

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

FINAL REPORT
FLOW FIELD COMPUTATIONS FOR BLUNT BODIES
IN PLANETARY ENVIRONMENTS

\author{
By \\ Stanley Byron, Richard M. Foster, and Bruce S. Masson \\ Contract No. 951646 \\ (Subcontract under NASA Contract NAS7-1000) \\ Submitted by \\ PHILCO-FORD CORPORATION \\ SPACE AND RE-ENTRY SYSTEMS DIVISION \\ In Cooperation with \\ APPLIED RESEARCH LABORATORIES, AERONUTRONIC DIVISION \\ 22 April, 1968 \\

This work was performed for the Jet Propulsion Laboratory, Califorma Instatie of Technology, sponsored by the Fational Acronautics and Space Adminustration undex Contract NAS7-100.

Abstract

Numerical methods to determine the flow field around blunt bodies traveling at hypersonic speeds in planetary atmospheres are presented. The state and motion variables and the convective and radiative heat transfer are determıned for both equilibrıum and non-equilıbrium flow models. The flow model is chosen to be applicable to conditions encountered in typical out-of-orbit and hyperbolic Martian entry trajectories where maximum stagnation point convective and radiative heat transfer occurs. For the conditions of interest, the coupling between the inviscad region, the viscous region, and the radiative transfer is significant, and is included through simplified engineering approximations Numerical results are presented for equilıbrıum and non-equilıbrıum flow over a sphere-cone having a base diameter of 12 ft , and moving at 19,600 $\mathrm{ft} / \mathrm{sec}$ in a $70 \% \mathrm{~N}_{2}, 30 \% \mathrm{CO}_{2}$ atmosphere at an ambient density of 10^{-6} slugs $/ \mathrm{ft}^{3}$. Results are also given for non-equilibrium flow over a spherecap at the same flight condition.

CONTENTS

SECTION PAGE
1 INTRODUCTION 1
2 EQUIEIBRIUM FLOW 3
2.1 Inviscud Analysis 3
2.2 Convective Heat Transfer Analysis. 22
2.3 Radiative Heat Transfer Analysis 27
3 NON-EQUILIBRIUM FLOW 41
3.1 Inviscid Analysis. 41
3.2 Non-Equilibrıum Properties of Planetary Atmospheres 44
3.3 Non-Equilibrium Convective Heat Transfer Analysis 66
3.4 Non-Equilıbrıum Radiatave Heat Transfer Analysis 67
4 NUMERICAL RESULTS 71
4.1 Equilıbrium Flow Over a Sphere-Cońe. 71
4.2 Non-Equilıbrium Flow Over a Sphere-Cone and Sphere-Cap 91
5 CONCLUSIONS AND RECOMMENDATIONS 119
APPENDIX A DERIVATION OF FINITE DIFFERENCE EQUATIONS 121
REFERENCES 129

ILLUSTRATIONS

FIGURE

PAGE
1 Mesh Geometry for Shock Layer and Cell $j+1 / 2,1+1 / 2$. 6
2 Evolution of Discontınulty in Fluid State 11
3 Resolution of Shock-Ray Nodal Velocity. 15
4 Pressure Distribution on a Sphere 18
5 Blunted Cone Shock Shape Comparıson with Schlieren: $M_{\infty}=9.0$,
$Y=1.4$ Schlıeren from Data of Nıchols and Nierengraten 82 . 19
6 Stagnatıon Point Velocity Gradient on Spheres 21
7 Comparison of Low Reynolds Number and Classıcal Boundary
Layer Theory Stagnation Point Heat Transfer (Reference 1) . . 24
8 Geometry Used in Carrying out the Volume Integration of Shock Layer Radıative Heat Transfer to Selected Body Locations 39

9 Comparıson of Computed Non-Equilibrium CN Violet Radiation Profile with that Obtained Experimentally by Arnold 53 behind a Normal Shock Traveling at 20,400 FPS through a $25 \% \mathrm{CO}_{2}$, $75 \% \mathrm{~N}_{2}$ Mixture at an Inatial Pressure of $175 \mu \mathrm{HG} . .2^{2}$. . . 62

11 Comparison of Computed Non-Equilibrium CN Violet Radıation Profile with that Obtained Experimentally 55 for the Conditions of Figure 10. Dashed Curve is the Non-Equilibrium CN Violet Radation Profile Computed Assuming the Radiating State is in Equalibrium with the Ground State of CN at the NonEquilibraum Translational Temperature64
12 Comparison of Computed Non-Eyuilibrium CN Violet Radiation Profile wath that Obtained Experimentally by Arnold 81 behand a Normal Shock Traveling at $20,600 \mathrm{FPS}$ in a 9.6% $\mathrm{CO}_{2}, 90.4 \% \mathrm{~N}_{2}$ Maxture at $350 \mu \mathrm{HG}$ 65
13 Blunt Sphere-Cone Body and Equilibrium Shock Shape. 76

ILLUSTRATIONS (continued)

FIGURE PAGE
14 Equilıbrium Surface Pressure on the Sphere-Cone 78
15 Fluid Velocity Profiles on Body Normals of the Sphere-Cone 79
16 Sphere-Cone Equilıbrium Chemastry Convective and Radiative Heat Transfer Distributions 81
17 Blunt Sphere-Cone Body, Non-Equilibrium Shock Shape, and Streamline Positions 92
18 Non-Equilıbrium Surface Pressure on the Sphere-Cone 94
19 Sphere-Cap Body, Non-Equilıbrıum Shock Shape and Streamline Positions 99
20 Non-Equilizbrium Surface Pressure on the Sphere-Cap 101
21 Sphere-Cone Non-Equilıbraum Chemastry Convective and Radiative Heat Transfer Distributions 106
22 Sphere-Cap Non-Equilibrıum Chemistry Convective and Radıative Heat Transfer Distributions 107
23 Non-Equilibrium Species and Temperature and Density Profiles Along the 89° Sphere Cap Streamline. Equilibraum Values are also Shown 109
24 Non-Equilibrium Species and Temperature and Density Profiles along the 79° Sphere-Cap Streamline. Equilibrium Values are also Shown 110
25 Non-Equilıbrium Profiles of Species Concentration and Temperature and Density along the 68° Streamline Indicated in Figure 17. Equilıbrıum Values are also shown 111
26 Non-Equilibrium Profiles of CN Violet Emission along the Three Streamlines Indicated an Figures 17 and 19. Equilibrıum Values are also shown. Collision Limating Causes the 68° Profile to Fall below Equilibraum 112

27 Non-Equilıbrıum Profiles of CN Red Emassion along the Three Streamlines Indicated in Figures 17 and 19. Equilibrıum Values are also Shown. 113

28 Radiation Profiles along the Stagnation Streamlane of the Sphere Cap. The CN Red and Violet Bands and the CO Vibration-Rotation Band are Included: The CO^{4+} Band is Omitted because it is Strongly Self-Absorbed 117

TABLE NO.

PAGE
1 Data for Electronic Band Systems of Diatomic Molecules in $\mathrm{C}-\mathrm{N}-0$ Mixtures 31
2 Molecular Vibration and Dissociation Constants 45
3 Reaction Rate System for C-N-O Mixtures 48
4 Factor by which the Internal Energy is Increased due to Excitation of Low Electronic States 56
5 Equilibrium Invascid Shock Layer Properties on Sphere-Cone 73
6 Equilibrıum Radiation from Flow Adjacent to Sphere-Cone Stagnation Point $T=5735^{\circ} \mathrm{K}, \mathrm{P}=0.172 \mathrm{~atm}$) 83
7 Equilıbrıum Radiation Erom Flow Adjacent to Body Point 5 on Sphere-Cone ($\mathrm{T}=5342^{\circ} \mathrm{K}, \mathrm{P}=0.136 \mathrm{~atm}$) 86
8 Detailed Spectral Distrabution of Opacity of CN Violet Band ($\mathrm{T}=5735^{\circ} \mathrm{K}, \mathrm{P}=0.172 \mathrm{~atm}$) 89
9 Equilıbrıum Sphere-Cone Radiatıve Heat Transfer 90
10 Non-Equilibrium Inviscid Shock Layer Properties on the Sphere-Cone 95
11 Non-Equilibrıum Inviscid Shock Layer Properties on the Sphere-Cap 102
12 Non-Equilıbrium Sphere-Cone Radiatıve Heat Transfer 115
13 Non-Equilıbrium Sphere-Cap Radıatıve Heat Transfer 115

SYMBOLS

sound speed
geometric quantity, defined by Equation (A9)
speed of light
reaction rate constant
length of bow shock between rays 1 and $i+1$
specific thermodynamic internal energy
electronic states of a molecule
specific total energies on cell boundaries
vibrational energy of species J
vector of conservation quantities
areas of cell $J+\frac{1}{2}, i+\frac{1}{2}$ at t_{0} and $t_{0}+\tau$
area swept by inward motion of cell boundary, J, $i+\frac{1}{2}$
specific enthalpy
free enthalpy of species J
increment in space variable
Planck's constant
geometry quantity, defined by Equations (A27) and (A28)

index for increments along shock layer from axis
index for increments across shock layer from shock
index of rotational states of a molecule
values 0 or 1 for respectively plane and axisymmetric flow

Boltzmann's constant
Equilibrium constant for reaction i
forward reaction rate coefficient
length from x axis along ith ray to intersection with jth body parallel

Mach number
molecular weight
mass flux from left to right across a disturbance front
pressure
pressures on cell boundaries
vector function of the flow variables
vector function of the flow variables
volume rate of production of species $]$ by reaction i
fluid speed $\left[u^{2}+v^{2}\right]^{\frac{1}{2}}$
stagnation point heat transfer
ratio of p / ρ to e
densities on cell boundaries
vector function of the flow variables
body nose radius of curvature

R_{o}	Reynolds number in the stagnation region
S	entropy
$S_{j, i+\frac{1}{2}}, S_{j+\frac{1}{2}, i}$	lengths of cell boundaries
t	time
t_{0}	time at beginning of time step
T	temperature
u	x component of fluid velocity
$\stackrel{\rightharpoonup}{u}$	ratio of characteristic vibrational temperature of a molecule to the translational temperature
${ }_{0}$	anharmonicity correction
$U_{J, i+\frac{1}{2}}, U_{j+\frac{1}{2}, i}$	x components of fluld velocity on cell boundaries
v	y component of fluid velocity
$V^{\prime}, V^{\prime \prime}$	index of vibrational states of a molecule
$V_{J, i+\frac{1}{2}}, V_{J+\frac{1}{2}, i}$	y components of fluid velocity on cell boundaries
$\mathrm{V} \pm$	velocity of right and left running disturbance fronts
$\nabla_{i+\frac{1}{2}}$	velocity of shock segment $1, i+\frac{1}{2}$ normal to itself
$\mathrm{V}_{\mathbf{i}}$	velocity of shocks intersection with the ith ray
V_{n}	outward normal velocity of cell boundary
$\mathrm{w}_{\mathrm{n}}, \mathrm{w}_{t}$	fluid velocity components in cell resolved normal and tangential to cell boundaries
$W_{j+\frac{1}{2}, i}, W_{j, i+\frac{1}{2}}$	fluid velocities normal to cell boundaries
x, y	spatial coordinates respectrvely, along and normal to the plane or axis of symmetry of body
2	spatial coordinate along a streamline

$\beta_{1, ~}$
γ
γ_{i}
ϵ
θ_{i}
$\phi_{J, i+\frac{1}{2}}, \phi^{j, i+\frac{3}{2}}$
λ
ρ
μ
$\bar{\mu}{ }^{\prime}$
τ
$\tau_{\text {max }}$
$\sigma_{j, i+\frac{3}{2}}$
ξ_{i}
Ω
ω
$\nu_{\nu a}$
$\nu_{\nu \alpha}^{\prime}$
$\partial \Omega$
\pm

Subscripts

```
t,x,y
    differentiation wath respect to t,x,y
\infty,0
cd
stag or s
w
```


Superscripts

```
+,-
```

n
0
-
-
$*$
fluid state right and left respectively of discontinuity
index of time steps
modification values needed at axis of symmetry
differentiation with respect to time, $\dot{\sigma}$ denoting angular velocity
denotes average or approximate quantity used during convergence
excited state population

SECTION 1

INTRODUCTION

The flight conditions and the planned vehacle shapes for Martian entry pose a number of problems in makıng satasfactory flow field predictions. Because of the low ballistic coefficaent vehicles, peak heating occurs at low ambient density, which leads to a relatively thick viscous region. The high emıssivaty of $\mathrm{CO}_{2}-\mathrm{N}_{2}$ maxtures leads to significant radiative heat transfer. Because of the low ambient density, much of the gas in the shock layer is out of equilibrium and produces larger radiation emission than would be produced if the gas were at equilibrium. Finally, because of the low density and high emissivity, the radiation losses from the shock layer gas lead to a reduction in gas enthalpy. To carry out the desired flow field calculations, the flow model must anclude all of these physical effects, but at should not become unnecessarily complicated. Thus we have chosen the simplest methods of calculation that retain the essentaal physical information.

A survey of applicable theoretical and experimental low Reynolds number shock layer studies indicates a wide variation in the method of solution, the gas models, and the assumed free stream conditions with a corresponding large variation in the predicted magnitude of "rarefied regime" effects.

At present one of the most general and yet definitive studies of rarefied gas regimes is that given by Goldberg. ${ }^{1}$ In thas study, non-similar hypersonic continuum flow field sphere-cap solutions were obtained for a flow model which is applicable through the incipient merged layer regime. ${ }^{2}$ An examination of the results of References 1 and 3 indicates that for the shock layer Reynolds numbers of interest in thas study, viscous and conduction effects due to velocity and temperature gradients at the shock and in the inviscid shock layer can be neglected. Thus, Rankıne-Hugoniot shock relations and inviscid shock layer equations can be used to calculate the flow field. It also is assumed that the vehicle wall is-cold in this study and, thus, the boundary layer displacement thackness is small and the inviscid shock shape and body pressure distrabution are not affected appreciably by the boundary layer.

For the flight conditions glven $2 n$ this study, the low Reynolds number results ${ }^{1,3}$ predict greater convective heat transfer rates than are obtajned from the classical discontinuous shock - inviscid shock layer - thin boundary layer theory. This increase in heat transfer is primarily due to the shock layer vortacity induced by the curved bow shock. The effect of vorticity can be incorporated in conventional boundary layer theory, however, as long as the proper boundary layer edge velocity conditions are used. ${ }^{1,3}$

In computing radiative heat transfer it is apparent from shock tube data that for the flight conditions under study much of the gas in the shock layer is out of equilibrium, However technaques for computing nonequilibrium radiative heat transfer aie not yet well developed. Thus it is desirable to carry out equilibrium calculations as well; although an equilibrium flow model is less realistac here, the accuracy of the numerical results is greater. In Section 2 below, the equilibrium flow model is described and in Section 3 the non-equilibrium model is set forth. The numerical results are given in Section 4.

SECTIÓN 2

EQUILIBRIUM FLOW

2.1 INVISCID ANALYSIS

It was originally planned to use the first approximation method of integral relations computer program to determine the inviscid flow properties. A number of modifications in the analysis vere needed, however. As these were investagated, it became apparent that several difficulties could not be overcome satisfactorily. The major problem with the first approximation integral relation solution is that, at the low specific heat ratios which are representatave of the equilibrium case, the 60° cone shock layer thickness is significantly overestimated. This difficulty as illustrated further in Section 4.1. It was also found that the stagnation point velocity gradient was not determined accurately by the one strip integral method ${ }^{4}$ and that attempts to $1 n f e r$ thas quantity from the numerical results were unsuccessful. Furthermore antegration of the inviscid flow equations through the transonic region was found to be very diffacult and could not be carried out satisfactorily. Thus an alternative and, fortunately, more accurate method was applied to this problem. This method was under development at the tame the present program was planned.

The method has been developed here for the computation of either planar or axisymmetric blunt body flow fields. For steady flow fields the formulation of the problem is direct in the sense that the body is given and the shock wave computed. Steady flows are computed as the large time lamits of transient flows. The tume dependent equations of motion are solved by a finıte difference technıque. The stable, explicit finite difference approximations are determined by a method proposed by Godunov, Zabrodin and Prokopov. 5

An initial condition in the form of velocity components, density, pressure and internal energy plus kinetic energy is specified on a mesh coverıng, the region of integration. This initial data is in theory arbitrary, but in practice is specified by a steady, constant Y flow field. The amount by which the data does not satasfy the steady equations of motion determines the time derivative of the flow field. The time derivative then determines new values of the flow variables in each cell of the mesh. In this manner, the flow field evolves in time, subject to the conservation laws, from the specified anitral condrtions.

The boundaries of the mesh are dependent on the method by which the bow shock is treated. It has been common practice in finite difference computations to ignore the exlstence of shock waves and leave their treatment to the finite difference scheme itself. The computed shocks are represented by smooth but rapid transitions of flow variables over a linear distance of nominally 5 to 10 mesh points. To adequately model the flow varıations, 5 mesh points should constitute a small portion of the shock layer width, and commonly 50 to 100 points would be required between the body and the upstream mesh boundary at which a uniform stream condition is applied. Smeared shock calculations of this type have proved to be quite feasible for blunt body flows, Bohachevsky ${ }^{6}$ has used Lax's scheme, ${ }^{7}$ Burstenn ${ }^{8}$ used the Lax-Wendroff scheme, ${ }^{9}$ and Emery ${ }^{10}$ compared Rusanov's scheme ${ }^{\text {ll }}$ with those of Lax and Lax-Wendroff.

The alternative employed in thas code is to retain the bow shock as a discontinuous boundary of the region of integration. To achieve this distribution of computational points, it is necessary to introduce a mesh that always exactly fills the shock layer. The cells in the mesh expand and contract as the standoff distance between the shock and body ancreases or decreases as a function of time and position. The upstream boundary of the mesh maintains the full jump in $f l o w$ variables from the free stream to the shock layer values immediately behind the shock. This type of mesh has been widely used an the blunt body problem; in the time dependent form, see Hayes and Probstein, ${ }^{2}$ Godunov, Zabrodin and Prokopov, ${ }^{5}$ Moretti and Abbetr. ${ }^{12}$

In addition' to the bow shock wave, the boundary of the region of integration is composed of the x-axis, the trace of the body in the $x y$ plane, and a surface entirely embedded in the supersonic portion of the flow, across which there is no upstream influence.

Given the upstream and body portions of the mesh boundary, the internal mesh is constructed in the following manner. Straight line rays are selected which intersect both the body and the upstream shock boundaries. The 1 th ray makes an angle θ_{I} with respect to the x-axis and intersects the axis at the position $x=\xi_{I}$ as illustrated in Figure 1 . The rays divade the shock layer into discrete intervals along the body. The first of these rays is concident with the x -axis, and the last forms the downstream boundary, immersed in supersonic flow.

The interval on each ray between the interaction with the upstream and body boundaries is'divided into a fixed number of subintervals, say J. Let $\varepsilon_{1, i}$ represent the distance from the x-axis measured along the ray θ_{i} to the intersection of the ray and upstream-shock boundary, and $\ell_{J+1, l}$ denote the simılarly measured body-ray intersections. Then the lengths $\ell_{j+1,2}$ and $\ell_{j, i}$ denote the inner and outer end points of the j th subinterval in from the bow shock boundary.

FIGURE 1. MESH GEOMETRY FOR SHOCK LAYER AND CELL $\mathrm{j}+\mathrm{l} / 2,1+1 / 2$

When the points $\ell_{j, 3}$ for fixed j are connected by straight lane segments, a polygonal interpolation curve running along the shock layer is obtained. These interpolating polygons and the rays divide the shock layer into a mesh of quadrilateral cells upon which the difference equations are constructed.

The cell bounded by the ith and i+lst rays and the j th and $j+1$ st transverse interpolating polygon 1 s denoted by $j+\frac{1}{2}, ~ i+\frac{1}{2}$. Similarly, the anterval on the ith ray bounded by the intersections with the j th and $j+1$ st interpolating polygon is denoted by $j+\frac{1}{2}, 2$. Finally the segment of the j th interpolating polygon, j, $i+\frac{1}{2}$ is that segment running between the ith and i+lst rays, see Figure 1.

2.1.1 FINITE DIFFERENCE EQUATIONS

The differential conservation laws will be used in the form

$$
\begin{equation*}
f_{t}+P_{x}+Q_{y}+y^{-1} R=0 \tag{1}
\end{equation*}
$$

The quantities f, P, Q, R are the following vector valued functions

$$
\begin{align*}
& f=\left[\begin{array}{l}
\rho \\
\rho u \\
\rho v \\
\rho \epsilon
\end{array}\right] \tag{2}\\
& P(f)=\left[\begin{array}{l}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u \varepsilon+u p
\end{array}\right] \tag{3}
\end{align*}
$$

$$
\begin{align*}
& Q(f)=\left[\begin{array}{l}
\mu v \\
\mu u v \\
\rho v^{2}+p \\
\rho v \epsilon+v p
\end{array}\right] \tag{4}\\
& R(f)=k\left[\begin{array}{l}
\rho v \\
\rho u v \\
\rho v^{2} \\
\rho v\left(\epsilon+\frac{p}{\rho}\right)
\end{array}\right] \tag{5}
\end{align*}
$$

where $k=0,1$ for plane and axisymmetric problems respectively and $\varepsilon=e(p, \rho)+\frac{1}{2}\left(u^{2}+v^{2}\right)$ is the internal plus kinetic energy.

The difference equations are generated by integrating Equation (1) over a cell $\Omega(t)$, whose boundaries are time dependent due to the floating mesh, and from initial tame t_{0} to $t_{0}{ }^{+T}$. The integrated form reads
$\iint_{\Omega\left(t_{0}+T\right)} f\left(x, y, t_{0}+T\right) d x d y=\iint_{\Omega\left(t_{0}\right)} f\left(x, y, t_{0}\right) d x d y+\int_{t_{0}}^{t_{0}+\tau} d t \underset{\partial \Omega(t)}{ } f(x, y, t) v_{n} d s$

$$
\begin{equation*}
\left.-\oint_{\partial \Omega(t)}(P d y-Q d x)-\iint_{\Omega(t)} \frac{1}{y} R(x, y, t) d y d x\right\} \tag{6}
\end{equation*}
$$

where $\partial \Omega$ is the boundary of Ω and V_{n} represents the component of the boundary velocity in the outward normal direction. This equation is to be evaluated to farst order in smallness of time step r and altatudes h_{x}, h_{y} of the cell Ω. The derivation of the finite difference equations is completed in Appendix A.

2.1.2 SOLUTION OF DIFFERENCE EQUATIONS AND EQUATION OF STATE

An equation of state must be added to finite difference Equations (A13) to (A16) before a computation can be carried through. For equilibrium runs, an Ames polynomial fit to the equation of state of a $30 \% \mathrm{CO}_{2}-70 \%$ N_{2} mixture was employed. 14 The polynomials provide the internal energy, e, and sound speed, a, as a function of p and ρ. However ρ and e are the thermodynamic variables determined at the new time by the conservation laws. Thus some iteration process is necessary to determine p accurately at each time. This iteration can be done simultaneously with the flow field's approach to steadiness in such a manner as to require no additional evaluations of the polynomials.

The inntial thermodynamic data in the cells is specified by $p^{(0)}$ and $\rho(0)$. From this data the internal energy $\bar{e}^{(0)}$ is determined from the Ames tables. The ratio $r^{(0)}$ is defined by

$$
\begin{equation*}
\Sigma^{(0)}=\frac{p^{(0)}}{\rho^{(0)-(0)}} \tag{7}
\end{equation*}
$$

At the nth time step, the quantities $p^{(n)}, \rho^{(n)} e^{(n)}$ and $r^{(n)}$ are determined from these same quantities at the $n-1$ st time step 1 n the followng manner. The conservation laws will provide the quantities $p(n)$ and $e^{(n)}$ from $\rho^{(n-1)}, e^{(n-1)}$ and $p^{(n-1)}$. The new pressure will be given by

$$
\begin{equation*}
p^{(n)}=r^{(n-1)} \rho(n) e^{(n)} \tag{8}
\end{equation*}
$$

The Ames tables will give $\mathrm{e}^{(n)}$ as a function of $p^{(n)}$ and $\rho^{(n)}$ and the ratio $r^{(n)}$ follows as

$$
\begin{equation*}
r^{(n)}=\frac{p^{(n)}}{\rho^{(n)}-(n)} \tag{9}
\end{equation*}
$$

When steadiness of the flow field is achieved $p^{(n-1)}=p^{(n)}, \rho^{(n-1)}=\rho^{(n)}$ and $\overline{\mathrm{e}}(\mathrm{n}-1)=\overline{\mathrm{e}}^{(n)}$. From Equation (8) $\bar{e}^{(n)}=e^{(n)}$ and hence a consistent answer is achleved on convergence. The convergence of this scheme depends upon the polynomal coefficients in the Ames tables. Qualitatavely
convergence is achieved since the quantity r varies very slowly whth any of the thermodynamic quantıtıes. Over the enture flow field r will vary by about 20% and by no more than 1% over a time step. Thus the $p^{(n-1)}$ predicted by Equation (8) will be quite accurate for use in the conservation laws and $e^{(n)}$ and $e^{(n)}$ will not differ appreciably.

2.1.3 FLUXES ACROSS CELL BOUNDARIES

The flow quantities on the cell boundary segments internal to the mesh are given in Godunov's scheme by the solution of a related one dimensional unsteady flow problem. The one dimensional problem is constructed using the pressure, density and normal component of the fluid velocity relative to the cell boundary velocity in the two cells adjacent to the segment. These values are used to define the initial unnform states in a Riemann problem, the general discontinulty separating two uniform fluid states. This discontinuity evolves in time through left and right running disturbances separated by a contact discontinuity. The full solution for the properties is prescribed in Courant and Friedrichs. ${ }^{13}$

As numerically demonstrated by Godunov, stabulity is maintained, even when computing through a shock, when the solution of the Rzemann problem is linearized with respect to small differences across the discontinuity. Then any rarefaction disturbances have negligible width and the cell boundary lies $1 n$ one of four constant state regions: (l) to the left of the left running disturbance, (2) between the left running disturbance and the contact surface, (3) between the contact surface and the right running disturbance, (4) to the right of the right running disturbance, see Figure 2. Note that the t axis is the position of the cell boundary.

