z}$	$1/Ta_{Z1}$	0	0	0	0
č	$1/T_{a_{Z2}}$	-3.75	-5.95	-8.24	-8.63
CG	$1/T_{a_z 3}$	-0.00182	-0.000026	0.0107	0.0531
34	$1/T_{a_{Z_{4}}}$	4.83	7.29	9.59	100.9

	,	FLIGHT CONDITION				
		1	2	3	4	
Mach No.	., (-)	0.218	0.443	0.84	0.88	
Altitude	e, h (ft)	О	15,000	33,000	33,000	
CG (%	ē)	15	15	15	15	
Weight,	W (lb)	190,000	190,000	230,000	230,000	
	1/T _s	-0.013	0.00649	0.00404	0.00447	
∆l at	$1/T_{R}$	1.121	1.329	1.254	1.356	
18.0	ζ _d	0.1096	0.1061	0.0793	0.0855	
	۵d	0.996	1.197	1.495	1.589	
	Ap	-0.726	-1.62	-2.11	-2.30	
	1/T _{P1}	0	0	0	0	
$N^{p}_{\delta a}$	ζp	0.223	0.1554	0.1072	0.1094	
-	ωp	0.943	1.166	1.515	1.620	
	Α _φ	0.726	-1.62	-2.11	-2.30	
φ Ns	ζ _φ	0.223	0.1554	0.1072	0.1094	
- Oa	ω _φ	0.943	1.166	1.515	1.620	
	Ar	-0.0532	-0.01875	-0.0652	-0.0788	
	1/T _{r1}	0.998	1.589	1.644	1.757	
N ^r a	ζr	-0.656	-0.727	-0.392	-0.345	
	ω _r	1.242	2.23	1.323	1.269	
	Aβ	0.0532	0.01875	0.0652	-0.0788	
R	1/T _{β1}	2.75	-7.9	-1.036	-0.704	
$\mathbb{N}_{\delta_{a}}^{P}$	1/T _{β2}	0.203	0.197	0.291	0.404	
	1/I _{β3}					

	TABLE XI-G							
	AILERON	LATERAL	TRANSFER	FUNCTION	FACTORS	FOR	THE	DC-8
Note:	Data are f	or body-f	fixed stat	oility axe	es			

TABLE XI-H

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE DC-8

Note: Data are for body-fixed stability axes.

		FLIGHT CONDITION				
		1	2	3	4	
Mach No.	, M (-)	0.218	0.443	0.84	0.88	
Altitude, h (ft)		0	15,000	33,000	33,000	
CG (%	ē)	15	15	15	15	
Weight,	W (lb)	190,000	190,000	230,000	230,000	
	1/T _S	-0.013	0.00649	0.00404	0.00447	
<u>^-</u> .	1/T _R	1.121	1.329	1.254	1.356	
⊥at	ζ _d	0.1096	0.1061	0.0793	0.0855	
	ωd	0.996	1.197	1.495	1.589	
	Ap	0.1813	0.392	0.545	0.612	
	1/T _{p1}	0	0	0	0	
$\mathbb{N}^{p}_{\delta_{r}}$	1/T _{po}	1.028	1.85	2.43	2.57	
Ť	$1/T_{p_3}$	-2.13	-2.56	-3.01	-3.15	
	Α _φ	0.1813	0.392	0.545	0.612	
p. D	1/T ₀₁	1.028	1.85	2.43	2.57	
Nδr	1/T _{φ2}	-2.13	-2.56	-3.01	-3.15	
	Ar	-0.389	-0.864	-1.165	-1.277	
r	1/Tr ₁	1.124	1.335	1.276	1.377	
$\mathbb{N}_{\delta_{r}}^{1}$	$\zeta_{\mathbf{r}}$	-0.0743	-0.0451	-0.0619	-0.0475	
	ω _r	0.339	0.330	0.323	0.323	
	Α _β	0.0238	0.0288	0.0222	0.0255	
β	$1/T_{\beta_1}$	-0.0559	-0.01475	-0.00726	-0.00657	
Ν _δ r	1/I _{β2}	1.141	1.297	1.217	1.525	
	1/I _{β3}	16.47	30.2	52.6	55.0	
			17 1.0	10 77	00 1	
	Aay	2.19	12.40 0.021			
3	1/Tay1	-0.819	-0.0247	1 100		
Nôy	1/Tay2	-0.1077		1 112		
	$1/Tay_3 (\zeta a_y)$	(0.994)		1 707	1 810	
CG	$ 1/T_{ay_4} (\omega_{ay})$	(1.078)	1.147	1.(2)	1.019	

APPENDIX A

AXIS SYSTEMS, SYMBOLS, AND DERIVATIVE DEFINITIONS

1. AXIS SYSTEMS

- X_B, Y_B, Z_B The <u>Body-Axis System</u> consists of right-handed, orthogonal axes whose origin is fixed at the nominal aircraft center of gravity. It's orientation remains fixed with respect to the aircraft, the X_B and Z_B axes being in the plane of symmetry. The exact alignment of X_B axis is arbitrary, herein it is taken along the body centerline reference.
- X_S, Y_S, Z_S The <u>Stability-Axis System</u> is that particular body-axis system for which the X_S-axis is coincident with the projection of the total <u>steady-state</u> velocity vector (V_{T_O}) on the aircraft's plane of symmetry. It's orientation remains fixed with respect to the aircraft.

