FINAL REPORT

SOUND WAVE SHEAR WAVE INTERACTION WITH OBLIQUE SHOCK FRONTS

```
Report Covering Period September 1,1967 to August 31,1968
```

PRF No. 51.15

```
Contract No. NGR 15-005-056
```

Report Submitted
by

Kenneth R. Purdy
Principal Investigator
Associate Professor Mechanıcal Engineering

Purdue University
Lafayette, Indiana

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE

This final report was prepared by the staff of Purdue University, Lafayette, Indiana on Contract NGR 15-005-056 for National Aeronautics and Space Administration. The report presents the results of three studies I) Analytical mnestigation of sound wave-shock front interaction by Lynn E Snyder and K. R. Purdy; 2) Analytical investigation of shear wave-shock front anteraction by K. R. Purdy; and 3) Experimental anvestlgatıon of sound wave-shock front interaction by David W. McKinley and K. R. Purdy. The research was administered under the technical cognizance of Mr. Gllbert A. Wilhold, Aero-Astrodynamics Laboartory, George C. Marshall Space Flight Center. Mr. Wilhold'sinterest in this work is deeply appreciated.

TABLE OF CONTENTS

Page
ABSTRACT v
NOMENCLATURE vi
CHAPTER
I. INTRODUCTION 1
Statement of Intent 1
Historical Baskground 1.
Significance and Scope 4
II. ANALYTICAL INVESTIGATIONS 7
A. Sound Wave-Shock Front Interaction 7
Mathematical Formulation of the Problem 7
Reduction of the Governing Equations 13
Solution of the Governing Equations 15
Results 42
B. Shear Wave-Shock Front Interaction 44
Mathematical Formulation of the Froblem 44
Ribner's Solution 46
Oblique Shock Solution 52
Results 67
III. EXPERIMENTAL INVESTIGATIONS 69
Instrumentation and Equipment 69
Experımental Procedure 72
Results 74
IV. DISCUSSION OF RESULTS 77
Sound Wave-Shock Front Interaction 77
Shear Wave-Shock Front Interaction 79
Status of the Analytical Studies 79
V. CONCLUSIONS AND RECOMMENDATIONS 81
APPENDIX 83
A. FORTRAN IV PROGRAM FOR SOUND IIAVE-SHOCK FRONT INTERACTION 83
B. SOUND WAVE-SHOCK FRONT DATA 86
Page
C. FORTRAN II-D PROGRAM FOR SHEAR WAVE-SHOCK FRONT INTERACTION 94
D. SHEAR WAVE-SHOCK ERONT DATA 97
LITERATURE CITED 105

This report treats the flow field downstream of an oblique shock front that is perturbed by either plane sound waves or plane shean waves.

The sound wave analysis predicts that under certain conditions there exlsts an angle of incidence which produces shock wave resonance. This results in a large amplification of the sound pressure and in large amplitude motion of the shock front itself.

Experimental studies of sound wave-shock front interaction showed that the shock front is definitely excited by an impressed acoustic field. The shock front motion $1 s$ periodic and at the same frequency as the impressed sound field. Natural pressure fluctuations in the upstream flow also excited the shock front and amplifications at the shock front of 22 to 30 dB were found for frequencies from 20 to 2000 Hz .

The shear wave analysis contains some anomalies that have not been reconcıled. Therefore it requires critical review and, 15 necessary, revision before being used.

NOMENCLATURE

Sound Wave-Shock Front Interaction

Symbol

A_{2}	as defined in text
a_{i}	isentropic speed of sound in Region i
$\mathrm{B}_{\underline{i}}$	as defined an text
c_{i}	as defined in text
${ }^{\text {c }} \mathrm{p}$	constant pressure specific heat
c_{v}	constant volume specific heat
D_{i}	as defined in text
E_{1}	amplitude of shock front displacement
F_{1}	as defined in equation (41)
G_{1}	as defined in equation (42)
H_{1}	as defined in equation (43)
h	specific enthalpy of gas
L	as defined in text
M_{0}	acoustic Mach number, U_{0} / \bar{a}
M_{i}	Mach number in Region $i, W_{i} / \mathrm{a}_{\mathrm{i}}$
P.	pressure of gas
R	gas constant
r	$\mathrm{U}_{1} / \mathrm{U}_{2}$
s	specific entropy of gas
T	absolute temperature of gas
t	time
U_{i}	unperturbed velocity component in i-direction, or velocity component normal to shock front in Region i

\bar{U}_{i}	normal Mach number in Region $i, U_{i} / a_{i}$
$U_{o i}$	amplitude of sound particle velocity in Region i
u_{i}	velocity component in i-direction
$u_{i j}$	velocity component in i-direction in Region j
V_{I}	velocity component tangent to shock front in Region i
W_{I}	unperturbed velocity component in Region i
x	Cartesian coordinate normal to shock front
x_{i}	Cartesian coordinates
y	Cartesian coordinate tangent to shock front
z_{i}	as defined in text

Greek Symbols

α
shock front displacement
α
$\frac{\partial \alpha}{\partial y}$
$\alpha_{t} \quad \frac{\partial \alpha}{\partial t}$
$\beta \quad$ entropy-vorticity wave angle
γ
δ
$\eta_{i} \quad$ Cartesian coordinate n Region i
θ sound wave incidence angle
λ
ξ_{1}
ρ density of gas
shock wave angle
streamline direction (flow angle) in Region 2
$\phi^{\prime} \quad$ refracted-sound wave angle
circular frequency

Script Symbol

Subscripts	order of magnitude of
evw	entropy-vorticity wave perturbed sw
Superscripts wave	
-	perturbed component \sim
unperturbed component	
dimensionless form	

Symbol

A	function defined in equations (124), (150)
a	isentropic speed of sound
a_{A}	isentropic speed of sound in region A
a	function defined in equations (120), (148)
B	function defined in equation (125)
\tilde{b}	function defined in equation (121)
C	function defined in equation (114)
C^{\prime}	function defined in equations (122), (149)
\tilde{C}	function defined in equation (115)
D	function defined in equations (116), (143)
D^{\prime}	function defined in equation (123)
\tilde{d}	

T
t
$\mathrm{V}_{\mathrm{N}_{\mathrm{S}}}$

SPL sound pressure level
$T_{A} \quad$ absolute temperature of gas in region A

U stream velocity component in x-direction (Figure 13)
$\bar{U} \quad$ Mach number associated with U (U/a)
$\mathrm{U}_{\mathrm{A}} \quad$ stream velocıty component in x -d.rection (Figure 13)
stream velocaty component in y-direction (Figure 13)
function defined in equation (117)
function defined in equation (144)
function defined in equation (118)
function defined in equations (119), (145)
frequency
function defined in equation (146)
wave number of shear wave in region A
surface wave number of pressure wave
stream Mach number (\tilde{W}_{A} / a_{A})
velocity ratio across normal shock (U_{A} / U)
nodal pount on shock front (Figure 10)
period
pressure of gas
reference pressure ($\left.0.290 \times 10^{-8} \mathrm{psi}.\right)$
coefficient defined in equation (129)
coefficient defined in equation (152)
absolute temperature of gas'
time

Mach number associated with $U_{A}\left(U_{A} / a_{A}\right)$
nodal point speed

$\mathrm{v}_{\mathrm{p}_{\text {sur }}}$	surface pressure wave speed
W	stream velocity in ξ-direction (Figure 13)
\bar{W}	Mach number associated with W (W/a)
$\mathrm{W}_{\text {A }}$	stream velocity in ξ_{A}-direction (Figure 13)
$\tilde{W}_{\text {A }}$	stream velocity before oblique shock (Figure 10)
w	perturbation velocity component in ξ-direction
w	perturbation velocity component in $\tilde{\xi}$-darection
w^{\prime}	perturbation velocity component in n-direction
\tilde{w}^{\prime}	perturbation velocity component in \tilde{n}-direction
${ }^{\mathrm{W}}$ A	perturbation velocity (Figure 10)
$\tilde{W}_{\text {A }}$	perturbation velocity as defined in text
w_{p}	pressure wave velocity component in ξ-direction
w_{p}^{\prime}	pressure wave velocity component in n-direction
w_{s}	refracted shear wave velocity component in ξ-direction
$w_{s}{ }^{\prime}$	refracted shear wave velocity component in n-direction
x	rectangular coordinate (Figure 13)
~ ${ }^{\text {r }}$	rectangular coordinate (Figure 14)
y	rectangular coordinate (Eigure 13)
y	rectangular coordinate (Figure 14)

Greek Symbols

β^{\prime}	function defined in equation (109)
β_{W}	function defined in equations (112), (141)
γ^{\prime}	specific heat ratio
δ	turning angle across shock
δ_{p}	shear wave phase angle
δ_{S}	shear wave phase angle

'Sshock	shock deflection phase angle
$\delta \mathrm{p}$	perturbation pressure
$\delta \mathrm{x}$	local shock deflection
ε	measure of strength of incldent shear wave (equation (79))
n, \tilde{n}, η_{A}	rectangular coordinate (Figures 13, 14)
θ	shear wave incidence angle (Figuce 1.0)
$\tilde{\theta}$	shear wave ancidence angle (Figure 14)
θ_{cr}	critıcal value of θ (equation (80))
λ	wavelength of incident shear waves
$\lambda_{\text {sur }}$	wavelength of pressure waves
μ	Mach angle $\left(\tan ^{-1}\left(1 / \beta_{W}\right)\right)$
$\xi, \tilde{\xi}, \xi_{A}$	rectangular coordinate (Figures 13, 14)
II	as defined in text
In*	coefficient defined in equatıon (130)
П**	coefficient defined in equation (153)
σ	angle of shock to lncoming flow (Figure 10)
ϕ	refracted shear wave angle (Figure 14)
$\tilde{\phi}$	refracted shear wave angle (Figure 14)
ϕ^{\prime}	pressure wave angle (Figure 14)
$\underline{\phi}^{\prime}$	pressure wave angle (Figure 14)

Subscripts

A
o
rms
region A (upstream of shock)
evaluated at $\operatorname{shock}(\tilde{x}=0)$
root-mean-square

CHAPTER I

INTRODUCTION

Statement of Intent

The intent of this investigation is to conduct an analytical and an experimental investigation of the flow field produced by the interaction of sound waves and shear waves with an oblique shock front.

The analytical phase of this work deals with an extension of the normal shock analyses to the oblique shock case; the experimental phase entails a pilot study of the pressure field associated with the sound wave shock front interaction phenomenon.

Historical Background

Although there have been analytical studies of sound wave and shear wave interactions with normal shocks, there has been no investigation of their interactions with stationary oblique shock fronts. Consequently this discussion will be devoted to the previous research efforts involving normal shocks that are most germane to the proposed research. The classic work in this area has been done by H. S. Ribner, F. K. Moore and W. R. Johnson.

Ribner's inıtial study [1]* was concerned with the

[^0]convection of a pattern of vorticity through a normal shock. It treated the simple case of a plane sinusoidal shear wave of any orientation and wavelength. The interaction of such a wave wath a normal shock front produced: (i) a refracted shear wave of altered wavelength and amplitude (the intensity of the shear wave is increased), (ii) an entropy wave which moves with the flow downstream of the shock, (iii) either a "pressure" wave or a sound wave depending on the orientation of the initial shear wave (the pressure wave is quite intense just behind the shock, but it is exponentially damped with distance downstream from the ṣhock front), and (iv) a distorted shock front. A relatively weak initial shear wave was found to produce a surprisingly intense pressure wave or sound field downstream of the shock.

Later studies by Ribner [2] and Ram and Ribner [3] extended the plane shear wave case to those of the passage of (i) both isotropic and strongly axisymmetrical initıal turbulence and (ii) a columnar vortex through a normal shock front.

Moore [4], in his investigations, considered the unsteady oblique interaction of a normal shock wave with a plane disturbance. His analyses treated a normal shock wave traveling into a perfect gas which is at "rest". Solutions were given for three cases of interaction: (1) plane sound waves propagating in the "rest gas" into which the shock moves, (ii) plane sound waves overtaking the shock front from behind, and (iii) stationary incompressible vorticity waves in the gas
ahead of the shock. In the first case the sound waves were refracted either as simple isentropic sound waves or as attenuating asentropic pressure waves depending on the orientation of the initial sound waves. A stationary vorticity wave was also produced behind the shock. In the second case the sound waves were reflected as sound waves and a stationary vorticity wave was produced. The third case was the same as Ribner's initial study [1]. However, Moore treated it as a completely unsteady problem whereas Ribner transformed it into a steady flow problem.

Johnson [5], in his Ph.D. dissertation, considered the interaction of plane and cylindrical sound waves with a stationary normal shock. His plane wave case was the same as the first two cases of Moore's study except that the shock front was stationary in Johnson's analysis and it was moving in the analyses of Moore. Johnson's analysıs, however, strengthened the mathematical foundation for the plane wave case in that it was not necessary to appeal to physical reasoning for the form of certain functions.

Purdy [6] considered the convection of a plane sound wave of arbitrary orientation and wavelength through a stationary oblique shock front. While this appears to be a simple extension of the studies by Moore and Johnson, it was found that the shock front oscillations appear to be unstable for certain combinations of initial Mach number, shock front angle and sound wave incidence angle. This investigation formed the basis for the research program reported herein.

The most recent work appearang in the literature is that of Lowson [7]. It contains computations based on the methods of Ribner [2] and Moore [4] for shear wave and sound wave interactions with normal shock fronts. The computations are compared with experimental data.

Significance and Scope

The study of plane shear wave and plane sound wave interaction with oblique shock fronts is an abstraction of at least two very significant physical phenomena, namely, the pressure field assoclated with the oscillating oblique shock front produced by an axisymmetric step, and the pressure field associated with a supersonic fluid jet.

The first phenomenon is currently a problem area for large launch vehicles since sizeable pressure fluctuations have been found to exist at interstage flares. It is quite possible that these fluctuations are due to the interaction of turbulent wakes, from the launch escape tower and vehicle protuberences, with the oblique shocks at the flares. It is also possible that in wind tunnel tests the tunnel sound field interaction with these shocks also contributes to the measured pressure fluctuations. When oblique shocks occur in series as they do for many current configurations the problem is compounded. If, For example, shear waves interact with the first shock then the intensified shear waves and the concomitant sound waves and/or pressure waves will all/both interact with the next shock. It is clear that each
interaction could yield a fluctuating pressure field which would be stronger than the previous one. For the case of a flare the reattachment shock should oscillate with a larger amplitude and produce more intense pressure waves and/or sound waves than the separation shock.

The second phenomenon is characterized by multiple shocks and therefore the reasoning given above should be applicable here as well.

Although the models that are to be analyzed are much simplier than the actual phenomena, they should portray the characteristic behavior of such processes and they should also predict typical orders of magnitude for the pressure fluctuations.

The research reported herein is specifically concerned with the following problems:

1. The analytical prediction of the flow field downstream of a stationary oblique shock front when plane sound waves are present in the flow. The sound waves are to be of arbitrary orientation and wavelength and they have their origin upstream of the shock Eront.
2. The analytical prediction of the flow field downstream of a stationary oblique shock front for the convection of a plane sinusoidal shear wave of arbitrary orientation and wavelength through the shock.
3. The experimental investigation of the sound pressure field upstream and downstream of a statıonary oblique shock front when sound waves interact with the shock.

In the two analytical studies the medium will be assumed to be an inviscid perfect gas. The experimental study will. utilize atmospheric air as the working fluid. The specific objectives of this research are:

1. To obtain mathematical expressions for the velocity field, the pressure field, the density field, the shock front displacement, and the shock front velocity as functions of the upstream Mach number, the shock front angle, and the angle of incidence and wavelength of (i) plane sound waves and (ii) plane sinusoidal shear waves interacting with a stationary oblique shock front.
2. To obtaln experimental data for the acoustic pressure field associated with the interaction of sound waves and a stationary oblique shock front, and
3. To compare the experimental data for sound pressure amplification across the shock front with the values predicted by the mathematical model for sound wave shock front interaction..

A. Sound Wave Shock Front Interaction

The perturbed flow field downstream of a stationary oblique shock front produced by the convection-propagation of plane sound waves through the shock front is to be determined. This analysis represents an extension of the earlier analyses of Rıbner [1] and Moore [4]; its main objective is to provide a simple means for computing the change in the acoustic properties across a specific oblique shock front.

Mathematical Formulation of the Problem

To formulate a mathematically tractable problem, it is assumed that the acoustic pressure is sufficiently small for the pressure waves to travel at the isentropic speed in the undisturbed uniform flow. This wave speed is relative to an observer moving with the flow.

Unsteady-Flow Problem. The flow field shown in Figure l 1 s unsteady as viewed by an observer on the shock. front since, in general, the nodal lines will either move up or down the shock front. The nodal speed along the shock is given by

[^1](see Figure 2)
\[

$$
\begin{equation*}
v_{s_{W y_{1}}}=\left[M_{1} \cos \sigma+\sin \theta\right] a_{1} \tag{1}
\end{equation*}
$$

\]

There seems to be no advantage to changing the point of view to one in which the nodal lines are stationary since. the resulting problem would still be unsteady. Thus the governing equations will be obtained for the cartesian coordinate system shown in Figure 1.

Governing Equations. The assumptions upon which the governing equations will be based are Assumptions
I. Two-dimensional flow
2. Inviscid flow
3. Adiabatıc flow
4. No body forces
5. Perfect gas
6. Small perturbation of a uniform flow; that is, for Cartesian coordinates x_{i}, with corresponding velocity components u_{1}, we have $\mathrm{u}_{1}=\mathrm{u}_{1}+\mathrm{u}_{1}^{\mathbf{1}}, \mathrm{u}_{2}=\mathrm{u}_{2}^{\mathbf{\prime}}$ (Figure 3); $p=\bar{p}+p^{\prime}, \rho=\bar{\rho}+\rho^{\prime}, T=\bar{T}+T^{\prime}$, and $s=\bar{s}+s^{\prime}$ with

$$
\mathrm{u}_{1}^{\prime} / \mathrm{U}_{\mathrm{l}}, \quad \mathrm{u}_{2}^{\prime} / \mathrm{U}_{1}, \mathrm{p}^{\prime} / \overline{\mathrm{p}}, \rho^{\prime} / \overline{\mathrm{p}}, \mathrm{~T}^{\prime} / \overline{\mathrm{T}}
$$

and s^{\prime} / \bar{s} much less than one.

The governing equations are

1. Continuity
$\frac{1}{\rho} \frac{D \rho}{D t}+\frac{\partial u_{i}}{\partial x_{i}}=0$

The continuity equation has a simpler form for the flow under consideration, since, for this flow,

$$
u_{1}=U_{1}+u_{1}^{\prime}, u_{2}=u_{2}^{\prime}, u_{3}=0 \text { and } u_{1}=\text { constant. }
$$

Therefore, the continuity equation is

$$
\begin{equation*}
\frac{I}{\rho} \frac{D \rho}{D t}+\frac{\partial u_{1}^{\prime}}{\partial x_{1}}+\frac{\partial u_{2}^{\prime}}{\partial x_{2}}=0 \tag{2}
\end{equation*}
$$

2. Momentum

$$
\frac{\partial u_{i}}{\partial t}+u_{j} \frac{\partial u_{i}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}},
$$

or If the momentum equations are written in terms of the perturbation quantities

$$
\begin{aligned}
& {\left[1+\rho^{\prime} / \bar{\rho}\right] \frac{\partial u_{1}^{\prime}}{\partial t}+u_{1} \frac{\partial u_{1}^{\prime}}{\partial x_{1}}+u_{1}^{\prime} \frac{\partial u_{1}^{\prime}}{\partial x_{1}}+u_{2}^{\prime} \frac{\partial u_{1}^{\prime}}{\partial x_{2}}=-\frac{1}{\bar{\rho}} \frac{\partial p^{\prime}}{\partial x_{1}}} \\
& {\left[1+\rho^{\prime} / \bar{\rho}\right] \frac{\partial u_{2}^{\prime}}{\partial t}+U_{1} \frac{\partial u_{2}^{\prime}}{\partial x_{1}}+u_{1}^{\prime} \frac{\partial u_{2}^{\prime}}{\partial x_{1}}+u_{2}^{\prime} \frac{\partial u_{2}^{\prime}}{\partial x_{2}}=-\frac{1}{\bar{\rho}} \frac{\partial p^{\prime}}{\partial x_{2}}}
\end{aligned}
$$

Since the sound field characterizes the perturbations and it is assumed to be composed of simple sinusoidal waves, the foregoing equations will be nondimensionalized in terms of the wavelength λ and the circular frequency ω of these waves. The following dimensionless variables are chosen such that derivatives with respect to dimensionless position and time will be of the order of magnitude of one and the
dimensionless velocity components, pressure and density will be of the order of magnitude of one:

$$
\begin{aligned}
& x_{1}=\tilde{x}_{1} \frac{\lambda}{2 \pi} \\
& x_{2}=\tilde{x}_{2} \frac{\lambda}{2 \pi} \\
& t=\tilde{t} / \omega=\tilde{t} \frac{\lambda}{2 \pi \bar{a}} \\
& U_{1}=\tilde{u}_{1} U_{1} \\
& u_{1}^{\prime}=\tilde{u}_{1}^{\prime} U_{01} \\
& u_{2}^{\prime}=\tilde{u}_{2}^{\prime} U_{02} \\
& \bar{\rho}=\tilde{\bar{\rho}} \bar{\rho} \\
& \rho \\
& \rho^{\prime}=\tilde{\rho}^{\prime} \bar{\rho} \frac{U_{0}}{\bar{a}} \\
& \bar{p}=\tilde{\bar{p}} \bar{p} \\
& p^{\prime}=\tilde{p}^{\prime} r \bar{p} \frac{U_{0}}{\bar{a}}
\end{aligned}
$$

where

$$
\begin{aligned}
& U_{0}^{2}=U_{01}^{2}+u_{02}^{2} \\
& \bar{a}^{2}=\gamma \bar{p} / \bar{\rho}
\end{aligned}
$$

The momentum equations in dimensionless form are

$$
\left[1+M_{0} \tilde{\rho}^{\prime} / \tilde{\bar{\rho}}\right] \frac{U_{01}}{U_{0}} \frac{\partial \tilde{u}_{i}}{\partial \tilde{t}}+\frac{U_{01}}{U_{0}} \frac{U_{1}}{\bar{a}} \tilde{U}_{1} \frac{\partial \tilde{u}_{i}}{\partial \tilde{x}_{1}}+
$$

$$
1 * \quad \delta 1 / 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1
$$

$$
\frac{U_{01}}{U_{0}} \frac{U_{01}}{\bar{a}} \tilde{u}^{\prime} \frac{\partial \tilde{u}_{i}}{\partial \tilde{x}_{1}}+\frac{U_{01}}{U_{0}} \frac{U_{02}}{\bar{a}} \tilde{u}_{2} \frac{\partial \tilde{u}_{i}}{\partial \tilde{x}_{2}}=-\frac{1}{\bar{\rho}} \frac{\partial p^{\prime}}{\partial \tilde{x}_{1}}
$$

$$
\begin{array}{llllllllll}
1 & \delta & 1 & 1 & 1 & \delta & 1 & 1 & 1 / 1 & 1
\end{array}
$$

[^2]and
\[

$$
\begin{aligned}
& {\left[1+M_{0} \tilde{\rho}^{\prime} / \tilde{\tilde{\rho}}\right] \frac{U_{02}}{U_{0}} \frac{\partial \tilde{u}_{2}^{\prime}}{\partial \tilde{t}}+\frac{U_{02}}{U_{0}} \frac{U_{1}}{\bar{a}} \tilde{U}_{1} \frac{\partial \tilde{u}_{2}^{\prime}}{\partial \tilde{x}_{1}}+} \\
& 1 \delta 1 / 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\
& \frac{U_{01}}{U_{0}} \frac{U_{02}}{\vec{a}} \tilde{u}_{1}^{\prime} \frac{\partial \tilde{u}_{2}^{\prime}}{\partial \tilde{x}_{1}}+\frac{U_{02}}{U_{0}} \frac{U_{02}}{\bar{a}} \tilde{u}_{2}^{\prime} \frac{\partial \tilde{u}_{2}^{\prime}}{\partial \tilde{x}_{2}}=-\frac{1}{\tilde{\rho}} \frac{\partial \tilde{p}^{\prime}}{\partial \tilde{x}_{2}}
\end{aligned}
$$
\]

where

$$
\begin{aligned}
U_{0}= & \text { amplitude of the sound particle velocity, } \\
U_{01}= & U_{0} \cos \theta, \\
U_{02}= & U_{0} \sin \theta, \\
\theta= & \text { angle between the sound wave propagation } \\
& \text { direction and the } x_{1} \text { axis, }
\end{aligned}
$$

and where the following order of magnitudes are assumed:

```
ORDER (U
```

These assumptions are consistent with supersonic flow and Iinear acoustics.

Retaining only those terms that are of the order of magnitude of one we have, in dimensional form,

$$
\begin{equation*}
\frac{\partial u_{1}^{\prime}}{\partial t}+u_{1} \frac{\partial u_{1}^{\prime}}{\partial x_{1}}=-\frac{1}{\bar{\rho}} \frac{\partial p^{\prime}}{\partial x_{1}} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u_{2}^{\prime}}{\partial t}+U_{1} \frac{\partial u_{2}^{\prime}}{\partial x_{i}}=-\frac{1}{\rho} \frac{\partial p^{\prime}}{\partial x_{2}} \tag{3b}
\end{equation*}
$$

3. Equation of State

For the assumed perfect gas we have

$$
\begin{aligned}
& p=\rho R T \\
& h=C_{p} T \\
& T d s=d h-\frac{d p}{\rho} \\
& a^{2}=\gamma R T
\end{aligned}
$$

The combination of these equations yields

$$
\frac{d \rho}{\rho}=\frac{d p}{\rho a^{2}}-\frac{d s}{C_{p}}
$$

Integration between the unperturbed state and the perturbed state gives the following approximate relation ${ }^{*}$

$$
\begin{equation*}
\frac{\rho^{\prime}}{\bar{\rho}}=\frac{p^{\prime}}{\bar{\rho} \bar{a}^{2}}-\frac{s^{\prime}}{c_{p}} \tag{4}
\end{equation*}
$$

4. Energy

It was assumed that there is no heat transfer between a fluid particle and its surroundings; thus changes of state are adiabatic. If the shock front is excluded from the flow field (the shock front will serve as a boundary condition for the flow field), the changes of state of a fluid particle are

$$
\text { This assumes that } \int \frac{d \rho}{\rho} \approx \frac{1}{\tilde{\rho}} \int \mathrm{~d} \rho \text { and that } \int \frac{\mathrm{d} p}{\rho a^{2}} \approx \frac{1}{\rho \bar{a}^{2}} \int \mathrm{~d} p \text {. }
$$

also reversible. Thus

$$
\begin{equation*}
\frac{D s}{D t}=0 . \tag{5}
\end{equation*}
$$

Reduction of the Governing Equations

The momentum equations have already been reduced to a linear form by an order of magnitude analysis. In order to further simplify the governing equations the density will now be eliminated from the continuity equation.

