N CO SALG **2** 

## NASA TECHNICAL MEMORANDUM

# CASE FILE COPY

Report No. 53910

## STRESS CORROSION CRACKING EVALUATION OF SEVERAL PRECIPITATION HARDENING STAINLESS STEELS

By T. S. Humphries and E. E. Nelson Astronautics Laboratory

September 12, 1969

## NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

• -.

|                                             | TECHNIC                                                         | AL REPORT STANDARD TITLE PAGE       |
|---------------------------------------------|-----------------------------------------------------------------|-------------------------------------|
| 1. REPORT NO.<br>NASA TM X-53910            | 2. GOVERNMENT ACCESSION NO.                                     | 3. RECIPIENT'S CATALOG NO.          |
| 4. TITLE AND SUBTITLE                       |                                                                 | 5. REPORT DATE                      |
| Stress Corrosion Cracking Eva               | aluation of Several Precipitation                               | September 12, 1969                  |
| Hardening Stainless Steels                  |                                                                 | 6. PERFORMING ORGANIZATION CODE     |
| 7. AUTHOR(S)                                |                                                                 | 8. PERFORMING ORGANIZATION REPORT # |
| T. S. Humphries and E. E. Ne                | elson                                                           |                                     |
| 9. PERFORMING ORGANIZATION NAME AND A       | DDRESS                                                          | 10. WORK UNIT NO.                   |
| George C. Marshall Space Flig               | ght Center                                                      |                                     |
| Marshall Space Flight Center,               | Alabama 35812                                                   | 11. CONTRACT OR GRANT NO.           |
|                                             |                                                                 | 13. TYPE OF REPORT & PERIOD COVERED |
| 12. SPONSORING AGENCY NAME AND ADDRES       | 5                                                               |                                     |
|                                             |                                                                 | Technical Memorandum                |
|                                             |                                                                 | 14. SPONSORING AGENCY CODE          |
| 15. SUPPLEMENTARY NOTES                     |                                                                 |                                     |
|                                             | nce and Engineering Directorate                                 |                                     |
| Astronautics haboratory, bete               |                                                                 |                                     |
| ·                                           |                                                                 |                                     |
| 16, ABSTRACT                                |                                                                 |                                     |
|                                             |                                                                 |                                     |
|                                             |                                                                 |                                     |
|                                             |                                                                 |                                     |
|                                             |                                                                 |                                     |
| The stress corr                             | osion cracking resistance of                                    | precipitation hardening             |
| stainless steels PH                         | 13-8 Mo, PH 14-8 Mo, 15-5 PH,                                   | PH 15-7 Mo, 17-4 PH,                |
| 17-7 PH, A-286, Alma                        | r 362, AM-350, and Unitemp 21<br>round tensile, flat tensile,   | 2 are presented. Three              |
| types of specimens (                        | bjected to alternate immersion                                  | n in a 3.5 percent                  |
| salt solution. The                          | results indicated that under                                    | these test conditions,              |
| PH 13-8 Mo, PH 14-8                         | Mo, 15-5 PH, 17-4 PH, A-286,                                    | Almar 362, and Unitemp              |
| 212 stainless steels                        | are highly resistant to stre                                    | ss corrosion cracking               |
| in practically all f                        | orms and heat treat condition                                   | s. Alloys PH 15-7 Mo                |
| and 17-7 PH are susc                        | ceptible to stress corrosion c                                  | racking in nearly all               |
| neat treat condition<br>Condition SCT 850 b | ns except CH 900, and AM-350 in the resistant to stress corrosi | on cracking in                      |
| Condition SCT 1000.                         |                                                                 |                                     |
|                                             |                                                                 |                                     |
|                                             |                                                                 |                                     |
|                                             |                                                                 |                                     |
|                                             |                                                                 |                                     |
|                                             |                                                                 |                                     |
| 17. KEY WORDS                               | 18. DISTRIBUTION ST                                             | TATEMENT                            |
|                                             | STAR Annou                                                      | ncement                             |
|                                             | PAL.                                                            | mphries                             |
|                                             | 1. A Atte                                                       | in ferrance - c                     |
|                                             |                                                                 | V                                   |
|                                             |                                                                 |                                     |
| 19. SECURITY CLASSIF. (of this report)      | 20. SECURITY CLASSIF. (of this page)                            | 21. NO. OF PAGES 22. PRICE          |
|                                             |                                                                 |                                     |
| U                                           | U                                                               | 21                                  |
|                                             |                                                                 |                                     |

MSFC - Form 3292 (May 1969)

-

## TABLE OF CONTENTS

|                                | Page |
|--------------------------------|------|
| SUMMARY                        | 1    |
| INTRODUCTION                   | 1    |
| EXPERIMENTAL PROCEDURE         | 2    |
| RESULTS AND DISCUSSION         | 3    |
| CONCLUSIONS AND RECOMMENDATION | 4    |
| REFERENCES                     | 5    |

.

iii

## LIST OF TABLES

| T <b>a</b> ble | Title                                                               | Page |
|----------------|---------------------------------------------------------------------|------|
| I              | Chemical Composition of Precipitation Hardening<br>Stainless Steel  | 6    |
| II             | Mechanical Properties of Precipitation Hardening<br>Stainless Steel | 7    |
| III            | Heat Treatments                                                     | 9    |
| IV             | Stress Corrosion Cracking Test Results                              | 11   |

## LIST OF ILLUSTRATIONS

| Figure | Title                                                             | Page |
|--------|-------------------------------------------------------------------|------|
| 1      | Flat Tensile Specimen Stressed in Direct Tension                  | 17   |
| 2      | Round Tensile and "C"-Ring Type Stress Corrosion Test<br>Specimen | 18   |
| 3      | Flat Tensile Specimens Loaded in a Constant Span<br>Fixture       | 19   |
| 4      | Alternate Immersion Tester                                        | 20   |

iv

#### STRESS CORROSION CRACKING EVALUATION OF SEVERAL PRECIPITATION HARDENING STAINLESS STEELS

#### SUMMARY

Numerous stress corrosion failures of space vehicle components fabricated from precipitation hardening stainless steels have been encountered. Most of these problems were solved by changing to a more stress corrosion resistant alloy or heat treat condition. Unfortunately only a limited amount of published data is available on the stress corrosion cracking characteristics of the precipitation hardening (PH) stainless steels. Because of this, a test program was initiated to evaluate the stress corrosion resistance of the more frequently used PH stainless steels in an accelerated test solution (alternate immersion in 3.5 percent salt solution) representative of the general service environment of space vehicles prior to launch.

The results of this investigation indicated that PH 13-8 Mo, PH 14-8 Mo, 15-5 PH, 17-4 PH, A-286, Almar 362, and Unitemp 212 stainless steels are highly resistant to stress corrosion cracking in 3.5 percent salt water in all heat treat conditions tested. PH 15-7 Mo and 17-7 PH stainless steels were susceptible to stress corrosion cracking in all conditions except 17-7 PH-CH 900, and PH 15-7 Mo is reportedly highly resistant in the CH 900 condition (1). AM-350 stainless steel was susceptible in the SCT 850 condition but resistant in the SCT 1000 condition.

#### INTRODUCTION

High strength stainless steels and the so called superalloys have played an important role in the advent and growth of jet engines, missiles, supersonic aircraft and space vehicles. The precipitation hardening stainless steels are among the more important materials that have made possible the rapid growth in these fields.