A-1

a	Speed of sound in air	ft/sec
ay	Lateral acceleration along the Y-Body Axis at the center of gravity (positive out right wing)	ft/sec ²
a'y	Lateral acceleration parallel to the Y-Body Axis at a distance l_x and l_z from the c.g., $a'_y = a_y + l_x \dot{r} - l_z \dot{p}$	ft/sec ²
a _z	Normal acceleration along the Z-Body Axis at the c.g. (positive down)	ft/sec^2
a_{z}	Normal acceleration parallel to the Z-Body Axis at a distance l_X from the c.g., $a'_Z = a_Z - l_X \dot{q}$	ft/sec ²
Ъ	Reference wing span	ft
с	Reference chord	ft
CG	Center of gravity	
D	Aerodynamic force (drag) along the total velocity vector (positive aft)	lbs
g	Acceleration due to gravity	ft/sec^2
h	Altitude	ft
I_x , I_y , I_z	Moments of inertia referred to body axis	slug-ft ²
I _{XZ}	Product of inertia referred to body axis	slug-ft ²
പ്ര	The imaginary portion of the complex variable $s = \sigma \pm j\omega$	rad/sec
$l_{\mathbf{x}}$	Distance along the X-Body Axis from the c.g. (positive forward)	ft
lz	Distance along the Z-Body Axis from the c.g. (positive down)	ft
L	Rolling moment about the X-axis due to aerodynamic torques (positive right wing down)	ft-lb

Γ	Aerodynamic force (lift) perpendicular to the total velocity vector in the aircraft's plane of symmetry (positive up)	lbs
m	Mass	slugs
М	Mach number	
М	Pitching moment about the Y-axis due to aerodynamic torques (positive nose up)	ft-lb
MAC	Mean aerodynamic chord	ft
MGC	Mean geometric chord	ft
N	Aerodynamic normal force along the Z-Body Axis <u>but</u> positive up	lbs
N	Yawing moment about Z-axis due to aerodynamic torques (positive nose right)	ft-1bs
р	Roll rate, angular velocity about X-axis (positive right wing down)	rad/sec
đ	Pitch rate, angular velocity about Y-axis (positive nose up)	rad/sec
-	Dynamic pressure, 1/2 $\rho V_{T_O}^2$	lbs/ft ²
r	Yaw rate, angular velocity about Z-axis (positive nose right)	rad/sec
r _{RG}	Yaw rate gyro signal	rad/sec
S	Laplace operator, σ + j ω	rad/sec
S	Reference wing area	ft ²
T.E.	Trailing edge	
u	Linear perturbed velocity along the X-axis (positive forward)	ft/sec
Uo	Linear steady-state velocity along the X-axis (positive forward)	ft/sec
v	Linear perturbed velocity along the Y-axis (positive out right wing)	ft/sec
V _{To}	Total linear steady-state velocity (positive forward)	ft/sec

•

W	Linear perturbed velocity along the Z-axis (positive down)	ft/sec
W	Weight	lbs
Wo	Linear steady-state velocity along the Z-axis (positive down)	ft/sec
Х	Aerodynamic force along the X-axis (positive forward)	lbs
Y	Aerodynamic force along Y-axis (positive out right wing)	lbs
^z j	Perpendicular distance from c.g. to thrust line (positive for nose up pitching moment due to thrust)	ſt
Z	Aerodynamic force along Z-axis (positive down)	lbs
α	Perturbed angle of attack	rad
α_{0}	Steady-state (trim) angle of attack	deg
β	Sideslip angle	rad
γ _o	Steady-state flight path angle	deg
δ _a	Aileron control surface deflection, (includes spoiler effects, etc.), (positive for positive rolling moment)	rad
δ _e	Elevator surface deflection from trim, (positive for nose down pitching moment for aft surface)	rad
δ _{eo}	Trim elevator deflection	deg
δ _r	Rudder deflection $\begin{bmatrix} positive for nose \\ left yawing moment (negative N) \end{bmatrix}$	rad
Δ	Denominator of airframe transfer function	
ζ _i	Damping ratio of linear second order mode particularized by the subscript	
θ	Pitch angle, $\int q$ dt for straight and level flight, positive nose up	rad