If the disturbances propagate so that the t axis is located in regions (l) or (4), the cell boundary lies in undisturbed flurd. The pressure, density and velocity components on the boundary are equal to the quantities in the cells corresponding to the initial left or right states. If the t axis

FIGURE 2. EVOLUTION OF DISCONTINUITY IN FLUID STATE
is located in regions (2) or (3), the cell boundary lies behind a disturbance, and the pressure and normal velocity component are determined by expansion of the solution in Reference 13. Denoting the average of the initial right and left state by bars and the difference of the left from the right state by $\Delta^{\prime} s$, permits the pressure and normal relative velocity components, $w_{n, r}$, in reglons (2) and (3) to be written as

$$
\begin{align*}
& p^{(2)}=p^{(3)}=\bar{p}-m \Delta w_{n, r} / 2+0\left(\Delta^{2}\right) \tag{10}\\
& w_{n, r}(2)=w_{n, r}(3)=w_{n, r}-\Delta p / 2 m+0\left(\Delta^{2}\right) \tag{11}\\
& m=\bar{\rho} \bar{a}+0\left(\Delta^{2}\right) \tag{12}
\end{align*}
$$

where \bar{a} is the sound speed evaluated at \bar{p}, \vec{p}. The entropy s is constant across the disturbances

$$
\begin{align*}
& s^{(1)}=s^{(2)} \tag{13}\\
& s^{(3)}=s^{(4)} \tag{14}
\end{align*}
$$

The pressure on the cell boundary has the value $p^{(2)}$, and the normal component of the fluid velocity relatave to the boundary velocity is
(2). The densaty on the cell boundary is determined by the known $w_{n, r}$. The density on the cell boundary is determined by the known
values of pressure and entropy, and the fluzd velocity component tangential to the cell boundary has a value equal to those in regions (1) and (4) depending on whether the t-axis lies to the left or raght of the contact discontinuity.

2.1.4 BOW SHOCK BOUNDARY CONDITIONS

At the beginning of a tame step, say t_{o}, each bow shock segment separates a cell containing a uniform state of fluid from the free stream. Let the state in the cell bordering the bow shock be denoted by $\mathrm{p}^{+}, \rho^{+}, w_{n}^{+}, w_{t}^{+}$, where w_{n}^{+}, w_{t}^{+}are the components of the fluid velocity resolved normal and tangential to the bow shock segment. The jump in the properties p^{+}, ρ^{+}, w_{n}^{+}to the free stream values $p_{\infty}, \rho_{\infty}, q_{c_{n}}$ can be vieved as a Riemann
problem in a coordinate n normal to the segment of the bow shock, with $\mathrm{n}>0$ directed downstream and $\mathrm{n}<0$ upstream. The left running disturbance must be identified with the actual bow wave. The raght running disturbance carries the informstion of the bow wave's motion during the ensuing time interval into the first cell.

For the bow shock, if

$$
\begin{equation*}
\left.m^{-}=\left[p_{c d^{-P}}\right)\left(1 / \rho^{-}-1 / \rho_{c d^{-}}\right)\right]^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

then the momentum equation is

$$
\begin{equation*}
w_{n^{-}} m^{-}+p^{-}=w_{n c d^{m}}=p_{c d} \tag{16}
\end{equation*}
$$

and the Hugoniot relation is

$$
\begin{equation*}
e_{c d}^{-}-e^{-}=\frac{1}{2}\left(p_{c d}+p^{-}\right)\left(1 / \rho^{-}-1 / \rho_{c d^{-}}^{-}\right) \tag{17}
\end{equation*}
$$

The right running disturbance on the other hand is weak and travels with the sound speed, a^{+}, into the interior of the cell. Then

$$
\begin{equation*}
m^{+}=\rho^{+} a^{+} \tag{18}
\end{equation*}
$$

is known explicitly. The momentum balance across this disturbance is

$$
\begin{equation*}
w_{n, c d^{m}}+p_{c d}=w_{n}^{+} m^{+}+p^{+} \tag{19}
\end{equation*}
$$

Equations (15)-(19) can be iterated to determine the pressure and normal velocity on the contact surface, $\rho_{c d}$ and $w_{n, c d}$ which determine in turn the quantities R, U, V, P, E to be used in Equations (A13) through (Al6). If the cell under consideration is $3 / 2$, $i+\frac{1}{2}$ the fluxes are to be determined from

$$
\begin{align*}
& R_{1,1+\frac{1}{2}}=\rho_{c d}^{-} \\
& \left(W_{n}\right)_{1, i+\frac{1}{2}}=w_{c d} \\
& \left(W_{t}\right)_{1, i+\frac{1}{2}}=q_{\infty} \cos \sigma_{1, i+\frac{1}{2}} \\
& R_{1,1+\frac{1}{2}}=p_{c d} \tag{20}
\end{align*}
$$

where $\sigma_{1, i+\frac{1}{2}}$ is the angle of the bow shock segment 1 , $i+\frac{1}{2}$ relatave to the free stream direction. The velocity of the bow wave, V^{-}, can be found, after m^{-}is known, from the mass conservation princıple

$$
\begin{equation*}
\rho_{\infty}\left(q_{\infty}, n-v^{-}\right)=m^{-} \tag{21}
\end{equation*}
$$

2.1.5 MESH DEFORMATION DURING TIME STEP

Since the upstream boundary of the mesh is the only portion of the boundary that moves, the deformation of the mesh durang the time increment follows from the analysis of the preceding section. If V_{i} is the velocity of the intersection of the shock with the ith ray inwardly directed, then the mesh deformation will be determıned by the differential equation

$$
\begin{equation*}
\frac{d \ell_{1,1}}{d t}=v_{i} \tag{22}
\end{equation*}
$$

After each segment of the bow shock is allowed to move parallel to itself during the increment τ, the shock, though continuous initaally, would not end up continuous. What was neglected above was the angular velocity of rotation of the segment, $\dot{\sigma}_{1,2+\frac{1}{2}}$. Let $V_{1+\frac{1}{2}}$, denote the shock velocity for the shock segments just above and below the ray 1. The $V_{1+\frac{1}{2}}$ of course are the V^{-}determined previously for the two cells. From Figure 3 it is seen that V_{i} can be expressed in two ways one relative to the lower ray, the other relative to the upper. It follows that

$$
v_{i}=\frac{v_{i+\frac{1}{2}}}{\sin \left(\sigma_{1,1+\frac{1}{2}}+\theta_{1}\right)}-\frac{\dot{\sigma}_{1, i+\frac{1}{2}} \cdot d_{1,1+\frac{1}{2}}}{2 \sin \left(\sigma_{1,1+\frac{1}{2}}+\theta_{1}\right)}
$$

FIGURE 3. RESOLUTION OF SHOCK-RAY NODAL VELOCITY
where the lower or upper signs are used consistently throughout the expression and $d_{1,1 \Psi^{\frac{1}{2}}}$ are the lengths of the bow wave segments above and below ray i. If the expression with the upper sign is multuplied by
 and the resulting expressions added, then V_{i} can be expressed as

$$
\begin{align*}
v_{i} & =\frac{v_{i+\frac{1}{2}} d_{1,1+\frac{1}{2}}+v_{1-\frac{1}{2}} d_{1, i-\frac{1}{2}}}{d_{1, i-\frac{1}{2}} \sin \left(\sigma_{1, i+\frac{1}{2}}+\theta_{i}\right)+d_{1, i+\frac{3}{2}}} \sin \left(\sigma_{1,1-\frac{1}{2}}+\theta_{i}\right) \\
& +\frac{1}{2}\left(\dot{\sigma}_{1, i+\frac{1}{2}}-\dot{\sigma}_{1, i-\frac{1}{2}}\right) \cdot O\left(d_{1,1+\frac{1}{2}}\right) \tag{23}
\end{align*}
$$

where only the order of the coefficient of ($\dot{\sigma}_{1,1+\frac{1}{2}}-\dot{\sigma}_{1,1-\frac{1}{2}}$) is indicated. The first term on the right is seen to be 0 (1) while the last term is $0\left(d_{i, i \pm \frac{3}{2}}^{2}\right)=0\left(h^{2}\right)$ and is to be neglected in a first order scheme. Thus the motion of the shock node on each ray is determined by the motion of the segments adjacent to that ray. The shock shape after T is found by connectang the new nodal locations. The internal mesh deformation is subsequently found by interpolation on each ray with respect to the new standoff distance found from Equations (22) and (23).

2.1.6 BODY BOUNDARY CONDITION

The cells $\mathrm{J}+\frac{1}{2}$, $1+\frac{1}{2}$ bordering the body satisfy the condition of zero normal velocity on their body boundary $\mathrm{J}=1,1+\frac{1}{2}$. Let the cell state be denoted by $\mathrm{p}^{+}, \rho^{+}, \mathrm{w}_{\mathrm{n}}{ }^{+}, \mathrm{w}_{\mathrm{t}}^{+}$where $\mathrm{w}_{\mathrm{n}}{ }^{+}, \mathrm{w}_{\mathrm{t}}{ }^{+}$are the fluid velocity components normal and tangential to the body. Since the body boundary is stationary, the normal velocity condition is satisfied if a reflecting cell located immediately inside the boundary is imagıned with state $\mathrm{p}^{-}=$ $\mathrm{p}^{+}, \rho^{-}=\rho^{+}, \mathrm{w}_{\mathrm{t}}^{-}=\mathrm{w}_{\mathrm{t}}^{+}$and $\mathrm{w}_{\mathrm{n}}^{-}=\mathrm{w}_{\mathrm{n}}^{+}$.

Since $m^{+}=-m^{-}$by Equation (25), Equations (26) and (29) require that - $w_{n, c d}=0$ which is the zero normal velocaty condition. The pressure at the wall boundary is

$$
\begin{equation*}
p_{c d}=w_{n}^{+}+p^{+} \tag{24}
\end{equation*}
$$

This Riemann problem features a contact discontinuity which remans coincident wath the body boundary.

2.1.7 EVALUATION OF THE ACCURACY OF THE INVISCID ANALYSIS

The accuracy of the method given here to compute anviscid flows has been evaluated by carrying out several test calculations. In Figure 4, the surface pressure on a sphere in a $M=4.0, \gamma=1.4$ free stream is compared with two other numerical calculatzons. The results of the present code contan some scatter, but the deviation from Belotserkovski's thard approximation, scheme I, integral solution 3 s less than 3%. A further confirmation of this estimate of the accuracy is that in the fine and coarse mesh comparisons of the blunt cone in an ideal gas the surface pressure on the cone differs by 2%.

A shock shape comparison with data is shown in Figure 5. On the conical portion the computed shock shape lies outside the data by less than 5%. However in the stagnation region it is difficult to make an accurate assessment from the photograph. In this region, comparıson between the fine and coarse mesh computation of the blunt cone flow field again provides the error estimate. The coarser mesh is larger by 3.1% than the fine mesh value for $\gamma=1.1$. The density along the entıre stagnation streamline for the coarse mesh lies about 5% below the values for the f ine mesh. If we assume a linear truncation error which is of order 3 to 5% when the mesh width is reduced by $\frac{1}{2}$, then the fane mesh results lie withan 3 to 5% of the actual values whth no truncation error and the coarse mesh values lie within 6% to 10% of the actual values.

The accuracy of the stagnation point velocity gradient was estimated during the checkout phase of the fanite difference program by comparison with exıstıng data, $15,16,17$ correlations, ${ }^{18,19}$ and numerical solutions. ${ }^{20,21}$ Spheres in an ideal gas stream with $\gamma=1.4$ at Mach numbers of $4.0,5.0$,

FIGURE 4. PRESSURE DISTRIBUTION ON A SPHERE

8.0 , and 10.0 were computed as the check cases. For these runs, the shock layer was covered by a mesh with 7 cells across the layer and 6° increments. along the surface. In Figure 6, a compilation of these results is presented, in which it is seen that the stagnation point velocity gradient computed by the Aeronutronic program lies well within the scatter of data for Mach numbers less than 5.0. There is a serious scatter between data correlation and theory at Mach numbers greater than 5.0. However, the Li-Geiger correlation formula, the two Belotserkovskin integral relations solutions (second approximation, scheme I and fifth approximation, scheme III), Manglers inverse method calculation and the Aeronutronic Godunov type program scatter less than 5% at these larger Mach numbers. The Belotserkovskii and Mangler results are inherently the most accurate, in which case, the Godunov finite difference program produces results about $2-4 \%$ too low.

For the 60° blunt cone shape, an ideal gas computation was performed to give inatial conditions for the required equilibrium solution. Two meshes were used both of which had 7.5° intervals on the spherical portion while 3 and 6 cells were taken across the layer. The free stream condations were specified by a Mach number of 20.0 and $\gamma=1.1$. The coarse mesh computation gave

$$
\frac{R_{0}}{q_{\infty}}\left(\frac{\partial g}{\partial s}\right)_{0,3}=.366 \quad, \gamma=1.1
$$

while the fine mesh yielded

$$
\frac{R_{o}}{q_{\infty}}\left(\frac{\partial q}{\partial s}\right)_{0,6}=.372 \quad, Y=1.1
$$

These results agree closely with the value predicted by the constant density solution for a sphere

$$
\frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{q}_{\infty}}\left(\frac{\partial \mathrm{q}}{\partial s}\right)_{0,10}=\left(\frac{8}{3} \frac{\rho_{\infty} \frac{1 / 2}{2}}{\rho_{2}}\right)^{2}=.365
$$

figure 6. Stagnation point velocity gradient on spheres

This agreement with the asymptotic sphere values reflects the weak upstream influence of the conical surface in the $Y=1.1$ case. Since a 60° cone possesses an attached hypersonic shock layer solution, the only upstream influence of the conacal portion is due to a narrow entropy layer at the surface. For a larger effective γ or larger cone angle, this phenomenon would not occur and a serious divergence between the spherical prediction and the actual computed value would arise. ${ }^{20}$ The Lı-Geiger correlation ${ }^{19}$ is in error at the large density ratios encountered here as it has the wrong asymptotic limit as $\gamma \rightarrow 1$. Its predicted value is . 315.

The equilibrium computation provided a stagnation point velocity gradient of

$$
\left(\frac{\partial q}{\partial s}\right)_{0, \text { equil }}=.388 \frac{q_{\infty}}{R_{0}}=6340 \mathrm{sec}^{-1}
$$

where the mesh is the coarse mesh in the preceding paragraph. This value corresponds to a constant density shock layer on a sphere with effective $Y=1.125$, in agreement with the ratio h / e computed in the flow field. The error in this computed value of the stagnation point velocity gradient is estimated at less than 5%. This error is based on the average 3% error between the $\gamma=1.4$ computations and those of Mangler and Belotserkovskil and the $1-2 \%$ difference noted between the fine and coarse mesh values.

2.2 CONVECTIVE HEAT TRANSFER ANALYSIS

- The convective heat transfer calculations are complicated by the presence of low Reynolds number effects, sagnificant quantities of CO_{2} in the boundary layer, and dissociation and ionization effects. The following paragraphs outline the analytical methods, including the above considerations, which were utilızed in thus study.

In the discussion of the flow model in the introduction it was concluded that low Reynolds number effects are primarily manifested as vorticity
corrections to conventional boundary layer theory. At the stagnation point and on the spherical portion of the sphere-cone and the sphere-cap, the vorticity interaction effects have been calculated by using the method presented in Reference 3 and by utilizing the low Reynolds number spherecap solutions given in Reference 1. The method of Reference 3 is a solution to the boundary layer equations in which the slope of the boundary layer velocity profile is matched with the slope of the inviscid velocity profile for equal mass flow rates. The input parameters required to obtain a solution are the body Reynolds number, $R_{e_{o}}=\rho_{o} R_{N}^{2}(\partial u / 0 x) / \mu_{o}$ and the normal velocity gradient, $\partial\left(u / u_{0}\right) / \partial\left(y / R_{N}\right)$. These parameters are given by the inviscid flow field solution. It was found that the method of Reference 3 and that of Reference 1 both gave essentially the same results, but that some care must be taken when using the latter results. The low Reynolds number results of Reference 1 are presented as a ratio of the low Reynolds number heating to the classical boundary layer heating and are correlated in terms of shock density ratio and Reynolds number. The results of the correlation are shown in Figure 7. The classical boundary layer solution used to make the low Reynolds number heat transfer results non-dimensional is based on modified Newtonian boundary layer edge properties. High density ratzo (ρ_{s} / ρ_{∞}) inviscid shock layer property results can differ considerably from modified Newtonian results. Thus the deviation of the low Reynolds number heat transfer from the so-called classical boundary layer result gaven in Figure 7 includes not only low Reynolds number effects, but also inviscid property effects.

In addition to low Reynolds number effects, the effect of sagnaficant concentrations of CO_{2} in the ambient gas must be considered in the convective heat transfer calculations. Numerous theoretical and experimental studies of stagnation point convective heat transfer in $\mathrm{N}_{2}-\mathrm{CO}_{2}$ gas mixtures of interest in planetary entry have been made. The general result is that convective heat transfer increases as the percentage of

FIGURE 7. COMPARISON OF LOW REYNOLDS NUMBER AND CLASSICAL BOUNDARY LAYER THEORY STAGNATION POINT HEAT TRANSFER (REFERENCE 1)
CO_{2} is increased. Predictions of the magnitude of the increase vary considerably, however. In this study the results of Scala and Gilbert ${ }^{23}$ have been used to account for the ambient gas composition. In their analysis, an extensive number of gas mixtures has been studied, and their results provide a reasonable upper bound on the effects of CO_{2} on convective heat transfer.

The correlation results of Hoshizaki ${ }^{22}$ have been utalized to compute the stagnation point convective heat transfer, ancluding the effects of dissociation and $10 n z a t i o n$. The theory is applicable to either frozen or equilabrium chemistry boundary layers and the results are correlated in terms of shock properties and the inviscid flow stagnation point velocity gradient the results of the analysis correlate closely to the existing expermmental data. The blunt body wall has been assumed to be perfectly catalytic, and, for the flight velocities of interest in this study, the convective heat transfer is insensitive to the degree of non-equilibrium in the dissociated boundary layer. ${ }^{2}$ The correlation of the numerical solutions given in Reference 22 in terms of flight conditions is accurate to $\pm 1.5 \%$ an the flight velocaty range of interest in this study The correlation formula in terms of stagnation point velocity gradient is given as

where U_{∞} is the free-stream speed in $f t / s e c, ~ d v / d s$ is the stagnation point velocity gradient in $\sec ^{-1}, \rho_{w}$ is the density of air at the body surface in slug/ft ${ }^{3}$, μ_{W} is the viscosity of alr at the body surface in slug/sec-ft, and T_{w} is the body surface temperature in ${ }^{\circ} \mathrm{K}$. A body surface temperature of $300^{\circ} \mathrm{K}$ Is assumed for the present calculations.

The heat transfer distrabution around the body can be calculated by conventional boundary layer theory, as long as the appropriate boundary layer edge conditions are used. ${ }^{3}$ For the flight conditions gaven in this study, the shock layer Reynolds number based on the blunt cone nose cap radıus is approxımately 9,000. At this Reynolds number, the boundary
layer thickness in the nose region is approximately 15% of the shock layer thickness. ${ }^{1}$ Since the boundary layer is a significant percentage of the shock layer thackness, the proper boundary layer edge conditions differ considerably from those glven by inviscld flow body properties. The magnitude of the velocity at the edge of the boundary layer is increased due to the shock curvature induced vorticity and can produce a signzficant increase in the convective heat transfer. The viscous and conduction effects due to velocity and temperature gradients in the shock layer, however, have a small effect on convective heat transfer at the wall and can be neglected. It should also be noted that the vehicle wall has been assumed to be cold, and the boundary layer displacement thickness and ats interaction with the inviscid flow field is negligable.

Based on a transition momentum thickness Reynolds number criterion of 250, the boundary layer will be laminar for the vehicles considered in this study. The lamınar heat transfer distrabutions have been calculated by Lees' local similarity solution. 25 The Lees' method gives the ratio of the local heat transfer at a body station to the stagnation point value as a function of the local densıty-vascosity product and velocity at the edge of the boundary layer. Cheng ${ }^{26}$ and Ferri ${ }^{3}$ have shown that, for spherical bodies at shock layer Reynolds numbers given in this study, the effect of vorticity on the laminar heat transfer distribution is approximately constant over the enture sphere cap. Thus, the inviscid body properties on the sphere-cap can be used in the method of Lees and the vorticity correction is'obtazned implicztly when the non-dimensionalized heat transfer distribution is multiplied by the low Reynolds number stagnation point heat transfer result.

Lees' analysis is also used to calculate the heat transfer distribution aft of the sphere-cone junction, but the inviscid properties at the edge of the boundary layer, rather than the vehicle wall, are used in the calculation. For the sphere cone cases, the edge of the boundary layer
properties in the conical region differ considerably from the anviscid body properties since the boundary layer edge extends a significant distance into the shock layer.

Ideally, the boundary layer edge properties could be obtained by coupling the boundary layer solution of Ferri et.al. ${ }^{3}$ with the detalled inviscid flow field results obtained in this study. Such a calculation requires considerable formulation and computer programming, however, and a simplified method that is estımated to deviate less than 5% from the more exact analysis has been used. The boundary layer thickness in the conical region of the flow is assumed to be the same percentage of the shock layer thickness as the nose cap, namely 15%. The inviscid properties at this station in the shock layer correspond almost identically to the inviscid flow fleld propertıes calculated in the cells adjacent to the body. The entropy region along the body anduced by the blunt bow shock is completely contalned between the body and the first cell and, hence, as swallowed by the boundary layer. Thus, the invascid flow velocities at the boundary layer edges are more closely characterızed by the conical shock entropy rather than the blunt nose normal shock entropy.

2.3 RADIATIVE HEAT TRANSFER ANALYSIS

From the results of the inviscid analysis of Section 2.1 the pressure and enthalpy of the gas throughout the inviscid portion of the flow field are obtamed. From this information, three operations are carried out in determaning the radiative heat transfer to the vehacle surface. The gas temperature and composition are first determined by the Aeronutronic free-energy-minamization computer program at selected values of enthalpy and pressure that cover the range of these varabbles in the flow field. The resulting values of composition, temperature, and pressure are then used in the equilibrium radiation opacity program to obtain spectral absorption coefficients and radiation emission per unat volume. The radiation emission from each cell $2 n$ the flow field $2 s$ thus tabulated.

Finally the contribution of each cell to the radiation to selected points on the vehicle is computed and summed over all of the cells. In this step self-absorption $1 s$ evaluated and appropriate corrections are applied. Radiation cooling corrections and radiation-viscous layer coupling corrections are then applied to obtain the final radiative heat transfer distribution.

2.3.1 EQUILIBRIUM GAS COMPOSITION

The free-energy minimızation technique used at Aeronutronic to determine equilibraum gas properties has been descrıbed by Oliver, Stephanou, and Baser, ${ }^{27}$ and is now a commonly used method. The detarled thermodynamic properties of the major species used have been tabulated by Hildenbrand, 28 and have been maintalned current wath the JANAF Tables. For planetary atmosphere calculations, the program includes the species C, N, O, A, C_{2}, $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{CN}, \mathrm{CO}, \mathrm{NO}, \mathrm{C}_{3}, \mathrm{e}^{-}, \mathrm{O}^{-}, \mathrm{O}_{2}^{-}, \mathrm{A}^{+}, \mathrm{C}^{+}, \mathrm{O}^{+}, \mathrm{N}^{+}, \mathrm{C}_{2}^{+}, \mathrm{N}_{2}^{+}, \mathrm{O}_{2}^{+}$, $\mathrm{CN}^{+}, \mathrm{CO}^{+}, \mathrm{NO}^{+}$, and C (solid). Multiply ronazed atoms are also allowed, but are not found in significant concentration in the present calculations. The effects of vibrational anharmonicity, centrifugal stretching, and rotation-vibration coupling are included in the partition functions of the molecules. The known low-lying excited states of all species are also included. The program uses the free-energy minımazation principle ${ }^{27}$ to determine the temperature and composition for any prescribed gas enthalpy and pressure.

The heat of formation of $C N$ is listed in the JANAF Tables as 109 Kcal/ mole, corresponding to a dissociation energy of 7.5 ev . In the present calculations a value of $91 \mathrm{Kcal} / \mathrm{mole}$ was used, which corresponds to a dissociation energy of 8.2 ev . The latter value $1 s$ consistent with the shock tube measurements conducted at Ames, and is consistent with the shock tube measurements of $C N$ red emission carried out by Thomas and Menard ${ }^{29}$ at JPL. Although some CN violet measurements ${ }^{29}$ suggest a lower
value for the dissociation energy, the hagher value has been selected for the present calculations.

The results of the Aeronutronic free-energy-minimization program have been compared with those of JPL and of Ames and are found to be in satisfactory agreement. Species concentrations differ by as much as 10 to 20% in some cases, due to differences in the thermal properties of the species that cannot be resolved on the basis of presently available information.

2.3.2 EQUILIBRIUM RADIATION EMISSION

The equilibrıum radiation emission program used for the present study is described in detall in Aeronutronic reports by Bauer and Main, 30,31 The frequency-dependent absorption coefficient of $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures is computed over the spectral range $1000 \mathrm{~cm}^{-1}$ to $67,000^{2} \mathrm{~cm}^{2}$ for equilibrium temperatures from $1000^{\circ} \mathrm{K}$ to $10,000^{\circ} \mathrm{K}$. The volume radiation emission is calculated from the absorption coefficient and the blackbody radiation function.

An extensive search for all known data on equilibrium radiation from $\mathrm{N}_{2}-\mathrm{CO}_{2}$ mixtures has been carried out specifically for the Martian entry problem. The principal sources of radiation are the electronic band systems of the diatomic and polyatomic molecules, the vibration-rotation bands, and the free-free and free-bound continuum. The techniques and data used in the program are summarized below.
a. Molecular Electronic Transitions. Thas mechanism contrabutes most of the radiation emission for the temperatures and pressures assocıated with significant radiative heat transfer during Martian entry. Here a diatomac or polyatomic molecule in an electronic state E^{\prime}, vibrational state V^{\prime}, and rotational state J^{\prime}, emits a quantum of radiation to go to a state ($E^{\prime \prime}, v^{\prime \prime}, J^{\prime \prime}$). The presence of large numbers
of different v - and J-values gaves rase to the characteristac structure of these transitions or "band systems" which are usually quasi-continua at the temperatures considered here.

The model used for the band systems of diatomic molecules is called the just overlapping rotational line ("JORL") band model or the smeared rotational line band model. 32 This band model assumes the BornOppenheimer separation of electronic and nuclear motions in the molecule ${ }^{33}$ and the perturbation treatment of the coupling of $u t s$ vibrational and rotational degrees of freedom used in spectroscopic work. ${ }^{33}$ A profile is assigned to each band of this system corresponding to that of the Qbranch of the band and containang all of the integrated strength of the band. While this model does not give the correct profile of each band, it does gave an accurate representation of the total absorption and emission of the band system. A simple extension of this procedure is applied to polyatomic molecules, e.g., CO_{2}.