The PH stainless steels combine the excellent corrosion resistance of the austenitic chromium - nickel steels with the heat hardening characteristics of the straight chromium, martensitic steels (1). Many of the problems encountered with normal high temperature heat treatments are eliminated by the relatively low temperature aging treatment of the PH stainless steels, which are basically of two types: (1) martensitic and (2) semi-austenitic. The PH stainless steels like the hardenable chromium stainless steels may under certain conditions of tensile stress and corrosive environment suffer stress corrosion. As with most metals, the stress corrosion cracking susceptibility normally increases with increasing hardness or strength. However, susceptibility is not governed solely by hardness or strength of the material, but in certain cases appears to be associated with the process procedure used to obtain these properties. For example, both 17-7 PH and PH 15-7 Mo stainless steels exhibit the highest resistance to stress corrosion cracking in Condition CH 900 although this condition gives the highest hardness of any of the available heat treat conditions of these two alloys (2).

#### EXPERIMENTAL PROCEDURES

The PH stainless steels evaluated in this investigation were PH 13-8 Mo, PH 14-8 Mo, 15-5 PH, PH 15-7 Mo, 17-4 PH, 17-7 PH, A-286, Almar 362, AM-350, and Unitemp 212 in the form of bar stock and/or sheet. Three types of specimens were required to test the material in at least two directions of grain orientation. Flat tensile specimens, loaded by constant deflection, were used for testing sheet material; round tensile specimens, stressed in direct tension, were used for testing the longitudinal direction of all bar stock and the transverse direction of two inch or greater diameter bar; and C-rings, utilizing the constant deflection method, were used for testing the transverse direction of bar stock of less than two inch diameter. In one case, (17-4 PH Condition A) flat tensile specimens were stressed in direct tension, and this is illustrated along with the other methods of loading in Figures 1, 2, and 3.

The specimens were deflected or strained the calculated amount to give the desired stress levels, wiped with acetone, and placed in the alternate immersion tester until failure or until the test was terminated (approximately six months). A detailed description of the test specimens, formulas for calculating deflection and strain, and methods of loading and testing is given in Reference 3. Mechanical properties of the alloys were measured in both directions of testing. The chosen stress level was from 25 to 100 percent of the directional yield strength except as noted for small diameter bar. Duplicate unstressed tensile specimens were exposed under identical conditions for comparative control. The tests were conducted in a ferris wheel type alternate immersion tester (Figure 4) containing a 3.5 percent solution (deionized water) of sodium chloride, with an immersion cycle of 10 minutes in solution followed by 50 minutes of drying above the solution.

#### RESULTS AND DISCUSSION

The compositions of the alloys evaluated in this program are listed in Table I. In some cases, the typical analysis is given because the composition of the specific material was not available. The mechanical properties and the heat treatments used to obtain the properties of the PH stainless steels are shown in Tables II and III, respectively. Listed in Table IV are the complete stress corrosion results obtained in this investigation.

Armco's\* martensitic PH stainless steels (PH 13-8 Mo, 15-5 PH, and 17-4 PH) were found to possess a higher degree of stress corrosion resistance than their semi-austenitic type (PH 15-7 Mo, and 17-7 PH). No failures were encountered in the three martensitic stainless steels in most forms and heat treat conditions tested at loads up to 100 percent of their yield strengths. The only stress corrosion failure occurred in 17-4 PH-H 900 bar stock stressed in the transverse grain direction to 100 percent of the yield strength. This agrees with information published by Armco(2), which states that, for maximum resistance to stress corrosion cracking, 17-4 PH should be hardened at the highest temperature that will yield required properties, but not less that 1000°F. However, the results obtained with Condition-A material does not agree with Armco's information that the structure of 17-4 PH Condition A is untempered martensite having poor resistance to stress corrosion cracking. No stress corrosion failures were encountered with either sheet or bar stock of 17-4 PH Condition A at stress loads up to 100 percent yield strength exposed to both alternate immersion in salt water and salt spray.

The semi-austenitic type PH 15-7 Mo and 17-7 PH suffered stress corrosion cracking in all conditions of heat treat except the CH 900. The only condition in which 17-7 PH steel was found to possess a high resistance to stress corrosion cracking was the cold rolled and hardened Both PH 14-8 Mo and PH 15-7 Mo are, reportedly, resistant to CH 900. stress corrosion cracking in Condition CH 900 (1,2). This is somewhat surprising because the highest mechanical properties obtainable from these three semi-austenitic stainless steels are produced by Condition The test results indicated that the transverse grain direction CH 900. of both sheet and bar of PH 15-7 Mo and 17-7 PH was more susceptible to stress corrosion cracking than the longitudinal direction. In addition, both alloys were more susceptible to stress corrosion cracking when hardened at 950°F than 1100°F (lower mechanical properties). It was reported that PH 15-7 Mo is more resistant to stress corrosion than 17-7 PH and the TH condition is more resistant than the RH(1). The

\*Armco Steel Corporation

results of this investigation did not substantiate these findings. From a stress corrosion standpoint, the semi-austenitic PH 14-8 Mo was similar to the martensitic stainless steels in that this alloy was highly resistant to stress corrosion cracking in all heat treat conditions tested.

Of the remaining precipitation hardening stainless steels tested, A-286, Almar 362, and Unitemp 212 were highly resistant to stress corrosion cracking in all test tempers or conditions. Alloy AM-350 was found to be resistant to stress corrosion cracking in the SCT 1000 condition but susceptible in the higher strength SCT 850 condition. As with alloys PH 15-7 Mo and 17-7 PH, alloy AM-350 was more susceptible to stress corrosion cracking in the transverse grain direction than in the longitudinal direction.

#### CONCLUSIONS AND RECOMMENDATION

The results obtained with this accelerated test indicated that:

1. The precipitation hardening PH 13-8 Mo, PH 14-8 Mo, 15-5 PH, 17-4 PH, A-286, Almar 362, and Unitemp 212 stainless steels are highly resistant to stress corrosion cracking.

2. Alloys PH 15-7 Mo and 17-7 PH were susceptible to stress corrosion cracking in all heat treat conditions tested except CH 900, and AM-350 was resistant in Condition SCT 1000 but susceptible in Condition SCT 850.

3. Precipitation hardening stainless steels appear to be less resistant to stress corrosion cracking in the transverse direction of grain orientation than in the longitudinal direction.

4. The stress corrosion cracking susceptibility of the precipitation hardening stainless steels generally increased with increasing hardness or strength, but in certain cases appears to be associated with the process procedure used to obtain these properties. Alloy 17-7 PH stainless steel exhibited the highest resistance to stress corrosion cracking in Condition CH 900 and this condition gave the highest hardness and strength of any of the conditions tested.

The stress corrosion cracking resistance should be determined for the precipitation hardening stainless steels in all recommended process and heat treat conditions because of the effect of these conditions on the resistance to stress corrosion cracking.

