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ABSTRACT
 

Numerical methods to determine the flow field around blunt bodies
 

traveling at hypersonic speeds in planetary atmospheres are presented.
 

The state and motion variables and the convective and radiative heat
 

transfer are determined for both equilibrium and non-equilibrium flow
 

models. The flow model is chosen to be applicable to conditions en­

countered in typical out-of-orbit and hyperbolic Martian entry tra­

jectories where maximum stagnation point convective and radiative heat
 

transfer occurs. For the conditions of interest, the coupling between
 

the inviscid region, the viscous region, and the radiative transfer is
 

significant, and is included through simplified engineering approximations
 

Numerical results are presented for equilibrium and non-equilibrium flow
 

over a sphere-cone having a base diameter of 12 ft, and moving at 19,600
 
ft/sec in a 70% N2, 30% CO2 atmosphere at an ambient density of 10-6
 

slugs/ft3 . Results are also given for non-equilibrium flow over a sphere­

cap at the same flight condition.
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SECTION 1
 

INTRODUCTION
 

The flight conditions and the planned vehicle shapes for Martian entry
 

pose a number of problems in making satisfactory flow field predictions.
 

Because of the low ballistic coefficient vehicles, peak heating occurs at
 

low ambient density, which leads to a relatively thick viscous region.
 

The high emissivity of C02-N2 mixtures leads to significant radiative
 

heat transfer. Because of the low ambient density, much of the gas in
 

the shock layer is out of equilibrium and produces larger radiation emission
 

than would be produced if the gas were at equilibrium. Finally, because of
 

the low density and high emissivity, the radiation losses from the shock
 

layer gas lead to a reduction in gas enthalpy. To carry out the desired
 

flow field calculations, the flow model must include all of these physical
 

effects, but it should not become unnecessarily complicated. Thus we have
 

chosen the simplest methods of calculation that retain the essential
 

physical information.
 

A survey of applicable theoretLical and experimental low Reynolds number
 

shock layer studies indicates a wide variation in the method of solution,
 

the gas models, and the assumed free stream conditions with a corresponding
 

large variation in the predicted magnitude of "rarefied regime" effects.
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At present one of the most general and yet definitive studies of rarefied
 
1
 

gas regimes is that given by Goldberg. In this study, non-similar hyper­

sonic continuum flow field sphere-cap solutions were obtained for a flow
 
2
 

model which is applicable through the incipient merged layer regime. An
 

examination of the results of References I and 3 indicates that for the
 

shock layer Reynolds numbeisof interest in this study, viscous and conduc­

tion effects due to velocity and temperature gradients at the shock and
 

in the inviscid shock layer can be neglected. Thus, Rankine-Hugoniot
 

shock relations and inviscid shock layer equations can be used to calculate
 

the flow field. It also is assumed that the vehicle wall is-cold in this
 

study and, thus, the boundary layer displacement thickness is small and the
 

inviscid shock shape and body pressure distribution are not affected
 

appreciably by the boundary layer.
 

For the flight conditions given in this study, the low Reynolds number
 

results 1'3 predict greatet convective heat transfer rates than are obtained
 

from the classical discontinuous shock - inviscid shock layer - thin
 

boundary layer theory. This increase in heat transfer is primarily due
 

to the shock layer vorticity induced by the curved bow shock. The effect
 

of vorticity can be incorporated in conventional boundary layer theory,
 

however, as long as the proper boundary layer edge velocity conditions
 
3
1'
are used.


In computing radiative heat transfer it is apparent from shock tube data
 

that for the flight conditions under study much of the gas in the shock
 

layer is out of equilibrium. However techniques for computing non­

equilibrium radiative heat transfer aie not yet well developed. Thus it
 

is desirable to carry out equilibrium calculations as well; although an
 

equilibrium flow model is less realistic here, the accuracy of the
 

numerical results is greater. In Section 2 below, the equilibrium flow
 

model is described and in Section 3 the non-equilibrium model is set
 

forth. The numerical results are given in Section 4.
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SECTION 2
 

EQUILIBRIUM FLOW
 

2.1 INVISCID ANALYSIS
 

It was originally planned to use the first approximation method of integral
 

relations computer program to determine the inviscid flow properties. A
 

number of modifications in the analysis vere needed, however. As these
 

were investigated, it became apparent that several difficulties could not
 

be overcome satisfactorily. The major problem with the first approximation
 

integral relation solution is that, at the low specific heat ratios which
 

are representative of the equilibrium case, the 600 cone shock layer thick­

ness is significantly overestimated. This difficulty is illustrated further
 

in Section 4.1. It was also found that the stagnation point velocity
 

gradient was not determined accurately by the one strip integral method
4
 

and that attempts to infer this quantity from the numerical results were
 

unsuccessful. Furthermore integration of the inviscid flow equations
 

through the transonic region was found to be very difficult and could not
 

be carried out satisfactorily. Thus an alternative and, fortunately, more
 

accurate method was applied to this problem. This method was under develop­

ment at the time the present program was planned.
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The method has been developed here for the computation of either planar
 

or axisymmetric blunt body flow fields. For steady flow fields the formula­

tion of the problem is direct in the sense that the body is given and the
 

shock wave computed. Steady flows are computed as the large time limits
 

of transient flows. The time dependent equations of motion are solved by
 

a finite difference technique. The stable, explicit finite difference
 

approximations are determined by a method proposed by Godunov, Zabrodin
 
5
 

and Prokopov.
 

An initial condition in the form of velocity components, density, pressure
 

and internal energy plus kinetic energy is specified on a mesh covering.
 

the region of integration. This initial data is in theory arbitrary, but
 

in practice is specified by a steady, constant y flow field. The amount 

by which the data does not satisfy the steady equations of motion determines 

the time derivative of the flow field. The time derivative then determines
 

new values of the flow variables in each cell of the mesh. In this manner,
 

the flow field evolves in time, subject to the conservation laws, from the
 

specified initial conditions.
 

The boundaries of the mesh are dependent on the method by which the bow
 

shock is treated. It has been common practice in finite difference
 

computations to ignore the existence of shock waves and leave their treat­

ment to the finite difference scheme itself. The computed shocks are
 

represented by smooth but rapid transitions of flow variables over a
 

linear distance of nominally 5 to 10 mesh points. To adequately model
 

the flow variations, 5 mesh points should constitute a small portion of
 

the shock layer width, and commonly 50 to 100 points would he required
 

between the body and the upstream mesh boundary at which a uniform stream
 

condition is applied. Smeared shock calculations of this type have proved
 

to be quite feasible for blunt body flows, Bohachevsky6 has used Lax's
 

scheme, 7 Burstein8 used the Lax-Wendroff scheme,9 and Emery I0 compared
 

Rusanov's scheme1 1 with those of Lax and Lax-Wendroff.
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The alternative employed in this code is to retain the bow shock as a
 

discontinuous boundary of the region of integration. To achieve this
 

distribution of computational points, it is necessary to introduce a mesh
 

that always exactly fills the shock layer. The cells in the mesh expand
 

and contract as the standoff distance between the shock and body increases
 

or decreases as a function of time and position. The upstream boundary of
 

the mesh maintains the full jump in flow variables from the free stream to
 

the shock layer values immediately behind the shock. This type of mesh has
 

been widely used in the blunt body problem; in the time dependent form, see
 
2 5 1
 

Hayes and Probstein, Godunov, Zabrodin and Prokopov, Moretti and Abbett.
 

In additioiito the bow shock wave, the boundary of the region of integration
 

is composed of the x-axis, the trace of the body in the xy plane, and a
 

surface entirely embedded in the supersonic portion of the flow, across
 

which there is no upstream influence.
 

Given the upstream and body portions of the mesh boundary, the internal
 

mesh is constructed in the following manner. Straight line rays are
 

selected which intersect both the body and the upstream shock boundaries.
 

The ith ray makes an angle 91 with respect to the x-axis and intersects
 

the axis at the position x = I as illustrated in Figure 1. The rays
 

divide the shock layer into discrete intervals along the body. The first
 

of these rays is coincident with the x-axis, and the last forms the down­

stream boundary, immersed in supersonic flow.
 

The interval on each ray between the interaction with the upstream and
 

body boundaries is-divided into a fixed number of submntervals, say J.
 

Let ti represent the distance from the x-axis measured along the ray
 

9 
to the intersection of the ray and upstream-shock boundary, and J+l,.
 
denote the similarly measured body-ray intersections. Then the lengths
 

" 
lj+,,x and t3,. denote the inner and outer end points of the jth subinterval
 

in from the bow shock boundary.
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1 1 , I y 

d J l BODY 

_i " A- ~.-- °-"";" > 

FIGURE 1. MESH GEOMETRY FOR SHOCK LAYER AND
 
CELL j+1/2, i+1/2
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When the points -j, for fixed j are connected by sLraight line segments,
 
a polygonal interpolation curve running along the shock layer is obtained.
 

These interpolating polygons and the rays divide the shock layer into a
 

mesh of quadrilateral cells upon which the difference equations are
 

constructed.
 

The cell bounded by the ith and i+lst rays and the jth and j+lst transverse
 

interpolating polygon is denoted by ji+, i+2. Similarly, the interval on
 

the ith ray bounded by the intersections with the jth and j+lst inter­

polating polygon is denoted by j+ ,i. Finally the segment of the jth
 

interpolating polygon, j, i4+ is that segment running between the ith
 

and i+lst rays, see Figure 1.
 

2.1.1 FINITE DIFFERENCE EQUATIONS
 

The differential conservation laws will be used in the form
 

ft + PX + Qy + y IR t 0 (1)
 

The quantities f, F, Q, R are the following vector valued functions
 

pu
 

P] (2)
 

21
 
pu +p 

P(f) 
= puv
 

PU-+up (3)
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Puv 

Q(f) = 2+p 

pve+vp (4) 

pv
 

p uv 
R(f) k 2 

pv
 

£
pv(e + (5) 

where k 0,1 for plane and axisymmetric problems respectively and
 

e = e(p,P) + (u2+v2 ) is the internal plus kinetic energy.
 

The difference equations are generated by integrating Equation (1) over a
 

cell Q(t), whose boundaries are time dependent due to the floating mesh,
 

and from initial t3me t to t +T. The Integrated form reads
 
0 0 

t +T 
0
 

if f(x,y,t +T)dxdy f'f(x,y,t0)dxdy +Jf dt tf f(x,y,t)V nd 
£(t0+T) I 0(to) to 0(t) 

- O(Pdy - Qdx) - ) (6)t J 1 R(x,y,t)dydx) 

where 6Q is the boundary of % and V represents the component of the
n 
boundary velocity in the outward normal direction. This equation is to be
 

evaluated to first order in smallness of time step r and altitudes hx,hy
 

of the cell 0. The derivation of the finite difference equations is
 

completed in Appendix A.
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2.1.2 SOLUTION OF DIFFERENCE EQUATIONS AND EQUATION OF STATE
 

An equation of state must be added to finite difference Equations (A13)
 

to (A16) before a computation can be carried through. For equilibrium
 

runs, an Ames polynomial fit to the equation of state of a 30% CO2-70%
 

N2 mixture was employed.
14  The polynomials provide the internal energy,
 

e, and sound speed, a, as a function of p and p. However P and e are the
 

thermodynamic variables determined at the new time by the conservation
 

laws. Thus some iteration process is necessary to determine p accurately
 

at each time. This iteration can be done simultaneously with the flow
 

field's approach to steadiness in such a manner as to require no addi­

tional evaluations of the polynomials.
 

The initial thermodynamic data in the cells is specified by p(O) and p(o).
 

From this data the internal energy e is determined from the Ames tables.
 

The ratio r(o) is defined by
 

r (o) - ( (7) 

P(o)-(o) 

(n) (in)-(n) (n)
 
At the nth time step, the quantities pn, p e and r are
 

determined from these same quantities at the n-is t time step in the
 

following manner. The conservation laws will provide the quantities p(n)
 

n ,
and e from (n-l) (n-l) and p(n-l) The new pressure will be given by
 

p(n) = (n-l)P(n)e (n) (8)
 

The Ames tables will give e(n) as a function of p(n) and p(n) and the
 

ratio r(n ) follows as
 

(9)
 
(n)
r(n) ­

(n)-(n)
 

When steadiness of the flow field is achieved p(n-i) (n) (n-i) = (n) 

and e(n-1) = e(n) From Equation (8) e(n) = a(n) and hence a consistent 

answer is achieved on convergence. The convergence of this scheme depends
 

upon the polynomial coefficients in the Ames tables. Qualitatively
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convergence is achieved since the quantity r varies very slowly with any of
 

the thermodynamic quantities. Over the entire flow field r will vary by
 

more than 1% over a time step. Thus the p(n-l)
about 20% and by no 


predicted by Equation (8) will be quite accurate for use in the conserva­
(n) - (ntion laws and e and e(n) will not differ appreciably.
 

2.1.3 FLUXES ACROSS CELL BOUNDARIES
 

The flow quantities on the cell boundary segments internal to the mesh
 

are given in Godunov's scheme by the solution of a related one dimensional
 

unsteady flow problem. The one dimensional problem is constructed using
 

the pressure, density and normal component of the fluid velocity relative
 

to the cell boundary velocity in the two cells adjacent to the segment.
 

These values are used to define the initial uniform states in a Riemann
 

problem, the general discontinuity separating two uniform fluid states.
 

This discontinuity evolves in time through left and right running
 

disturbances separated by a contact discontinuity. The full solution for
 

the properties is prescribed in Courant and Friedrichs.
1 3
 

As numerically demonstrated by Godunov, stability is maintained, even
 

when computing through a shock, when the solution of the Riemann problem
 

is linearized with respect to small differences across the discontinuity.
 

Then any rarefaction disturbances have negligible width and the cell
 

boundary lies in one of four constant state regions: (1) to the left of
 

the left running disturbance, (2) between the left running disturbance
 

and the contact surface, (3) between the contact surface and the right
 

running disturbance, (4) to the right of the right running disturbance,
 

see Figure 2. Note that the t axis is the position of the cell boundary.
 

If the disturbances propagate so that the t axis is located in regions (1)
 

or (4), the cell boundary lies in undisturbed fluid. The pressure, density
 

and velocity components on the boundary are equal to the quantities in the
 

cells corresponding to the initial left or right states. If the t axis
 

-10­
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CONTACT 
(2) DISCONTINUITY 

LEFT t 

RUNNING FRONT I 

w--O(2) 

w =_ 

n,r n,r 
(2) w(3)(3)PR 

=(3_) 

(3)UN RIGHT 
IN 

UNN I N G 
FRONT 

n,r (i) 
p­

+ (4)P-- n 

FIGURE 2. EVOLUTION OF DISCONTINUITY IN FLUID STATE
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is located in regions (2) or (3), the cell boundary lies behind a
 

disturbance, and the pressure and normal velocity component are determined
 

by expansion of the solution in Reference 13. Denoting the average of
 

the initial right'and left state by bars and the difference of the left 

from the right state by A's, permits the pressure and normal relative 

velocity components, w , in regions (2) and (3) to be written as 

p(2) = p =- mAw /2 + 0(1%) (10)
n~r
 

ap/2m + 0(A
w (2) = w (3) = w c~ 2) (1)
 
n,r n,r n,r
 

---- g2
 

m = p a + 0(A ) (12)
 

where a is the sound speed evaluated at p, p. The entropy s is constant
 

across the disturbances
 

s(1) = (2) (13)
 

(3 )  (4 )  
s 2 (14)
 

The pressure on the cell boundary has the value p(2), and the normal
 

component of the fluid velocity relative to the boundary velocity is
 
(2)


w . The density on the cell boundary is determined by the knownn~r 

values of pressure and entropy, and the fluid velocity component tan­

gential to the cell boundary has a value equal to those in regions (1) 

and (L) depending on whether the t-axis lies to the left or right of the 

contact discontinuity. 

2.1.4 BOW SHOCK BOUNDARY CONDITIONS
 

At the beginning of a time step, say to, each bow shock segment separates
 

a cell containing a uniform state of fluid from the free stream. Let the
 
+ + + + 

state in the cell bordering the bow shock be denoted by p , p , w t
 
+ + 

where wn , w t are the components of the fluid velocity resolved normal 
+ 

and tangential to the bow shock segment. The jump in the properties p 

P ,w n to the free stream values p., P , q~n can be viewed as a Riemann
 

-12­



problem in a coordinate n normal to the segment of the bow shock, with
 

n > 0 directed downstream and n < 0 upstream. The left running disturbance 

must be identified with the actual bow wave. The right running dis­

turbance carries the informstion of the bow wave's motion during the 

ensuing time interval into the first cell.. 

For the bow shock, if
 

m = 1[ cdP)(/IP IPcd)] 2 (15) 

then the momentum equation is
 

w nm +p =w =Pcd (16) 

and the Hugoniot relation is
 

-
e-d - ed =(P + p ) (1/p - i/Pd) (17) 

cd e cd
 

The right running disturbance on the other hand is weak and travels with
 
+
 

the sound speed, a , into the interior of the cell. Then
 

m = (18)
 

is known explicitly. The momentum balance across this disturbance is 

4- ++ + 

wn,cd + Pcd - wn m + p (19) 

Equations (15)-(19) can be iterated to determine the pressure and normal
 

velocity on the contact surface, pcd and wn,cd which determine in turn
 

the quantities R, U, V, P, E to be used in Equations (A13) through (Al6).
 

If the cell under consideration is 3/2, i+ the fluxes are to be determined
 

from
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Rl+ Pd 

(Wndl,i+ = Wd 

(Wt) ,i+ = qcosa 1,i
1
 

(20)
Rl,i~+ =Pd 


where l,i+ is the angle of the bow shock segment 1, i+ relative to the
 

free stream direction. The velocity of the bow wave, V, can be found,
 

after m is known, from the mass conservation principle
 

Pw(qn - V) = m (21) 
,n
 

2.1.5 MESH DEFORMATION DURING TIME STEP
 

Since the upstream boundary of the mesh is the only portion of the boundary
 

that moves, the deformation of the mesh during the time increment follows
 

from the analysis of the preceding section. If V. is the velocity of the
 
1
 

intersection of the shock with the ith ray inwardly directed, then the
 

mesh deformation will be determined by the differential equation
 

d v. (22)
 

dt
 

After each segment of the bow shock is allowed to move parallel to itself
 

during the increment T, the shock, though continuous initially, would not
 

end up continuous. What was neglected above was the angular velocity of
 

rotation of the segment, l + Let V denote the shock velocity for
 

the shock segments just above and below the ray i. The V,+, of course
 

are the V determined previously for the two cells. From Figure 3 it is
 

seen that Vi can be expressed in two ways one relative to the lower ray,
 

the other relative to the upper. It follows that
 

Vi - dli+ "dl'l+ 

VI sin(al +9 + 2sin(ul~ )
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where the lower or upper signs are used consistently throughout the
 

expression and dl,i+4 are the lengths of the bow wave segments above and
 

below ray i. If the expression with the upper sign is multiplied by
 

sin(o . +9.) sin(a1 - d and the expression with lower sign by dl­

and the resulting expressions added, then Vi can be expressed as
 

V.?d i-P dl,1+- + V I-dl 'i­

Sdl,i sin(al,i+ +4i) + dli+ sin(al. +i) 

+ (dli+ -1i~ ) •(dl,1) (23) 

6
where only the order of the coefficient of (d1 -6 l ) is indicated.
 