,

ş.,

4

A-4

ί,

٤ ₀	Inclination of thrust line with X-axis [positive gives negative (-) Z force]	deg
ρ	Mass density of air	$slugs/ft^3$
σ	The real portion of the complex variable $s = \sigma \pm j\omega$	rad/sec
φ	Roll angle, $(\cos \theta_0 \mathbf{f} p dt - \sin \theta_0 \mathbf{f} r dt)$ in straight and level flight, (positive right wing down)	rad
ωį	Undamped natural frequency of a second order mode, particularized by subscript	rad/sec

Special Subscript

a	Aileron
d	Dutch roll
e	Elevator
р	Phugoid
r	Rudder
R	Roll subsidence
S	Spiral
sp	Short period

3. NONDIMENSIONAL DERIVATIVE DEFINITIONS

a) Longitudinal Body Axis

b) Longitudinal Stability Axis

Pitching moment

derivatives are

identical to

those for body axis

А-б

c) Lateral Body and Stability Axis

Though physically and numerically different,* see Appendix B, the same symbols are used for body axis and stability axis lateral rolling and yawing moment derivatives. The sideforce derivatives (C_y , etc.) are physically and numerically the same in both axis systems. When the rolling or yawing moment derivatives are given in this report the axis system is specified. When using the following all quantities should be for the same axis system.

$$\begin{array}{rcl} c_y &=& \frac{Y}{qS} & c_1 &=& \frac{L}{\bar{q}Sb} & c_n &=& \frac{N}{\bar{q}Sb} \\ c_{y_\beta} &=& \partial c_y / \partial \beta & c_{1_\beta} &=& \partial c_1 / \partial \beta & c_{n_\beta} &=& \partial c_n / \partial \beta \\ c_{y_\delta} &=& \partial c_y / \partial \delta & c_{1_p} &=& \frac{2VT_0}{b} \partial c_1 / \partial p & c_{n_p} &=& \frac{2VT_0}{b} \partial c_N / \partial p \\ c_{1_r} &=& \frac{2VT_0}{b} \partial c_1 / \partial r & c_{n_r} &=& \frac{2VT_0}{b} \partial c_N / \partial r \\ c_{1_\delta} &=& \partial c_1 / \partial \delta & c_{n_\delta} &=& \partial c_n / \partial \delta \end{array}$$

*The exception is the zero trim angle of attack condition.

4. DIMENSIONAL STABILITY DERIVATIVE DEFINITIONS

The same symbols are used for body- and stability-axis dimensional derivatives. Care should be exercised so that a consistent set of quantities are used.

a) Longitudinal Body Axis

$$X_{u}^{*} = X_{u} + T_{u} \cos \xi_{0} \qquad 1/\sec$$

$$X_{\rm u} = \frac{\rho SU_{\rm O}}{m} \left(-\frac{M}{2} C_{\rm X_{\rm M}} - C_{\rm X} + \frac{W_{\rm O}}{2U_{\rm O}} C_{\rm X_{\rm A}} \right) \qquad 1/{\rm sec}$$

$$X_{W} = \frac{\rho SU_{O}}{2m} \left[-C_{X_{\alpha}} - 2 \frac{W_{O}}{U_{O}} \left(C_{X} + \frac{M}{2} C_{X_{M}} \right) \right]$$
 1/sec

$$X_{\delta_e} = -\frac{\rho S V_{T_o}^2}{2m} C_{X_{\delta_e}} \frac{ft}{sec^2 rad}$$

$$Z_{u}^{*} = Z_{u} - T_{u} \operatorname{sin}_{\delta_{O}}$$
 1/sec

$$Z_{u} = \frac{\rho S U_{o}}{m} \left(-\frac{M}{2} C_{N_{M}} - C_{N} + \frac{W_{o}}{2U_{o}} C_{N_{\alpha}} \right)$$
 1/sec

$$Z_{W} = \frac{\rho SU_{O}}{2m} \left[-C_{N_{\alpha}} - 2 \frac{W_{O}}{U_{O}} \left(C_{N} + \frac{M}{2} C_{N_{M}} \right) \right]$$
 1/sec

$$Z_{\dot{w}} = -\frac{\rho Sc}{4m} \frac{U_{o}}{V_{T_{o}}} C_{N\dot{\alpha}}$$

$$Z_{\delta_{e}} = -\frac{\rho SV_{T_{o}}^{2}}{2m} C_{N\delta_{e}} \frac{ft}{sec^{2}rad}$$

$$M_{u}^{*} = M_{u} + \frac{Z_{jm}}{I_{y}} T_{u} \qquad \qquad \frac{1}{\text{sec-ft}}$$

$$M_{\rm u} = \frac{\rho S_{\rm c} U_{\rm o}}{2 I_{\rm y}} \left[\frac{M}{2} C_{\rm m} + C_{\rm m} - \frac{W_{\rm o}}{2 U_{\rm o}} C_{\rm m} \right] \frac{1}{\rm sec-ft}$$