#### REFERENCES

- 1. E. E. Denhard, Jr. "Stress Corrosion Cracking of High Strength Stainless Steels," Stress Corrosion Cracking in Aircraft Structural Materials, AGARD Conference Proceedings No. 18, 1967.
- 2. Armco Product Data S-6a (17-4 PH), S-21a (15-5 PH), S25 (PH 14-8 Mo), S-30 (17-7 PH), S-33b (PH 13-8 Mo), S-37 (PH 15-7 Mo), Armco Steel Corporation

5

3. Humphries, T. S.: Procedures for Externally Loading and Corrosion Testing Stress Corrosion Specimens, NASA TM X-53483, June 1966.

| <u>A110y</u>              | Source & Heat No.         | - Form | U     | 띬     | <b>M</b>    | νI    | <u>S1</u> | 립<br>임 | Composition Wt %<br>N1 Mo | Wt %<br>Mo | <u>A1</u>         | zl   | 깅    | ଶ                     | Ta  | 됍    |
|---------------------------|---------------------------|--------|-------|-------|-------------|-------|-----------|--------|---------------------------|------------|-------------------|------|------|-----------------------|-----|------|
| PH 13-8 Mo                | Armco Steel Corp.**       | Bar    | .05*  | .10*  | .010*       | .008* | .10*      | 13.00  | 8.0                       | 2.25       | 1.2               | .01* |      |                       |     |      |
| PH 14-8 Mo<br>Air Melt    | Armco Steel Corp. 33024   | Sheet  | . 033 | .39   | .007        | .005  | .38       | 14.61  | 8.14                      | 2.27       | 1.23              |      |      |                       |     |      |
| PH 14-8 Mo<br>Vacuum Melt | Armco Steel Corp. 5432    | Sheet  | .032  | . 05  | . 003       | . 004 | .05       | 15.05  | 8.32                      | 2.21       | 1.22              | .004 |      |                       |     |      |
| 15-5 PH                   | Armco Steel Corp.**       | Bar    | *0.   | 1.00* | * 70 .      | .03*  | 1.00*     | 15.00  | 5.00                      |            |                   |      | 3.50 | Cb + <b>Ta</b><br>.30 | 6   |      |
| PH 15-7 Mo                | Armco Steel Corp. 44570   | Bar    | 0.74  | .70   | .018        | 600.  | .50       | 15.17  | 7.33                      | 2.22       | 1.20              |      |      |                       |     |      |
| PH 15-7 Mo                | Armco Steel Corp. 850395  | Sheet  | .070  | .66   | .018        | .012  | .38       | 15.27  | 7.27                      | 2.21       | 1.16              |      |      |                       |     |      |
| 17-4 PH                   | Armco Steel Corp. 64091   | Sheet  | .035  | . 28  | .017        | .010  | . 54      | 15.97  | 4.37                      |            |                   |      | 3.28 | . 25                  | .02 |      |
| 17-4 PH                   | Armco Steel Corp.**       | Bar    | .07*  | 1.00* | .04*        | .03*  | 1.00*     | 17.00  | 4.00                      |            |                   |      | 4.0  | Cb + T<br>.30         | -   |      |
| 17 <b>-</b> 7 PH          | Armco Steel Corp. 850268  | Sheet  | .069  | .50   | .012        | .015  | .41       | 16.94  | 7.26                      |            | 1.18              |      |      |                       |     |      |
| 17-7 PH                   | Armco Steel Corp. 63742   | Bar    | .067  | . 65  | .014        | .010  | . 28      | 16.83  | 7.29                      |            | 1.23              |      |      |                       |     |      |
| <b>A -</b> 286            | **                        | Ваг    | .05   | 1.35  |             |       | . 50      | 15.00  | 26,00                     | 1.25       | 0.2               |      |      |                       |     | 2.0  |
| AM-350                    | Allegheny Ludlum 29721**  | Sheet  | . 08  | .80   |             |       | . 25      | 16.50  | 4.30                      | 2.75       |                   | . 10 |      |                       |     |      |
| Almar 362                 | Allegheny Ludlum A65500   | Bar    | .029  | .35   | .017        | .018  | . 20      | 14.73  | 6.60                      | .095       | .011              |      | . 12 |                       |     | 77.  |
| Unitemp 212               | Universal Cyclops KH 3765 | Bar    | .06   |       | <b>ن</b> 10 | .01   |           | 15.94  | 24.99                     |            | <del>د</del> . 02 |      | ¥ 01 | .57                   |     | 4.10 |
| * Maximum Allowable       | owable                    |        |       |       |             |       |           |        |                           |            |                   |      |      |                       |     |      |

TABLE I. CHEMICAL COMPOSITION OF PRECIPITATION HARDENING STAINLESS STEEL

6

\*\* Typical Analysis or Composition

.

TABLE 11. MECHANICAL PROPERTIES OF PRECIPITATION HARDENING STAINLESS STEEL

·

•

| Alloy                     | Form                                                                    | Heat Treatment                                    | Grain<br>Direction                                                      | Tensile<br>Strength<br>(ksi)                         | Yield<br>Strength<br>(ksi)                           | Percent<br>Elongation                               |
|---------------------------|-------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| РН 13-8 Мо                | Bar<br>Bar<br>Bar<br>Bar                                                | Н 950<br>Н 1000                                   | Trans.<br>Long.<br>Trans.<br>Long.                                      | 226<br>231<br>219<br>222                             | 211<br>217<br>210<br>212                             | 16<br>15<br>10                                      |
| PH 14-8 Mo<br>Air Melt    | Sheet<br>Sheet<br>Sheet<br>Sheet                                        | SRH 950<br>SRH 1050                               | Trans.<br>Long.<br>Trans.                                               | 216<br>218<br>221<br>218                             | 194<br>198<br>205<br>202                             | د 01<br>م م                                         |
| PH 14-8 Mo<br>Vacuum Melt | Sheet<br>Sheet<br>Sheet<br>Sheet                                        | SRH 950<br>SRH 1050                               | Trans.<br>Long.<br>Trans.                                               | 247<br>242<br>241<br>238                             | 231<br>225<br>223<br>230                             | v ç 4 v                                             |
| PH 15-5 Mo                | Bar<br>Bar<br>Bar                                                       | H 900<br>H 925<br>H 1025                          | Long.<br>Long.<br>Long.                                                 | 189<br>187<br>164                                    | 173<br>163<br>156                                    | 11<br>11<br>9                                       |
| 15-7 РН                   | Sheet<br>Sheet<br>Sheet<br>Sheet<br>Sheet<br>Sheet<br>Bar<br>Bar<br>Bar | RH 950<br>RH 1050<br>RH 1075<br>RH 950<br>RH 1075 | Trans.<br>Long.<br>Trans.<br>Long.<br>Long.<br>Trans.<br>Long.<br>Long. | 240<br>224<br>205<br>203<br>203<br>203<br>203<br>203 | 225<br>221<br>220<br>217<br>201<br>197<br>186<br>186 | ら                                                   |
| 17-7 РН                   | Sheet<br>Sheet<br>Bar<br>Bar<br>Bar                                     | H 900<br>Anne <b>a</b> led<br>H 900               | Trans.<br>Long.<br>Trans.<br>Long.<br>Long.<br>Long.                    | 215<br>213<br>156<br>155<br>200                      | 207<br>206<br>124<br>151<br>184                      | 4 4 1 0 8 4 1 0 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 |