Since the density, pressure and entropy are Eulerian variables,

$$
\begin{aligned}
& d \rho=\frac{\partial \rho}{\partial t} d t+\frac{\partial \rho}{\partial x_{i}} d x_{i} \\
& d p=\frac{\partial p}{\partial t} d t+\frac{\partial p}{\partial x_{i}} d x_{i} \text { and } \\
& d s=\frac{\partial s}{\partial t} d t+\frac{\partial s}{\partial x_{i}} d x_{i}
\end{aligned}
$$

Substitutıng the foregoing equations into the differential form of equation (4), dividing by dt and taking the limit as dt approaches zero results in the following expression for a fluid particle

$$
\frac{I}{\bar{\rho}} \frac{D \rho}{D t}=\frac{I}{\bar{\rho}^{2}} \frac{D p}{D t}-\frac{I}{C_{p}} \frac{D s}{D t} .
$$

However, from equation (5), $\frac{D S}{D t}=0$, and therefore

$$
\frac{1}{\bar{\rho}} \frac{D \rho}{D t}=\frac{1}{\bar{\rho} \bar{a}^{2}} \frac{D p}{D t} \equiv \frac{I}{\bar{\rho} \bar{a}^{2}}\left[\frac{\partial p}{\partial t}+u_{1} \frac{\partial p}{\partial x_{1}}+u_{2} \frac{\partial p}{\partial x_{2}}\right] \text {. }
$$

We have expressed the static pressure, p, as the sum of a time-mean component, \bar{p}, and a time-dependent component, p^{\prime} 。 Since the unperturbed flow field is uniform, \bar{p} is constant. Thus $p=\bar{p}+p^{\prime}$ and consequently $\frac{\partial p}{\partial t}=\frac{\partial p}{\partial t}$, $\frac{\partial p}{\partial x_{1}}=\frac{\partial p^{\prime}}{\partial x_{1}}$ and $\frac{\partial p}{\partial x_{2}}=\frac{\partial p^{\prime}}{\partial x_{2}}$. Introducing dimensionless variables, as previously defined, the substantial derivative of the density becomes

$$
\begin{array}{r}
\frac{1}{\bar{\rho}} \frac{D_{\rho}}{D t}=\frac{2 \pi \bar{a}}{\lambda} \frac{U_{0}}{\bar{a}}\left[\frac { 1 } { \overline { \overline { \rho } } \tilde { \overline { z } } ^ { 2 } } \left[\frac{\partial \tilde{p}^{\prime}}{\partial \tilde{t}}+\frac{U_{1}}{\bar{a}} \tilde{U}_{1} \frac{\partial \tilde{p}^{\prime \prime}}{\partial \tilde{x}_{1}}+\right.\right. \\
1 / 1 \cdot I \quad 1 \quad 1 \\
1
\end{array}
$$

If only those terms in the bracket that are of the order of magnitude of one are retained, then, in dimensional form, we have

$$
\frac{1}{\bar{\rho}} \frac{D \rho}{D t}=\frac{1}{\bar{\rho} \bar{a}^{2}}\left[\frac{\partial p^{\prime}}{\partial t}+U_{1} \frac{\partial p^{\prime}}{\partial x_{1}}\right]
$$

Substituting the foregoing equation and equation (3a)
into equation (2) we obtain

$$
\begin{equation*}
\frac{1}{\rho \bar{a}^{2}} \frac{\partial p^{\prime}}{\partial t}-\frac{U_{1}}{\bar{a}^{2}} \frac{\partial u_{1}^{\prime}}{\partial t}+\left[1-\frac{u_{1}^{2}}{\bar{a}^{2}}\right] \frac{\partial u_{1}^{\prime}}{\partial x_{1}}+\frac{\partial u_{2}^{\prime}}{\partial x_{2}}=0 \tag{6}
\end{equation*}
$$

[^3]Finaliy, the governing equations have been reduced to a set of partial differential equations that express the acoustic pressure field in terms of the velocity; that is, equations (3a), (3b) and (6), rewritten as

$$
\begin{align*}
& \frac{\partial p^{\prime}}{\partial x_{1}}=-\bar{\rho}\left[\frac{\partial u_{1}^{\prime}}{\partial t}+u_{1} \frac{\partial u_{1}^{\prime}}{\partial x_{1}}\right], \tag{7a}\\
& \frac{\partial p^{\prime}}{\partial x_{2}}=-\bar{\rho}\left[\frac{\partial u_{2}^{\prime}}{\partial t}+u_{1} \frac{\partial u_{2}^{\prime}}{\partial x_{1}}\right], \tag{7b}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial p^{\prime}}{\partial t}=\bar{p}\left[U_{1} \frac{\partial u_{1}^{\prime}}{\partial t}-\bar{a}^{2}\left[1-\frac{U_{1}^{2}}{\bar{a}^{2}}\right] \frac{\partial u_{1}^{\prime}}{\partial x_{1}}-\bar{a}^{2} \frac{\partial u_{2}^{\prime}}{\partial x_{2}}\right], \tag{7c}
\end{equation*}
$$

with

$$
\begin{equation*}
d p^{\prime}=\frac{\partial p^{\prime}}{\partial t} d t+\frac{\partial p^{\prime}}{\partial x_{1}} d x_{1}+\frac{\partial p^{\prime}}{\partial x_{2}} d x_{2} \tag{7d}
\end{equation*}
$$

Solution of the Governing Equations

The solutions to equations (7) in the regions upstream and downstream of the shock front are linked to one another through the oblique shock front relations. These boundary conditions will be presented at this point in the analysis.

Boundary Conditions. The unperturbed and perturbed oblique shock system is shown in Figure 4. From Figure 4 it follows that

$$
\begin{align*}
& \mathrm{V}_{1}=\mathrm{W}_{1} \cos \sigma, \tag{8a}\\
& \mathrm{U}_{1}=W_{1} \sin \sigma, \tag{8b}\\
& \mathrm{~V}_{I_{\mathrm{P}}}=\mathrm{V}_{1} \cos \alpha_{y}+\mathrm{U}_{1} \sin \alpha_{y}+u_{11}^{\prime} \cos \left(\sigma-\alpha_{y}\right)+ \\
& u_{21}^{\prime} \sin \left(\sigma-\alpha_{y}\right) \tag{8c}
\end{align*}
$$

and

$$
\begin{gather*}
U_{1 p}=U_{1} \cos \alpha_{y}-V_{1} \sin \alpha_{y}+u_{11}^{\prime} \sin \left(\sigma-\alpha_{y}\right)- \\
u_{21}^{\prime} \cos \left(\sigma-\alpha_{y}\right)-\alpha_{t} \tag{8d}
\end{gather*}
$$

Since only small perturbations are being considered it is assumed that $\cos \alpha_{y} \simeq 1, \sin \alpha_{y} \simeq \alpha_{y}$ and products of perturbations are negligible in comparison to perturbation quantities alone. Under these assumptions equations (8) reduce to

$$
\begin{equation*}
v_{1 p} \simeq\left[W_{1}+u_{11}^{\prime}\right] \cos \sigma+\left[W_{1} \alpha_{y}+u_{21}^{\prime}\right] \sin \sigma \tag{9a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1 p}=\left[w_{1}+u_{11}^{\prime}\right] \sin \sigma-\left[w_{1} \alpha_{y}+u_{21}^{\prime}\right] \cos \sigma-\alpha_{t} \tag{9b}
\end{equation*}
$$

For an oblique shock the tangential velocity component is unaltered by the shock whereas the normal velocity component experiences a normal shock. The normal shock relation is (reference 8)

$$
\begin{equation*}
\frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}=\frac{\rho_{2}}{\rho_{1}}=\frac{\frac{\gamma+1}{2} \overline{\mathrm{U}}_{1}^{2}}{1+\frac{\gamma-1}{2} \bar{U}_{1}^{2}} \equiv r \tag{10}
\end{equation*}
$$

or, in differential form

$$
\begin{equation*}
\frac{d U_{2}}{U_{2}}=\frac{d U_{1}}{U_{1}}+2\left[r \frac{\gamma-1}{\gamma+1}-1\right] \frac{d \bar{U}_{1}}{\tilde{U}_{1}} \tag{11}
\end{equation*}
$$

Now, by definition, $\bar{U}_{1} \equiv U_{1} / a_{1}$ and therefore

$$
\frac{d \bar{U}_{1}}{\bar{U}_{1}}=\frac{d \mathrm{U}_{1}}{\mathrm{U}_{1}}-\frac{\mathrm{da}_{1}}{\mathrm{a}_{1}} .
$$

Substituting this relation into equation (11) gives

$$
\begin{equation*}
\frac{\mathrm{dU}_{2}}{\mathrm{U}_{2}}=\left[2 r \frac{\gamma-1}{\gamma+1}-1\right] \frac{\mathrm{dU}_{1}}{U_{1}}-\left[2 r \frac{\gamma-1}{\gamma+1}-2\right] \frac{\mathrm{d} \mathrm{a}_{1}}{\mathrm{a}_{1}} \tag{12}
\end{equation*}
$$

Assuming that

$$
\mathrm{dU}_{1} \simeq \mathrm{U}_{1 \mathrm{p}}-\mathrm{U}_{1}
$$

and

$$
\mathrm{dU}_{2} \simeq \mathrm{U}_{2 \mathrm{p}}-\mathrm{U}_{2}=\mathrm{U}_{2 \mathrm{p}}-\frac{1}{\mathrm{r}} \mathrm{U}_{1}
$$

we have

$$
\mathrm{U}_{2 \mathrm{p}} \simeq \mathrm{U}_{2}+\mathrm{dU}_{2}=\frac{1}{\mathrm{r}} \mathrm{U}_{1}\left[1+\frac{\mathrm{dU}_{2}}{\mathrm{U}_{2}}\right]
$$

or

$$
\begin{align*}
U_{2 p} \simeq \frac{1}{r} U_{1}[1+ & {\left[2 r \frac{\gamma-1}{\gamma+1}-1\right] \frac{d U_{1}}{U_{1}}-} \\
& {\left.\left[2 r \frac{\gamma-1}{\gamma+1}-2\right] \frac{d a_{1}}{a_{1}}\right] } \tag{13a}
\end{align*}
$$

Again, for an oblique shock

$$
\begin{equation*}
v_{2 p}=v_{1 p} \tag{13b}
\end{equation*}
$$

Solving for $\frac{\mathrm{dU}_{1}}{\mathrm{U}_{1}}$ we obtain

$$
\frac{d U_{1}}{U_{1}} \simeq \frac{U_{1 p}}{U_{1}}-I
$$

or

$$
\frac{d U_{1}}{U_{1}} \simeq \frac{u_{11}^{\prime}}{W_{1}}-\cot \sigma \frac{u_{21}^{\prime}}{W_{1}}-\cot \sigma \alpha_{y}-\csc \sigma \frac{\alpha t}{W_{1}}
$$

Solving for $\frac{\mathrm{da}_{1}}{\mathrm{a}_{1}}$, from first order acoustics we have

$$
\frac{p_{1}^{\prime}}{\bar{p}_{1}}=\gamma \frac{u_{1}^{\prime}}{\vec{a}_{1}}
$$

and

$$
\frac{T_{1}^{\prime}}{\bar{T}_{1}}=\frac{\gamma-1}{\gamma} \frac{p_{1}^{\prime}}{\bar{P}_{1}}=(\gamma-1) \frac{u_{1}^{\prime}}{\bar{a}_{1}}
$$

For the assumed perfect gas

$$
a_{1}^{2}=\gamma R T_{1}
$$

and therefore

$$
\frac{\mathrm{da}_{1}}{\mathrm{a}_{1}}=\frac{1}{2} \frac{\mathrm{~d} \mathrm{~T}_{1}}{\mathrm{~T}_{1}} .
$$

If it is assumed that $\frac{\mathrm{dT}_{1}}{\mathrm{~T}_{1}} \simeq \frac{\mathrm{~T}_{1}^{\prime}}{\mathrm{T}_{1}}$, then

$$
\frac{d a_{1}}{a_{1}}=\frac{\gamma-1}{2} \frac{u_{1}^{\prime}}{a_{1}}
$$

Now the acoustic particle velocity in Region 1 (upstream of the shock front), u_{1}, is related to the perturbation velocity components in Region 1 in the following way (see Figure 5)

$$
\begin{equation*}
u_{11}^{\prime}=u_{1}^{\prime} \sin (\sigma+\theta) \tag{15a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{21}^{\prime}=-u_{1}^{\prime} \cos (\sigma+\theta) \tag{15b}
\end{equation*}
$$

Substituting equations (15) into equation (14) yields

$$
\begin{equation*}
\frac{d U_{1}}{U_{1}}=\frac{u_{1}^{\prime}}{W_{1}} \csc \sigma \cos \theta-\alpha_{y} \cot \sigma-\frac{\alpha t}{W_{1}} \csc \sigma . \tag{16}
\end{equation*}
$$

The perturbation velocity components in Region 2 at the shock front are given by (see Figure 4)

$$
u_{12}^{\prime}=u_{2 p} \cos \left(\phi+\alpha_{y}\right)+v_{2 p} \sin \left(\phi+\alpha_{y}\right)-W_{2}
$$

and

$$
u_{22}^{\prime}=v_{2 p} \cos \left(\phi+\alpha_{y}\right)-U_{2 p} \sin \left(\phi+\alpha_{y}\right) .
$$

Noting that α_{y} is small (by assumption) and that

$$
W_{2}=W_{1} \cos \sigma \csc \phi
$$

we have

$$
\begin{aligned}
u_{12}^{\prime}= & U_{2 p}\left[\cos \phi-\alpha_{y} \sin \phi\right]+ \\
& v_{2 p}\left[\sin \phi+\alpha_{y} \cos \phi\right]- \\
& W_{1} \cdot \cos \sigma \csc \phi
\end{aligned}
$$

and

$$
\begin{aligned}
u_{22}^{\prime}= & v_{2 p}\left[\cos \phi-\alpha_{y} \sin \phi\right]- \\
& U_{2 p}\left[\sin \phi+\alpha_{y} \cos \phi\right] .
\end{aligned}
$$

Written in terms of the perturbation quantities in Region I and neglecting products of perturbations, these become

$$
\begin{equation*}
u_{12}^{\prime}=A_{2} u_{1}^{\prime}+B_{2} w_{1} \alpha_{y}+c_{2} \alpha_{t} \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{22}^{\prime}=A_{3} u_{1}^{\prime}+B_{3} W_{1} \alpha_{y}+c_{3} \alpha_{t} \tag{17b}
\end{equation*}
$$

where, by definition,

$$
\begin{aligned}
& A_{1}=\left[2 r \frac{\gamma-1}{\gamma+1}-1\right] \csc \sigma \cos \theta+\left[\gamma-1-r \frac{(\gamma-1)^{2}}{\gamma+1} M_{1}\right] \\
& B_{1}=-\left[2 r \frac{\gamma-1}{\gamma+1}-1\right] \cot \sigma \\
& C_{1}=-\left[2 r \frac{\gamma-1}{\gamma+1}-1\right] \csc \sigma
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}=\sin \theta \sin \phi+\frac{A_{1}}{r} \sin \sigma \cos \phi \\
& B_{2}=\sin \sigma \sin \phi+\frac{\mathrm{B}_{1}}{r} \sin \sigma \cos \phi \\
& C_{2}=\frac{C_{1}}{r} \sin \sigma \cos \phi \\
& A_{3}=\sin \theta \cos \phi-A_{1} \cos \sigma \cos \phi \\
& B_{3}=\sin \sigma \cos \phi-\cos \sigma \csc \phi-B_{1} \cos \sigma \cos \phi \\
& C_{3}=-C_{1} \cos \sigma \cos \phi
\end{aligned}
$$

To relate the perturbed pressure in Region 2 at the shock to the perturbation properties $u_{i}^{\prime}, \alpha_{y}$ and α_{t}, the pressure rise across an oblique shock front, as given by reference 8 , namely

$$
\begin{equation*}
\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{2 \gamma}{\gamma+1} \overline{\mathrm{U}}_{1}^{2}-\frac{\gamma-1}{\mathrm{r}+1} \tag{18}
\end{equation*}
$$

will be used. In differential form, equation (18) becomes

$$
\frac{d p_{2}}{p_{2}}=\frac{d p_{1}}{p_{1}}+\frac{4 \gamma \bar{U}_{1}^{2}}{2 \gamma \bar{U}_{1}^{2}-(\gamma-1)} \frac{d \bar{U}_{1}}{\bar{U}_{1}}
$$

As before it is assumed that $\frac{\mathrm{d}_{1}}{\mathrm{p}_{1}} \simeq \frac{\mathrm{p}_{1}^{\prime}}{\overline{\mathrm{p}}_{1}}$ and $\frac{\mathrm{d}_{2}}{\mathrm{p}_{2}} \simeq \frac{\mathrm{p}_{2}^{\prime}}{\overline{\mathrm{p}}_{2}}$ and, therefore,

$$
\begin{equation*}
\frac{\mathrm{p}_{2}^{\prime}}{\overline{\mathrm{P}}_{2}}=\frac{\mathrm{A}_{4}}{\bar{a}_{1}} u_{1}^{1}+\mathrm{B}_{4} \alpha_{y}+\frac{\mathrm{C}_{4}}{\tilde{W}_{1}} \alpha_{t} \tag{19}
\end{equation*}
$$

where

$$
A_{4}=\frac{2 \gamma \bar{U}_{1}^{2}-\gamma(\gamma-1)}{2 \gamma \bar{U}_{1}^{2}-(\gamma-1)}+\frac{4 \gamma \bar{U}_{1}^{2}}{2 \gamma \bar{U}^{2}-(\gamma-1)} \cos \theta,
$$

$$
B_{4}=-\frac{4 \gamma \bar{U}_{1}^{2}}{2 \gamma \tilde{U}_{1}^{2}-(\gamma-I)} \cot \sigma,
$$

and

$$
C_{4}=-\frac{4 \gamma \overline{\mathrm{U}}_{1}^{2}}{2 \gamma \overline{\mathrm{U}}_{1}^{2}-(\gamma-1)} \csc \sigma
$$

To relate the perturbed density in Region 2 at the shock to the perturbation properties u_{l}, α_{y} and α_{t} the density ratio across the shock, as given by reference 8 , namely

$$
\begin{equation*}
\frac{\rho_{2}}{\rho_{1}}=\frac{U_{1}}{U_{2}} \tag{20}
\end{equation*}
$$

or

$$
\frac{\bar{\rho}_{2} \pm \rho_{2}^{1}}{\vec{\rho}_{1}+\rho_{1}^{1}}=\frac{\mathrm{U}_{1}+\mathrm{d} U_{1}}{\mathrm{U}_{2}+\mathrm{d} U_{2}}
$$

will be used. Neglecting products of perturbation quantities, it can be shown that

$$
\frac{\rho_{2}^{\prime}}{\bar{\rho}_{2}}=\frac{\rho_{1}^{\prime}}{\bar{\rho}_{1}}+\frac{d U_{1}}{U_{1}}-\frac{d U_{2}}{U_{2}}
$$

or, substituting for $\rho_{1}^{\prime} / \bar{\rho}_{1}, ~ d U_{1} / U_{1}$ and $d U_{2} / U_{2}$ previously derived expressions in terms of $u_{1}^{\prime}, \alpha_{y}$ and α_{t},

$$
\begin{equation*}
\frac{\rho_{2}^{\prime}}{\bar{\rho}_{2}}=\frac{A_{5}}{\bar{a}_{1}} u_{1}^{\prime}+B_{5} \alpha_{y}+\frac{c_{5}}{W_{1}} \alpha_{t} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{5}=1-2\left[\frac{\csc \sigma \cos \theta}{M_{1}}+\frac{\gamma-1}{2}\right]\left[r \frac{\gamma-1}{\gamma+1}-1\right] \\
& B_{5}=-2\left[r \frac{\gamma-1}{\gamma+1}-1\right]
\end{aligned}
$$

and

$$
c_{5}=-2\left[r \frac{\gamma-1}{\gamma+1}-1\right] \csc \sigma .
$$

With the boundary conditions given by equations (I7),
(19) and (21) it is now possible to solve for the perturbation properties in Region 2 in terms of those for Region $I^{\prime \prime}$.

Sound Field in Region 1 . For the plane sound field shown in Figure l the acoustic particle velocity and acoustic. pressure are, respectively,

$$
\begin{equation*}
u_{1}^{\prime}=U_{0} \cos \left[\frac{\omega_{1} z_{1}}{\bar{a}_{1}}-\omega_{1} t\right] \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}^{\prime}=\gamma \frac{U_{0}}{\bar{a}_{1}} \bar{p}_{1} \cos \left[\frac{\omega_{1} z_{1}}{\bar{a}_{1}}-\omega_{1} t\right] . \tag{23}
\end{equation*}
$$

From Figure 5 it is seen that the z_{1}-axis is in rectilinear motion in the ξ_{1}-direction and it lies at an angle of ($\sigma+\theta-\pi / 2$) with respect to the ξ_{1}-axis. Thus, since the z_{1}-axis moves with speed W_{1},

$$
\begin{equation*}
z_{1}=\left[\xi_{1}-W_{1} t\right] \sin (\sigma+\theta)-\eta_{1} \cos (\sigma+\theta) \tag{24}
\end{equation*}
$$

and, therefore, equations (22) and (23) may be written as

$$
\begin{array}{r}
u_{1}^{\prime}=u_{0} \cos \left[\frac { \omega _ { 1 } } { \overline { a } _ { 1 } } \left[\left[\xi_{1}-W_{1} t\right] \sin (\sigma+\theta)-\right.\right. \\
\left.\left.n_{1} \cos (\sigma+\theta)\right]-\omega_{1} t\right] \tag{25}
\end{array}
$$

and

$$
\begin{align*}
& p_{1}^{\prime}=\gamma \frac{U_{0}}{\bar{a}_{1}} \bar{p}_{1} \cos \left[\frac { \omega _ { 1 } } { \vec { a } _ { 1 } } \left[\left[\xi_{1}-W_{1} t\right] \sin (\sigma+\theta)-\right.\right. \\
&\left.\left.n_{1} \cos (\sigma+\theta)\right]-\omega_{1} t\right] \tag{26}
\end{align*}
$$

If the transformation $x_{1}=\xi_{1}, x_{2}=\eta_{1}$ and $U_{1}=W_{1}$ is made, then equations (25) and (26) exactly satisfy equation (6). Thus equations (3a), (3b) and (6) are consistent with linear acoustic theory.

Sound Field in Region 2. For a restricted range of sound wave incidence angles the pressure perturbation downstream of the shock front will be entirely due to acoustic waves. This range of angles will now be determined.

Consider a fluid particle at the point P_{1} in Figure 6 at time t. At this same point and time a sound wave interacts with the shock front and a cylindrical sound wave is assumed to be generated. At time $t+\delta t$ the plane sound wave front in Region l intersects (interacts with) the shock front at point P_{2} and the cylindrical wave has spread a radial distance $a_{2} \delta t$ from an origin tied to the fluid particle that has moved from P_{1} to P_{1}^{\prime}, a distance $W_{2} \delta t$. .

If P_{2} lies outside the cylindrical wave front, a refracted sound wave is generated; if not, a pressure wave is formed and the original assumption is invalid. Two limiting cases exist for θ for the existence of acoustic waves in Region 2; namely the two values of θ, say θ_{c}, for which P_{2} lies at the intersection of the cylindrical wave front and the shock front. This is shown in Figure 7 for one of the critical angles.

From Figure 7 it can be shown that

$$
L=\left[1+M_{1} \sin \left(\sigma+\theta_{c}\right)\right] \csc \theta_{c} \bar{a}_{1} \delta t
$$

and

$$
L=\left[M_{2} \sin \phi \pm\left[I-M_{2}^{2} \cos ^{2} \phi\right]^{1 / 2}\right] \bar{a}_{2} \delta t
$$

where, in the second equation for L, the (+) is used if $0<\theta_{c}<\pi$ and the (-) is used if $-\pi<\theta_{c}<0$. Equating these expressions results in

$$
\begin{align*}
{\left[1+M_{1} \sin \left(\alpha+\theta_{c}\right)\right] } & \csc \theta_{c}=\left[M_{2} \sin \phi \pm\right. \\
& {\left.\left[1-M_{2}^{2} \cos ^{2} \phi\right]^{1 / 2}\right] \frac{\bar{a}_{2}}{\bar{a}_{1}} } \tag{27}
\end{align*}
$$

Assuming that θ is such that acoustic waves do exist in Region 2, expressions for the acoustic velocity and pressure will now be determined. A typical wave front pattern is shown in Figure 8. Letting the z_{2}-axis be in rectilinear motion in the ξ_{2}-direction with the speed W_{2}, the acoustic waves are given by

$$
\begin{equation*}
u_{2}^{\prime}=u_{0} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right] \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{p}_{2}^{\prime}=\gamma \frac{\mathrm{U}_{0}}{\bar{a}_{2}} \bar{p}_{2} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right] . \tag{29}
\end{equation*}
$$

Now z_{2} may be written in terms of ξ_{2}, η_{2}, t and H_{2} as

$$
\begin{equation*}
z_{2}=\left[\xi_{2}-W_{2} t\right] \cos \left(\phi-\phi^{\prime}\right)-n_{2} \sin \left(\phi-\phi^{\prime}\right) \tag{30}
\end{equation*}
$$

At the shock front the arguments in Regions 1 and 2 must match since the functional form of the acoustic waves was assumed to be the same in both of these regions. Thus

$$
\begin{aligned}
& \frac{\omega_{2}}{\bar{a}_{2}}\left[\left[\xi_{2}-W_{2} t\right] \cos \left(\phi-\phi^{\prime}\right)-\eta_{2} \sin \left(\phi-\phi^{\prime}\right)\right]-\omega_{2} t= \\
& \frac{\omega_{1}}{\bar{a}_{1}}\left[\left[\xi_{1}-W_{1} t\right] \sin (\sigma+\theta)-n_{1} \cos (\sigma+\theta)\right]-\omega_{1} t
\end{aligned}
$$

and along the shock front

$$
\begin{aligned}
& \eta_{1}=\xi_{1} \tan \sigma, \\
& \eta_{2}=\xi_{2} \cot \phi,
\end{aligned}
$$

and

$$
\xi_{2}=\xi_{1} \sin \phi \sec \sigma
$$

Solving these equations for ω_{2} and ϕ^{\prime} yields

$$
\begin{align*}
& \frac{\omega_{2}}{\omega_{1}}=\frac{1+M_{1} \sin (\sigma+\theta)}{1+M_{2} \cos (\phi-\phi)}, \\
& \frac{\omega_{2}}{\omega_{1}}=\frac{\vec{a}_{2}}{\bar{a}_{1} \sin \theta} \tag{31}
\end{align*}
$$

and combining these last two equations to eliminate ω_{2} / ω_{1} gives

$$
\begin{equation*}
\frac{\bar{a}_{2} \sin \theta}{\bar{a}_{1} \sin \phi}=\frac{1+M_{1} \sin (\sigma+\theta)}{1+M_{2} \cos \left(\phi-\phi^{\prime}\right)} \tag{32}
\end{equation*}
$$

In summary, the angle of the refracted sound wave, the shift in frequency, and the angles of incidence that yield refracted sound waves have been determined. The only remaining quantity of interest is U_{0}, the amplitude of the acoustic particle velocity. This can be found only after the shock front displacement is determined.

Shock Front Displacement, $\alpha(y, t)$. The shock front, displacement should be a periodic function of distance along the shock front, y, and time, t. From equation (31) the wavelength is

$$
\begin{equation*}
\lambda_{S I}=\frac{\lambda_{I}}{\sin \theta}=\frac{\lambda_{2}}{\sin \phi} . \tag{33}
\end{equation*}
$$

When acoustic waves exist in Region 2 it is assumed that the shock front perturbation velocity, α_{t}, and the sound particle velocity, u_{l}^{\prime}, have the same functional form. Thus

$$
\begin{gather*}
\alpha(y, t)=E_{1} \sin \left[\frac{\omega_{1}}{\bar{a}_{1}} \sin \theta y-\left[1+M_{1} \sin (\sigma+\theta)\right] \omega_{1} t\right] \\
\alpha_{t}=-E_{1}\left[1+M_{1} \sin (\sigma+\theta)\right] \omega_{1} \cos \left[\frac{\omega_{1}}{\bar{a}_{1}} \sin \theta y-\right. \\
 \tag{35}\\
\left.\left[1+M_{1} \sin (\sigma+\theta)\right] \omega_{1} t\right]
\end{gather*}
$$

and

$$
\begin{align*}
\alpha_{y}=E_{1} \frac{\omega_{1}}{\bar{a}_{1}} \sin \theta \cos & {\left[\frac{\omega_{1}}{\bar{a}_{1}} \sin \theta y-\right.} \\
& {\left.\left[I+M_{1} \sin (\sigma+\theta)\right] \omega_{1} t\right] . } \tag{36}
\end{align*}
$$

Entropy-Vorticity Waves in Region 2. Since the entropy in Region 1 is constant (by assumption) and the strength of the shock front is variable, the entropy in Region 2 will be variable. Thus entropy-vorticity waves are convected downstream with the velocity \vec{W}_{2}. To an observer moving with the flow in Region 2, the entropy is a function of position alone since the acoustic compression-rarefaction process has been assumed to be isentropic.