$$M_{W} = \frac{\rho S c U_{O}}{2 I_{y}} \left[C_{m_{\alpha}} + \frac{2 W_{O}}{U_{O}} \left(C_{m} + \frac{M}{2} C_{m_{M}} \right) \right] \qquad \frac{1}{\text{sec-ft}}$$

$$M_{W} = \frac{\rho Sc^{2}}{4I_{y}} \frac{U_{o}}{V_{T_{o}}} C_{m_{\dot{\alpha}}} \frac{1}{sec-ft}$$

$$M_{\alpha} = U_0 M_W \qquad 1/sec^2$$

$$M_{\alpha}^{\bullet} = U_{O}M_{W}^{\bullet}$$
 1/sec

$$M_{q} = \frac{\rho S c^{2} V_{T_{o}}}{4 I_{y}} C_{m_{q}}$$
 1/sec

$$M_{\delta_e} = \frac{\rho S c V_{\Pi_o}^2}{2I_y} C_{m\delta_e}$$
 1/sec²

$$T_{u} = \frac{1}{am} \partial T / \partial M$$
 1/sec

b) Lateral Body Axis

$$\begin{split} Y_{V} &= (\rho S V_{T_{O}}/2m) C_{y_{\beta}} & 1/sec \\ Y_{\beta} &= V_{T_{O}} Y_{V} & ft/sec^{2} \\ Y_{\delta_{a}} &= (\rho S V_{T_{O}}^{2}/2m) C_{y_{\delta_{a}}} & ft/sec^{2} \end{split}$$

$$Y_{\delta_r} = (\rho S V_{T_o}^2 / 2m) C_{y_{\delta_a}}$$
 ft/sec²

$$Y_{\delta_r}^* = (\rho SV_{T_o}/2m)C_{y\delta_r}$$
 1/sec

$$L_{\beta} = (\rho S V_{T_o}^2 b/2 I_x) C_{l_{\beta}} \qquad 1/sec^2$$

$$L_{p} = (\rho SV_{T_{o}}b^{2}/4I_{x})C_{l_{p}}$$
 1/sec
$$L_{r} = (\rho SV_{T_{o}}b^{2}/4I_{x})C_{l_{r}}$$
 1/sec

S. .

A-10

APPENDIX B

RANSFORMATION OF NON-DIMENSIONAL STABILITY AXIS DERIVATIVES TO BODY AXIS

 $U_o = V_{T_o} \cos \alpha_o$ $W_o = V_{T_o} \sin \alpha_o$

B I

Body Axis

LONGITUDINAL

- $C_N = C_L \cos \alpha_0 + C_D \sin \alpha_0$
- $C_X = C_D \cos \alpha_0 C_L \sin \alpha_0$
- $\mathbf{C}_{\mathbf{N}_{\alpha}} = \mathbf{C}_{\mathbf{L}_{\alpha}} \mathbf{cos} \ \alpha_{\mathbf{0}} \mathbf{C}_{\mathbf{L}} \mathbf{sin} \ \alpha_{\mathbf{0}} + \mathbf{C}_{\mathbf{D}_{\alpha}} \mathbf{sin} \ \alpha_{\mathbf{0}} + \mathbf{C}_{\mathbf{D}} \ \mathbf{cos} \ \alpha_{\mathbf{0}}$
- $C_{N_{\alpha}^{\star}} = C_{L_{\alpha}^{\star}} \cos \alpha_{0}$
- $C_{N_M} = C_{L_M} \cos \alpha_0 + C_{D_M} \sin \alpha_0$
- $C_{N\delta} = C_{L\delta} \cos \alpha_0 + C_{D\delta} \sin \alpha_0$
- $C_{X_{\alpha}} = C_{D_{\alpha}} \cos \alpha_{o} C_{D} \sin \alpha_{o} C_{L_{\alpha}} \sin \alpha_{o} C_{L} \cos \alpha_{o}$
- $C_{X_M} = C_{D_M} \cos \alpha_0 C_{L_M} \sin \alpha_0$
- $C_{X_{\delta}} = C_{D_{\delta}} \cos \alpha_{o} C_{L_{\delta}} \sin \alpha_{o}$

 $C_m, C_{m_{\alpha}}, C_{m_{\dot{\alpha}}}, C_{m_{q}}, C_{m_{\dot{M}}}, C_{m_{\dot{N}}}$ - UNCHANGED