TABLE II. MECHANICAL PROPERTIES OF PRECIPITATION HARDENING STAINLESS STEELS (Continued)

| Percent<br><u>Elongation</u> | 6 1        | o o            | Ŋ     | ъ       | 6     | 9       | 7     | 7              | 8     | 7       | 80    | 5      | 4     | 4       | 4     | 4       | 5     | 5       | ę     | 9       | 6     | 30           | 13             | 11              | 11    | 10       | 12    | 16             | 25          | 23          |
|------------------------------|------------|----------------|-------|---------|-------|---------|-------|----------------|-------|---------|-------|--------|-------|---------|-------|---------|-------|---------|-------|---------|-------|--------------|----------------|-----------------|-------|----------|-------|----------------|-------------|-------------|
| Yield<br>Strength<br>(ksi)   | 228        | 233<br>233     | 220   | 214     | 212   | 193     | 190   | 209            | 205   | 185     | 181   | 186    | 176   | 171     | 170   | 154     | 152   | 167     | 160   | 148     | 145   | 95           | 188            | 187             | 189   | 164      | 162   | 161            | 135         | 136         |
| Tensile<br>Strength<br>(ksi) | 243<br>225 | 234<br>234     | 230   | 219     | 217   | 198     | 193   | 216            | 213   | 192     | 190   | 187    | 184   | 176     | 174   | 158     | 155   | 173     | 170   | 154     | 152   | 147          | 203            | 210             | 208   | 177      | 178   | 167            | 187         | 185         |
| Gr <b>a</b> in<br>Direction  | Trans.     | Long<br>Trans. | Long. | Trans.  | Long. | Trans.  | Long. | Trans.         | Long. | Trans.  | Long. | Trans. | Long. | Trans.  | Long. | Trans.  | Long. | Trans.  | Long. | Trans.  | Long. | Long         |                | Trans.          | Long. | Trans.   | Long. | Long.          | Long.       | Long.       |
| Heat Treatment               | CH 900*    | RH 950         |       | RH 1050 |       | RH 1100 |       | <b>TH 1050</b> |       | TH 1100 |       | RH 950 |       | RH 1050 |       | RH 1100 |       | TH 1050 |       | TH 1100 |       | No Cold Work | >40% Cold Work | SCT 850         |       | SCT 1000 |       | 1000°F, 3 Hrs. | Double Aged | Single Aged |
| Form                         | Sheet      | Sheet          | Sheet | Sheet   | Sheet | Sheet   | Sheet | Sheet          | Sheet | Sheet   | Sheet | Bar    | Bar   | Bar     | Bar   | Bar     | Bar   | Bar     | Bar   | Bar     | Bar   | Bar          | Ваг            | Sheet           | Sheet | Sheet    | Sheet | Bar            | Bar         | Bar         |
| Alloy                        | 17-7 PH    |                |       |         |       |         |       |                |       |         |       |        |       |         |       |         |       |         |       |         |       | A -286       |                | <b>AM -</b> 350 |       |          |       | Almar 362      | Unitemp 212 |             |

\* The tensile and yield strengths are approximately 10 percent below published typical properties.

•

.

1. PH 13-8 Mo, 15-5 PH, and 17-4 PH H 900 - 900F, 1 hour, A.C. H 925, H950, H1025 - heat at indicated temperature for 4 hours 2. PH 14-8 Mo - SRH 950 and SRH 1050 Austenite conditioning: 1700F, 1 hour, A.C. Transformation cooling: Minus 100F, 8 hours Precipitation hardening at indicated temperature for 1 hour 3. PH 15-7 Mo a. Condition RH 950 (heat treated per Boeing specification BAC 5619) Austenite conditioning: 1725, 10 min. per 0.1 inch section thickness (10 minutes minimum) Transformation cooling: Minus 100F, 8 hours Precititation hardening: 950F, 1 hour b. Condition RH 1075 (Heat Treated per NAR specification MA0111-009) Austenite conditioning: 1750, 10 minutes plus 1 minute for each 0.01 inch section thickness, A.C. Transformation cooling: Minus 100F, 4 hours Precipitation hardening: 1075F, 1 hour 4. 17-7 PH Condition CH 900 (material cold reduced to Condition C) a. Heated at 900F for one hour b. Condition RH 950, RH 1050, and RH 1100 Austenite conditioning: 1750F, 10 minutes, A.C. Transformation cooling: Minus 100F, 8 hours Precipitation hardening at indicated temperature for one hour c. Condition TH 1050 and TH 1100 Austenite conditioning: 1400F, 1.5 hour Transformation cooling: Within 1 hour to 60F, 1/2 hour Precipitation hardening at indicated temperature for 1.5 hour

- 5. A-286
  - **a**. A-286

Solution treated 1800F, 2 hours, W.Q., aged 1325F, 16 hours, by vendor

b. A-286 with cold work

Solution treated 1800F, 2 hours, W.Q., cold worked 40 percent minimum, aged 1200F, 16 hours, by vendor

6. Almar 362

Aged 1000F, 3 hours

- 7. AM 350 SCT 850 and SCT 1000 LTA 1710F, 5 minutes, A.C., minus 100F, 3 hours, temper at indicated temperature for 3 hours.
- 8. Unitemp 212
  - a. Double aged Solution treated 1850F, 2 hours, aged 1425F, 2 hours, A.C., 1250F, 16 hours
  - b. Single aged Solution treated by vendor, aged 1325F, 16 hours, by MSFC
- \* All material received in the solution treated or annealed condition and heat treated by MSFC except as noted.

---

| Material<br>Form         | Heat Treat<br>Condition                            | Stress<br>Direction | Applied<br>ksi    | Stress<br>% YS | Failure Ratio                            | D <b>a</b> ys to<br>Failure | % Loss<br>in T.S. |
|--------------------------|----------------------------------------------------|---------------------|-------------------|----------------|------------------------------------------|-----------------------------|-------------------|
|                          |                                                    | <u>PH 1</u>         | 3-8 Mo Stai       | nless Ste      | <u>e1</u>                                |                             |                   |
| Bar Stock<br>(10" Dia.)  | Н 950                                              | Long.               | 163<br>196        | 75<br>90       | 0/2<br>0/2                               |                             | N<br>N            |
| (10 D1a.)                |                                                    | Trans.              | 158<br>190        | 75<br>90       | 0/2<br>0/2                               |                             | N<br>N            |
|                          | H 1000                                             | Long.               | 159<br>191        | 75<br>90       | 0/2<br>0/2                               |                             | N<br>N            |
|                          |                                                    | Trans.              | 158<br>190        | 75<br>90       | 0/3<br>0/3                               |                             | N<br>N            |
|                          |                                                    | <u>15-</u>          | 5 PH Stainl       | ess Steel      |                                          |                             |                   |
| Bar Stock<br>(2 " Dia.)  | Н900                                               | Long.               | 130<br>173        | 75<br>100      | 0/3<br>0/3                               |                             | N<br>N            |
|                          | Н 925                                              | Long                | 0                 | 0              |                                          |                             | N                 |
|                          |                                                    |                     | 123<br>163        | 75<br>100      | 0/3<br>0/3                               |                             | N<br>N            |
|                          | Н 1025                                             | Long                | 0<br>117<br>156   | 0<br>75<br>100 | 0/3<br>0/3                               |                             | N<br>N<br>N       |
|                          |                                                    | 17-4                | PH Stainle        | ss Steel       |                                          |                             |                   |
| Sheet                    | Condition A                                        | Long                | 110               | 75             | 0/6(2)                                   |                             | N                 |
| (,062")                  | (Solution<br>Treated -                             |                     | $\frac{148}{110}$ | 100<br>75      | 0/6(2)<br>0/6(2)                         |                             | N<br>N            |
|                          | Anne <b>a</b> led)                                 | Trans.              | 110<br>148        | 75<br>100      | 0/6 <sup>(2)</sup><br>0/6 <sup>(2)</sup> |                             | N<br>N            |
|                          |                                                    | Long.               | 110<br>148        | 75<br>100      | 0/3(3)<br>0/3(3)                         |                             | N<br>N            |
|                          |                                                    | Trans.              | 110<br>148        | 75<br>100      | 0/5(3)<br>0/3(3)                         |                             | N<br>N            |
| Bar Stock<br>(2.5" Dia.) | Condition A<br>(Solution<br>Treated -<br>Annealed) | Long.               | 0<br>113<br>151   | 0<br>75<br>100 | 0/9(4)<br>0/9(4)                         | <br><br>                    | N<br>N<br>N       |
|                          |                                                    | Trans.              | 0<br>93           | 0<br>75        | $\frac{1}{0/9(4)}$                       |                             | N<br>N            |
|                          |                                                    |                     | 124               | 100            | 0/9(4)                                   |                             | N                 |
| Sheet<br>(.062")         | н 900                                              | Long.               | 0<br>155<br>206   | 0<br>75<br>100 | 0/3<br>0/3                               | <br>                        | N<br>N<br>N       |
|                          |                                                    | Tr <b>a</b> ns.     | 0<br>156<br>207   | 0<br>75<br>100 | 0/3<br>0/3                               |                             | N<br>N<br>N       |