To compute the equilibrium radiation emission from each band system, the Franck-Condon factors and the oscillator strength are required in addition to the molecular spectroscopic constants. The Franck-Condon factors are computed using the method of Nichols ${ }^{34}$ for those band systems which have not been computed using more ragorous methods. 35 The electronic oscallator strengths are based on published measurements or calculations wherever possible. In the absence of previously published f numbers, values have been estimated using published values for similar allowed transitions in asoelectronic molecules. ${ }^{36}$ In other cases the qualatative rules of Mulliken and Rıeke ${ }^{37}$ are of assistance in arriving at estimates. References and values for the Franck-Condon factor arrays and the system oscillator strengths used in the radiation program are listed in Table 1.
b. Vibration-Rotation Bands. The vibration rotation bands of NO, CO, and CN contrıbute significantly to the radiation emission at temperatures below $3,000^{\circ} \mathrm{K}$. These bands are included in the radiation program

TABLE 1

DATA FOR ELEGTRONIC BAND SYSTEMS OF DIATOMIC MOLECULES IN C-N-O MIXTURES

System Absorption E-

Band System

1. $\quad N_{2}\left(B^{3} \pi_{g}-A^{3} \Sigma_{u}^{+}\right)$
(flrst positive)
2. $\quad N_{2}\left(C^{3} \pi_{u}-B^{3} \pi_{g}\right)$
(second positive)
3. $\quad N_{2}\left(B^{3} \Sigma_{\mathrm{u}}^{-}-\mathrm{B}^{3} \pi_{g}\right)$ 0.002 (est)
(" Y^{\prime} " system)
4. $N_{2}^{+}\left(B^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}\right) \quad 0.035^{36,60,61}$
(first negatıve)
5. $N_{2}^{+}\left(A^{2} \pi_{L U}-X^{2} \Sigma_{g}^{+}\right) \quad 0.007$ (est)
(Meinel)
6. $N_{2}^{+}\left(C^{2} \Sigma_{u}^{+}-X^{2} \Sigma_{g}^{+}\right)$
0.10 (est.)
(second negative)
7. $N_{2}^{+}\left(D^{2} \pi_{g}-A^{2} \pi_{u}\right) \quad 0.005$ (est)
(Janın-D'Incan)
8. $0_{2}\left(B^{3} \Sigma_{u}^{-}-X^{3} \Sigma_{g}^{\sim}\right)$
$0.17-\left(0.34 \times 10^{4}\right) / \omega$
(Schumann-Runge) $\quad\left(e \geq 200000 \mathrm{~cm}^{-1}\right)^{59}$
9. $\quad \operatorname{NO}\left(B^{2} \pi_{r}-X^{2} \pi_{r}\right)$
0.0053^{59}
(beta)
10. $\mathrm{NO}\left(\mathrm{A}^{2} \Sigma^{+}-\mathrm{X}^{2} \pi_{\mathrm{r}}\right) \quad 0.0025^{59,62}$ (gamma)
11. $N O\left(C^{2} \pi-X^{2} \pi_{r}\right) \quad 0.017^{62}$ (delta)
12. $N O\left(D^{2} \Sigma^{+}-X^{2} \pi_{r}\right) \quad 0.014^{62,63}$ (epsilon)

TABLE 1 (contanued)
System Absorption f-
Band Systems number and References
13. $N O\left(E^{2} \Sigma^{+}-X^{2} \pi_{r}\right)$ 0.01 (est)
(gamma prime)
14. $N O\left(B^{\prime 2} \Delta_{1}-X^{2} \pi_{r}\right) \quad 0.01$ (est)
(beta prime)
15. $N O\left(G^{2} \Sigma^{-}-X^{2} \pi_{r}\right) \quad 0.01$ (est)
(Lagerquist-Miescher)
16. NO $\left(C^{2} \pi-A^{2} \Sigma^{+}\right) \quad 0.05$ (est)
(Heath)
17. $\mathrm{NO}\left(\mathrm{D}^{2} \Sigma^{+}-\mathrm{A}^{2} \Sigma^{+}\right) \quad 0.05$ (est)
(Feast 1)
18. $\mathrm{NO}\left(\mathrm{E}^{2} \Sigma^{+}-\mathrm{A}^{2} \pi\right) \quad 0.05$ (est)
(Feast 2)
19. $\mathrm{NO}\left(\mathrm{E}^{2} \Sigma^{+}-\mathrm{C}^{2} \pi\right) \quad 0.05$ (est)
20. $\mathrm{NO}\left(\mathrm{E}^{2} \Sigma^{+}-\mathrm{D}^{2} \Sigma^{+}\right) \quad 0.05$ (est)
(Feast-Heath)
21. $N O\left(B^{\prime 2} \Delta_{I}-B^{2} \pi_{r}\right) \quad 0.001$ (est)
(Ogawa 1)
22. $N O\left(G^{2} \Sigma^{-}-B^{2} \pi_{r}\right) \quad 0.001$ (est)
23. $N O\left(b^{4} \Sigma^{-}-a^{4} \pi_{i}\right) \quad 0.001$ (est)
(Ogawa 2)
24. $\mathrm{NO}^{+}\left(\mathrm{A}^{1} \pi-\mathrm{X}^{1} \Sigma^{+}\right) \quad 0.05$ (est)
(Miescher-Baer)
25. $\mathrm{CN}\left(\mathrm{B}^{2} \Sigma^{+}-\mathrm{X}^{2} \Sigma^{+}\right) \quad 0.027^{64,65}$
("violet" system)

TABLE 1 (continued)

System Absorption f-
Band Systems
26. $\quad \operatorname{CN}\left(A^{2} \pi_{1}-X^{2} \Sigma^{+}\right)$
("red" system)
27. $\operatorname{CN}\left(D^{2} \pi_{1}-X^{2} \Sigma^{+}\right) \quad 0.005$ (est)
28. $\quad \operatorname{CN}\left(D^{2} \pi_{i}-A^{2} \pi_{i}\right) \quad 0.005$ (est)
29. $\operatorname{CN}\left(F^{2} \Delta_{r}-A^{2} \pi_{i}\right) \quad 0.01$ (est)
30. $\quad \operatorname{CN}\left(E^{2} \Sigma^{+}-A^{2} \pi_{1}\right) \quad 0.01$ (est)
31. $\operatorname{CN}\left(J^{2} \Delta_{i}-A^{2} \pi_{i}\right) \quad 0.01$ (est)
32. $\mathrm{CN}\left(\mathrm{E}^{2} \Sigma^{+}-\mathrm{X}^{2} \Sigma^{+}\right) \quad 0.10$ (est)
33. $\mathrm{CN}\left(\mathrm{H}^{2} \pi_{r}-\mathrm{X}^{2} \Sigma^{+}\right) \quad 0.05$ (est)
34. $C_{2}\left(A^{3} \pi_{g}-X^{2} \pi_{u}\right) \quad 0.034^{67,68}$
(Swan)
35. $C_{2}\left(A^{\prime 3} \Sigma_{g}^{-}-X^{\prime}{ }^{3} \pi_{u}\right) \quad 0.005$ (est)
(Ballik-Ramsay)
36.
$C_{2}\left(b^{1} \pi_{u}-x^{1} \Sigma_{g}^{+}\right) \quad 0.0038^{69}$
(Phillıps)
37. $\mathrm{C}_{2}\left(\mathrm{~B}^{3} \pi_{\mathrm{g}}-\mathrm{X}^{\prime 3} \pi_{\mathrm{u}}\right) \quad 0.13$ (est)
(Fox-Herzberg)
38. $\mathrm{C}_{2}\left(\mathrm{~d}^{1} \Sigma_{\mathrm{u}}^{+}-\mathrm{x}^{1} \Sigma_{\mathrm{g}}^{+}\right) \quad 0.10$ (est)
(Mulliken)
39. $\quad C_{2}\left(e^{1} \Sigma_{g}^{+}-b_{u}^{1} \pi_{u}\right)$
0.10 (est)
(Freymark)
40. $\mathrm{C}_{2}\left(\mathrm{c}^{1} \pi_{g}-b^{1} \pi_{u}\right) \quad 0.005$ (est)
(Deslandres-D'AzambuJa)

TABLE 1 (continued)
System Absorption f -
Band Systems
41. $\quad \operatorname{CO}\left(A^{1} \pi-X^{1} \Sigma^{+}\right)$ number and References
(fourth positive)
42. $\operatorname{CO}^{+}\left(\mathrm{A}^{2} \pi_{i}-\mathrm{X}^{2} \Sigma^{+}\right) \quad 0.0022^{70}$
("comet-tail" system)
43. $\operatorname{co}^{+}\left(B^{2} \Sigma^{+}-x^{2} \Sigma^{+}\right) \quad 0.01$ (est)
(first negative)
44. $\operatorname{CO}^{+}\left(B^{2} \Sigma^{+}-A^{2} \pi_{i}\right) \quad 0.001$ (est)
(Baldet-Johnson)
45. $\operatorname{CO}\left(B^{1} \Sigma^{+}-A^{1} \pi\right) \quad 0.005$ (est)
(Angstrom)
46. $\operatorname{CO}\left(C^{1} \Gamma^{+}-A^{1} \pi\right) \quad 0.005$ (est)
(herzberg)
47. $\operatorname{CO}\left(a^{1} \Sigma^{+}-a^{3} \pi\right) \quad 0.015$ (est)
(Asundr)
48. $\quad \operatorname{co}\left(b^{3} \Sigma^{+}-a^{3} \pi\right) \quad 0.009^{71}$
(Third posatave)
49. $\operatorname{co}\left(d^{3} \nu_{1}-\mathrm{a}^{3} \pi\right) \quad 0.015$ (est)
(Trıplet)
50. $\operatorname{CO}\left(\mathrm{e}^{3} \Sigma^{-}-\mathrm{a}^{3} \pi\right) \quad 0.015$ (est)
(Herman)
51. $0_{2}^{+}\left(\mathrm{A}^{2} \pi_{u}-\mathrm{X}^{2} \pi_{g}\right) \quad 0.005$ (est)
(Second negatave)
52. $\quad 0_{2}^{+}\left(b^{4} \Sigma_{g}^{-}-a^{4} \pi u^{2}\right)$
0.001 (est)
(First Negative)
by the following simple treatment. It has been shown theoretically ${ }^{38}$ that the integrated absorption coefficient of the fundamental system of a datomic molecule is independent of temperature when induced emission is taken into account. This has been demonstrated to be true in experimental measurements for the NO and CO systems. 38,39 Using these data, and an estimate for CN , the average absorption coefficients over the spectral range 1,000 to 3,000 $\mathrm{cm}^{-1}, \bar{\mu}^{\prime}\left(\mathrm{cm}^{-1}\right)$, are $13.6 \gamma_{\mathrm{NO}} \mathrm{P} / \mathrm{T}, 39.4 \gamma_{\mathrm{CO}} \mathrm{P} / \mathrm{T}$, and $24.6 \gamma_{\mathrm{CN}} \mathrm{P} / \mathrm{T}$, where γ_{i} is the mole fraction of the species, i, P is the total gas pressure (atm) and T is the gas temperature (${ }^{\circ} \mathrm{K}$).

The integrated intensity of the first overtone system of datomic molecules has been shown to increase with increasing temperature theoretically ${ }^{38}$ and experimentally for NO and $C O .39,40$ We take the average absorption coefficients of NO, $C O$ and $C N$ in the spectral range 3,000 to $5,000 \mathrm{~cm}^{-1}$ to be

$$
\begin{aligned}
& \bar{\mu}^{\prime}(\mathrm{NO})=(0.000228 \mathrm{~T}+0.182) \gamma_{\mathrm{NO}} \mathrm{P} / \mathrm{T} \\
& \bar{\mu}^{\prime}(\mathrm{CO})=(0.000195 \mathrm{~T}+0.0778) \gamma_{\mathrm{CO}} \mathrm{P} / \mathrm{T} \\
& \bar{\mu}^{\prime}(\mathrm{CN})=0.346[1-\exp (-2069 \mathrm{hc} / \mathrm{kT})]^{-2}\left[1-\exp (-4138 \mathrm{hc} / \mathrm{kT}] \gamma_{\mathrm{CN}} \mathrm{P} / \mathrm{T}\right.
\end{aligned}
$$

The value for $C N$ is an average of the measured values for NO and CO at $2,000^{\circ} \mathrm{K}$, and the theoretical expression of Reference 38 is applied.

The absorption coefficients defined above are satisfactory only in computing optically thin emussion Each vibration-rotation band actually consists of 50 to 100 rotational lines. All of the lines cover a spectral range that is 5 to 10% of the nominal wavelength of the band. However each rotational line covers a very narrow portion of the spectrum at the conditions of temperature and density associated with these flight calculations. The Doppler broadened linewidth is $(2 \pi \mathrm{kT} / \mathrm{M})^{\frac{1}{2}} / \lambda$ and is approximately $3 \times 10^{8} \mathrm{cps}$ at the stagnation point for the present flight case. Collısıon broadening yields a linewidth of about $10^{8} \mathrm{cps}$, contributing less than Doppler broadening. Since the Doppler linewidth represents only 10^{-6} of the nomanal frequency of the vibration-rotation bands, these lines are so sharp that self-absorption is
significant even when the absorption coefficient defined above is much less (about 10^{-3}) than the reciprocal of the thickness of the shock layer. It can be seen by inspecting Tables 6 and 7 that the value of $\vec{\mu}$, at 2000 and $4000 \mathrm{~cm}^{-1}$ approaches, but does not exceed the reciprocal of the shock layer thickness. Thus the infrared emission from the $N O, C O$, and $C N$ bands approaches being self-absorbed. However, s ince the magnatude of thas emassion contrıbutes less than 10% of the total radiation to the body, any errors introduced in the total radiation by the omission of self-absorption corrections in the vibration-rotation bands must be considerably less than 10%.

No provision was made to anclude the vibration-rotation bands of CO_{2}. For the equilibrium case, the concentration of CO_{2} is so small that the emission is negligible. For the non-equilıbrium cases, the CO_{2} volume emission is appreciable ammediately behand the shock prior to CO_{2} dissociation, but when integrated over the shock layer it is found to be negligible in comparison wath the integrated emission due to the $C N$ red and $C N$ violet bands.
c. Continuum Emission. Contlnuum emission due to free-free transitions is computed using the classacal Kramers formula ${ }^{41}$ for the linear spectral absorption coefficrent,

$$
\mu_{\omega}^{\prime}=0.738 \times 10^{21} z_{e f f}^{2} \frac{Y_{e} Y_{1} P^{2}}{{ }_{\mu}^{3} T^{5 / 2}}[1-\exp (-h c w / k T) j
$$

which ancludes allowance for stamulated emassion. The species γ_{1} is taken here to be either the totalaty of all positively charged singly ionized atoms and molecules for which we take $z_{\text {eff }}^{2}=1$, or the totalıty of all electrically neutral atoms and molecules, for which we take $z_{\text {eff }}^{2}=0.01$ following Keck, Allen and Taylor. ${ }^{42}$ The continum emission from freebound transitions is determined by using the hydrogenic cross sections for recombination as computed by Bates. 43 The continuum emission is appreciable for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ maxtures only when the equilibrium temperature exceeds 8,000 to $10,000^{\circ} \mathrm{K}$.

2.3.3 SELF-ABSORPTION OF EQUILIBRIUM RADIATION

For equilibrium calculations, self-absorption corrections to the radiative heat transfer are made in two different ways. For bands such as $C 0(4+)$ that are very optically thick a blackbody upper limit is set at each wavelength by utilizing the temperature of the shock layer gas at a normal distance of one absorption length from the body surface. The absorption length for each wavelength is printed out directly from the equilibrium radiation program. The blackbody limits at each wavelength are then summed over all wavelengths.

For intermediate optical depth the following model is used to make selfabsorption corrections to the radiatıve heat transfer. The spectral emission (neglecting self-absorption) is computed and integrated progressively from the body surface in each direction defined in Paragraph 2.3.6.
Simultaneously the non-equilibrium absorptionoptical depth is integrated. At a point where the absorption optical depth reaches a value of one, the integration of the optically thin emission is terminated; the total emission thus accumulated closely approximates the net spectral radiative flux with self-absorption.

2.3.4 RADIATION-INVISCID FLOW COUPLING

Thas is negligible in the equilibrıum sphere-cone case and is therefore not included. The radiation cooling of the anviscid fluld by the time It reaches the boundary layer edge adjacent to the stagnation point reduces the enthalpy by about 1% and reduces the total radıation emission by less than 1%.

2.3.5 RADIATION-VISCOUS LAYER COUPLING

Radiation-viscous layer coupling is included by subtracting from the total radlation a contribution from a unform slab of thockness equal to the thermal boundary layer thackness, defined by a 5% reduction in enthalpy below the value just outside the boundary layer. The radiative properties of the slab were taken to be those in the cell nearest the body. The additional effect of radiation absorption by the boundary layer gas is neglible, because the enthalpy flux through the boundary layer gas is much greater than the radiation absorbed in the boundary layer.

2.36 GEOMETRIC INTEGRATION

The radiative properties of the shock layer gas determined from the equilibrium radiation emission program are used in a geometrical integration program to compute the radlatlve flux to various points on the vehicle surface. For a given point on the body, the shock layer is divided into slabs as shown in Figure 8 . These slabs have their normal conncident with the normal to the body through the body point for which the radiative heat transfer is being computed. In the present computation three slabs of equal thickness were used between the body and the shock.

Each slab is divided into rings that subtend equal solid angles from the body point. Each ring in each slab thus contributes equally to the flux to the body point if the radiative properties throughout the slabs are uniform. However, because of the shock curvature, the outermost slab is only partially filled with radiating gas. Furthermore, the shock layer properties are not uniform These two effects are included by summing the radiative contributions from segments of each ring. The contribution from each segment is based on an average radiating volume determined from the geometry of the slabs and the shock layer, and an average radiation emission per unit volume from the segment. The summation of these contributions gives the total radiative flux to the surface. In the present computations each slab was divided into five

FIGURE 8. GEOMETRY USED IN CARRYING OUT THE VOLUME integration of shock layer radiative heat transfer to selected body locations
rings, the first two nearest the normal subtending one half the solid angle subtended by the other three. The angles used to compute average radiative properties were $14.5^{\circ}, 35.25^{\circ}, 50.75^{\circ}, 67.75^{\circ}$, and 82.75°.

2.3.7 COLLISION LIMITING

It has been found from the non-equilibrıum studies of Section 3.2 that the equilibrium $C N$ violet emission may be reduced by as much as a factor of 2 for the conditions of the present calculations. The other significant sources of radiation do not appear to be affected. However because of the uncertannty in this factor, and because it has not been corroborated by experamental measurements, no correction for collision limiting is made to the equilibrium radiation calculations.

SECTION 3

NON-EQUILIBRIUM FLOW

The flow field analysis used for non-equalıbrium conditions is much the same as that used for equilibrium conditions, described in Section 2. The inviscid properties are computed assuming a thin viscous layer, and are then corrected for coupling between the inviscid and viscous regions. The convectave heating and radsative heating are then calculated with the use of the uncoupled inviscid results, corrected for radiation cooling and viscous-inviscid coupling.

3.1 INVISCID ANALYSIS

In the invascid region the flow equations are decoupled from the reaction rate equations by including an ideal gas equation of state in the flow equations. This separation permits an effective Y to be used which is determaned through the results of an integration of the reaction rate equations along the stagnation streamline. The variation of γ along the stagnation streaminne is found to be representative of that along other normals between the body and the shock throughout the subsonic flow region in the shock layer. In this way the equation of state differs little from that obtained from a rigorous solution of the flow equations coupled with the reaction rate equations. In the present calculations
the Y variation noted above was approximated by a constant value since the variation in γ is not large across the shock layer.

The results of integrating the flow equations with the approximate equation of state are used only to provide the pressure field and the streamline positions. The remaining gas propertzes are determined by solving the reaction rate equations along with Euler's equation, and the equations of state, on selected streamlines. The errors introduced by this procedure are small since the pressure field and streamline positions are insensitive to non-equalibrium chemstry effects.

In the constant γ flow faeld solution, the conservation Equations (1)(5) are solved by the same method used for equilıbrıum flow (Section 2.1). The thermal and caloric equations of state are different, however, and for constant γ combine to give

$$
\begin{equation*}
p=(\gamma-1) \rho e \tag{26}
\end{equation*}
$$

which is used in place of Equation (8).

The streamlune positions within the shock layer are determined by locating points of constant stream function, ψ, which by definition are points on a given streamline. Lines of constant stream function were calculated from an integral solution of the continuity equation utalizing the density and velocity profiles obtained from the anviscid shock layer solution.

The non-equilibrium chemistry calculation is initated at the bow shock wave. Across the bow shock the rotation and the vibration internal energy modes are assumed to be fully equilibrated with translation, whale the chemical specres are assumed to be frozen at the free stream condztions. The γ utilized in the inviscid flow field solution corresponds to a 70% $\mathrm{N}_{2}, 30 \% \mathrm{CO}_{2}$ mixture with equilibrium internal energy modes and frozen freestream chemistry. Thus, the initial conditions for p, p, T, q, γ_{j} and E_{v}
behind the bow shock to start the non-equilibrium species calculation are given by the inviscid solution. With the pressure and streamline field given, the remaining five unknown shock layer propertıes, ρ, T, q, Y_{j}, and E_{v} are determined from the simultaneous solution of the following five equations:

Euler Equation

$$
\begin{equation*}
\frac{d q}{d z}=\frac{-k}{\rho q} \frac{d p}{d z} \tag{27}
\end{equation*}
$$

Integral Energy Equation and the Caloric Equation of State
$T=\frac{\frac{1}{2 k}\left(I-q^{2}\right)-\sum_{1}^{S}\left(Y_{j}-\gamma_{j \infty}\right) h_{j}^{o}-\sum_{j+1}^{f} Y_{j}\left(n_{j}-1\right) E_{v_{j}}}{\sum_{1}^{S} \gamma_{j}\left(1.5+n_{j}\right)}$

Thermal Equation of State

$$
\begin{equation*}
\rho=\frac{P}{\left(T \sum_{I}^{S} \gamma_{J}\right)} \tag{29}
\end{equation*}
$$

Species Conservation Equation

$$
\begin{equation*}
q \frac{d y_{j}}{d z}=\sum_{I=1}^{S} \frac{Q_{11}}{\rho} \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
& \beta_{i j} \equiv v_{i x}^{\prime}-v_{i x} .
\end{aligned}
$$

$$
\begin{aligned}
& v_{i}=\sum_{\alpha=1}^{s} v_{i \alpha} \\
& \beta_{i}=\sum_{\alpha=1}^{s} \beta_{i \alpha}
\end{aligned}
$$

Equilibrium Vibration Energy Equation

$$
\begin{equation*}
E_{v}=\operatorname{RT}\left[\bar{u}\left(e^{\bar{u}}-1\right)^{-1}+\frac{u_{0}}{\bar{u}}\right. \tag{31}
\end{equation*}
$$

where $\bar{u}=\frac{\theta_{v}}{T}$ and the constants u_{o} and θ_{v} are given in Table 2 .

3.2 NON-EQUILIBRIUM PROPERTIES OF PLANETARY ATMOSPHERES

An extensive compilation of non-equilibrium processes in $\mathrm{CO}_{2}, \mathrm{~N}_{2}$, A mixtures is ancluded in the Aeronutronic non-equalibraum computer program, specifically for Martian entry calculations. The program includes the processes normally included in all such programs: molecular rotation and vibration, dissociation, ionization, and atom, lon, and charge transfer. In addition, careful consideration has been given to the most important process for computing radiative heat transfer, that of non-equilibrium excited state production.

The non-equilibrium properties of the flow field are obtained from a streamtube integration program which utılızes the pressure field and the streamline locations determined from the flow freld integration (Section 3.1). The streamtube program integrates the energy and Euler equations, and the species and excyted state rate equations to obtain the chemical composition, the gas density, and the temperature.

The details of the program and the non-equilibrium data used in it are summarized below. The species included in the program are $C, N, 0, C_{2}$, $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{CN}, \mathrm{NO}, \mathrm{C}^{+}, \mathrm{N}^{+}, \mathrm{O}^{+}, \mathrm{C}_{2}^{+}, \mathrm{N}_{2}^{+}, \mathrm{O}_{2}^{+}, \mathrm{CO}^{+}, \mathrm{CN}^{+}, \mathrm{NO}^{+}, \mathrm{e}^{-}$, $\mathrm{CN} *, \mathrm{~N}_{2} *$, and $\mathrm{CO} \%$. The number of reactions included is 31 for pure CO_{2}, 93 for $\mathrm{N}_{2}-\mathrm{CO}_{2}$ mixtures, and 27 for air.

TABLE 2

- MOLECULAR VIBRATION AND DISSOCIATION CONSTANTS

Molecule		$\underbrace{}_{-}{ }^{\circ}{ }^{\text {K }}$		$\underline{\mathrm{u}}_{\mathrm{o}}$	D_{3}, $\mathrm{kcal} / \mathrm{mole}$	Refs.
CO_{2}	$\theta_{1}=1950$	$\theta_{2}=966$	$\theta_{3}=3445$		126 (to CO +0)	72,73
CO		3067		. 029	256	33
N_{2}		3337		. 032	225	33
${ }^{0}$		2228		. 039	118	33
C_{2}		2322		. 032	140	33,74
CN		2924		. 030	172	33,75
NO		2688		. 037	150	33

The reaction rate constants are based on an extensive survey of available experimental data. However there are a number of reactions which contribute significantly to the non-equilibrium properties of the flow, for which there is no data avaılable. For these reactions the best methods available have been used to estimate rate constants. The basis for these estimates and the values used in the program are discussed below. The reactions are divided into nine groups, which are identified as rotation relaxation, vibration relaxation, molecular dissociation and atom recombination, atom exchange, neutral atom transfer, electronic excitation, ion production and loss, and ion and charge transfer. The data used in the non-equilibraum program are gaven here in detail because they are not yet available elsewhere.