LATERAL

cy_β, cy_{δr}, cy_{δa} - UNCHANGED

÷ a

APPENDIX C

EQUATIONS OF MOTION, TRANSFER FUNCTIONS, AND COUPLING NUMERATORS

- 1. Longitudinal
 - a. Equations

$$\begin{bmatrix} s - X_{u}^{*} & -X_{w} & W_{o}s + g \cos \theta_{o} \\ -Z_{u}^{*} & (1 - Z_{w}^{*})s - Z_{w} & -U_{o}s + g \sin \theta_{o} \\ -M_{u}^{*} & -(M_{w}^{*}s + M_{w}) & s^{2} - M_{q}s \end{bmatrix} \begin{bmatrix} u \\ w \\ \theta \end{bmatrix} = \begin{bmatrix} X_{\delta e} \\ Z_{\delta e} \\ M_{\delta e} \end{bmatrix} \begin{bmatrix} \delta_{e} \end{bmatrix}$$

$$q = s\theta$$

$$h = -w \cos \theta_0 + u \sin \theta_0 + (U_0 \cos \theta_0 + W_0 \sin \theta_0)\theta$$

$$a_z = sw - U_0 q + (g \sin \theta_0)\theta$$

$$a_z' = a_z - l_x s^2 \theta$$

b. Transfer Functions

$$\frac{\theta}{\delta_{e}} = \frac{N_{\delta_{e}}^{\theta}}{\Delta}$$

1) Denominator, $\Delta = As^{4} + Bs^{3} + Cs^{2} + Ds + E$

$$A = (1 - Z_{W}^{*})$$

$$B = -(M_{q} + X_{u}^{*})(1 - Z_{W}^{*}) - Z_{W} - M_{\alpha}^{*}$$

$$C = M_{q}Z_{W} - M_{\alpha} + X_{u}^{*}[(M_{q})(1 - Z_{W}^{*}) + Z_{W} + M_{\alpha}^{*}]$$

$$- X_{w}Z_{u}^{*} + W_{o}[M_{W}^{*}Z_{u}^{*} + M_{u}^{*}(1 - Z_{W}^{*})] + gM_{W}^{*} \sin \theta_{0}$$

$$D = -X_{u}^{*}(M_{q}Z_{w} - M_{\alpha}) - M_{u}^{*}X_{\alpha} + M_{q}X_{w}Z_{u}^{*} + g[M_{w}Z_{u}^{*} + M_{u}^{*}(1 - Z_{w})]\cos\theta_{0} + W_{0}(M_{w}Z_{u}^{*} - M_{u}^{*}Z_{w})$$

+ $g(M_{w} - M_{w}X_{u}^{*})\sin\theta_{0}$
$$E = g(M_{w}Z_{u}^{*} - M_{u}^{*}Z_{w})\cos\theta_{0} + g(M_{u}^{*}X_{w} - M_{w}X_{u}^{*})\sin\theta_{0}$$

2) 8 Numerators

$$N_{\delta}^{\theta} = A_{\theta}s^{2} + B_{\theta}s + C_{\theta}$$

$$A_{\theta} = Z_{\delta}M_{w} + M_{\delta}(1 - Z_{w})$$

$$B_{\theta} = X_{\delta}[M_{w}Z_{u}^{*} + M_{u}^{*}(1 - Z_{w})] + Z_{\delta}(M_{w} - M_{w}X_{u}^{*}) - M_{\delta}[Z_{w} + X_{u}^{*}(1 - Z_{w})]$$

$$C_{\theta} = X_{\delta}(M_{w}Z_{u}^{*} - M_{u}^{*}Z_{w}) + Z_{\delta}(M_{u}^{*}X_{w} - M_{w}X_{u}^{*}) + M_{\delta}(Z_{w}X_{u}^{*} - X_{w}Z_{u}^{*})$$

$$\begin{split} \mathbb{N}_{\delta}^{u} &= A_{u}s^{3} + \mathbb{B}_{u}s^{2} + \mathbb{C}_{u}s + \mathbb{D}_{u} \\ A_{u} &= X_{\delta}(1 - \mathbb{Z}_{w}) \\ \mathbb{B}_{u} &= -X_{\delta}[M_{q}(1 - \mathbb{Z}_{w}) + \mathbb{Z}_{w} + \mathbb{M}_{a}] + \mathbb{Z}_{\delta}X_{w} - \mathbb{W}_{0}[\mathbb{Z}_{\delta}\mathbb{M}_{w}^{+} + \mathbb{M}_{\delta}(1 - \mathbb{Z}_{w})] \\ \mathbb{C}_{u} &= X_{\delta}(\mathbb{M}_{q}\mathbb{Z}_{w} - \mathbb{M}_{a}) - \mathbb{Z}_{\delta}(\mathbb{g}\mathbb{M}_{w}^{+} \cos \theta_{0} + \mathbb{M}_{q}X_{w}) + \mathbb{M}_{\delta}[X_{\alpha} - (\mathbb{g} \cos \theta_{0})(1 - \mathbb{Z}_{w}^{+})] \\ &+ \mathbb{W}_{0}(\mathbb{Z}_{w}\mathbb{M}_{\delta} - \mathbb{M}_{w}\mathbb{Z}_{\delta}) + \mathbb{g}X_{\delta}\mathbb{M}_{w}^{+} \sin \theta_{0} \\ \mathbb{D}_{u} &= \mathbb{g}(\mathbb{Z}_{w}\mathbb{M}_{\delta} - \mathbb{M}_{w}\mathbb{Z}_{\delta})\cos \theta_{0} + \mathbb{g}(X_{\delta}\mathbb{M}_{w} - \mathbb{M}_{\delta}X_{w})\sin \theta_{0} \end{split}$$