## TABLE IV. STRESS CORROSION CRACKING TEST RESULTS<sup>(1)</sup>

.

•

.

| Material<br>Form | Heat Treat<br>Condition | Stress<br>Direction | Applied<br><u>ksi</u> | Stress<br>% YS | <u>Failure Ratio</u> | Days to<br>Failure | % Loss<br><u>In T.S.</u> |
|------------------|-------------------------|---------------------|-----------------------|----------------|----------------------|--------------------|--------------------------|
| Bar Stock        | н 900                   | Long.               | 0                     | 0              |                      |                    | N                        |
| (2.5" Dia.)      |                         | -                   | 140                   | 75             | 0/3                  |                    | N                        |
|                  |                         |                     | 186                   | 100            | 0/3                  |                    | N                        |
|                  |                         |                     |                       |                | -,•                  |                    | IN                       |
|                  |                         | Trans.              | 0                     | 0              |                      |                    | N                        |
|                  |                         |                     | 146                   | 75             | 0/6                  |                    | N                        |
|                  |                         |                     | 195                   | 100            | 2/6                  | 50,90              | N                        |
|                  | Н 925                   | Trans.              | 0                     | 0              |                      |                    | N                        |
|                  |                         |                     | 152                   | 75             | 0/3                  |                    | N                        |
|                  |                         |                     | 202                   | 100            | 0/3                  |                    | N                        |
| Bar Stock        | 11 1005                 | _                   |                       |                |                      |                    |                          |
| (2.5" Dia.)      | H 1025                  | Trans.              | 0                     | 0              |                      | ~-                 | N                        |
| (2.5 DIA.)       |                         |                     | 130                   | 75             | 0/3                  |                    | N                        |
|                  |                         |                     | 174                   | 100            | 0/3                  |                    | N                        |
|                  |                         | <u>PH 14-8</u>      | Mo Stainl             | ess Steel      |                      |                    |                          |
| Sheet            | SRH 950                 | Long.               | 0                     | 0              |                      |                    | 6                        |
| (.058" Thick)    | Vacuum Melt             | U                   | 182                   | 75             | 0/3                  |                    | 16                       |
|                  |                         |                     | 243                   | 100            | 0/3                  |                    | 6                        |
|                  |                         |                     |                       |                | -, •                 |                    | 0                        |
|                  |                         | Trans.              | 0                     | 0              |                      |                    | 17                       |
|                  |                         |                     | 185                   | 75             | 0/3                  |                    | 21                       |
|                  |                         |                     | 247                   | 100            | 0/3                  |                    | N                        |
|                  | SRH 1050                | Long.               | 0                     | 0              |                      |                    | 14                       |
|                  | Vacuum Melt             | Ū                   | 173                   | 75             | 0/3                  |                    | 14                       |
|                  |                         |                     | 231                   | 100            | 0/3                  |                    | N N                      |
|                  |                         | Trance              | 0                     | 0              |                      |                    |                          |
|                  |                         | Trans.              | 0                     | 0              |                      | ÷-                 | 21                       |
|                  |                         |                     | 185                   | 75             | 0/3                  |                    | 17                       |
|                  |                         |                     | 246                   | 100            | 0/3                  |                    | 7                        |
|                  | SRH 950                 | Long.               | 0                     | 0              |                      |                    | N                        |
|                  | Air Melt                |                     | 163                   | 75             | 0/3                  | -                  | 19                       |
|                  |                         |                     | 218                   | 100            | 0/3                  |                    | 15                       |
|                  |                         | Trans.              | 0                     | 0              |                      |                    |                          |
|                  |                         | LLallS.             | 0<br>161              | 0              |                      |                    | 7                        |
|                  |                         |                     |                       | 75             | 0/3                  |                    | 10                       |
|                  |                         |                     | 216                   | 100            | 0/3                  |                    | N                        |
|                  | SRH 1050                | Long.               | 0                     | 0              |                      |                    | N                        |
|                  | Air Melt                |                     | 161                   | 75             | 0/3                  |                    | 13                       |
|                  |                         |                     | 218                   | 100            | 0/3                  |                    | N                        |
|                  |                         | Trans,              | 0                     | 0              |                      |                    |                          |
|                  |                         |                     | 166                   | 0<br>75        | 0/3                  |                    | N                        |
|                  |                         |                     | 221                   | 100            | 0/3                  |                    | 18                       |
|                  |                         |                     |                       | 100            | 610                  |                    | N                        |

.

.