The entropy-vorticity wave front in Region 2 generated 1
by a plane sound wave in Region 1 is shown in Figure 9. The $E-V$ wave front ray angle, β, is given by

$$
\begin{equation*}
B=\tan ^{-1}\left[\frac{M_{1} \cos \sigma \cot \phi \sin \theta}{1+M_{1} \sin \sigma \cos \theta}\right] \tag{37}
\end{equation*}
$$

The E-V wavelength is

$$
\begin{equation*}
\lambda_{\text {evw }}=\lambda_{1} \frac{\sin \beta}{\sin \theta} \tag{38}
\end{equation*}
$$

and since the z_{3}-axis moves rectilinearly in the ξ_{2}-direction

$$
\begin{equation*}
z_{3}=\left[\xi_{2}-W_{2} t\right] \cos (\phi-\beta)-\eta_{2} \sin (\phi-\beta) \tag{39}
\end{equation*}
$$

Thus the argument of the entropy-vorticity wave, $2 \pi z_{3} / \lambda_{\text {evw }}$, can be shown to be

$$
\begin{equation*}
\frac{2 \pi z_{3}}{\lambda_{\mathrm{evw}}}=\frac{2 \pi \sin \theta\left[\left[\xi_{2}-W_{2} t\right] \cos (\phi-\beta)-\eta_{2} \sin (\phi-\beta)\right]}{\lambda \sin \beta} \tag{40}
\end{equation*}
$$

Perturbation Velocity Components in Region 2. The perturbation velocity components in Region 2 consist of two parts: one due to the sound field and one due to the vorticity waves. Assuming the vorticity waves to be of the same functional form as the sound waves, the perturbation velocity components may be written as

$$
\begin{array}{r}
u_{12}^{\prime}=U_{0} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right] \cos \left(\phi-\phi^{\prime}\right)+ \\
F_{1} \cos \left[\frac{2 \pi z_{3}}{\lambda_{\text {evw }}}\right] \tag{4I}
\end{array}
$$

and

$$
\begin{gather*}
u_{22}^{\prime}=-u_{0} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right] \sin \left(\phi-\phi^{\prime}\right)+ \\
G_{1} \cos \left[\frac{2 \pi z_{3}}{\bar{\lambda} e v w}\right] \tag{42}
\end{gather*}
$$

Perturbation Pressure in Region 2. From equations (3a) and (3b) it can be shown that the perturbation pressure in Region 2 is only that associated with the sound field; that is

$$
\begin{equation*}
\frac{\mathrm{p}_{2}^{\prime}}{\overline{\mathrm{p}}_{2}}=\gamma \frac{\mathrm{U}_{0}}{\overline{\mathrm{a}}_{2}} \cos \left[\frac{\omega_{2}}{\overline{\mathrm{a}}_{2}} z_{2}-\omega_{2} t\right] \tag{29}
\end{equation*}
$$

Perturbation Density in Region 2. With only an acoustic pressure perturbation in Region 2 the perturbation density is composed of an acoustic part and an entropy-vorticity part; that is

$$
\begin{equation*}
\frac{\rho_{2}^{\prime}}{\bar{\rho}_{2}}=\frac{\mathrm{U}_{0}}{\bar{a}_{2}} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right]+H_{1} \cos \left[\frac{2 \pi z_{3}}{\overline{\lambda_{e v w}}}\right] \tag{43}
\end{equation*}
$$

In review, there are now five unknown quantities in Region 2; namely, $E_{1}, F_{1}, G_{1}, H_{1}$ and $U_{0_{2}}$. There are only four equations relating these to known quantities at this point in the analysis and, therefore, an additional relation, the continuity equation in Region 2 , will now be derived.

Continuity Equation in Region 2. Consider a change in variables in Region 2 such that

$$
\xi_{3}=\xi_{2}-W_{2} t
$$

and

$$
n_{3}=n_{2} ;
$$

that is, a change to a coordinate system that moves with the unperturbed flow. Now, in terms of ξ_{3} and η_{3},

$$
z_{2}=\xi_{3} \cos \left(\phi-\phi^{\prime}\right)-\eta_{3} \sin \left(\phi-\phi^{\prime}\right)
$$

and

$$
z_{3}=\xi_{3} \cos (\phi-\beta)-n_{3} \sin (\phi-\beta)
$$

Equation (2), written in dimensionless form for the ξ_{3}, η_{3} coordinate system, is

$$
\begin{aligned}
& \frac{\partial \tilde{\rho}_{2}^{I}}{\partial \tilde{t}}+\frac{\tilde{U}_{0}}{\bar{a}_{2}} \cos \left(\phi-\phi^{\prime}\right) \frac{\partial \tilde{\rho}_{2}^{\prime}}{\partial \tilde{\xi}_{3}}-\frac{U_{0}}{\bar{a}_{2}} \sin \left(\phi-\phi{ }^{\prime}\right) \frac{\partial \tilde{\rho}_{2}^{\prime}}{\partial \tilde{n}_{3}}+ \\
& \begin{array}{lllllll}
1 & \delta & 1 & 1 & \delta & 1 & 1
\end{array} \\
& {\left[\tilde{\bar{\rho}}_{2}+\frac{\mathrm{U}_{0}}{\bar{z}_{2}} \tilde{\rho}_{2}^{\prime}\right]\left[\cos \left(\phi-\phi^{\prime}\right) \frac{\partial \tilde{u}_{12}^{\prime}}{\partial \tilde{\xi}_{3}}-\sin \left(\phi-\phi{ }^{\prime}\right) \frac{\partial \tilde{u}_{22}^{\prime}}{\partial \tilde{n}_{3}}\right]=0 .} \\
& \begin{array}{lllllll}
1 & \delta & 1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Retaining only those terms that are of the order of magnitude of one, this becomes, in dimensional form,

$$
\begin{equation*}
\frac{\partial \rho_{2}^{\prime}}{\partial t}+\bar{\rho}_{2}\left[\frac{\partial u_{12}^{\prime}}{\partial \xi_{3}}+\frac{\partial u_{22}^{\prime}}{\partial n_{3}}\right]=0 \tag{44}
\end{equation*}
$$

Substituting the expressions for $\rho_{2}^{\prime}, u_{12}^{\prime}$ and u_{22}^{\prime} into aquadion (44) yields

$$
\begin{equation*}
G_{1}=F_{1} \cot (\phi-\beta) . \tag{45}
\end{equation*}
$$

There are now four unknown quantities in Region 2 and four equations thereby forming a determinable system. The unknowns will now be determined.

Evaluation of E_{1}, F_{1}, H_{1} and $U_{0_{2}}$. The following equations are to be solved simultaneously at the shock front:

$$
\begin{equation*}
A_{2} u_{1}^{\prime}+B_{2} W_{1} \alpha_{y}+c_{2} \alpha_{t}=u_{12}^{\prime}, \tag{17a}
\end{equation*}
$$

$A_{3} u_{1}^{\prime}+B_{3} W_{1} \alpha_{y}+C_{3} \alpha_{t}=u_{22}^{\prime}$,
$\frac{A_{4}}{\overline{a_{1}}} u_{1}^{\prime}+B_{4} \alpha_{y}+\frac{C_{4}}{W_{1}} \alpha_{t}=\frac{P_{2}^{\prime}}{\bar{P}_{2}}$
and

$$
\begin{align*}
& \frac{A_{5}}{\bar{a}_{1}} u_{1}^{\prime}+B_{5} \alpha_{y}+\frac{C_{5}}{W_{1}} \alpha_{t}=\frac{\rho_{2}^{\prime}}{\bar{\rho}_{2}} . \tag{2I}\\
& \text { It is also known that }
\end{align*}
$$

$$
\begin{gather*}
u_{12}^{\prime}=U_{0} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right] \cos \left(\phi-\phi^{\prime}\right)+ \\
F_{1} \cos \left[\frac{2 \pi z_{3}}{\overline{\lambda_{e v w}}}\right], \tag{41}
\end{gather*}
$$

$$
u_{22}^{\prime}=-U_{0} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right] \sin (\phi-\phi)+
$$

$$
\begin{equation*}
G_{1} \cos \left[\frac{2 \pi z_{3}}{\lambda_{\mathrm{evw}}}\right], \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{P}_{2}^{\prime}}{\overline{\mathrm{p}}_{2}}=\gamma \frac{\mathrm{U}_{0}}{\overline{\mathrm{a}}_{2}} \cos \left[\frac{\omega_{2}}{\overline{\mathrm{a}}_{2}} z_{2}-\omega_{2} t\right] \tag{29}
\end{equation*}
$$

$$
\begin{align*}
& u_{1}=U_{0} \quad \cos \left[\frac{\omega_{1}}{\frac{a_{1}}{a_{1}}} z_{1}-\omega_{1} t\right], \tag{22}\\
& \alpha_{y}=E_{1} \frac{\omega_{1}}{\bar{a}_{1}} \sin \theta \cos \left[\frac{\omega_{1}}{{\underset{a}{1}}^{m}} \sin \theta \text { y }-\right. \\
& \left.\left[1+M_{1} \sin (\sigma+\theta)\right] \quad \omega_{1} t\right] \text {, } \tag{36}\\
& \alpha_{t}=-E_{1}\left[1+M_{1} \sin (\sigma+\theta)\right] \omega_{1} \cos \left[\begin{array}{l}
\omega_{1} \\
a_{1} \\
\sin \theta
\end{array} \quad y-\right. \\
& \left.\left[1+M_{1} \sin (\sigma+\theta)\right] \omega_{1} t\right], \tag{35}
\end{align*}
$$

and

$$
\begin{equation*}
G_{1}=F_{1} \cot (\phi-\beta) \tag{45}
\end{equation*}
$$

It can be shown that the arguments of the cosine terms in equations (22), (29), (35), (36), (41), (42) and (43) are all equal at the shock front. Thus equations (17a), (17b), (19) and (21) may be written as

$$
\begin{gather*}
A_{2} U_{0}+B_{2} W_{1} E_{1} \frac{\omega_{1}}{\bar{a}_{1}} \sin \theta-C_{2} \omega_{1} E_{1}[1+ \\
\left.M_{1} \sin (\sigma+\theta)\right]=U_{0_{2}} \cos \left(\phi-\phi^{\prime}\right)+F_{1}, \tag{46}\\
A_{3} U_{0}+B_{3} W_{1} E_{1} \frac{\omega_{1}}{\bar{a}_{1}} \sin \theta-C_{3} \omega_{1} E_{1}[I+ \\
\left.M_{1} \sin (\sigma+\theta)\right]=-U_{0_{2}} \sin \left(\phi-\phi^{\prime}\right)+F_{1} \cot (\phi-\beta), \tag{47}
\end{gather*}
$$

$$
\begin{gather*}
\therefore \frac{U_{0}}{A_{4}} \frac{B_{1}}{\bar{a}_{1}}+B_{1} \frac{\omega_{1}}{\bar{a}_{1}} \sin \theta-\frac{C_{4}}{W_{1}} \omega_{1} E_{1}[1+ \\
\left.M_{1} \sin (\sigma+\theta)\right]=\gamma \frac{U_{0}}{\bar{a}_{2}}, \tag{48}
\end{gather*}
$$

and

$$
\begin{array}{r}
A_{5} \frac{U_{0}}{\bar{a}_{1}}+B_{5} E_{1} \frac{\omega_{1}}{\bar{a}_{1}} \sin \theta-\frac{C_{5}}{W_{1}} \omega_{1} E_{1}[1+ \\
\left.M_{1} \sin (\sigma+\theta)\right]=\frac{U_{0}}{\bar{a}_{2}}+H_{1} . \tag{49}
\end{array}
$$

These four equations can be arranged to give

$$
\begin{align*}
& A_{11} E_{1}+A_{12} F_{1}+A_{13} U_{0}+A_{14} H_{1}=D_{1} \\
& A_{21} E_{1}+A_{22} E_{1}+A_{23} U_{0}+A_{24} H_{1}=D_{2} \\
& A_{31} E_{1}+A_{32} F_{1}+A_{33} U_{0}+A_{34} H_{1}=D_{3} \tag{50}\\
& A_{41} E_{1}+A_{42} F_{1}+A_{43} U_{0}+A_{44} H_{1}=D_{4}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{11}=\left[\left[1+M_{1} \sin (\sigma+\theta)\right] C_{2}-M_{1} \sin \theta B_{2}\right] \omega_{1} \\
& A_{12}=1 \\
& A_{13}=\cos \left(\phi-\phi^{\prime}\right) \\
& A_{14}=0 \\
& A_{21}=\left[\left[1+M_{1} \sin (\sigma+\theta)\right] C_{3}-M_{1} \sin \theta B_{3}\right] \omega_{1} \\
& A_{22}=\cot (\phi-\beta)
\end{aligned}
$$

$$
\begin{aligned}
& A_{23}=-\sin \left(\phi-\phi^{\prime}\right) \\
& A_{24}=0 \\
& A_{31}=\left[\left[1+M_{1} \sin (\sigma+\theta)\right] C_{4}-M_{1} \sin \theta B_{4}\right] w_{1} \\
& A_{32}=0 \\
& A_{33}=\gamma \frac{\bar{a}_{1}}{a_{2}} M_{1} \\
& A_{34}=0 \\
& A_{41}=\left[\left[1 M_{1} \sin (\sigma+\theta)\right] C_{5}-M_{1} \sin \theta B_{5}\right] \omega_{1} \\
& A_{42}=0 \\
& A_{43}=\frac{M_{1}}{A_{2}}=A_{3} \\
& D_{1}=A_{1} \\
& A_{44}=1
\end{aligned}
$$

Computations. To compute the perturbed flow field in Region 2 due to the interaction of plane sound waves from Region 1 with an oblique shock front, values for the following quantities must be known:
$\bar{a}_{1}, \gamma, \bar{M}_{1}, \sigma, \delta, r, \bar{a}_{2}, \phi, \theta, U_{0_{1}}, \omega_{1}, \phi^{\prime}$ and β 。

To illustrate the computational method, $\gamma, \overline{\mathrm{a}}_{1}$ (or $\overline{\mathrm{T}}_{1}$), M_{1}, $\sigma, \theta, \mathrm{U}_{0}$ and ω_{1} will be treated as independent variables. The step-by-step procedure is as follows

1. Select a temperature T_{1}.
2. Select a working fluid, i.e. $\gamma ;$ e.g., air with $\gamma=1.4$.
3. Select a Mach number M_{1}.
4. Select an oblique shock angle σ.
5. Select a sound wave ancidence angle θ (if possible, i.e. must first consider $\left.\theta_{c}{ }^{\prime} s\right)$.
6. Select a sound wave particle velocity U_{0}.

7: Select a sound wave circular frequency ω_{1}.
8. Compute r as follows (reference 8)

$$
\begin{equation*}
r=\frac{U_{1}}{U_{2}}=\frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) M_{1}^{2} \sin ^{2} \sigma}{2\left[1+\frac{\gamma-1}{2} M_{1}^{2} \sin ^{2} \sigma\right]} \tag{51}
\end{equation*}
$$

9. Compute of as follows (reference 8).

$$
\begin{equation*}
\delta=\sigma-\tan ^{-1}\left[\frac{1}{r} \quad \tan \sigma\right] \tag{52}
\end{equation*}
$$

10. Compute \bar{a}_{2} as follows (reference 8):

$$
\begin{equation*}
\vec{a}_{2}=\sqrt{\gamma R \bar{T}}=\bar{a}_{1} \sqrt{\overline{\mathrm{~T}}_{2} / \overline{\mathrm{T}}_{1}} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{T}_{2} / \bar{T}_{1}=\frac{\left[1+\frac{\gamma-1}{2} \bar{U}_{1}^{2}\right]\left[\frac{2 \gamma}{\gamma-1} \bar{U}_{1}^{2}-1\right]}{\frac{(\gamma+1)^{2}}{2(\gamma-1)} \bar{U}_{1}^{2}} \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{U}_{1} \equiv M_{1} \sin \sigma \tag{55}
\end{equation*}
$$

11. Compute ϕ by noting from Figure 1 that

$$
\begin{equation*}
\phi=\frac{\pi}{2}+\delta-\sigma \tag{56}
\end{equation*}
$$

12. Compute θ_{c} from equation (27), i.e.
$\left[1+M_{1} \sin \left(\sigma+\theta_{c}\right)\right] \csc \theta_{c}=$

$$
M_{1} \cos \sigma \pm\left[\frac{\bar{a}_{2}^{2}}{\bar{a}_{1}^{2}}-\frac{M_{1}^{2} \sin ^{2} \sigma}{r^{2}}\right]^{1 / 2}
$$

where (+) is used if $0<\theta<\pi$ is being considered or (-) if $0>\theta>-\pi$ is being considered. (This is a transcendental equation for θ_{c} and an iterative method of solution is required.)
13. Check to see if the chosen value for θ is permissible, i.e. $|\theta|<\left|\theta_{c}\right|$.
14. Compute β from equation (37), i.e.
$\beta=\tan ^{-1}\left[\frac{M_{1} \cos \sigma \cot \phi \sin \theta}{1+M_{1} \sin \sigma \cos \theta}\right]$.
15. Compute ϕ^{\prime} from equation (32), i.e.
$\frac{\bar{a}_{2} \sin \theta}{\bar{a}_{1} \sin \phi}=\frac{1+M_{1} \sin (\alpha+\theta)}{1+M_{2} \cos \left(\phi-\phi^{\top}\right)}$
where

$$
M_{2}=M_{1} \frac{\cos \sigma}{\sin \phi} \frac{\bar{a}_{1}}{\bar{a}_{2}} .
$$

(This is a transcendental equation for ϕ^{\prime} and an iterative method of solution is required.)
16. Compute $A_{i j}$ and D_{i} 。 (At this point the $A_{i j}{ }^{\prime} s$ and $D_{i}{ }^{\prime} s$ can be computed using their defining equations.)
17. Compute E_{1} as follows:
a. Note that each D_{i} contains U_{0}, and that w_{1} will be a factor of the coefficient determinant (solution by Cramer's rule). Therefore it is convenient to define new D_{i} 's and concomitantly a new E_{1}; i.e.
$D_{i}=D_{i}^{*} U_{0}$
and
$E_{1}=E_{1}^{*} U_{0_{1}} / \omega_{1}$.
b. Using Cramer's rule the solution of equations (50) for E_{l}^{*} is

$$
\begin{align*}
E_{1}^{*}= & {\left[D_{1}^{*} A_{22} A_{33}+D_{2}^{*} A_{32} A_{13}+D_{3}^{*} A_{23} A_{12}-\right.} \\
& \left.D_{1}^{*} A_{23} A_{32}-D_{2}^{*} A_{12} A_{33}-E_{3}^{*} A_{22} A_{13}\right] / D E T\left[A_{i j}\right] \tag{58}
\end{align*}
$$

where

$$
\begin{align*}
\operatorname{DET}\left[A_{i j}\right]= & A_{11} A_{22} A_{33}+A_{21} A_{32} A_{13}+A_{31} A_{23} A_{12}- \\
& A_{31} A_{22} A_{13}-A_{21} A_{12} A_{33}-A_{11} A_{23} A_{32} \tag{59}
\end{align*}
$$

and finally
$E_{1}=E_{1}^{*} U_{0_{1}} / \omega_{1}$.
18. Compute F_{1} as follows:
a. Define a new F_{1} as

$$
F_{1}=F_{1}^{*} U_{0}
$$

b. Using Cramer's rule the solution of equations (50) for F_{i}^{*} is

$$
\begin{align*}
F_{1}^{*}= & {\left[D_{1}^{*} A_{23} A_{31}+D_{2}^{*} A_{11} A_{33}+D{ }_{3}^{*} A_{13} A_{21}-\right.} \\
& \left.D_{1}^{*} A_{21} A_{33}-D_{2}^{*} A_{31} A_{13}-D_{3}^{*} A_{11} A_{23}\right] / D E T\left[A_{i j}\right] . \tag{60}
\end{align*}
$$

Therefore

$$
F_{1}=F_{1}^{*} U_{0} .
$$

(It should be noted that ω_{1} is a factor of both the numerator and denominator and, therefore, F_{1} is independent of frequency.)
19. Compute $\mathrm{U}_{0_{2}}$ as follows:
a. Define a new $\mathrm{U}_{0_{2}}$ as
$\mathrm{U}_{0}=\mathrm{U}_{0}^{*} \mathrm{U}_{2} \mathrm{U}_{0}$.
b. Using Cramer's rule the solution of equations (50) for U_{0}^{*} is

$$
\begin{align*}
U_{0}^{*}= & {\left[D_{1}^{*} A_{32} A_{21}+D_{2}^{*} A_{12} A_{31}+D_{3}^{*} A_{11} A_{22}-D_{1}^{*} A_{31} A_{22}-\right.} \\
& \left.D_{2}^{*} A_{11} A_{32}-D_{3}^{*} A_{21} A_{12}\right] / D E T\left[A_{i j}\right] \tag{61}
\end{align*}
$$

and finally
$\mathrm{U}_{0}=\mathrm{U}_{0}^{*} \mathrm{U}_{0_{1}}$.
(Note that U_{0} is also independent of frequency.)
20. Compute H_{1} as follows:
a. Define a new H_{l} as

$$
\mathrm{H}_{1}=\mathrm{H}_{1}^{*} \mathrm{U}_{0}{ }_{1} .
$$

b. Using Cramer's rule the solution of equations (50) for H_{1}^{*} is

$$
\begin{array}{r}
H_{1}^{*}=\left[\begin{array}{l}
D_{1}^{*}
\end{array} A_{21} A_{32} A_{43}+A_{31} A_{42} A_{23}+A_{41} A_{33} A_{22}-\right. \\
\left.A_{41} A_{32} A_{23}-A_{31} A_{22} A_{43}-A_{21} A_{33} A_{42}\right]+ \\
A_{41} A_{32} A_{43}+A_{12} A_{33} A_{13}-A_{31} A_{12} A_{43}-A_{13} A_{42} A_{31}- \\
\left.D_{11}^{*} A_{33} A_{42}\right]- \\
{\left[A_{11} A_{22} A_{43}+A_{12} A_{23} A_{41}+A_{31} A_{42} A_{21}-\right.} \\
\left.A_{41} A_{22} A_{13}-A_{21} A_{12} A_{43}-A_{11} A_{23} A_{42}\right]+ \\
\left.D_{4}^{*} \operatorname{DET}\left[A_{i j}\right]\right] / D E T\left[A_{i j}\right] \tag{62}
\end{array}
$$

and, therefore,
$H_{1}=H_{1}^{*} U_{0}$.
(Note that H_{1} is independent of frequency.)
21. Compute the acoustic pressure ratio $\mathrm{p}_{2}^{\prime} / \mathrm{p}_{1}^{\prime}$ as follows:
a. From equations (23) and (29)
$\frac{p_{2}^{1}}{P_{1}}=\frac{U_{0} \bar{p}_{2} \bar{a}_{1} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right]}{U_{0} \bar{p}_{1} \bar{a}_{2} \cos \left[\frac{\omega_{1}}{\bar{a}_{1}} z_{1}-\omega_{1} t\right]}$
or upon taking the root-time-mean-square of p_{2}^{\prime} and $P i$
$\frac{\left[p_{2}^{\prime}\right]}{\left[p_{1}^{\prime}\right]_{\mathrm{rms}}}=\frac{\mathrm{U}_{0}}{\mathrm{U}_{0}} \overline{\mathrm{p}}_{1} \overline{\mathrm{p}}_{1} \overline{\mathrm{a}}_{1}$
where

$$
\begin{align*}
& \frac{U_{0}}{U_{0}}=U_{0}^{*} \\
& \left.\frac{\overline{\mathrm{P}}_{2}}{\overline{\mathrm{P}}}=\frac{2 \gamma}{\gamma+1} M_{1}^{2} \sin ^{2} \sigma-\frac{\gamma-1}{\gamma+I} \text { (reference } 8\right), \\
& \text { and } \tag{64}\\
& \frac{\overline{\mathrm{a}}_{1}}{\overline{\mathrm{a}}_{2}} \text { is as given in Step } 10 \text {. }
\end{align*}
$$

b. From the definition of sound pressure level, the change in $S P L$ across the shock is $S L_{2}-S P L_{1}=20 \log _{10} \frac{\left[p_{2}^{\prime}\right]_{\mathrm{rms}}}{\left[\mathrm{p}_{1}^{1}\right]_{\mathrm{rms}}}$
and therefore
$\mathrm{SPI}_{2}-\mathrm{SPL}_{1}=20 \quad \log 10\left[\begin{array}{lll}\mathrm{U}_{0} & \overline{\mathrm{p}}_{2} & \overline{\mathrm{a}}_{1} \\ \mathrm{U}_{2} & \frac{\overline{\mathrm{p}}_{1}}{} & \overline{\mathrm{a}_{2}}\end{array}\right]$
22. Compute the ratio of the acoustic particle velocities $u_{2}^{\prime} / u_{1}^{\prime}$ from equations (22) and (28); i.e.
$\frac{u_{2}}{u_{1}}=\frac{U_{0} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right]}{U_{0} \cos \left[\frac{\omega_{1}}{\overline{a_{1}}} z_{1}-\omega_{1} t\right]}$
or upon taking the root-mean-square of u_{1}^{\prime} and u_{2}^{\prime}
$\frac{\left[\mathrm{u}_{2}^{\prime}\right]_{\mathrm{rms}}}{\left[\mathrm{u}_{1}^{\prime}\right]_{\mathrm{rms}}}=\left|\frac{\mathrm{U}_{0}}{\mathrm{U}_{0}}\right|=\left|\begin{array}{l}\mathrm{U}_{1}^{*} \\ \mathrm{U}_{2}\end{array}\right|$
23. Compute the intensity of the vorticity (shear) wave,
$\left[u_{\text {eve }}^{\prime}\right]_{\text {rms }} / W_{2}$, as follows:
a. From equations (41) and (42), the velocity perturbation due to the E-V wave is

$$
u_{e v w}^{\prime}=\left[F_{1}^{2}+G_{1}^{2}\right]^{1 / 2} \cos \left[\frac{2 \pi z_{3}}{\lambda_{e v w}}\right]
$$

$$
\text { or taking the root-mean-square of } u_{e v w}^{\prime}
$$

$$
\left[u_{\mathrm{evw}}^{\prime}\right]_{\mathrm{rms}}=\left[\frac{\mathrm{F}_{1}^{2}+\mathrm{G}_{1}^{2}}{2}\right]^{1 / 2}
$$

b. Now $G_{1}^{2}=F_{1}^{2} \cot ^{2}(\phi-\beta)$ and therefore

$$
F_{1}^{2}+G_{1}^{2}=F_{1}^{2}\left[1+\cot ^{2}(\phi-\beta)\right]
$$

or

$$
\left[u_{\mathrm{evw}}^{\prime}\right]_{\mathrm{rms}}=F_{1} \csc (\sigma-\beta) / \sqrt{2}
$$

$$
=F_{1}^{*} \csc (\sigma-\beta) \frac{U_{0}}{\sqrt{2}}
$$

c. From equation (57)

$$
\begin{align*}
& W_{2}=M_{1} \bar{a}_{1} \frac{\cos \sigma}{\sin \phi} \\
& \text { and therefore } \\
& \text { Eu eve } \left.^{\prime}\right]_{\mathrm{rms}}=\frac{M_{0}}{\sqrt{2} M_{1}} \frac{\csc (\sigma-\beta) \sin \phi}{\cos \sigma} F_{1}^{*}
\end{align*}
$$

24. Compute the perturbation entropy in Region 2 as follows:
a. For a perfect gas

$$
d s=c_{v} \frac{d p}{p}-c_{p} \frac{d \rho}{-\rho}
$$

Replacing differential quantities by perturbations, this becomes

$$
\begin{equation*}
s_{2}^{\prime} \simeq c_{v} \frac{p_{2}^{\prime}}{\bar{p}_{2}}-c_{p} \frac{\rho_{2}^{\prime}}{\bar{\rho}_{2}} \tag{68}
\end{equation*}
$$

 $\rho_{2}^{i} / \bar{\rho}_{2}$, respectively, yields $s_{2}^{\prime} \simeq \gamma \quad c_{v} \frac{U_{0}}{\bar{a}_{2}} \cos \left[\frac{\omega_{2}}{\overline{a_{2}}} z_{2}-\omega_{2} t\right]-$ $c_{p} \frac{\mathrm{U}_{0}}{\bar{a}_{2}} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right]-$ $c_{p} H_{1} \cos \left[\frac{2 \pi}{} \frac{z_{3}}{\lambda_{e v w}}\right]$
or after noting that $\gamma c_{v}=c_{p}$

$$
\begin{equation*}
\frac{s_{2}^{\prime}}{c_{p}}=-H_{1}^{*} \mathrm{U}_{0} \cos \left[\frac{2 \pi z_{3}}{\lambda_{e v w}}\right] \tag{69}
\end{equation*}
$$

25. Compute the perturbation density in Region 2 from equation (43); i.e.

$$
\begin{equation*}
\frac{\rho_{2}^{\prime}}{\rho_{2}}=\left[\frac{U_{0}^{*}}{\bar{a}_{2}} \cos \left[\frac{\omega_{2}}{\bar{a}_{2}} z_{2}-\omega_{2} t\right]+H_{1}^{*} \cos \left[\frac{2 \pi}{z_{3}} \underset{e v w}{\lambda}\right]\right] U_{0} \tag{70}
\end{equation*}
$$

26. Compute the shock front perturbation velocity, α_{t}, from equation (35); i.e.

$$
\begin{align*}
\frac{\alpha_{t}}{U_{0}}=-E_{1}^{*}\left[1+M_{1}\right. & \sin (\sigma+\theta)] \cos \left[\frac{\omega_{1}}{\bar{a}_{1}} \sin \theta y-\right. \\
& {\left.\left[1+M_{1} \sin (\sigma+\theta)\right] \omega_{1} t\right] } \tag{71}
\end{align*}
$$

```
or in terms of the ratio of the root-mean-squares of \(\alpha_{t}\) and
``` \(u_{1}^{\prime}\)
\[
\begin{equation*}
\frac{\left[\alpha_{t}\right]_{\mathrm{rms}}}{\left[\mathrm{u}_{1}^{1}\right]_{\mathrm{rms}}}=\left|\mathrm{E}_{1}\right|\left|1+\mathrm{M}_{1} \sin (\sigma+\theta)\right| \tag{72}
\end{equation*}
\]
27. Compute the peak-to-peak amplitude of the shock front displacement, \(|2 \alpha|\), from equation (34), 1.e.
\(|2 \alpha|=2 E_{1}=2 E_{1}^{*} U_{0} / \omega_{1}\)
or
\[
\begin{equation*}
\frac{|2 \alpha| \omega_{1}}{U_{0}}=2 E_{1}^{*} \tag{73}
\end{equation*}
\]

A FORTRAN IV program to make these computations is given in Appendix A.