3.2.1 REACTION RATE DATA

a. Rotation Relaxation. Rotation is assumed to be fully equilibrated with translation, as has been observed in low density shock thickness studies in $\mathrm{CO}_{2}{ }^{44}$ and $\mathrm{O}_{2} .45$ The rotational contribution to the heat capacity is RT for all molecules, 1 ncluding CO_{2}.
b. Vibration Relaxation. For normal shocks above $V_{\infty}=4.5 \mathrm{~km} / \mathrm{sec}$, CO_{2} and O_{2} vibrational modes are fully relaxed within the translationrotation shock. 44,45 vibration relaxation times for N_{2} and $C O$ are withan a factor of 5 of that for O_{2} above $8000^{\circ} \mathrm{K}$. Furthermore N_{2} vibration is in resonance whth the v_{3} mode of CO_{2} and will relax even faster in $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures. Thus for normal shock speeds above $4.5 \mathrm{~km} / \mathrm{sec}$ vibration is fully relaxed withan or very close to the translation-rotation shock, and can be assumed to be fully equilibrated whth translation. This applies as well to oblique shocks with a normal component of speed greater than $4,5 \mathrm{~km} / \mathrm{sec}$.

The equilibrium vibrational energy is obtained from the spectroscopically determined vibrational constants by $E_{v}=\operatorname{RT}\left[\bar{u}\left(e^{\bar{u}}-1\right)^{-1}+u_{0} / \bar{u}\right]$ where $\bar{u}=$ θ_{v} / T, (see Reference 46). Values for, θ_{v} and u_{o} are given in Table 2.

Only the vibrations of the neutral species $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{C}_{2}, \mathrm{CN}$, and NO are considered to contribute to the gas heat capacity. The special case of CO_{2}, having 4 vibrational modes (2 modes at 1 frequency, \because_{2}), is treated by uncoupled superposition of each mode, neglecting the effects of anharmonicity (u_{0}) since the constants X and Y are quite small for CO_{2}. Because the ν_{2} (bending) mode is doubly degenerate it contributes $E_{v_{v_{2}}}=$ $2 \operatorname{RT}\left[u\left(e^{u}-1\right)^{-I}\right]$ to the heat capacity.
c. Molecular Dassociation and Atom Recombination. Dissociation of the neutral molecules is included, since these cause the major change in gas temperature. In addition dissociation of the excited electronic states, $\mathrm{CN} *, \mathrm{CO} \%$, and $\mathrm{N}_{2} *$ is included, since dissociation strongly affects the concentration of these species. Certain rates are estimated because of the lack of experimental data. This is done by assuming that molecules with paired electrons $\left(\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2}, \mathrm{CO}\right.$, and CO_{2}) are less effacient in causing vibrational energy transfer near the dissocation limit than are molecules with unpaired electrons (NO and CN) and free atoms (C, N, and 0). The former group is denoted by M_{1}, the latter by M_{2}. These rate constants are defined for a reaction of the form $A+A+M \rightarrow$ $A_{2}+M$ by $\left.d\left[A_{2}\right] / d t=-1 / 2 d[A] / d t=k_{f} L A\right]^{2}[M]$. The reactions and the rate constants used in the Aeronutronzc computer program are given as 1 through 14 in Table 3.
d. Atom Exchange. The atom exchange reactions are generally slow and exhibit a high activation energy even for exothermic reaction rates. Because of this, estimates cannot easily be made. Thus only those reactions for which data exist are included. These rate constants are defined for a reaction of the form $A B+A B \rightarrow A_{2}+B_{2}$ by $d\left[A_{2}\right] / d t=$ - $1 / 2 d[A B] / d t=k_{f}[A B]^{2}$. The reaction and rate constant used is given as 15 in Table 3.
e. Neutral Atom Transfer. The atom transfer reactions are generally fast and exhibit small (if any) activation energy for the exothermic reaction rates. Only a few of these reaction rates have been measured. All

TABLE 3
REACTION RATE SYSTEM FOR C-N-O MIXTURES
Forward Rate Constant,

TABLE 3 (continued)

Ref	Equilibrium Constant
est	$\mathrm{K}_{26} \mathrm{~K}_{32} / \mathrm{K}_{23} \mathrm{~K}_{27}$
est	$0.53 \times 10^{4} \mathrm{~T}^{-1.0} \exp (11,113 / \mathrm{T})$
est	$\mathrm{K}_{21} \mathrm{~K}_{32}$
est	$\mathrm{K}_{23} / \mathrm{K}_{34}$
est	$\mathrm{K}_{23} \mathrm{~K}_{33}$
est	$\mathrm{K}_{5} \mathrm{~K}_{27} / \mathrm{K}_{3} \mathrm{~K}_{28} \mathrm{~K}_{34}$
est	$\mathrm{K}_{30} / \mathrm{K}_{27}$
est	$0.45 \times 10^{+5} \mathrm{~T}_{\mathrm{T}}-1.0_{\text {exp }}(24,943 / \mathrm{T})$
est	$\mathrm{K}_{18} / \mathrm{K}_{35} \mathrm{~K}_{39}$
est	$\mathrm{K}_{19} / \mathrm{K}_{41}$
est	$\mathrm{K}_{30} / \mathrm{K}_{29}$
est	$\mathrm{K}_{40} / \mathrm{K}_{21}$
est	$\mathrm{K}_{26} / \mathrm{K}_{30}$
est	$\mathrm{K}_{17} / \mathrm{K}_{41}$
est	$\mathrm{K}_{20} / \mathrm{K}_{44}$
est	$\mathrm{K}_{31} / \mathrm{K}_{32}$

TABLE 3 (continued)

		Forward Rate Constant, $\mathrm{cm}^{3} / \mathrm{mole}-\mathrm{sec}$	Ref	Equilibrium Constant
	$\text { 49. } \mathrm{O}+\mathrm{C}_{2}^{+} \rightarrow \mathrm{CO}+\mathrm{c}^{+}$	0.25×10^{12}	est	$\mathrm{K}_{18} \mathrm{~K}_{48} / \mathrm{K}_{40}$
	50. $\mathrm{C}+\mathrm{CN}^{+} \rightarrow \mathrm{C}_{2}^{+}+\mathrm{N}$	$0.125 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{31} / \mathrm{K}_{29}$
	51. $\mathrm{N}+\mathrm{C}_{2}^{+} \rightarrow \mathrm{CN}+\mathrm{C}^{+}$	$0.25 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{49} / \mathrm{K}_{19}$
	52. $\mathrm{C}+\mathrm{C}_{2}^{+}-\mathrm{C}_{2}+\mathrm{C}^{+}$	$0.25 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{51} / \mathrm{K}_{25}$
	53. $\mathrm{O}+\mathrm{CN}^{+}-\mathrm{CO}+\mathrm{N}^{+}$	$0.125 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{18} \mathrm{~K}_{27} / \mathrm{K}_{29} \mathrm{~K}_{38}$
	54. $0+\mathrm{CN}^{+} \rightarrow \mathrm{NO}^{+}+\mathrm{C}$	$0.125 \times 10^{12}{ }_{\text {T }} 0.5$	est	$\mathrm{K}_{26} / \mathrm{K}_{29}$
	55. $\mathrm{O}+\mathrm{CN}^{+} \rightarrow \mathrm{NO}+\mathrm{C}^{+}$	$0.125 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{21} \mathrm{~K}_{43} / \mathrm{K}_{40}$
$\underset{\sim}{\leftrightarrows}$	56. $\mathrm{N}^{+}+\mathrm{CN} \rightarrow \mathrm{CN}^{+}+\mathrm{N}$	$0.25 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{19} / \mathrm{K}_{53}$
	57. $\mathrm{N}+\mathrm{CN}^{+} \rightarrow \mathrm{N}_{2}^{+}+\mathrm{C}$	$0.125 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{28} / \mathrm{K}_{29}$
	58. $\mathrm{N}+\mathrm{CN}^{+} \rightarrow \mathrm{N}_{2}+\mathrm{C}^{+}$	$0.125 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{5} \mathrm{~K}_{50} \mathrm{~K}_{52} / \mathrm{K}_{13}$
	59. $\mathrm{N}^{+}+\mathrm{C}_{2} \rightarrow \mathrm{CN}^{+}+\mathrm{C}$	$0.50 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{25} \mathrm{~K}_{56}$
	60. $\mathrm{C}+\mathrm{CN}^{+} \rightarrow \mathrm{CN}+\mathrm{C}^{+}$	$0.125 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{58} / \mathrm{K}_{22}$
	61. $\mathrm{N}+\mathrm{O}_{2}^{+} \rightarrow \mathrm{NO}^{+}+\mathrm{O}$	$0.25 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{26} / \mathrm{K}_{27}$
	62. $\mathrm{N}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{NO}^{+}+0$	$0.50 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{38} \mathrm{~K}_{61}$
	63. $\mathrm{N}^{+}+\mathrm{NO} \rightarrow \mathrm{NO}^{+}+\mathrm{N}$	$0.25 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{62} / \mathrm{K}_{21}$
	64. $0+\mathrm{N}_{2}^{+} \rightarrow \mathrm{NO}^{+}+\mathrm{N}$	$0.25 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{26} / \mathrm{K}_{28}$
	65. $\mathrm{O}^{+}+\mathrm{CN} \rightarrow \mathrm{NO}^{+}+\mathrm{C}$	$0.25 \times 10^{12} \mathrm{~T}^{0.5}$	est	$\mathrm{K}_{37} / \mathrm{K}_{24}$

TABLE 3 (continued)

Forward Rate Constant,
66. $\mathrm{N}^{+}+\mathrm{CO} \rightarrow \mathrm{NO}^{+}+\mathrm{C}$
67. $\mathrm{N}^{+}+\mathrm{CN} \rightarrow \mathrm{N}_{2}^{+}+\mathrm{C}$
68. $\mathrm{C}+\mathrm{O}_{2}^{+} \rightarrow \mathrm{CO}+\mathrm{O}^{+}$
69. $\mathrm{N}+\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}{ }^{*}+\mathrm{N}$
70. $\mathrm{N}+\mathrm{CN} \rightarrow \mathrm{N}_{2} *+\mathrm{C}$
71. $\mathrm{N}+\mathrm{NO} \rightarrow \mathrm{N}_{2}^{*}+\mathrm{O}$
72. $\mathrm{C}+\mathrm{CO} \rightarrow \mathrm{CO} *+\mathrm{C}$
73. $\mathrm{O}+\mathrm{CO} \rightarrow \mathrm{CO}+\mathrm{O}$
74. $\mathrm{C}+\mathrm{O}_{2}-\mathrm{CO} *+\mathrm{O}$
75. $\mathrm{O}+\mathrm{C}_{2} \rightarrow \mathrm{CO} *+\mathrm{C}$
76. $\mathrm{C}+\mathrm{CN} \rightarrow \mathrm{CO}+\mathrm{N}$
77. $\mathrm{O}+\mathrm{CN} \rightarrow \mathrm{CO}+\mathrm{N}$
78. $\mathrm{C}+\mathrm{CO}_{2} \rightarrow \mathrm{CO} *+\mathrm{CO}$
79. $\mathrm{N}_{2} *+\mathrm{CO} \rightarrow \mathrm{CO}^{*}+\mathrm{N}_{2}$
80. $C+0+M_{1}+C 0 *+M_{1}$
81. $\mathrm{C}+\mathrm{O}+\mathrm{M}_{2} \rightarrow \mathrm{CO} *+\mathrm{M}_{2}$
$\frac{\mathrm{cm}^{3} / \text { mole- } \mathrm{sec}}{0.25 \times 10^{12} \mathrm{~T} .5}$
$0.25 \times 10^{12} \mathrm{~T}^{0.5}$
$0.25 \times 10^{12} \mathrm{~T}^{0.5}$
$0.114 \times 10^{19} \mathrm{~T}^{-1.5} \exp (-71,600 / \mathrm{T})$
$0.57 \times 10^{18} \mathrm{~T}^{-1.5} \exp (-53,400 / \mathrm{T})$
$0.57 \times 10^{18} T^{-1.5} \exp (-33,800 / \mathrm{T})$
$0.57 \times 10^{18} \mathrm{~T}^{-1.5} \exp (-69,700 / \mathrm{T})$
$0.57 \times 10^{18} \mathrm{~T}^{-1.5} \exp (-69,700 / \mathrm{T})$
$0.25 \times 10^{12} \mathrm{~T}^{0.5}$
$0.25 \times 10^{12} \mathrm{~T}^{0.5} \exp (-11,400 / \mathrm{T})$
$0.30 \times 10^{15} T^{-0.5} \exp (-16,100 / T)$
$0.30 \times 10^{15} T^{-0.5} \exp (-27,800 / \mathrm{T})$
$0.25 \times 10^{12} \mathrm{~T}^{0.5} \exp (-4600 / \mathrm{T})$
$0.50 \times 10^{12,} 0.5$
$0.50 \times 10^{19} T^{-1.0}$
$0.20 \times 10^{20} T^{-1.0}$

Ref

est

est $0.86 \exp (-69,700 / \mathrm{T})$
est $\quad \mathrm{K}_{72}$
est $\quad \mathrm{K}_{18} \mathrm{~K}_{72}$
est $\quad \mathrm{K}_{17} \mathrm{~K}_{72}$
est $\quad \mathrm{K}_{20} \mathrm{~K}_{72}$
est $\quad \mathrm{K}_{19} \mathrm{~K}_{72}$
est $\quad \mathrm{K}_{72} / \mathrm{K}_{16}$
est $\quad \mathrm{K}_{72} / \mathrm{K}_{69}$
est $\quad \mathrm{K}_{9} \mathrm{~K}_{72}$
est $\quad \mathrm{K}_{80}$

TABLE 3 (continued)

Reaction	Forward Rate Constant, $\mathrm{cm}^{3} / \mathrm{mole}-\mathrm{sec}$	Ref	Equilibrium Constant
	$0.104 \times 10^{18} \mathrm{~T}^{-015}$	est	$\mathrm{K}_{5} \mathrm{~K}_{69}$
83. $\mathrm{N}+\mathrm{N}+\mathrm{M}_{2} \rightarrow \mathrm{~N}_{2} *+\mathrm{M}_{2}$	$0.48 \times 10^{22} \mathrm{~T}^{-1.5}$	est	K_{82}
84. $\mathrm{C}+\mathrm{N}+\mathrm{M}_{1} \rightarrow \mathrm{CN} \%+\mathrm{M}_{1}$	0.25×10^{15}	est	$\mathrm{K}_{11} \mathrm{~K}_{86}$
85. $\mathrm{C}+\mathrm{N}+\mathrm{M}_{2} \rightarrow \mathrm{CN}^{*}+\mathrm{M}_{2}$	0.15×10^{16}	est	K_{85}
86. $\mathrm{N}+\mathrm{CN} \rightarrow \mathrm{CN}^{*}+\mathrm{N}$	$0.384 \times 10^{16} \mathrm{~T}^{-0.5} \exp (-36,900 / \mathrm{T})$	est	$1.08 \operatorname{esp}(-36,900 / T)$
87. $\mathrm{C}+\mathrm{CN} \rightarrow \mathrm{CN} *+\mathrm{C}$	k_{86}	est	K_{86}
88. $\mathrm{N}+\mathrm{CO} \rightarrow \mathrm{CN} *+0$	$0.57 \times 10^{18} \mathrm{~T}^{-1.5} \exp (-68,800 / \mathrm{T})$	est	$\mathrm{K}_{86} / \mathrm{K}_{19}$
89. $\mathrm{N}+\mathrm{CO}^{*} \rightarrow \mathrm{CN}^{*}+\mathrm{O}$	$0.35 \times 10^{15} \mathrm{~T}^{-0.5} \exp (-900 / \mathrm{T})$	est	$\mathrm{K}_{88} / \mathrm{K}_{72}$
90. $\mathrm{C}+\mathrm{N}_{2} \rightarrow \mathrm{CN} *+\mathrm{N}$	$0.114 \times 10^{19} \mathrm{~T}^{-1.5} \exp (-53,800 / \mathrm{T})$	est	$\mathrm{K}_{86} / \mathrm{K}_{22}$
91. $\mathrm{N}+\mathrm{C}_{2} \rightarrow \mathrm{CN} *+\mathrm{C}$	$0.10 \times 10^{15} \mathrm{~T}^{-0.5} \exp (-11,300 / \mathrm{T})$	est	$\mathrm{K}_{25} \mathrm{~K}_{86}$
92. $\mathrm{N}+\mathrm{CN}^{*} \rightarrow \mathrm{~N}_{2}{ }^{*}+\mathrm{C}$	$0.10 \times 10^{15} \mathrm{~T}^{-0.5} \exp (-17,800 / \mathrm{T})$	est	$\mathrm{K}_{69} / \mathrm{K}_{90}$
93. $\mathrm{C}+\mathrm{NO} \rightarrow \mathrm{CN}^{*}+\mathrm{O}$	$0.10 \times 10^{1} 5 \mathrm{~T}^{-0.5} \exp (-16,00 / \mathrm{T})$	est	$\mathrm{K}_{24} / \mathrm{K}_{86}$

possibilitaes are included in Table 3, and are written in exothermic form. Four possibilities were excluded because of spin conservation requirements or geometrical configuration. These are $\mathrm{C}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{C}, \mathrm{CO}_{2}+\mathrm{C} \rightarrow$ $\mathrm{CO}+\mathrm{CO}, \mathrm{CN}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{N}$, and $\mathrm{CO}_{2}+\mathrm{N} \rightarrow \mathrm{CO}+\mathrm{NO}$.

The basic estimated rate constant used here is $5 \times 10^{11} \mathrm{~T}^{\frac{1}{2}} \mathrm{~cm}^{3} / \mathrm{mole}-\mathrm{sec}$, or about $1 / 6$ the gas kinetic value. Many of the reactions considered can go to a number of different products, for example $N O+C$ goes to either $\mathrm{CO}+\mathrm{N}$ or $\mathrm{CN}+0$. The estimated rate constants for such reactions are chosen to be smaller than the basic value by a factor equal to the number of possible sets of products. The reactions and rate constants used are given as 16 through 25 in Table 3.

Two of the reaction rates 1 isted above are an additional factor of 2 and 5 slower, respectively, than the ormginal estimate; a second is an additional factor of 4 faster. This was done to 1 mprove the comparison between computed and measured values for non-equilıbrium radiation (see Section 3.2.4).
f. Ion Production and Loss. In air the rate of production of molecular ions behind strong shock waves is predicted satisfactorily by including only the associative ionization reactions, i.e., $A+B \rightarrow$ $A B^{+}+e^{-}+M$. Because of the lack of knowledge concernıng molecular impact ionızation, i.e., $A_{2}+M \rightarrow A_{2}^{+}+e^{-}+M$, this process is neglected here. Similarly electron impact ionization is neglected because of the uncertanty in electron temperature. If the analysis carried out for monatomic gases is used, ${ }^{47}$ the electron impact rate is slower than the associative ionization rate for normal shock speeds up to $9 \mathrm{~km} / \mathrm{sec}$. Too little information 1 s avallable on the electron temperature in an ionizıng diatomic gas; hence the electron mpact lonization process is neglected here. The rate constant is defined for reactions of the form $A+A \rightarrow A_{2}^{+}+e^{-}$by $d L A_{2}^{+} / d t=-1 / 2 d[A] / d t=k_{f}[A]^{2}$. The reactions and rate constants used are given as 26 through 31 in Table 3.
g. Ion and Charge Transfer. In a three atom system there is a multitude of possible $z o n$ and charge transfer reactions involving atomic or molecular zons. Unfortunately none of these has been measured at low energies and we must rely on estrmates. Only binary reactions involving one ion and one neutral are ancluded here: reactions involving 2 ions are much less frequent because of the generally low degree of ionization.

Most direct charge transfer reactions exhibit an appreciable energy defect and, based on hagher energy measurements, ${ }^{48}$ are expected to be much slower than gas kinetic. In a careful evaluation of the energy defect in direct charge transfer reactions in the C, N, O system, including low excited electronic levels, only two reactions were found which showed a sufficiently small energy defect ($<0.2 \mathrm{ev}$) to be considered near-resonant. However ion charge is readily passed around through atom transfer reactions involving atomic or molecular ions for which there is no restriction on reaction rate other than the gas kanetic upper limit for exothermic reactions. The basic estimated rate constant used for these reactions is $5 \times 10^{11} \mathrm{~T}^{\frac{1}{2}} \mathrm{~cm}^{3} /$ mole-sec, or about $1 / 6$ the gas kinetic value, reduced by the number of possible sets of products. The reactions and rate constants used are given as 32 through 68 in Table 3.
h. Electronic Excitation. The low electronic states (up to 2.5 ev) of all molecules and atoms are assumed to be in equilabrium with the ground states at the local translational temperature. This is justified on the basis that there are no known low excited states of N_{2} or CO_{2} or A and that the low excited states of newly formed atoms and molecules are produced as rapidly as the ground states. Since some of these low excited states contribute appreciably to the heat capacity the required data is gaven in Table 4.

The excitation mechanism of the electronic states is not well understood, but C_{2} and $C N$ mpurity radiation is frequently observed immediately behind the shock front in noble gas shock tube experiments, long before

TABLE 4

FACTOR BY WHICH THE INTERNAL ENERGY IS INCREASED
DUE TO EXCITATION OF LOW ELECTRONIC STATES

excitation or ionization of the noble gas as seen. This andicates that the rate of excitation of low electronic levels of molecules by neutral impact is very high. Large cross-sections have been observed for quenching of upper electronic states by neutral impact, ${ }^{49}$ andicating high excitation rates for levels requiring only small electronic energy changes. This is extrapolated to low electronic levels of molecules, which require no change in total spin, by recognizing that the energy defect can be supplied through vibrational excitation of the molecule. Atoms in low excited states are then produced by atom transfer reactions. Low electronic states of molecules which require a change in electronic spin may be excited primarily by free atom impact exchange reactions, as found.for the high electronic levels of $\mathrm{N}_{2} \cdot{ }^{50}$ Because most of the low electronic levels significant in radiation neating by the CNO system involve no spin change from the ground state, it was originally planned that the quasiequilıbrıum assumption would be used. However, it was found that the results of this assumption did not fit the experimental data on CN violet emission. Subsequently a finlte rate of production of the $B^{2} \Sigma^{+}$state of CN was introduced into the reaction rate system.

In addition, the upper levels of N_{2} and $C O$, which require a change in spin from those of the ground states, cannot be assumed to be in equilibraum with the ground states. The only direct experimental evidence avallable 50 is for the reaction $N+N_{2} \rightarrow N_{2} *+N$ for which $\mathrm{k}=1.14 \times 10^{18} \mathrm{~T}^{-3 / 2} \exp (-71,600 / \mathrm{T}) \mathrm{cm}^{3} / \mathrm{mole}-\mathrm{sec}$. This rate constant was found ${ }^{50}$ to be at least 100 times higher than that for the reaction $\mathrm{N}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2} *+\mathrm{N}_{2}$. It is not known if other free atoms, 0 for example, will cause electronac excitation of N_{2}, even though a direct atom transfer does not occur, but it is assumed here that they will not. In makang estamates, all atom transfer reactions which can produce excited N_{2} or CO whthout violating the spin conservation rule are assumed to be at least as effectuve as N is in exciting N_{2}. The exponentaal is changed to the actual energy defect; the pre-exponential
is assumed to be the same as for N in exciting N_{2} if the energy defect exceeds 3 ev , a value 10 times larger is used if the energy defect is less than 3 ev. Excitation by neutral molecules is not included because of the lack of darect experimental evidence. Excitation by electron impact, although very efficient, cannot readily be included because of the lack of information concerning the electron temperature. Excited states above the first of N_{2} and CO are assumed to be in equilibrium with the first, denoted by $\mathrm{N}_{2} *$ and $\mathrm{CO} \%$, at the local translational temperature. Excitation transfer between $\mathrm{N}_{2} *$ and CO^{*} is also included, assuming $1 / 4$ the gas kinetic rate.

Originally the rate constants for the atom transfer reactions that produce CN^{*} were estimated to be the same as for N in exciting N_{2}. However with these estimates, we found that the peak in $\mathrm{CN} *$ occurred much later than is seen experimentally. To obtain a good fit between theory and experiment, the reactions producing $C N \%$ were assumed to have rates approaching the gas kinetic value.

Dissociation of excited molecules is also an important process, particularly near peak radiation, and is included in the reaction rate system for $N_{2} *$, $C O \%$, and $C N^{*}$. The reactions and rate constants used are given as 69 through 93 an Table 3.

1. Equilibrium Constants. Not all of the reactions listed above are independent. A set of independent reactions which uniquely defines the equilibrium concentration of all species is formed. Equilibrium constants for this set are obtamned by fitting the analytic expression $a T^{b} \exp (c / T)$ to the results of the Aeronutronac equilibrium species computer program (Section 2.3.1). These expressions reproduce the computer results within a few percent over the temperature range $4000^{\circ} \mathrm{K} \leq \mathrm{T}=$ $10,000^{\circ} \mathrm{K}$. Equilibrium constants for the remaining reactions are computed from combinations of the basic set. The values used in the computer program are listed in Table 3.

3.2.2 COLLISION LIMITING

Some of the excited electronic states responsible for radiative heating in planetary entry may be de-excited by radiation more rapidly than they are excited by collısion. This is known as "collision limiting". It requares that the radiatave loss be ancluded as a term in the reaction rate equation for the excrted states affected by the radaation. Thus

$$
\begin{equation*}
\frac{d N^{*}}{d t}=\sum_{i j} Q_{P_{1 j}} Y_{i} Y_{j}-\sum_{k} Q_{i_{k}} Y_{k} N^{*}-A N * \tag{32}
\end{equation*}
$$

if the radiation is optically thin.

If the radiation is optically thick, the radiation loss term is reduced by absorption. However this leads to a difficult integration problem because the solution at any point depends on the final solution at all points. To avoid this difficulty the radiation loss for any optacally thick transition often can be neglected. As will be seen this difficulty does not occur for the present calculations.

In order to determane which transations are subject to collision limating, the ratio $A N \% / \sum Q_{i j} Y_{i j} Y_{j}$ is computed for the specific conditions of interest. If it approaches or exceeds 1 , collusion limitang must be included. For the present case and equilibrium conditions at the stagnation point, this ratao is about 1 for $C N$ violet, 0.01 for CN red, 0.05 for $C O(4+)$, and 0.001 for $C O$ (vib-rot). This ratio is about the same . at conditions of peak non-equilibrium radiation. From this, we conclude that collısion limiting as signaficant only for $C N$ vaolet emıssion. Since the CN violet emission is essentlally optically thin for the present cases, the radiation loss term can be included darectly in the rate equation for $C N^{*}$. This was done for the present calculations, using $A=1.06 \times 10^{7} \mathrm{sec}^{-1}$.