The first term on the right is seen to be 0(l) while the last term is
 
0(d2 i+) = 0(h2 ) and is to be neglected in a first order scheme. Thus
 

I Oh)
di+) 

the motion of the shock node on each ray is determined by the motion of
 

the segments adjacent to that ray. The shock shape after T is found by
 

connecting the new nodal locations. The internal mesh deformation is
 

subsequently found by interpolation on each ray with respect to the new
 

standoff distance found from Equations (22) and (23).
 

2.1.6 BODY BOUNDARY CONDITION
 

The cells J+ , i+ bordering the body satisfy the condition of zero
 

normal velocity on their body boundary J=l, i+-2. Let the cell state be
 
+ ± ± ++ +
 

denoted by p , p w , w t where w n Wt are the fluid velocity com­

ponents normal and tangential to the body. Since the body boundary is
 

stationary, the normal velocity condition is satisfied if a reflecting 

cell located immediately inside the boundary is imagined with state p = 

p ' p = wt =w w n= wn 

+
Since m = -m by Equation (25), Equations (26) and (29) require that
 

wn d = 0 which is the zero normal velocity condition. The pressure at 

the wall boundary is
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+p+ 	 (24)
Pcd wn m 


This Riemann problem features a contact discontinuity which remains
 

coincident with the body boundary.
 

2.1.7 	 EVALUATION OF THE ACCURACY OF THE INVISCID ANALYSIS
 

The accuracy of the method given here to compute inviscid flows has been
 

evaluated by carrying out several test calculations. In Figure 4, the
 

surface pressure on a sphere in a M = 4.0, y = 1.4 free stream is compared
 

with two other numerical calculations. The results of the present code
 

contain some scatter, but the deviation from Belotserkovski's third
 

approximation, scheme I, integral solution is less than 3%. A further
 

confirmation of this estimate of the accuracy is that in the fine and coarse
 

mesh comparisons of the blunt cone in an ideal gas the surface pressure on
 

the cone differs by 2%.
 

A shock shape comparison with data is shown in Figure 5. On the conical
 

portion the computed shock shape lies outside the data by less than 5%.
 

However in the stagnation region it is difficult to make an accurate
 

assessment from the photograph. In this region, comparison between the
 

fine and coarse mesh computation of the blunt cone flow field again provides
 

the error estimate. The coarser mesh is larger by 3.1% than the fine mesh
 

value for y = i.i. The density along the entire stagnation streamline
 

for the coarse mesh lies about 5% below the values for the f ine mesh. If
 

we assume a linear truncation error which is of order 3 to 5% when the mesh
 

width is reduced by , then the fine mesh results lie within 3 to 5% of
 

the actual values with no truncation error and the coarse mesh values lie
 

within 6% to 10% of the actual values.
 

The accuracy of the stagnation point velocity gradient was estimated during
 

the checkout phase of the finite difference program by comparison with
 
2 1
 

existing data, 15,16,17 correlations,18,19 and numeiical solutions.20'


Spheres in an ideal gas stream with y = 1.4 at Mach numbers of 4.0, 5.0,
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8.0, and 10.0 were computed as the check cases. For these runs, the shock
 

layer was covered by a mesh with 7 cells across the layer and 60 increments
 

along the surface. In Figure 6, a compilation of these results is pre­

sented, in which it is seen that the stagnation point velocity gradient
 

computed by the Aeronutronic program lies well within the scatter of data
 

for Mach numbers less than 5.0. There is a serious scatter between data
 

correlation and theory at Mach numbers greater than 5.0. However, the
 

Li-Geiger correlation formula, the two Belotserkovskii integral relations
 

solutions (second approximation, scheme I and fifth approximation,
 

scheme III), Manglers inverse method calculation and the Aeronutronic
 

Godunov type program scatter less than 5% at these larger Mach numbers.
 

The Belotserkovskii and Mangler results are inherently the most accurate,
 

in which case, the Godunov finite difference program produces results about
 

2-4% too low.
 

For the 60 blunt cone shape, an ideal gas computation was performed to
 

give initial conditions for the required equilibrium solution. Two meshes
 

were used both of which had 7.50 intervals on the spherical portion while
 

3 and 6 cells were taken across the layer. The free stream conditions
 

were specified by a Mach number of 20.0 and y = 1.1. The coarse mesh 

computation gave 

R 
o-q = .366 , y = 1.1 

q 6s 0,3
 

while the fine mesh yielded
 

(2) 
 = .372 ,Y=l.l 
q s 0,6 

These results agree closely with the value predicted by the constant
 

density solution for a sphere
 

= - = .365 
0,10 5s3 p2 
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This agreement with the asymptotic sphere values reflects the weak
 

upstream influence of the conical surface in the y = 1.1 case. Since a
 

60 cone possesses an attached hypersonic shock layer solution, the only
 

upstream influence of the conical portion is due to a narrow entropy layer
 

at the surface. For a larger effective 'y or larger cone angle, this
 

phenomenon would not occur and a serious divergence between the spherical
 
20
 

prediction and the actual computed value would arise. The Li-Geiger
 
19 
correlation is in error at the large density ratios encountered here
 

as it has the wrong 9symptotic limit as y - 1. Its predicted value is
 

.315.
 

The equilibrium computation provided a stagnation point velocity gradient
 

of
 

ds 0, equil 38 0 34 e 

where the mesh is the coarse mesh in the preceding paragraph. This value
 

corresponds to a constant density shock layer on a sphere with effective
 

y = 1.125, in agreement with the ratio h/e computed in the flow field.
 

The error in this computed value of the stagnation point velocity gradient
 

is estimated at less than 5%. This error is based on the average 3% error
 

between the y = 1.4 computations and those of Mangler and Belotserkovskil
 

and the 1-2% difference noted between the fine and coarse mesh values.
 

2.2 CONVECTIVE HEAT TRANSFER ANALYSIS
 

The convective heat transfer calculations are complicated by the presence
 

of low Reynolds number effects, significant quantities of CO2 in the
 

boundary layer, and dissociation and ionization effects. The following
 

paragraphs outline the analytical methods, including the above considera­

tions, which were utilized in this study.
 

In the discussion of the flow model in the introduction it was concluded
 

that low Reynolds number effects are primarily manifested as vorticity
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corrections to conventional boundary layer theory. At the stagnation
 

point and on the spherical portion of the sphere-cone and the sphere-cap,
 

the vorticity interaction effects have been calculated by using the method
 

presented in Reference 3 and by utilizing the low Reynolds number sphere­

cap solutions given in Reference 1. The method of Reference 3 is a solu­

tion to the boundary layer equations in which the slope of the boundary
 

layer velocity profile is matched with the slope of the inviscid velocity 

profile for equal mass flow rates. The input parameters required to ob­

tain a solution are the body Reynolds number, Re = Po 2 (u/Ox)/t 00 

and the normal velocity gradient, (u/uQ) /(y/RN), These parameters are
 

given by the inviscid flow field solution. It was found that the method
 

of Reference 3 and that of Reference I both give essentially the same
 

results, but that some care must be taken when using the latter results.
 

The low Reynolds number results of Reference I are presented as a ratio
 

of the low Reynolds number heating to the classical boundary layer heating
 

and are correlated in terms of shock density ratio and Reynolds number.
 

The results of the correlation are shown in Figure 7. The classical
 

boundary layer solution used to make the low Reynolds number heat transfer
 

results non-dAmensional is based on modified Newtonian boundary layer edge
 

properties. High density ratio (ps/p.) inviscid shock layer property
 

results can differ considerably from modified Newtonian results. Thus
 

the deviation of the low Reynolds number heat transfer from the so-called
 

classical boundary layer result given in Figure 7 includes not only low
 

Reynolds number effects, but also inviscid property effects.
 

In addition to low Reynolds number effects, the effect of significant
 

concentrations of CO2 in the ambient gas must be considered in the
 

convective heat transfer calculations. Numerous theoretical and experi­

mental studies of stagnation point convective heat transfer in N2-C02
 

gas mixtures of interest in planetary entry have been made. The general
 

result is that convective heat transfer increases as the percentage of
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2 
CO is increased. Predictions of the magnitude of the increase vary con­

23
 
siderably, however. In this study the results of Scala and Gilbert have
 

been used to account for the ambient gas composition. In their analysis, an
 

extensive number of gas mixtures has been studied, and their results provide
 

a reasonable upper bound on the effects of CO2 on convective heat transfer.
 

The correlation results of Hoshizaki2 2 have been utilized to compute the
 

stagnation point convective heat transfer, including the effects of dissocia­

tion and ionization. The theory is applicable to either frozen or equilibrium
 

chemistry boundary layers and the results are correlated in terms of shock
 

properties and the inviscid flow stagnation point velocity gradient The re­

sults of the analysis correlate closely to the existing experimental data.
 

The blunt body wall has been assumed to be perfectly catalytic, and, for the
 

flight velocities of interest in this study, the convective heat transfer is
 

insensitive to the degree of non-equilibrium in the dissociated boundary layer.
22
 

The correlation of the numerical solutions given in Reference 22 in terms of
 

flight conditions is accurate to +1.5% in the flight velocity range of interest
 

in this study The correlation formula in terms of stagnation point velocity
 

gradient is given as
 

2 " U 0 1. 6 9 dv T 0.4 
qs(BTU/ft2sec) = 4.32 x 10 W)1 [- PLa( T (25)

10,090Q5 ds w w 50-0)(5 

where U. is the free-stream speed in ft/sec, dv/ds is the stagnation point

-i 

velocity gradient in sec , pw is the density of air at the body surface in
 

slug/it 3, iw is the viscosity of air at the body surface in slug/sec-ft, and
 

T is the body surface temperature in OK. A body surface temperature of 3000K
w
 

is assumed for the present calculations.
 

The heat transfer distribution around the body can be calculated by con­

ventional boundary layer theory, as long as the appropriate boundary
 

layer edge conditions are used. 3 For the flight conditions given in
 

this study, the shock layer Reynolds number based on the blunt cone nose
 

cap radius is approximately 9,000. At this Reynolds number, the boundary
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layer thickness in the nose region is approximately 15% of the shock layer
 

thickness. Since the boundary layer is a significant percentage of the
 

shock layer thickness, the proper boundary layer edge conditions differ
 

considerably from those given by inviscid flow body properties. The
 

magnitude of the velocity at the edge of the boundary layer is increased
 

due to the shock curvature induced vorticity and can produce a significant
 

increase in the convective heat transfer. The viscous and conduction
 

effects due to velocity and temperature gradients in the shock layer,
 

however, have a small effect on convective heat transfer at the wall and
 

can be neglected. It should also be noted that the vehicle wall has been
 

assumed to be cold, and the boundary layer displacement thickness and its
 

interaction with the inviscid flow field is negligible.
 

Based on a transition momentum thickness Reynolds number criterion of 250,
 

the boundary layer will be laminar for the vehicles considered in this
 

study. The laminar heat transfer distributions have been calculated by
 

Lees' local similarity solution.2 5 The Lees' method gives the ratio of
 

the local heat transfer at a body station to the stagnation point value
 

as a function of the local density-viscosity product and velocity at the
 

edge of the boundary layer. Cheng2 6 and Ferri3 have shown that, for
 

spherical bodies at shock layer Reynolds numbers given in this study, the
 

effect of vorticity on the laminar heat transfer distribution is approx­

imately constant over the entire sphere cap. Thus, the inviscid body
 

properties on the sphere-cap can be used in the method of Lees and the
 

vorticity correction is obtained implicitly when the non-dimensionalized
 

heat transfer distribution is multiplied by the low Reynolds number stag­

nation point heat transfer result.
 

Lees' analysis is also used to calculate the heat transfer distribution
 

aft of the sphere-cone junction, but the inviscid properties at the edge
 

of the boundary layer, rather than the vehicle wall, are used in the cal­

culation. For the sphere cone cases, the edge of the boundary layer
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properties in the conical region differ considerably from the inviscid
 

body properties since the boundary layer edge extends a significant distance
 

into the shock layer.
 

Ideally, the boundary layer edge properties could be obtained by coupling
 

the boundary layer solution of Ferri et.al. 3 with the detailed inviscid
 

flow field results obtained in this study. Such a calculation requires
 

considerable formulation and computer programming, however, and a
 

simplified method that is estimated to deviate less than 5% from the more
 

exact analysis has been used. The boundary layer thickness in the conical
 

region of the flow is assumed to be the same percentage of the shock
 

layer thickness as the nose cap, namely 15%. The inviscid properties at
 

this station in the shock layer correspond almost identically to the
 

inviscid flow field properties calculated in the cells adjacent to the
 

body. The entropy region along the body induced by the blunt bow shock 1s
 

completely contained between the body and the first cell and, hence, is
 

swallowed by the boundary layer. Thus, the inviscid flow velocities at
 

the boundary layer edges are more closely characLerized by the conical
 

shock entropy rather than the blunt nose normal shock entropy.
 

2.3 RADIATIVE HEAT TRANSFER ANALYSIS
 

From the results of the inviscid analysis of Section 2.1 the pressure and
 

enthalpy of the gas throughout the inviscid portion of the flow field are
 

obtained. From this information, three operations are carried out in
 

determining the radiative heat transfer to the vehicle surface. The
 

gas temperature and composition are first determLned by the Aeronutronic
 

free-energy-minimization computer program at selected values of enthalpy
 

and pressure that cover the range of these variables in the flow field.
 

The resulting values of composition, temperature, and pressure are then
 

used in the equilibrium radiation opacity program to obtain spectral
 

absorption coefficients and radiation emission per unit volume. The
 

radiation emission from each cell in the flow field is thus tabulated.
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Finally the contribution of each cell to the radiation to selected points
 

on the vehicle is computed and summed over all of the cells. In this step
 

self-absorption is evaluated and appropriate corrections are applied.
 

Radiation cooling corrections and radiation-viscous layer coupling correc­

tions are then applied to obtain the final radiative heat transfer
 

distribution.
 

2.3.1 EQUILIBRIUM GAS COMPOSITION
 

The free-energy minimization technique used at Aeronutronic to determine
 

equilibrium gas properties has been described by Oliver, Stephanou, and
 
27
 

Baier, and is now a commonly used method. The detailed thermodynamic
 

properties of the major species used have been tabulated by Hildenbrand,
2 8
 

and have been maintained current with the JANAF Tables. For planetary
 

atmosphere calculations, the program includes the species C, N, 0, A, C2'
 
+ + +
N2, 02, CO2, CN, CO, NO, C3' e, 0, 02, A, C, 0, N, C2 , N2 , 02
 

± + + 
CN , CO , NO , and C (solid). Multiply ionized atoms are also allowed, 

but are not found in significant concentration in the present calculations. 

The effects of vibrational anharmonicity, centrifugal stretching, and
 

rotation-vibration coupling are included in the partition functions of
 

the molecules. The known low-lying excited states of all species are also
 

included. The program uses the free-energy minimization principle2 7 to
 

determine the temperature and composition for any prescribed gas enthalpy
 

and pressure.
 

The heat of formation of ON is listed in the JANAF Tables as 109 Kcal/
 

mole, corresponding to a dissociation energy of 7.5 ev. In the present
 

calculations a value of 91 Kcal/mole was used, which corresponds to a
 

dissociation energy of 8.2 ev. The latter value is consistent with the
 

shock tube measurements conducted at Ames, and is consistent with the
 

shock tube measurements of CN red emission carried out by Thomas and
 

Mendrd 29 at JPL. Although some CN violet measurements2 9 suggest a lower
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value for the dissociation energy, the higher value has been selected
 

for the present calculations.
 

The results of the Aeronutronic free-energy-minimization program have
 

been compared with those of JPL and of Ames and are found to be in
 

satisfactory agreement. Species concentrations differ by as much as 10
 

to 20% in some cases, due to differences in the thermal properties of the
 

species that cannot be resolved on the basis of presently available
 

information.
 

2.3.2 EQUILIBRIUM RADIATION EMISSION
 

The equilibrium radiation emission program used for the present study
 

is described in detail in Aeronutronic reports by Bauer and Main.
3 0'3 1
 

The frequency-dependent absorption coefficient of CO -N mixtures is
 

computed over the spectral range 1000 cm- I to 67,000 cm for
 

equilibrium temperatures from 10000K to 10,0000 K. The volume radiation
 

emission is calculated from the absorption coefficient and the blackbody
 

radiation function.
 

An extensive search for all known data on equilibrium radiation from
 

N2-CO2 mixtures has been carried out specifically for the Martian entry
 

problem. The principal sources of radiation are the electronic band
 

systems of the diatomic and polyatomic molecules, the vibration-rotation
 

bands, and the free-free and free-bound continuum. The techniques and
 

data used in the program are summarized below.
 

a. Molecular Electronic Transitions. This mechanism contributes
 

most of the radiation emission for the temperatures and pressures
 

associated with significant radiative heat transfer during Martian
 

entry. Here a diatomic or polyatomic molecule in an electronic state
 

F, vibrational state v', and rotational state 3V, emits a quantum of
 

radiation to go to a state (E", v", J"). The presence of large numbers
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of different v- and J-values gives rise to the characteristic structure
 

of these transitions or "band systems" which are usually quasi-continua
 

at the temperatures considered here.
 

The model used for the band systems of diatomic molecules is called the
 

just overlapping rotational line ("JORL") band model or the smeared
 

rotational line band model.3 2 This band model assumes the Born­

the molecule3 3
 
Oppenheimer separation of electronic and nuclear motions in 


and the perturbation treatment of the coupling of its vibrational and
 

rotational degrees of freedom used in spectroscopic work.33 A profile
 

is assigned to each band of this system corresponding to that of the Q­

branch of the band and containing all of the integrated strength of the
 

band. While this model does not give the correct profile of each band,
 

it does give an accurate representation of the total absorption and
 

emission of the band system. A simple extension of this procedure is
 

applied to polyatomic molecules, e.g., CC2.
 

To compute the equilibrium radiation emission from each band system,
 

the Franck-Condon factors and the oscillator strength are required in
 

addition to the molecular spectroscopic constants. The Franck-Condon
 

factors are computed using the method of Nichols3 4 for those band systems
 

which have not been computed using more rigorous methods.3 5 The electronic
 

oscillator strengths are based on published measurements or calculations 

wherever possible. In the absence of previously published f numbers, 

values have been estimated using published values for similar allowed 

transitions in isoelectronic molecules. 3 6  In other cases the qualitative 

rules of Mulliken and Rieke3 7 are of assistance in arriving at estimates. 

References and values for the Franck-Condon factor arrays and the system 

oscillator strengths used in the radiation program are listed in Table 1. 

b. Vibration-Rotation Bands. The vibration rotation bands of NO,
 

CO, and CN contribute significantly to the radiation emission at tempera­

tures below 3,000 K. These bands are included in the radiation program
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TABLE 	 1 

DATA FOR ELECTRONIC BAND SYSTEMS OF DIATOMIC
 

MOLECULES IN C-N-O MIXTURES
 

System Absorption f-

Band System number and References
 

5758
 
57
 

3 3 + 


0.0028

N2(B3Tg-A u)
1. 


(first 	positive)
 

0.04359,60

N2(C3T-B 3T )2. 