Results

Rather than making computations for arbitrary shock fronts, it was decided to illustrate the sound wave - shock front interaction process for two Saturn \(V\) interstage flare angles, namely, \(\delta=8^{\circ} 58^{\prime}\), corresponding to the flare between the Service Module and the S-IVB stage, and \(\delta=16^{\circ} 44^{\prime}\), corresponding to the flare between the \(S\)-IVB and the S-II stage.

Appendix \(B\) contains computed data for the following cases
\begin{tabular}{lllllllll}
\(M_{1}\) & 1.50 & 2.00 & 2.50 & 3.00 & 1.75 & 2.00 & 2.50 & 3.00 \\
\(\delta\) & 8.98 & 8.96 & 8.97 & 8.98 & 16.74 & 16.73 & 16.74 & 16.75
\end{tabular}

The data column headings are defined as.

THETA - \(\theta\), the sound wave incidence angle, in degrees

BETA - \(\beta\), the entropy-vorticity wave angle, in degrees

PHIP - \(\phi\), the refracted sound wave angle, in degrees

PP2/PP1 \(-p_{2}^{\prime} / p_{1}^{\prime}\), the ratio of the acoustic pressure in Region 2 to that in Region 1 evaluated at the shock front

SPL2/I \(-\mathrm{SPL}_{2}-\mathrm{SPL}_{1}\), the change in sound pressure level across the shock, in \(\mathrm{d} B\)
\(\mathrm{UO2} / \mathrm{UOL}-\mathrm{U}_{0} / \mathrm{U}_{0}{ }_{1}\)
UEVW2 - [u' evw rms \(\quad /\left(M_{0} W_{2}\right)\), vorticıty wave intensity
SPRCU \(-\left[\mathrm{s}_{2}^{\prime}\right]_{\text {shock }} / \mathrm{c}_{\mathrm{p}} \mathrm{U}_{1}\)
AT/UPI \(-\left[\alpha_{t} / u_{1}^{\prime}\right]_{\text {shock }}\), the ratio of the shock front velocity to the sound particle velocıty in Region 1 , evaluated at the shock front

PPAMPL - \(\left[2 \alpha \omega_{1} / u_{1}^{\prime}\right]\), the ratio of the product of twice the shock front shock displacement and the circular frequency in Region 1 to the sound particle velocity in Region \(l\), evaluated at the shock front.

It should be noted that shock front resonance is predicted for all
but one of the cases considered, namely, \(M_{1}=1.50\) and \(\delta=8.98\) : The data are not displayed graphıcally.

\section*{Bo Shear Wave - Shock Front Interaction}

Since shear waves (vorticity waves) are generated when plane sound waves interact with an oblique shock front and since a given flow often interacts with more than one oblique shock, a method to determine the flow field produced by shear wave - shock front interaction is required. Rather than develop a solution for an oblique shock, a coordinate transformation will be performed so that Ribner's [I] analysis of the shear wave - normal shock front interaction can be used.

\section*{Mathematical Formulation of the Problem}

Unsteady-Flow Problem。 Consider a uniform velocity field \(\tilde{W}_{A}\) perturbed by the addition of a sinusoidal shear wave of arbitrary amplitude, wavelength and orientation, This flow undergoes an oblique shock as shown in Figure lo. Since, in general the perturbation velocity \(W_{A}\) is not parallel to \(\tilde{W}_{A}\). and since the shear wave pattern is frozen in the uniform flow, the perturbed flow will be unsteady from the viewpoint of a stationary observer on the shock front. For example, the nodal lines \(N-N_{s}\) will be convected into the front and the nodal points \(N_{s}\) will move up the front for the case depicted in Figure 10.

Equivalent Steady-Flow Problem. If an observer moves up the shock front with the speed of the nodal points, \(V_{N}\), the flow will appear to be steady. To determine this speed
consider the nodal line \(N_{1} \rightarrow N_{l}\) at time \(t\) as shown in Figure 11. This line is convected into the shock front by the uniform flow \(\tilde{W}_{A}\). At time \(t+\delta t\) the point \(N_{l}\) has reached the shock and now represents the nodal point \(N_{S_{1}}\) or \(N_{S_{1}}^{\prime}\) to distinguish it from the nodal point at time \(t\).

From Figure ll it can be shown that
\[
\begin{aligned}
& \overline{N_{1} N_{S_{1}}^{1}}=\overline{N_{1} N_{S_{1}}} \cos [90-(\theta+\sigma)]+\overline{N_{S_{1}} N_{S_{1}}^{1}} \cos \sigma, \\
& \overline{N_{1} N_{S_{1}}} \sin [90-(\theta+\sigma)]=\overline{N_{S_{1}} N_{S_{1}}^{\prime}} \sin \sigma, \\
& \overline{N_{1} N_{S_{1}}^{1}}=\tilde{W}_{A} \delta t \quad \text { and } \overline{N_{s_{1}} N_{s_{1}}^{1}}=V_{N_{s}} \delta t .
\end{aligned}
\]

Solving these equations for \(\mathrm{V}_{\mathrm{N}_{\mathrm{s}}}\) yields
\[
\begin{equation*}
\mathrm{V}_{\mathrm{N}_{S}}=\tilde{W}_{\mathrm{A}} \cos \sigma-\tilde{W}_{\mathrm{A}} \sin \sigma \tan \theta \tag{74}
\end{equation*}
\]

Moving up the shock front with the speed \(V_{N_{s}}\) the flow appears to be steady and the unperturbed flow appears to have the velocity \(W_{A}\) as shown in Figure 12 . The angle that \(W_{A}\) makes with the normal to the shock front is
\[
\theta_{A}=\tan ^{-1}\left[\frac{\tilde{W}_{A} \sin \sigma \tan \theta}{\tilde{W}_{A} \sin \sigma}\right]
\]
or
\[
\theta_{\mathrm{A}}=\theta .
\]

Thus from this viewpoint the unperturbed uniform flow is aligned with the perturbation velocity component \(\mathrm{w}_{\mathrm{A}}\). The
magnitude of \(W_{A}\) is given by
\[
\begin{equation*}
W_{A}=\tilde{W}_{A} \sin \sigma \sec \theta \tag{75}
\end{equation*}
\]
and therefore it gets very large as \(\theta\) approaches 90 degrees. The flow field is now in Ribner's equivalent steadyflow form. His solution will be stated next and it will then be transformed back to the original oblique shock form.

\section*{Ribner's Solution}

Ribner's coordinate systems and velocity components are shown in Figure 13. In terms of the oblique shock properties, his velocity components before the shock front are
\[
\begin{align*}
& W_{A}=\tilde{W}_{A} \sin \sigma \sec \theta, \tag{76}\\
& U_{A}=\tilde{W}_{A} \sin \sigma \tag{77}
\end{align*}
\]
and
\[
\begin{equation*}
V=\tilde{W}_{A} \sin \sigma \tan \theta \tag{78}
\end{equation*}
\]

His perturbation velocity component \(W_{A}\) is
\[
\dot{w}_{A}=\varepsilon W_{A} \cos \left(k n_{A}\right)
\]
or in terms of oblique shock quantities
\[
\begin{equation*}
\mathrm{w}_{\mathrm{A}}^{\prime}=\varepsilon \tilde{W}_{A} \sin \sigma \sec \theta \tag{79}
\end{equation*}
\]

From this last relation it should be noted that the assumed amplitude of the perturbation is strongly dependent on \(\theta\); i.e. it goes as \(\sec \theta\) 。 Thus for a given \(\tilde{W}_{A}, \sigma\) and \(\varepsilon\)
(to be taken as a number less than about 0.1) the strength of the perturbation varies with \(\theta\) and it is unbounded at \(\theta=90\) degrees. This point will be discussed further when the flow field is transformed back to its original unsteady form.

The Critical Incidence Angle. Two forms of the solution for all flow quantities appear, one for \(\overline{\mathrm{V}}^{*}<1\) and the other for \(\bar{W}>1 . \quad \bar{W}=1\) forms the dividing line and, since \(\vec{W}\) depends on both \(\bar{U}_{A}\) and the inclination \(\theta\), the sonic conditions gives a critical value of \(\theta\) in terms of \(\bar{U}_{A}\). From Ribner [I]
\[
\begin{equation*}
\theta_{c r}= \pm \tan ^{-1} \sqrt{\frac{(\gamma+1)(m-1)}{2 m^{2}}} \tag{80}
\end{equation*}
\]
where
\[
\begin{aligned}
& m=\frac{U_{A}}{U}=\frac{\frac{\gamma+1}{2} \bar{U}_{A}^{2}}{1+\frac{\gamma-1}{2} \bar{U}_{A}^{2}} \\
& \bar{U}_{A}=\frac{U_{A}}{a_{A}}=\frac{\tilde{W}_{A}}{a_{A}} \sin \sigma_{0}
\end{aligned}
\]

Thus for a given \(\tilde{W}_{A}\) and \(\sigma\) there exists a \(\theta_{C r}\).
Velocity Perturbation Field, \(\bar{W}<1\). From Ribner [1]
\[
\begin{array}{r}
\frac{\mathrm{w}}{\left|\mathrm{w}_{A}\right|^{*}}=S^{*} \cos \left[k \cos \theta(y-x \tan \phi)+\delta_{s}\right]+ \\
\Pi^{*} \cos \left[k \cos \theta\left(y-x \tan \phi^{\prime}\right)+\delta_{p}\right] \tag{81a}
\end{array}
\]

\footnotetext{
The bar superscript denotes the Mach number formed by the ratio of the velocity component and the local speed of sound; e.g. \(\bar{W}=w / a, \bar{U}_{A}=U_{A} / a_{A}\).
}
\[
\begin{equation*}
\frac{w^{\prime}}{\left|w_{A}\right|^{*}}=\beta_{w} \Pi^{*} \sin \left[k \cos \theta\left(y-x \tan \phi^{\prime}\right)+\delta_{p}\right] \tag{81b}
\end{equation*}
\]
where
\[
\begin{aligned}
& \left|W_{A}\right|^{*} \equiv W_{A} \varepsilon \cos \theta=\varepsilon \tilde{W}_{A} \sin \sigma \\
& S^{*} \equiv \frac{1}{m} \sqrt{A^{2}+B^{2}} \\
& H^{*} \equiv \frac{1}{m} \frac{\sqrt{\tilde{c}^{2}+\tilde{d}^{2}}}{\beta} \exp \left[-x k \cos \theta \beta_{W} / \beta^{2}\right] \\
& \delta_{S}=\tan ^{-1}\left[\frac{-B}{A}\right] \\
& \phi=\tan ^{-1}[m \tan \theta] \\
& \phi^{\prime}=-\tan ^{-1}\left[\frac{\vec{U}^{2} \tan \phi}{\beta^{2}}\right] \\
& \delta_{P}=\tan ^{-1}\left[\frac{\tilde{c} \beta_{W}-\tilde{d} \tan \phi}{\tilde{\tilde{d}} \beta_{W}+\tilde{c} \tan \phi}\right]^{+} \\
& B^{2} \equiv 1-\bar{U}^{2} \\
& \beta_{W}^{2} \equiv 1-\bar{W}^{2} \\
& A \equiv \sec \phi+2(m-1) \cos \phi+\tilde{a} \frac{(m-1)^{2}}{m} \sin \phi \\
& B \equiv \tilde{b} \frac{(m-1)^{2}}{m} \sin \phi \\
& \tilde{a} \equiv m \frac{C E+D F}{C^{2}+D^{2}} \\
& \tilde{b} \equiv m \frac{C F-D E}{C^{2}+D^{2}}
\end{aligned}
\]

\footnotetext{
tRibner gives the denominator as \(d \beta_{W}-c\) tan \(\phi\) but a positive sign was obtained by this author.
}

Velocity Perturbation Field, \(\overline{\mathrm{W}}>1\). From Ribner [1]
\[
\begin{array}{r}
\frac{\mathrm{w}}{\left|\mathrm{w}_{\mathrm{A}}\right|^{*}}=\mathrm{S}^{* *} \cos [k \cos \theta(y-x \tan \phi)]+ \\
\Pi^{* *} \cos \left[k \cos \theta\left(y-x \tan \phi^{\prime}\right)\right] \tag{82a}
\end{array}
\]
\[
\begin{equation*}
\frac{w^{\prime}}{\left|W_{A}\right|^{*}}=\beta_{W} \Pi^{* *} \cos \left[k \cos \theta\left(y-x \tan \phi^{\prime}\right)\right] \tag{82b}
\end{equation*}
\]
where
\[
\begin{aligned}
& \left|W_{A}\right|^{\therefore} \equiv W_{A} \varepsilon \cos \theta=\varepsilon \tilde{W}_{A} \sin \sigma \\
& S^{*:} \equiv \mathrm{A} / \mathrm{m}
\end{aligned}
\]
\[
\begin{aligned}
& \tilde{c} \equiv \frac{\tilde{a}}{m} D^{\prime}-F^{\prime} \\
& \bar{d} \equiv \frac{\tilde{b}}{m} D^{\prime} \\
& c \equiv\left[\frac{\gamma-1}{\gamma+1}+\frac{3-\gamma}{\gamma+1} m\right] \tan \phi-\left[(m-1)^{2}+\right. \\
& \left.\frac{2(m-1)}{\gamma+1}\right] \sin \phi \cos \phi \\
& D \equiv \frac{\beta_{W}}{\beta^{2}}(m-1)\left[1+(m-I) \cos ^{2} \phi\right] \equiv \frac{\beta_{W}}{\beta^{2}} D^{t} \\
& E \equiv 2\left[1-\frac{\gamma-1}{\gamma+1} m\right]+2(m-1) \frac{\beta_{w}^{2} \cos ^{2} \phi}{\beta^{2}} \\
& F \equiv \frac{\beta}{\beta^{2}}[2(m-1) \sin \phi \cos \phi] \equiv \frac{\beta}{\beta^{2}} F^{\prime}
\end{aligned}
\]
\[
\begin{aligned}
& \Pi^{* *} \equiv \frac{\tilde{c}}{m} \frac{\sin \mu}{\cos (\phi-\mu)^{+}} \\
& \phi^{\prime} \equiv|[|\phi|-\mu]| \text { with sign of } \phi \\
& \mu \equiv \cot ^{-1} \beta_{W}\left[\beta_{W} \equiv \sqrt{W^{2}-1}\right] \\
& A=A \text { for } \bar{W}<1 \\
& \tilde{a}=m \frac{C^{\prime}+G F^{\prime}}{E^{\prime}+G D^{\prime}} \\
& \tilde{b}=0 \\
& \tilde{c}=\frac{\tilde{a}}{m} D^{\prime}-E^{\prime} \\
& C^{\prime} \equiv 2 \frac{\gamma-1}{\gamma+1} m-2\left[1+(m-1) \cos ^{2} \phi\right] \\
& -D^{\prime} \equiv(m-I)\left[1+(m-1) \cos ^{2} \phi\right] \\
& E^{\prime} \equiv(m-1)^{2} \sin \phi \cos \phi-\left[1+\frac{3-\gamma}{\gamma+1} m\right] \tan \phi \\
& F^{\prime} \equiv 2(m-1) \sin \phi \cos \phi \\
& G \equiv \frac{1-\beta_{w} \tan \phi}{\beta_{W}+\tan \phi}=\tan (\mu-\phi)
\end{aligned}
\]

Pressure Perturbation Field, \(\bar{W}<1\). From Ribner [1] it can be shown that
\[
\begin{equation*}
\frac{\delta p}{p}=\varepsilon \frac{2 \gamma m \sec \phi}{(\gamma-1)-(\gamma+1) m} \pi^{*} \cos \left[k \cos \theta\left(y-x \tan \phi^{\prime}\right)+\delta_{p}\right] \tag{83}
\end{equation*}
\]

\footnotetext{
\({ }^{+}\)Ins read of \(\cos (\phi-\mu)\) Ribner has \(\sin (\phi+\mu)\). This is in error since the cos (\(\phi-\mu\)) follows directly from his equations (32) and \(\mu \equiv \cot ^{-1} \beta_{W}\).
}
where \(\pi^{*}, \phi^{\prime}\) and \(\delta_{p}\) are the same as those defined for the "subsonic" velocity perturbation case.

Perturbation Pressure Field, \(\bar{W}>\) I. From Ribner [1]
\[
\begin{equation*}
\frac{\delta p}{p}=\varepsilon \frac{2 \gamma m \sec \phi}{(\gamma-1)-(\gamma+1) m} \Pi^{* *} \cos \left[k \cos \theta\left(y-x \tan \phi{ }^{\prime}\right)\right] \tag{84}
\end{equation*}
\]
where \(\Pi^{* \dot{*}}\) and \(\dot{\phi}^{\prime}\) are the same as those defined for the "supersonic" velocity perturbation case.

Shock - Wave Perturbation, \(\bar{W}<1\). From Ribner [1], the local deflection \(\delta x\) from the plane \(x=0\) is given by
\[
\begin{equation*}
\delta x=\frac{\varepsilon}{k \cos \theta} \sqrt{\sim^{2}+\tilde{b}^{2}} \cos \left[k \cos \theta y+\delta_{\text {shock }}\right] \tag{85}
\end{equation*}
\]
where \(\tilde{a}, \tilde{b}\) are the same as those defined for the "subsonic" velocity perturbation case and where
\[
\delta_{\text {shock }} \equiv \tan ^{-1}(\tilde{a} / \tilde{b})
\]

Shock - Wave Perturbation, \(\bar{W}>1\). From Ribner [1]
\[
\begin{equation*}
\delta x=\frac{\varepsilon \tilde{a}}{k \cos \theta} \sin [k \cos \theta y] \tag{86}
\end{equation*}
\]
where \({ }^{\text {a }}\) is the same as that defined for the "supersonic" velocity perturbation case.

\section*{Oblique Shock Solution}

The following simple coordinate transformation will take the flow from Ribner's equivalent steady flow to that of an unsteady flow as viewed by an observer fixed to the shock front
\[
\begin{equation*}
\tilde{x} \equiv x \tag{87a}
\end{equation*}
\]
and
\[
\begin{equation*}
\tilde{y}=y+v_{N_{s}} t \tag{87b}
\end{equation*}
\]
or
\[
x=\tilde{x}
\]
and
\[
y=\tilde{y}-v_{N_{s}} t_{0}
\]
where, from equation (74),
\[
\begin{equation*}
\mathrm{V}_{\mathrm{N}}=\tilde{\mathrm{W}}_{\mathrm{A}}[\cos \sigma-\sin \sigma \tan \theta] \tag{74}
\end{equation*}
\]

Thus \(\tilde{x}\) is position measured normal to the unperturbed shock front with \(\tilde{x}=0\) representing the rest position of the shock and \(\tilde{y}\) is position measured parallel to the shock front rest position; \(\tilde{y}=0\) is an arbitrary position.

The solution, \(1 n\) terms of the oblique shock properties, will now be given.

The Critical Incidence Angle. For the oblique shock, equation (80) is
\[
\begin{equation*}
\theta_{c r}= \pm \tan ^{-1} \sqrt{\frac{(\gamma+1)(m-1)}{2 m}} \tag{80}
\end{equation*}
\]
where
\[
\begin{aligned}
& m \equiv \frac{\frac{\gamma+1}{2} \tilde{M}_{A}^{2} \sin ^{2} \sigma}{1+\frac{\gamma-1}{2} \tilde{M}_{A}^{2} \sin ^{2} \sigma}, \\
& \tilde{M}_{A} \equiv \frac{\tilde{W}_{A}}{a_{A}}
\end{aligned}
\]
and
\(\theta_{\text {cr }}\) is measured from the negative \(\tilde{x}\)-axis.

If the critical incidence angle is to be measured from the horizontal, then from Figure 14 ,
\[
\begin{equation*}
\tilde{\theta}_{c r}=90-\sigma-\theta_{c r} \tag{88}
\end{equation*}
\]

The Shear - Wave Incidence Angle. If \(\theta\) is measured
from the horizontal instead of the negative \(\tilde{x}\)-axis then, as shown in Figure \(14, \theta\) becomes
\[
\begin{equation*}
\tilde{\theta}=90-\sigma-\theta \tag{89}
\end{equation*}
\]

Velocity Perturbation Field, \(\tilde{\theta}_{\mathrm{cr}}^{\ell}{ }^{\left(\tilde{\theta}_{\ell}<\tilde{\theta}_{\mathrm{cr}}^{\mathrm{u}}\right.}{ }^{+} \quad\) Upon transforming to \(\tilde{x}\) and \(\tilde{y}\) and expressing the velocity perturbations in terms of streamline coordinates \(\tilde{\xi}\) and \(\tilde{n}\) (see Figure 14), equations (81) become
\[
\begin{aligned}
& \frac{\tilde{W}}{\left|\tilde{w}_{A}\right|}= s^{*} \sin \sigma \cos (\tilde{\phi}-\delta) \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi-V_{N} t\right)+\right. \\
&\left.\delta_{S}\right]+\Pi^{*} \sin \sigma \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi^{\prime}-V_{N_{S}} t\right)+\right.
\end{aligned}
\]
\[
\begin{equation*}
\left.\delta_{p}+\tilde{\phi}-\delta\right] \tag{90a}
\end{equation*}
\]

\[
\left|\theta_{c r}\right|=\tan ^{-1} \sqrt{\frac{(\gamma+1)(m-1)}{2 m^{2}}}
\]
and
\[
\begin{gather*}
\frac{\tilde{\mathrm{w}}^{\prime}}{\left|\tilde{\mathrm{w}}_{\mathrm{A}}\right|}=\mathrm{s}^{*} \sin \sigma \sin (\tilde{\phi}-\delta) \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi-\mathrm{V}_{N_{S}} t\right)+\right. \\
\left.\delta_{\mathrm{s}}\right]+\Pi^{*} \sin \sigma \sin \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \varphi^{\prime}-\mathrm{V}_{N_{s}} t\right)+\right. \\
\left.\delta_{\mathrm{p}}+\tilde{\phi}-\delta\right] \tag{90b}
\end{gather*}
\]
where
\[
\begin{aligned}
& \left|\tilde{W}_{A}\right| \equiv \varepsilon W_{A} \\
& \tilde{\phi} \equiv \phi+\sigma-90
\end{aligned}
\]
and where the other quantities are as previously defined for this case; ioe。 \(\vec{W}<1\).
\[
\text { Velocity Perturbation Field, } \underbrace{\tilde{\theta}_{\mathrm{cr}}^{\ell}} \underbrace{\tilde{\theta}_{\mathrm{cr}}} \text { or } \tilde{\theta}>\tilde{\theta}_{\mathrm{cr}} .
\]

Performing these transformations for the "supersonic" case, equations (82) become
\[
\begin{align*}
& \frac{\tilde{w}}{\left|\tilde{w}_{A}\right|}= S^{* *} \sin \sigma \cos (\tilde{\phi}-\delta) \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi-V_{N} t\right)+\right. \\
&\left.\delta_{s}\right]+\Pi_{s}^{* *} \sin \sigma \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi^{\prime}-v_{N} t\right)+\right. \\
&\left.\delta_{p}+\tilde{\phi}-\delta\right] \tag{91a}
\end{align*}
\]
and
\[
\begin{gather*}
\frac{\tilde{W}^{\prime}}{\left|\tilde{W}_{A}\right|}=S^{\dot{*} *} \sin \sigma \sin (\tilde{\phi}-\delta) \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi-V_{N} t\right)+\right. \\
\left.\delta_{S}\right]+\Pi^{\forall *} \sin \sigma \sin \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi^{\prime}-V_{N} t\right)+\right. \\
\left.\delta_{p}+\tilde{\phi}-\delta\right] \tag{91b}
\end{gather*}
\]
where
\[
\begin{aligned}
& \left|\tilde{w}_{A}\right|=\varepsilon W_{A} \\
& \tilde{\phi}=\phi+\sigma-90
\end{aligned}
\]
and where the other quantities are as previously defined for this case; ie. \(\bar{W}>1\).

Pressure Perturbation Field, \(\tilde{\theta}_{\mathrm{cr}_{\ell}}<\tilde{\theta}<\tilde{\theta}_{\mathrm{cr}_{\mathrm{u}}}\). Upon
transforming to \(\tilde{x}\) and \(\tilde{y}\), equation (83) becomes
\[
\begin{gather*}
\frac{\delta p}{p}=\varepsilon \frac{2 \gamma m \sec \phi}{(\gamma-1)-(\gamma+1) m} \pi^{*} \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi^{\prime}-V_{N_{s}} t\right)+\right. \\
\left.\delta_{p}\right] \tag{92}
\end{gather*}
\]
where \(\pi^{*}\), \(\phi^{\prime}\) and \(\delta_{p}\) are the same as those defined for the "subsonic" velocity perturbation case.

After transforming to \(\tilde{x}\) and \(\tilde{y}\), equation (84) becomes
\[
\begin{equation*}
\frac{\dot{\delta p}}{p}=\varepsilon \frac{2 \gamma m \sec \varphi}{(\gamma-1)-(\gamma+1) m} \pi^{* *} \cos \left[k \cos \theta\left(\tilde{y}-\tilde{x} \tan \phi^{\prime}-V_{N_{s}} t\right)\right] \tag{93}
\end{equation*}
\]
where \(\Pi^{* *}\) and \(\phi^{\prime}\) are the same as those defined for the "supersonic" velocity perturbation case.