3.2.3 INTEGRATION SCHEME

A Runge-Kutta numerical integration scheme, modified by Treanor, ${ }^{51}$ is used to compute the non-equilibrium species concentrations. Most of the details of the numerical method are identical to those described by Treanor ${ }^{51}$ and are not repeated here. However the method by which the step size is chosen is considerably different, offerng an appreciable gain in computer time. The allowable step size at each pornt is taken as a definite fraction of the shortest of the relaxation distances of each species. Based on experience a value for this fraction of 0.5 or less provides sifficient accuracy. However the step size must be reduced when one or more species approaches equilıbrium or quasi-equilıbrium conditions. Under these conditions the rate equations become "stiff" 52 and the modified Runge-Kutta numerical integration scheme leads to divergent oscillations if the step size is too large. Tests are applied which require that the species production rate computed within the modified RungeKutta sequence must not exceed a value which would result in a relaxation distance shorter by a prescribed factor than the relaxation distance used an selecting the step size. If this test is falled, the step size $1 s$ reduced by a factor of 2 . If thıs is passed on 2 succeeding steps the step size is increased by a factor of 2 for the next step, and on up to the original value of 0.5 times the minimum relaxation distance.

The method permits integration of the non-equilibrium equations to within a few percent of equilabrium, requiring about 10 minutes on the Ph 21 co 2000 computer for the CO_{2} system containing 13 species and 31 reactions, and 20 to 30 minutes for the $N_{2}-\mathrm{CO}_{2}$ - A system containing 24 species and 93 reactions.

3.2.4 COMPARISON WITH EXPERIMENT

The reaction rate system described in the preceding paragraphs has been evaluated by calculating non-equilibrium radiation profiles behind normal shocks in $\mathrm{CO}_{2}-\mathrm{N}_{2}-\mathrm{A}$ maxtures and comparing the results with experimental
measurements. In Section 3.4 a description is given of the methods used in computing non-equilibraum radiation profiles from the species profiles that are obtained from integrating the reaction rate equations.

Four comparisons are shown in Figures 9, 10, 11, and 12. It is seen that the agreement is generally good. The $C N$ violet profile behind a 20,400 fps shock in a maxture of $25 \% \mathrm{CO}_{2}, 75 \% \mathrm{~N}_{2}$ at 0.175 torr shows particularly good agreement (Figure 9). Since these conditions are close to those of the present flight case, very little extrapolation error is introduced.

The $C N$ red profile shown in Figure 10 is also in satisfactory agreement with the experimental data. The theoretzcal curve shows a somewhat sharper overshoot than the data shows: this $2 s$ probably due $2 n$ part to the fanite slit width and the shock curvature present in the experiment. No other $C N$ red comparisons are avazlable.

The $C N$ red and $C N$ violet profiles of Figures 10 and 11 indicate that the $\mathrm{B}^{2} \Sigma^{+}$excited state of $C N$ is not in thermal equilibrium with the ground state. The peak experimental ratio of I to $I_{\text {eq }}$ is 4 for $C N$ red and 5 for $C N$ violet at $t=0.4 \mu s e c$. If the excited states are both in equilibrium whth the ground state, the translational temperature must be within 6% of its equilibrium value to yield $I / I_{\text {eq }}$ ratios this close to each other. However at the experimental peak, the translatzonal temperature is predicted to be 28% higher than the equilibrium value. For comparison, the $C N$ violet emission predicted on the basis of equilibrium with the ground state is shown in Figure 11. The non-equilibrıum profile fits the data more closely.

The CN violet comparison shown in Figures 9, 11 and 12 are satisfactory in terms of computing the integrated non-equilibrium radiation. However the differences in profile shapes are sufficient to indicate that the

FLGURE 9. COMPARISON OF COMPUTED NON-GQUTLIBRILA CN VIOLET RADIAAION PROFILE WITII THA' OB'CAINED EXPERIMENTALLY BY ARNOID 53 BEIIIND A NORMAL SHOCK TRAVELING AT 20,400 FES TIIROUGH A $25 \% \mathrm{CO}_{2}, 75 \% \mathrm{~N}_{2}$ MIXTURE AT AN INITIAL PRESSURE OF $175 \mu \mathrm{HIG}$.

EIGURE 10. COMPARISON OF COMPUTED NON-EQUILIBRIUM CN RED RADIATION PROFILE WITH THAT OBTAINED EXPERIMENTALLY BY THOMAS AND MENARD 55 BEHTND A NORMAL SHOCK TRAVELING AT 24,600 FPS IN A $9 \% \mathrm{CO}_{2}, 90 \% \mathrm{~N}_{2}, 1 \%$ A MIXTURE AT AN INITIAL PRESSURE OF $250 \mu \mathrm{Mg}$.

FIGURE 11. COMPARISON OF COMPUTED NON-EQUILIBRIIM CN VIOLET radiation profile hity that obtaineo experimentaliy 55
FOR TIE CONDITIONS OF FIGURE 10. DASHED CURVE IS
the non-equilibrium cn violet radiation profile
COMPUTED ASSUMING THE RADIATING STATE IS IN
EQUILIBRIUM WITH THE GROUND STATE OF CN at the
NON-EQIILIBRIUM TRANSIATIONAL TENPERATURE

FIGURE 12. COMPARISON OF COMPUTED NON-EQUILIBRIUM CN VIOLET RADIATION PROFILE WITH THAT OBTAINED EXPERIMENTALLY BY ARNOLD81 bEHIND A NORMAL SHOCK TRAVELING AT 20,600 FPS IN A $9.6 \% \mathrm{CO}_{2}, 90.4 \% \mathrm{~N}_{2}$ MIXTURE AT $350 \mu \mathrm{Hg}$.
reaction rate system used here is not fully satisfactory. Significant improvements can be made in the future only with a great deal more experimental and analytical study.

The approach and the reaction rate constants adopted here differ sagnificantly from those used by McKenzie. ${ }^{53}$ In his work the excited states of CN are assumed to be in equilibrium with the ground state. This makes at difficult to fit both $C N$ red and $C N$ violet data. His comparison with $C N$ violet data is excellent, but no comparison with $C N$ red is made. His prediction of the CN red peak is a factor of about 2.5 less than that using our reaction rate system. This question bears further study.

McKenzie's choice for the rate constant of one of the critical reactions, $\mathrm{CO}+\mathrm{N} \rightarrow \mathrm{CN}+0$, is less than a factor of 2 smaller than ours, showng good agreement. However his cholce for $N_{2}+C \rightarrow C N+N$ is a factor of 7 smaller than ours at $9000^{\circ} \mathrm{K}$. In addition has choice for the rate of dissociation of $C N$ exceeds our estimate by a factor of 15 (at $9000^{\circ} \mathrm{K}$) for $O, C, N, N O$, and $C N$ as collision partner and by a factor of 90 (at $9000^{\circ} \mathrm{K}$) for $\mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{O}_{2}$, and C_{2} as collısion partner. McKenzie's choice appears quentionable until further support is obtained through direct experimental measurement.

In summary, although the present reaction rate system is not wholly satisfactory, it can be expected to provide adequate accuracy for flight calculations of non-equilıbrium radiative heat transfer.

3.3 NON-EQUILIBRIUM CONVECTIVE HEAT TRANSFER ANALYSIS

The convective heat tiansfer analysis utilazed for non-equilibilum flow calculations $u s$ the same as described in Section 2.2 for equilibrium flows. The assumption made $1 s$ that the heat transfer for frozen, nonequilibraum and equilibrıum chemıstry boundary lajers is identacal even
for Lewis numbers slightly different than unity. This assumption is valid if (1) the edge of the boundary layer flow properties are at equilibrium, (2) the boundary layer gases are dissociated species that can be approximated as a binary mixture and (3) the wall is fully catalytic. The assumption of equilibrium edge properties is valıd for the sphere cap, since the non-equalıbrıum property layer extends from the bow shock to a distance of only about 30% of the shock layer thickness; thus the properties at the boundary layer edge are very close to equilıbrıum. In the sphere-cone case the non-equilibrium region extends throughout the shock layer, but the boundary layer edge properties are not far from equilibrium conditions.

The dissociated gas in the boundary layer is accurately approximated by a binary maxture. Because of the binary nature of the boundary layer gas, the convective heat transfer is independent of the chemical kinetics. 54

Radration cooling of the inviscid gas is insignificant in the sphere-cone case, but must be included in the sphere-cap calculation. The radiation cooling effect is included in the stagnation-point convective heat transfer calculation by using the actual radiation-cooled boundary layer edge enthalpy rather than the adiabatic stagnation enthalpy. The convective heat transfer distribution over the whole body is thereby reduced by this correction factor. This is consistent with the result that radiation cooling reduces the boundary layer edge enthalpy by a factor that is nearly the same over the whole sphere-cap body.

3.4 NON-EQUILIBRIUM RADIATIVE HEAT TRANSFER ANALYSIS

3.4.1 NON-EQUILIBRIUM RADIATION

The non-equilibrıum species and excited state populatzons obtained as outlined in Section 3.2 are combined with the equilıbrium radiation program descrabed in Section 2.3 to provide non-equilibrıum volume
radiation emission. The chemical model used in computing the excited state populations has been described in Sections 3.2.1 and 3.2.2. The upper excited states of N_{2} and $C O$ are assumed to be in equalibrium with the lowest excited state, $\mathrm{N}_{2} *$, and $\mathrm{C} 0 \%$, at the local non-equilibraum translational temperature. The $A^{2} \|$ state of $C N$ is assumed to be in equilibrium with the ground state. The $B^{2} \Sigma^{+}$state is computed directly as CN* in the integration of the reaction rate equations. The nonequilibrium excited state populations and the non-equilibrium temperature are used as inputs to the equilibrium raduation program to compute spectral absorption coefficients and non-equilabrium radiation emission. In this model the populations of the vibrational and rotational states of the excated band radiators are assumed to be in local thermodynamic equilibrium with the non-equilibrium translational temperature. This assumption is justified on the basis of shock tube measurements which show that the vibrational and rotational degrees of freedom are equilibrated immediately behand normal shock waves for shock speeds above 13,000 to $15,000 \mathrm{ft} / \mathrm{sec}$. Free-bound emission and absorption is computed on the basis of nonequilibrium species compositions and excited state populations in equilibrum with the nearest continuum of states at the local translational temperature. The infrared vibration-rotation band emission of $C O$ and NO and $C N$ is assumed to be at the local non-equilibrıum translational temperature; this emission is only weakly dependent on temperature.

Comparisons between calculations using the Aeronutronic non-equilibrium radiation program and the shock tube measurements of Thomas and Menard 55 and Arnold ${ }^{53}$ are shown in Figures 9, 10, 11, and 12 and are described in Section 3.2.4. These intensity-time profiles indicate that the overall behavior of non-equilibrium radiation from $C N$ is satisfactorily reproduced by the computer program. No comparison such as this can be made for the $C O(4+)$ band, because there is no published data. For this reason, the
$C 0(4+)$ band was assumed to reach its equilibrium value rapidly, but to exhabit no overshoot. This assumption may be in error by one to two orders of magnitude.

When the non-equilıbrıum integration along streamlines approaches equilibrıum it is economical to shift from non-equilibrium radiation to equilibrium radiation. This is done at a point on the streamline for which the non-equilibrium radiation reaches within 10% of the local equilibrium value. When this shift is made on each streamline it is retanned throughout the remainder of the flow field. Subsequent expansion of the streamline is treated as equilibrium, an approximation that is well justified in the present calculations on the basis of the non-equilibrium analysis.

3.4.2 SELF-ABSORPTION OF NON-EQUILIBRIUM RADIATION

The method used to account for self-absorption of non-equilibrium radiation us the same as that used for equilibrium radiation (see Section 2.3.3). This method involves the integration of the radiation emission out to a distance of one absorption length from the surface point. This is done in each direction along which the integration is made. The non-equilibrium absorption coefficient is the same as the equilabrium value at the same temperation and pressure, since the absorption arises from the ground electronac state of each molecule, and we have assumed equilibration of the rotational and vibrational states with the translational temperature. Fortunately the self-absorption corrections are small, affecting the CO fourth positive band strongly and the $C N$ violet band slightly. The $C O$ band contributes less than 10% of the radiation in the present non-equilibrium cases.

3.4.3 RADIATION-INVISCID FLON COUPLING

The cooling of the inviscid flow due to radiation losses is ancluded in these calculations by the following approximate method. Throughout most of the non-equilibrıum region the effect reduces the enthalpy very little
and affects the total emission from the non-equilibrium layer by no more than 10%. Because of the difficulty of including this effect in the integration of the rate equations, it has been neglected here. However beyond the point on each streamline at whach the radiation is assumed to be the equilibrium value the effects of radiation cooling are included. This is done by utilizing the values of pressure, velocity, and density obtained from the flow field calculation (which neglected radiation cooling) and computing a first order correction to the enthalpy and the volume emission. This correction is found by integrating the (corrected) radiation loss along streamlines. In this integration self-absorption is included, although only minor effects arise in the present cases. Corrections to the volume emission are as large as 30% n the spherecap case. Numerical results are given in Section 4.2.

3.4.4 RADIATION-VISCOUS LAYER COUPLING

This is included in the same manner as described for equilibrium radiation in Section 2.3.5. A portion of the $C O(4+)$ band $1 s$ self-absorbed within the thermal boundary layer thickness for the sphere-cap case and is therefore omitted in the radiation integration. Radiation absorption in the boundary layer has negligible effect on the convective heat transfer.

3.4.5 GEOMETRIC INTEGRATION

This is carrıed out in much the same manner as in the equilibrium case described in Section 2.36 . However the integration over the nonequilibrium layer for the sphere-cap case was simplified by determining the total emission from the non-equilibrium slab at each radial position. This was then used at each intersection of the viewng rays with the nonequilibrium slab when carrying out the geometrac antegration.

SECTION 4

NUMERICAL RESULTS
The flow field and the convective and radiative heat transfer have been computed for equilibrium flow over a sphere-cone and for non-equilibrium flow over a sphere-cone and sphere-cap for the following flight condition

Mach Number 31

Flight Velocity $\quad 19,600 \mathrm{ft} / \mathrm{sec}$
Ambient Densaty $\quad 10^{-6}$ slugs $/ \mathrm{ft}^{3}$
Ambient Temperature $180^{\circ} \mathrm{R}$
Ambient Composition $70 \% \mathrm{~N}_{2}, 30 \% \mathrm{CO}_{2}$ Angle of Attack

Base Diameter
12 ft
Results of the equilibrium calculations are presented an Section 4.1; results of the non-equilibrıum calculations are presented in Section 42.

4.1 EQUILIBRIUM FLOW OVER A SPHERE-CONE

4.1.1 EQUILIBRIUM SPHERE-CONE INVISCID FLOW PROPERTIES

It was originally anticupated that the inviscid flow field calculations would be made with a first approximation integral relation computer program. In order to verify the accuracy of the integral method, the
theoretical shock shape for a 60° half-angle cone in a Mach $9, \gamma=1.4$, aur flow was computed and compared with experiment. The results are shown in Figure 5. It is seen that the first approximation solution provides an accurate calculation of the shock shape. It was determined, however, midway through the present program that real gas effects ($\gamma-1 \ll 1$) significantly influence the character of the 60° cone flow field, and that a higher order solution of the inviscid conservation equations is required to obtain an accurate shock shape and shock layer properties. It was decided that the Philco~Ford time dependent finite difference program should be used to make the inviscid flow field calculations.

The sphere-cone shock shape obtained from both the time dependent finite difference equilibrıum solution and a low $\gamma(\gamma=1$.18) first approximation integral relation solution are shown in Figure 13. Although the integral solution is accurate in the sphere cap region, the shock layer thickness In the conical flow region is overestimated by as much as a factor of 2 in some places. The first approximation integral relation solution $2 s$ accurate for blunt body flow field calculations in which the shock layer flow is predominantly subsonic. When a large portion of the shock layer is supersonic as at is in the case of the equilibrium blunt 60° cone problem, however, the first approximation exaggerates the influence of the body properties on the shock layer calculation and overestimates the shock detachment distance.

The time dependent solution indicates that the equilibrium shock layer in the conical region is predominantly supersontc and that the compression waves at the sphere cone junction travel without significant dispersion outward to the bow shock. The interaction produces a concave region in the bow shock where it regains strength. This concavity is observed in the shock shape plot presented in Figure 13. The subsequent reflections of the compression wave are negligible, but theoretically there $1 s$ an entire serıes of alternating compression

TABLE 5
EQUILIBRIUM INVISCID SHOCK LAYER PROPERTIES ON SPHERE-CONE

Table 5 (continued)

	$\begin{aligned} & \text { Body } \\ & \text { Station } \end{aligned}$	Arc Length on Surface, Ft	Standoff Distance, \qquad	$\begin{gathered} x \\ \text { Ft } \end{gathered}$	$\begin{aligned} & \mathrm{y}, \\ & \mathrm{FE} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Pressure, } \\ & \text { Psla }^{2} \\ & \hline \end{aligned}$	Enthalpy Kcal/100 GM	$\begin{aligned} & \text { Speed, } \\ & 10^{\circ} \mathrm{ft} / \mathrm{sec} \\ & \hline \end{aligned}$	Radiation, watts/cmster
	9	1.841	. 1412	. 644	1.722	1.96	258	. 876	. 262
				. 706	1.686	1.99	260	. 863	. 284
				. 767	1.651	2.00	275	. 779	. 362
	10	2.336	. 1805	. 860	2.168	1.97	260	. 862	. 282
				. 938	2.123	2.00	264	. 862	. 308
				1.015	2.079	2.00	270	. 808	. 340
	11	2.830	. 2127	1.076	2.615	1.97	259	. 868	. 277
				1.170	2.561	1.99	260	. 864	. 285
				1.262	2.507	2.00	267	. 825	. 323
	12	3.325	. 2536	1.293	3.061	1.97	260	. 861	. 282
				1.402	2.998	1.99	260	. 863	. 285
$\stackrel{\square}{\sim}$				1.509	2.939	2.00	265	. 836	. 313
	13	3.820	. 2895	1.508	3.508	1.97	260	. 863	. 282
				1.634	3.435	1.99	260	. 864	. 285
				1.757	3.364	2.00	264	. 844	. 308
	14	4.314	. 3251	1.726	3.953	1.96	250	. 871	. 275
				1.866	3.872	1.99	259	. 866	. 280
				2.004	3.793	2.00	262	. 850	. 298
	15	4.809	. 3671	1.942	4.400	1.97	261	. 858	. 288
				2.098	4.310	1.99	260	. 865	. 285
				2.251	4.221	2.00	261	. 856	. 292
	16	5.304	. 3979	2.159	4.845	1.96	257	. 876	. 267
				2.331	4.746	1.99	259	. 869	. 280
				2.499	4.649	2.00	260	. 860	2.87
	17	5.798	. 441	2.379	5.289	1.97	259	. 866	. 277
				2.567	5.181	1.99	259	. 868	. 280
				2.746	5.078	2.00	260	. 864	. 287

Table 5 (continued)

	Body Station	Arc Length on Surface, - Ft	Standoff Distance, \qquad	$\begin{aligned} & \mathrm{x}, \\ & \mathrm{Ft} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{y}, \\ \mathrm{Ft} \\ \hline \end{gathered}$	Pressure, Psia	Enthalpy Kcal/100 GM	$\begin{aligned} & \text { Speed, } \\ & 10 \mathrm{ft} / \mathrm{sec} \end{aligned}$	Radiation, watts/cm ster
	18	6.124	. 468	2.522	5.584	1.98	261	. 860	. 289
				2.721	5.468	2.00	259	. 868	. 282
				2.909	5.360	2.00	250	. 866	. 282
	19	6.281	. 478	2.590	5.726	1.97	261	. 860	. 288
				2.798	5.606	1.99	259	. 868	. 280
				2.988	5.496	2.00	259	. 867	. 282
	20	6.438	. 487	2.657	5.868	1.97	261	. 857	. 288
				2.881	5.739	1.99	259	. 870	. 280
				3.066	5.632	2.00	259	. 869	. 282
	21	6.595	. 520	2.759	6.069	1.93	257	. 879	. 258
				2.982	5.895	1.88	256	. 883	. 244
$\stackrel{\rightharpoonup}{\square}$				3.153	5.762	1.70	253	. 899	. 200
	22	6.752	. 608	2.909	6.348	1.87	250	. 913	. 215
				3.113	6.073	1.62	250	. 911	. 177
				3.263	5.872	1.16	245	. 940	. 102
	23	6.909	. 784	3.117	6.663	1.66	233	. 995	. 123
				3.282	6.241	1.29	244	. 944	. 115
				3.397	5.950	. . 713	238	. 971	. 047
	24	7.065	1.072	3.434	7.052	1.42	199	1.137	. 0364
				3.502	6.400	. 970	237	. 975	. 0680
				3.547	5.990	. 435	239	. 967	. 0262
	25	7.222	1.617	3.945	7.532	1.17	186	1.190	. 0171
				3.787	6.545	. 690	230	1.007	. 0366
				3.703	5.990	. 264	238	. 973	. 0135
	26	7.378	2.581	4.788	8.054	. 821	193	1.162	. 0151
				4.157	6.646	. 449	221	1.047	. 0171
				3.853	5.950	. 157	234	. 991	. 0064

FIGURE 13. BLUNT SPHERE-CONE BODY AND EQUILIBRIUM SHOCK SHAPE
and expansion waves along the layer. In the higher γ cases, the subsonic shock layer disperses the compression and there is no concavity to the shock. At higher $\gamma^{\prime} s$, the concavity has been observed on sharper cones. 56

The flow over the 60° sphere-cone in air $(\gamma=1.4)$ shown in Figure 5 contains a subsonic shock layer with a sonic line running approximately normal to the cone surface and starting at the outer corner of the cone. In contrast, the equilibrıum flow of a $30 \% \mathrm{CO}_{2}, 70 \% \mathrm{~N}_{2}$ maxture over a simılar body shape displays a shock layer that is almost entrrely supersonic. The velocity on the entire conical surface is subsonic, but, as seen in Figure 15 , it rapidly becomes supersonac away from the surface. The sonic line runs from the rounded shoulder of the base roughly parallel to the cone surface at about 10% of the standoff distance, finally crossing the shock layer below the sphere-cone junction to reach the bow shock.

In Figure 14, the cone surface pressure as a function of the ratio of body surface distance to base radius is shown. The two prominent features of the pressure distribution a re the rapid decrease in pressure on the spherical partion of the sphere-cone and the pressure recovery at the sphere-cone junction to a pressure plateau in the conzcal region. The pressure distribution an the nose region is simalar to a hemispherical shock layer result and the pressure plateau in the conical region is similar to a pointed cone supersonic flow result. In Figure 14 it is seen that the Newtonian flow model, which is a low γ limit of the hypersonic inviscid flow field equations, provides a useful approximation to the detailed flow field pressure distribution result.

In Table 5, the properties of the shock layer gas on 26 normals to the body surface are tabulated. For reference, the location of the body normals, in which the shock layer properties are specified, are shown on the body in Figure 13. The arc length, s, along the body to the intersection with each normal and the shock standoff distance on each normal

FIGURE 14. EQUILIBRIUM SURFACE PRESSURE ON THE SPHERE-CONE

flgure 15. fluid velocity profiles on body normals of THE SPHERE-CONE
are given in the second and thind columns. The axial and radial coordinates of the intersections of each normal with the shock, with the half-way point, and with the body surface are specified in the vertical grouping in the next two columns. The origan of the coordinate system is at the nose of the sphere. The pressure, enthalpy, temperature, fluid velocity and radiation flux at the three points on each normal are listed in the subsequent columns.

In this tabulation, the presence of an actual inviscid entropy layer on the conical portion has been neglected. This layer contains the fluzd that entered the shock layer in the blunt nose region An estamate of the wadth of the layer can be obtained from the fine mesh computation discussed earlier for $\gamma=1.1, M=20$. A typical velocity profile along a normal to the conical portion is presented in Figure 15. The normal. is located near the onset of the region of constant pressure on the body surface, where the entropy layer has its largest extent. It is seen that the layer comprises at most 25% of the entire shock layer. Since the viscous boundary layer can be expected to comprise 15% of the shock layer width, there should be only a manor entropy layer. The coarse mesh, which averages quantities along each one-third of the normal, adequately portrays the flow encountered by the outer edge of the boundary layer.

4.1.2 EQUILIBRIUM SPHERE-CONE CONVECTIVE HEAT TRANSFER

The equilibrıum sphere-cone lamınar convective heat flux versus distance along the body is shown in Figure 16. For comparison purposes the heat flux obtazned from modified Newtonian pressure distribution and normal shock entropy is also plotted. In the spherical region of the body, the equilibrium laminar convective heat transfer exceeds the modified Newtonian result because of the vorticaty interaction effects. In the region aft of the sphere-cone junction, the detailed flow field solution predicts higher heat transfer because the boundary layer edge velocity

FIGURE 16. SPhere-CONE EQUILIBRIUM CHEMISTRY CONVECTIVE and radiative heat transfer distributions
conditions in this region are characterızed by the conical shock entropy rather than the normal shock entropy. As a result the boundary layer edge, velocities and hence the heat transfer are higher than those given by the Newtonian normal shock entropy calculation. On the sphere, the combined effects of vortıcity $_$nteractaon (12%) and ambient composition (8%) increase the stagnation point heat transfer approximately 20% over an equivalent high Reynolds number air calculation.

4.1.3 EQUILIBRIUM SPHERE-CONE RADIATIVE HEAT TRANSFER

The optically thin spectrally integrated radiative emission from volume elements of the shock layer gas is included in Table 5 . The spectral distribution is given in Table 6 for the gas adjacent to the stagnation point and in Table 7 for the gas adjacent to point 5 on the sphere-cone (see Figure 13). The species concentrations for each of these points are also given in the respective tables. The major radıation arıses from the CN violet and red bands and from the 4 th positive band of CO . Minor contributions arise from the E-X and $\mathrm{H}-\mathrm{X}$ bands of CN and the vibration-rotation bands of CO.

Because self-absorption of the $C N$ violet band may be greater than inferred from the course frequency interval used in obtanning the results of Table 6, a much finer frequency interval was also used. These results are given in Table 8, and show a higher maximum absorption coefficient by a factor of 2.5. However even with this value, there is negligible self-absorption of the $C N$ violet band in the equilibraum sphere-cone flow field.