$$\begin{split} \mathbf{N}_{\delta}^{W} &= \mathbf{A}_{W} \mathbf{s}^{2} + \mathbf{B}_{W} \mathbf{s}^{2} + \mathbf{C}_{W} \mathbf{s} + \mathbf{D}_{W} \\ \mathbf{A}_{W} &= \mathbf{Z}_{\delta} \\ \mathbf{B}_{W} &= -\mathbf{Z}_{\delta} (\mathbf{M}_{q} + \mathbf{X}_{u}^{*}) + \mathbf{U}_{0} \mathbf{M}_{\delta} + \mathbf{X}_{\delta} \mathbf{Z}_{u}^{*} \\ \mathbf{C}_{W} &= \mathbf{X}_{u}^{*} (\mathbf{Z}_{\delta} \mathbf{M}_{q} - \mathbf{U}_{0} \mathbf{M}_{\delta}) + \mathbf{W}_{0} (\mathbf{Z}_{\delta} \mathbf{M}_{u}^{*} - \mathbf{M}_{\delta} \mathbf{Z}_{u}^{*}) - \mathbf{g} \mathbf{M}_{\delta} \sin \theta_{0} + \mathbf{X}_{\delta} (\mathbf{M}_{u}^{*} \mathbf{U}_{0} - \mathbf{Z}_{u}^{*} \mathbf{M}_{q}) \\ \mathbf{D}_{W} &= \mathbf{g} (\mathbf{Z}_{\delta} \mathbf{M}_{u}^{*} - \mathbf{M}_{\delta} \mathbf{Z}_{u}^{*}) \cos \theta_{0} + \mathbf{g} \mathbf{M}_{\delta} \mathbf{X}_{u}^{*} \sin \theta_{0} - \mathbf{X}_{\delta} \mathbf{M}_{u}^{*} \mathbf{g} \sin \theta_{0} \end{split}$$

C-2

$$N_{\delta}^{\dot{h}} = A_{\dot{h}} s^{3} + B_{\dot{h}} s^{2} + C_{\dot{h}} s + D_{\dot{h}}$$

$$A_{\dot{h}} = -\cos \theta_{0} A_{w} + \sin \theta_{0} A_{u}$$

$$B_{\dot{h}} = -\cos \theta_{0} B_{w} + \sin \theta_{0} B_{u} + (U_{0} \cos \theta_{0} + W_{0} \sin \theta_{0}) A_{\theta}$$

$$C_{\dot{h}} = -\cos \theta_{0} C_{w} + \sin \theta_{0} C_{u} + (U_{0} \cos \theta_{0} + W_{0} \sin \theta_{0}) B_{\theta}$$

$$D_{\dot{h}} = -\cos \theta_{0} D_{w} + \sin \theta_{0} D_{u} + (U_{0} \cos \theta_{0} + W_{0} \sin \theta_{0}) C_{\theta}$$

$$N_{\delta}^{a_{Z}^{\dagger}} = A_{a_{Z}^{\dagger}} s^{4} + B_{a_{Z}^{\dagger}} s^{5} + C_{a_{Z}^{\dagger}} s^{2} + D_{a_{Z}^{\dagger}} s + E_{a_{Z}^{\dagger}}$$

$$A_{a_{Z}^{\dagger}} = A_{W} - 1_{X} A_{\theta}$$

$$B_{a_{Z}^{\dagger}} = B_{W} - 1_{X} B_{\theta} - U_{0} A_{\theta}$$

$$C_{a_{Z}^{\dagger}} = C_{W} - 1_{X} C_{\theta} - U_{0} B_{\theta} + g \sin \theta_{0} A_{\theta}$$

$$D_{a_{Z}^{\dagger}} = D_{W} - U_{0} C_{\theta} + g \sin \theta_{0} B_{\theta}$$

$$E_{a_{Z}^{\dagger}} = + g \sin \theta_{0} C_{\theta}$$

To obtain a_z , let $l_x = 0$.