Shock - Wave Perturbation, \(\tilde{\theta}_{c r_{\ell}}<\tilde{\theta}<\tilde{\theta}_{c r_{u}}\) 。 Transforming
\(x\) to \(\tilde{x}, \delta x\) to \(\delta \tilde{x}\) and y to \(\tilde{y}-v_{N_{s}} t\), equation (85) becomes
\[
\begin{equation*}
\delta \tilde{x}=\frac{\varepsilon}{k \cos \theta} \sqrt{\tilde{a}^{2}+\tilde{b}^{2}} \quad \cos \left[k \cos \theta\left(\tilde{y}-V_{N_{S}} t\right)+\delta_{\text {shock }}\right] \tag{94}
\end{equation*}
\]
where \(\tilde{a}, \tilde{b}\) and \(\delta_{\text {shock }}\) are those defined for equation (85).

forming to \(\tilde{x}\) and \(\tilde{y}\), equation (86) becomes
\[
\begin{equation*}
\delta \tilde{x}=\frac{\varepsilon \tilde{a}}{k \cos \theta} \sin \left[k \cos \theta\left(\tilde{y}-v_{N_{S}} t\right)\right] \tag{95}
\end{equation*}
\]
where \(\tilde{a}\) is the same as that defined for equation (86). The most amportant properties of the perturbed flow field downstream of the oblique shock front have been presented. However, there remains one property of interest that is nomally viewed by a stationary observer on a surface inclined at the angle \(\delta\) - the property is pressure and the observer is usually a small transducer which is taken herein to be much smaller than the shortest wavelength to be considered. Thus, in the next section the pressure at the transducer wall be related to the shear-wave \(w_{A}\).

Perturbed Pressure at a Stationary Transducer. The system to be treated 2 s shown in Figure 15 . It can be shown that the surface wave number \(k_{\text {sur }}\) is related to the shear - wave wave number \(k\) by
\[
\begin{equation*}
k_{\text {sur }}=\frac{\cos \left(\sigma+\phi^{\prime}-\delta\right) \cos \theta}{\cos \phi^{\prime}} k \tag{96}
\end{equation*}
\]
or since the wavelength and wave number are simply related \(\left(k \lambda=2 \pi=k_{\text {sur }} \lambda_{\text {sur }}\right)\)
\[
\begin{equation*}
\lambda_{\text {sur }}=\frac{\cos \phi^{\prime}}{\cos \left(\sigma+\phi_{.}^{\prime}-\delta\right) \cos \theta} \lambda \tag{97}
\end{equation*}
\]
where \(\lambda\) is the shear - wave wavelength.
The period of oscillation is
\[
\begin{equation*}
P=\frac{2 \pi}{k \cos \theta V_{N_{S}}} \tag{98}
\end{equation*}
\]
and therefore the frequency is
\[
f=I / P=\frac{k \cos \theta}{2 \pi} V_{N_{S}}
\]
or substituting for \(\mathrm{V}_{\mathrm{N}_{\mathrm{S}}}\) from equation (74)
\[
\begin{equation*}
f=\frac{\tilde{W}_{A}}{\lambda} \cos (\sigma+\theta) \tag{99}
\end{equation*}
\]

It should be noted that \(f=0\) when \(\theta=90-\sigma\); i.e. the pressure wave fronts are stationary.

The surface pressure wave speed, \(\mathrm{V}_{\mathrm{p}_{\text {sur }}}\), is
\(V_{p_{\text {sur }}}=\frac{\lambda_{\text {sur }}}{P}\)
or
\[
\begin{equation*}
\mathrm{V}_{\mathrm{p}_{\text {sur }}}=\frac{\cos \phi^{\prime} \cos (\sigma+\theta)}{\cos \theta \cos \left(\sigma+\phi^{\prime}-\delta\right)} \tilde{W}_{\mathrm{A}} \tag{100}
\end{equation*}
\]
or, if \(\mathrm{V}_{\mathrm{p}_{\text {sur }}}\) is expressed in terms of the local isentropic speed of sound,
\[
\begin{equation*}
\frac{v_{p_{\text {sur }}}}{a}=\frac{\cos \phi^{\prime} \cos (\sigma+\theta)}{\cos \theta \cos (\sigma+\phi-\delta)} \tilde{\mu}_{A} \frac{a_{A}}{a} \tag{101}
\end{equation*}
\]
where
\[
\begin{aligned}
& \tilde{M}_{A} \equiv \frac{\tilde{W}_{A}}{a_{A}}, \\
& \frac{a_{A}}{a}=\sqrt{\frac{T_{A}}{T}}
\end{aligned}
\]
and
\[
\begin{aligned}
& \frac{T_{A}}{T} \text { is given by equation (54) with } T=T_{2}, T_{A}=T_{1} \text { and } \\
& \tilde{M}_{A} \sin \sigma=\bar{U}_{1} \text {. }
\end{aligned}
\]

Only the root-mean-square of the pressure remains to be evaluated. Takıng the rms of equations (92) and (93) yields
\[
\begin{equation*}
(\delta \mathrm{p})_{\mathrm{rms}}=\frac{2 \gamma \mathrm{~m} \sec \phi}{(\gamma+1) \mathrm{m}-(\gamma-1)} \Pi \mathrm{p} \tag{102}
\end{equation*}
\]
where \(\Pi\) is either \(\Pi *\) or \(\Pi * *\) depending on the value of \(\tilde{\theta}\); i.e. whether \(\bar{W}<1\) or \(\bar{W}>1\).

The "sound" pressure level is, by defindtion,
\[
\begin{equation*}
\text { SDL }=20 \log _{10} \frac{(\delta \mathrm{p})_{\mathrm{rmS}}}{\mathrm{p}_{\text {ref }}} d B \tag{103}
\end{equation*}
\]
where \(P_{\text {ref }}=2 \times 10^{-4} \mu\) bar \(\simeq 0.290 \times 10^{-8} \mathrm{psi}\).

Computations. To illustrate a computational method, \(\gamma, \mathrm{a}_{\mathrm{A}}\) (or \(\mathrm{T}_{\mathrm{A}}\)), \(\tilde{M}_{A}, \sigma, \theta, \varepsilon\) and \(k\) wall be treated as independent variables. Numerical computations using the following steps are given in Appendix D.
1. Select a temperature \(T_{A}\).
2. Select a working fluid, i.e. \(\gamma\).
3. Select a Mach number \(\tilde{M}_{A}\).
4. Select an oblique shock angle \(\sigma\).
5. Select a shear wave incidence angle \(\theta\).
6. Select a shear wave amplıtude \(\varepsilon\).
7. Select a wave number \(k\).
8. Compute \(m\) as follows (reference 8)
\[
\begin{equation*}
m=\frac{U}{U}=\frac{\rho}{\rho_{A}}=\frac{(\gamma+1) \bar{U}_{A}^{2}}{2+(\gamma-1) \bar{U}_{A}^{2}} \tag{104}
\end{equation*}
\]
where
\[
\bar{U}_{A} \equiv \tilde{M}_{A} \sin \sigma
\]
9. Compute a as follows (reference 8)
\[
\begin{align*}
& a=a_{A} \sqrt{T / T_{A}} \\
& \left.\frac{T}{T_{A}}=\frac{[2+(\gamma-1)}{} \begin{array}{l}
\bar{U}_{A}^{2}
\end{array}\right]\left[\begin{array}{ll}
\frac{2 \gamma}{\gamma-1} \bar{U}_{A}^{2}-1
\end{array}\right] \tag{105}\\
& \frac{(\gamma+1)^{2}}{(\gamma-1)} \bar{U}_{A}^{2}
\end{align*}
\]
10. Compute \(\delta\) as follows (reference 8)
\[
\begin{equation*}
\delta=\sigma-\tan ^{-1}\left[\frac{1}{m} \tan \sigma\right] \tag{106}
\end{equation*}
\]
11. Compute \(\varphi\) as follows (definition of terms following equations (81))
\[
\begin{equation*}
\phi=\tan ^{-1}[m \tan \theta] \tag{107}
\end{equation*}
\]
12. Compute \(\theta_{c r}\) from equation (80), i.e.
\[
\begin{equation*}
\left|\theta_{c r}\right|=\tan ^{-1} \sqrt{\frac{(\gamma+1)(m-1)}{2 m^{2}}} \tag{108}
\end{equation*}
\]
13. Test for type of solution; e.g.
a. If \(-\left|\theta_{c r}\right|<\theta<\left|\theta_{c r}\right|\) then "subsonic" solution applies. Go to Step 14.
b. If \(-90 \leq \theta<\left|\theta_{\mathrm{cr}}\right|\) or \(\left|\theta_{\mathrm{cr}}\right|<\theta \leq 90\) then "supersonic" solution applies. Go to Step 29.
14. Compute \(\beta\) as follows
\[
\begin{equation*}
\beta \equiv \sqrt{1-\overline{\mathrm{U}}^{2}} \tag{109}
\end{equation*}
\]
where
\[
\begin{align*}
& \overline{\mathrm{U}} \equiv \mathrm{U} / \mathrm{a} \tag{110}\\
& \mathrm{U}=\frac{1}{\mathrm{~m}} \tilde{\mathrm{~W}}_{\mathrm{A}} \sin \sigma \tag{111}
\end{align*}
\]
15. Compute \(\beta_{W}\) as follows
\[
\begin{equation*}
\beta_{W} \equiv \sqrt{1-\bar{W}^{2}} \tag{112}
\end{equation*}
\]
where
\[
\begin{equation*}
\bar{W}=\overline{\mathrm{U}} / \cos \phi . \tag{113}
\end{equation*}
\]
16. Compute C, D, E and \(F\) as follows
\[
\begin{array}{r}
c=\left[\frac{\gamma-1}{\gamma+1}+\frac{3-\gamma}{\gamma+1} m\right] \tan \phi-\left[(m-1)^{2}+\right. \\
\left.\frac{2(m-1)}{\gamma+1}\right] \sin \phi \cos \phi \tag{114}
\end{array}
\]
\[
\begin{equation*}
D=\frac{\beta w}{\beta^{2}}(m-1)\left[1+(m-1) \cos ^{2} \phi\right] \tag{115}
\end{equation*}
\]
\[
\begin{equation*}
D^{\prime}=\frac{\beta^{2}}{\beta_{w}} D \tag{116}
\end{equation*}
\]
\[
\begin{align*}
& E=2\left[1-\frac{\gamma-1}{\gamma+1} m\right]+2(m-1) \frac{\beta_{W}^{2} \cos ^{2} \phi}{\beta^{2}} \tag{117}\\
& F=\frac{\beta_{W}}{\beta^{2}}[2(m-1) \sin \phi \cos \phi] \tag{118}\\
& F^{\prime}=\frac{\beta^{2}}{\beta_{W}} \mathrm{~F} \tag{119}
\end{align*}
\]
17. Compute \(\tilde{a}, \tilde{b}, \tilde{c}\) and \(\tilde{d}\) as follows
\[
\begin{align*}
& \tilde{a}=m \frac{C E+D F}{C^{2}+D^{2}} \tag{120}\\
& \tilde{b}=m \frac{C F-D E}{C^{2}+D^{2}} \tag{121}\\
& \tilde{c}=\frac{a}{m} D^{\prime}-F^{\prime} \tag{122}\\
& \tilde{d}=\frac{b}{m} D^{\prime} \tag{123}
\end{align*}
\]
18. Compute \(A\) and \(B\) as follows
\[
\begin{align*}
& A=\sec \phi+2(m-1) \cos \phi+\frac{\tilde{a}}{m}(m-1)^{2} \sin \phi \tag{124}\\
& B=\frac{\tilde{b}}{m}(m-1)^{2} \sin \phi \tag{125}
\end{align*}
\]
19. Compute \(\phi^{\prime}, \delta_{s}\) and \(\delta_{p}\) as follows
\[
\begin{align*}
& \phi^{\prime}=-\tan ^{-1}\left[\frac{\bar{U}^{2} \tan \phi}{\beta^{2}}\right] \tag{126}\\
& \delta_{s}=\tan ^{-1}\left[\frac{-B}{A}\right] \tag{127}\\
& \delta_{p}=\tan ^{-1}\left[\frac{\tilde{c} \beta_{W}-\tilde{d} \tan \phi}{\tilde{d} \beta_{w}+\tilde{c} \tan \phi}\right] \tag{128}
\end{align*}
\]
20. Compute \(S^{*}\) as follows
\[
\begin{equation*}
S^{*}=\frac{1}{m} \sqrt{A^{2}+B^{2}} \tag{129}
\end{equation*}
\]
21. Compute \(\Pi_{0}^{*}\) (the subscript zero indicates that \(\Pi^{*}\) is being evaluated at \(x=\tilde{x}=0\)) as follows
\[
\begin{equation*}
\Pi_{0}^{*}=\frac{1}{m \beta} \sqrt{\tilde{c}^{2}+\tilde{d}^{2}} \tag{130}
\end{equation*}
\]
22. Compute the ratio of the refracted shear wave velocity amplitude to the incident shear wave velocity amplitude; i.e.
\[
\begin{equation*}
\frac{\left[\left|\tilde{w}_{s}^{2}+\tilde{w}_{s}^{12}\right|\right]^{1 / 2}}{\left|\tilde{w}_{A}\right|}=S^{*} \sin \sigma \tag{1.31}
\end{equation*}
\]
22. Compute the ratio of the generated pressure wave velocity amplitude at \(\tilde{x}=0\) to the incident shear wave velocity amplitude; i.e.
\[
\begin{equation*}
\frac{\left[\left|\tilde{w}_{p}^{2}+\tilde{w}_{p}^{12}\right|\right]^{1 / 2}}{\left|\tilde{w}_{A}\right|}=\pi_{o}^{\%} \sin \sigma \tag{132}
\end{equation*}
\]
23. Compute the rms pressure just after the shock by using equations (102) and (130); i.e.
\[
\begin{equation*}
\left.(\delta \mathrm{p})_{\text {rins }}=\varepsilon \frac{\sqrt{2}, \gamma \mathrm{~m}|\sec \phi|}{(\gamma+1) \mathrm{m}-(\gamma-1)} \|_{0}^{*} \right\rvert\, \mathrm{p} \tag{133}
\end{equation*}
\]
where
\[
\begin{align*}
& \frac{p}{P_{A}}=\frac{2 \gamma}{\gamma+1} \bar{U}_{A}^{2}-\frac{\gamma-1}{\gamma+1} \begin{array}{c}
(\text { reference } 8 \text { or Equation } \\
(64))
\end{array} \tag{134}\\
& P_{A}=1 \mathrm{~atm}=14.696 \text { psia } \tag{1.35}
\end{align*}
\]
24. Compute the sound pressure level just behind the shock, i.e. at \(\tilde{x}=0\), using equation (103) as follows
\[
\begin{equation*}
\mathrm{SPL}_{\mathrm{O}}=20 \log _{10} \frac{(\delta \mathrm{p})_{\mathrm{rms}}}{\mathrm{p}_{\mathrm{ref}}} \tag{136}
\end{equation*}
\]
where
\[
\begin{equation*}
p_{\text {ref }}=0.29 \times 10^{-8} \mathrm{psi} \tag{137}
\end{equation*}
\]
25. Compute the surface wave number \(k_{\text {sur }}\) for the pressure waves by using equation (96) as follows
\[
\begin{equation*}
k_{\text {sur }}=\frac{\cos \left(\sigma+\phi^{\prime}-\delta\right) \cos \theta}{\cos \phi^{\prime}} \mathrm{k} \tag{96}
\end{equation*}
\]
26. Compute the pressure wave frequency from equation (99) as follows
\[
\begin{equation*}
f=\frac{\tilde{M}_{A} k{ }^{a_{A}}}{2 \pi} \cos (\sigma+\theta) \tag{138}
\end{equation*}
\]
27. Compute the ratio of surface pressure wave velocity to
the local speed of sound from equation (l01) as follows
\[
\begin{equation*}
\frac{{ }^{V} \mathrm{P}_{\operatorname{sun}}}{a}=\frac{\cos \phi^{\prime} \cos (\sigma+\theta)}{\cos \theta \cos (\sigma+\phi-\delta)} \tilde{M}_{A} \frac{a_{A}}{a} . \tag{101}
\end{equation*}
\]
28. Compute the shock front displacement amplitude \(|\delta \tilde{x}|\)
and phase \(\delta_{\text {shock }}\) as follows
\[
\begin{equation*}
|\delta \tilde{x}|=\frac{\varepsilon}{\bar{k} \cos \theta} \sqrt{\tilde{a}^{2}+\tilde{b}^{2}} \tag{139}
\end{equation*}
\]
and
\[
\delta_{\text {shock }}=\tan ^{-1}(\tilde{a} / \tilde{b})
\]

The steps that follow are for the "supersonic" solution and they correspond to the foregoing Steps (14) through (28).
29. Compute \(\beta\) as follows
\[
\begin{equation*}
\beta=\sqrt{1-\overline{\mathrm{U}}^{2}} \tag{109}
\end{equation*}
\]
30. Compute \(\beta_{w}\) as follows
\[
\begin{equation*}
\beta_{W}=\sqrt{\bar{W}^{2}-1} \tag{141}
\end{equation*}
\]
where
\[
\begin{equation*}
\overline{\mathrm{W}}=\overline{\mathrm{U}} / \cos \phi . \tag{113}
\end{equation*}
\]
31. Compute \(C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}\) and \(G\) as follous
\[
\begin{align*}
& C^{\prime}=2 \frac{\gamma-1}{\gamma+1} m-2\left[1+(m-1) \cos ^{2} \phi\right] \tag{142}\\
& D^{\prime}=(m-1)\left[1+(m-1) \cos ^{2} \phi\right] \tag{143}\\
& E^{\prime}=(m-1)^{2} \sin \phi \cos \phi-\left[1+\frac{3-\gamma}{\gamma+1} m\right] \tan \phi \tag{144}\\
& F^{\prime}=2(m-1) \sin \phi \cos \phi \tag{145}\\
& G^{\prime}=\tan (\mu-\phi) \tag{146}
\end{align*}
\]
where
\[
\begin{equation*}
\mu=\tan ^{-1}\left(1 / \beta_{W}\right) \tag{147}
\end{equation*}
\]
32. Compute \(\tilde{a}\) and \(\tilde{c}\) as follows
\[
\begin{align*}
& \tilde{a}=m \frac{C^{\prime}+G^{\prime} F^{\prime}}{E^{\prime}+G^{\prime} D^{\prime}} \tag{148}\\
& \tilde{c}=\frac{\tilde{a}}{m} D^{\prime}-F^{\prime} \tag{149}
\end{align*}
\]
33. Compute A as follows
\[
\begin{equation*}
A=\sec \phi+2(m-1) \cos \varphi+\frac{\tilde{a}}{m}(m-1)^{2} \sin \phi_{0} \tag{150}
\end{equation*}
\]
34. Compute \(\phi^{\prime}\) as follows
\[
\phi^{\prime}=|[|\phi|-\mu]| \text { with sign of } \phi
\]
or
\[
\begin{equation*}
\phi^{\prime}=\frac{\phi}{|\phi|}|[|\phi|-\mu]| \tag{151}
\end{equation*}
\]
35. Compute \(\mathrm{S}^{* *}\) as follows
\[
\begin{equation*}
s^{* *}=A / m \tag{152}
\end{equation*}
\]
36. Compute \(\pi \pi^{* *}\) as follows
\[
\begin{equation*}
\pi^{* *}=\frac{\tilde{c}}{m} \frac{\sin \mu}{\cos (\phi-\mu)} \tag{1.53}
\end{equation*}
\]
37. From equations (91) compute the ratio of the refracted shear wave velocity amplitude to the incident shear wave velocity amplitude; i.e.
\[
\begin{equation*}
\frac{\left[\left|\tilde{w}_{s}^{2}+\tilde{w}_{s}^{2}\right|\right]^{1 / 2}}{\left|\tilde{w}_{A}\right|}=s^{* *} \sin \sigma . \tag{154}
\end{equation*}
\]
38. From equations (91) compute the ratio of the generated pressure wave velocity amplitude to the incident shear wave velocity amplitude, i.e.
\[
\begin{equation*}
\frac{\left[\left|\tilde{w}_{p}^{2}+\tilde{w}_{p}^{12}\right|\right]^{1 / 2}}{\left|\tilde{w}_{A}\right|}=\pi^{* *} \sin \sigma \tag{155}
\end{equation*}
\]
39. Compute the rms pressure by using equations (102) and (153); i.e.
\[
\begin{equation*}
(\delta \mathrm{p})_{\mathrm{rms}}=\varepsilon \frac{\sqrt{2} \gamma \mathrm{~m} \sec \phi}{(\gamma+1) m-(\gamma-1)} \quad \pi{ }^{* *} \mathrm{p} \tag{156}
\end{equation*}
\]
where \(p\) is given by equation (134).
40. Compute the sound pressure level by using equation (103) as follows
\[
\begin{equation*}
\mathrm{SPL}=20 \log _{10} \frac{\left(\varepsilon_{\mathrm{p}}\right)_{\mathrm{rms}}}{\mathrm{P}_{\mathrm{ref}}} \tag{157}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathrm{p}_{\mathrm{ref}}=0.29 \times 10^{-8} \mathrm{psi} \tag{117}
\end{equation*}
\]
41. Compute the surface wave number \(k_{\text {sur }}\) for the pressure waves by equation (96) as follows
\[
\begin{equation*}
k_{\text {sur }}=\frac{\cos \left(\sigma+\phi^{\prime}-\delta\right) \cos \theta}{\cos \phi^{\prime}} k \tag{96}
\end{equation*}
\]
42. Compute the pressure wave frequency from equation (99) as follows
\[
\begin{equation*}
F=\frac{\tilde{M}_{A} k a_{A}}{2 \pi} \cos (\sigma+\theta) \tag{138}
\end{equation*}
\]
43. Compute the ratio of surface pressure wave velocity to
the local speed of sound from equation (101) as follows
\[
\begin{equation*}
\frac{{ }^{V_{\text {sur }}}}{a}=\frac{\cos \phi^{\prime} \cos (\sigma+\theta)}{\cos \theta \cos \left(\sigma+\varphi^{\prime}-\delta\right)} \tilde{M}_{A} \frac{a_{A}}{a} . \tag{101}
\end{equation*}
\]
44. Compute the shock wave displacement amplitude \(|\delta \tilde{x}|\) as follows
\[
\begin{equation*}
|\delta \tilde{x}|=\frac{\varepsilon \tilde{a}}{k \cos \theta} \tag{158}
\end{equation*}
\]

A FORTRAN IV program to make these computations is given in Appendix C.

\section*{Results}

The shear wave-shock front interaction will be illustrated for the same two Saturn \(V\) interstage flare angles, namely, \(\delta=8^{\circ} 58^{\prime}\) and \(\delta=16^{\circ} 44^{\prime}\).

Appendix \(D\) contains computed data for the following cases:
\begin{tabular}{lllllllll}
\(\tilde{M}_{\mathrm{A}}\) & 1.50 & 2.00 & 2.50 & 3.00 & 1.75 & 2.00 & 2.50 & 3.00 \\
\(\delta\) & 8.98 & 8.96 & 8.96 & 8.97 & 16.73 & 16.73 & 16.74 & 16.75
\end{tabular}

The data column headings are defined as:
```

THETA - , the shear wave incidence angle, in degrees
PHI-PR - \phi', equation (126) or (151)
WS/WA - shear wave amplıtude ratio, equation (131) or (154)
DEL S - \delta S, equation (127)
WP/WA - pressure wave amplitude ratıo, equation (132) or (155)
DEL P - \delta _p, equation (128)
(DP)RMS - as defined by equation (133) or (156)
KSUR/K - k sur
VSUR/A - V (p)
ADX/EL - as defmned by equation (139) or (158)
DEL SH - \delta shock, equation (140)

```

It should be noted that there is at least one shear-wave incidence angle for each case considered that produces shock front resonance.

A model experiment was designed to study the interaction of sound waves and an oblique shock front. From the analysi.s of this phenomenon presented in Chapter 2 it is clear that the sound field after the shock will depend on the initial Mach number, the turning angle (oblique shock angle) and the angle of incidence of the plane sound waves. The experimental system to be described used a fixed Mach number, \(M_{1} \approx 1,6\), fixed incidence angle, \(\theta=90-\sigma\), and a variable turning angle, \(\delta\). The sound pressure level difference across the shock front for these conditions is shown in Figure 16.

\section*{Instrumentation and Equipment}

\section*{Model Wind Tunnel}

The low speed supersonic wind tunnel shown schematically in Figure 17 was built for these tests. Atmospheric air entered the tunnel by flowing around the horn, down a 24 -inch long calming section and then through a I6-to-l smooth contraction. After passing through the tunnel the air entered a vacuum chamber. The area ratio at the wedge (model) was I.53I but the wall boundary layers reduced this to an effective area ratio of l. 250 with a corresponding Mach number of l.6.

Wedge

The wedge was mounted on a circular holder with the wedge leading edge at the holder's axis of rotation (see figure 17). A half-degree incremented protractor coupled with a pointer on the holder indicated the wedge angle-flow turning angle \(\delta-t o\) within a quarter of a degree.

A static pressure tap 0.0135 minch in diameter was provided \(0.2-i n c h\) from the leading edge.

Static Pressure Probe

A circular probe holder formed the tunnel wall below the wedge (see Figure 17) and its axis of rotation was also at the wedge leading edge. As snown in Figure 18 , the static pressure tap was located 0.265 -inch off center and, therefore, it was possible to measure the static pressure along a 180degree circular arc. A \(0-50\) psi Heise Bourdon gauge was used as a pressure transducer.

Acoustic Pressure Probes

Two acoustic pressure probes were used. The one shown in Figure 17 consisted of a one-inch long 0.5 mm (0.009 -inch I.D.) Brüel and Kjaer Type DB 0240 probe mounted on a \(B E K\) Type 4134 condenser microphone cartridge. A vacuum tight extension was built to couple the microphone cartridge and a BEK Type 2615 cathode follower. A BEK Type 2107 frequency analyzer was used to determine the root-mean-square sound pressure level.

The probe tip mated with a 0.009 -inch hole cast into the probe holder thereby producing a smooth surface at the sensing port. The port, as shown in Figure 18 , was located 0.345-inch off the center of rotation, and 20.5 degrees behind the static pressure tap. The acoustic pressure, therefore, could be measured along 180 degrees of a circular arc. This path intersected the oblique shock front at right angles.

It should be noted that both the static pressure and the acoustic pressure are sensed at ports that are normal to the flow direction and beneath a viscous boundary layer. Since there is a subsonic region next to the wall, the increase in fime-mean pressure due to the shock is felt upstream of the shock front. In an attempt to circumvent the boundary-layer effects a second probe was developed.

As shown in Figure 19 this probe extended from the calming chamber to the vacuum chamber. It was a BEK Type DB 0241 (1 mm O.D.) probe that was modified by plugging the tip, drilling a 0.0135-inch hole in the side of the tip and adding a length of tubing to the other end of the plug. The probe could traverse a one-inch path in the flow direction and its axial position was set to within 0.00l-inch with a micrometer. The boundary layer above this port was much thanner and the acoustic pressure so determined is believed to be much more indicative of that in the flow.

The same microphone cartridge and cathode follower were used with this probe but a different extension was required.

\section*{Sound Generator}

The sound field was generated by an Altec 802D driver loudspeaker in conjunction with the conical horn - cutoff frequency of 450 Hz - shown in Figure 17. A Hewlett-Packard Model 206A audio signal generator acted as the electrical power source。 A Marantz Model 9 power amplifier was required, to increase the power output to levels up to 30 watts. The. power to the driver was monitored by a Fluke Model lo2R VAW. meter and the frequency was measured with a Hewlett-Packard Model 5212 A electronic counter.

Regulated \(60-\mathrm{Hz}\), 117 -volt power was supplied for all electronic systems by a Sorensen Model 2501 A.C. line voltage regulator.