The radiative heat transfer to the seven body points shown in Figure 13 is given in Table 9. In the final column the predicted radiation

TABLE 6
EQUILIBRIUM RADIATION FROM FLOW ADJACENT TO SPHERE-CONE STAGNATION POINT $\left(T=5735^{\circ} \mathrm{K}, \mathrm{P}=0.172 \mathrm{~atm}\right)$

Mole-Fraction for $C N$ VLT $=0.37560-002$
Mole-Fraction for $C N E-X=0.37560-002$,
Mole-Fraction for $C 0(4+)=0.18280+000$

Mole-Fraction for $C N$ RED $=0.37560-002$
Mole-Fraction for $\mathrm{CN} \mathrm{H-X}=0.37560-002$

Wave Number	Band System Opacyty, CM^{-1}				
CM^{-1}	CN VLT	CN RED	CN E-X	CN H-X	CO(4+)
$0.20000+004$	0.	0.14312-004	0.49105-025	0.81808-028	0.72822-033
$0.40000+004$	0.	0.93002-004	0.74936-024	0.15086-026	0.22247-031
$0.60000+004$	0 46148-014	0.28116-003	0.91666-023	0.22371-025	0.55076-030
$0.80000+004$	0.30425-012	0.40538-003	0.10280-021	0.30441-024	0.12539-028
$0.10000+005$	0.65861-011	0.55264-003	0.11050-020	0.39716-023	0.27394-027
$0.12000+005$	0.57831-010	0 30772-003	0.11610-019	0.50658-022	0.58535-026
$0.14000+005$	0.90560-010	0.16743-003	0.12042-018	0.63792-021	0.12351-024
$0.16000+005$	0 26066-008	0.65912-004	0.12396-017	0.79735-020	0.25872-023
$0.18000+005$	0.19210-006	0.20172-004	0.12704-016	0.99223-019	0.53958-022
$0.20000+005$	0.43475-005	0.54522-005	0.12986-015	0.12315-017	0.11224-020
$0.22000+005$	0.63090-004	0.13089-005	0.13254-014	0.15261-016	0.23313-019
$0.24000+005$	0.63983-003	0.27540-006	0.13616-013	0.18893-015	0.48375-018
$0.26000+005$	0.62833-002	0.46057-007	0.13876-012	0.23376-014	0.10032-016
$0.28000+005$	0.13411-002	0.66029-008	0.14142-011	0.28913-013	0.20798-015
$0.30000+005$	0.35291-004	0.78125-009	0.14422-010	0.35754-012	0.43109-014
$0.32000+005$	0.31430-005	0.72126-010	0.14714-009	0.44208-011	0.89343-013
$0.34000+005$	0.56086-007	0.48608-011	0.14984-008	0.54657-010	0.18515-011
$0.36000+005$	0.93277-008	0.21443-012	0.15266-007	0.67576-009	0.38366-010
$0.38000+005$	0.11921-009	0.	0.15585-006	0.83854-008	0.79500-009
$0.40000+005$	0.38280-010	0.	0.15861-005	0.10369-006	0.16475-007
$0.42000+005$	0.20920-011	0.	0.13578-004	0.12685-005	0.34179-006
$0.44000+005$	0.30676-013	0.	0.62911-004	0.10738-004	0.70090-005
$0.46000+005$	0.16939-014	0.	0.14935-003	0.40411-004	0.12631-003
$0.48000+005$	0.24141-015	0.	0.30665-003	0.86559-004	0.13621-002
$0.50000+005$	0.11412-016	0.	0.59595-003	0.17406-003	0.52959-002
$0.52000+005$	0.67236-018	0.	0.11861-002	0.36963-003	0.12400-001
$0.54000+005$	0.43838-021	0.	0.20201-002	0.94194-003	0.24544-001

Table 6 (continued)

Wave Number	Band System Opaczty, CM^{-1}				
CM^{-1}	CN VLT	CN RED	CN E-X	CN H-X	Co(4 t)
$0.56000+005$	0.13550-026	0.	0.29352-002	0.80197-003	0.46001-001
$0.58000+005$	0.41882-032	0 .	0.41230-002	0.11818-002	0.94080-001
$0.60000+005$	0.12946-037	0.	0.48172-002	0.15242-002	$0.16549+000$
$0.62000+005$	0.40015-043	0.	0.54684-002	0.19009-002	$0.24254+000$
$0.64000+005$	0.12369-048	0 .	0.38690-002	0.22547-002	$0.34075+000$
$0.66000+005$	0.38231-054	0 .	0.23734-002	0.20347-002	$0.38584+000$

Wave Number, cm	Total Absorption Coeffacient, cm	$\begin{aligned} & B(W, T), \\ & \text { watts } / \mathrm{cm}^{2} \text {-ster } \end{aligned}$	$\begin{aligned} & \text { Emission } \\ & \text { watts } / \mathrm{cm}^{3}-\text { ster } \end{aligned}$
$0.20000+004$	0.23336-003	0.14620-001	0.34119-005
$0.40000+004$	0.99729-004	0.44110-001	0.43990-005
$0.60000 \div 004$	0.28117-003	0.73381-001	0.20632-004
$0.80000+004$	0.40538-003	0.94660-001	0.38374-004
$0.10000+005$	$0.55264-003$	$0.10548+000$	0.58292-004
$0.12000+005$	0.30772-003	$0.10663+000$	0.32812-004
$0.14000+005$	0.16743-003	$0.10047+000$	0.16821-004
$0.16000+005$	0.65915-004	0.89711-001	0.59133-005
$0.18000+005$	0.20364-004	0.76780-001	0.15636-005
$0.20000+005$	0.97998-005	0.63492-001	0.62221-006
$0.22000+005$	0.64399-004	0.51032-001	0.32864-005
$0.24000+005$	0.64011-003	0.40051-001	0.25637-004
$0.26000+005$	0.62834-002	0.30801-001	0.19353-003
$0.28000+005$	0.13411-002	0.32379-001	0.31220-004
$0.30000+005$	0.35292-004	0.17329-001	0.61159-006
$0.32000+005$	0.31432-005	0.12731-001	0.40016-007
$0.34000+005$	0.57626-007	0.92445-002	0.53272-009
$0.36000+005$	0.25291-007	0.66436-002	0.16803-009
$0.38000+005$	0.16514-006	0.47306-002	0.78119-009
$0.40000+005$	0.17063-005	0.33406-002	0.56999-008

Table 6 (continued)

Wave Number, cm	Total Absorption_Coefficient, cm	$\begin{aligned} & B(W, T), \\ & \text { watts/cm } \end{aligned}$	$\begin{aligned} & \text { Emission/3 } \\ & \text { watts/cm-ster } \end{aligned}$
$0.42000+005$	0.15188-004	0.23414-002	0.35561-007
$0.44000+005$	0.806'58-004	0.16299-002	0.13147-006
$0.46000+005$	0.31607-003	0.11276-002	0.35641-006
$0.48000+005$	0.17553-002	0.77571-003	0.13616-005
$0.50000+005$	0.60659-002	0.53085-003	0.32201-005
$0.52000+005$	0.13956-001	0.36154-003	0.50456-005
$0.54000+005$	0.27506-001	0.24514-003	0.67428-005
$0.56000+005$	0.49738-001	0.16553-003	0.82333-005
$0.58000+005$	0.99385-001	0.11135-003	0.11067-004
$0.60000+005$	$0.17183+000$	0.74637-004	0.12825-004
$0.62000+005$	$0.24991+000$	0.49861-004	0.12461-004
$0.64000+005$	$0.34687+000$	0.33206-004	0.11518-004
$0.66000+005$	$0.39024+000$	0.22049-004	0.86046-005

TABLE 7
EQUILIBRIUM RADIATION FROM FLOW ADJACENT TO BODY POINT 5 ON SPHERE-CONE ($\mathrm{T}=5342^{\circ} \mathrm{K}, \mathrm{P}=0.136 \mathrm{~atm}$)

Mole-Fraction for CN VLT $=0.16110-002$ Mole-Fraction for $\mathrm{CN} E-X=0.16110-002$ Mole-Fraction for $C O(4+)=0.20980+000$

Mole-Fraction for CN RED. $=0.16110-002$ Mole-Fraction for $C N H-X=0.16110-002$

$\begin{gathered} \text { Wave Nuquer, } \\ \mathrm{CM}^{-1} \end{gathered}$	Band System Opacaties, CM^{-1}				
	CN VLT	CN RED	CN E-X	CN H-X	C0(4t)
$0.40000+004$	0.	0.32935-004	0.81258-026	0.10980-028	0.13753-033
$0.60000+004$	0.13256-014	0.10525-003	0.11653-024	0.19363-027	0.42056-032
$0.80000+004$	0.87773-013	0.15728-003	0.15368-023	0.31431-026	0.11865-030
$0.10000+005$	0.19116-011	0.21970-003	0.19472-022	0.49034-025	0.32197-029
$0.12000+005$	0.16889-010	0 11603-003	0.24158-021	0.74917-024	0.85602~028
$0.14000+005$	0.26356-010	0.61615-004	0.29627-020	0.11315-022	0.22504-026
$0.16000+005$	0.77793-009	0.23787-004	0.36097-019	0.16980-021	0.58786-025
$0.18000+005$	0.58768-007	0.70934-005	0.43816-018	0.25386-020	0.15301-023
$0.20000+005$	0.13788-005	0.18701-005	0.53070-017	0.37872-019	0.39740-022
$0.22000+005$	0.21010-004	0.44494-006	0.64198-016	0.56430-018	0.10309-020
$0.24000+005$	0.22749-003	0.93808-007	0.77604-015	0.84020-017	0.26723-019
$0.26000+005$	0.23798-002	0.15902-007	0.93769-014	0.12505-015	0.69245-018
$0.28000+005$	0.48813-003	0.23180-008	0.11327-012	0.18606-014	0.17938-016
$0.30000+005$	0.12414-004	0.28053-009	0.13682-011	0.27681-013	0.46464-015
$0.32000+005$	0.10138-005	0.26606-010	0.16621-010	0.41178-012	0.12034-013
$0.34000+005$	0.17910-007	0.18454-011	0.20081-009	0.61254-011	0.31167-012
$0.36000+005$	0.30806-008	0.84607-013	0.24309-008	0.91117-010	0.80716-011
$0.38000+005$	0.37406-010	0.19589-014	0.29371-007	0.13588-008	0.20904-009
$0.40000+005$	0.13010-010	0.	0.35397-006	0.20216-007	0.54134-008
$0.42000+005$	0.69667-012	0.	0.34702-005	0.29609-006	0.14020-006
$0.44000+005$	$0.10166-013$	0.	0.17425-004	0.28210-005	0.35745-005
$0.46000+005$	0.60152-015	0.	0.43643-004	0.11376-004	0.77036-004
$0.48000+005$	0.88512-016	0.	0.94267-004	0.25640-004	0.93021-003
$0.50000+005$	0.43113-017	0.	0.19301-003	0.54188-004	0.38329-002
$0.52000+005$	0.26177-018	0.	0.40350-003	0.11940-003	0.94365-002
$0.54000+005$	0.10114-021	0.	0.71894-003	0.31936-003	0.19582-001

Wave Number, $\xrightarrow{\mathrm{CM}^{-1}}$	Table 7 (contınued)Band System Opacıties, CM^{-1}				
	CN VLT	CN RED	CN E-X	CN H-X	Co(4+)
$0.56000+005$	0.	0.	0.10803-002	0.28494-003	0.38632-001
$0.58000+005$	0.	0.	0.15562-002	0.43117-003	0.83060-001
$0.60000+005$	0.	0.	0.18525-002	0.57078-003	$0.15327+000$
$0.62000+005$	0.	0.	0.21381-002	0.72359-003	$0.23249+000$
$0.64000+005$	0.	0.	0.14899-002	0.87851-003	$0.33524+000$
$0.66000+005$	0.	0.	0.90220-003	$0.78894-003$	$0.38462+000$
$0.68000+005$	0.	0.	0.48915-003	0.69110-003	$0.47296+000$

Wave Number,	Total Absorption Coefficient, cm	$\begin{aligned} & B(W, T), \\ & \text { watts } / \mathrm{cm}^{2} \text {-ster } \end{aligned}$	Emission, watts $/ \mathrm{cm}^{3}$-ster
$0.40000+004$	0.437460003	0.39350-001	0.17214-004
$0.60000+004$	0.11704-003	0.63781-003	$` 0.74651-005$
$0.80000+004$	0.15731-003	0.79962-001	0.12579-004
$0.10000+005$	0.21972-003	0.86412-001	0.18986-004
$0.12000+005$	0.11608-003	0.84575-001	0.98177-005
$0.14000+005$	0.61695-004	0.77049-001	0.47536-005
$0.16000+005$	0.23883-004	0.66460-001	0.15872-005
$0.18000+005$	0.72562-005	0.54905-001	0.39840-006
$0.20000+005$	0.33335-005	0.43804-001	0.14602-006.
$0.22000+005$	0.21500-004	0.33956-001	0.73007-006
$0.24000+005$	0.22759-003	0.25695-001	0.58480-005
$0.26000+005$	0.23799-002	0.19051-001	0.45339-004
$0.28000+005$	0.48828-003	0.13879-001	0.67770-005
$0.30000+005$	0.12617-004	0.99589-002	0.12566-006
$0.32000+005$	0.12398-005	0.70518-002	0.87427-008
$0.34000+005$	0.25483-006	0.49352-002	0.12577-008
$0.36000+005$	0.24834-006	0.34184-002	0.84692-009
$0.38000+005$	0.27713-006	0.23459-002	0.65010-009
$0.40000+005$	0.62899-006	0.15966-002	0.10042-008
$0.42000+005$	0.41577-005	0.10785-002	0.44840-008

TABLE 7 (conintued)
Wave Number, cm
$0.44000+005$
$0.46000+005$
$0.48000+005$
$0.50000+005$
$0.52000+005$
$0.54000+005$
$0.56000+005$
$0.58000+005$
$0.60000+005$
$0.62000+005$
$0.64000+005$
$0.66000+00$
$0.68000+005$

Total Absorption Coefficient,	$\mathrm{B}(\mathrm{W}, \mathrm{T}), \mathrm{cm}^{2}$ watts $/ \mathrm{cm}^{2}-\mathrm{ster}$	Emission watts $/ \mathrm{cm}^{3}-$ ster
$0.24073-004$	$0.72355-003$	$0.17418-007$
$0.13232-003$	$0.48244-003$	$0.63834-007$
$0.10504-002$	$0.31985-003$	$0.33597-006$
$0.40803-002$	$0.21095-003$	$0.86076-006$
$0.99597-002$	$0.13847-003$	$0.13791-005$
$0.20621-001$	$0.90484-004$	$0.18658-005$
$0.39998-001$	$0.58886-004$	$0.23553-005$
$0.85048-001$	$0.38176-004$	$0.32467-005$
$0.15569+000$	$0.24661-004$	$0.38395-005$
$0.23535+000$	$0.15878-004$	$0.37368-005$
$0.33760+000$	$0.10191-004$	$0.34405-005$
$0.38632+000$	$0.65217-005$	$0.25194-005$
$0.47414+000$	$0.41621-005$	$0.19734-005$

Total Emassion $=0.31484+000$ watts $/ \mathrm{cm}^{3}$-ster

TABLE 8
DETAILED SPECTRAL DISTRIBUTION OF OPACITY OF CN VIOLET BAND

$$
\left(\mathrm{T}=5735^{\circ} \mathrm{K}, \mathrm{P}=0.172 \mathrm{~atm}\right)
$$

Mole-Fraction for CN VLT $=0.37560-002$

Wave Number, cm	$\begin{gathered} \text { Opacı } £ \mathrm{y}, \\ \mathrm{~cm}^{\text {Op }} \\ \hline \end{gathered}$
$0.21000+005$	0.
$0.21400+005$	0.
$0.21800+005$	0.70214-004
$0.22200+005$	0.17970-003
$0.22600+005$	0.61393-004
$0.23000+005$	0.49035-005
$0.23400+005$	0.38785-006
$0.23800+005$	0.12719-002
$0.24200+005$	0.16983-0022
$0.24600+005$	0.21432-003
$0.25000+005$	0.16950-004
$0.25400+005$	0.13405-005
$0.25800+005$	0.16090-001
$0.26200+005$	0.14051-001
$0.26600+005$	0.11970-002
$0.27000+005$	0.94659-004
$0.27400+005$	0.74856-005
$0.27800+005$	0.13008-002
$0.28200+005$	0.49598-002
$0.28600+005$	0.39264-003.
$0.29000+005$	0.31049-004
$0.29400+005$	0.34936-005
$0.29800+005$	0.37815-004

TABLE 9

EQUILIBRIUM SPHERE-CONE RADIATIVE HEAT TRANSFER

is glven and includes the effects of self-absorption and viscous-inviscid coupling. It was found that only $C O(4+)$ emission was subject to significant self-absorption. The magnitudes of the self-absorption and boundary-layer coupling are seen by comparing the three columns.

4.2 NON-EQUILIBRIUM FLOW OVER A SPHERE-CONE AND A SPHERE-CAP

4.2.2 NON-EQUILIBRIUM INVISCID FLOW PROPERTIES

a. Sphere Cone. The bow shock and shock layer streamlane positions for the non-equilıbrıum sphere cone flow field are shown in Figure 17. For comparison, the bow shock positions for the equilıbrıum solution and for a fırst approximation method of integral relation non-equilıbrıum solution are also shown. It is seen that the non-equilıbrium shock layer detachment distance exceeds the equilibrium result by a factor of two in some regions. The difference between these two cases arises from the lower shock layer densities and the more extensive region of subsonic flow in the non-equilibrium case. In the equilibrium calculation the temperature is lower throughout the flow field. This causes the gas density to be hagh and it also causes almost all of the flow to be supersonic at the sphere-cone junction. In the non-equilibrium calculation, the temperature is higher and an extensive region of subsonac flow exists aft of the sphere-cone junction. Since the standoff distance varies inversely with densıty and velocity, the non-equilibrıum standoff dastance is larger than the equilibrium value. Note also that the integral relation solution for the non-equilibrıum shock layer thickness somewhat exceeds the time-dependent result, but that the errors are not nearly as large as in the equalibrium case (Figure 13). The reason that the integral solution is more accurate in the non-equilibrium case is that the sonic line in the one strıp integral approximation, which extends linearly from the bow shock in the sphere-cone junction region to the rounded corner in the base region of the body, more closely approximates the actual flow conditions.

?IGURE 17. BLUNT SPHERE-CONE BODY, NON-EQUILIBRIUM SHOCK SHAPE, AND STREAMLINE POSITIONS

The body pressure distribution is shown in Figure 18. A Newtonian result is also shown for comparison. As in the case of the equilibrium flow, the two prominent features of the pressure distribution are the rapid decrease in pressure on the sphere-cone and the pressure recovery at the spherecone junction to a pressure plateau in the conical region. Even though the subsonic flow region extends beyond the sphere-cone junction, the non-equilibrium pressure distribution is very simalar to the equilibrium result, although the actual pressure level is somewhat lower. Note also that the Newtonian model provides a useful approximation to the nonequalibrium pressure distrabution.

The flow properties throughout the invascid region of the non-equilibrium sphere-cone flow field are given in further detail in Table 10. The notation follows that used in Table 5 and discussed in Section 4.l.l. Each body point is shown in Figure 17. Data is given along rays normal to the body surface. The non-equilibrium species distributions are discussed in Section 4.2.3.
b. Sphere-Cap. The sphere-cap bow shock and streamline field obtained from the tame dependent finite difference solution are shown in Figure 19. The bow shock is nearly concentric wath the body except in the region of the corner. At the corner position, the sonic line extends in a normal direction from the body curving downstream slightly and then upstream to the bow shock.

The inviscid result is based in a constant $\gamma=1.225$, which corresponds to a shock layer with fully equilibrated rotational and vibrational energy modes and frozen free stream chemacal species. In the course of performing the non-equilibrium streamline integrations, it was found that the nonequilibrium chemical species relaxation zone is only 30% of the shock layer thackness. Thus more than two-thirds of the shock layer is nearly In thermochemical equilibrıum and the assumption of frozen chemical species shock layer is in error. This error in shock layer chemistry model causes

FIGURE 18. NON-EQUILIBRIUM SURFACE PRESSURE ON THE SPHERE-CONE

TABLE 10
NON-EQUILIBRIUM INVISCID SHOCK LAYER PROPERTIES ON THE SPHERE-CONE

Body Station	Arc Length on Surface, Ft	Standoff Distance, Ft	$\begin{array}{r} \mathrm{x} \\ \mathrm{Ft} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{y}, \\ & \mathrm{Ft} \end{aligned}$	$\begin{gathered} \text { Pressure, } \\ \quad \mathrm{atm} \\ \hline \end{gathered}$	Enthalpy Kca1/100 gm	Flow Speed, fps
1.Shock	. 0785	0.107	-. 1015	0.0854	0.1452	338	2268.6
. 625 є			-. 0605	. 0827	0.1526	341	1460.0
. 375 є			-. 0338	. 0809	0.1559	342	1021.1
Body			. 0051	. 0783	0.1612	343	653.2
2.	. 235	0.108	-. 0799	. 2545	. 1381	322	4348.3
			. 0393	. 2465	. 1457	332	3215.0
			. 0130	. 2412	. 1488	336	2573.5
			. 0256	. 2336	. 1516	340	1823.9
3.	. 392	0.110	-. 0365	. 4210	. 1367	309	5580.0
			. 1835	. 4070	. 1403	319	4700.0
			. 0280	. 3980	. 1419	325	4051.2
			. 06612	. 3849	. 1435	333	3024.1
4.	. 549	0.110	. 02227	. 5841	. 1181	268	8230.3
			. 06221	. 5638	. 1214	293	6700.0
			. 0895	. 5499	. 1226	308	5662.6
			. 1261	. 5296	. 1230	324	4151.5
5.	. 706	0.113	. 0949	. 7287	. 1163	252	9046.8
			. 1353	. 7054	. 1172	276	7760.0
			. 1616	. 6902	. 1174	294	6685.7
			. 2000	. 6680	. 1183	319	4663.1
6.	. 863	0.130	. 1663	. 8689	. 1194	253	8995.6
			. 2093	. 8440	. 1220	270	8120.1
			. 2374	. 8278	. 1233	286	7150.1
			. 2786	. 8040	. 1253	317	4895.3

TABLE 10 (continued)

Body Station	Arc Length on Surface, Ft.	Standoff Distance, Ft	$\begin{aligned} & x, \\ & \mathrm{Ft} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{Ft} \end{aligned}$	$\begin{gathered} \text { Pressure, } \\ \text { atm } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Enthalpy } \\ & \text { Kcal/100 gm } \end{aligned}$	Flow Speed, fps
7.	1.021	0.132	. 2352	1.010	. 1224	258	8779.2
			. 2819	. 9835	. 1254	267	8261.7
			. 3123	. 9659	. 1267	281	7502.3
			. 3571	. 9401	. 1283	312	5347.8
8.	1.346	0.177	. 3666	1.311	. 1268	272	8039.4
			. 4253	1.277	. 1290	271	8057.1
			. 4637	1.255	. 1300	275	7828.9
			. 5200	1.222	. 1305	295	6583.4
9.	1.841	0.232	. 5657	1.7671	. 1269	261	8139.7
			. 6429	1.723	. 1292	271	8045.3
			. 6933	1.693	. 1301	274	7915.4
			. 7674	1.651	. 1306	288	7049.7
10.	2.336	0.300	. 7541	2.229	. 1311	284	7280.0
			. 8539	2.172	. 1328	280	7582.9
			. 9190	2.134	. 1334	278	7689.2
			1.015	2.079	. 1336	284	7278.0
11.	2.830	0.368	. 9433	2.691	. 1260	272	7998.1
			1.065	2.621	. 1287	276	7781.7
			1.145	2.575	. 1297	276	7771.8
			1.262	2.507	. 1302	282	7451.1
12.	3.325	0.437	1.131	3.154	. 1316	286	7217.0
			1.276	3.070	. 1330	282	7437.3
			1.371	3.016	. 1336	280	7549.5
			1.509	2.936	. 1339	282	7411.8

TABLE 10 (continued)

Body Station	Arc Length on Surface, Ft	Standoff Distance, Ft	$\begin{aligned} & x, \\ & \mathrm{Ft} \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{Ft} \end{aligned}$	$\begin{gathered} \text { Pressure, } \\ \text { atm } \end{gathered}$	Enthalpy Kcal/100 gm	Flow Speed, fps
13.	3.820	0.508	1.317	3.618	. 1257	275	7852.5
			1.485	3.521	. 1286	278	7649.8
			1.595	3.457	. 1296	278	7653.8
			1.757	3.364	. 1303	281	7516.2
14.	4.314	0.571	1.509	4.078	.1295	280	7563.3
			1.699	3.969	. 1314	281	7508.2
			1.822	3.897	. 1322	280	7525.9
			2.004	3.793	. 1328	282	7405.9
15.	4.809	0.644	1.694	4.543	. 1282	280	7549.5
			1.907	4.420	. 1300	280	7551.4
			2.047	4.339	. 1308	280	7567.2
			2.251	4.221	. 1313	282	7433.4
16.	5.304	0.718	1.885	5.004	. 1265	275	7846.6
			2.122	4.866	. 1294	279	7604.6
			2.276	4.778	. 1305	280	7565.2
			2.499	4.644	.1315	283	7346.8
17.	5.798	0.776	2.074	5.465	. 1301	281	7478.7
			2.339	5.312	. 1313	281	7510.1
			2.507	5.216	. 1319	280	7525.9
			2.746	5.078	. 1327	285	7252.4
18.	6.124	0.821	2.194	5.773	. 1291	281	7462.9
			2.481	5.607	. 1306	280	7527.8
			2.659	5.504	. 1314	280	7545.5
			2.909	5.360	. 1327	285	7222.9

TABLE 10 (contanued)

Body Station	Arc Length on Surface, Ft	Standoff Distance, Ft	$\begin{aligned} & x, \\ & \text { Ft } \end{aligned}$	$\begin{aligned} & \mathrm{y}, \\ & \mathrm{Ft} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Pressure, } \\ \text { atm } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Enthalpy } \\ & \text { Kcal/100 gm } \end{aligned}$	Flow Speed, fps
19.	6.281	0.851	2.252	5.920	. 1273	280	7557.3
			2.557	5.745	. 1298	280	7561.3
			2.740	5.639	. 1308	280	7567.2
			2.988	5.496	. 1323	286	7191.4
20.	6.438	0.881	2.311	6.068	. 1270	279	7608.5
			2.651	5.872	. 1293	280	7581.0
			2.836	5.765	. 1302	280	7553.4
			3.066	5.632	. 1307	286	7213.0
21.	6.595	0.920	2.428	6.326	. 1213	270	8106.3
			2.775	6.055	. 1219	275	7856.4
			2.951	5.918	. 1187	274	7901.7
			3.153	5.762	. 1079	275	7858.4
22.	6.752	1.060	2.628	6.720	.1130	256	8863.8
			2.938	6.305	. 1062	265	8395.5
			3.091	6.100	. 0967	262	8535.2
			3.263	5.872	. 0734	258	8757.6
23.	6.909	1.308	2.914	7.169	. 0968	225	1030.4
			3.157	6.552	. 08613	252	9050.7
			3.273	6.260	. 07353	246	9200.3
			3.397	5.950	. 0470	244	9440.3
24.	7.065	1.698	3.356	7.686	. 0794	184	11954.8
			3.454	6.793	. 0657	238	9725.6
			3.500	6.393	. 0533	236	9826.0
			3.547	5.990	. 0291	234	9946.0

FIGURE 19. SPHERE-CAP BODY, NON-EQUILIBRIUM SHOCK SHAPE AND STREAMLINE POSITIONS
the shock layer densities to be underestimated and the shock layer thickness to be overestimated. Since the shock layer volume is an important radiative heat transfer varıable, the shock detachment distance has been adjusted in the radiation calculation to include the influence of the equilibrium property zone. This adjustment was accomplished by multiplyıng the existing detachment distance by a weighted average of equilibrium and $Y=1.225$ sphere-cap solutions. The error in the inviscid chemistry model does not significantly affect the pressure field nor the relative location of the streamlines.