(second positive)
 

3. 	 N2 (B3Z-B3 g) 0.002 (est) 

("Y" system) 
-
 D,03536,60,61
4. N+ (B2F+x2E

+
 

4. 	 ( - g) 

(first negatLve) 

5. 	 N2(A2 Z ) 0.007 (est)3-


(Meinel)
 

X2 +
6. 	 N+(C2E + 0.10 (est)
 
2 L g 
(second negative)
 

7. 	 N2 (D2lng-Anu) 0.005 (est)
 

(Janin-D'Incan)
 

S. B3-_g-) 0.17-(0.34xi04)/
 
0g Bu,_901 

(Schumann-Runge) ( 200000 cm-)
 

0.005359
 

U. 	 -1 59
 

)

9. 	 NO(B2Tr-X2 r
 

(beta)
 

0.002559,62
10. 	 NO(A2Z+-X
2TTr ) 


(gamma)
 

0.01762
 
iII NO(C2-X2n) 


(delta)
 

0.01462,63

12. 	 NO(D 2 E+_X2rT 

(epsilon)
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TABLE I (continued)
 

Band Systems 


13. 	 NO(E2 +-x2 r) 


(gamma prime)
 
14. 	 XO(B'21-x2r ) 

(beta prime)
 

15. 	 NO(G 2 --X2TT ) 

System Absorption f­

number and References
 

0.01 (est)
 

0.01 (est)
 

0.01 (est)
 

(Lagerquist-Miescher)
 

16. 	 NO(C2n-A2S) 


(Heath)
 

17. 	 NO(D27-+A 2S+) 


(Feast 1)
 

18. 	 NO(E2E -A2n) 


(Feast 2)
 

19. 	 NO(E2E-C 2T) 


20. 	 NO(E 2S+-D2 +) 


(Feast-Heath)
 

21. 	 NO(B'2a -B2n ) 

(Ogawa 1) 

22. 	 N0(G2 --B2T ) 

23. 	 NO(b4 --a4l.) 


(Ogawa 2)
 

24. 	 NO+(A I-x1 ) 


(Miescher-Baer)
 

25. 	 CN(B2S+X 2S±) 


(Ilviolet" system)
 

0.05 (est)
 

0.05 (est)
 

0.05 (est)
 

0.05 (est)
 

0.05 (est)
 

0.001 (esL)
 

0.001 (est)
 

0.001 (est)
 

0.05 (est)
 

0.02764,65
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TABLE 1 (continued)
 

System AbsorptLion f-


Band Systems number and References
 

2E ) 0.00766 
26. 	 CN(A2T 

1 
-X 

("[red" system) 

27. 	 CN(D2 Tr1-X2E) 0.005 (est)
 

28. 	 CN(D2Fi-A i) 0.005 (est) 

29. 	 CN(F 2A -A2T.) 0.01 (est)
 
r 1 

30. 	 CN(E2E-A2 ) 0.01 (est)
 

111
31. 	 CN(J2A-A2.) 0.01 (est)
 

2
32. 	 CN(E2 -X +) 0.10 (est)
 

33. 	 CN(H n x22+) 0.05 (est)
r
 

34. 	 C2(A3 gr-X3 u) 0.03467'68
 

(Swan)
 

3

35. 	 C2 (A'32-X' T ) 0.005 (est)
 

(Ballik-Ramsay)
 

36. 	 C2(b 
1-xX Z+ 0.003869
 

37. 	 (Phillips)
 

3
37. 	 C2(B -X' 3rT) 0.13 (est)
 

(Fox-Herzberg)
 

38. 	 c2 (d1Eu ZgI ) 0.10 (est)
 

(Mulliken)
 

C9 I(eZ-bI ) 0.10 (est) 

(Freymark) 

40. 	 C2(C -bIr ) 0.005 (est) 

(Deslandres-D'Azambuja)
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TABLE 1 (continued)
 

System Absorption f-


Band Systems number and References
 

0.1563

CO(AI -x1

Z + ) 


(fourth positive)
 

2 T - x
2E+) 0.002270
 

41. 


42. 	 CO+(A


("comet-tail" system)
 

43. 	 CO+(B27+-X2F+) 


(first negative)
 

+ 2+2 
44. 	 CO (B2+-AT i) 


(Baldet-Johnson)
 

45. 	 CO(B1E+ -Aln) 


(Angstrom)
 

46. 	 CO(C 1+ -A 1 ) 


(herzberg)
 

47. 	 CO(a'3 -a31T) 


(Asundi)
 

48. 	 CO(b3
E +-a 3n) 


(Third positive)
 

49. 	 CO(d3 -a 3)i 

(Triplet)
 

50. 	 CO(e 37- -a3n) 


(Herman)
 

51. 	 0 (A2 -X2r )
2 u g
(Second 	negative)
 

52. 	 0+(b47--a4 ) 


(First Negative)
 

0.01 (est)
 

0.001 (est)
 

0.005 (est)
 

0.005 (est)
 

0.015 (est)
 

0.00971
 

0.015 (est)
 

0.015 (est)
 

0.005 (est)
 

0.001 (est)
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by the following simple treatment. It has been shown theoretically 3 8 that
 

the integrated absorption coefficient of the fundamental system of a diatomic
 

molecule is independent of temperature when induced emission is taken into
 

account. This has been demonstrated to be true in experimental measurements
 

for the NO and CO systems.38,39 Using these data, and an estimate for CN,
 

the average absorption coefficients over the spectral range 1,000 to 3,000
 
-I ­

cm , P (cm 
-1

), are 13.6YNoP/T 39.4Y coP/T, and 24.6y CNP/T where yi is the , , 


mole fraction of the species, i, P is the total gas pressure (atm) and T is
 

the gas temperature (0K).
 

The integrated intensity of the first overtone system of diatomic molecules
 
38
 

has been shown to increase with increasing temperature theoretically and
 

'4 0 
experimentally for NO and CO.3 9 We take the average absorption coefficients
 
-l
 

of NO, CO and CN in the spectral range 3,000 to 5,000 cm to be
 

jx (NO) = (0.000228T + 0.182) YNOP/T
 

(GO) = (0.000195T + 0.0778) YcoP/T
 

11 (CN) = 0.346[l-exp(-2069 hc/kT)] 2E1-exp(-4138 hc/kTjYcNP/T
 

The value for CN is an average of the measured values for NO and CO at
 

2,000 K, and the theoretical expression of Reference 38 is applied.
 

The absorption coefficients defined above are satisfactory only in computing
 

optically thin emission Each vibration-rotation band actually consists of
 

50 to 100 rotational lines. All of the lines cover a spectral range that is
 

5 to 10% of the nominal wavelength of the band. However each rotational line
 

covers a very narrow portion of the spectrum at the conditions of temperature
 

and density associated with these flight calculations. The Doppler broadened
 

linewidth is (2nkT/M)2 /N and is approximately 3x108 cps at the stagnation
 

point for the present flight case. Collision broadening yields a linewidth
 

of about 108 cps, contributing less than Doppler broadening. Since the
 

- 6
Doppler linewidth represents only 10 of the nominal frequency of the
 

vibration-rotation bands, these lines are so sharp that self-absorption is
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significant even when the absorption coefficient defined above is much less
 

(about 10- 3 ) than the reciprocal of the thickness of the shock layer. It
 

can be seen by inspecting Tables 6 and 7 that the value of p' at 2000 and
 

4000 cm approaches, but does not exceed the reciprocal of the shock layer
 

thickness. Thus the infrared emission from the NO, CO, and CN bands
 

approaches being self-absorbed. However, since the magnitude of this emission
 

contributes less than 10% of the total radiation to the body, any errors
 

introduced in the total radiation by the omission of self-absorption correc­

tions in the'vibration-rotation bands must be considerably less than 10%.
 

No provision was made to include the vibration-rotation bands of CO For
 

the equilibrium case, the concentration of CO 2 is so small that the emission
 

is negligible. For the non-equilibrium cases, the CO2 volume emission is
 

appreciable immediately behind the shock prior to C02 dissociation, but when
 

integrated over the shock layer it is found to be negligible in comparison
 

with the integrated emission due to the CN red and CN violet bands.
 

c. Continuum Emission. Continuum emission due to free-free transi­

tions is computed using the classical Kramers formula 4 1 for the linear
 

spectral absorption coefficient,
 

P
' O73xl212~f _eY
 

0.738xl10 zeff e3T5/ [l-exp(-hcw/kT)i

el 3 T5/2 

which includes allowance for stimulated emission. The species 'V is taken
 

here to be either the totality of all positively charged singly ionized 
2 

atoms and molecules for which we take Zff = 1, or the totality of all 
2 

electrically neutral atoms and molecules, for which we take Zeff = 0.01 

following Keck, Allen and Taylor.4 2 The continuum emission from free­

bound transitions is determined by using the hydrogenic cross sections
 

for recombination as computed by Bates.4 3 The continuum emission is
 

appreciable for CO2-N 2 mixtures only when the equilibrium temperature
 

exceeds 8,000 to 10,0OOOK.
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2.3.3 SELF-ABSORPTION OF EQUILIBRIUM RADIATION
 

For equilibrium calculations, self-absorption corrections to the radiative
 

heat transfer are made in two different ways. For bands such as CO(4+)
 

that are very optically thick a blackbody upper limit is set at each wave­

length by utilizing the temperature of the shock layer gas at a normal
 

distance of one absorption length from the body surface. The absorption
 

length for each wavelength is printed out directly from the equilibrium
 

radiation program. The blackbody limits at each wavelength are then
 

summed over all wavelengths.
 

For intermediate optical depth the following model is used to make self­

absorption corrections to the radiative heat transfer. The spectral
 

emission (neglecting self-absorption) is computed and integrated progressively
 

from the body surface in each direction defined in Paragraph 2.3.6.
 

Simultaneously the non-equilibrium absorption optical depth is integrated.
 

At a point where the absorption optical depth reaches a value of one, the
 

integration of the optically thin emission is terminated; the total emission
 

thus accumulated closely approximates the net spectral radiative flux with
 

self-absorption.
 

2.3.4 RADIATION-INVISCID FLOW COUPLING
 

This is negligible in the equilibrium sphere-cone case and is therefore 

not included. The radiation cooling of the inviscid fluid by the time 

it reaches the boundary layer edge adjacent to the stagnation point 

reduces the enthalpy by about 1% and reduces the total radiation emission 

by less than 1%. 
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2.3.5 RADIATION-VISCOUS LAYER COUPLING
 

Radiation-viscous layer coupling is included by subtracting from the total
 

radiation a contribution from a uniform slab of thickness equal to the
 

thermal boundary layer thicknessdefined by a 5% reduction in enthalpy
 

below the value just outside the boundary layer. The radiative properties
 

of the slab were taken to be those in the cell nearest the body. The addi­

tional effect of radiation absorption by the boundary layer gas is neglible,
 

because the enthalpy flux through the boundary layer gas is much greater
 

than the radiation absorbed in the boundary layer.
 

2.3 6 GEOMETRIC INTEGRATION
 

The radiative properties of the shock layer gas determined from the
 

equilibrium radiation emission program are used in a geometrical integra­

tion program to compute the radiative flux to various points on the
 

vehicle surface. For a given point on the body, the shock layer is
 

divided into slabs as shown in Figure 8. These slabs have their normal
 

coincident with the normal to the body through the body point for which
 

the radiative heat transfer is being computed. In the present computation
 

three slabs of equal thickness were used between the body and the shock.
 

Each slab is divided into rings that subtend equal solid angles from
 

the body point. Each ring in each slab thus contributes equally to the
 

flux to the body point if the radiative properties throughout the slabs
 

are uniform. However, because of the shock curvature, the outermost
 

slab is only partially filled with radiating gas. Furthermore, the shock
 

layer properties are not uniform These two effects are included by
 

summing the radiative contributions from segments of each ring. The
 

contribution from each segment is based on an average radiating volume
 

determined from the geometry of the slabs and the shock layer, and an
 

average radiation emission per unit volume from the segment. The
 

summation of these contributions gives the total radiative flux to the
 

surface. In the present computations each slab was divided into five
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rings, the first two nearest the normal subtending one half the solid
 

angle subtended by the other three. The angles used to compute average
 

radiative properties were 14.50, 35.250, 50.750, 67.750, and 82.750.
 

2.3.7 COLLISION LIMITING
 

It has been found from the non-equilibrium studies of Section 3.2 that
 

the equilibrium ON violet emission may be reduced by as much as a factor
 

of 2 for the conditions of the present calculations. The other significant
 

sources of radiation do not appear to be affected. However because of
 

the uncertainty in this factor, and because it has not been corroborated
 

by experimental measurements, no correction for collision limiting is made
 

to the equilibrium radiation calculations.
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SECTION 3
 

NON-EQUILIBRIUM FLOW
 

The flow field analysis used for non-equilibrium conditions is much the
 

same as that used for equilibrium conditions, described in Section 2.
 

The inviscmd properties are computed assuming a thin viscous layer, and
 

are then corrected for coupling between the inviscid and viscous regions.
 

The convective heating and radiative heating are then calculated with
 

the use of.the uncoupled inviscid results, corrected for radiation
 

cooling and viscous-inviscid coupling.
 

3.1 INVISCID ANALYSIS
 

In the inviscid region the flow equations are decoupled from the reaction
 

rate equations by including an ideal gas equation of state in the flow
 

equations. This separation permits an effective y to be used which is
 

determined through the results of an integration of the reaction rate
 

equations along the stagnation streamline. The variation of y along the
 

stagnation streamline is found to be representative of that along other
 

normals between the body and the shock throughout the subsonic flow
 

region in the shock layer. In this way the equation of state differs
 

little from that obtained from a rigorous solution of the flow equations
 

coupled with the reaction rate equations. In the present calculations
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the y variation noted above was approximated by a constant value since
 

the variation in y is not large across the shock layer.
 

The results of integrating the flow equations with the approximate
 

equation of state are used only to provide the pressure field and the
 

streamline positions. The remaining gas properties are determined by
 

solving the reaction rate equations along with Euler's equation, and the
 

equations of state, on selected streamlines. The errors introduced by
 

this procedure are small since the pressure field and streamline posi­

tions are insensitive to non-equilibrium chemistry effects.
 

In the constant y flow field solution, the conservation Equations (1)­

(5) are solved by the same method used for equilibrium flow (Section 2.1).
 

The thermal and caloric equations of state are different, however, and
 

for constant y combine to give
 

p = (y-l)pe (26) 

which is used in place of Equation (8).
 

The str~amline positions within the shock layer are determined by locating
 

points of constant stream function, 4, which by definition are points on
 

a given streamline. Lines of constant stream function were calculated
 

from an integral solution of the continuity equation utilizing the density
 

and velocity profiles obtained from the inviscid shock layer solution.
 

The non-equilibrium chemistry calculation is initiated at the bow shock
 

wave. Across the bow shock the rotation and the vibration internal energy
 

modes are assumed to be fully equilibrated with translation, while the
 

chemical species are assumed to be frozen at the free stream conditions.
 

The y utilized in the inviscid flow field solution corresponds to a 70%
 

N2, 30% CO2 mixture with equilibrium internal energy modes and frozen free­

stream chemistry. Thus, the initial conditions for p, p, T, q, y. and Ev
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behind the bow shock to start the non-equilibrium species calculation are
 

given by the inviscid solution. With the pressure and streamline field
 

given, the remaining five unknown shock layer properties, p, T, q, yj, and
 

E are determined from the simultaneous solution of the following five
 
V. 

eq&ations:
 

Euler Equation
 

dq = -k dp (27) 
dz pq dz 

Integral Energy Equation and the Caloric Equation of State
 

f s 
_ (l-q2)2 I(y _y )h? i] )v

T 1-ckl i fl)...(28) 
s 

y (1.5+n) 

Thermal Equation of State
 

p 
 (29)

s 

(T y 

Species Conservation Equation
 

q = E (30) 
dz i=i P 

where 

.9. 

.s 

--- %i(Op) l i -(Cp) i i'Y 

O.. a V , - '. 
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a
 
i J 
 v~ti 

S 
1 - 0=i'y 

Equilibrium Vibration Energy Equation
 

Ev= RT[u(e-l)- 1 -- (31) 
U 

= where -u _ and the constants u and 9 are given in Table 2. 

3.2 NON-EQUILIBRIUM PROPERTIES OF PIANETARY ATMOSPHERES
 

An extensive compilation of non-equilibrium processes in CO2, N2, A
 

mixtures is included in the Aeronutronic non-equilibrium computer program,
 

specifically for Martian entry calculations. The program includes the
 

processes normally included in all such programs: molecular rotation and
 

vibration, dissociation, ionization, and atom, ion, and charge transfer.
 

In addition, careful consideration has been given to the most important
 

process for computing radiative heat transfer, that of non-equilibrium
 

excited state production.
 

The non-equilibrium properties of the flow field are obtained from a
 

streamtube integration program which utilizes the pressure field and the
 

streamline locations determined from the flow field integration (Section
 

3.1). The streamtube program integrates the energy and Euler equations,
 

and the species and excited state rate equations to obtain the chemical
 

composition, the gas density, and the temperature.
 

The details of the program and the non-equilibrium data used in it are
 

summarized below. The species included in the program are C, N, 0, C2'
 
+ + + + + + + + + -


N2, 02 CO02, CO, CN, NO, C, N, 0, C2 , N2 02 , CO , CN, NO, e, 

CN*, N2*, and CO*. The number of reactions included is 31 for pure CO2'
 

93 for N2-CO2 mixtures, and 27 for air.
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TABLE 2
 

MOLECULAR VIBRATION AND DISSOCIATION CONSTANTS
 

D ,_kal/mole Refs.
 
90 K u


Molecule 

= 966 93 = 3445 0 126 (to CO + 0) 72,73


CO2 @1 1950 92 


33
.029 256
3067
CO 


33
.032 225
3337
N 

33
.039 118
2228
02 

140 33,74
.032
2322
C2 

33,75
.030 172
2924
CN 


33
.037 150
2688
NO 
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The reaction rate constants are based on an extensive survey of available
 

experimental data. However there are a number of reactions which con­

tribute significantly to the non-equilibrium properties of the flow, for
 

which there is no data available. For these reactions the best methods
 

available have been used to estimate rate constants. The basis for these
 

estimates and the values used in the program are discussed below. The
 

reactions are divided into nine groups, which are identified as rotation
 

relaxation, vibration relaxation, molecular dissociation and atom recombina­

tion, atom exchange, neutral atom transfer, electronic excitation, ion
 

production and loss, and ion and charge transfer. The data used in the
 

non-equilibrium program are given here in detail because they are not yet
 

available elsewhere.
 

3.2.1 REACTION RATE DATA
 

a. Rotation Relaxation. Rotation is assumed to be fully equilibrated
 

with translation, as has been observed in low density shock thickness
 

studies in CO244 and 02'45 The rotational contribution to the heat
 

capacity is RT for all molecules, including CO2.
 

b. Vibration Relaxation. For normal shocks above V = 4.5 km/sec,
 

CO2 and 02 vibrational modes are fully relaxed withi3n the translation­

'4 5  
rotation shock.4 4 Vibration relaxation times for N2 and CO are within
 

a factor of 5 of that for 02 above 8000 K. Furthermore N2 vibration is
 

in resonance with the v3 mode of CO2 and will relax even faster in CO2-N2
 

mixtures. Thus for normal shock speeds above 4.5 km/sec vibration is
 

fully relaxed within or very close to the translation-rotation shock, and
 

can be assumed to be fully equilibrated with translation. This applies
 

as well to oblique shocks with a normal component of speed greater than
 

4.5 km/sec.
 

