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ABSTRACT 

The object of this paper is to work out 
a kind of dynamo-theory that could come close 
to model oscillating hydrodynamic dynamos of 
interest, among other applications, to solar 

physics. 
To that effect, the author investigates 

to what magnetic configurations does the "hy-

dromagnetic activit y " of a convective cell 
lead if and when Coriolis forces are in action. 

The author resolves the problem for the 

simplest model.	 Its interest resides in the 
fact that it may be easily extended from this 
simplest particular case to diversified situa-
tions with resembling velocity fields. These 
may in their turn be interesting for applica-
tions, and this is why they are discussed in 
the present work.

*

*	 * 

Numerous observation data of the Sun suggest that there is 
below the solar photosphere surface a large-scale ("general") 
toroidal magnetic field, changing its sign every 11 years. For 
that reason model oscillating hydromagnetic dynamos are of interest 
to solar physics. The most characteristic type of plasma motion 
in the outer part of the Sun is the cellular . Benarov-type convec-

tion (whereby the matter rises at the center of each cell and then 
flows sideways and descends at the edges). The deeper layers are 
convectively stable; one account of insignificant ohmic dissi- 
pation, there the magnetic field can hardly rebuild itself within 

a perceptible time lapse.	 It is natural to expect, that the con-
vection in the sub-photospheric zone is to a great measure respon-
sible for the operation of the solar dynamo. In the most general 
traits its possible scheme can be represented as follows.
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The differential rotation of the Sun forms from the present 
weak meridional field a stronger azimuthal toroidal field. 	 Each

convective cell amplifies it still more by winding the lines of 
force of the toroidal field, while the action of the Coriolis 
forces results in the rotation of the entire pattern around the 
cell's axis. The diffusion of the magnetic field gradually smoothes 
out the inhomogeneities; owing to which a large-scale meridional 
field is generated with a sign opposite to the old one. After 
some time the meridional component of the general field changes its 
sign, and the whole process repeats itself. 

To work out such a kind of dynamo-theory one must investigate 
to what magnetic configurations does the hydromagnetic "activity" 
of the convective cell lead, if and when the Coriolis forces are 
in action. In the proposed work this problem is solved for the 
simplest model.	 It is interesting that from the chosen particular 
case, one can easily pass to diversified situations with resembling 
velocity fields. They may also be interesting in applications and 
that is why they are being discussed in the present work. 

In connection with the dynamo-problem, Tverskoy [liconsidered 
an axisymmetric vortex ring, in which the velocity of matter had no 
azimuthal component. The current lines are disposed in meridional 
vortex cross-section planes and constitute circumferences with cen-
ters at a distance ' a from the axis. All lines of radius r from the 
surface of a circular tore. 	 It is then practical to make use of 
the orthogonal system of coordinates r, 	 , X ' where	 is the azi-




muthal angle and X is the polar angle in the plane of the meridional 
cross-section. The Lam parameters are hr = 1, h = a + r cos X, 
h = r. 

Having assumed that not only v, but also v are not zero, we 
shall obtain a 8chematic representation of a convective cell with 
Coriolis perturbation of the velocity field. From the condition of 
incompressibility div v = 0, we find 

= V(r)/[l + (r/a)cos x] 

where V(r) is an arbitrary function equal to zero for r - r 0 (r 0 < a). 
We shall consider that v varies as a linear function of distance 
from the vertical axis a + r cos X along each X-line, i.e. 

= U[ b (r) - r cos)j, 

U being a constant dependent on the rotation velocity of the fluid 
as a whole.	 If the magnetic field is sufficiently weak, one may 

neglect its decelerating influence on the plasma and consider the 
motion as stationary (problem of kinematics). At great magnetic 
Reynolds numbers and in the course of a certain lapse of time beginning
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with the time of motion onset in the cell, the magnetic field is 
subject to the law of induction for an infinetly conducting fluid 

= rot[vH] 

or in components 

H r =	 1	 Hr	
aV(r)--} 

- r(a + r cos X) X)	 + ax (1) 

aV(r) = I	 lv(r,X)Hx - H + 
a + r' cos X	 r 

_[rv (r,X)Hr]}; (2) 
r 

DH X 1_______	 aV(r) =	 {a 3—[V(r)Hr]+	 -	 (3) a + r cos X	 r	 a + r cos x 

We shall seek the solution of Eq. (1) in the form 

H,-	 /(r, X)ez(t+mv). 