This error in chemistry also affects the stagnation point convective heat transfer and the convective heat transfer distribution. The only heat transfer varıables, signıfıcantly influenced are the boundary layer edge velocıty and the stagnation point velocity derıvatıve. These varıables have been adjusted to account for the equilibrium chemstry effects. The stagnation point velocıty gradient is reduced by 21% from $697 \mathrm{sec}^{-1}$ to $547 \mathrm{sec}^{-1}$. The stagnation point pressure, on the other hand, is increased only 1% by the equilibrium chemistry effect.

In Fagure 20, the sphere-cap surface pressure as a function of the ratio of body surface distance to base radius is shown. For comparison, the Newtonian-Busemann and the modafied Newtonıan pressure distributions are also indicated. The Newtonıan-Busemann model is a better approximation of the sphere-cap pressure distribution than is the modified Newtonian result. Both of these approximate models, however, are in error in the region of the corner where a local acceleration of the flow occurs.

The flow field properties throughout the sphere-cap inviscid shock layer are given in further detail in Table 11. The notation follows that used in Table 5 and discussed in Section 4.1.1. The location of each body point is shown in Figure 19. Data $1 . s$ given along rays normal to the body surface. The final column in Table 11 is the enthalpy of the

FIGURE 20. NON-EQUILIBRIUM SURFACE PRESSURE ON THE SPHERE-CAP

TABLE 11
NON-EQUILIBRIUM INVISCID SHOCK LAYER PROPERTIES ON THE SPHERE-CAP

	$\begin{aligned} & \text { Body } \\ & \text { Station } \\ & \hline \end{aligned}$	Arc Length on Surface, Ft	Standoff Distance, Ft	$\begin{aligned} & x, \end{aligned}$	$\begin{aligned} & \mathrm{y}, \\ & \mathrm{Ft} \end{aligned}$	$\begin{gathered} \text { Pressure, } \\ \quad \text { atm } \end{gathered}$	Enthalpy Kcal/100gm	Flow Speed, fps	Enthalpy, with Radiation Loss $\mathrm{Kcal} / 100 \mathrm{gm}$
	1.Shock	0.04	1.190	-1.190	0.0	. 161	339	1987.2	339
	.625e			- . 734	0.0	. 153	342	1042.8	325
	. 375ε			- . 436	0.0	. 157	343	500.0	316
	Body			0	0.0	. 163	343	110.2	307
	2.	0.629	1.201	-1.187	0.683	. 144	338	2184	338
				-. 718	0.662	. 152	341	1298	324
				- . 423	0.648	. 155	342	807	316
				. 014	0.628	. 160	343	433	307
	3.	1.888	1.233	-1.100	2.044	. 142	331	3325	331
$\stackrel{3}{1}$				-. 628	1.981	. 149	338	2282	320
				- . 325	1.940	. 152	340	1771	313
				. 123	1.880	. 155	342	1259	306
	4.	3.147	1.243	-. 870	3.395	. 137	322	4403	322
				- . 402	3.288	. 147	332	3207	318
				- . 108	3.219	. 150	335	2754	309
				. 341	3.117	. 152	338	2105	304
	5.	4.406	1.270	- . 550	4.700	. 133	307	5686	307
				- . 113	4.583	. 138	321	4506	309
				. 205	4.483	. 140	327	3817	307
				. 668	4.337	. 142	334	2951	302
	6.	5.296	1.336	- . 288	5.655	. 126	294	6690	294
				. 193	5.470	. 129	312	5273	303
				. 505	5.350	. 129	321	4625	303
				. 961	5.174	. 128	329	3640	302

TABLE 11 (continued)

TABLE 11 (continued)

Body Station	Arc Length on Surface, Ft	Standoff Distance, Ft	$\begin{aligned} & \mathrm{x}, \\ & \mathrm{Ft} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{y}, \\ & \mathrm{Ft} \end{aligned}$	$\begin{gathered} \text { Pressure, } \\ \text { atm } \end{gathered}$	Enthalpy Kcal/100gm	Flow Speed, fps	Enthalpy, with Radiation Loss Kcal/100gnt
13.	6.825	2.850	2.000	8.850	. 0630	137	13615	137
			2.000	7.638	. 0356	220	10566	217
			2.000	6.961	. 0249	226	10290	211
			2.000	6.000	. 0150	186	11900	164

fluid, corrected for radiation cooling, which as discussed in further detail in Section 4.2.3. The non-equilibrium species distrabutions are also discussed in Section 4.2.3.

4.2.2 NON-EQUILIBRIUM CONVECTIVE HEAT TRANSFER

a. Sphere-Cone. The non-equilibrium sphere-cone convective heat flux versus distance along the body $2 s$ shown in Figure 21 . For comparison, the equilibrium convective heat transfer distribution is also shown. The stagnation point convective heat transfer for the non-equilibrium case is slightly larger than the equilıbrium result. This increase is an inviscid effect, arısıng from a higher stagnation point velocity gradient in the non-equılibrium case ($7570 \mathrm{sec}^{-1}$), than in the equilıbrium case (6340 $\sec ^{-1}$). The sphere-cap vorticity interaction effect is actually smaller in the non-equilibrium case (1.06) than in the equilibrium case (1.12). The CO_{2} composition effect is the same for both cases. The convective heat transfer in the conical region of the body is slightly less for non-equilibrium flow than for equilıbrıum flow because the boundary layer edge velocities are slightly lower.
b. Sphere-Cap. The non-equilibrium sphere-cap convectave heat flux distrabution is shown in Figure 22. The heat transfer distribution is quite flat over most of the body, but drops sharply an the corner region. The vorticity interaction effect for the sphere-cap case is neglagable because of the large nose radius.

It was found that the stagnation point velocity gradient exceeds the modified Newtonaan result by approximately 19%; hence the sphere-cap stagnation point heat transfer rate $1 s 9 \%$ larger than the modified Newtonaan result. The effect of the CO_{2} composition on the convective heat transfer is assumed to be solely dependent on the free stream molecular werght and increases the convective heat transfer rate by approximately 8% over that for air at the same flight conditrons. Radiation absorption in the boundary layer has a neglıgible influence on convective heat transfer.

FIGURE 21. SPHERE-CONE NON-EQUILIBRIUM CHEMISTRY CONVECTIVE AND RADIATIVE HEAT TRANSFER DISTRIBUTIONS

FIGURE 22. SPHERE-CAP NON-EQUILIBRIUM CHEMISTRY CONVECTIVE AND RADIATIVE HEAT TRANSFER DISTRIBUIIONS

4.2.3 NON-EQUILIBRIUM RADIATIVE HEAT TRANSFER

a. Non-Equilibrium Concentrations of Significant Specıes. The non-equilibrium species profıles on three streamlines are shown in Figures 23, 24 , and 25 as a function of distance along the streamline. Gas temperature and density profiles are also shown. The three streamlines origanate at shock angles of $89^{\circ}, 79^{\circ}$, and 68°, respectively to the flow direction. The 89° and 79° streamlines correspond to the sphere-cap streamlines indicated by arrows on Figure 19; the 68° streamline corresponds to the sphere-cone streamline indicated by the arrow on Figure 17. The 89° and 79° streamline results are also representative of the non-equilibrium flow in the nose region of the sphere-cone, but with a change in scale that correctly transforms the convective derivative (a scale change by a factor of about 12).

In Figures 23, 24, and 25, the overshoot in CN concentration is seen to be moderate; The CN emission, Figures 26 and 27 , overshoots more strongly than does the CN concentration because of the high non-equilibrıum gas temperature ($\sim 9000^{\circ} \mathrm{K}$) near the peak in the CN concentration. The $\mathrm{CN} *$ concentration is seen to, overshoot by a factor of about 10 . The $C 0 \%$ concentration is not shown because the rates are too uncertain. The electron-density profile is also shown, although its contribution to the radiation heat transfer is negligible. However, the information may be useful in communication blackout studies. It is seen that a slight electron density overshoot occurs; the location of the peak electron density is a factor of 5 to 10 further from the shock than is the peak $C N$ radiation emıssion.
b. Sphere-Cone Non-Equilibrium Radiative Heat Transfer. From the results of Figures 23, 24, and 25, it is seen that non-equilibrıum gas properties extend over the full shock layer on the sphere-cone.

The major radiation to the sphere-cone originates from the non-equilibrıum overshoot of the $C N$ red and $C N$ violet bands. The volume emassion from these bands along each of the streamlines noted above is shown in

FIGURE 2\%. NON-EQUILIBRIUM SPECIES AND TEMPERATLKE AND DENSITY PROEILES ALONG THE 89° SPIERE CAP STREAMLINE. EUUILIBRIUM VALUES ARE ALSO SHOWN.

FIGURE 24. NON-EQUILIBRIUM SPECIES AND TEMPERATURE AND
DENSITY PROFILES ALONG THE 79° SPHERE-CAP STREAMLINE. EQUILIBRIUM VALUES ARE ALSO SHOWN.

FIGURE 25. NON-EQUILIBRIUM PROFILES OF SPECIES CONCENTRATION AND TEMPERATURE AND DENSITY ALONG THE 68° STREAMLINE INDICATED IN FIGURE 17. EQUILIBRIUN VALUES ARE ALSO SHOWN.

FIGURE 26. NON-EQUILIBRIUM PROFILES OF CN VIOLET EMISSION ALONG THE THREE STREAMLINES INDICATED IN FIGURES 17 AND 19. EQUILIBRIUM VALUES ARE ALSO SHONN. COLLISION LIMIITING CAUSES THE 68° PROFILE TO FALL BELON EQUILIBRIUM.

FIGURE 27. NON-EQUILIBRIUM PROFILES OF CN RED EMISSION ALONG THE three streamlines indicated in figures 17 Ai:D 19. EOUILIBRIUM VALUES ARE ALSO SHOWN.

Figures 26 and 27. Behind the normal shock the contribution from the $C N$ violet band exceeds that from the $C N$ red band by a factor of about I.5; behind the 68° shock, the $C N$ red band exceeds the $C N$ violet band by a factor of about 2. The noticeable decrease in CN violet emission is due both to the lower gas temperature behind the oblique shock, and to an increase in the effect of colliston limiting.

The total radiative heat transfer to the 6 body points on the sphere-cone shown in Figure 17 is given in Table 12. Radiation to points on the rounded section between the cone and the base was not computed because the non-equilıbrıum computer program did not run satisfactoraly in this region.

The results listed in Table 12 include the effects of self-absorption, thermal boundary layer thickness, and collision limiting. Radiation cooling was not included because the reduction in gas enthalpy is less than 5% and affects the calculated radiation by less than 2%. The thermal boundary layer correction reduces the radiation by about 5%. Selfabsorption_of CO^{4+} emission reduces the radiation by as much as 6% on the cone surface. The magnitude of the collısion lamiting effect on $C N$ violet emission is difficult to estimate without making calculations that omit collision limiting, but it is thought to reduce the total radiation to the cone surface by a factor of 1.5 to 2 . The contrabution to the total radiative heat transfer from the $C O$ vibration-rotation bands and from the CO^{4+} band 1 s 3 to 5% each.

Comparison of the non-equilibrium radiative heat transfer result on the sphere-cone, Table 12, wath the equilibrium values shown in Table 9, column 3, indicates an increase by a factor of about 4 in the stagnation region and about 2.5 trhoughout the conical region. It is evident from these results that an equilibrium calculation is misleading for these flight conditions.

TABLE 12

NON-EQUILIBRIUM SPHERE-CONE RADIATIVE HEAT TRANSFER

Position (Figure 17)	Radiative Heat ${ }_{2}$ Transfer watts/cm
1	20.6
2	15.0
3	7.2
4	12.5
5	22.0
6	23.3

TABLE 13

NON-EQUILIBRIUM SPHERE-CAP RADIATIVE HEAT TRANSFER

Position (Figure 19)

1
2
3
4

Radiative Heat Transfer, watts/cin ${ }^{2}$
Non-Equilıbrium Region
Total
45.5
79.8
44.6
75.6
27.7
54.6
13.8
32.4

Comparison of the non-equilibrium radiative heat transfer on the spherecone with the convectuve heat transfer, Figure 21 , shows that the former is only 10% of the latter in the stagnation region. However, on the conical region near the base the radiative heat transfer is 30% of the convective heat transfer and thus represents a significant contribution to the total heat transfer.
c. Sphere-Cap Non-Equilibrium Radiative Heat Transfer. From the non-equilibrium species profiles of Figures 23,24 , and 25 , $1 t$ is seen that non-equilibrium gas properties cover only about $1 / 3$ of the spherecap shock layer. The remaining $2 / 3$ of the layer $2 s$ very close to equilibrium. The width of the non-equilibrium zone was found to vary very little throughout the shock layer, and was approximated by a constant 0.35 ft , shown in Figure 19. Because a major fraction of the shock layer is in equillbrium, the standoff distance computed using the frozen γ result is too large by about 25%. This is corrected in the radiative heat transfer calculation by reducing the thickness of the equilibrium zone by 0.30 ft .

The non-equilıbrium radzatıon emission from the $C N$ red and violet bands along the three streamlines noted above as shown in Figures 26 and 27. As mentioned previously the effect of radiation cooling as very small in the non-equilibrium region and is not included. Beyond the non-equilibrium region radiation cooling is included by reducing the gas enthalpy by the amount of the combined non-equilibrium and equilibrium radiation losses. This reduced enthalpy, listed in Table 11 , and the gas pressure are used to obtain equilıbrium radiation properties. Representatıve values of equilibrium volume radiation for varıous values of enthalpy and pressure are found in Table 5.

Profiles of the volume emassion with and without radiation cooling are shown in Figure 28 for the 89° streamline. In these profiles the co^{4+} emission is omitted because it is so strongly self-absorbed in the spherecap flow. However, the co^{4+} contrabution is ancluded in the radiative

FIGURE 28. RADIATION PROFILES ALONG THE STAGNATION STREAMLINE OF THE SPHERE CAP. THE CN RED AND VIOLET BANDS AND TEE CO VIBRATION-ROTATION BAND ARE INCLUDED: THE $C 0^{4+}$ BAND IS OMITTED BECAUSE IT IS STRONGLY SELF-ABSORBED.
heat transfer calculation. It is seen that radiation cooling reduces the equilıbrium volume emıssion by as much as 25% at the boundary layer edge. It reduces our calculation of the total radiative heat transfer by about 10% at the stagnation point to about 6% at point 4.

The total radiative heat transfer to the 4 body points shown in Figure 19 is given in Table 13. These results include self-absorption, radiation cooling, thermal boundary layer thickness. Collision limitang in the non-equilibrıum region is also ancluded. The $C 0^{4+}$ emassion is strongly self-absorbed and, as a result, contributes only 4 to 5% of the total radiative heat transfer. The $C O$ vibration-rotation bands contribute about 6% to the total. The remainder arises from the $C N$ red and violet bands There is some self-absorption of the CN violet emission from both the equilibrium and the non-equilibrıum regıons; this reduces the computed radiative heat transfer by about 10%. The thermal boundary layer correction reduces the radıative heat transfer by about 3%.

The contribution of the non-equilabraum region to the total radiative heat transfer is listed separately in Table 13 and is seen to represent 40% to 60% of the total. If equilibraum gas properties had been assumed, the calculated radiative heat transfer would have been smaller by approximately 35% 。

It is seen by comparing the results of Table 13 with the results shown in Figure 22 that the radiative heat transfer exceeds the convectuve heat transfer throughout the front face of the sphere-cap. Thas occurs because the shock layer is thick, ancreasang the radiatuve heating and reducing the convective heating in comparison to the values found on the sphere-cone.

SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

Methods have been developed and described here for computing the state and motion varıables and the convective and radıatıve heat transfer over the front face of spherically blunted conical bodies traveling at hypersonac speeds through planetary atmospheres under equilibrıum or non-equilibrium condztions. The numerical results carried out for Martaan entry on a hyperbolic trajectory show the following sıgnıficant results.

The flow field contains extensive regions of non-equilıbrium gas. The nonequilibrium nature of the flow has very little effect on convective heat transfer (Figure 21), but leads to much greater radiative heat transfer than that computed on the basis of equilibrıum flow (compare Figures 16 and 21).

The radıative heat transfer computed on the basis of non-equilibrium flow is a significant fraction of the total heat transfer, For the sphere-cap body shape, the radiative heating is more than twice the convective heating at the stagnation poınt (Figure 22). Although radiative heating is considerably smaller than convective heatang on the sphere-cone (Figure 2l), this is due to the small standoff distance and the oblique conical shock
that occur on this shape only when the angle of attack is near zero. Although angle of attack calculations were not made $2 n$ this study, it is expected that at 10° angle of attack the windward portion of the sphere-cone wall support a shock angle and standoff distance that are comparable to those typical of the flow over the sphere-cap. Thus radiative heat transfer may exceed convectave heat transfer on the spherecone at moderate angles of attack.

The low Reynolds number associated with these calculations leads to a signaficant thickening of the boundary layer. The major result of this is the increase in the convective heat transfer over the value based on a modified Newtonian approximation. The actual convective heating to the sphere-cone (Figure 16) exceeds the modified Newtonian value by more than 50% over most of the surface. This arises because the boundary layer on the conzcal portion of the sphere-cone extends beyond the low-velocity, hagh-entropy layer of flund that passes through the spherical nose region.

The coupling among the inviscad flow, the viscous flow, and the radiation transfer was found to be signıfıcant, but amenable to evaluation through first order corrections to the uncoupled results.

It is recommended that in future work the non-equilibrium radiation from the CO fourth positive band be studied experımentally, that collision llmiting of the CN violet band be studied experımentally, and that the non-equilıbrıum analysis be applıed to the sphere-cone at small and moderate angles of attack in order to determine the convective and radiative heat transfer rates.

APPENDIX A

DERIVATION OF FINITE DIFFERENCE EQUATIONS

The left hand side and the first term on the right of Equation (6) are seen to be the conservation quantity averages that are desired. Let $\Omega(t)$ be the cell $j+\frac{1}{2}, i+\frac{1}{2}$. The area of the cell is denoted at the start of the time step by $G_{j+\frac{1}{2}, i+\frac{1}{2}}$ and is determined from

$$
\begin{equation*}
G_{j+\frac{1}{2}, i+\frac{1}{2}}=\iint_{\Omega\left(t_{0}\right)} d y d x \tag{Al}
\end{equation*}
$$

Similarly, the area of $\Omega\left(t_{0}+T\right)$ is denoted by $G^{j+\frac{1}{2}, i+\frac{1}{2}}$,

$$
\begin{equation*}
G^{j+\frac{1}{2}, i+\frac{1}{2}}=\iint_{\Omega\left(t_{0}+\tau\right)} d y d x \tag{A2}
\end{equation*}
$$

The mean value of the conservation quantity f in the cell $j+\frac{1}{2}, i+\frac{1}{2}$ at $\mathrm{t}_{\mathrm{o}}+\mathrm{T}$ is defined by

$$
\begin{equation*}
f^{j+\frac{1}{2}, i+\frac{1}{2}}=\frac{\iint_{\Omega\left(t_{0}+T\right)} f\left(x, y, t_{o}+T\right) d y d x}{G^{j+\frac{1}{2}, i+\frac{1}{2}}} \tag{A3}
\end{equation*}
$$

with a simlar definition at t_{0} for $f_{j+\frac{3}{2}, i+\frac{1}{2}}$

The boundary motion gives a contribution only on the segments of the boundary j, $i+\frac{1}{2}$ and $j+1$, $i+\frac{1}{2}$. The ray portions of the boundary are stationary and have $V_{n}=0$. The boundary motion contribution to the change in f is, therefore,
$\int_{t_{0}}^{t_{0}^{+T}} d t \iint_{\partial \Omega(t)} f(x, y, t) V_{n} d s=f_{j, i+\frac{1}{2}} G_{j, i+\frac{1}{2}}-f_{j+1, i+\frac{1}{2}} G_{j+1}, i+\frac{1}{2}$
$G_{j, 1+\frac{3}{2}}$ denotes the volume swept by the boundary, $J, i+\frac{1}{2}$ as it moves inward,

$$
\begin{equation*}
G_{j, i+\frac{1}{2}}=\int_{t_{0}}^{t_{0}+\tau} d t \int_{\left(j, i+\frac{1}{2}\right)} V_{n} d s \tag{A5}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{j+1, i+\frac{1}{2}}=\int_{t_{0}}^{t_{0}+\tau} d t \int_{\left(j+1, i+\frac{1}{2}\right)} V_{n} d s \tag{A6}
\end{equation*}
$$

Thas definition corresponds to taking the unfform convention for the boundary velocity throughout the grid as positive when it moves toward the body. The velocity V_{n} is taken outward from each cell, and is inconvenıent for use in movang from cell to cell as at must be continually redefined.

Since Equation (A4) is already of order T compared to $f^{j+\frac{1}{2}, i+\frac{1}{2}} G^{j+\frac{1}{2}, i+\frac{1}{2}}$ the value of $f_{j, i+\frac{1}{2}}$ need only be correct to zero order,

$$
\left.f_{j, i+\frac{1}{2}}=\frac{1}{2}^{\left(f_{j-\frac{1}{2}, i+\frac{1}{2}}\right.}{ } f_{j+\frac{1}{2}, i+\frac{1}{2}}\right)+0\left(\left[f_{j, i+\frac{1}{2}}\right]\right)
$$

where the bracket denotes the jump in f at the cell boundary. In Godunov's method a specific form is assigned to the first order term in this expression for all boundary quantities, The resultang first order terms stabilize the calculation.