The equilibrium vibrational energy is obtained from the spectroscopically
 
-e -1)­

determined vibrational constants by E = RTE;(eu + u F.] where u = V o 

Gv/T, (see Reference 46). Values for 9v and u are given in Table 2.
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Only the vibrations of the neutral species CO2, CO, N2, 02' C2, CN, and
 

NO are considered to contribute to the gas heat capacity. The special
 

case of CO2, having 4 vibrational modes (2 modes at 1 frequency, %2) , is
 

treated by uncoupled superposition of each mode, neglecting the effects
 

of anharmonicity (uo) since the constants X and y are quite small for CO2.
 

Because the v2 (bending) mode is doubly degenerate it contributes E = 

I
2RT[u(eu - I)- to the heat capacity.
 

c. Molecular Dissociation and Atom Recombination. Dissociation of
 

the neutral molecules is included, since these cause the major change
 

in gas temperature. In addition dissociation of the excited electronic
 

states, CN, CO*, and N2* is included, since dissociation strongly affects

2
 

the concentration of these species. Certain rates are estimated because
 

of the lack of experimental data. This is done by assuming that molecules
 

with paired electrons (02, N2' C2, CO, and CO2) are less efficient in
 

causing vibrational energy transfer near the dissociation limit than are
 

molecules with unpaired electrons (NO and CN) and free atoms (C, N, and
 

0). The former group is denoted by Ml, the latter by 142. These rate
 

constants are defined for a reaction of the form A + A + M
 

A2 + M by'd[A 2/dt = - 1/2 d[A]/dt = kfLA]2[Mj. The reactions and the
 

rate constants used in the Aeronutronic computer program are given as 1
 

through 14 in Table 3.
 

d. Atom Exchange. The atom exchange reactions are generally slow
 

and exhibit a high activation energy even for exothermic reaction rates.
 

Because of this, estimates cannot easily be made. Thus only those reac­

tions for which data exist are included. These rate constants are de­

fined for a reaction of the form AB + AB - A2 + B2 by d[A2./dt = 

- 1/2 d[ABI/dt = kf[AB]2 . The reaction and rate constant used is given 

as 15 in Table 3. 

e. Neutral Atom Transfer. The atom transfer reactions are generally
 

fast and exhibit small (if any) activation energy for the exothermic reac­

tion rates. Only a few of these reaction rates have been measured. All
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TABLE 3
 

REACTION RATE SYSTEM FOR C-N-O MIXTURES
 

Fo5ward Rate Constant,
 
Reaction cm /mole-sec Ref Equilibrium Constant
 

1. CO2 + M, CO + 0 + Nm O.116xlO1 2T0 '5exp(-34,300T) 76 0.41x1 8T-1 45exp(-63,000/T)
 

2. CO2 + M2 CO + 0 + M2 	 3 kI est KI
 

3. 0 + 0 + M - 02 + M1 0.80x1O 20 T-1.5 	 77 0.64x105T10exp(62,419/T)
 

4. 0 + 0 + m2 02 + M2 
 2.75 	k3 77 K3
 
0 5
5. 	N + N + M -, N2 + MI 0.22xlO17T- 78 0.91x10 3T- 'exp(107,365/T) 

- 1 56. N + N + N2 N2 + M2 0.22x102 2 T .	 78 K5 

7. N + 0 + 1 NO + M I 0.40xlO21T'15 	 est 0.39x102 T- 5exp(71,673/T)
 

8. N + 0 + M2 NO + M2 	 7.5 k7 79 
 K7
 

9. C + 0 + M- CO + M I 0.30xlO19T-1.0 	 80 O.23x10-3T0 . exp(131,119/T)
 

10. C + o + M2 - CO + M2 
 10 k9 
 est K9
 
15  
11. C + N + M 1 - CN + MI 0.25xi0	 est 0.27exp(92,400/T)
 

12. C + N + M2 - CN + M2 
 6 k11 
 est K11
 
13. C + C + M1 - C2 + MI 0.20x10 1T -5 	 est 0.23exp(66,691/T) 

14. C + C +M 2 C2 + M2 3 13 	 est KI3
 

15. NO + NO N2 + 02 0.23x1O24T-2Sexp(-43,O00/T) 77 K3K5/K72 

5
16. CO + 02 - CO2 + 0 0.10x012T 	 est I/KIK3 



Reaction 


17. C2 + 0 CO + C 


18. 02 + C - CO + 0 


19. CN + 0 - CO + N 


20. NO + C - CO + N 

21. 02 + N - NO + 0 


22. CN + N - N2 + C 


23. NO + NN 2 + 0 


24. NO + C -, CN + 0 


25. C2 + N - CN + C 


26. N + 0 - NO+ + e- 


27. 0 + C _ 0 +0S +7. 


28. N + N - N + aN4-0.5 +8. 


29. C +N-CN +e-

2 C+N-CO + e 

30. C + 0 CO + e 


31. C + C G2+ + e 

32. 0+ + NO - 0 2+ + N 


TABLE 3 (continued)
 

Forward Rate Constant,
 
cm /mle-sec 


0.50x1012T 0 5  


0.50x1012T0 "5  


O.lOxlO13T 0 .5 


0.25xlO 12T 0.5 


0.13xlO11T10exp(-3560/T) 


0.125xlO1 2T 0 5  


0.16x1014 


0.125xlO1 2T0 .5 


0.50x112T0 .5 


0.75x10T 5exp(-31,900/T) 


0.50xl014T-0 .5 exp(-82,300/T)
-0.5 


0.15xlO15T- 5exp(-67,500/T) 


0.80xO 14T-05exp(-69,6001T)
.71 405i~,
 

1-
0.27x1014T-O05exp(-33,600/T) 


0.80xO14T-05exp(-68,600/T) 


0.25x10 12T0.5 


Ref 


est 


est 


es 


est 


77 


est 


77 


est 


est 


24 


24 


24 


est 


est 


est 


est 


Equilibrium Constant
 

9IK13
 

K9/K 3
 

K9/II
 

K /K7
 

K7/K3
 

K5/KII
 

Ks/K 7
 

K 1/K7
 

K 1i/K3
 

0.66x10- T10exp(-35,993/T)
 

0.38x10- 13T25exp(-76,387/T)
-6 1 0
 

0.31x0-6TI 0exp(-74,051/T)
-6 3+0
 

0.42xlO-6T 0exp(-84,122/T)
 

0.32xlO-13T25exp(-29,370/T)
 

0.30x10 6T' 0exp(-75,950/T)
 

0.29x1 60- exp(9437/T)
6T 




Reaction 


33. 0+ + N -	 NO+ + N 
2 
+ N + 

34. N + 
 + 0 

35. 0+ 0-2 	 02 + 


36. N+ + NO -	 N2 + 0 

37. 0+ + NO -	 NO+ + 0 
38. N+ + 02 	 02+ + N 


+ 0 


2 


39. C + 0 + 	 C 

+ 
40. 	C + 02 - CO + 0
 

CO + 0+
41. 0 + 	­

42. 0+ + CN -	CO+ +N 
43. 0 + CN+ -	 CO + N 

C ++ 


NO + +

45. N + CO+ 	- C 


46. 	0 + C'2 CO+ + C 


++ 

47. C + CO+ - CO + C 

47 C++ CO++ C 

~.JI48o. 0O+C 2
 

TABLE 3 (continued)
 

Fo5ward Rate Constant,
 

cm /mole-sec 


0.50X1012T0.5 

T 


1250.5Test 

0.25x10 1 2T0.5 


.50x10 TT0 


0.25x1O12 0.5 


T 0 5

0.25x1012 .
 
0.50x1012T0.5 


0.25x10 12T0.5 


0.50x 12 0.5 

0.25x1012T0.5 


0.25xlO12T0.5 

0.125xlO12T0.5 


.5
0.25x1012T 0


0.125x1012T0"5 


0.50x1012T0.5 


12 0.5 

0.125xlO12T 


12T0 5
0.25x 10


Ref 


est 


est
 

est
 

est 

est 


est 


est 


est 


est 

est 


est 


est 


est 


est 

est 


est 


Equilibrium Constant
 

K26K32/K23K27
 

263 2327
 
0.53xl04 T- 0 exp(11,113/T)
 

21K32
 

K23K33
 
KK27 /K3K28K34
 

K30/K27
 

+5 -1.0
 
0.45xlO T exp(24,943/T)
 

K 18/K35K39
 

K1 9/K4 1
 
K30/K29
 

K40/K21
 

K26/"30
 

KI1/741
 

K2 / 3
 
K20/K4 4
 

K31/K32
 

13
 



Reaction 


49. 	0 + C2+ CO + C+ 


50. 	C + CN+ C2 + + N 


51. 	N + C2+ - CN + C+ 
C2 + 	C

+
52. 	C + C2+ ­

53. 	0 + GN+ CO + N+ 


54. 	0 + CN+ - NO+ + C 


55. 	0 + CN+ - NO + C+ 

56. 	N + CN - CN + N 

55. 	0 + ON+ 'N +NC

+ + C 

58. 	N + CN+ - N+ + N 


59. 	N+ + C2 - CN + C 


60. 	C + CN + - CN + C+ 

N + 02+61. NO- + 0 


+ NO+
62. NN + 02 + 0 


63. N + NO - NO + +N 

64. 0 + N2- NO + +N 


65. 0+ + CN - NO+ + C 

TABLE 3 (continued)
 

Fo5waid Rate Constant,
 
cm /mole-sec 


0.25x102TP"5 


0.125x1012T 0"5 


0.25x1012T 0 5 


0.25x012T0.5 


12T0	 5
0.125xl0 .
 

0.125x10 2 T 0.5 


0.125x10 2 T 0 .5 


0.25x012T0.5 


0.125x10 2 T 0 .5 


0.125012T0.5 


0.50xl012T0.5 


5
0.125x10 2 T 0
 

0.25xi012T0.5 


0.50x1012T0.5 


025xI 0 12 T 0 5 


0.25x012T0.5 


0.25xi0 12T0.5 


Ref 


est 


est 

est 

est 


est 


est 


est 


est 


est 


est 


est 


est 


est 


est 


est 


est 


est 


Equilibrium Constant
 

K8K48/K40
 

K31/K29
 
K49/K9
 

K51/K25
 

K 18K27/K29K38
 

K26/K29
 

K21K43/K40
 

K 9/K53
 

K28/K29
 

K5K5K52/KI3
 

K25K56
 

K58/K22
 

K26/K27
 

K38K61
 

K62/K21
 

K26/K28
 

K37/K24
 



TABLE 3 (continued) 

Forward Rate Constant, 

Reaction cm /mole-sec Ref Equilibrium Constant 

66. N+ + CO NO + C 0.25x lO 12T 9 . 5 est K62/KI8 

+67. N+ + ON' " +2 + CO250T 0.25x12T0-5 est K22/K34 

68. C + 02+ , CO + 0+ 0.25x1012T 0 . 5 est KI8/K35 

69. N + N2 2N2* + N 0.114xl019T-1exp(-71,600/T) 50 0.68exp(-71,600/T) 

70. N + CN - N2* + C 0.57x108T-l5exp(-53,400/T) est K22K69 

71. N + No - N2* + 0 0.57x101T-15exp(-33,800/T) est K23K69 

72. C + CO - CO* + C 0.57xO18T- 15exp(-69,700/T) est 0.86exp(-69,700/T) 

73. 0 + CO - CO* + 0 0.57x10 8T- -5exp(-69,700/T) est K72 

74. C + 02 - CO* + 0 0.25xl012T0.5 est K1 8 K72 

75. 0 + C2 0CO* + C 0.25xlO 2T0.5exp(_ll,400/T) est K17K72 

76. C + CN ­

77. 0 + N -

CO* + N 

00* + N0.01 

0.30xl015T-0 exp(-16,100/T) 

0.30x1015T-0.5exp(-27,800/T)TK 

est 

est 

K20K72 
K1 9K72 

78. C + C02 - CO* + CO 0.25xlO12T0.5exp(_4600/T) est K72 /K16 

79. N2* + CO - CO* + N2 0.50xlO1 2 T0.5 est K72 /K6 9 

80. C + 0 + M 1 - CO* + M1 0.50x1019T-l'0 est K9K72 

81. C + 0 + M2 - CO* + M2 0.20xlOT-I10 est K80 



Reaction 


82. N N + M1 N2* + M 


83.N + N + M2 - N2* + M 2 


84. C + N + MI - CN* + Mi 

85. C + N + m2 - CN* + M2 

86. N + CN C-N* + N 

87. C + CN - CN* + C 


88. N + CO - CN* + 0 


89. N + CO* - CN* + 0 

90. C + N - CN* + N 


91. N + C 2 CN* + C 


92. N + CN* N2* + C 


93. C + NO -. CN* + 0 

TABLE 3 (continued)
 

Forward Rate Constant,
 

cm /mole-sec 


0.104xi0 18t~0 1 5  


0.48xlO22T-l15 


0.25xi015 


0.15xi01 6 


0.384xlO16T-05exp(-36,900/T) 


k86 


0.57x108T-15exp(-68,800/T) 


.5 

0.35xlO5T- exp(-900/T) 


0.114x 1019T-1.5exp(-53,800/T) 


O.lOxlO 15T' 5exp(-11,300/T) 


0.10 O 0 5exp(-17,800/T) 


0
0.10xiOI5T- .5 exp(-16,00/T) 


Ref 


est 


est 


est 


est 


est 


est 


est 


et7
 
est 


est 


est 


est 


est 


Equilibrium Constant
 

K K69
 

K82
 

K1 K86
 

K85
 

1.08esp(-36,900/T)
 

K86
 

K86/K9
 

/Kx(9O/)

K
 

K86/K22
 

K25K86
 

K69/(90
 

K24!K86
 



possibilities are included in Table 3, and are written in exothermic form.
 

Four possibilities were excluded because of spin conservation requirements
 

or geometrical configuration. These are C2 + 02 - CO2 F C, CO2 + C
 

CO + CO, CN + 02 CO2 + N, and CO2 + N' CO +NO.
 

The basic estimated rate constant used here is 5xl011 T cm 3/mole-sec, or
 

about 1/6 the gas kinetic value. Many of the reactions considered can
 

go to a number of different products, for example NO + C goes to either
 

CO + N or CN + 0. The estimated rate constants for such reactions are
 

chosen to be smaller than the basic value by a factor equal to the number
 

of possible sets of products. The reactions and rate constants used are
 

given as 16 through 25 in Table 3.
 

Two of the reaction rates listed above are an additional factor of 2 and
 

5 slower, respectively, than the original estimate; a second is an addi­

tional factor of 4 faster. This was done to improve the comparison
 

between computed and measured values for non-equilibrium radiation (see
 

Section 3.2.4).
 

f. Ion Production and Loss. In air the rate of production of 

molecular ions behind strong shock waves is predicted satisfactorily 

by including only the associative ionization reactions, i.e., A + B 

AB + e + M. Because of the lack of knowledge concerning molecular 

impact ionizatiop, i.e., A2 + 14- A 2+ + e + M, this process is 

neglected here. Similarly electron impact ionization is neglected
 

because of the uncertainty in electron temperature. If the analysis

47 

carried out for monatomic gases is used, the electron impact rate is
 

slower than the associative ionization rate for normal shock speeds up
 

to 9 km/sec. Too little information is available on the electron tem­

perature in an ionizing diatomic gas; hence the electron impact ioniza­

tion process is neglected here. The rate constant is defined for reactions
 

of the form A + A - A2+ + e- by dLA2+j/dt = -1/2 d[Al/dt = k f[AJ 2 . The 

reactions and rate constants used are given as 26 through 31 in Table 3,
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g. Ion and Charge Transfer. In a three atom system there is a
 

multitude of possible ion and charge transfer reactions involving atomic
 

or molecular ions. Unfortunately none of these has been measured at low
 

energies and we must rely on estimates. Only binary reactions involving
 

one ion and one neuLral are included here: reactions involving 2 ions
 

are much less frequent because of the generally low degree of ionization.
 

Most direct charge transfer reactions exhibit an appreciable energy

48
 

defect and, based on higher energy measurements, are expected to be
 

much slower than gas kinetic. In a careful evaluation of the energy
 

defect in direct charge transfer reactions in the C, N, 0 system, in­

cluding low excited electronic levels, only two reactions were found
 

which showed a sufficiently small energy defect (< 0.2 ev) to be con­

sidered near-resonant. However ion charge is readily passed around
 

through atom transfer reactions involving atomic or molecular ions for
 

which there is no restriction on reaction rate other than the gas kinetic
 

upper limit for exothermic reactions. The basic estimated rate constant
 

used for these reactions is 5xlO 11T cm3/mole-sec, or about 1/6 the gas
 

kinetic value, reduced by the number of possible sets of products. The
 

reactions and rate constants used are given as 32 through 68 in Table 3.
 

h. Electronic Excitation. The low electronic states (up to 2.5 ev)
 

of all molecules and atoms are assumed to be in equilibrium with the
 

ground states at the local translational temperature. This is justified
 

on the basis that there are no known low excited states of N2 or CO2 or
 

A and that the low excited states of newly formed atoms and molecules
 

are produced as rapidly as the ground states. Since some of these low
 

excited states contribute appreciably to the heat capacity the required
 

data is given in Table 4.
 

The excitation mechanism of the electronic states is not well understood,
 

but C2 and CN impurity radiation is frequently observed immediately behind
 

the shock front in noble gas shock tube experiments, long before
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TABLE 4 

FACTOR BY WHICH THE INTERNAL ENERGY IS INCREASED 
DUE TO EXCITATION OF LOW ELECTRONIC STATES 

SFactor 

CO2 1 

N2 1 

02 

2 11 390 189_(- )exp(-11,390/T) + 1( 9)exp(-18,990/T) 
+ T 2 3 T 

1 +- exp(-11,390/T) + exp(-18,990/T) 

(2+(7.7 )exp(-27,7501T) 

2 

NO 

1 + exp(-27,750/T) 

I 

CO 1 

CN 1 + 
13 301 

2( -­)exp(-13,300/T) 
I + 2 exp(-13,300/T) 

N 1 + 2.5(27,700/T)exp(-27,700/T)1 + 2.5 exp(-27,700/T) 

.555 8 5 0)exp(-22,850/T) 

I1+ .555 exp(-22,850/T) 

S+ .555(14,650/T)exp(-14,650/T)
C + .555 exp(-14,650/T) 
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excitation or ionization of the noble gas is seen. This indicates that
 

the rate of excitation of low electronic levels of molecules by neutral
 

impact is very high. Large cross-sections have been observed for
 
49
 

quenching of upper electronic states by neutral impact, indicating high
 

excitation rates for levels requiring only small electronic energy changes.
 

This is extrapolated to low electronic levels of molecules, which require
 

no change in total spin, by recognizing that the energy defect can be sup­

plied through vibrational excitation of the molecule. Atoms in low
 

excited states are then produced by atom transfer reactions. Low elec­

tronic states of molecules which require a change in electronic spin may
 

be excited primarily by free atom impact exchange reactions, as found for
 

the high electronic levels of N2.
5 0  Because most of the low electronic
 

levels significant in radiation heating by the CNO system involve no spin
 

change from the ground state, it was originally planned that the quasi­

equilibrium assumption would be used. However, it was fohnd that the
 

results of this assumption did not fit the experimental data on CN violet
 

emission. Subsequently a finite rate of production of the B2Z+ state of
 

CN was introduced into the reaction rate system.
 