## TABLE IV. STRESS CORROSION CRACKING TEST RESULTS<sup>(1)</sup> (Continued)

\_\_\_\_\_

| Material<br>Form         | Heat Treat<br>Condition | Stress<br>Direction | Applied<br>ksi               | Stress<br>% YS             | Failure Ratio            | D <b>a</b> ys to<br>F <b>ai</b> lure | % Loss<br><u>In T.S.</u> |
|--------------------------|-------------------------|---------------------|------------------------------|----------------------------|--------------------------|--------------------------------------|--------------------------|
|                          |                         | <u>PH 15-</u>       | 7 Mo Stainle                 | ss Steel                   |                          |                                      |                          |
| Sheet<br>(.062" Thick)   | RH 900                  | Long.               | 0<br>55<br>110<br>165<br>220 | 0<br>25<br>50<br>75<br>100 | 0/3<br>0/3<br>0/6<br>3/5 | <br><br>3(2),156                     | N<br>N<br>N              |
|                          |                         | T <b>ra</b> ns,     | 0<br>56<br>112<br>168<br>224 | 0<br>25<br>50<br>75<br>100 | 0/3<br>0/3<br>3/3<br>3/3 | <br><br>3(2),52<br>3(2),4            | N<br>N<br>-<br>-         |
|                          | RH 1075                 | Long.               | 0<br>54<br>108<br>151<br>202 | 0<br>25<br>50<br>75<br>100 | 0/3<br>0/3<br>3/3<br>3/3 |                                      | N<br>N<br>8<br>-         |
|                          |                         | Trans.              | 0<br>55<br>110<br>151<br>201 | 0<br>25<br>50<br>75<br>100 | 0/3<br>3/3<br>3/3<br>3/3 | <br>47,58,100<br>6,17(2)<br>4,5(2)   | N<br>N<br>-<br>-         |
| Bar Stock<br>(2.5" Dia.) | RH 950                  | Long.               | 0<br>50<br>101<br>151<br>201 | 0<br>25<br>50<br>75<br>100 | 0/3<br>3/3<br>3/3<br>3/3 | 40,48,70<br>1(2),2<br>1(3)           | N<br>8<br>-<br>-         |
|                          |                         | Trans.              | 0<br>56<br>112<br>150        | 0<br>25<br>50<br>75        | 2/3<br>3/3<br>2/2        | 1,40<br>1 (2),4<br>1 (2)             | 10<br>N<br>-             |
| Ba: Stock<br>(2.5" Dia.) | RH 1075                 | Long.               | 0<br>46<br>92<br>139<br>185  | 0<br>25<br>50<br>75<br>100 | 0/3<br>0/3<br>3/3<br>3/3 | <br>5,6(2)<br>5,15,23                | N<br>18<br>12<br>-       |
|                          |                         | Trans.              | 0<br>45<br>91<br>136         | 0<br>25<br>50<br>75        | 2/3<br>3/3<br>2/2        | 29,34<br>4(3)<br>6(2)                | 53<br>N<br>-             |
|                          |                         | <u>17-7</u>         | PH St <b>a</b> inles         | s Steel                    |                          |                                      |                          |
| Sheet<br>(.050" Thick)   | СН 900                  | Long.               | 114<br>171<br>205            | 50<br>75<br>90             | 0/3<br>0/3<br>0/3        | <br><br>                             | N<br>N<br>N              |
|                          |                         | Trans.              | 114<br>171<br>205            | 50<br>75<br>90             | 0/3<br>0/3<br>0/3        |                                      | N<br>N<br>N              |

.

•

## TABLE IV. STRESS CORROSION CRACKING TEST RESULTS <sup>(1)</sup> (Continued)

| Material<br>Form       | Heat Treat<br>Condition | Stress<br>Direction | Applied<br><u>ksi</u> | Stress<br>% YS | <u>Failure Ratio</u> | Days to<br>Failure | % Loss<br><u>In T.S.</u> |
|------------------------|-------------------------|---------------------|-----------------------|----------------|----------------------|--------------------|--------------------------|
| Sheet                  |                         |                     |                       |                |                      |                    |                          |
| (.062" Thick)          | RH 950                  | Long.               | 0                     | 0              |                      |                    | N                        |
|                        |                         |                     | 100                   | 43             | 0/3                  |                    | N                        |
|                        |                         |                     | 140                   | 61             | 0/3                  |                    | N                        |
|                        |                         |                     | 180                   | 80             | 4/9                  | 1,165(3)           | N                        |
|                        |                         | Trans.              | 0                     | 0              |                      |                    | N                        |
|                        |                         |                     | 100                   | 45             | 0/3                  |                    | N                        |
|                        |                         |                     | 140                   | 64             | 1/3                  | 71                 | N                        |
|                        |                         |                     | 180                   | 81             | 6/6                  | 1 to 117           | -                        |
|                        | RH 1050                 | Long.               | 0                     | 0              |                      |                    | N                        |
|                        |                         |                     | 140                   | 65             | 0/3                  |                    | N                        |
|                        |                         |                     | 180                   | 84             | 2/6                  | 165(2)             | N                        |
|                        |                         | Trans.              | 0                     | 0              |                      |                    | N                        |
|                        |                         |                     | 140                   | 65             | 0/3                  |                    | N                        |
|                        |                         |                     | 180                   | 84             | 5/6                  | 1,51,165(3)        | N                        |
| Sheet<br>(.062" Thick) | RH 1100                 | Long.               | 180                   | 95             | 0/3                  |                    | N                        |
| (1002 111200)          |                         | Trans.              | 180                   | 93             | 0/3                  |                    | N                        |
|                        | тн 1050                 | Long.               | 0                     | 0              |                      |                    | N                        |
|                        |                         | U                   | 140                   | 66             | 0/3                  |                    | N                        |
|                        |                         |                     | 180                   | 87             | 1/6                  | 165                | N                        |
|                        |                         | Trans.              | 0                     | 0              |                      |                    | N                        |
|                        |                         |                     | 140                   | 67             | 0/3                  |                    | N                        |
|                        |                         |                     | 180                   | 88             | 2/6                  | 165(2)             | N                        |
|                        | <b>T</b> H 1100         | Long.               | 180                   | 99             | 0/3                  |                    | N                        |
|                        |                         | Trans.              | 180                   | 97             | 0/3                  |                    | N                        |
| Bar Stock              | RH 950                  | Long                | 0                     | 0              |                      |                    | N                        |
| (2.5" Dia.)            |                         | . 5                 | 50                    | 24             | 2/3                  | 1,22               | N                        |
|                        |                         |                     | 100                   | 48             | 3/3                  | 1(2), 4            | -                        |
|                        |                         |                     | 140                   | 70             | 3/3                  | 1,5(2)             | -                        |
|                        |                         | Trans.              | o                     | 0              |                      |                    | 23                       |
|                        |                         |                     | 50                    | 25             | 3/3                  | 1(3)               | -                        |
|                        |                         |                     | 100                   | 50             | 2/2                  | 1(2)               | -                        |
|                        |                         |                     | 140                   | 70             | 3/3                  | 1(3)               | -                        |
|                        | RH 1050                 | Long.               | 0                     | 0              |                      |                    | N                        |
|                        |                         | -                   | 50                    | 26             | 0/3                  |                    | N                        |
|                        |                         |                     | 100                   | 52             | 0/3                  |                    | N                        |
|                        |                         |                     | 140                   | 73             | 2/3                  | 13,29              | N                        |
|                        |                         | Trans.              | 0                     | 0              |                      |                    | 11                       |
|                        |                         |                     | 50                    | 27             | 1/3                  | 22                 | 24                       |
|                        |                         |                     | 100                   | 55             | 3/3                  | 1(2),4             | -                        |
|                        |                         |                     | 140                   | 77             | 3/3                  | 1(3)               | -                        |