\section*{Experimental Procedure}

The following is a synopsis of the experimental procedure used for taking all of the data:
1. The electronic systems were turned on and allowed to stabilize for at least eight hours. They were calibrated just before making a data run.
2. The vacuum system was started and run for at least 30 minutes before taking data。
3. The pressure gauge zero was checked against a high vacuum.
4. The desired turning angle was set by rotating the wedge holder.
5. The acoustic pressure port was positioned upstream of the shock front.
6. Power was supplied to the driver at the desired frequency. (The system could be tuned to obtain higher SPL's by making slight changes in the horn's axial location and in the driving frequency.)
7. The power was varied until the desired SPL was obtained. (Since the flow noise level was quite high the impressed sound pressure was "viewed" in an eight percent band about the driver frequency by operating the BEK 2107 in the frequency analysis mode.)
8. The driver frequency, current, voltage and power were measured.
9. The flow field was traversed by either rotating the probe holder or inserting the linear motion acoustic pressure probe.
10. Sound pressure levels were recorded for each angular or axial position by time averaging the output from the driver frequency band with a BEK Type 2417 random signal voltmeter. (Averaging times of up to 100 seconds were required when the level was close to the random amplitude background noise.)
11. Static pressure was recorded at each angular position of the probe holder.
12. Finally, background SPL's in the same frequency band were recorded. (The field was probed without power to the driver.)

Results

Fluctuating pressure data were taken for stationary oblique shock fronts irradiated with sound waves. Since two different probes were used to obtain these data typical results will now be presented for each probe.

Tunnel Wall Tap Data
Figure 20 shows a typical fluctuating pressure distribution with and without an impressed sound field. Assuming that the background pressure field and the impressed sound pressure field are not correlated, the sound pressure distribution is easily obtained. It is shown in Figure 21 together with the static pressure distribution.

It should be noted that the static pressure starts its rise some 30 degrees before the predicted inviscid shock front position. This rather steep adverse pressure gradient undoubtedly thickens the boundary layer before the shock which in turn gives rise to a possible separated flow below the primary shock and curved oblique shocks at the corners formed by the antersection of the primary shock front and the upper and lower tunnel walls. Thus the unsteady pressure component was sensed beneath a very complex flow region and a reasonable comparison with the predicted acoustic pressure level distribution is not to be expected.

The dip in the sound pressure curve prior to the primary shock front position was characterıstic of all data taken. As shown in Figure 16 attenuation of the sound pressure by shock interaction was predicted and this premature dap may be due to, at least in part, an interaction of the sound waves and the corner shocks.

The rise in the pressure level near the shock front is to be expected since the shock is oscillating relative to the pressure transducer with the
same frequency as the impressed sound waves. However the level was expected to decrease away from the shock and be approximately 9 dB less than the sound pressure level before the shock. As shown in Figure 21 , thas did not occur and it can only be said that there was no appreciable change in level.

In an attempt to measure the acoustic pressure through a much thinner and hopefully less complex boundary layer the side tap needle probe was installed and the following data were obtained.

\section*{Needle Probe Data}

Figure 22 is a composite of the pressure data obtained with the needle probe. The parameter is the power supplied to the acoustic driver. The premature dip is evident for the high power run but it is apparently absent for the, low power run. The increase in sound pressure level as the shock front is approached is much more evident with this probe. Increases of 17.5 to 23.0 dB from the initial level were obtained. A characteristic not found with the wall tap probe was the sharp drop in level after the maximum, a subsequent rise again, and then a gradual decrease in sound pressure level.

This second dip is felt to be due to the relative position of the oscillating shock and the acoustic pressure tap. If the peak-to-peak amplitude of the shock displacement is less than the pressure tap diameter then the apparent acoustic pressure should drop to a relative minimum when the shock's mean position is in the center of the tap.

Finally, it should be noted that the sound pressure level downstream of the shock did not go below its initial level and for the lowpowered and non-powered cases the minimum levels were at least five
decibles higher than their initial levels.
Since a large increase in the pressure level at the shock front was found for the case of natural pressure fluctuations at a frequency of 1818 Hz , a frequency analysis was performed to determine the effect of the shock front interaction with these fluctuations at other frequencies. To perform this analysis the pressure, as detected by the uncalibrated probe, was tape recorded for two cases: (1) probe at the shock front and (2) probe in the same position but with no shock present (the model was removed). Figure 23 shows the results and, for clarity, the difference of the two spectra is shown in Figure 24.

\section*{CHAPTER IV}

\section*{DISCUSSION OF RESULTS}

Since there are two different phenomena treated in this study the discussion is divided into a section on sound wave-shock front interaction and one on shear wave-shock front interaction. Finally, an appraisal of the status of each of the theoretical analyses is presented.

Sound Wave-Shock Front Interaction

Analytical Study

The first part of this discussion is based on the results given in Appendix B. Figures 8 and 9 will be helpful for visualizing the orientation of the incident sound wave-as given by \(\theta\) (THETA), the refracted sound wave--as given by \(\phi^{\prime}\) (PHIP), and the generated entropy-vorticy wave-as given by \(\beta\) (BETA). In looking at these data note in particular the behavion of the ratio of the amplitude of the acoustic pressures in Regions 1 and 2 (PP2/PP1).

Although the analysis was for a plane sound wave it will be more instructive to think of the oblique shock front being simultaneously irradiated with equal amplitude plane sound waves with orientations from \(\theta=-90^{\circ}\) to \(\theta=90^{\circ}\). Since the governing equation is linear these fields will superpose. Look at the sound field downstream of the shock front. For the case of \(M_{1}=1.50\) and \(\delta=8.98^{\circ}\), the sound pressure is amplified by the shock when \(-90^{\circ} \leq \theta<-40^{\circ}\), attenuated when \(-35^{\circ}<\theta<70^{\circ}\), and amplified again when \(75^{\circ}<\theta<90^{\circ}\). Contrast this with the case of \(M_{1}=3.00\)
and \(\delta=16.75^{\circ}\) where there is amplification for all orientations but \(-5^{\circ}<\theta<20^{\circ}\) and where shock resonance occurs at \(\theta=53^{\circ}\).

Since shock resonance was predicted for all but one of the cases considered, it is interesting to compare the incident sound wave angle which produces resonance, \(\theta_{r}\), with the angle of the flow before the shock, \(\theta_{f}=90-\sigma\).
\begin{tabular}{cccccccc}
\(\delta\) & \(M_{l}\) & \(\theta_{f}\) & \({ }^{\theta}{ }_{r}\) & \(\delta\) & \(M_{l}\) & \(\theta_{f}\) & \(\theta_{r}\) \\
8.98 & 1.50 & 35.6 & - & 16.74 & 1.75 & 32.5 & 82 \\
8.96 & 2.00 & 51.8 & 82 & 16.73 & 2.00 & 42.2 & 74 \\
8.97 & 2.50 & 59.1 & 68 & 16.74 & 2.50 & 51.1 & 63 \\
8.98 & 3.00 & 63.5 & 57 & 16.75 & 3.00 & 55.9 & 53
\end{tabular}

For relatively low Mach numbers the sound ray is almost parallel to the shock front and moving leftward; however, at higher Mach numbers the sound ray aligns with the flow. Thus plane sound waves traveling in the flow direction would be strongly amplified for the case of \(M_{I}=3.00\) and \(\delta=16.75^{\circ}\).

Although the change in acoustic pressure across the shock front is independent of frequency, the peak-to-peak shock front displacement, \(|2 \alpha|\), is inversely proportional to frequency since
\[
|2 \alpha|=\mid \text { PPAMPL } \left\lvert\, \frac{\mathrm{U}_{0_{1}}}{\omega_{1}}\right.
\]

Experimental Study

The experimental study highlighted the difficulty of interpreting fluctuating pressure data from a supersonic flow. It can be said with certainty that the impressed sound field interacted with the oblique shock and caused significantly amplified pressure fluctuations near the shock
front. However, the shock process in this miniature system was too complex to permit a comparison of predicted and measured sound pressure levels. A decrease of about nine decibels was predicted but no appreciable change was found except in the vicinity of the shock front.

The most interesting data to come from this study was that which showed strong amplification of the natural pressure fluctuations in the flow at the shock front. Figure 24 shows an amplification of about 26 dB for frequencies from 20 to 2000 Hz and definitely indicates that the shock motion contains all the frequencies present in the shockless flow.

This points up a clear need for the accurate determination of super-sonic-tunnel sound fields if vehicle surface pressure data are to be properly interpreted. The analyst must be able to separate tunnel sound effects from vehicle self noise effects.

\section*{Shear Wave-Shock Front Interaction}

The results given in Appendix \(D\) show an erratic behavior for most of the computed properties. In particular, the transition from the "supersonic" to the "subsonic" solution looks suspicious for \(\phi\) ' and \(\delta_{p}\).

Since the results are in doubt it will only be noted that shock resonance is predicted for all eight cases and that the results for positive \(\theta\) are similar to those of Ribner.

\section*{Status of the Analytical Studies}

The analysis of plane sound wave interaction with oblique shock fronts has been independently performed by two of the authors. Although the resulting forms of the solution differed slightly the predicted data agreed. Thus it is felt that this solution is reliable.

The shear wave analysis is not ready for application. There were two functional differences between Ribner's development and the one presented herein that have not been resolved. Further, an independent check of this analysis has not been obtained.

From the plane sound wave-oblique shock front interaction study it is concluded that:
1. There exists, under suitable conditions, a sound wave incidence angle such that shock wave resonance will occur.
2. The amplification of plane sound waves by the excited shock is independent of the frequency of the sound.
3. The amplitude of the shock front displacement is inversely proportional to the sound Erequency and directly proportional to the magnitude of the sound particle velocity.
4. The analysis appears to be reliable enough for application.
5. Oblique shock fronts may be excited by an impressed sound field and/or by a natural sound field.

From the shear wave-oblique shock front interaction analysis it is concluded that:
1. There appears to be a shear wave incidence angle such that shock front resonance is produced.
2. The predicted results seem to be erratic in behavior and ane, at this stage of development, suspect.
3. The analysis is not reliable enough for application.

As a logical extension of the sound wave-shock front study it is
recommended that:
1. The analysis should be applied to a multiple shock field of finite
extent with the ohjective being the prediction of the far sound field associated :uith specific sound wave irradiation.
2. An experiment should be desagned to confirm the predaction of shock resonance.

To put the shear wave-shock front analysis on a firm base it is recommended that.
1. The study should be repeated by another analyst.
2. An experiment should be designed to confirm the predicted downstream velocaty and pressure field.

APPENDICES

APPENDIX A

FORTRAN IV PROGRAM FOR SOUND WAVE - SHOCK FRONT INTERACTION

PROGRAM NAIN(INPUT, OUTPUT, TAPESEINPUT, TAPEGZOUTPUT)

TLE EFFECT OF gLANE SOUND WAVES ON A STATYONARY OBLIQUE SHOCK
T. 1 IS THE ABgOLUTE TEMPERATURE IN REGION I IN DEGREE' RANKINE
 \(0 \quad S H R=(A+1.0) /(G-1.0)\)
 \(0 \quad P I=3.1415926536\)
C
C
C
 1000
 1010

THD IS THETA, ANGLE OF INCIDENT SOUND WAVE IN DEGREEG
\(T H D=-25.0\)
\(1100 \quad T H D=T H O+5.0\)
IF(THD.GT.90.0) GO TO 100
\(T H R=T H D \leftrightarrow P I / 1 a 0.0\)
BETAR=ATAN((SI*STN(THR)*COS(STGR)*COS(PHIR))/((SIN(PHIR))*(1*0
+ Sl \(^{* S I N(S I G R) * \operatorname{COS}(T H R)))}\)
GFTAD=BETAR*1ヵO.0/P1
SUBanNUTINE FOR FINDING PHI~PRIME
TRAN=(SS2/SS1)\#SIN(THR)/(1-1)+SI*SIN(SIGK+THR))
\begin{tabular}{|c|c|c|c|}
\hline 230 & & 0 & OFLD= \(20.08 \mathrm{PI} / 140.0\) \\
\hline 233 & & 0 & \(N=0\) \\
\hline 234 & & 0 & IF(THN)111.112.113 \\
\hline 236 & 111 & 0 & PHIPH=2. ORAETAR \\
\hline 240 & & 0 & OFLPA=-1.0®PI/180.0 \\
\hline 243 & & 0 & () TC 114 \\
\hline 243 & 112 & 0 & \(B E T A R=0.0\) \\
\hline 244 & & 0 & PHIPR=0.0 \\
\hline 245 & & 0 & GO TO 115 \\
\hline 245 & 113 & 0 & PHIPA =2.0*BETAR \\
\hline 247 & & '0 & DELPK=1.04PI/1A0.0 \\
\hline 252 & & 0 & GO TO 114 \\
\hline 252 & 114 & 0 & \(\mathrm{N}=\mathrm{N}+1\) \\
\hline 254 & & 0 & \(\dagger F S T=\cap E L P\) \\
\hline 255 & - & 0 & PHIPH=PHIPR*nELPR \\
\hline 2.57 & & 0 & GAMH= TRAN* (1,0+S2*COS (PHIR-PHIPR))/COS (PHIPR) \\
\hline 271 & & 0 & PHIPP = ATAN(GAMR) \\
\hline 213 & & 0 & DFLP = ABS (\((P H I P R-P H I H P) / P H Y P R)\) \\
\hline 277 & & 0 & IF (DEI.P.LT.0.0001) G0 TO. 115 \\
\hline 302 & & 0 & IF (N.GT.200) GO TO 115 \\
\hline 305 & & 0 & IF (NELP.LT.TFST) GO TO 114 \\
\hline 307 & & 0 & PHIPR=PHIPR - . \(0^{*}\) OELPR. \\
\hline 311 & & 0 & DELPR=DELPR/ \(2 \cdot 0\) \\
\hline 312 & & 0 & \(D F L \rho=n E L P+1 \cdot 0\) \\
\hline 314 & & 0 & GO TO 114 \\
\hline 314 & 115 & 0 & PHIPD=PHIPR \(180.0 / \mathrm{PI}\) \\
\hline & C & & END PHI-PRIME SUH-RUUTINE \\
\hline 316 & - & 0 & A1:(2.0*R/SHR -1.0\() * \operatorname{COS}(\mathrm{THR}) / \mathrm{SIN}(S I G R)+(G=1 \cdot 0-R *(G-1 \cdot 0) / S H R)\) \\
\hline - & & 1 & 51 - - \\
\hline 337 & & 0 & B1= \(-(3.0 \# N / S H R=1,0) * \operatorname{COS}(S T G R) / S I N(S I G R) ~\) \\
\hline 351 & & 0 & \(\mathrm{Cl}=-\left(2.0 \% R / S_{\mu R-1.0) / S I N(S I G R)}\right.\) \\
\hline 360 & & 0 & \(\Delta 2=S I N(T H R) * S I N(P H I H) * S I N(S I G R) * C O S(P H I R) * A I / R\) \\
\hline 375 & & 0 & Q \(2=S I N(S I G R) * S I N(P H I R)+S I N(S I G R) * C O S(P H I R) * B I / R ~\) \\
\hline 412 & & 0. & \(C 2=S I N(S I G R) * C O S(P H I R) * C I / R\) \\
\hline 421 & & 0 & \(A 3=5 I N(T H K) * \operatorname{COS}(\mathrm{PHIH})-\operatorname{COS}(S I G R) * \operatorname{COS}(\mathrm{PHIR}) * A I\) \\
\hline 435 & & 0 & B3=SIN(SIGR) \(\quad \operatorname{COS}(\mathrm{PHIR})-\operatorname{COS}(S T G R) / S I N(P H I R) \sim \operatorname{COS}(S I G R) \star C O S(P H I R)\) \\
\hline & & 1 & «R1 \\
\hline 457 & & 0 & C \(3=-\operatorname{CoS}(S I G R) * \cos (\mathrm{PHIR}) * \mathrm{Cl}_{1}\) \\
\hline 466 & & 0 & \\
\hline & & 1 & \(4.0{ }^{*} \mathrm{G}^{4} \Delta X^{*} \operatorname{Cos}(T H R) /(2.0 * G * \Delta x X-(\mathrm{G}-1.0)\)) \\
\hline 507 & & 0 & \\
\hline 524 & & 0 & \\
\hline 536 & & 0 & \(\Delta 5=1.0-2.04(\) COS \((T H K) / \Delta X)+0.5 *(G-1.0)) *((R / S H R)-1.0)\) \\
\hline 552 & & 0 & G5=-2.0* ((R/SHR)-1.0) \\
\hline 556 & & 0 & \(C 5=25 / S I N(S I G R)\) \\
\hline 561 & & 0 & EX=SI*SIN(SIGR+THR) \\
\hline 566 & & 0 & \(C X=S I * S I N(T H R)\) \\
\hline 571 & & 0 & \(A 11=(1.04 \mathrm{FX}) \sharp \mathrm{C} 2=\mathrm{CX}+2\) \\
\hline 576 & & 0 & A12=1.0 \\
\hline 577 & & 0 & A13.7COS (PHIR-PHIPR) \\
\hline 603 & & 0 & A14=0.0 \\
\hline 604 & & 0 & \(A>1=(1,0+A X) * C 3-C \times 43\) \\
\hline 611 & & 0 & \(A \geq 2=1.0 * C O S(P H I R-B E T A R) / S I N(P H I R m B E T A R) ~\) \\
\hline 623 & & 0 & \(\Delta \geq 3=\sim S I N(P H I R=P H I P R)\) \\
\hline 630 & & 0 & \(\Delta 24=0.0\) \\
\hline 631 & & 0 & A \(31=(1,0+H X) * C 4-C X * \sim 4\) \\
\hline 636 & & 0 & A 32 \(=0.0\) \\
\hline 636 & & 0 & A33-C4SSI*S1/SS2 \\
\hline 542 & & 0 & \(A 34=0.0\) \\
\hline 642 & & 0 & \\
\hline
\end{tabular}

\section*{APPENDIX B}

SOUND WAVE SHOCK FRONT DATA
\(N 1=1.50\) DELTA \(=8.98\) SIGMA \(=54.44 \mathrm{MZ}=1.16\) THETACP \(=\)
THETACN \(=\)

\(M 1=2.00\) DELTA \(=8.96\) SIGMA \(=38.20 \quad M 2=1.68\) THETACP \(=\)
THETACN \(=\)

\(M 1=2.50\) DELTA \(=8.97\) SIGMA \(=30.89 \mathrm{MZ}=2.13\) THETACP \(=\)
THETACN =

\(M 1=3.00\) DELTA \(=3.98\) SIGMA \(=26.47\) MZ \(=2.56\) THETACP \(=\)
THETACN =

\(M 1=1.75\) DELTA \(=16.74\) SIGMA \(=57.50 \mathrm{M} 2=1.09\) THETACP \(=\)

\(M 1=2.00\) DELTA \(=16.73\) SIGMA \(=47.80\) M2 \(=1.37\) THETACP \(=\)
THETACN F

\(M 1=2.50\) DELTA \(=16.74\) SIGMA \(=38.90 \quad M 2=1.80\) THETACP \(=\)
THETACN =

\(M 1=3.00\) DELTA \(=16.75 . \operatorname{SIGMA}=34.10 \mathrm{ML}=2.16\) THETACP \(=\) THETACN -

APPENDIX C

FORTRAN II-D PROGRAM FOR SHEAR WAVE - SHOCK ERONT INTERACTION
```

C
C
O Tl=518.7
C SSI IS THE SPEED UF SOUNU IN REGIUN 1
0 SSI=SQRTF(1.4* 53.35*32.174*T1)
C THE WORKING FLUID IS DRY AIR
0 G=1.4
SHR=(G-1.)/(G+1.)
PI=3.1415 Y 26536
Sl IS THE MACH NUMBER IN REGION I
SIGD IS THE UBLIQUE SHUCK ANGLE IN UEGREES
UELTAD IS THE FLAKE (TURNING) ANGLE IN DEGREES
KEAD 101, Sl, SIGD, DELTAI)
FOKMAT(3F10.3)
SIGK=SIGO\approxPI/180.
AX=Sl*SINF(SIGR)
AXX=AX*AX
KR21=(OENSITY 2)/(DENSITY 1)
0 KR2l=((G+1.)*AXX)/(2.+(G-1\&)*AXX)
C PP2l=(PRESSURE 2)/(PRESSURE 1)
0 HP21=1.+G*AXX*(1.-(1./RR21))
DELTAR=SIGR-ATANF((SINF(SIGR)/COS(SIGR))/RR2l)
DELTAD=DELTAR*180./PI
C T2 IS THE ABSOLUTE TEMPERATURE IN REGIUN 2
0 T 2=T1*(PP21/RR21)
C SSZ IS THE SPEEU UF SOUND IN REGIUN 2
0 SS2=SQRTF(1.4*53.35*32.174*T2)
S2 IS THE MACH NUMBER IN REGION 2
0 S2=S1*(COSF(SIGR)/COSF(SIGR-DELTAR))*(SS1/SS2)
C }\quad\textrm{K}=(\mathrm{ UENSITY 2)/(DENSITY 1)=M
O R=RK2l
C THECR IS THE CRITICAL VALUE DF THETA
O THECK=ATANF(SQRTF(((G+1.)*(R-1.))/(2.*R*R)))
THECD=THECR*180./1 I
PRINT 102, S1,DELTAD,SIGD,S2,THECD
FURMAT(1H1,1HO,1H, 10X,4HMA =,F6.2,2X,7HDELTA =,F6.2,2X,
7HSIGMA =,F6.2,2X,3HM =,F5.2,2X,10HTHLTA CR =,F8.2/1
PRINT 103
103
l
2
THDP=+THECD
0 THD=-90.
104 THD=THD+5.
THR=THD*PI/180.
C PHIR IS THE ANGLE PHI IN RADIANS
O PHIR=ATANF(R*SINF(THR)/CUSF(THR))
TESTl=THO-85.
TEST2=THD-THUN
TEST3=THD-THDP
IF(TEST1) 105,105,100
105
IF(TEST2) 108,108,106
106 . IF(TEST3) 107,108,108
C
107
THE FOLLOWING IS THE SUBSONIC SULUTIUN
UBL=(AX*SS1)/(R*SS2)

```
```

    BETAL=SQRTF(1.-UBL*UBL)
    WBL =UBL/COSF(PHIR)
    BETWL=SQRTF(1.-WBL*WBL)
    CL=(1.0*SHR+((3.-G)/(G+1.))*R)*(SINF(PHIR)/COSF(PHIK))-
    0 UPRML SNRTF(2.)*G*K*ABSF(PISTL)*PM21*14.696/
    1 (ABSF(COSF(\muHIR))*((G+1.)*K-(G-1.)))
    C
C
C
C
0 VSUKL=COSF(PHIPL)*COSF(SIGR+THR)*SI*SSI/(CUSF(THR)*
1
C
C
C
O DSHR IS THE SHOCK WAVE PHASE
O DSHRL=ATANF(AWL/BWL)
RO=180./PI
PHIOL=PHIPL*RD
DSDL =DSRL*RD
DPDL=DPRL*RD
OSHDL=DSHRL*RD
PRINT 109, THD,PHIDL,WSRWL,DSDL,WPRWL,DPDL, DPRML, SSURL,VSURL,
DXWPL,DSHOL

```
\(((R-1) *.(R-1)+.2 . *(R-1) /.(G+1).) \div S I N F(P H I R) * C U S F(P H I R)\)
\(D L=(B E T W L *(R-1) /.(B E T A L * B E T A L)) *(2 \bullet+(R-1) * C U S F.(P H I R) *\) COSF (PHIR))
\(D P L=(B E T A L \leadsto B E T A L / B E T W L) * D L\)
ヒL=2.*(1. \(-R \div S H R)+2 . \div(R-1) *.(B E T W L * C O S F(P H I R) / B E T A L) *\) (BETWL*COSF (PHIR)/BETAL)
\(F L=(B E T W L /(B E T A L * B E T A L)) *(2 . *(R-1) * S I N F.(P H I R) * C U S F(P H I R))\)
\(F P L=(B E T A L * B E T A L / B E T W L) * F L\)
\(A W L=R *(C L * E L+D L * F L) /(C L * C L+D L * D L)\)
\(B W L=R *(C L * F L-D L * E L) /(C L * C L+D L * D L)\)
\(C W L=A W L \varkappa D P L / R-F P L\)
\(D W L=B W L * D P L / K\)
\(A L=1 . / \operatorname{COSF}(P H I R)+2 . *(R-1). * \operatorname{COSF}(P H I R)+A W L \%(R-1) \%.(R-1)\).
SINF (PHIR)/R
\(B L=B W L *(K-1) *.(R-1) * S I N F.(P H I R) / R\)
\(0 \quad\) PHIPL=-ATANF ((UBLネUBL*SINF (PHIR))/(BETAL*BETAL*COSF(PHIR)))
DSRI IS THE SHEAR WAVE PHASE
\(0 \quad\) OSRL \(=A \operatorname{TANF}(-B L / A L)\)
UPRL IS THE PRESSURE WAVE PHASE
\(0 \quad U P R L=A T A N F((C W L * B L T W L-U W L * S I N F(P H I R) / C O S F(P H I R)) /(D W L * B E T W L+\) CWL*SINF(PHIR)/COSF(PHIR)))
\(S T A R L=S O R T F(A L * A L+B L * B L) / R\)
PISTL=SQRTF (CWL*CWL+DWL*DWL) / (R*BETAL)
WSKWL IS THE SHLAR WAVE AMPLITUDE RATIO
\(0 \quad W S K W L=S T A R L \div S I N F(S I G R)\)
WPRWL IS THE PRESSURE WAVE AMPLITUDE RATIU
O WPRWL=HISTL*SINF(SIGR)
DPRML IS THE RATIU OF THE RMS OF THE PERTURBATIUN PRESSURE TU EPSILUN - IN PSI (PRESSURE IN REGIUN I ASSUMED TO BE 1 ATM, I.E. PI \(=14.696\) PSIA

DPRML \(=\) SQRTF (2.) \(\because G \div K * A B S F(P I S T L) * P H 21 * 14.696 /\)
(\(\operatorname{ABSF}(\operatorname{COSF}(\mu H I R)) *((G+1) \times K-.(G-1))\).
SSUKL IS THE RATIU OF THE SURFACE WAVE NUMBER' TU THAT OF THE INCIDENT SHEAR WAVE
\(0 \quad\) SSURL=COSF (SIGR + PHIPL-DELTAR) \(\ddagger C U S F(T H R) / C U S F(P H I P L)\)
VSURL IS THE RATIU OF THE SURFACE PRESSURE WAVE VELOCITY TO
THE LOCAL SPEED OF SUUND
\(V S U K L=\operatorname{COSF}(P H I P L) * C O S F(S I G R+T H R) \approx S I \approx S S I /(C U S F(T H R) *\)
CUSF (SIGR+PHIPL-DELTAK)*SS2)
DXWPL IS THE RATIU OF THE SHOCK FRONT DISPLACEMENT AMPLITUDE TU EPSILON TIMES THE WAVELENGTH OF THE INC IDENT SHEAR WAVE
\(0 \quad \mathrm{D} X W P L=S W R T F(A W L * A W L+B W L * B W L) /(2 . * P I \% C U S F(T H R))\)
DSHRL IS THE SHOCK WAVE PHASE
\(\mathrm{KD}=180 . / \mathrm{PI}\)
PHIOL=PHIPL*RD
DSDL \(=\) DSRL \(* R D\)
DPDL = DPRL*RD
OSHDL \(=D S H R L * R D\)
PRINT 109, THD,PHIDL, WSRWL, DSDL, WPRWL, DPDL, DPRML, SSURL, VSURL, DXWPL, USHDL
FORMAT (10X,F6.1,F8.2,F8.3,F7.2,F8.3,F7.2,E11.4,4F8.3)
GU TO 104