In addition, the upper levels of N2 and CO, which require a change an 

spin from those of the ground states, cannot be assumed to be in 

equilibrium with the ground states. The only direct experimental 

evidence available5 0 is for the reaction N + N2 - N2 * + N for which 

k = 1.14x108T -3 /2 exp(-71,600/T) cm3/mole-sec. This rate constant was 

found5 0 to be at least 100 times higher than that for the reaction 

N 2 + N2 N2 * + N 2 . It is not known if other free atoms, 0 for example, 

will cause electronic excitation of N2, even though a direct atom 

transfer does not occur, but it is assumed here that they will not.
 

In making estimates, all atom transfer reactions which can produce
 

excited N2 or CO without violating the spin conservation rule are
 

assumed to be at least as effective as N is in exciting N2. The ex­

ponential is changed to the actual energy defect; the pre-exponential
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is assumed to be the same as for N in exciting N2 if the energy defect
 

exceeds 3 ev, a value 10 times larger is used if the energy defect is
 

less than 3 ev. Excitation by neutral molecules is not included because
 

of the lack of direct experimental evidence. Excitation by elecLron
 

impact, although very efficient, cannot readily be included because of
 

the lack of information concerning the electron temperature. Excited
 

states above the first of N2 and CO are assumed to be in equilibrium
 

with the first, denoted by N2* and CO*, at the local translational tem­

perature. Excitation transfer between N 2* and CO* is also included,
 

assuming 1/4 the gas kinetic rate.
 

Originally the rate constants for the atom transfer reactions that
 

produce CN* were estimated to be the same as for N in exciting N2
 .
 

However with these estimates, we found that the peak in CN* occurred
 

much later than is seen experimentally. To obtain a good fit between
 

theory and experiment, the reactions producing CN* were assumed to have
 

rates approaching the gas kinetic value.
 

Dissociation of excited molecules is also an important process, particularly
 

near peak radiation, and is included in the reaction rate system for N *
 

CO*, and CN*. The reactions and rate constants used are given as 69
 

through 93 :n Table 3.
 

i. Equilibrium Constants. Not all of the reactions listed above
 

are independent. A set of independent reactions which uniquely defines
 

the equilibrium concentration of all species is formed. Equilibrium
 

constants for this set are obtained by fitting the analytic expression
 

aTbexp(c/T) to the results of the Aeronutronic equilibrium species com­

puter program (Section 2.3.1). These expressions reproduce the computer
 

results within a few percent over the temperature range 40000 K : T ­

10,000 K. Equilibrium constants for the remaining reactions are com­

puted from combinations of the basic set. The values used in the
 

computer program are listed in Table 3.
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3.2.2 COLLISION LIMITING
 

Some of the excited electronic states responsible for radiative heating
 

in planetary entry may be de-excited by radiation more rapidly than
 

they are excited by collision. This is known as "collision limiting". 

It requires that the radiative loss be included as a term in the reac­

tion rate equation for the excited states affected by the radiation.
 

Thus
 

dN* 2 Q YiYj Q yk 0 - AN* (32) 
dt i Pij k tk k 

if the radiation is optically thin.
 

If the radiation is optically thick, the radiation loss term is reduced
 

by absorption. However this leads to a difficult integration problem
 

because the solution at any point depends on the final solution at all
 

points. To avoid this difficulty the radiation loss for any optically
 

thick transition often can be neglected. As will be seen this difficulty
 

does not occur for the present calculations.
 

In order to determine which transitions are subject to collision limiting,
 

Y i j
the ratio AN*/ qP y is computed for the specific conditions of
 
i p ij
 

interest. If it approaches or exceeds I, collision limiting must be
 

included. For the present case and equilibrium conditions at the
 

stagnation point, this ratio is about 1 for CN violet, 0.01 for CN red,
 

0.05 for CO(4+), and 0.001 for CO (vib-rot). This ratio is about the same
 

at conditions of peak Don-equilibrium radiation. From this, we conclude
 

that collision limiting is significant only for CN violet emission. Since
 

the CN violet emission is essentially optically thin for the present cases,
 

the radiation loss term can be included directly in the rate equation for
 

-
CN*. This was done for the present calculations, using A = 1.06x107 sec 1
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3.2.3 INTEGRATION SCHEME
 
51
 

A Runge-Kutta numerical integration scheme, modified by Treanor, is
 

used to compute the non-equilibrium species concentrations. Most of the
 

details of the numerical method are identical to those described by
 

Treanor5 1 and are not repeated here. However the method by which the
 

step size is chosen is considerably different, offering an appreciable
 

gain in computer time. The allowable step size at each point is taken
 

as a defimite fraction of the shortest of the relaxation distances of
 

each species. Based on experience a value for this fraction of 0.5 or
 

less provides stfficient accuracy. However the step size must be reduced
 

when one or more species approaches equilibrium or quasi-equilibrium con­

ditions. Under these conditions the rate equations become "stiff" 5 2 and
 

the modified Runge-Kutta numerical integration scheme leads to divergent
 

oscillations if the step size is too large. Tests are applied which re­

quire that the species production rate computed within the modified Runge-


Kutta sequence must not exceed a value which would result in a relaxation
 

distance shorter by a prescribed factor than the relaxation distance used
 

in selecting the step size. If this test is failed, the step size is re­

duced by a factor of 2. If this is passed on 2 succeeding steps the step
 

size is increased by a factor of 2 for the next step, and on up to the
 

original value of 0.5 times the minimum relaxatLon distance.
 

The method permits integration of the non-equilibrium equations to within"
 

a few percent of equilibrium, requiring about 10 minutes on the Philco
 

2000 computer for the CO2 system containing 13 species and 31 reactions,
 

and 20 to 30 minutes for the N2-CO2-A system containing 24 species and
 

93 reactions.
 

3.2.4 COMPARISON WITH EXPERIMENT
 

The reaction rate system described in the preceding paragraphs has been
 

evaluated by calculating non-equilibrium radiation profiles behind normal
 

shocks in CO2-N2-A mixtures and comparing the results with experimental
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measurements. In Section 3.4 a description is given of the methods used
 

in computing non-equilibrium radiation profiles from the species profiles
 

that are obtained from integrating the reaction rate equations.
 

Four comparisons are shown in Figures 9, 10, 11, and 12. It is seen
 

that the agreement is generally good. The CN violet profile behind a
 

20,400 fps shock in a mixture of 25% C02, 75% N2 at 0.175 torr shows
 

particularly good agreement (Figure 9). Since these conditions are
 

close to those of the present flight case, very little extrapolation
 

error is introduced.
 

The ON red profile shown in Figure 10 is also in satisfactory agreement
 

with the experimental data. The theoretical curve shows a somewhat
 

sharper overshoot than the data shows: this is probably due in part
 

to the finite slit width and the shock curvature present in the ex­

periment. No other CN red comparisons are available.
 

The CN red and CN violet profiles of Figures 10 and 11 indicate that the
 

B2 + excited state of CN is not in thermal equilibrium with the ground
 

state. The peak experimental ratio of I to I is 4 for CN red and 5 for
eq
 

CN violet at t = 0.4 sec. If the excited states are both in equilibrium
 

with the ground state, the translational temperature must be within 6%
 

of its equilibrium value to yield I/I ratios this close to each other.
 eq
 

However at the experimental peak, the translational temperature is pre­

dicted to be 28% higher than the equilibrium value. For comparison, the
 

CN violet emission predicted on the basis of equilibrium with the ground
 

state is shown in Figure 11. The non-equilibrium profile fits the data
 

more closely.
 

The ON violet comparison shown in Figures 9, 11 and 12 are satisfactory
 

in terms of computing the integrated non-equilibrium radiation. However
 

the differences in profile shapes are sufficient to indicate that the
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reaction rate system used here is not fully satisfactory. Significant
 

improvements can be made in the future only with a great deal more
 

experimental and analytical study.
 

The approach and the reaction rate constants adopted here differ
 

significantly from those used by McKenzie.5 3 In his work the excited
 

states of CN are assumed to be in equilibrium with the ground state.
 

This makes it difficult to fit both CN red and CN violet data. His
 

comparison with CN violet data is excellent, but no comparison with CN
 

red is made. His prediction of the CN red peak is a factor of about 2.5
 

less than that using our reaction rate system. This question bears
 

further study.
 

McKenzie's choice for the rate constant of one of the critical reactions,
 

CO + N - CN + 0, is less than a factor of 2 smaller than ours, showing 

good agreement. However his choice for N2 + C CN + N is a factor of 

7 smaller than ours at 90000 K. In addition his choice for the rate of 

dissociation of CN exceeds our estimate by a factor of 15 (at 90000K) 

for 0, C,,N, NO, and CN as collision partner and by a factor of 90
 

(at 90000K) for N2, CO2, C0, 02' and C2 as collision partner. McKenzie's
 

choice appears quentionable until further support is obtained through
 

direct experimental measurement.
 

In summary, although the present reaction rate system is not wholly
 

satisfactory, it can be expected to provide adequate accuracy for flight
 

calculations of non-equilibrium radiative heat transfer.
 

3.3 NON-EQUILIBRIUM CONVECTIVE HEAT TRANSFER ANALYSIS
 

The convective heat tiansfer analysis utilized for non-equiliblium flow
 

calculations is the same as described in Section 2.2 for equilibrium
 

flows. The assumption made is that the heat transfer for frozen, non­

equilibrium and equilibrium chemistry boundary lasers is identical even
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for Lewis numbers slightly different than unity. This assumption is
 

valid if (1) the edge of the boundary layer flow properties are at
 

equilibrium, (2) the boundary layer gases are dissociated species that
 

can be approximated as a binary mixture and (3) the wall is fully
 

catalytic. The assumption of equilibrium edge properties is valid
 

for the sphere cap, since the non-equilibrium property layer extends
 

from the bow shock to a distance of only about 30% of the shock layer
 

thickness;°thus the properties at the boundary layer edge are very close
 

to equilibrium. In the sphere-cone case the non-equilibrium region
 

extends throughout the shock layer, but the boundary layer edge properties
 

are not far from equilibrium conditions.
 

The dissociated gas in the boundary layer is accurately approximated by
 

a binary mixture. Because of the binary nature of the boundary layer gas,
 

the convective heat transfer is independent of the chemical kinetics.
5 4
 

Radiation cooling of the inviscid gas is insignificant in the sphere-cone
 

case, but must be included in the sphere-cap calculation. The radiation
 

cooling effect is included in the stagnation-point convective heat transfer
 

calculation by using the actual radiation-cooled boundary layer edge
 

enthalpy rather than the adiabatic stagnation enthalpy. The convective
 

heat transfer distribution over the whole body is thereby reduced by this
 

correction factor. This is consistent with the result that radiation
 

cooling reduces the boundary layer edge enthalpy by a factor that is
 

nearly the same over the whole sphere-cap body.
 

3.4 NON-EQUILIBRIUM RADIATIVE HEAT TRANSFER ANALYSIS
 

3.4.1 NON-EQUILIBRIUM RADIATION
 

The non-equilibrium species and excited state populations obtained as
 

outlined in Section 3.2 are combined with the equilibrium radiation
 

program described in Section 2.3 to provide non-equilibrium volume
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radiation emission. The chemical model used in computing the excited
 

state populations has been described in Sections 3.2.1 and 3.2.2. The
 

upper excited states of N2 and CO are assumed to be in equilibrium with
 

the lowest excited state, N2*, and CO*, at the local non-equilibrium
 

translational temperature. The A2i state of CN is assumed to be in
 

equilibrium with the ground state. The B27+ state is computed directly
 

as CN* in the integration of the reaction rate equations. The non­

equilibrium excited state populations and the non-equi'librium temperature
 

are used as inputs to the equilibrium radiation program to compute spectral
 

absorption coefficients and non-equilibrium radiation emission. In this
 

model the populations of the vibrational and rotational states of the
 

excited band radiators are assumed to be in local thermodynamic equilibrium
 

with the non-equilibrium translational temperature. This assumption is
 

justified on the basis of shock tube measurements which show that the
 

vibrational and rotational degrees of freedom are equilibrated immediately
 

behind normal shock waves for shock speeds above 13,000 to 15,000 ft/sec.
 

Free-bound emission and absorption is computed on the basis of non­

equilibrium species compositions and excited state populations in
 

equilibrium with the nearest continuum of states at the local trans­

lational temperature. The infrared vibration-rotation band emission of
 

CO and NO and CN is assumed to be at the local non-equilibrium trans­

lational temperature; this emission is only weakly dependent on
 

temperature.
 

Comparisons between calculations using the Aeronutronilc non-equilibrium
 

radiation program and the shock tube measurements of Thomas and Menard
5 5
 

.and Arnold5 3 are shown in Figures 9, 10, 11, and 12 and are described in
 

Section 3.2.4. These intensity-time profiles indicate that the overall
 

behavior of non-equilibrium radiation from ON is satisfactorily reproduced
 

by the computer program. No comparison such as this can be made for the
 

C0(4+) band, because there is no published data. For this reason, the
 

-68­



C0(4+) band was assumed to reach its equilibrium value rapidly, but to
 

exhibit no overshoot. This assumption may be in error by one to two
 

orders of magnitude.
 

When the non-equilibrium integration along streamlines approaches
 

equilibrium it is economical to shift from non-equilibrium radiation to
 

equilibrium radiation. This is done at a point on the streamline for
 

which the non-equilibrium radiation reaches within 10% of the local equi­

librium value. When this shift is made on each streamline it is retained
 

throughout the remainder of the flow field. Subsequent expansion of the
 

streamline is treated as equilibrium, an approximation that is well
 

justified in the present calculations on the basis of the non-equilibrium
 

analysis.
 

3.4.2 SELF-ABSORPTION OF NON-EQUILIBRIUM RADIATION
 

The method used to account for self-absorption of non-equilibrium radiation
 

is the same as that used for equilibrium radiation (see Section 2.3.3).
 

This method involves the integration of the radiation emission out to a
 

distance of one absorption length from the surface point. This is done
 

in each direction along which the integration is made. The non-equilibrium
 

absorption coefficient is the same as the equilibrium value at the same tem­

peration and pressure, since the absorption arises from the ground electronic
 

state of each molecule, and we have assumed equilibration of the rotational
 

and vibrational states with the translational temperature. Fortunately
 

the self-absorption corrections are small, affecting the CO fourth positive
 

band strongly and the CN violet band slightly. The CO band contributes
 

less than 10% of the radiation in the present non-equilibrium cases.
 

3.4.3 RADIATION-INVISCID FLOW COUPLING
 

The cooling of the inviscid flow due to radiation losses is included in
 

these calculations by the following approximate method. Throughout most
 

of the non-equilibrium region the effect reduces the enthalpy very little
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and affects the total emission from the non-equilibrium layer by no more
 

than 10%. Because of the difficulty of including this effect in the
 

integration of the rate equations, it has been neglected here. However
 

beyond the point on each streamline at which the radiation is assumed
 

to be the equilibrium value the effects of radiatidn cooling are included.
 

This is done by utilizing the values of pressure, velocity, and density
 

obtained from the flow field calculation (which neglected radiation
 

cooling) and computing a first order correction to the enthalpy and the
 

volume emission. This correction is found by integrating the (corrected)
 

radiation loss along streamlines. In this integration self-absorption is
 

included, although only minor effects arise in the present cases.
 

Corrections to the volume emission are as large as 30% in the sphere­

cap case. Numerical results are given in Section 4.2.
 

3.4.4 RADIATION-VISCOUS LAYER COUPLING
 

This is included in the same manner as described for equilibrium radiation
 

in Section 2.3.5. A portion of the C0(4+) band is self-absorbed within
 

the thermal boundary layer thickness for the sphere-cap case and is there­

fore omitted in the radiation integration. Radiation absorption in the
 

boundary layer has negligible effect on the convective heat transfer.
 

3.4.5 GEOMETRIC INTEGRATION
 

This is carried out in much Lhe same manner as in the equilibrium case
 

descr.bed in Section 2.3 6. However the integration over the non­

equilibrium layer for the sphere-cap case was simplified by determining
 

the total emission from the non-equilibrium slab at each radial position.
 

This was then used at each intersection of the viewing rays with the non­

equilibrium slab when carrying out the geometric integration.
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SECTION 4
 

NUMERICAL RESULTS
 

The flow field and the convective and radiative heat transfer have been
 

computed for equilibrium flow over a sphere-cone and for non-equilibrium
 

flow over a sphere-cone and sphere-cap for the following flight condition
 

Mach Number 31
 

Flight Velocity 19,600 ft/sec
 
-


Ambient Density 10 6 slugs/ft3
 

Ambient Temperature 180 0R
 

Ambient Composition 70% N 30% CO2
 

Angle of Attack 
00
 

Base Diameter 12 ft
 

Results of the equilibrium calculations are presented in Section 4.1;
 

results of the non-equilibrium calculations are presented in Section 4 2.
 

4.1 EQUILIBRIUM FLOW OVER A SPHERE-CONE
 

4.1.1 EQUILIBRIUM SPHERE-CONE INVISCID FLOW PROPERTIES
 

It was originally anticipated that the inviscid flow field calculations
 

would be made with a first approximation integral relation computer
 

program. In order to verify the accuracy of the integral method, the
 

-71­



theoretical shock shape for a 600 half-angle cone in a Mach 9, Y = 1.4,
 

air flow was computed and compared with experiment. The results are
 

shown in Figure 5. It is seen that the first approximation solution
 

provides an accurate calculation of the shock shape. It was determined,
 

however, midway through the present program that real gas effects (y-l<<l)
 

significantly influence the character of the 600 cone flow field, and
 

that a higher order solution of the inviscid conservation equations is
 

required to obtain an accurate shock shape and shock layer properties.
 

It was decided that the Philco-Ford time dependent finite difference
 

program should be used to make the inviscid flow field calculations.
 

The sphere-cone shock shape obtained from both the time dependent finite
 

difference equilibrium solution and a low y (y = 1.18) first approximation
 

integral relation solution are shown in Figure 13. Although the integral
 

solution is accurate in the sphere cap region, the shock layer thickness
 

in the conical flow region is overestimated by as much as a factor of 2
 

in some places. The first approximation integral relation solution is
 

accurate for blunt body flow field calculations in which the shock layer
 

flow is predominantly subsonic. When a large portion of the shock layer
 

is supersonic as it is in the case of the equilibrium blunt 600 cone
 

problem, however, the first approximation exaggerates the influence of
 

the body properties on the shock layer calculatjon and overestimates the
 

shock detachment distance.
 