## TABLE IV. STRESS CORROSION CRACKING TEST RESULTS(1) (Continued)

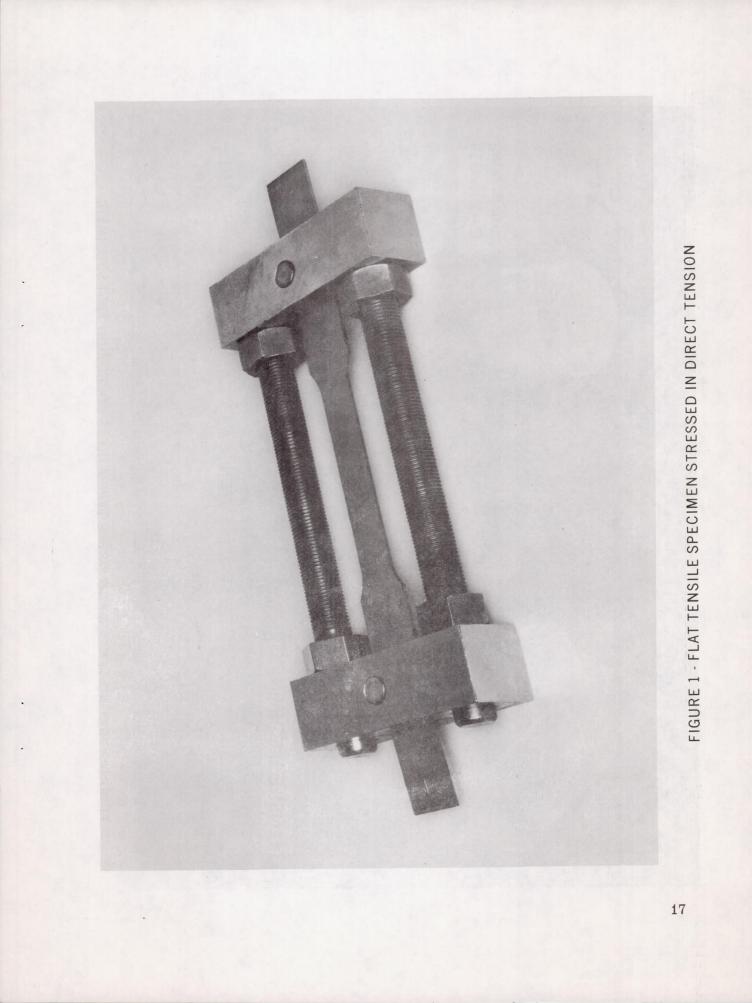
| Material<br>Form   | Heat Treat<br>Condition | Stress<br>Direction     | Applie<br><u>ksi</u> | d Stress<br>% YS | <u>Failure Ratio</u>                          | Days to<br>Failure        | % Loss<br>In T.S. |
|--------------------|-------------------------|-------------------------|----------------------|------------------|-----------------------------------------------|---------------------------|-------------------|
|                    | RH 1100                 | Long.                   | 0                    | 0                |                                               |                           | N                 |
|                    |                         | 0                       | 50                   | 32               | 0/3                                           |                           | N                 |
|                    |                         |                         | 100                  | 63               | 0/3                                           |                           | N                 |
|                    |                         |                         | 140                  | 89               | 1/3                                           | 39                        | N                 |
| Bar Stock          |                         |                         |                      |                  |                                               |                           |                   |
| (2.5" Dia.)        | RH 1100                 | Trans.                  | 0                    | 0                |                                               |                           | N                 |
|                    |                         |                         | 50                   | 33               | 0/3                                           |                           | N                 |
|                    |                         |                         | 100                  | 65               | 1/3                                           | 48                        | N                 |
|                    |                         |                         | 140                  | 91               | 2/3                                           | 1(2)                      | N                 |
|                    | тн 1050                 | Long.                   | 140                  | 78               | 0/3                                           |                           | Ν                 |
|                    |                         | Trans.                  | 50                   | 27               | 3/3                                           | 4(2),28                   | -                 |
|                    |                         |                         | 100                  | 55               | 3/3                                           | 1(2),4                    | -                 |
|                    |                         |                         | 140                  | 77               | 3/3                                           | 1(3)                      | -                 |
|                    |                         |                         | 1.10                 |                  |                                               | - (0)                     |                   |
|                    | ТН 1100                 | Long.                   | 140                  | 93               | 0/3                                           |                           | N                 |
|                    |                         | Irans.                  | 0                    | 0                |                                               |                           | N                 |
|                    |                         | 110.001                 | 50                   | 33               | 2/3                                           | 34,37                     | N                 |
|                    |                         |                         | 100                  | 66               | 2/3                                           | 1,82                      | N                 |
|                    |                         |                         | 140                  | 92               | 3/3                                           | 4,8,11                    | -                 |
|                    |                         | A -286                  | Stainle              | ss Steel         |                                               |                           |                   |
|                    |                         |                         |                      |                  | o ( o                                         |                           |                   |
| Bar Stock          | No Cold                 | Trans.                  | 48                   | 50               | 0/3                                           |                           | -                 |
| (1" Di <b>a</b> .) | Work                    | (C-ring)(5)             |                      | 75               | 0/3                                           |                           | -                 |
|                    |                         |                         | 95                   | 100              | 0/3                                           |                           | -                 |
|                    | 40% Min.                | Long.                   | 0                    | 0                |                                               |                           | N                 |
|                    | Cold Work               |                         | 140                  | 75               | 0/9                                           |                           | N                 |
|                    |                         |                         | 170                  | 90               | 0/9                                           |                           | N                 |
|                    |                         |                         | 188                  | 100              | 0/9                                           |                           | N                 |
|                    |                         | Trans.                  | 94                   | 50               | 0/9                                           |                           | N                 |
|                    |                         | (C-ring) <sup>(5)</sup> | 140                  | 75               | 0/9                                           |                           | -                 |
|                    |                         | (                       | 170                  | 90               | 0/9                                           |                           | -                 |
|                    |                         |                         | 188                  | 100              | 0/9                                           |                           | -                 |
|                    |                         | <u>Almar 3</u>          | 62 Stai              | nless Steel      | <u>.                                     </u> |                           |                   |
| Bar Stock          | Aged 1000°F,            | Long.                   | 0                    | 0                |                                               |                           | N                 |
| (1.75" Dia.)       | 3 Hours                 | Long.                   | 120                  | 75               | 0/3                                           |                           | N                 |
| (1.75 514.)        | J Hours                 |                         | 161                  | 100              | 0/3                                           |                           | N                 |
|                    |                         | Trene                   | 120                  | 75               | 0/3                                           |                           | _                 |
|                    |                         | Trans.<br>(C-ring)(5)   | 161                  | 100              | 0/3                                           |                           | -                 |
|                    |                         |                         |                      |                  | 0/0                                           |                           |                   |
|                    |                         | <u>AM 350</u>           | Stainl               | ess Steel        |                                               |                           |                   |
| Sheet              | SCT 850                 | Long.                   | 141                  | 75               | 0/3                                           |                           | N                 |
| (.025" Thick)      | •/•                     | 0.                      | 188                  | 100              | 2/2                                           | 5.20                      | -                 |
|                    |                         |                         |                      |                  | D / D                                         | <b>A</b> (1) <b>A</b> = - |                   |
|                    |                         | Trans.                  | 140                  | 75               | 2/3                                           | 20,153                    | N                 |
|                    |                         |                         | 187                  | 100              | 2/2                                           | 1(2)                      | -                 |

•

.

.