\section*{APPENDIX D}

SHEAR WAVE - SHOCK FRONT DATA
\(M A=1.50\) DELTA \(=8.98\) SIGMA \(=54.43 \mathrm{M}=1.16\) THETA CR \(=26.03\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline THETA & PHI-PR & WS/WA & DEL S & WP/WA & DEL \(P\) & (DP)RMS & KSUR / K & VSUR / A & AUX/EL & DEL SH \\
\hline -85.0 & -81.98 & 9.200 & 0.00 & -2.420 & 0.00 & \(1.0163 \mathrm{E}+03\) & . 502 & 2.408 & 4.338 & 90.000 \\
\hline -80.0 & -73.89 & 4.397 & 0.00 & -5.186 & 0.00 & \(1.0871 \mathrm{E}+03\) & . 550 & 2.301 & 4.705 & 90.000 \\
\hline -75.0 & -65.67 & 2.643 & 0.00 & -8.901 & 0.00 & \(1.2406 E+03\) & . 58.9 & 2.230 & 5.497 & 90.000 \\
\hline -70.0 & -57.25 & 1.503 & 0.00 & \(-15.251\) & 0.00 & 1. \(5889 \mathrm{E}+03\) & . 618 & 2.186 & 7.284 & 90.000 \\
\hline -65.0 & -48.54 & -. 022 & 0.00 & -32.881 & 0.00 & 2.7292E+03 & . 637 & 2.165 & 13.100 & 90.000 \\
\hline -60.0 & -39.47 & 33.790 & 0.00 & 518.270 & 0.00 & \(3.5685 \mathrm{E}+04\) & . 644 & 2.169 & 181.836 & 90.000 \\
\hline -55.0 & \(-29.92\) & 3.160 & 0.00 & 26.140 & 0.00 & \(1.5354 E+03\) & . 637 & 2.202 & 8.457 & 90.000 \\
\hline \(-50.0\) & -19.79 & 2.092 & 0.00 & 11.030 & 0.00 & 3. \(6438 \mathrm{E}+02\) & .615 & 2.273 & 3.455 & 90.000 \\
\hline -45.0 & -8.92 & 1.607 & 0.00 & 4.707 & 0.00 & 2.1328E+02 & . 575 & 2.408 & 1.554 & 90.000 \\
\hline -40.0 & -2.94 & 1.215 & 0.00 & -. 549 & 0.00 & \(2.2369 E+01\) & .565 & 2.405 & . 094 & 90.000 \\
\hline -35.0 & -16.22 & \(-1.064\) & 0.00 & -36.638 & 0.00 & \(1.3551 E+03\) & . 744 & 1.778 & 10.137 & 90.000 \\
\hline -30.0 & \(-32.13\) & 1.527 & 0.00 & 5.797 & 0.00 & 1.9719E+02 & . 995 & 1.284 & 2.056 & 90.000 \\
\hline -25.0 & 54.84 & 1.200 & -2.23 & 1.134 & -41.95 & \(3.5901 \mathrm{E}+01\) & -. 281 & -4.345 & . 701 & 69.082 \\
\hline -20.0 & 47.94 & 1.129 & -3.74 & 1.197 & 85.04 & \(3.5656 E+01\) & -. 083 & -13.937 & .625 & 42.908 \\
\hline -15.0 & 39.21 & 1.085 & -3.44 & 1. 260 & 56.87 & \(3.5787 E+01\) & . 115 & 9.361 & . 583 & 28.899 \\
\hline \(-10.0\) & 28.23 & 1.057 & -2.55 & 1.312 & 35.54 & \(3.5950 E+01\) & . 313 & 3.194 & . 558 & 18.148 \\
\hline -5.0 & 14.91 & 1.041 & -1.35 & 1.344 & 17.17 & \(3.6063 E+01\) & . 509 & 1.791 & . 545 & 8.792 \\
\hline 0.0 & 0.00 & 1.036 & 0.00 & 1. 355 & 0.00 & \(3.6102 E+01\) & .701 & 1.164 & . 540 & 0.000 \\
\hline 5.0 & -14.91 & 1.041 & 1.35 & 1.344 & -17.17 & 3.6063E+01. & . 887 & . 804 & . 545 & -8.792 \\
\hline 10.0 & \(-28.23\) & 1.057 & 2.55 & 1.312 & -35.54 & \(3.5950 E+01\) & 1.067 & . 567 & . 558 & - 18.148 \\
\hline 15.0 & -39.21 & 1.085 & 3.44 & 1.260 & -56.87 & 3.5787E+01 & 1.239 & . 398 & . 583 & \(-28.899\) \\
\hline 20.0 & -47.94 & 1.129 & 3.74 & 1.197 & -85.04 & \(3.5656 E+01\) & 1.401 & . 268 & . 625 & -42.908 \\
\hline 25.0 & -54.84 & 1.200 & 2.23 & 1:134 & 41.95 & 3.5901E+01 & 1.552 & . 165 & . 701 & -69.082 \\
\hline 30.0 & 32.13 & 1.182 & 0.00 & . 223 & 0.00 & 7.5914E-00 & . 219 & . 619 & . 385 & -90.000 \\
\hline 35.0 & 16.22 & 1. 205 & 0.00 & . 064 & 0.00 & \(2.4038 \mathrm{E}-00\) & . 404 & . 034 & . 295 & -90.000 \\
\hline 40.0 & 2.94 & 1.249 & 0.00 & . 003 & 0.00 & 1.3976E-01 & . 509 & -. 213 & . 248 & -90.000 \\
\hline 45.0 & 8.92 & 1.314 & 0.00 & -. 024 & 0.00 & 1.1258E-00 & . 416 & -. 552 & . 218 & -90.000 \\
\hline 50.0 & 19.79 & 1.408 & 0.00 & -. 037 & 0.00 & 1.9194E-00 & . 285 & -1.224 & . 196 & -90.000 \\
\hline 55.0 & 29.92 & 1.540 & 0.00 & -. 041 & 0.00 & 2.4509E-00 & . 167 & -2.798 & .181 & -90.000 \\
\hline 60.0 & 39.47 & 1.729 & 0.00 & -. 040 & 0.00 & 2.8213E-00 & . 057 & -10.141 & . 169 & -90.000 \\
\hline 65.0 & 48.54 & 2.009 & 0.00 & -. 037 & 0.00 & 3.0849E-00 & -. 044 & 15.499 & . 160 & -90.000 \\
\hline 70.0 & 57.25 & 2.445 & 0.00 & -. 031 & 0.00 & 3.2732E-00 & -. 139 & 5.710 & . 154 & -90.000 \\
\hline 75.0 & 65.67 & 3.192 & 0.00 & -. 024 & 0.00 & 3.4051E-00 & -. 226 & 3.938 & . 149 & -90.000 \\
\hline 80.0 & 73.89 & 4.717 & 0.00 & -. 016 & 0.00 & \(3.4925 \mathrm{E}-00\) & -. 306 & 3.204 & .145 & -90.000 \\
\hline 85.0 & 81.98 & 9.349 & 0.00 & -. 008 & 0.00 & \(3.5423 E-00\) & -. 379 & 2.809 & . 144 & -90.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline THETA & PHI-PR & WS / WA & DEL S & WP / WA & DEL P & (DP)RMS & KSUR/K & VSUR / A & AOX/EL & DEL SH \\
\hline -85.0 & -82.09 & 6.991 & 0.00 & -1.679 & 0.00 & \(9.7343 E+02\) & . 382 & 3.334 & 4.032 & 90.000 \\
\hline -80.0 & -74.12 & 3.336 & 0.00 & -3.590 & 0.00 & 1.0384E+03 & . 449 & 3.090 & 4.362 & 90.000 \\
\hline -75.0 & -66.01 & 1.999 & 0.00 & -6.129 & 0.00 & \(1.1782 E+03\) & . 509 & 2.927 & 5.068 & 90.000 \\
\hline -70.0 & -57.68 & 1.134 & 0.00 & -10.369 & 0.00 & 1.4889E+03 & . 562 & 2.816 & 6.628 & 90.000 \\
\hline -65.0 & -49.07 & . 025 & 0.00 & -21.435 & 0.00 & \(2.4503 \mathrm{E}+03\) & . 606 & 2.741 & 11.423 & 90.000 \\
\hline -60.0 & -40.07 & --53.291 & \(0.00-\) & -777.005 & 0.00 & \(7.3610 E+04\) & . 641 & 2.696 & 364.472 & 90.000 \\
\hline -55.0 & \(-30.58\) & 2.612 & 0.00 & 20.403 & 0.00 & \(1.6470 E+03\) & . 666 & 2.679 & 8.820 & 90.000 \\
\hline -50.0 & -20.48 & 1.663 & 0.00 & 8.322 & 0.00 & \(5.8442 E+02\) & . 678 & 2.690 & 3.480 & 90.000 \\
\hline -45.0 & -9.59 & 1.260 & 0.00 & 3.599 & 0.00 & \(2.2346 E+02\) & . 675 & 2.740 & 1. 580 & 90.000 \\
\hline -40.0 & -2.33 & . 949 & 0.00 & -. 126 & 0.00 & 7.0656E-00 & . 683 & 2.725 & . 200 & 90.000 \\
\hline -35.0 & -15.79 & -. 482 & 0.00 & -20.009 & 0.00 & \(1.0105 E+03\) & . 827 & 2.247 & 7.280 & 90.000 \\
\hline -30.0 & -32.16 & 1.187 & 0.00 & 4.092 & 0.00 & \(1.8970 E+02\) & 1.021 & 1.805 & 1.946 & 90.000 \\
\hline -25.0 & 53.39 & . 925 & -2.80 & . 855 & -48.99 & \(3.6799 E+01\) & . 194 & 9.314 & . 682 & 65.606 \\
\hline -20.0 & 46.41 & . 870 & -4.15 & . 904 & 82.27 & \(3.6582 E+01\) & . 337 & 5.244 & . 608 & 41.594 \\
\hline -15.0 & 37.72 & .835 & -3.78 & . 955 & 55.18 & \(3.6744 E+01\) & .477 & 3.585 & . 566 & 28.119 \\
\hline -1.0.0 & 26.97 & . 813 & -2.79 & . 995 & 34.53 & \(3.6929 E+01\) & . 614 & 2.673 & . 542 & 17.686 \\
\hline -5.0 & 14.17 & .801 & -1.47 & 1.021 & 16.69 & \(3.7054 \mathrm{E}+01\) & . 746 & 2.089 & . 529 & 8.575 \\
\hline 0.0 & 0.00 & .796 & 0.00 & 1.030 & 0.00 & \(3.7097 E+01\) & . 872 & 1.678 & . 525 & 0.000 \\
\hline 5.0 & -14.17 & .801 & 1.47 & 1.021 & \(-16.69\) & \(3.7054 \mathrm{E}+01\) & . 992 & 1.369 & . 529 & \(-8.575\) \\
\hline 10.0 & -26.97 & .813 & 2.79 & .995 & -34.53 & \(3.6929 E+01\) & 1.104 & 1.125 & . 542 & -17.686 \\
\hline 15.0 & -37.72 & .835 & 3.78 & . 955 & -55.18 & \(3.6744 E+01\) & 1.207 & . 924 & . 566 & \(-28.119\) \\
\hline 20.0 & -46.41 & .870 & 4.15 & . 904 & -82.27 & \(3.6582 E+01\) & 1.302 & . 754 & . 608 & -41.594 \\
\hline 25.0 & -53.39 & . 925 & 2.80 & .855 & 48.99 & \(3.6799 E+01\) & 1.386 & . 605 & . 682 & -65.606 \\
\hline 30.0 & 32.16 & .912 & 0.00 & .179 & 0.00 & 8.3179E-00 & . 489 & 1.413 & . 389 & -90.000 \\
\hline 35.0 & 15.79 & . 926 & 0.00 & . 049 & 0.00 & 2.5104E-00 & . 601 & . 895 & . 296 & -90.000 \\
\hline 40.0 & 2.33 & . 958 & 0.00 & 0.000 & 0.00 & 5.0358E-02 & . 653 & . 583 & . 247 & -90.000 \\
\hline 45.0 & 9.59 & 1.006 & 0.00 & -. 021 & 0.00 & 1.3103E-00 & . 558 & . 394 & .217 & -90.000 \\
\hline 50.0 & 20.48 & 1.076 & 0.00 & -. 030 & 0.00 & 2.1589E-00 & . 443 & . 131 & . 195 & -90.000 \\
\hline 55.0 & 30.58 & 1.175 & 0.00 & -. 033 & 0.00 & \(2.7254 \mathrm{E}-00\) & . 334 & -. 311 & . 180 & -90.000 \\
\hline 60.0 & 40.07 & 1.318 & 0.00 & -. 032 & 0.00 & 3.1193E-00 & . 230 & -1.152 & .168 & -90.000 \\
\hline 65.0 & 49.07 & 1.530 & 0.00 & -. 029 & 0.00 & 3.3993E-00 & . 130 & -3.258 & .159 & -90.000 \\
\hline 70.0 & 57.68 & 1.861 & 0.00 & -. 025 & 0.00 & 3.5990E-00 & . 034 & \(-16.995\) & .152 & -90.000 \\
\hline 75.0 & 66.01 & 2.428 & 0.00 & -. 019 & 0.00 & 3.7389E-00 & -. 058 & 12.601 & . 148 & -90.000 \\
\hline 80.0 & 74.12 & 3.587 & 0.00 & -. 013 & 0.00 & \(3.8315 \mathrm{E}-00\) & -. 146 & 6.005 & . 144 & -90.000 \\
\hline 85.0 & 82.09 & 7.108 & 0.00 & -. 006 & 0.00 & \(3.8843 \mathrm{E}-00\) & -. 230 & 4.427 & . 143 & \(-90.000\) \\
\hline
\end{tabular}
\(M A=2.50\) DELTA \(=8.96\) SIGMA \(=30.88 \quad M=2.12\) THETA CR \(=27.20\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline THETA & PHI-PR & WS / WA & DEL S & WP/WA & DEL P & (DP)RMS & KSUR / K & VSUR/A & \(A D X / E L\) & DEL SH \\
\hline -85.0 & -82.39 & 5.795 & 0.00 & -1.112 & 0.00 & \(8.8393 E+02\) & . 324 & 4.157 & 3.376 & 90.000 \\
\hline -80.0 & -74.71 & 2.754 & 0.00 & -2.363 & 0.00 & Y. \(3677 \mathrm{E}+02\) & . 398 & 3.782 & 3.629 & 90.000 \\
\hline \(-75.0\) & -66.88 & 1.640 & 0.00 & -3.982 & 0.00 & 1.0480E +03 & . 466 & 3.541 & 4.159 & 40.000 \\
\hline -70.0 & -58.82 & . 925 & 0.00 & -6.542 & 0.00 & \(1.2842 E+03\) & . 528 & 3.379 & 5.277 & 90.000 \\
\hline -65.0 & -50.45 & . 096 & 0.00 & -12.369 & 0.00 & \(1.9291 E+03\) & . 583 & 3.266 & 8.307 & 90.000 \\
\hline -60.0 & -41.67 & -4.574 & 0.00 & -59.411 & 0.00 & \(7.6605 E+03\) & . 629 & 3.191 & 35.068 & 90.000 \\
\hline -55.0 & -32.35 & 2.832 & 0.00 & 19.287 & 0.00 & \(2.1128 E+03\) & . 667 & 3. 145 & 10.473 & 90.000 \\
\hline \(-50.0\) & -22.34 & 1.570 & 0.00 & 6.928 & 0.00 & \(6.5796 E+02\) & . 694 & 3.128 & 3.630 & 90.000 \\
\hline -45.0 & -11.45 & 1.143 & 0.00 & 3.048 & 0.00 & \(2.5497 E+02\) & . 709 & 3.145 & 1.662 & 90.000 \\
\hline -40.0 & -. 64 & . 850 & 0.00 & . 389 & 0.00 & \(2.9058 \mathrm{E}+01\) & .713 & 3.182 & . 427 & 90.000 \\
\hline -35.0 & -14.52 & . 020 & 0.00 & -8.022 & 0.00 & \(5.4055 E+02\) & .839 & 2.734 & 3.478 & 90.000 \\
\hline \(-30.0\) & \(-32.10\) & 1.045 & 0.00 & 2.854 & 0.00 & 1. \(7557 \mathrm{E}+02\) & 1.006 & 2.286 & 1.717 & 90.000 \\
\hline -25.0 & 49.88 & . 796 & \(-4.20\) & . 692 & -62.00 & \(3.9335 E+01\) & . 439 & 5.211 & . 640 & 59.259 \\
\hline -20.0 & 42.81 & . 746 & -5.27 & . 738 & 76.26 & \(3.9208 E+01\) & . 546 & 4.132 & . 569 & 38.800 \\
\hline -15.0 & 34.29 & .715 & -4.70 & . 785 & 51.44 & \(3.9466 E+01\) & .650 & 3.403 & . 530 & 26.427 \\
\hline \(-10.0\) & 24.17 & .695 & -3.46 & . 823 & 32.26 & \(3.9717 E+01\) & .748 & 2.871 & . 508 & 16.677 \\
\hline \(-5.0\) & 12.55 & . 684 & -1.82 & . 847 & 15.61 & \(3.9880 E+01\) & . 841 & 2.460 & .495 & 8.098 \\
\hline 0.0 & 0.00 & . 681 & 0.00 & . 855 & 0.00 & \(3.9935 E+01\) & . 927 & 2.128 & .492 & 0.000 \\
\hline 5.0 & -12.55 & . 684 & 1.82 & . 847 & -15.61 & \(3.9880 E+01\) & 1.007 & 1.851 & . 495 & -8.098 \\
\hline 10.0 & -24.17 & . 695 & 3.46 & . 823 & \(-32.26\) & \(3.9717 E+01\) & 1.078 & 1.612 & . 508 & -16.677 \\
\hline 15.0 & -34.29 & .715 & 4.70 & .785 & -51.44 & \(3.9466 E+01\) & 1.142 & 1.402 & . 530 & -26.427 \\
\hline 20.0 & -42.81 & . 746 & 5.27 & . 738 & -76.26 & \(3.9208 E+01\) & 1.196 & 1.212 & . 569 & \(-38.800\) \\
\hline 25.0 & -49.88 & . 796 & 4.20 & . 692 & 62.00 & \(3.9335 E+01\) & 1.242 & 1.038 & . 640 & -59.259 \\
\hline 30.0 & 32.10 & . 788 & 0.00 & .168 & 0.00 & \(1.0383 E+01\) & . 600 & 1.864 & . 401 & -90.000 \\
\hline 35.0 & 14.52 & .791 & 0.00 & . 040 & 0.00 & \(2.7172 E-00\) & .680 & 1.381 & .296 & -90.000 \\
\hline 40.0 & . 64 & .813 & 0.00 & -. 003 & 0.00 & \(2.8176 E-01\) & .707 & 1.064 & . 245 & -90.000 \\
\hline 45.0 & 11.45 & . 849 & 0.00 & -. 022 & 0.00 & \(1.8980 \mathrm{E}-00\) & .602 & . 931 & . 214 & -90.000 \\
\hline 50.0 & 22.34 & . 904 & 0.00 & -. 030 & 0.00 & 2.8929E-00 & . 497 & . 732 & . 192 & -90.000 \\
\hline 55.0 & 32.35 & . 985 & 0.00 & -. 032 & 0.00 & \(3.5520 E-00\) & .396 & .416 & .177 & -90.000 \\
\hline 60.0 & 41.67 & 1.102 & 0.00 & -. 031 & 0.00 & \(4.0081 E-00\) & . 297 & -. 119 & .165 & -90.000 \\
\hline 65.0 & 50.45 & 1.276 & 0.00 & -. 027 & 0.00 & \(4.3312 E-00\) & .200 & -1.174 & . 156 & -90.000 \\
\hline 70.0 & 58.82 & 1. 549 & 0.00 & -. 023 & 0.00 & \(4.5610 E-00\) & .106 & -4.090 & . 150 & -90.000 \\
\hline 75.0 & 66.88 & 2.019 & 0.00 & -.017 & 0.00 & 4.7218E-00 & . 013 & -45.677 & .145 & -90.000 \\
\hline 80.0 & 74.71 & 2.979 & 0.00 & -. 012 & 0.00 & \(4.8281 E-00\) & -. 076 & 10.790 & . 142 & -90.000 \\
\hline 85.0 & 82.39 & 5.901 & 0.00 & -. 006 & 0.00 & \(4.8887 E-00\) & -. 162 & 6.174 & .140 & -90.000 \\
\hline
\end{tabular}
\(M A=3.00\) DELTA \(=8.97\) SIGMA \(=26.46 \quad M=2.55\) THETA CR \(=27.83\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline THETA. & PHI-PR & WS / WA & DEL S & WP/WA & DEL P & (OP)RMS & KSUR/K & VSUR/A & ADX/EL & DEL SH \\
\hline -85.0 & -82.70 & 5.026 & 0.00 & -. 773 & 0.00 & \(8.1665 E+02\) & . 287 & 4.940 & 2.850 & 90.000 \\
\hline -80.0 & -75.32 & 2.381 & 0.00 & -1.634 & 0.00 & 8.5999E+02 & . 364 & 4.433 & 3.044 & 90.000 \\
\hline -75.0 & -67.80 & 1.409 & 0.00 & -2. 720 & 0.00 & 9.4958E+02 & . 437 & 4.121 & 3.444 & 90.000 \\
\hline -70.0 & -60.03 & .794 & 0.00 & -4.353 & 0.00 & 1.1317E+03 & . 504 & 3.912 & 4.252 & 90.000 \\
\hline -65.0 & -51.92 & .136 & 0.00 & -7.666 & 0.00 & \(1.5806 E+03\) & . 565 & 3.767 & 6.227 & 90.000 \\
\hline -60.0 & -43.38 & -1.916 & 0.00 & -22.553 & 0.00 & \(3.8352 E+03\) & . 618 & 3.666 & 16.076 & 90.000 \\
\hline -55.0 & -34.25 & 3.707 & 0.00 & 22. 214 & 0.00 & \(3.1999 E+03\) & . 664 & 3.599 & 14.537 & 90.000 \\
\hline -50.0 & -24.38 & 1.600 & 0.00 & 6.263 & 0.00 & \(7.7940 \mathrm{E}+02\) & . 700 & 3.562 & 3.943 & 90.000 \\
\hline -45.0 & -13.53 & 1.102 & 0.00 & 2.732 & 0.00 & \(2.9821 E+02\) & . 725 & 3.557 & 1.773 & 90.000 \\
\hline -40.0 & -1.32 & . 807 & 0.00 & . 663 & 0.00 & \(6.4323 E+01\) & . 735 & 3.596 & . 615 & 90.000 \\
\hline -35.0. & -12.94 & . 245 & 0.00 & -3.582 & 0.00 & \(3.1180 E+02\) & . 837 & 3.213 & 1.718 & 90.000 \\
\hline -30.0 & -31.80 & . 966 & 0.00 & 2.130 & 0.00 & \(1.6831 E+02\) & . 987 & 2.751 & 1.554 & 90.000 \\
\hline -25.0 & 46.62 & .717 & -5.65 & . 584 & -71.24 & \(4.2341 E+01\) & . 576 & 4.723 & . 605 & 54.859 \\
\hline -20.0 & 39.55 & . 669 & -6.52 & . 628 & 71.32 & \(4.2340 E+01\) & . 663 & 4.079 & . 536 & 36.602 \\
\hline -15.0 & 31. 30 & . 640 & -5.76 & .674 & 48.28 & 4.2724E+01 & .744 & 3.582 & . 499 & 25.068 \\
\hline -10.0 & 21.81 & . 622 & -4.22 & . 710 & 30.33 & \(4.3062 \mathrm{E}+01\) & . 820 & 3.180 & . 478 & 15.859 \\
\hline -5.0 & 11.23 & . 612 & -2.22 & . 734 & 14.68 & \(4.3275 E+01\) & . 890 & 2.844 & . 466 & 7.710 \\
\hline 0.0 & 0.00 & .609 & 0.00 & . 742 & 0.00 & \(4.3346 E+01\) & . 953 & 2.555 & . 462 & 0.000 \\
\hline 5.0 & -11. 23 & . 612 & 2.22 & . 734 & -14.68 & \(4.3275 E+01\) & 1.009 & 2.299 & .466 & -7.710 \\
\hline 10.0 & -21.81 & . 622 & 4.22 & . 710 & -30.33 & 4.3062E+01 & 1.057 & 2.069 & . 478 & -15.859 \\
\hline 15.0 & -31.30 & . 640 & 5.76 & . 674 & -48.28 & \(4.2724 E+01\) & 1.097 & 1.858 & . 499 & -25.068 \\
\hline 20.0 & -39.55 & . 669 & 6.52 & . 628 & -71.32 & \(4.2340 E+01\) & 1.129 & 1.660 & . 536 & -36.602 \\
\hline 25.0 & -46.62 & .717 & 5.65 & . 584 & 71.24 & \(4.2341 E+01\) & 1.152 & 1.471 & . 605 & -54.859 \\
\hline 30.0 & 31.80 & .714 & 0.00 & . 161 & 0.00 & 1.2769E+01 & . 664 & 2.262 & .412 & -90.000 \\
\hline 35.0 & 12.94 & . 707 & 0.00 & . 031 & 0.00 & \(2.7772 \mathrm{E}-00\) & . 724 & 1.794 & . 295 & \(-90.000\) \\
\hline 40.0 & 1.32 & . 721 & 0.00 & -. 008 & 0.00 & 8.2032E-01 & . 725 & 1.498 & . 242 & -90.000 \\
\hline 45.0 & 13.53 & . 750 & 0.00 & -. 024 & 0.00 & 2.7133E-00 & . 623 & 1.388 & . 210 & -90.000 \\
\hline 50.0 & 24.38 & .795 & 0.00 & -. 031 & 0.00 & \(3.8651 E-00\) & . 525 & 1. 212 & . 189 & -90.000 \\
\hline 55.0 & 34.25 & .863 & 0.00 & -. 032 & 0.00 & 4.6231E-00 & . 429 & . 940 & . 173 & -90.000 \\
\hline 60.0 & 43.38 & .962 & 0.00 & -. 030 & 0.00 & 5.1453E-00 & . 334 & . 500 & . 161 & -90.000 \\
\hline 65.0 & 51.92 & 1.112 & 0.00 & -. 026 & 0.00 & 5.b141E-00 & . 240 & -. 289 & . 153 & -90.000 \\
\hline 70.0 & 60.03 & 1.348 & 0.00 & -. 022 & 0.00 & 5.7760E-00 & . 147 & -2.072 & . 146 & \(-90.000\) \\
\hline 75.0 & 67.80 & 1.755 & 0.00 & -. 017 & 0.00 & 5.9589E-00 & . 056 & -9.617 & . 142 & -90.000 \\
\hline 80.0 & 75.32 & 2.588 & 0.00 & -. 011 & 0.00 & \(6.0797 \mathrm{E}-00\) & -. 033 & 22.908 & . 138 & -90.000 \\
\hline 85.0 & 82.70 & 5.124 & 0.00 & -. 005 & 0.00 & \(6.1486 \mathrm{E}-00\) & -. 121 & \(8 \cdot 207\) & . 137 & -90.000 \\
\hline
\end{tabular}
\(M A=1.75-D E L T A=16.73\) SIGMA \(=57.50 \quad M=1.08\) THETA CR \(=28.59\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline THETA & PHI-PK & WS/WA & DEL S & WP/WA & DEL P & (DP)RMS & KSUR/K & VSUR / A & AUX/EL & DEL SH \\
\hline -85.0 & -83.37 & 9.494 & 0.00 & -.933 & 0.00 & \(7.3278 E+02\) & .555 & 2.445 & 2.056 & 90.000 \\
\hline \(-80.0\) & -76.66 & 4.474 & 0.00 & -1.956 & 0.00 & \(7.6269 E+02\) & . 609 & 2.321 & 2.171 & 90.000 \\
\hline -75.0 & -69.79 & 2.630 & 0.00 & -3.185 & 0.00 & 8.2223E+02 & . 655 & 2.230 & 2.400 & 90.000 \\
\hline -70.0 & -62.66 & 1.490 & 0.00 & -4.875 & 0.00 & 9.3461E+02 & . 691 & 2.164 & 2.827 & 90.000 \\
\hline -65.0 & -55.17 & . 418 & 0.00 & -7.724 & 0.00 & \(1.1699 E+03\) & .716 & 2.119 & 3.713 & 90.000 \\
\hline -60.0 & -47.20 & -1.456 & 0.00 & -14.924 & 0.00 & 1. \(8553 \mathrm{E}+03\) & . 731 & 2.093 & 6.271 & 90.000 \\
\hline -55.0 & -38.58 & -32.856 & 0.00 & -155.549 & 0.00 & 1.6284E+04 & . 733 & 2.087 & 59.705 & 90.000 \\
\hline -50.0 & \(-29.12\) & 5.017 & 0.00 & 15.592 & 0.00 & \(1.3999 E+03\) & . 720 & 2.108 & 5.714 & 40.000 \\
\hline -45.0 & -18.51 & 2.777 & 0.00 & 5.852 & 0.00 & \(4.5680 E+02\) & . 690 & 2.167 & 2.171 & 90.000 \\
\hline -40.0 & -6.29 & 1.915 & 0.00 & 2.171 & 0.00 & \(1.4898 \mathrm{E}+02\) & .635 & 2.299 & .945 & 90.000 \\
\hline -35.0 & -8.51 & 1.082 & 0.00 & -1.483 & 0.00 & \(9.0353 E+01\) & . 700 & 2.021 & . 197 & 90:000 \\
\hline -30.0 & -29.74 & 2.166 & 0.00 & 3.404 & 0.00 & 1.8558E+02 & . 979 & 1.388 & 1.436 & 90.000 \\
\hline -25.0 & 40.76 & 1.467 & -8.85 & 1.023 & -83.83 & \(5.0448 E+01\) & .176 & 7.329 & . 547 & 49.261 \\
\hline -20.0 & 33.93 & 1.357 & -9.52 & 1.129 & 63.65 & \(5.0901 \mathrm{E}+01\) & . 298 & 4.067 & . 482 & 33.534 \\
\hline -15.0 & 26.35 & 1.292 & -8.35 & 1.236 & 43.18 & \(5.1709 E+01\) & . 419 & 2.695 & . 448 & 23.131 \\
\hline \(-10.0\) & 18.05 & . 1.252 & -6.15 & 1.325 & 27.15 & \(5.2328 E+01\) & . 536 & 1.930 & . 428 & 14.682 \\
\hline -5.0 & 9.18 & 1.230 & -3.25 & 1.384 & 13.15 & \(5.2698 \mathrm{E}+01\) & . 649 & 1.436 & .417 & 7.149 \\
\hline 0.0 & 0.00 & 1.223 & 0.00 & 1.405 & 0.00 & \(5.2819 E+01\) & . 757 & 1.087 & . 414 & 0.000 \\
\hline 5.0 & -9.18 & 1.230 & 3.25 & 1.384 & -13.15 & \(5.2698 E+01\) & . 859 & . 823 & .417 & -7.149 \\
\hline 10.0 & -18.05 & 1.252 & 6.15 & 1.325 & -27.15 & b. \(2328 \mathrm{E}+01\) & . 955 & .613 & . 428 & \(-14.682\) \\
\hline 15.0 & -26.35 & 1.292 & 8.35 & 1.236 & -43.18 & b.1709E+01 & 1.044 & .441 & .448 & -23.131 \\
\hline 20.0 & -33.93 & 1.357 & 9.52 & 1.129 & -63.65 & \(5.0901 E+01\) & 1.124 & .294 & . 482 & -33.534 \\
\hline 25.0 & -40.76 & 1.467 & 8.85 & 1.023 & 83.83 & \(5.0448 \mathrm{E}+01\) & 1.196 & . 167 & . 547 & -49.261 \\
\hline 30.0 & 29.74 & 1.483 & 0.00 & . 327 & 0.00 & \(1.7864 E+01\) & .332 & . 200 & . 425 & -90.000 \\
\hline 35.0 & 8.51 & 1.419 & 0.00 & . 032 & 0.00 & 1.9686E-00 & . 540 & -. 123 & .287 & -90.000 \\
\hline 40.0 & 6.29 & 1.423 & 0.00 & -. 043 & 0.00 & 2.9696E-00 & . 524 & -. 380 & . 233 & \(-90.000\) \\
\hline 45.0 & 18.51 & 1.462 & 0.00 & -. 070 & 0.00 & 5.4759E-00 & . 380 & -. 870 & . 201 & -90.000 \\
\hline 50.0 & 29.12 & 1.538 & 0.00 & -. 077 & 0.00 & \(6.9752 \mathrm{E}-00\) & . 253 & -1.821 & .180 & -90.000 \\
\hline 55.0 & 38.58 & 1.658 & 0.00 & -. 075 & 0.00 & 7.9522E-00 & . 135 & -4.324 & . 165 & -90.000 \\
\hline 60.0 & 47.20 & 1.841 & 0.00 & -. 069 & 0.00 & 8.6212E-00 & . 026 & -27.102 & . 153 & -90.000 \\
\hline 65.0 & 55.17 & 2.119 & 0.00 & -. 060 & 0.00 & \(9.0916 \mathrm{E}-00\) & -. 076 & 10.749 & .145 & -90.000 \\
\hline 70.0 & 62.66 & 2.562 & 0.00 & -. 049 & 0.00 & 9.4248E-00 & -. 172 & 5.393 & .139 & -90.000 \\
\hline 75.0 & 69.79 & 3.329 & 0.00 & -. 037 & 0.00 & 9.6569E-00 & -. 263 & 3.935 & . 134 & -90.000 \\
\hline 80.0 & 76.66 & 4.903 & 0.00 & -. 025 & 0.00 & 9.8101E-00 & -. 346 & 3.257 & . 131 & -90.000 \\
\hline 85.0 & 83.37 & 9.699 & 0.00 & -. 012 & 0.00 & \(9.8973 \mathrm{E}-00\) & -. 423 & 2.869 & . 129 & -90.000 \\
\hline
\end{tabular}
\(M A=2.00\) DELTA \(=16.73\) SIGMA \(=47.80 \quad M=1.37\) THETA CR \(=28.60\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline THETA & PHI -PR & WS/WA & DEL S & WP/WA & UEL P & (UP)RMS & KSUR / K & VSUR / A & ADX/EL & DEL SH \\
\hline -85.0 & -83.39 & 8.339 & 0.00 & -. 809 & 0.00 & \(7.3098 E+02\) & . 463 & 3.007 & 2.034 & 90.000 \\
\hline \(-80.0\) & -76.71 & 3.929 & 0.00 & -1.691 & 0.00 & \(7.6056 E+02\) & . 528 & 2.801 & 2.147 & 90.000 \\
\hline -75.0 & -69.86 & 2.309 & 0.00 & -2.752 & 0.00 & \(8.1932 E+02\) & . 585 & 2.654 & 2.371 & 40.000 \\
\hline -70.0 & -62.75 & 1.309 & 0.00 & -4. 206 & 0.00 & 9.2996E+02 & . 635 & 2.546 & 2.789 & 90.000 \\
\hline \(-65.0\) & -55.29 & .371 & 0.00 & -6.645 & 0.00 & \(1.1605 E+03\) & . 676 & 2.467 & 3.653 & 90.000 \\
\hline -60.0 & -47.34 & -1.245 & 0.00 & -12.725 & 0.00 & \(1.8238 E+03\) & . 708 & 2.413 & 6.113 & 90.000 \\
\hline -55.0 & -38.74 & \(-23.634\) & 0.00 & 111.049 & 0.00 & \(1.3399 E+04\) & .728 & 2.380 & 48.718 & 90.000 \\
\hline -50.0 & \(-29.30\) & 4.517 & 0.00 & 13.932 & 0.00 & \(1.4413 E+03\) & . 736 & 2.371 & 5.834 & 90.000 \\
\hline -45.0 & -18.70 & 2.469 & 0.00 & 5.172 & 0.00 & \(4.6515 E+02\) & . 729 & 2.395 & 2.192 & 90.000 \\
\hline -40.0 & -6.49 & 1.697 & 0.00 & 1.931 & 0.00 & 1.5259E+02 & . 701 & 2.470 & . 957 & 90.000 \\
\hline -35.0 & -8.32 & .968 & 0.00 & -1.216 & 0.00 & \(8.5279 E+01\) & . 763 & 2.233 & . 167 & 90.000 \\
\hline \(-30.0\) & \(-29.62\) & 1.918 & 0.00 & 2.989 & 0.00 & \(1.8752 E+02\) & . 995 & 1.671 & 1.439 & 90.000 \\
\hline \(-25.0\) & 40.57 & 1.292 & \(-8.97\) & .896 & -84.16 & \(5.0788 E+01\) & . 375 & 4.290 & . 546 & 49.128 \\
\hline -20.0 & 33.76 & 1.194 & -9.64 & . 989 & 63.43 & \(5.1264 E+01\) & . 480 & 3.217 & . 480 & 33.458 \\
\hline -15.0 & 26.20 & 1.138 & -8.45 & 1.084 & 43.03 & \(5.2093 E+01\) & . 582 & 2.525 & . 446 & 23.082 \\
\hline \(-10.0\) & 17.94 & 1.102 & -6.23 & 1.163 & 27.05 & 5.2726E+01 & . 678 & 2.035 & . 426 & 14.652 \\
\hline -5.0 & 9.12 & 1.083 & -3.30 & 1.216 & 13.10 & \(5.3102 E+01\) & . 770 & 1.664 & . 416 & 7.134 \\
\hline 0.0 & 0.00 & 1.076 & 0.00 & 1.234 & 0.00 & b. \(3226 E+01\) & . 856 & 1.371 & . 413 & 0.000 \\
\hline 5.0 & -9.12 & 1.083 & 3.30 & 1.216 & -13.10 & \(5.3102 E+01\) & . 933 & 1.129 & . 416 & -7.134 \\
\hline 10.0 & -17.94 & 1.102 & 6.23 & 1.163 & -27.05 & 5.2726E+01 & 1.008 & . 924 & . 426 & -14.652 \\
\hline 15.0 & \(-26.20\) & 1.138 & 8.45 & 1.084 & -43.03 & \(5.2093 E+01\) & 1.072 & . 745 & . 446 & -23.082 \\
\hline 20.0 & -33.76 & 1.194 & 9.64 & . 989 & -63.43 & b. \(1264 E+01\) & 1.129 & . 585 & . 480 & -33.458 \\
\hline 25.0 & -40.57 & 1.292 & 8.97 & . 896 & 84.16 & \(5.0788 \mathrm{E}+01\) & 1.176 & . 439 & . 546 & -49.128 \\
\hline 30.0 & 29.62 & 1.307 & 0.00 & . 287 & 0.00 & \(1.8013 E+01\) & . 487 & . 757 & . 426 & -90.000 \\
\hline 35.0 & 8.32 & 1.249 & 0.00 & . 027 & 0.00 & 1.9059E-00 & . 639 & . 342 & . 287 & -90.000 \\
\hline 40.0 & 6.49 & 1.251 & 0.00 & -. 038 & 0.00 & 3.0798E-00 & .611 & . 109 & .233 & -90.000 \\
\hline 45.0 & 18.70 & 1.286 & 0.00 & -. 062 & 0.00 & 5.6081E-00 & . 482 & -. 177 & . 201 & -90.000 \\
\hline 50.0 & 29.30 & 1.352 & 0.00 & -. 068 & 0.00 & 7.1199E-00 & . 364 & -. 651 & .179 & -90.000 \\
\hline 55.0 & 38.74 & 1.457 & 0.00 & -. 067 & 0.00 & 8.1049E-00 & . 253 & -1.526 & . 164 & -90.000 \\
\hline 60.0 & 47.34 & 1.617 & 0.00 & -. 061 & 0.00 & 8.7792E-00 & . 148 & -3.606 & . 153 & -90.000 \\
\hline 65.0 & 55.29 & 1.862 & 0.00 & \(-.052\) & 0.00 & \(9.2534 E-00\) & . 047 & -14.386 & . 145 & -90.000 \\
\hline 70.0 & 62.75 & 2.250 & 0.00 & -. 043 & 0.00 & 9.5891E-00 & -. 049 & 16.355 & . 138 & -90.000 \\
\hline 75.0 & 69.86 & 2.924 & 0.00 & -. 033 & 0.00 & 9.8231E-00 & -. 142 & 6.644 & . 134 & -90.000 \\
\hline 80.0 & 76.71 & 4.306 & 0.00 & -. 022 & 0.00 & \(9.9774 \mathrm{E}-00\) & -. 230 & 4.646 & . 131 & -90.000 \\
\hline 85.0 & 83.39 & 8.519 & 0.00 & -. 011 & 0.00 & \(1.0065 \mathrm{E}+01\) & -. 313 & 3.786 & . 129 & -90.000 \\
\hline
\end{tabular}
\(M A=2.50\) DELTA \(=16.74\) SIGMA \(=38.90 \quad M=1.79\) THETA CR \(=28.70\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline THETA & PHI-PR & WS/WA & DEL S & WP/WA & DEL P & (DP)RMS & KSUR/K & VSUR / A & ADX/EL & OEL SH \\
\hline -85.0 & -83.73 & 7.065 & 0.00 & -. 551 & 0.00 & 7.1355E+02 & . 380 & 3.897 & 1.747 & 90.000 \\
\hline -80.0 & \(-77.39\) & 3.323 & 0.00 & -1.146 & 0.00 & \(7.386^{\prime} 1 \mathrm{E}+02\) & . 453 & 3.550 & 1.835 & 90.000 \\
\hline \(-75.0\) & -70.89 & 1.950 & 0.00 & -1.848 & 0.00 & \(7.8759 E+02\) & . 521 & 3.312 & 2.006 & 90.000 \\
\hline -70.0 & -64.12 & 1.112 & 0.00 & -2.774 & 0.00 & \(8.7702 \mathrm{E}+02\) & . 582 & 3.141 & 2.315 & 90.000 \\
\hline -65.0 & -56.99 & .364 & 0.00 & -4.221 & 0.00 & \(1.0522 E+03\) & . 636 & 3.014 & 2.915 & 90.000 \\
\hline -60.0 & -49.37 & --.730 & 0.00 & -7.278 & 0.00 & \(1.4857 E+03\) & . 682 & 2.920 & 4.384 & 90.000 \\
\hline -55.0 & -41.08 & -5.343 & 0.00 & -22.644 & 0.00 & \(3.8807 E+03\) & .719 & 2.853 & 12.420 & 90.000 \\
\hline -50.0 & -31.91 & 6.096 & 0.00 & 16.877 & 0.00 & \(2.4714 E+03\) & . 746 & 2.811 & 8.798 & 90.000 \\
\hline -45.0) & -21.54 & 2.552 & 0.00 & 4.908 & 0.00 & \(6.2214 E+02\) & . 760 & 2.796 & 2.567 & 90.000 \\
\hline -40.0 & -9.45 & 1.654 & 0.00 & 1.924 & 0.00 & \(2.1322 E+02\) & .757 & 2.821 & 1.130 & 90.000 \\
\hline \(-35.0\) & -5.42 & 1.022 & 0.00 & -. 211 & 0.00 & \(2.0659 E+01\) & .787 & 2.706 & .181 & 90.000 \\
\hline -30.0 & \(-27.38\) & 1.889 & 0.00 & 2.734 & 0.00 & \(2.3728 E+02\) & . 971 & 2.174 & 1.581 & 90.000 \\
\hline -25.0 & 38.11 & 1.138 & -10.65 & . 722 & -88.20 & \(5.6182 E+01\) & . 571 & 3.633 & . 524 & 47.614 \\
\hline -20.0 & 31.48 & 1.047 & -11.33 & . 810 & 60.59 & \(5.7065 E+01\) & . 653 & 3.096 & . 459 & 32.570 \\
\hline \(-15.0\) & 24.26 & .994 & -9.99 & .900 & 41.07 & \(5.8248 E+01\) & . 730 & 2.676 & . 426 & 22.510 \\
\hline \(-10.0\) & 16.52 & . 962 & -7.40 & .977 & 25.80 & \(5.9108 E+01\) & . 801 & 2.334 & . 407 & 14.300 \\
\hline -5.0 & 8.37 & . 944 & -3.93 & 1.028 & 12.49 & \(5.9609 E+01\) & . 867 & 2.045 & . 397 & 6.965 \\
\hline 0.0 & 0.00 & . 939 & 0.00 & 1.046 & 0.00 & \(5.9772 \mathrm{E}+0 \mathrm{~L}\) & . 926 & 1.796 & . 393 & 0.000 \\
\hline 5.0 & -8.37 & .944 & 3.93 & 1.028 & -12.49 & \(5.9609 E+01\) & .977 & 1.575 & .397 & -6.965 \\
\hline 10.0 & \(-16.52\) & . 962 & 7.40 & . 977 & -25.80 & \(5.9108 \mathrm{E}+01\) & 1.022 & 1.374 & . 407 & \(-14.300\) \\
\hline 15.0 & -24.26 & . 994 & 9.99 & . 900 & -41.07 & \(5.8248 \mathrm{E}+01\) & 1.058 & 1.189 & .426 & -22.510 \\
\hline 20.0 & -31.48 & 1.047 & 11.33 & .810 & -60.59 & 5.7065E+01 & 1.0 .87 & 1.015 & . 459 & -32.570 \\
\hline 25.0 & -38.11 & 1.138 & 10.65 & . 722 & 88.20 & \(5.6182 E+01\) & 1.107 & . 849 & . 524 & -47.614 \\
\hline 30.0 & 27.38 & 1.157 & 0.00 & . 225 & 0.00 & \(1.9545 E+01\) & . 632 & 1.215 & . 422 & -90.000 \\
\hline 35.0 & 5.42 & 1.086 & 0.00 & . 006 & 0.00 & \(6.3790 E-01\) & . 729 & . 812 & . 280 & -90.000 \\
\hline 40.0 & 9.45 & 1.079 & 0.00 & -. 045 & 0.00 & \(5.0137 \mathrm{E}-00\) & . 661 & . 622 & . 226 & -90.000 \\
\hline 45.0 & 21.54 & 1.103 & 0.00 & -. 061 & 0.00 & \(7.8562 E-00\) & . 549 & . 413 & . 195 & -90.000 \\
\hline b0.0 & 31.91 & 1.155 & 0.00 & -..065 & 0.00 & 9.5494E-00 & . 444 & . 091 & . 174 & -90.000 \\
\hline 55.0 & 41.08 & 1.242 & 0.00 & -. 062 & 0.00 & \(1.0650 E+01\) & . 342 & -. 425 & . 159 & -90.000 \\
\hline 60.0 & 49.37 & 1.376 & 0.00 & -. 055 & 0.00 & 1.1402E+01 & - 243 & -1.360 & . 148 & -90.000 \\
\hline 65.0 & 56.94 & 1.582 & 0.00 & -. 047 & 0.00 & \(1.1931 E+01\) & . 145 & \(-3.520\) & . 140 & -90.000 \\
\hline 70.0 & 64.12 & 1.910 & 0.00 & -. 038 & 0.00 & 1. \(2305 E+01\) & . 050 & \(-13.657\) & . 134 & -90.000 \\
\hline 75.0 & 70.89 & 2.480 & 0.00 & -. 0229 & 0.00 & \(1.2565 E+01\) & -. 042 & 20.565 & . 130 & -90.000 \\
\hline 80.0 & 77.39 & 3.652 & 0.00 & -. 019 & 0.00 & \(1.2737 E+01\) & -. 132 & 7.817 & . 127 & -90.000 \\
\hline 85.0 & 83.73 & 7.223 & 0.00 & \(-.009\) & 0.00 & \(1.2835 E+01\) & -. 218 & 5.446 & . 125 & -90.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ThETA & PHI-PR & WS/WA & DEL S & WP/WA & DEL P & (UP)RMS & KSUR / K & VSUR / A & ADX/EL & DEL SH \\
\hline -85.0 & -84.10 & 6.303 & 0.00 & -. 390 & 0.00 & 7.1117E+02 & .334 & 4.699 & 1.497 & 90.000 \\
\hline -80.0 & \(-78.13\) & 2.961 & 0.00 & -. 809 & 0.00 & 7.3253E+02 & . 412 & 4.214 & 1.564 & 90.000 \\
\hline -75.0 & -71.99 & 1.737 & 0.00 & -1.293 & 0.00 & \(7.7362 E+02\) & . 484 & 3.893 & 1.694 & 90.000 \\
\hline -70.0 & -65.60 & . 999 & 0.00 & -1.909 & 0.00 & 8.4650E+02 & . 551 & 3.666 & 1.921 & 90.000 \\
\hline -65.0 & -58.83 & . 369 & 0.00 & \(-2.812\) & 0.00 & \(9.8173 E+02\) & . 611 & 3.500 & 2.338 & 90.000 \\
\hline -60.0 & \(-51.58\) & -. 440 & 0.00 & -4.482 & 0.00 & \(1.2783 E+03\) & . 665 & 3.374 & 3.242 & 90.000 \\
\hline -55.0 & -43.65 & -2.530 & 0.00 & -9.712 & 0.00 & \(2.3191 E+03\) & . 710 & 3.280 & 6.376 & 90.000 \\
\hline -50.0 & -34.82 & 16.606 & 0.00 & 41.191 & 0.00 & \(8.3749 E+03\) & . 746 & 3.213 & 25.581 & 90.000 \\
\hline -45.0 & -24.75 & 3.007 & 0.00 & 5.271 & 0.00 & \(9.2363 E+02\) & . 772 & 3.173 & 3.256 & 90.000 \\
\hline \(-40.0\) & -12.90 & 1.756 & 0.00 & 2.010 & 0.00 & \(3.0633 E+02\) & . 783 & 3.167 & 1.353 & 90.000 \\
\hline -35.0 & -1.86 & 1.114 & 0.00 & . 314 & 0.00 & 4.1903E+01 & . 789 & 3.158 & . 447 & 90.000 \\
\hline -30.0 & -23.93 & 2.377 & 0.00 & 3.620 & 0.00 & \(4.2565 E+02\) & . 941 & 2.644 & 2.294 & 90.000 \\
\hline -25.0 & 35.80 & 1.060 & -12.44 & . 605 & 88.70 & \(6.3189 E+01\) & . 670 & 3.676 & . 506 & 46.744 \\
\hline -20.0 & 29.38 & . 968 & -13.25 & . 692 & 58.13 & \(6.4733 E+01\) & . 739 & 3.274 & . 440 & 32.033 \\
\hline -15.0 & 22.51 & .916 & -11.78 & . 783 & 39.30 & \(6.6464 E+01\) & . 802 & 2.937 & . 407 & 22.156 \\
\hline \(-10.0\) & 15.25 & . 885 & -8.81 & . 861 & 24.66 & \(6.7666 E+01\) & .859 & 2.648 & . 389 & 14.078 \\
\hline -5.0 & 7.70 & . 868 & \(-4.72\) & . 914 & 11.93 & \(6.8351 E+01\) & . 910 & 2.394 & - 379 & 6.857 \\
\hline 0.0 & 0.00 & . 862 & 0.00 & . 934 & 0.00 & \(6.8573 E+01\) & . 954 & 2.164 & . 376 & 0.000 \\
\hline 5.0 & -7.70 & . 868 & 4.72 & . 914 & -11.93 & \(6.8351 E+01\) & . 991 & 1.954 & . 379 & -6.857 \\
\hline 10.0 & -15.25 & .885 & 8.81 & . 861 & -24.66 & \(6.7666 E+01\) & 1.020 & 1.756 & . 389 & -14.078 \\
\hline 15.0 & -22.51 & . 916 & 11.78 & . 783 & -39.30 & \(6.6464 E+01\) & 1.041 & 1.569 & . 407 & -22.156 \\
\hline 20.0 & -29.38 & . 968 & 13.25 & .692 & -58.13 & \(6.4733 E+01\) & 1.054 & 1.387 & . 440 & -32.033 \\
\hline 25.0 & -35.80 & 1.060 & 12.44 & . 605 & -88.70 & \(6.3189 E+01\) & 1.059 & 1.209 & . 506 & -46.744 \\
\hline 30.0 & 23.93 & 1.073 & 0.00 & . 164 & 0.00 & \(1.9386 E+01\) & . 712 & 1.531 & . 408 & -90.000 \\
\hline 35.0 & 1.86 & . 991 & 0.00 & -. 012 & 0.00 & \(1.6858 \mathrm{E}-00\) & . 773 & 1.150 & . 270 & -90.000 \\
\hline 40.0 & 12.90 & . 977 & 0.00 & -. 052 & 0.00 & 8.0016E-00 & . 678 & 1.007 & . 218 & -90.000 \\
\hline 45.0 & 24.75 & . 993 & 0.00 & -. 063 & 0.00 & 1.1175E+01 & . 577 & .817 & . 188 & -90.000 \\
\hline 50.0 & 34.82 & 1.037 & 0.00 & -. 064 & 0.00 & \(1.3064 E+01\) & . 480 & . 534 & . 168 & -90.000 \\
\hline 55.0 & 43.65 & 1.112 & 0.00 & -. 059 & 0.00 & \(1.4292 \mathrm{E}+01\) & . 384 & - 102 & . 153 & -90.000 \\
\hline 60.0 & 51.58 & 1.230 & 0.00 & -. 053 & 0.00 & 1.5130E+01 & - 289 & -. 615 & - 143 & -90.000 \\
\hline 65.0 & 58.83 & 1.413 & 0.00 & -. 045 & 0.00 & 1.5720E+01 & . 195 & -2.022 & . 135 & -90.000 \\
\hline 70.0 & 65.60 & 1.706 & 0.00 & -. 036 & 0.00 & \(1.6137 E+01\) & . 101 & -5.974 & . 129 & -90.000 \\
\hline 75.0 & 71.99 & 2.214 & 0.00 & -. 027 & 0.00 & \(1.6427 E+01\) & . 009 & -84.303 & . 125 & -90.000 \\
\hline 80.0 & 78.13 & 3.260 & 0.00 & -. 018 & 0.00 & \(1.6618 E+01\) & -. 080 & 12.646 & . 122 & -90.000 \\
\hline 85.0 & 84.10 & 6.447 & 0.00 & -. 009 & 0.00 & \(1.6727 E+01\) & -. 168 & 7.202 & . 120 & \(-90.000\) \\
\hline
\end{tabular}