The time dependent solution indicates that the equilibrium shock layer
 

in the conical region is predominantly supersonic and that the com­

pression waves at the sphere cone junction travel without significant
 

dispersion outward to the bow shock. The interaction produces a con­

cave region in the bow shock where it regains strength. This concavity
 

is observed in the shock shape plot presented in Figure 13. The sub­

sequent reflections of the compression wave are negligible, but
 

theoretically there is an entire series of alternating compression
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TABLE 5
 

EQUILIBRIUM INVISCID SHOCK LAYER PROPERTIES ON SPHERE-CONE
 

Arc Length Standoff 

Body on Surface, Distance, X, y, Pressure,Enthalpy Spzed, Radiation, 
Station Ft Ft Ft Ft Psia Kcal/100 GM 10 ft/sec watts/cm ster 

1.Shock .0785 .0677 -.0622 .0825 2.33 338 .211 .920
 
Midpoint -.0282 .0804 2.44 341 .111 .990
 
Body +.00513 .0783 2.53 342 .0497 1.038
 

2 .235 .0694 -.0422 .247 2.35 332 .313 .878
 
-.00786 .240 2.40 335 .255 .930
 
.0256 .234 2.45 339 .183 .980
 

3 .392 .0733 -.00297 .408 2.07 301 .612 .538
 
.0320 .396 2.17 321 .442 .723
 
.0661 .385 2.20 334 .28,7 .828
 

4 	 .549 .0733 .0605 .562 1.91 269 .817 .306
 
.0937 .5'.6 1.92 299 .628 .480
 
.126 .5i1 1.95 326 .388 .673
 

5 .706 .0767 	 .134 .706 1.85 251 .911 .246
 
.167 .687 1.84 282 .738 .362
 
.200 .668 1.83 315 .496 .555
 

6 	 .863 .0821 .207 .845 1.87 247 .931 .204
 
.243 .824 1.90 273 .793 .332
 
.279 .804 1.93 309 .550 .546
 

7 	 1.021 .0889 .280 .985 1.91 248 .922 .216
 
.319 .962 1.94 267 .825 .304
 
.357 .940 1.97 302 .607 .508
 

8 1.346 .1083 	 .426 1.277 1.95 255 .889 .254
 
.473 1.249 1.98 261 .857 .287
 

.520 1.222 1 99 284 .726 .410
 



Table 5 (continued)
 

Arc Length Standoff 
Body on Surface, Distance, x, y, Pressure, Enthalpy Spned, Radiatiop, 

Station Ft Ft Ft * Ft Psia Kcal/100 GM 10 ft/sec watts/cm ster 

9 1.841 .1412 .644 1.722 1.96 258 .876 .262
 
.706 1.686 1.99 260 .863 .284
 
.767 1.651 2.00 275 .779 .362
 

10 	 2.336 .1805 .860 2.168 1.97 260 .862 .282
 
.938 2.123 2.00 264 .862 .308
 

1.015 2.079 2.00 270 .808 .340
 

11 2.830 .2127 1.076 2.615 1.97 259 .868 .277
 
1.170 2.561 1.99 260 .864 .285
 
1.262 2.507 2.00 267 .825 .323
 

12 3.325 .2536 1.293 3.061 1.97 260 .861 .282
 

1.402 2.998 1.99 260 .863 .285
 
1.509 2.939 2.00 265 .836 .313
 

13 3.820 .2895 1.508 3.508 1.97 260 .863 .282
 
1.634 3.435 1.99 260 .864 .285
 
1.757 3.364 2.00 264 .844 .308
 

14 4.314 .3251 1.726 3.953 1.96 250 .871 .275
 
1.866 3.872 1.99 259 .866 .280
 
2.004 3.793 2.00 262 .850 .298
 

15 4.809 .3671 1.942 4.400 1.97 261 .858 .288
 
2.098 4.310 1.99 260 .865 .285
 
2.251 4.221 2.00 261 .856 .292
 

16 5.304 .3979 2.159 4.845 1.96 257 .876 .267
 
2.331 4.746 1.99 259 .869 .280
 
2.499 4.649 2.00 260 .860 2.87
 

17 5.798 .441 2.379 5.289 1.97 259 .866 .277
 
2.567 5.181 1.99 259 .868 .280
 
2.746 5.078 2.00 260 .864 .287
 



Table 5 (continued) 

Body 
Station 

Arc Length Standoff 

on Surface, Distance, 
Ft Ft 

x, 
Ft 

y, 
Ft 

Pressure, Enthalpy 
PsLa Kcal/100 GM 

Spzed, 
10 ft/sec 

Kadiatio , 
watts/cm ster 

18 6.124 .468 2.522 
2.721 
2.909 

5.584 
5.468 
5.360 

1.98 
2.00 
2.00 

261 
259 
250 

.860 

.868 

.866 

.289 

.282 

.282 

19 6.281 .478 2.590 
2.798 
2.988 

5.726 
5.606 
5.496 

1.97 
1.99 
2.00 

261 
259 
259 

.860 

.868 

.867 

.288 

.280 

.282 

20 6.438 .487 2.657 
2.881 
3.066 

5.868 
5.739 
5.632 

1.97 
1.99 
2.00 

261 
259 
259 

.857 

.870 

.869 

.288 

.280 

.282 

21 6.595 .520 2.759 
2.982 
3.153 

6.069 
5.895 
5.762 

1.93 
1.88 
1.70 

257 
256 
253 

.879 

.883 

.899 

.258 

.244 

.200 

22 6.752 .608 2.909 
3.113 
3.263 

6.348 
6.073 
5.872 

1.87 
1.62 
1.16 

250 
250 
245 

.913 

.911 

.940 

.215 

.177 

.102 

23 6.909 .784 3.117 
3.282 
3,397 

6.663 
6.241 
5.950 

1.66 
1.29 
..713 

233 
244 
238 

.995 

.944 

.971 

.123 

.115 

.047 

24 7.065 1.072 3.434 
3.502 
3.547 

7.052 
6.400 
5.990 

1.42 
.970 
.435 

199 
237 
239 

1.137 
.975 
.967 

.0364 

.0680 

.0262 

25 7.222 . 1.617 3.945 
3.787 
3.703 

7.532 
6.545 
5.990 

1.17 
.690 
.264 

186 
230 
238 

1.190 
1.007 
.973 

.0171 

.0366 

.0135 

26 7.378 2.581 4.788 
4.157 
3.853 

8.054 
6.646 
5.950 

.821 

.449 

.157 

193 
221 
234 

1.162 
1.047 
.991 

.0151 

.0171 

.0064 
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and expansion waves along the layer. In the higher y cases, the subsonic
 

shock layer disperses the compression and there is no concavity to the
 

shock. At higher '(s, the concavity has been observed on sharper cones.
56
 

The flow over the 600 sphere-cone in air (y = 1.4) shown in Figure 5 con­

tains a subsonic shock layer with a sonic line running approximately normal
 

to the cone surface and starting at the outer corner of the cone. In con­

trast, the equilibrium flow of a 30% Ca2, 70% N2 mixture over a similar
 

body shape displays a shock layer that is almost entirely supersonic.
 

The velocity on the entire conical surface is subsonic, but, as seen in
 

Figure 15, it rapidly becomes supersonic away from the surface. The sonic
 

line runs from the rounded shoulder of the base roughly parallel to the
 

cone surface at about 10% of the standoff distance, finally crossing the
 

shock layer below the sphere-cone junction to reach the bow shock.
 

In Figure 14, the cone surface pressure as a function of the ratio of body
 

surface distance to base radius is shown. The two prominent features of
 

the pressure distributiona re the rapid decrease in pressure on the
 

spherical po-rtion of the sphere-cone and the pressure recovery at the
 

sphere-cone junction to a pressure plateau in the conical region. The
 

pressure distribution in the nose region is similar to a hemispherical
 

shock layer result and the pressure plateau in the conical region is
 

similar to a pointed cone supersonic flow result. In Figure 14 it is seen
 

that the Newtonian flow model, which is a low y limit of the hypersonic
 

inviscid flow field equations, provides a useful approximation to the
 

detailed flow field pressure distribution result.
 

In Table 5, the properties of the shock layer gas on 26 normals to the
 

body surface are tabulated. For reference, the location of the body
 

normals, in which the shock layer properties are specified, are shown on
 

the body in Figure 13. The Arc length, s, along the body to the inter­

section with each normal and the shock standoff distance on each normal
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are given in the second and thxid columns. The axial and radial
 

coordinates of the intersections of each normal with the shock, with
 

the half-way point, and with the body surface are specified in the
 

vertical grouping in the next two columns. The origin of the coordinate
 

system is at the nose of the sphere. The pressure, enthalpy, temperature,
 

fluid velocity and radiation flux at the three points on each normal are
 

listed in the subsequent columns.
 

In this tabulation, the presence of an actual inviscid entropy layer on
 

the conical portion has been neglected. This layer contains the fluid
 

that entered the shock layer in the blunt nose region An estimate of
 

the width of the layer can be obtained from the fine mesh computation
 

discussed earlier for y = 1.1, M = 20. A typical velocity
 

profile along a normal to the conical portion is presented in Figure 15.
 

The normal.is located near the onset of the region of constant pressure
 

on the body surface, where the entropy layer has its largest extent. It
 

is seen that the layer comprises at most 25% of the entire shock layer.
 

Since the viscous boundary layer can be expected to comprise 15% of the
 

shock layer, width, there should be only a minor entropy layer. The
 

coarse mesh, which averages quantities along each one-third of the normal,
 

adequately portrays the flow encountered by the outer edge of the boundary
 

layer.
 

4.1.2 EQUILIBRIUM SPHERE-CONE CONVECTIVE HEAT TRANSFER
 

The equilibrium sphere-cone laminar convective heat flux versus distance
 

along the body is shown in Figure 16. For comparison purposes the heat
 

flux obtained from modified Newtonian pressure distribution and normal
 

shock entropy is also plotted. In the spherical region of the body,
 

the equilibrium laminar convective heat transfer exceeds the modified
 

Newtonian result because of the vorticity interaction effects. In the
 

region aft of the sphere-cone junction, the detailed flow field solution
 

predicts higher heat transfer because the boundary layer edge velocity
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conditions in this region are characterized by the conical shock entropy
 

rather than the normal shock entropy. As a result the boundary layer edge,
 

velocities and hence the heat transfer are higher than those given by the
 

Newtonian normal shock entropy calculation. On the sphere, the combined
 

effects of vorticity interaction (12%) and ambient composition (8%)
 

increase the stagnation point heat transfer approximately 20% over an
 

equivalent high Reynolds number air calculation.
 

4.1.3 EQUILIBRIUM SPHERE-CONE RADIATIVE HEAT TRANSFER
 

The optically thin spectrally integrated radiative emission from volume
 

elements of the shock layer gas is included in Table 5. The spectral
 

distribution is given in Table 6 for the gas adjacent to the stagnation
 

point and in Table 7 for the gas adjacent to point 5 on the sphere-cone
 

(see Figure i3. The species concentrations for each of these points
 

are also given in the respective tables. The major radiation arises from
 

the CN violet and red bands and from the 4th positive band of CO.
 

Minor contributions arise from the E-X and H-X bands of CN and the
 

vibration-rotation bands of CO.
 

Because self-absorption of the CN violet band may be greater than
 

inferred from the course frequency inLerval used in obtaining the
 

results of Table 6, a much finer frequency interval was also used.
 

These results are given in Table 8, and show a higher maximum
 

absorption coefficient by a factor of 2.5. However even with this
 

value, there is negligible self-absorption of the CN violet band
 

in the equilibrium sphere-cone flow field.
 

The radiative heat transfer to the seven body points shown in Figure
 

13 is given in Table 9. In the final column the predicted radiation
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TABLE 6
 

EQUILIBRIUM RADIATION FROM FLOW ADJACENT TO SPHERE-CONE STAGNATION POINT 
(T = 5735°K, P = 0.172 atm) 

Mole-Fraction for CN VLT = 0.37560-002 Mole-Fraction for CN RED = 0.37560-002
 
Mole-Fraction for CN E-X = 0.37560-002 Mole-Fraction for ON H-X = 0.37560-002
 
Mole-Fraction for C0(4+) = 0.18280+000
 

-
Wave Number Band System Opacity, CM
CM-I CN VLT C RED ON E-X CN H-X c0(4+) 

0.20000+004 0. 0.14312-004 0.49105-025 0.81808-028 0.72822-033
 
0.40000+004 0. 0.93002-004 0.74936-024 0.15086-026 0.22247-031
 
0.60000+004 0 46148-014 0.28116-003 0.91666-023 0.22371-025 0.55076-030
 
0.80000+004 0.30425-012 0.40538-003 0.10280-021 0.30441-024 0.12539-028
 
0.10000+005 0.65861-011 0.55264-003 0.11050-020 0.39716-023 0.27394-027
 
0.12000+005 0.57831-010 0 30772-003 0.11610-019 0.50658-022 0.58535-026
 
0.14000+005 0.90560-010 0.16743-003 0.12042-018 0.63792-021 0.12351-024
 
0.16000+005 0 26066-008 0.65912-004 0.12396-017 0.79735-020 0.25872-023
 

LO 	 0.18000+005 0.19210-006 0.20172-004 0.12704-016 0.99223-019 0.53958-022
 
0.20000+005 0.43475-005 0.54522-005 0.12986-015 0.12315-017 0.11224-020
 
0.22000+005 0.63090-004 0.13089-005 0.13254-014 0.15261-016 0.23313-019
 
0.24000+005 0.63983-003 0.27540-006 0.13616-013 0.18893-015 0.48375-018
 
0.26000+005 0.62833-002 0.46057-007 0.13876-012 0.23376-014 0.10032-016
 
0.28000+005 0.13411-002 0.66029-008 0.14142-011 0.28913-013 0.20798-015
 
0.30000+005 0.35291-004 0.78125-009 0.14422-010 0.35754-012 0.43109-014
 

0.32000+005 0.31430-005 0.72126-010 0.14714-009 0.44208-011 0.89343-013
 
0.34000+005 0.56086-007 0.48608-011 0.14984-008 0.54657-010 0.18515-011
 
0.36000+005 0.93277-008 0.21443-012 0.15266-007 0.67576-009 0.38366-010
 
0.38000+005 0.11921-009 0. 0.15585-006 0.83854-008 0.79500-009
 
0.40000+005 0.38280-010 0. 0.15861-005 0.10369-006 0.16475-007
 
0.42000+005 0.20920-011 0. 0.13578-004 0.12685-005 0.34179-006
 
0.44000+005 0.30676-013 0. 0.62911-004 0.10738-004 0.70090-005
 
0.46000+005 0.16939-014 0. 0.14935-003 0.40411-004 0.12631-003
 
0.48000+005 0.24141-015 0. 0.30665-003 0.86559-004 0.13621-002
 
0.50000+005 0.11412-016 0. 0.59595-003 0.17406-003 0.52959-002
 
0.52000+005 0.67236-018 0. 0.11861-002 0.36963-003 0.12400-001
 

0.54000+005 0.43838-021 0. 	 0.20201-002 0.94194-003 0.24544-001
 



Table 6 (continued)
 

Band System Opacityv, CM 
I
 

Wave Number 

1
CM- CN VLT CN RED ON E-X CN H-K 0(4+)
 

0.56000+005 0.13550-026 0. 0.29352-002 0.80197-003 0.46001-001
 
0.58000+005 0.41882-032 0. 0.41230-002 0.11818-002 0.94080-001
 
0.60000+005 0.12946-037 0. 0.48172-002 0.15242-002 0.16549+000
 
0.62000+005 0.40015-043 0. 0.54684-002 0.19009-002 0.24254+000
 
0.64000+005 0.12369-048 0. 0.38690-002 0.22547-002 0.34075+000
 
0.66000+005 0.38231-054 0. 0.23734-002 0.20347-002 0.38584+000
 

Wave Nymber, Total Absorptron Coefficient, B(W,T), 2 Emissior3
 
cm cm watts/cm -ster watts/cm -ster
 

0.20000+004 0.23336-003 0.14620-001 0.34119-005
 
0.40000+004 0.99729-004 0.44110-001 0.43990-005
 
0.60000+004 0.28117-003 0.73381-001 0.20632-004
 
0.80000+004 0.40538-003 0.94660-001 0.38374-004
 
0.10000+005 0.55264-003 0.10548+000 0.58292-004
 
0.12000+005 0.30772-003 0.10663+000 0.32812-004
 
0.14000+005 0.16743-003 0.10047+000 0.16821-004
 
0.16000+005 0.65915-004 0.89711-001 0.59133-005
 
0.18000+005 0.20364-004 0.76780-001 0.15636-005
 
0.20000+005 0.97998-005 0.63492-001 0.62221-006
 
0.22000+005 0.64399-004 0.51032-001 0.32864-005
 
0.24000+005 0.64011-003 0.40051-001 0.25637-004
 
0.26000+005 0.62834-002 0.30801-001 0.19353-003
 
0.28000+005 0.13411-002 0.32379-001 0.31220-004
 
0.30000+005 0.35292-004 0.17329-001 0.61159-006
 
0.32000+005 0.31432-005 0.12731-001 0.40016-007
 
0.34000+005 0.57626-007 0.92445-002 0.53272-009
 
0.36000+005 0.25291-007 0.66436-002 0.16803-009
 
0.38000+005 0.16514-006 0.47306-002 0.78119-009
 
0.40000+005 0.17063-005 0.33406-002 0.56999-008
 



Table 6 (Continued) 

Wave N mber, Total Absorption_ oefficient, B(W,T), 2 Emissiom 
cm cm watts/cm -ster watts/cm -ster 

0.42000+005 0.15188-004 0.23414-002 0.35561-007 
0.44000+005 0.80658-004 0.16299-002 0.13147-006 
0.46000+005 0.31607-003 0.11276-002 0.35641-006 
0.48000+005 0.17553-002 0.77571-003 0.13616-005 
0.50000+005 0.60659-002 0.53085-003 0.32201-005 
0.52000+005 0.13956-001 0.36154-003 0.50456-005 
0.54000+005 0.27506-001 0.24514-003 0.67428-005 
0.56000+005 0.49738-001 0.16553-003 0.82333-005 
0.58000+005 0.99385-001 0.11135-003 0.11067-004 
0.60000+005 0.17183+000 0.74637-004 0.12825-004 
0.62000+005 0.24991+000 0.49861-004 0.12461-004 
0.64000+005 0.34687+000 0.33206-004 0.11518-004 
0.66000+005 0.39024+000 0.22049-004 0.86046-005 

coTotal Emission =0.10376+001 
3 

watts/cm -ster 



TABLE 7
 

EQUILIBRIUM RADIATION FROM FLOW ADJACENT TO BODY POINT 5 ON SPHERE-CONE
 
(T=5342°K, P = 0.136 atm)
 

Mole-Fraction for CN VLT = 0.16110-002 Mole-Fraction for CN RED-= 0.16110-002
 
Mole-Fraction for CN E-X = 0.16110-002 Mole-Fraction for CN H-X = 0.16110-002
 
Mole-Fraction for 00(4+) = 0.20980+000
 

- I
Wave Number, Band System Opacities, CM
CM CN VLT CN RED CN E-X CN H-X CO(4+)
 