### TABLE IV. STRESS CORROSION CRACKING TEST RESULTS<sup>(1)</sup> (Continued)


TABLE IV. STRESS CORROSION CRACKING TEST RESULTS (1) (Continued)

| at Treat Stress Applied Stress Days to % Loss<br>pudition <u>Direction</u> ksi % YS Failure Ratio Failure <u>In T.S</u> . | 27 1000 Long. 122 75 0/3 N<br>162 100 0/2 N | Trans. 123 75 0/3 N<br>164 100 0/2 N | Unitemp 212 Stainless Steel | Trans. 34 25<br>(C-ring)(5) 70 50<br>102 75<br>122 90<br>136 100 | Trans. 34<br>(C-ring)(5)67<br>95<br>121 |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------|------------------------------------------------------------------|-----------------------------------------|
| Heat Treat S<br>Condition D                                                                                               | SCT 1000 I                                  | E                                    |                             | Single-Aged (                                                    | Double-Aged (                           |
| Material<br>Form                                                                                                          |                                             |                                      |                             | Bar Stock<br>(1.5" Thick)                                        |                                         |

N - Negligible change in tensile properties

Note (1) Test Data

- Specimen: Round tensile (C-ring where noted) for bar stock and flat tensile for sheet.
- b. Stress method: Direct tension for round tensile and constant deflection for flat tensile and C-rings
- c. Medium: Alternate immersion in 3.5 percent NaCl solution
- d. Exposure time: Until failure or six months
- (2) Three of the specimens were tested in the standard medium and the remaining three were exposed to 5 percent salt spray.
- (3) The specimens were loaded in direct tension rather than by constant deflection
- (4) Six of the specimens were tested in the standard medium and the remaining three specimens were exposed to 5 percent salt spray.
- (5) Load calculations were based on longitudinal rather than transverse yield strength.



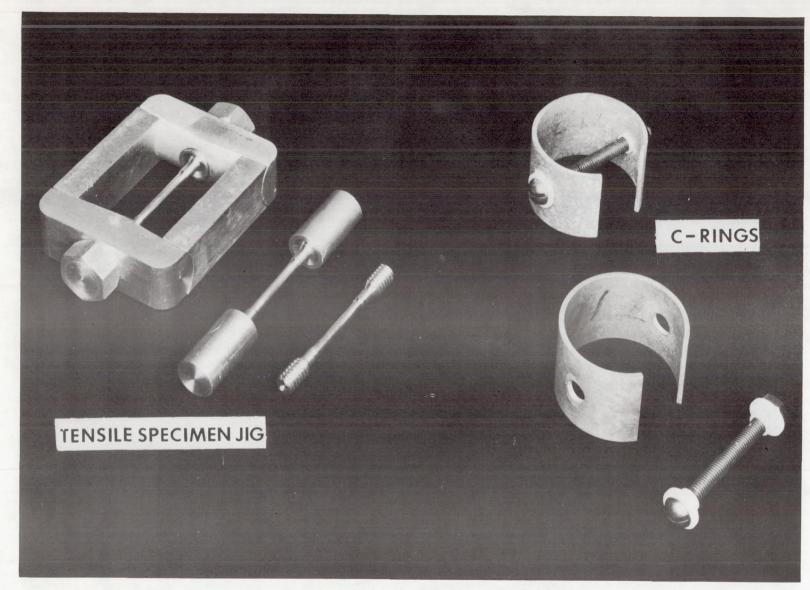
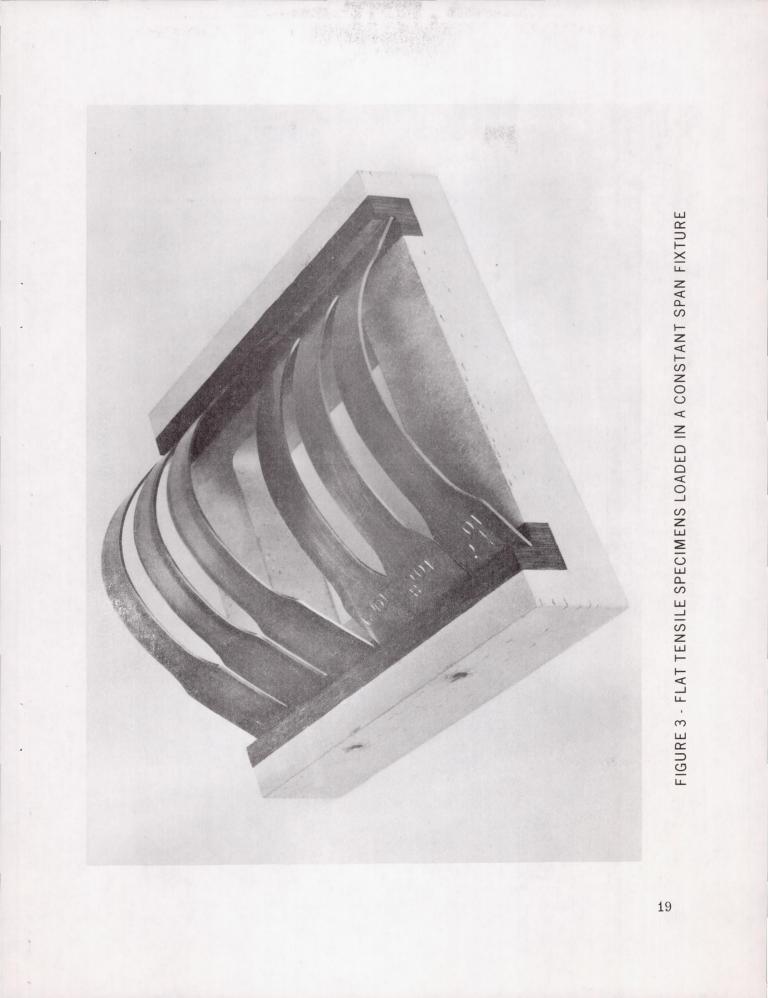




FIGURE 2 - ROUND TENSILE AND C-RING TYPE STRESS CORROSION TEST SPECIMENS






FIGURE 4 - ALTERNATE IMMERSION TESTER

#### APPROVAL

TM X-53910

#### STRESS CORROSION CRACKING EVALUATION OF SEVERAL PRECIPITATION HARDENING STAINLESS STEELS

By

#### T. S. Humphries and E. E. Nelson

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

E. C. McKannan Chief, Metallic Materials Branch R. J. Schwinghamer Chief, Materials Division

thank L. Vein Karl L. Heimburg

Director, Astronautics Laboratory

MSFC—RSA, Ala

#### DISTRIBUTION

S&E-ASTN-DIR S&E-ASTN-DIR S&E-ASTN-M S&E-ASTN-MM S&E-ASTN-P S&E-ASTN-E S&E-ASTN-EM S&E-ASTN-EA S&E-ASTN-ES S&E-ASTN-A S&E-ASTN-T S&E-ME-DIR S&E-ME-MM S&E-ME-M S&E-QUAL-DIR S&E-DIR PD-DIR S&E-CSE-DIR S&E-ASTR-DIR A&TS-MS-H A&TS-MS-IP A&TS-TU A&TS-MS-IL S&E-ASTN-RM S&E-ASTN-MMC Scientific and Technical Information Facility Attention: NASA Representative (S-AK/RKT)

Mr. Heimburg Mr. Kingsbury Mr. Schwinghamer Mr. McKannan Mr. Paul Mr. Kroll Mr. Fuhrmann Mr. Prasthofer Mr. Engler Mr. Sterett Mr. Grafton Dr. Siebel Mr. Wilson Mr. Angele Mr. Grau Mr. Weidner Dr. Lucas Dr. Haussermann Mr. Moore Mr. Akens Mr. Ziak Jean Bond (6) Miss Robertson (8) Miss Scott Mr. Humphries (25) (25) College Park, Maryland