Having determined the function f(r,X) and applying it the 
condition of periodicity with respect to X, we shall obtain the 
discrete spectrum of frequencies. 

(r) == nQ (r) - n1' (r) .	 (4) 

Here Q(r) = V(r)/r (frequency of liquid particle motion along x), 

'Y(r) = Ub(r)/a (mean velocity of its displacemçnt along f); in, n = 
= 0 ± 1, ± 2 .....Finally 

JI, = A'" (r)	 (r, x)	
(5) 

where

= exp(--in[x + (r / a)iti xl 4- iinU(r/ aJ) (b / a + 1).1n x}, 

and Arm (r) is an arbitrary function. 

Taking into account that div	 = 0, we shall eliminate H from 

(3) and thus obtain a line equation for Hx with right-hand pat pro-
portional to H r . Substituting (5) it is possible to find the par-

tial solutions H Xmn . But if we consider that H Xmn depends on t as 

it will represent a traveling wave along x and 4, of which the 

amplitude increases infinitely with X. The periodical solution with 
respect to x must include instead of spatial rise, the 

temporal one,
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and have the form

I!,:"' = [iT mrt (r,:) .-+. fl"'n (r, S/ ) t 1Irnne(.)t9I.	 ( 6) 

Then we obtain for B <" and A) ' differential equations, of 

-which one yields

mn = B Xmn (r)/(a + r cos x) 

B Xmn being an arbittar function. From the second equation, upon 

substitution In it B Xm , we find AXmn dependent On B Xmn (r) and on 

the arbitrary function AX	
'1 

mn ( r ) . Having applied to A Xm (r,X) the 

requirement of periodicity, we determine BX(r). As a result 

= a +	
(r) - rsifl ; t " () ± ar 4- i:' (t:) 1]	

n;)•	 (7) 

Finally from Eq.2, which^Incidently is also easy to transform 
with the aid of equality div H = 0, we find Hq mn entirely analogously 

upon substitution of (5) and (7). The expression for Aq n is cum-
bersome. Here it makes sense to write out only B infl , which deter-

mines the part of Hq mn growing in time: 

U {- !t (t ± -- cos	 — -- 4- [a 4-b (r) -s-- cos A' (r).	 (8) 

The system of functions e_jthtx t h l Is orthogonal relative to 
weight 1 + (na) cos X and complete, inasmuch as it is reduced to 

system c1z by the mutually single-valued relation between 	 and X. 

Any function of r,	 and X may be represented by combination fmt1C" 

To that effect it must be expanded b y	 coefficients of ex-


pansion multiplied by c .Kp(_jj)jU(i-/aQ)(b/a+ 1 ) 3 i j 1 % } and expanded by eTIZ. 

In this way A r nfl ,	 and AXmn can, in principle, be always found 

from the initial conditions. 

The multiplier Imn( 1 ,X) C1 °mt7	 describes the transfer of the 

magnetic field - along 4a'nd X . Because of flow Inhomogeneity the 

spatial distribution of all harmonics H mn with n # 0 becomes more 

complex with time,- . for the periods of functions CI.,()f become shorter 
along r. This inhomogeneity leads to stretching of the field lines. 
and to the increases of amplitudes of Hqmn and HXmfl. 

The rapidity of 
velocities Q and Y. 
over all the others, 
ing part of harmonic 
in space does not va 
respect to in with n 
shifting alpng 4.

the increase depends on gradients of mean angular 
The terms proortional to t may become prevailing 

including Hr	 for a sufficient time. The grow-
H°° is characteristic in that its distribution 

ry. If	 << VX, the lower nonzero harmonics with 

= 0 maintain their regularity in space, slowly
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As was . shown by Tverskoy [1] the regular harmonics are those 
namely essential at computation of a large-scale field generated 
by a convective zone. This is why in order to investigate the 
operation of the dynamo it is sufficient to separate in the found 
solution the terms of time-growing zero harmonics with respect to 
n. If the initial field is uniform and horizontal with the bounds 
of the cell; only components with m = 1 are excited, and Ar 10 (r) is 

expressed by a Bessel function. 