0.40000+004 0. 0.32935-004 0.81258-026 0.10980-028 0.13753-033
 
0.60000+004 0.13256-014 0.10525-003 0.11653-024 0.19363-027 0.42056-032
 
0.80000+004 0.87773-013 0.15728-003 0.15368-023 0.31431-026 0.11865-030
 
0.10000+005 0.19116-011 0.21970-003 0.19472-022 0.49034-025 0.32197-029
 
0.12000+005 0.16889-010 0 11603-003 0.24158-021 0.74917-024 0.85602-028
 
0.14000+005 0.26356-010 0.61615-004 0.29627-020 0.11315-022 0.22504-026
 
0.16000+005 0.77793-009 0.23787-004 0.36097-019 0.16980-021 0.58786-025
 
0.18000+005 0.58768-007 0.70934-005 0.43816-018 0.25386-020 0.15301-023
 
0.20000+005 0.13738-005 0.18701-005 0.53070-017 0.37872-019 0.39740-022
 
0.22000+005 0.21010-004 0.44494-006 0.64198-016 0.56430-018 0.10309-020
 
0.24000+005 0.22749-003 0.93808-007 0.77604-015 0.84020-017 0.26723-019
 
0.26000+005 0.23798-002 0.15902-007 0.93769-014 0.12505-015 0.69245-018
 
0.28000+005 0.48813-003 0.23180-008 0.11327-012 0.18606-014 0.17938-016
 
0.30000+005 0.12414-004 0.28053-009 0.13682-011 0.27681-013 0.46464-015
 
0.32000+005 0.10138-005 0.26606-010 0.16621-010 0.41178-012 0.12034-013
 
0.34000+005 0.17910-007 0.18454-011 0.20081-009 0.61254-011 0.31167-012
 

0.36000+005 0.30806-008 0,84607-013 0.24309-008 0.91117-010 0.80716-011
 
0.38000+005 0.37406-010 0.19589-014 0.29371-007 0.13588-008 0.20904-009
 
0.40000+005 0.13010-010 0. 0.35397-006 0.20216-007 0.54134-008
 
0.42000+005 0.69667-012 0. 0.34702-005 0.29609-006 0.14020-006
 
0.44000+005 0.10166-013 0. 0.17425-004 0.28210-005 0,35745-005
 
0.46000+005 0.60152-015 0. 0.43643-004 0.11376-004 0.77036-004
 
0.48000+005 0.88512-016 0. 0.94267-004 0.25640-004 0.93021-003
 
0.50000+005 0.43113-017 0. 0.19301-003 0.54188-004 0.38329-002
 
0.52000+005 0.26177-018 0. 0.40350-003 0.11940-003 0.94365-002
 
0.54000+005 0.10114-021 0. 0.71894-003 0.31936-003 0.19582-001
 



Table 7 (continued)
 
I
 

Band System Opacities, CM 
"


Wave Number, 
CM -I  CN VLT CN RED CN E-X CN H-X C0(4+) 

0.56000+005 0. 0. 0.10803-002 0.28494-003 0.38632-001
 
0.58000+005 0. 0. 0.15562-002 0.43117-003 0.83060-001
 
0.60000+005 0. 0. 0.18525-002 0.57078-003 0.15327+000
 
0.62000+005 0. 0. 0.21381-002 0.72359-003 0.23249000
 
0.64000+005 0. 0. 0.14899-002 0.87851-003 0.33524+000
 
0.66000+005 0. 0. 0.90220-003 0.78894-003 0.384624-000
 
0.68000+005 0. 0. 0.48915-003 0.69110-003 0.47296+000
 

Wave NuTber, Total Absorption Coefficient, B(W,T), 2 Emission3
 
cm cm watts/cm -ster watts/cm -ster
 

0.40000+004 0.43746-003 0.39350-001 0.17214-004
 
0.60000+004 0.11704-003 0.63781-003 '0.74651-005
 
0.80000+004 0.15731-003 0.79962-001 0.12579-004
 
0.10000+005 0.21972-003 0.86412-001 0.18986-004
 
0.12000+005 0.11608-003 0.84575-001 0.98177-005
 
0.14000+005 0.61695-004 0.77049-001 0.47536-005
 
0.16000+005 0.23883-004 0.66460-001 0.15872-005
 
0.18000+005 0.72562-005 0.54905-001 0.39840-006
 
0.20000+005 0.33335-005 0.43804-001 0.14602-006.
 
0.22000+005 0.21500-004 0.33956-001 0.73007-006
 
0.24000+005 0.22759-003 0.25695-001 0.58480-005
 
0.26000+005 0.23799-002 0.19051-001 0.45339-004
 
0.28000+005 0.48828-003 0.13879-001 0.67770-005
 
0.30000+005 0.12617-004 0.99589-002 0.12566-006
 
0.32000+005 0.12398-005 0.70518-002 0.87427-008
 
0.34000+005 0.25483-006 0.49352-002 0.12577-008
 
0.36000+005 0.24834-006 0.34184-002 0.84892-009
 
0.38000+005 0.27713-006 0.23459-002 0.65010-009
 

0.40000+005 0.62899-006 
 0.15966-002 0.10042-008
 

0.42000+005 0.41577-005 0.10785-002 0.44840-008
 



01 

Wave NuTber, 

cm 


0.44000+005 

0.46000+005 

0.48000+005 

0.50000+005 

0.52000+005 

0.54000+005 

0.56000+005 

0.58000+005 

0.60000+005 

0.62000+005 

0.64000+005 

0.66000+005 

0.68000+005 


TABLE 7 (conintued)
 

Total Absorption Coefficient, B(WT), 2 
cm watts/cm -ster 

0.24073-004 0.72355-003 
0.13232-003 0.48244-003 
0.10504-002 0.31985-003 
0.40803-002 0.21095-003 
0.99597-002 0.13847-003 
0.20621-001 0.90484-004 
0.39998-001 0.58886-004 
0.85048-001 0.38176-004 
0.15569+000 0.24661-004 
0.23535+000 0.15878-004 
0.33760+000 0.10191-004 
0.38632+000 0.65217-005 
0.47414+000 0.41621-005 

3

Total Emission = 0.31484+000 watts/cm -star 

Emission
 
watts/cm -ster
 

0.17418-007
 
0.63834-007
 
0.33597-006
 
0.86076-006
 
0.13791-005
 
0.18658-005
 
0.23553-005
 
0.32467-005
 
0.38395-005
 
0.37368-005
 
0.34405-005
 
0.25194-005
 
0.19734-005
 



TABLE 8
 

DETAILED SPECTRAL DISTRIBUTION OF OPACITY 
OF CN VIOLET BAND 

(T = 5735
0K, P = 0.172 atm) 

0.37560-002
Mole-Fraction for ON VLT 


Wave Nymber, Opacity,
 
cmcm 

0.0.21000+005 

0.
0.21400+005 

0.70214-004
0.21800+005 

0.17970-003
0.22200+005 

0.61393-004
0.22600+005 

0.49035-005
0.23000+005 

0.38785-006
0.23400+005 

0.12719-002
0.23800+005 

0.16983-002
0.24200+005 

0.21432-003
0.24600+005 

0.16950-004
0.25000+005 

0.13405-005
0,25400+005 

0.16090-001
0.25800+005 

0.14051-001
0,26200+005 

0.11970-002
0.26600+005 

0.94659-004
0.27000+005 

0.74856-005
0,27400+005 

0.13008-002
0.27800+005 

0.49598-002
0.28200+005 

0.39264-003
0.28600+005 

0.31049-004
0.29000+005 

0.34936-005
0.29400+005 

0.37815-004
0.29800+005 
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TABLE 9
 

EQUILIBRIUM SPHERE-CONE RADIATIVE HEAT TRANSFER
 

2
 

R3 , watts/cm 

2 (with self-absorption)2Position R watts/cm R2 , watts/cm and boundary layer
 
(Figure 13) (optically thin)(with self-absorption) correction)
 

1 5.6 5.4 4.6
 

2 5.2 5.1 4.3
 

3 3.1 3.0 2.6
 

4 5.6 5.2 4.8
 

5 9.2 8.1 7.6
 

6 10.0 8.5 8.0
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is given and includes the effects of self-absorption and viscous-inviscid
 

coupling. It was found that only CO(4+) emission was subject to significant
 

self-absorption. The magnitudes of the self-absorption and boundary-layer
 

coupling are seen by comparing the three columns.
 

4.2 NON-EQUILIBRIUM FLOW OVER A SPHERE-CONE AND A SPHERE-CAP
 

4.2.2 NON-EQUILIBRIUM INVISCID FLOW PROPERTIES
 

a. Sphere Cone. The bow shock and shock layer streamline positions for
 

the non-equilibrium sphere cone flow field are shown in Figure 17. For com­

parison, the bow shock positions for the equilibrium solution and for a first
 

approximation method of integral relation non-equilibrium solution are also
 

shown. It is seen that the non-equilibrium shock layer detachment distance
 

exceeds the equilibrium result by a factor of two in some regions. The dif­

ference between these two cases arises from the lower shock layer densities
 

and the more extensive region of subsonic flow in the non-equilibrium case.
 

In the equilibrium calculation the temperature is lower throughout the flow
 

field. This causes the gas density to be high and it also causes almost all
 

of the flow to be supersonic at the sphere-cone junction. In the non-equilib­

rium calculation, the temperature is higher and an extensive region of sub­

sonic flow exists aft of the sphere-cone junction. Since the standoff distance
 

varies inversely with density and velocity, the non-equilibrium standoff dis­

tance is larger than the equilibrium value. Note also that the integral rela­

tion solution for the non-equilibrium shock layer thickness somewhat exceeds
 

the time-dependent result, but that the errors are not nearly as large as in
 

the equilibrium case (Figure 13). The reason that the integral solution is
 

more accurate in the non-equilibrium case is that the sonic line in the one
 

strip integral approximation, which extends linearly from the bow shock in
 

the sphere-cone junction region to the rounded corner in the base region of
 

the body, more closely approximates the actual flow conditions.
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O 	 FIRST APPROXIMATION METHOD OF INTEGRAL RELATION 
NON-EQUILIBRIUM BOW SHOCK SOLUTION 

o 	 TIME DEPENDENT EQUILIBRIUM CHEMISTRY BOW SHOCK 
SOLUTION 

-TIME DEPENDENT NON-EQUILIBRIUM
 
CHEMISTRY BOW SHOCK SOLUTION
 

8.0 

13 

7.0­

'7f 
6.0 	 E 

STREAMLINE o 

5.-BOW SHOCK 0 

S 3.0 	 ,7 /613
Cr0 

vo STREAMLINE 0 

o/4.04.o 	 1-
0


3.0 /7

0 

2.0 -0 	 / 
0 

0 
0
Sonic 


Line
 

1.0
 

3 

0 	 2 

-1.0 	 1 1.0 2.0 3.0 4.0 5.0 

AXIAL COORDINATE, x, FT
 

?IGURE 17. BLUNT SPHERE-CONE BODY, NON-EQUILIBRIUM SHOCK SHAPE, AND STREAMLINE 
POSITIONS
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The body pressure distribution is shown in Figure 18. A Newtonian result
 

is also shown for comparison. As in the case of the equilibrium flow, the
 

two prominent features of the pressure distribution are the rapid decrease
 

in pressure on the sphere-cone and the pressure recovery at the sphere­

cone junction to a pressure plateau in the conical region. Even though
 

the subsonic flow region extends beyond the sphere-cone junction, the
 

non-equilibrium pressure distribution is very similar to the equilibrium
 

result, although the actual pressure level is somewhat lower. Note also
 

that the Newtonian model provides a useful approximation to the non­

equilibrium pressure distribution.
 

The flow properties throughout the inviscid region of the non-equilibrium
 

sphere-cone flow field are given in further detail in Table 10. The
 

notation follows that used in Table 5 and discussed in Section 4.1.1.
 

Each body point is shown in Figure 17. Data is given along rays normal
 

to the body surface. The non-equilibrium species distributions are
 

discussed in Section 4.2.3.
 

b. Sphere-Cap. The sphere-cap bow shock and streamline field ob­

tained from the time dependent finite difference solution are shown in
 

Figure 19. The bow shock is nearly concentric with the body except in
 

the region of the corner. At the corner positLion, the sonic line extends
 

in a normal direction from the body curving downstream slightly and then
 

upstream to the bow shock.
 

The inviscid result is based in a constant y = 1.225, which corresponds
 

to a shock layer with fully equilibrated rotational and vibrational energy
 

modes and frozen free stream chemical species. In the course of performing
 

the non-equilibrium streamline integrations, it was found that the non­

equilibrium chemical species relaxation zone is only 30% of the shock
 

layer thickness. Thus more than two-thirds of the shock layer is nearly
 

in thermochemical equilibrium and the assumption of frozen chemical species
 

shock layer is in error. This error in shock layer chemistry model causes
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FIGURE 18. NON-EQUILIBRIUM SURFACE PRESSURE ON THE SPHERE-CONE
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TABLE 10
 

NON-EQUILIBRIUM INVISCID SHOCK LAYER PROPERTIES ON THE SPHERE-CONE
 

Arc Length Standoff 
Body 
Station 

on Surface, 
Ft 

Distance, 
Ft 

x, 
Ft 

y, 
Ft 

Pressure, 
atm 

Enthalpy 
Kcal/100 gm 

Flow 
Speed, fps 

1.Shock .0785 0.107 -.1015 0.0854 0.1452 338 2268.6 

.625 e -.0605 .0827 0.1526 341 1460.0 

.375 e -.0338 .0809 0.1559 342 1021.1 

Body .0051 .0783 0.1612 343 653.2 

2. .235 0.108 -.0799 .2545 .1381 322 4348.3 
.0393 .2465 .1457 332 3215.0 
.0130 .2412 .1488 336 2573.5 
.0256 .2336 .1516 340 1823.9 

3. .392 0.110 -.0365 .4210 .1367 309 5580.0 
.1835 .4070 .1403 319 4700.0 
.0280 .3980 .1419 325 4051.2 
.06612 .3849 .1435 333 3024.1 

4. .549 0.110 .02227 .5841 .1181 268 8230.3 
.06221 .5638 .1214 293 6700.0 
.0895 .5499 .1226 308 5662.6 
.1261 .5296 .1230 324 4151.5 

5. .706 0.113 .0949 .7287 .1163 252 9046.8 
.1353 .7054 .1172 276 7760.0 

.1616 .6902 .1174 294 6685.7 

.2000 .6680 .1183 319 4663.1 

6. .863 0.130 .1663 .8689 .1194 253 8995.6 
.2093 .8440 .1220 270 8120.1 

.2374 .8278 .1233 286 7150.1 

.2786 .8040 .1253 317 4895.3 



TABLE 10 (continued)
 

Body 
Station 

Arc Length 
on Surface, 

Ft 

Standoff 
Distance, 

Ft 
x, 
Ft 

y, 
Ft 

Pressure, 
atm 

Enthalpy 
Kca1/100 gm 

Flow 
S fp 

7. 1.021 0.132 .2352 
.2819 
.3123 
.3571 

1.010 
.9835 
.9659 
.9401 

.1224 

.1254 

.1267 

.1283 

258 
267 
281 
312 

8779.2 
8261.7 
7502.3 
5347.8 

8. 1.346 0.177 .3666 
.4253 

1.311 
1.277 

.1268 

.1290 
272 
271 

8039.4 
8057.1 

.4637 

.5200 
1.255 
1.222 

.1300 

.1305 
275 
295 

7828.9 
6583.4 

9. 1.841 0.232 .5657 
.6429 
.6933 

1.7671 
1.723 
1.693 

.1269 

.1292 

.1301 

261 
271 
274 

8139.7 
8045.3 
7915.4 

.7674 1.651 .1306 288 7049.7 

10. 2.336 0.300 .7541 
.8539 
.9190 

1.015 

2.229 
2.172 
2.134 
2.079 

.1311 

.1328 

.1334 

.1336 

284 
280 
278 
284 

7280.0 
7582.9 
7689.2 
7278.0 

11. 2.830 0.368 .9433 
1.065 
1.145 

2.691 
2.621 
2.575 

.1260 

.1287 

.1297 

272 
276 
276 

7998.1 
7781.7 
7771.8 

1.262 2.507 .1302 282 7451.1 

12. 3.325 0.437 1.131 
1.276 
1.371 
1.509 

3.154 
3.070 
3.016 
2.936 

.1316 

.1330 

.1336 

.1339 

286 
282 
280 
282 

7217.0 
7437.3 
7549.5 
7411.8 



TABLE 10 (continued)
 

Body 
Station 

Arc Length 
on Surface, 

Ft 

Standoff 
Distance, 

Ft 
x, 
Ft 

y, 
Ft 

Pressure, 
atm 

Enthalpy 
Kcal/100 gm 

Flow 
Speed, fps 

13. 3.820 0.508 1.317 
1.485 
1.595 
1.757 

3.618 
3.521 
3.457 
3.364 

.1257 

.1286 

.1296 

.1303 

275 
278 
278 
281 

7852.5 
7649.8 
7653.8 
7516.2 

14. 4.314 0.571 1.509 
1.699 
1.822 
2.004 

4.078 
3.969 
3.897 
3.793 

.1295 

.1314 

.1322 

.1328 

280 
281 
280 
282 

7563.3 
7508.2 
7525.9 
7405.9 

10 

15. 4.809 0.644 1.694 
1.907 
2.047 
2.251 

4.543 
4.420 
4.339 
4.221 

.1282 

.1300 

.1308 

.1313 

280 
280 
280 
282 

7549.5 
7551.4 
7567.2 
7433.4 

16. 5.304 0.718 1 885 
2.122 
2.276 
2.499 

5.004 
4.866 
4.778 
4.644 

.1265 

.1294 

.1305 

.1315 

275 
279 
280 
283 

7846.6 
7604.6 
7565.2 
7346.8 

17. 5.798 0.776 2.074 
2.339 
2.507 
2.746 

5.465 
5.312 
5.216 
5.078 

.1301 

.1313 

.1319 

.1327 

281 
281 
280 
285 

7478.7 
7510.1 
7525.9 
7252.4 

18. 6.124 0.821 2.194 
2.481 
2.659 
2.909 

5.773 
5.607 
5.504 
5.360 

.1291 

.1306 

.1314 

.1327 

281 
280 
280 
285 

7462.9 
7527.8 
7545.5 
7222.9 



TABLE 10 (continued)
 

Arc Length Standoff 

Body 
Station 

on Surface, 
Ft 

Distance, 
Ft 

x, 
Ft 

y, 
Ft 

Pressure, 
atm 

Enthalpy 
Kcal/100 gm 

Flow 
Speed, fps 

19. 6.281 0.851 2.252 5.920 .1273 280 7557.3 

2.557 5.745 .1298 280 7561.3 

2.740 5.639 .1308 280 7567.2 

2.988 5.496 .1323 286 7191.4 

20. 6.438 0.881 2.311 6.068 .1270 279 7608.5 

2.651 5.872 .1293 280 7581.0 

2.836 5.765 .1302 280 7553.4 

3.066 5.632 .1307 286 7213.0 

21. 6.595 0.920 2.428 6.326 .1213 270 8106.3 

2.775 6.055 .1219 275 7856.4 

2.951 5.918 .1187 274 7901.7 

3.153 5.762 .1079 275 7858.4 

22. 6.752 1.060 2.628 6.720 .1130 256 8863.8 

2.938 6.305 .1062 265 8395.5 

3.091 6.100 .0967 262 8535.2 
3.263 5.872 .0734 258 8757.6 

23. 6.909 1.308 2.914 7.169 .0968 225 1030.4 

3.157 6.552 .08613 252 9050.7 
3.273 6.260 .07353 246 9200.3 

3.397 5.950 .0470 244 9440.3 

24. 7.065 1.698 3.356 7.686 .0794 184 11954.8 
3.454 6.793 .0657 238 9725.6 

3.500 6.393 .0533 236 9826.0 

3.547 5.990 .0291 234 9946.0 
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the shock layer densities to be underestimated and the shock layer thick­

ness to be overestimated. Since the shock layer volume is an important
 

radiative heat transfer variable, the shock detachment distance has been
 

adjusted in the radiation calculation to include the influence of the
 

equilibrium property zone. This adjustment was accomplished by multiplying
 

the existing detachment distance by a weighted average of equilibrium and
 

y = 1.225 sphere-cap solutions. The error in the inviscid chemistry
 

model does not significantly affect the pressure field nor the relative
 

location of the streamlines.
 