- 2. Lateral
 - a. Equations

$$\begin{bmatrix} s - Y_{v} & -\frac{W_{0}s + g \cos \theta_{0}}{V_{T_{0}}} & \frac{U_{0}s - g \sin \theta_{0}}{V_{T_{0}}s} \\ -I_{\beta} & s(s - L_{p}^{\dagger}) & -L_{r}^{\dagger} \\ -N_{\beta}^{\dagger} & -N_{p}^{\dagger}s & s - N_{r}^{\dagger} \end{bmatrix} \begin{bmatrix} \beta \\ \frac{p}{s} \\ r \end{bmatrix} = \begin{bmatrix} Y_{\delta_{a}} & Y_{\delta_{r}} \\ L_{\delta_{a}} & L_{\delta_{r}}^{\dagger} \\ N_{\delta_{a}} & N_{\delta_{r}}^{\dagger} \end{bmatrix} \begin{bmatrix} \delta_{a} \\ \delta_{r} \end{bmatrix}$$

$$v = V_{T_{0}}\beta & a_{y} = sv + U_{0}r - W_{0}p - g(\cos \theta_{0})\phi$$

$$\phi = \frac{p}{s} + \frac{r}{s} \tan \theta_{0} & a_{y}^{\dagger} = a_{y} + l_{x_{1}at} sr - l_{z}sp$$

$$\psi = \frac{1}{\cos \theta_{0}} \frac{r}{s}$$

b. Transfer Functions

$$\begin{split} \frac{\mathcal{P}}{\delta_{a}} &= \frac{N_{0}^{\mathcal{P}}}{\Delta_{lat}} \quad ; \quad \frac{r}{\delta_{r}} &= \frac{N_{0}^{\mathcal{P}}}{\Delta_{lat}} \quad ; \quad \text{etc.} \end{split}$$

$$1) \quad \text{Denominator, } \Delta_{lat} &= as^{l_{1}} + bs^{3} + cs^{2} + ds + e$$

$$a &= 1$$

$$b &= -(Y_{V} + L_{p}^{i} + N_{r}^{i})$$

$$c &= \frac{U_{o}}{V_{T_{o}}} N_{\beta}^{i} + L_{p}^{i}(Y_{V} + N_{r}^{i}) - N_{p}^{i}L_{r}^{i} + Y_{V}N_{r}^{i} - \frac{W_{o}L_{\beta}^{i}}{V_{T_{o}}}$$

$$d &= \frac{U_{o}}{V_{T_{o}}} (N_{p}^{i}L_{\beta}^{i} - L_{p}^{i}N_{\beta}^{i}) + Y_{V}(N_{p}^{i}L_{r}^{i} - L_{p}^{i}N_{r}^{i}) - \frac{g}{V_{T_{o}}} (L_{\beta}^{i} \cos \theta_{o} + N_{\beta}^{i} \sin \theta_{o})$$

$$&+ \frac{W_{o}}{V_{T_{o}}} (L_{\beta}^{i}N_{r}^{i} - N_{\beta}^{i}L_{r}^{i}) \\ e &= \frac{g}{V_{T_{o}}} [(L_{\beta}^{i}N_{r}^{i} - N_{\beta}^{i}L_{r}^{i}) \cos \theta_{o} - (N_{p}^{i}L_{\beta}^{i} - L_{p}^{i}N_{\beta}^{i}) \sin \theta_{o}] \end{split}$$

2) δ (δ_a or δ_r) Numerators

$$\begin{split} \mathbb{N}_{\delta}^{\beta} &= A_{\beta}s^{3} + B_{\beta}s^{2} + C_{\beta}s + D_{\beta} \\ \mathbb{A}_{\beta} &= \mathbb{Y}_{\delta}^{*} \\ \mathbb{B}_{\beta} &= -\mathbb{Y}_{\delta}^{*}[\mathbb{I}_{p}^{\dagger} + \mathbb{N}_{r}^{\dagger}] - \mathbb{N}_{\delta}^{\dagger}\frac{U_{o}}{\mathbb{V}_{T_{o}}} + \frac{\mathbb{W}_{o}}{\mathbb{V}_{T_{o}}}\mathbb{L}_{\delta}^{\dagger} \\ \mathbb{C}_{\beta} &= \mathbb{Y}_{\delta}^{*}(\mathbb{I}_{p}^{\dagger}\mathbb{N}_{r}^{\dagger} - \mathbb{N}_{p}^{\dagger}\mathbb{L}_{r}^{\dagger}) + \mathbb{L}_{\delta}^{\dagger}\frac{g}{\mathbb{V}_{T_{o}}}\cos\theta_{o} + (\mathbb{N}_{\delta}^{\dagger}\mathbb{L}_{p}^{\dagger} - \mathbb{L}_{\delta}^{\dagger}\mathbb{N}_{p}^{\dagger})\frac{U_{o}}{\mathbb{V}_{T_{o}}} \\ &+ \frac{\mathbb{W}_{o}}{\mathbb{V}_{T_{o}}}(\mathbb{N}_{\delta}^{\dagger}\mathbb{L}_{r}^{\dagger} - \mathbb{L}_{\delta}^{\dagger}\mathbb{N}_{r}^{\dagger}) + \mathbb{N}_{\delta}^{\dagger}\frac{g}{\mathbb{V}_{T_{o}}}\sin\theta_{o} \\ \mathbb{D}_{\beta} &= \frac{g}{\mathbb{V}_{T_{o}}}(\mathbb{N}_{\delta}^{\dagger}\mathbb{L}_{r}^{\dagger} - \mathbb{L}_{\delta}^{\dagger}\mathbb{N}_{r}^{\dagger})\cos\theta_{o} + \frac{g}{\mathbb{V}_{T_{o}}}(\mathbb{N}_{p}^{\dagger}\mathbb{L}_{\delta}^{\dagger} - \mathbb{N}_{\delta}^{\dagger}\mathbb{L}_{p}^{\dagger})\sin\theta_{o} \end{split}$$