\section*{LITERATURE CITED}

1．Ribner，H．S．，＂Convection of a Pattern of Vorticity Through a Shock Wave，＂NACA TN 2864， 1953.

2．Ribner，H．S．，＂Shock－Turbulence Interaction and the Generation of Noise，＂NACA Rep。1233， 1954.

3．Ram，G．S．and Ribner，H．S．，＂The Sound Generated by Interaction of a Single Vortex with a Shock Wave，＂Heat Transfer and Fluid Mechanics Institute（Pasadena，Cali－ fornia）， 1957.

4．Moore，F．K．，＂Unsteady Oblique Interaction of a Shock Wave with a Plane Disturbance，＂NACA Rep．1165，1954．．

5．Johnson，W．R．，＂The Interaction of Plane and Cylindrical Sound Waves with a Stationary Shock Wave，＂University of Michigan Tech。Rep．2539－8－T ONR Contract Nonr－1224（18）， 1957。

6．Purdy，K．Ro，＂On the Convection of Plane Sound Waves Through a Stationary Oblique Shock，＂George C．Marshali Space Flight Center（Aero－Astrodynamics Internal Note to be published）．

7．Lowson，Mo V．，＂Pressure Fluctuations Resulting from Shock Interactions，＂Journal of Sound and Vibration，7（3）， pp．380－392， 1968.

8．Shapiro，A．H．，Compressible Fluid Flow，I，Ronald Press， New York， 1953.

FIGURES

FIGURE I

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 11
\(\tilde{W}_{A}[\cos \sigma-\sin \sigma \tan \theta]\)

FIGURE 12

Figure 16


```


[^0]:    * Numbers in brackets refer to similarly numbered references in the Literature Cited。

[^1]:    *The analysis presented for this case is a revised extended version of that contamed in reference [6].

[^2]:    Represents the order of magnitude of the term or quantity in the equation directly above.

[^3]:    *This term appears in dimensional form.