The described scheme of the solution is also valid for a series 
of other problems. Assume that in an orthogonal system of coordi-
nates q 1 , q 2 , q 3 with Lame'am parameters h 1 , h 2 , h 31 the fluid's velo- 

city vector has the form v = v 1 9 v 2 ,0} and that all the current lines 

lie on surfaces q 3 = const. Let us introduce the "normalized" com- 
ponents of vectors	 and : 

Bi = H i /hi, Uj = vi/ h i (i = 1, 2, 3; u 3	 0) 

and denote h 1 h 2 h 3 = h. Let, moreover, u 1 and u 2 be independent of q1 
(or q 2 ; for determination we assume the first one). Besides the 
functions

j) ( q2 1 q;) = u "N2,	 X (92 , q) = (u1/u 2 ) dq., 

are defined everywhere in the region of flow, whereupon u 2 is never 

zero. The. equation div H = 0 and dlv v = 0 allow us to write the 
law of induction as in Descartes coordinates: 

OB I / 01 = 1120u  / Oq2 + B3011 1 I 0q -. 11 1011 1 / 0q 1 - u0I3 1 I 0q2; 
•	 (9) 

11)u 2 / 0q2 ± 113 011 2 / 0q 3 - u0D2 I dq -. u)B2 / Oqn;
(10) 

0B3/o1	 jql - u25113/0q2.	 (11)


OJ / 0/ =

 

One may always select on the plane an orthogonal net of coordi-

nates q 2 , q 31 that would include the prescribed family of smooth vec- 

torial lines of vector v	 {o, v 21 o}. This is why the introduced 
requirements are fulfilled and the further written solution is valid, 
so long as the flow is axisymmetrical (q 1 being the azimuthal angle) 

or when the q 1 -lines are parallel straight lines, while the velocity 
field is symmetrical relative to the transfer along these lines. Re-
lated to such a type is, for example, the outflow of solar wind: 
superimposed on the motion of radial straight q 2 -lines is the rota-
tion around the axis of symmetry with angular velocity dropping as 
the range from the center increases. Possible more comples velocity
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fields satisfy the enumerated conditions: for these it is useful 
to resolve the problem of the magnetic field. 

System (9)-(1) is resolved in the same manner as (l)-(3). 
The particular solution depending on arbitrary k and w is as 
follows:

-f- Au 1 -- 4 (OX/3q.	 - (Cr" ± C°u 1)(t (1)))	 (12) 

1 
=	 -	 C (1 -	 (	 ( 13) 

= i1 3 ('.	 (14) 

Here all A 4	 and c kw are arbitrary function of q 3 , and kw = 
=	 Depending upon the statement of the problem, the 
solution, satisfying the initial condition may be represented either 
by series of functions (12)-(14) or by their integrals over k and W. 

For example, in the problem of solar wind the region of flow is in-
finite and w has a continuous spectrum of values. At the same time 
one should postulate C 1	 = 0 (a nonperiodical de p endence on t may 
also be represented by a Fourier integral). But if the q2-lines 
are closed (as in the case of vortex) a discrete multitude of values 
of t3 will correspond to the given k; the geriodicity with respect to 
q 2 also dictates a specific choice of 	 . Formulas (12)-(14) are 
easiest to use when q 1 -lines are closed. If 4 1 and q 2 vary within 
the limits from 0 to 2it, Wmn will be given by formula (4), where one 
should postulate:

(qj) --- :!; / (1) (2,T, (;3), 	 I' (q:i) = X(2., q 3 ) / 1) 1% 2t, q3).	
(15) 

Then

C'mA'I"' [il'V/dq: - ( q.J) (lQ/(IsjJ,	
, ,nn = t	 'dQ/dq3,	 (16) 

where

== exp{ic),, (1 -- (t) 4- im(q I - X) }. 

I-f B 01 are the initial values of components of vector B, then 
Aj mfl (q 3 ) is determined as the coefficients of expansions 

,,.	 i:n(X.q'.') -	 inn -tnQD 
ii e 

fl 

by a system of functions of variable q 2 , which are orthogonal relative
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the weight	 (Q)/q 2 , whereupon F jm (q 2 , q 3 ) are the amplitudes in 

expansions

111 '+- [(tt 1 -- 'I) (t1) 119) ('/(I J3H	 (l'I'/(1(/ -f-

zi	 3X1aq l3 = 

B02/11 2 -- O(f,)q -f- ((I)/!2) dQ/dq 3 B03 =
in 

in 
13 

The fundamental traits of the solution of the generalized 
problem are discerned from analogy with the case of toroidal vortex. 
If v 1 = 0, (12)-(14) pass into formulas of the work [2], which are 
also valid at u 2 /3qi 0 0. 

* * *	 THE END	 * * * 

The Lomonosov Moscow
	 Manuscript received on 

State University
	 31 January 1969. 
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