$$N_{\delta}^{p} = A_{p}s^{3} + B_{p}s^{2} + C_{p}s + D_{p}$$

$$A_{p} = L_{\delta}^{i}$$

$$B_{p} = Y_{\delta}^{*}L_{\beta}^{i} - L_{\delta}^{i}(N_{r}^{i} + Y_{v}) + N_{\delta}^{i}L_{r}^{i}$$

$$C_{p} = Y_{\delta}^{*}(L_{r}^{i}N_{\beta}^{i} - L_{\beta}^{i}N_{r}^{i}) + L_{\delta}^{i}Y_{v}N_{r}^{i} - N_{\delta}^{i}Y_{v}L_{r}^{i} + (L_{\delta}^{i}N_{\beta}^{i} - N_{\delta}^{i}L_{\beta}^{i}) \frac{U_{o}}{VT_{o}}$$

$$D_{p} = -\frac{g}{V_{T}}(L_{\delta}^{i}N_{\beta}^{i} - N_{\delta}^{i}L_{\beta}^{i}) \sin \theta_{o}$$

L.

$$N_{\delta}^{r} = A_{r}s^{3} + B_{r}s^{2} + C_{r}s + D_{r}$$

$$A_{r} = N_{\delta}^{i}$$

$$B_{r} = Y_{\delta}^{*}N_{\beta}^{i} + L_{\delta}^{i}N_{p}^{i} - N_{\delta}^{i}(Y_{v} + L_{p}^{i})$$

$$C_{r} = Y_{\delta}^{*}(L_{\beta}^{i}N_{p}^{i} - N_{\beta}^{i}L_{p}^{i}) - L_{\delta}^{i}Y_{v}N_{p}^{i} + N_{\delta}^{i}Y_{v}L_{p}^{i} + \frac{W_{o}}{V_{T_{o}}}(L_{\delta}^{i}N_{\beta}^{i} - N_{\delta}^{i}L_{\beta}^{i})$$

$$D_{r} = \frac{g}{V_{T_{o}}}(L_{\delta}^{i}N_{\beta}^{i} - N_{\delta}^{i}L_{\beta}^{i}) \cos \theta_{o}$$

 $N_{\delta}^{\phi} = A_{\phi}s^2 + B_{\phi}s + C$

$$A_{\Phi} = A_{p} + A_{r} \tan \theta_{0}$$

$$B_{\Phi} = B_{p} + B_{r} \tan \theta_{0}$$

$$C_{\Phi} = C_{p} + C_{r} \tan \theta_{0}$$

C-5

$$N_{\delta}^{a,'y} = A_{a,y}^{i}s^{4} + B_{a,y}^{i}s^{5} + C_{a,y}^{i}s^{2} + D_{a,y}^{i}s + E_{a,y}^{i}$$

$$A_{a,y}^{i} = V_{T_{O}}A_{\beta} + l_{x_{1at}}A_{r} - l_{z}A_{p}$$

$$B_{a,y}^{i} = V_{T_{O}}B_{\beta} + U_{O}A_{r} - W_{O}A_{p} + l_{x_{1at}}B_{r} - l_{z}B_{p}$$

$$C_{a,y}^{i} = V_{T_{O}}C_{\beta} + U_{O}B_{r} - W_{O}B_{p} - g\cos\theta_{O}A_{\phi} + l_{x_{1at}}C_{r} - l_{z}C_{p}$$

$$D_{a,y}^{i} = V_{T_{O}}D_{\beta} + U_{O}C_{r} - W_{O}C_{p} - g\cos\theta_{O}B_{\phi} + l_{x_{1at}}D_{r} - l_{z}D_{p}$$

$$E_{a,y}^{i} = U_{O}D_{r} - W_{O}D_{p} - g\cos\theta_{O}C_{\phi}$$

To obtain ay, let $l_{x_{lat}} = l_{z} = 0$.