The contributions from the Ine integral of P, Q about the cell boundary are seen to have the form $T(F, S)$ for each edge. Here F is taken to be the two component vector $\{P, Q\}$ and S the two component vector with magnitude equal to the length of the edge and direction along the outward normal to the edge. The notation (F, S) is the scalar product between the two vectors. S can be evaluated for the edge at time t_{o}, for first order accuracy in Equation (6), since the difference of $T(F, S)$ for opposite sides of the cell is already of first order relatave to $f^{j+\frac{1}{2}, i+\frac{1}{2}} G^{j+\frac{1}{2}, 1+\frac{1}{2}}$. The flow quantities appearıng in (F, S) must be evaluated by Godunov's method for stabilıty. Finally then, the flux contribution is seen to be

$$
\int_{t_{0}}^{t_{0}^{+T}} d t \int_{\partial \Omega(t)} P d y-Q d x=T \sum_{(\text {edges })}(F, S)
$$

For axisymmetric flow the source term in Equation (6) remains to be approximated. Again it is of first order compared to the leading term $f^{j+\frac{1}{2}, 1+\frac{1}{2}}{ }_{G}^{j+\frac{1}{2}, 1+\frac{1}{2}}$ so that the geometric factors and flow variables can be evaluated at $t=t_{0}$. When $y \neq 0$ inside the cell, this term will be approximatèd by

$$
\begin{equation*}
\int_{t_{0}}^{t_{0}+\tau} d t \iint_{\Omega(t)} \frac{1}{y} R(x, y, t) d s d y=\tau R_{j+\frac{1}{2}, 1+\frac{1}{2}} B_{j+\frac{1}{2}, 1+\frac{1}{2}} \tag{A8}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{j+\frac{1}{2}, \lambda+\frac{1}{2}}=\iint_{12\left(t_{0}\right)} \frac{1}{y} d y d x \tag{A9}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j+\frac{1}{2}, i+\frac{1}{2}}=R\left(f_{j+\frac{1}{2}, i+\frac{1}{2}}\right) \tag{A10}
\end{equation*}
$$

For cells bordering the axis, the expression (A9) is not convergent and must be replaced by the convergent integral

$$
\begin{equation*}
B_{j+\frac{1}{2}, \frac{1}{2}}^{o}=\iint_{\Omega\left(t_{0}\right)^{y}} \frac{v}{y} d y d x \tag{A11}
\end{equation*}
$$

and a compatible modification of R to R°

$$
R^{o}(f)=\quad \begin{align*}
& \rho \\
& \rho u \\
& \rho v \tag{A12}\\
& \\
& \rho\left(\epsilon+\frac{\mathrm{p}}{\rho}\right)
\end{align*}
$$

Denote Godunov's evaluation of $\rho, u, v, p, \varepsilon$ on the cell boundaries by R, U, V, P, E respectively'. Let $W_{j, i+\frac{1}{2}}$ denote the fluid velocity normal to the segment $J, i+\frac{1}{2}$ durected toward the body and computed from V, U. Similarly let $W_{j+\frac{1}{2}, 1}$ be the fluid velocity computed from V, U normal to $j+\frac{1}{2}, i$ and directed along the shock layer from the axıs. By Equations (A3), (A4), (A7) and (A8) the finite difference approximations to Equation (6) are

Conservation of Mass

$$
\begin{align*}
& \rho_{j+\frac{1}{2}, i+\frac{1}{2}}=\left[G^{j+\frac{1}{2}, i+\frac{1}{2}}\right]^{-1}\left\{(\rho G)_{j+\frac{1}{2}, i+\frac{1}{2}}-T\left[(R W S)_{j+\frac{1}{2}, i+1}-(R W S)_{j+\frac{1}{2}, i}\right]\right. \\
& \left.-\left[R(T W S+G)_{j+1, i+\frac{1}{2}}-R(T W S+G)_{j, 1+\frac{1}{2}}\right]-T k(\rho \vee B)_{j+\frac{1}{2}, 1+\frac{1}{2}}\right\} \tag{A13}
\end{align*}
$$

Conservation of x momentum

$$
\begin{align*}
& u^{j+\frac{1}{2} x+\frac{1}{2}}=\left[(\rho G) ^ { j + \frac { 1 } { 2 } , 1 + \frac { 1 } { 2 } } j ^ { - 1 } \left\{(\rho u G){ }_{j+\frac{1}{2}, i+\frac{1}{2}}\right.\right. \\
& -T\left[\text { (RUWS }_{j+\frac{1}{2}, 2+1}-\text { (RUWS }_{j+\frac{1}{2}, i}\right] \\
& -\left[R U(T W S+G)_{j+1, i+\frac{1}{2}}-R U(T W S+G)_{j, i+\frac{3}{2}}\right] \\
& -T\left[(P S \sin \sigma)_{j+1,1+\frac{1}{2}}-(P S \sin \sigma)_{], i+\frac{1}{2}}\right] \\
& -T\left[(P S \sin \theta)_{j+\frac{1}{2}, i+1}-(P S \sin \theta)_{j+\frac{1}{2}, i}\right] \\
& \left.-T k(\rho u v B)_{j+\frac{1}{2}, i+\frac{1}{2}}\right\} \tag{A14}
\end{align*}
$$

Conservation of y momentum

$$
\begin{align*}
& \mathrm{v}^{j+\frac{1}{2}, 1+\frac{1}{2}}=\left[(\rho G)^{j+\frac{1}{2}, 1+\frac{1}{2}}\right]^{-1}\left\{(\rho v G)_{j+\frac{1}{2}, i+\frac{1}{2}}\right. \\
& \left.-\tau[R V W S)_{j+\frac{1}{2}, 1+1}-(R V W S)_{j+\frac{1}{2}, 1}\right] \\
& -\left[R V(T W S+G)_{j+1, i+\frac{1}{2}}-R V(T W S+G)_{j, 1+\frac{1}{2}}\right] \\
& -\tau\left[(P S \cos \theta)_{j+\frac{1}{2}, 1+1}-(P S \cos \theta)_{j+\frac{1}{2}, 1}\right] \\
& +\tau\left[(P S \cos \sigma)_{j+1,1+\frac{1}{2}}-(P S \cos \sigma)_{j, i+\frac{1}{2}}\right] \\
& \left.-\tau k\left(\rho v^{2} B\right)_{j+\frac{1}{2}, 1+\frac{1}{2}}\right\} \tag{A15}
\end{align*}
$$

Conservation of energy

$\epsilon^{J+\frac{1}{2}, i+\frac{1}{2}}=\left[(\rho G)^{j+\frac{1}{2}, i+\frac{1}{2}} j^{-1}\left\{(\rho \in G){ }_{J^{+\frac{1}{2}, i+\frac{1}{2}}}\right.\right.$
$-\tau\left[\right.$ (REWS ${ }_{j+\frac{1}{2}, 1+1}-$ (REWS $\left.{ }_{j+\frac{1}{2}, 1}\right]$
$-\left[\operatorname{RE}(T W S+G)_{j+1,1+\frac{1}{2}}-\operatorname{RE}(T W S+G)_{j, 1+\frac{1}{2}}\right]$
$-\tau\left[\right.$ (PWS ${ }_{j+\frac{1}{2}, 2+1}-$ (PWS $\left.{ }_{j+\frac{1}{2}, 1}\right]$
$-\tau\left[\right.$ (PWS $_{j+1,1+\frac{1}{2}}-$ (PWS $\left._{j, 1+\frac{1}{2}}\right]$
$-\tau k[p \in v+p u) B]{ }^{+\frac{3}{2}, 2+\frac{1}{2}}{ }^{\}}$
The difference Equations (Al3) through (Al6) contain the geometrac quantities $G^{j+\frac{1}{2}, 1+\frac{1}{2}} ; G_{j+\frac{1}{2}, i+\frac{1}{2}} ; G_{j, i+\frac{1}{2}}, S_{j, 1+\frac{1}{2}} ; S_{j+\frac{1}{2}, 2} ; B_{j+\frac{1}{2}, i+\frac{1}{2}}$ If $y \neq 0$ and $B_{j+\frac{1}{2}, 1+\frac{1}{2}}^{0}$ when $y=0$ and $\sin \sigma_{j, 1+\frac{3}{2}}, \cos \sigma_{j, 1+\frac{1}{2}}$.

Thus the area of the cell is explicitly

$$
\begin{equation*}
G_{j+\frac{1}{2}, 1+\frac{1}{2}}=\iint_{\Omega\left(t_{0}\right)} d y d x=\emptyset_{J, 1+\frac{1}{2}}-\emptyset_{j+1, i+\frac{1}{2}} \tag{A17}
\end{equation*}
$$

where

$$
\begin{align*}
& \emptyset_{J, 1+\frac{1}{2}}=\frac{1}{2}\left[l_{\mathrm{J}, 1+1}^{2} \cos \theta_{1+1} \sin \theta_{1+1}-\ell_{\mathrm{J}, 1}^{2} \cos \theta_{i} \sin \theta_{1}+\left(\varepsilon_{1+1}-\ell_{j, 1+1} \cos \theta_{i+1}\right.\right. \\
& \left.\left.-\xi_{i}+\ell_{j, i} \cos \theta_{i}\right)\left(\ell_{j, i+1} \sin \theta_{i+1}+\ell_{j, i} \sin \theta_{1}\right)\right] \tag{A18}\\
& \text { Simılarly } \\
& G^{J+\frac{1}{2}, i+\frac{1}{2}}=\iint_{\Omega\left(t_{0}+\tau\right)} d y d x=\emptyset^{j, i+\frac{1}{2}}-\emptyset^{j+1, i+\frac{1}{2}} \tag{A19}
\end{align*}
$$

with

$$
\begin{align*}
& \phi^{j, 1+\frac{1}{2}}=\frac{1}{2}\left[\left(\ell^{\mathrm{J}, i+1}\right)^{2} \cos \theta_{1+1} \sin \theta_{i+1}-\left(\ell^{\mathrm{J}, i}\right)^{2} \cos \theta_{i} \sin \theta_{1}\right. \\
& +\left(\xi_{1+1}-\ell^{j, 1+1} \cos \theta_{i+1}-\xi_{i}+\ell^{\left.\left.j, i^{\cos \theta_{i}}\right)\left(\ell^{j, 1+1} \sin \theta_{1+1}+\ell^{j, i} \sin \theta_{i}\right)\right]}\right. \tag{A20}
\end{align*}
$$

where $\ell^{j, i}$ is the location of $l_{j, i}$ at the end of the time interval. The area swept by the boundary $j, i+\frac{1}{2}$ is

$$
\begin{equation*}
G^{j, 1+\frac{1}{2}}=\emptyset^{j, i+\frac{1}{2}}-\emptyset_{j, i+\frac{1}{2}} \tag{A21}
\end{equation*}
$$

With the same definition holding when J is replaced by $j+1$. The lengths of the sides $S_{j, 1+\frac{1}{2}}, S_{j+\frac{1}{2}, 1}$ are given by

$$
\begin{equation*}
s_{j+\frac{1}{2}, 1}=\ell_{j, i}-\ell_{j+1, i} \tag{A22}
\end{equation*}
$$

and

$$
\begin{align*}
S_{J, i+\frac{1}{2}}= & {\left[\left(\xi_{1+1}-\ell_{J, 1+1} \cos \theta_{1+1}-\xi_{1}+\ell_{j, i} \cos \theta_{1}\right)^{2}+\left(\ell_{J, 1+1} \sin \theta_{i+1}-\right.\right.} \\
& \left.\left.-l_{j, i} \sin \theta_{i}\right)^{2}\right]^{\frac{3}{2}} \tag{A23}
\end{align*}
$$

The sine and cosine of the slope of a ray are determined from θ_{2} while the sine and cosine of the slope of a segment on the transverse interpolatry polygon are

$$
\begin{equation*}
\sin \sigma_{j, 1+\frac{1}{2}}=\frac{\ell_{J, 1+1} \sin \theta_{1+1}-\ell_{j, 1} \sin \theta_{1}}{S_{j, 1+\frac{1}{2}}} \tag{A24}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \sigma_{j, i+\frac{1}{2}}=\frac{\xi_{1+1}-\varepsilon_{j, 1+1} \cos \theta_{i+1}-\xi_{1}+\varepsilon_{j, 1} \cos \theta_{1}}{s_{j, i+\frac{1}{2}}} \tag{A25}
\end{equation*}
$$

The factor of the source term for axial symmetry, when $y \neq 0$, is
$B_{j+\frac{1}{2}, i+\frac{1}{2}}=\iint_{\Omega\left(t_{o}^{y}\right)} \frac{1}{y} d y d x=I_{j+\frac{1}{2}, 1+1}+I_{j+1, i+\frac{1}{2}}-I_{j+\frac{1}{2}, i}-I_{j, i+\frac{1}{2}}$

$$
\begin{align*}
& \text { where } \\
& \qquad \begin{array}{l}
I_{j+\frac{1}{2}, i}=\xi_{i} \ell n \frac{l^{\prime, 2}}{\ell_{j+1, i}} \\
I_{j, 1+\frac{1}{2}}=\left[\xi_{1+1}-\ell_{j, i+1}\left(\cos \theta_{1+1}-\sin \theta_{i+1} \tan \sigma_{j, 1+\frac{1}{2}}\right)\right] \\
\ell n\left(\frac{l_{i, i+1} \sin \theta_{1+1}}{l_{j, i} \sin \theta_{i}}\right)
\end{array} \tag{A27}
\end{align*}
$$

If $y=0$, the cells border the axis of symmetry, and $B_{j+\frac{1}{2}, \frac{1}{2}}^{0}$ is given by

$$
\begin{equation*}
B_{j+\frac{1}{2}, \frac{1}{2}}^{o}=\iint_{\Omega\left(t_{0}\right)^{\frac{v}{y}}} \frac{v}{y} d y d x \tag{A.29}
\end{equation*}
$$

Since $\mathrm{v}=0(\mathrm{y})$ as $\mathrm{y} \rightarrow 0$ the above integral is convergent. The integrand in Equation (A29) can be replaced by $\partial \mathrm{v} /\left.\hat{\partial y}\right|_{y=0}$ to first order accuracy $y=0$
throughout the cell. An integration of Equation (A29) can then be performed to yield

$$
\begin{equation*}
\mathrm{B}_{\mathrm{j}+\frac{1}{2}, \frac{1}{2}}=\int \mathrm{dx} \frac{\partial \mathrm{v}_{\mathrm{o}}}{\partial \mathrm{y}}\left(\mathrm{y}_{\mathrm{u}}(\mathrm{x})-\mathrm{y}_{\ell}(\mathrm{x})\right) \tag{A30}
\end{equation*}
$$

where $y_{u}(x)$ and $y_{\ell}(x)$ are the upper and lower boundaries of the cell. A11 cell boundaries are straight lines so that y_{u} and y_{l} are proportional to x. Moreover, let $\partial v_{o} / o y$ be approximated by the mean value of V on the boundary segment as determined by the Godunov scheme, divided by the mean y coordinate, Δy, of the segment. Therefore

$$
\begin{equation*}
\left(\frac{\partial v_{o}^{\partial y}}{}\right)_{j, \frac{1}{2}}=\frac{V_{j, \frac{1}{2}}}{\Delta y_{j, \frac{3}{2}}} \tag{A31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial v_{o}^{\partial y}}{}\right)_{j+\frac{1}{2}, 1}=\frac{v_{j+\frac{1}{2}, 1}}{\Delta y_{j+\frac{1}{2}, 1}} \tag{A.32}
\end{equation*}
$$

From Equation (A30) it is seen that

$$
\begin{equation*}
B_{j+\frac{1}{2}, \frac{1}{2}}=V_{j, \frac{1}{2}} \Delta x_{j, \frac{1}{2}}+V_{j+\frac{1}{2}, 1} \Delta x_{j+\frac{1}{2}, 1}-v_{j+1, \frac{1}{2}} \Delta x_{j+1, \frac{1}{2}} \tag{A33}
\end{equation*}
$$

with the definitions

$$
\begin{align*}
& \Delta x_{j, \frac{1}{2}}=\xi_{1}-\ell_{j, 1} \cos \theta_{1}-\xi_{0}+\ell_{j, 0} \tag{A34}\\
& \Delta x_{j+\frac{1}{2}, 1}=\left(\ell_{j, 1}-\ell_{j+1,1}\right) \cos \theta_{1} \tag{A35}
\end{align*}
$$

Equations (A33-A35) along with the modified definition of R in Equation (A12) permit the product $R B$ to be evaluated for cells adjolning the axis of symmetry. The definntions of Equations (A26-A28) along with R given in Equation (4) permit evaluation of the product in all other cells.

REFERENCES

1. Goldberg, L., "The Structure of the Viscous Hypersonic Shock Layer," GE TIS R 65-SD50, December 1965.
2. Hayes, W. D., and Probstein, R. F., Hypersonjc Flow Theory, Academıc Press, New York, 1959.
3. Ferri, A, Zakkay, V, and Tıng, L., "Blunt-Body Heat Transfer at Hypersonic Speed and Low Reynolds Numbers," J. Aerospace Sciences, Vol. 28, pp. 962-971, December 1961.
4. Kuby, W. C., "Use of the Method of Integral Relations for the Determination of the Convective Heat Flux to a Re-Entry Body," AIAA Journal, 4, No. 5, 947 (1966).
5. Godunov, S. K., Zabrodin, A. V., and Prokopov, G. P , "The Difference Schemes for Two-Dimensional Unsteady Problems in Gas Dynamics and the Calculation of Flows with a Detached Shock Wave," Translation from the Journal of Computing Mathematics and Mathematical Physics, Academy of Sciences, USSR, 1, No. 6, November-December, 1961, by T. Strelkoff (edited by M. Holt).
6. Bohachevsky, I. 0 , and Rubin, E. L., "A Direct Method for Computation of Nonequilibrium Flows with Detached Shock Waves," AIAA Journal, 4, No. 4, 600 (1966).
7. Lax, P. D., 'Weak Solutions of Nonlınear Hyperbolic Equations and their Numeracal Computation," Comm. on Pure and Appl. Math., 7 , No. l, 159-193 (1954).
8. Burstean, S. Z., "Fínite Difference Calculations for Hydrodynamic Flows Containıng Discontinuitıes," NYO-1480-33 (1965), AEC Computing --and-Applied Mathematics Center, Courant Institute of Mathematical Sciences, New York University.
9. Lax, P. D., and Wendroff, B., "Difference Schemes with High Order of Accuracy for Solving Hyperbolic Equations," NYO 9759 (1962), AEC Computing and Applied Mathematac's Center, Courant Institute of Mathematical Sciences, New York Unıversity.
10. Emery, A, F., "An Evaluation of Several Differencing Methods for Inviscid Fluid-Flow Problems," Sandia Corporation, Livermore Laboratory, March 1967.
11. Rusanov, V., "Calculatzon of Interaction of Non-Steady Shock Waves with Obstacles," Natınal Research Council of Canada, Translation No. 1027, 1962.
12. Moretti, G. and Abbett, M., "A Time Dependent Computational Method -- for Blunt Body Flows," AIAA Journal, 4, No. 12, 2136 (1966).
13. Courant, R. and Friedrichs, K. O., Supersonic Flow and Shock Waves, (1948) Intèrscience Publushers, Inc., New York.
14. Bailey, H. E., "Equilibrıum Thermodynamic Propertıes of Three Engineerıng Models of Martian Atmosphere," NASA SP-3021 (1965).
15. Korobkın, I. and Gruenewald, K. H., "Investigation of Local Laminar Heat Transfer on a Hemisphere for Supersonic Mach Numbers at Low Rates of Heat Flux," J. Aero Sci., 24 (3), 188 (1957).
16. Kentall, J. J., Jr., "Experiments on Supersonic Blunt Body Flows," Progress Rept. 20-372, Jet Propulsion Lab, California Instrtute of Technology, Pasadena, Calıf. (Feb. 1959).
17. Boison, J. C. and Curtiss, H. A, "An Experımental Investigation of Blunt Body Stagnation Point Velocity Gradient," ARS Journal, 29 (2), 130 (1959).
18. Korkran, "Stagnation Point Velocity Gradient on Two Dímensional and Axisymmetric Bodies in Hypersonic Flow," ARS Journal, 32 (12), 1924 (1962).
19. Li, T. Y. and Geiger, R. E., "Stagnation Point of a Blunt Body in Hypersonic Flow, " JAS, 24 (1), 25 (1957).
20. Mangler, K. W., "Some Special Aspects of Hypersonic Flow Fields," Journal Roy, Aero. Soc., 63, 508 (Sept. 1959).
21. Belotserkovskir, 0. M., (editor), Supersonic Gas Flow Around Blunt Bodies, NASA Technical Translation F-453, June 1967.
22. Hoshizaki, H., 'Heat Transfer in Planetary Atmospheres at Super-Satellite Speeds," ARS Journal, pp. 1544*1552, October, 1962.
23. Scala, S. M., and Gllbert, L. M., "Theory of Hypersonic Lamanar Stagnation Region Heat Transfer in Dissociating Gases," G.E. R63 SD40, April 1963.
24. Kuby, W. C., S. R. Byron, R. M. Foster, R. F. Hoglund, and M. Holt, "Analysas of the Project Fare Re-entry Package Flow Field," Aeronutronic Report U-3020, (1964).
25. Lees, L., "Laminar Heat Transfer over Blunt Nosed Bodies at Hypersonic Speeds," Jet Propulsion, Vol. 26, April 1956, pp. 259-269.
26. Cheng, H. K., "The Blunt Body Problem in Hypersonac Flow at Low Reyrolds Numbers," Corne11 Aeronautical Lab Report, AF-1285-A-10, 1963.
27. Olıver, R. C., Stephanou, S. E., and Baier, R. W., "Calculating Free-Energy Minimization," Chem. Eng., 121 (Feb., 1962).
28. Hildenbrand, D. L., "Study of Metal Additives for Solid Propellants Tables of Thermodynamac Data for Performance Calculations," Aeronutronic Publication No. C-623 (1959).
29. Thomas, G. M., and Menard, W. A., "Experımental Measurements of Nonequilibrium and Equilibrium Radiation from Planetary Atmospheres," AIAA Journal 4, 227 (1966).
30. Mann, R. P., and Bauer, E., "Opacities of Carbon~Anr Mixtures at Temperatures from $3000^{\circ} \mathrm{K}$ to $10,000^{\circ} \mathrm{K}$, "Aeronutronac Report U~3046 (1965).
31. Main, R. P., and Bauer, E., "Equilıbrium Opacıtıes of Selected Materials at High Temperatures," Aeronutronic Report No. U-3304(1965).
32. Keck, J. C., et.al., Annals of Physics 7, 1 (1959). Patch, R. W., W. L. Shackleford, and S. S. Penner, J.Q.S.R.T. 2, 263 (1962).
33. Herzberg, G. H., Spectra of Diatomic Molecules, 2nd edition, D. Van Nostrand, Princeton, 1950.
34. Nichol1s, R. W., J. Chem. Phys. 24, 1104 (1956).
35. Bates, D. R., M.N.R.A.S. 112, 614 (1952). Nichol1s, R. W., J.Q.S.R.T. 2, 433 (1962). Spindler, Franck-Condon Factors Based on RKR. Potentials with Application to Radiative Absorption Coefficients, AVCO-RAD-TM-64-55 (September 1964).
36. Soshnikov, V. N., Soviet Physics-Uspekhi 4, 425 (1961). Nacholls, R. W., Ann. de Geophysique 20, 144 (1964). Wentank, T., Jr., et.al., Electronic Oscillator Strengths of Diatomic Molecules, AVCO-RAD-TM-64-33 (July 1964).
37. Mullaken, R. S., J. Chem. Phys. 7, 20 (1939). Mullaken, R. S., and C. A. Rieke, Reports on Progress in Physics VIII, 231 (1941).
38. Breeze, J. C., et.al., J. Chem. Phys. 42, 402 (1965).
39. Breeze, J. C. and C. C. Ferriso, J. Chem Phys. 41, 3420 (1964).
40. Breeze, J. C. and C. C. Ferriso, "Integrated Intensity Measurements on the Fundamental and First Overtone Band Systems of $C O$ between 2500 and $5000^{\circ} \mathrm{K}$, "General Dynamics/Convair Space Scıence Laboratory Report GD/C-DBE 65-007, May 1965.
41. Finkelnburg, W. and Peters, Th., "Kontinuerliche Spektren," in S. Flugge (ed.), Handbuch der Physik Vol. XXVIII, Springer, Berlin, 1957.
42. Keck, J. C., R. A. Allen, and R. L. Taylor, J.Q.S.R.T. 3, 335 (1963). Taylor, R. L., "Continuum Infrared Radiation from High Temperature Air and Nitrogen," AVCO-Everett Research Report 154 (1963)
43. Bates, D. R., et.al., Proc. Roy. Soc. Al70, 322 (1939).
44. Camac, M., "CO 2 Relaxation Processes in Shock Waves," AVCO Everett Research Report 194 (1964).
45. Wray, K. L., T. S. Freeman, J. Chem. Phys. 40, 2785 (1964).
46. Mayer, J. E., M. G. Mayer, Statistical Mechanics, John Wiley, New York (1940).
47. Wilson, J., "Ionization Rate of Air behind High Speed Shock Waves," AVCO Everett Research Report 222 (1965).
48. Massey, H.S.W. and E.H.S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford (1952).
49. Bennett, W. R., Jr., P. J. Kindlmann, Bull. Am. Phys. Soc. 8, 87 (1963).
50. Wray, K. L., J. D. Teare, in Atomic Collision Processes, ed. M.R.C. McDowel1, North-Holland, Amsterdam, 1123 (1964).
51. Treanor, C. E., "A Method for the Numerical Integration of Coupled First Order Differential Equations with Greatly Different Tme Constants," Cornel1 Aero. Lab. Report No. AG-1729-A-4 (1964).
52. Curtiss, C. F., and J. O. Hirschfelder, Proc. Nat. Acad. Scı. 38, 235 (1952).
53. McKenzie, R. L. and S. O. Arnold, "Experimental and Theoretical Investigations of the Chemical Kinetics and Non-equilibrıum $C N$ Radiation behind Shock Waves in $\mathrm{CO}_{2}-\mathrm{N}_{2}$ Mixtures, "AIAA Preprint 67-322, presented at AIAA Thermophysics Specialist Conference, New Orleans, Lounsiana, April, 1967.
54. Fay, J. A. and F. R. Riddell, "Theory of Stagnation Point Heat Transfer in Dissocaated Air," J. Aero. Sci. 25, 73 (1958).
55. Thomas, G. M. and W. A. Menard, AIAA Journal 4, 227 (1966):
56. Wilson, L. N., "Inflections in Bow Shock Shape at Hypersonic Speeds," AIAA Journal, 5 (8), 1532 (1967).
57. Wurster, W. H., C. E. Treanor, and H. M. Thompson, J. Chem. Phys. 35 2560 (1962).
58. Jeunehomme, M., "Transition Moment of the First Positive System of Nitrogen, " (Unpublıshed).
59. Gilmore, F. R., Approximate Radiative Properties of Alr between 2000 and $8000^{\circ} \mathrm{K}$, RAND Corporation RM-3997-ARPA, (March, 1964).
60. Jeunehomme, M., "Oscillator Strength of the First Negative and Second Positive Systems of Nitrogen, " (Unpublished).
61. Wray, K. L., and T. J. Connolly, J.Q.S.R.T. 5, 633 (1965).
62. Ory, H. A., J. Chem. Phys. 40, 562 (1964).
63. Hesser, J. E. and K. Dressler, Ap. J. 142, 389 (1965).
64. Bennett, R. G., and F. W. Dalby, J. Chem. Phys. 36, 399 (1962).
65. Reis, V. H., J.Q.S.R.T. 5, 585 (1965).
66. Jeunehomme, M., J. Chem. Phys. 42; 4086 (1965).
67. Hicks, W. T., "Spectroscopy of High-Temperature Systems," Unıv.. of Calif. Rad. Lab. Rept. 3696 (1957).
68. Sviridov, A. G., N. N. Sobolev and V. M. Sutovskil, J.Q.S.R.T E, 525 (1,965).
69. Clementi, E., Ap. J. 132; 898 (1960).
70. Bennett, R. G. and F. W. Dalby, J. Chem. Phys. 32, 11 (1960)..
71. Nicholls, R. W., Canad. J. Phys. 43, 1390 (1965).
72. Herzberg, G., Infrared and Raman Spectra of Polyatomic Molecules,
D. Van Nostrand, Princeton 1945.
73. Griffing, V., K. V. Laidler, 3rd Symposium on Combustion, Madison, Wisconsin.
74. Hıldenbrand, D. L., "Study of Metal Additives for Solid Propelllantis Tables of Thermodynamic Data for Performance Calculations," Aeronutronic Report No. C-623 (1959).
75. Berkowitz, J., J. Chem. Phys. 36, 2533 (1962).
76. Davies, W. 0., "Carbon Dioxide Dissocıation at 6000° to $11,000^{\circ} \mathrm{K}$," 43, 2809 (1965).
77. Lin, S. C., J. D. Teare, Phys, of Fluads 6, 355 (1963).
78. Byron, S., J. Chem. Phys. 44, 1378 (1966).
79. Wray, K. L., Progress in Astronautics and Rocketry 7, F. R. Riddell, Ed., Academac Press, 181 (1962).
80. Presley, L. L., C. Chakerıan, Jr., and R. Watson, "The Dissociation Rate of Carbon Monoxide between $7,000^{\circ}$ and $15,000^{\circ} \mathrm{K}$, "AIAA Preprint 66-518, presented at 4 th Aerospacë Sciences Meeting, Los Angeles, June, 1966.
81. McKenzie, R. L., Proc. AIAA-AAS Stepıng Stones to Mars Meeting, Baltimore (1966).
82. J. Nichols and E. Nierengraten, "Aerodynamic Characteristics of Blunt Bodies," JPL TR 32-677, November 1964. Schlieren photo taken in conjunction with this work.