This error in chemistry also affects the stagnation point convective heat
 

transfer and the convective heat transfer distribution. The only heat
 

transfer variables significantly influenced are the boundary layer edge
 

velocity and the stagnation point velocity derivative. These variables
 

have been adjusted to account for the equilibrium chemistry effects.
 
-i


from 697 sec
The stagnation point velocity gradient is reduced by 21% 
-l 

to 547 sec . The stagnation point pressure, on the other hand, is in­

creased only 1% by the equilibrium chemistry effect.
 

In Figure 20, the sphere-cap surface pressure as a function of the ratio
 

of body surface distance to base radius is shown. For comparison, the
 

Newtonian-Busemann and the modified Newtonian pressure distributions are
 

also indicated. The Newtonian-Busemann model is a better approximation
 

of the sphere-cap pressure distribution than is the modified Newtonian
 

result. Both of these approximate models, however, are in error in the
 

region of the corner where a local acceleration of the flow occurs.
 

The flow field properties throughout the sphere-cap inviscid shock layer
 

are given in further detail in Table 11. The notation follows that used
 

in Table 5 and discussed in Section 4.1.1. The location of each body
 

point is shown in Figure 19. Data is given along rays normal to the
 

body surface. The final column in Table 11 is the enthalpy of the
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TABLE 11
 

NON-EQUILIBRIUM INVISCID SHOCK LAYER PROPERTIES ON THE SPHERE-CAP
 

Arc Length Standoff Flow Enthalpy,with 

Body on Surface, Distance, x, y, Pressure, Enthalpy Speed, Radiation Loss 

Station Ft Ft Ft Ft atm Kcal/lOOgm fps Kcal/lOOgm 

1.Shock 0.04 1.190 -1.190 0.0 .161 339 1987.2 339 

.625e - .734 0.0 .153 342 1042.8 325 

.375c - .436 0.0 .157 343 500.0 316 

Body 0 0.0 .163 343 110.2 307 

2. 0.629 1.201 -1.187 0.683 .144 338 2184 338 

- .718 0.662 .152 341 1298 324 

- .423 0.648 .155 342 807 316 

.014 0.628 .160 343 433 307 

3. 1.888 1.233 -1.100 2.044 .142 331 3325 331 

.628 1.981 .149 338 2282 320 
- .325 1.940 .152 340 1771 313 

.123 1.880 .155 342 1259 306 

4. 3.147 1.243 - .870 3.395 .137 322 4403 322 
- .402 3.288 .147 332 3207 318 

- .108 3.219 .150 335 2754 309 

.341 3.117 .152 338 2105 304 

5. 4.406 1.270 - .550 4.700 .133 307 5686 307 

- .113 4.583 .138 321 4506 309 
.205 4.483 .140 327 3817 307 

.668 4.337 .142 334 2951 302 

6. 5.296 1.336 - .288 5.655 .126 294 6690 294 
.193 5.470 .129 312 5273 303 
.505 5.350 .129 321 4625 303 
.961 5.174 .128 329 3640 302 



TABLE 11 (continued) 

Arc Length Standoff Flow Enthalpy,with 

Body on Surface, Distance, x,' y, Pressure, Enthalpy Speed, Radiation Loss 

Station Ft Ft Ft Ft atm Kcal/10Ogm fp Kcal/lOOgm 

7. 5.665 1.337 - .142 6.020 .1225 287 7142 287 
.334 5.823 .124 308 5647 300 
.643 5.695 .123 317 4879 299 

1.09 5.508 .1226 326 3935 300 

8. 5.868 1.349 .005 6.348 .1188 275 7870 275 
.458 6.297 .1215 303 6040 297 
.751 5.935 .1219 314 5116 298 

1.176 5.699 .1212 325 4073 300 

9. 6.048 1.395 .230 6.812 .1153 263 8559 263 
.630 6.441 .1165 290 6591 285 

.886 6.205 .1183 311 5391 297 
1.253 5.865 .1179 323 4289 298 

10. 6.163 1.546 .514 7.285 .1004 234 9901 234 
.843 6.768 .0835 269 8185 264 

1.051 6.443 .0659 270 8120 255 
1.353 5.982 .0368 244 9466 219 

11. 6.300 1.871 .830 7.756 .0837 198 11451 198 
1.123 7.063 .0671 253 9031 249 

1.270 6.635 .0544 260 8677 245 
1.475 6.000 .0281 243 9523 218 

12. 6,475 2.307 1.350 8.288 .068 155 13025 155 
1.516 7.370 .0514 234 9916 230 
1.572 6.812 .0402 245 9385 231 

1.650 6.000 .0119 221 1047 197 



TABLE 11 (continued) 

Body 
Station 

Arc Length 
on Surface, 

Ft 

Standoff 
Distance, 

Ft 
x, 
Ft, 

y, 
Ft 

Pressure, 
atm 

Enthalpy 
Kcal/lOOg m 

Flow Enthalpy,with 
Speed, Radiation Loss 
fps Kcal/lOOgm 

13. 6.825 2.850 2.000 
2.000 

8.850 
7.638 

.0630 

.0356 

137 
220 

13615 
10566 

137 
217 

2.000 
2.000 

6.961 
6.000 

.0249 

.0150 
226 
186 

10290 
11900 

211 
164 



fluid, corrected for radiation cooling, which is discussed in further
 

detail in Section 4.2.3. The non-equilibrium species distributions are
 

also discussed in Section 4.2.3.
 

4.2.2 NON-EQUILIBRIUM CONVECTIVE HEAT TRANSFER
 

a. Sphere-Cone. The non-equilibrium sphere-cone convective heat
 

flux versus distance along the body is shown in Figure 21. For comparison,
 

the equilibrium convective heat transfer distribution is also shown. The
 

stagnation point convective heat transfer for the non-equilibrium case is
 

slightly larger than the equilibrium result. This increase is an inviscid
 

effect, arising from a higher stagnation point velocity gradient in the
 

non-equilibrium case (7570 sec- ), than in the equilibrium case (6340

-i) 

sec ). The sphere-cap vorticity interaction effect is actually smaller 

in the non-equilibrium case (1.06) than in the equilibrium case (1.12).
 

The CO2 composition effect is the same for both cases. The convective
 

heat transfer in the conical region of the body is slightly less for
 

non-equilibrium flow than for equilibrium flow because the boundary layer
 

edge velocities are slightly lower.
 

b. Sphere-Cap, The non-equilibrium sphere-cap convective heat flux
 

distribution is shown in Figure 22. The heat transfer distribution is
 

quite flat over most of the body, but drops sharply in the corner region.
 

The vorticity interaction effect for the sphere-cap case is negligible
 

because of the large nose radius.
 

It was found that the stagnation point velocity gradient exceeds the
 

modified Newtonian result by approximately 19%; hence the sphere-cap
 

stagnation point heat transfer rate is 9% larger than the modified
 

Newtonian result. The effect of the CO2 composition on the convective
 

heat transfer is assumed to be solely dependent on the free stream
 

molecular weight and increases the convective heat transfer rate by
 

approximately 8% over that for air at the same flight conditions. Radia­

tion absorption in the boundary layer has a negligible influence on con­

vective heat transfer.
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4.2.3 NON-EQUILIBRIUM RADIATIVE HEAT TRANSFER
 

a. Non-EquilLbrium Concentrations of Significant Species. The
 

non-equilibrium species profiles on three streamlines are shown in
 

Figures 23, 24, and 25 as a function of distance along the streamline.
 

Gas temperature and density profiles are also shown. The three stream­

lines originate at shock angles of 890, 790, and 680, respectively to the
 

flow direction. The 890 and 790 streamlines correspond to the sphere-cap
 

streamlines indicated by arrows on Figure 19; the 680 streamline corresponds
 

to the sphere-cone streamline indicated by the arrow on Figure 17. The
 

890 and 790 streamline results are also representative of the non-equilibrium
 

flow in the nose region of the sphere-cone, but with a change in scale that
 

correctly transforms the convective derivative (a scale change by a factor
 

of about 12).
 

In Figures 23, 24, and 25, the overshoot in CN concentration is seen to be
 

moderate; The CN emission, Figures 26 and 27, overshoots more strongly than
 

does the CN concentration because of the high non-equilibrium gas tempera­

ture (-90000K) near the peak in the CN concentration. The CN* concentration
 

is seen to overshoot by a factor of about 10. The CO* concentration is not
 

shown because the rates are too uncertain. The electron-density profile is
 

also shown, although its contribution to the radiation heat transfer is
 

negligible. However, the information may be useful in communication black­

out studies. It is seen that a slight electron density overshoot occurs;
 

the location of the peak electron density is a factor of 5 to 10 further from
 

the shock than is the peak CN radiation emission.
 

b. Sphere-Cone Non-Equilibrium Radiative Heat Transfer. From the re­

sults of Figures 23, 24, and 25, it is seen that non-equilibrium gas
 

properties extend over the full shock layer on the sphere-cone. 

The major radiation to the sphere-cone originates from the non-equilibrium
 

overshoot of the CN red and CN violet bands. The volume emission from
 

these bands along each of the streamlines noted above is shown in
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Figures 26 and 27. Behind the normal shock the contribution from the CN
 

violet band exceeds that from the CN red band by a factor of about 1.5;
 

behind the 68 shock, the CN red band exceeds the CN violet band by a
 

factor of about 2. The noticeable decrease in CN violet emission is due
 

both to the lower gas temperature behind the oblique shock, and to an
 

increase in the effect of collision limiting.
 

The total radiative heat transfer to the 6 body points on the sphere-cone
 

shown in Figure 17 is given in Table 12. Radiation to points on the
 

rounded section between the cone and the base was not computed because
 

the non-equilibrium computer program did not run satisfactorily in this
 

region.
 

The results listed in Table 12 include the effects of self-absorption,
 

thermal boundary layer thickness, and collision limiting. Radiation
 

cooling was not included because the reduction in gas enthalpy is less
 

than 5% and affects the calculated radiation by less than 2%. The thermal
 

boundary layer correction reduces the radiation by about 5%. Self­
+
absorption-of CO4 emission reduces the radiation by as much as 6% on the
 

cone surface. The magnitude of the collision limiting effect on CN violet
 

emission is difficult to estimate without making calculations that omit
 

collision limiting, but it is thought to reduce the total radiation to the
 

cone surface by a factor of 1.5 to 2. The contribution to the total
 

radiative heat transfer from the CO vibration-rotation bands and from the
 

CO band is 3 to 5% each.
 

Comparison of the non-equilibrium radiative heat transfer result on the
 

sphere-cone, Table 12, with the equilibrium values shown in Table 9,
 

column 3, indicates an increase by a factor of about 4 in the stagnation
 

region and about 2.5 trhoughout the conical region. It is evident from
 

these results that an equilibrium calculation is misleading for these
 

flight conditions.
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TABLE 12
 

NON-EQUILIBRIUM SPHERE-CONE RADIATIVE HEAT TRANSFER
 

Position Radiative Heat Transfer 

(Figure 17) watts/cm2 

1 20.6 

2 15.0 

3 7.2 

4 12.5 

5 22.0 

6 23.3 

TABLE 13
 

NON-EQUILIBRILM SPHERE-CAP RADIATIVE HEAT TRANSFER 

Radiative Heat Transfer, watts/cm2 

Position 
(Figure 19) Non-Equilibrium Region Total
 

1 45.5 79.8 

2 44.6 75.6 

3 27.7 54.6
 

4 13.8 32.4 
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Comparison of the non-equilibrium radiative heat transfer on the sphere­

cone with the convective heat transfer, Figure 21, shows that the former
 

is only 10% of the latter in the stagnation region. However, on the
 

conical region near the base the radiative heat transfer is 30% of the
 

convective heat transfer and thus represents a significant contribution
 

to the total heat transfer.
 

c. Sphere-Cap Non-Equillbrium Radiative Heat Transfer. From the
 

non-equilibrium species profiles of Figures 23, 24, and 25, it is seen
 

that non-equilibrium gas properties cover only about 1/3 of the sphere­

cap shock layer. The remaining 2/3 of the layer is very close to equilib­

rium. The width of the non-equilibrium zone was found to vary very little
 

throughout the shock layer, and was approximated by a constant 0.35 ft,
 

shown in Figure 19. Because a major fraction of the shock layer is in
 

equilibrium, the standoff distance computed using the frozen y result is
 

too large by about 25%. This is corrected in the radiative heat transfer
 

calculation by reducing the thickness of the equilLbrium zone by 0.30 ft.
 

The non-equilibrium radiation emission from the CN red and violet bands
 

along the .three streamlines noted above is shown in Figures 26 and 27.
 

As mentioned previously the effect of radiation cooling is very small in
 

the non-equilibrium region and is not included. Beyond the non-equilibrium
 

region radiation cooling is included by reducing the gas enthalpy by the
 

amount of the combined non-equilibrium and equilibrium radiation losses.
 

This reduced enthalpy, listed in Table 11, and the gas pressure are used
 

to obtain equilibrium radiation properties. Representative values of
 

equilibrium volume radiation for various values of enthalpy and pressure
 

are found in Table 5.
 

Profiles of the volume emission with and without radiation cooling are
 
+
shown in Figure 28 for the 890 streamline. In these profiles the CO

4
 

emission is omitted because it is so strongly self-absorbed in the sphere­

cap flow. However, the CO4 + contribution is included in the radiative
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heat transfer calculation. It is seen that radiation cooling reduces the
 

equilibrium volume emission by as much as 25% at the boundary layer edge.
 

It reduces our calculation of the total radiative heat transfer by about
 

10% at the stagnation point to about 6% at point 4.
 

The total radiative heat transfer to the 4 body points shown in Figure 19
 

is given in Table 13. These results include self-absorption, radiation
 

cooling, thermal boundary layer thickness. Collision limiting in the
 

non-equilibrium region is also included. The CO4 emission is strongly
 

self-absorbed and, as a result, contributes only 4 to 5% of the total
 

radiative heat transfer. The CO vibration-rotation bands contribute about
 

6% to the total. The remainder arises from the CN red and violet bands
 

There is some self-absorption of the CN violet emission from both the
 

equilibrium and the non-equilibrium regions; this reduces the computed
 

radiative heat transfer by about 10%. The thermal boundary layer correc­

tion reduces the radiative heat transfer by about 3%.
 

The contribution of the non-equilibrium region to the total radiative heat
 

transfer is listed separately in Table 13 and is seen to represent 40% to
 

60% of the total. If equilibrium gas properties had been assumed, the
 

calculated radiative heat transfer would have been smaller by approximately
 

35%.
 

It is seen by comparing the results of Table 13 with the results shown in
 

Figure 22 that the radiative heat transfer exceeds the convective heat
 

transfer throughout the front face of the sphere-cap. This occurs because
 

the shock layer is thick, increasing the radiative heating and reducing
 

the convective heating in comparison to the values found on the sphere-cone.
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SECTION 5
 

CONCLUSIONS AND RECOMMENDATIONS
 

Methods have been developed and described here for computing the state and
 

motion variables and the convective and radiative heat transfer over the
 

front face of spherically blunted conical bodies traveling at hypersonic
 

speeds through planetary atmospheres under equilibrium or non-equilibrium
 

conditions. The numerical results carried out for Martian entry on a
 

hyperbolic trajectory show the following significant results.
 

The flow field contains extensive regions of non-equilibrium gas. The non­

equilibrium nature of the flow has very little effect on convective heat
 

transfer (Figure 21), but leads to much greater radiative heat transfer
 

than that computed on the basis of equilibrium flow (compare Figures 16
 

and 21).
 

The radiative heat transfer computed on the basis of non-equilibrium flow
 

is a significant fraction of the total heat transfer, For the sphere-cap
 

body shape, the radiative heating is more than twice the convective heating
 

at the stagnation point (Figure 22). Although radiative heating is con­

siderably smaller than convective heating on the sphere-cone (Figure 21),
 

this is due to the small standoff distance and the oblique conical shock
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that occur on this shape only when the angle of attack is near zero.
 

Although angle of attack calculations were not made in this study, it
 

is expected that at 100 angle of attack the windward portion of the
 

sphere-cone will support a shock angle and standoff distance that are
 

comparable to those typical of the flow over the sphere-cap. Thus
 

radiative heat transfer may exceed convective heat transfer on the sphere­

cone at moderate angles of attack.
 

The low Reynolds number associated with these calculations leads to a
 

significant thickening of the boundary layer. The major result of this
 

is the increase in the convective heat transfer over the value based on a
 

modified Newtonian approximation. The actual convective heating to the
 

sphere-cone (Figure 16) exceeds the modified Newtonian value by more than
 

50% over most of the surface. This arises because the boundary layer on
 

the conical portion of the sphere-cone extends beyond the low-velocity,
 

high-entropy layer of fluid that passes through the spherical nose region.
 

The coupling among the inviscid flow, the viscous flow, and the radiation
 

transfer was found to be significant, but amenable to evaluation through
 

first order corrections to the uncoupled results.
 

It is recommended that in future work the non-equilibrium radiation from
 

the CO fourth positive band be studied experimentally, that collision
 

limiting of the CN violet band be studied experimentally, and that the
 

non-equilibrium analysis be applied to the sphere-cone at small and moderate
 

angles of attack in order to determine the convective and radiative heat
 

transfer rates.
 

-120­



APPENDIX A
 

DERIVATION OF FINITE DIFFERENCE EQUATIONS 

The left hand side and the first term on the right of Equation (6) are 

seen to be the conservation quantity averages that are desired. Let Q(t) 

be the cell j+', i+. The area of the cell is denoted at the start of the 

time step by Gj+ ,i+ and is determined from 

G i=.JJ dydx (Al) 

Similarly, the area of Q(t +T) is denoted by G
 

iGj 5]JS dydx (A2) 
f(to+T) 

The mean value of the conservation quantity f in the cell j+ , i+% at 

t 0+T is defined by 

h] f(x,y,to+T)dydx
fj+ =O(t+)
,+ 


fiGA= +) i(A3)
 

with a similar definition at to for fjA,iA
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0 

The boundary motion gives a contribution only on the segments of the
 

boundary j, i-I-k and j+l, i+ . The ray portions of the boundary are
 

stationary and have V = 0. The boundary motion contribution to the
n 

change in f is, therefore,
 

t +T
 

t 0 dt fQ(t)f(x,y,t)Vnds = ~ f. 3I -f flij Gl,+2 P (A4) 

G. denotes the volume swept by the boundary, j, i-+-2 as it moves inward,
 

t +T 
0 

Gj,i ff dt J V ds (A5) 
t (j,i+) 

and
 
t +T 

0 

Gj+l i+ f dt f V ds (A6)
to (j+l,i+ ) n
 

This definition corresponds to taking the uniform convention for the
 

boundary velocity throughout the grid as positive when it moves toward
 

the body. The velocity V is taken outward from each cell, and is in­n 

convenient for use in moving from cell to cell as it must be continually
 

redefined.
 

Since Equation (A4) is already of order T compared to f G
 

the value of f. .+, need only be correct to zero order,
 

+fjiA2 =(j- ,-+ 4 fj- ,i- + O([fj ij l 
f. = .+ 

where the bracket denotes the jump in f at the cell boundary. In Godunov's
 

method a specific form is assigned to the first order term in this expression
 

for all boundary quantities, The resulting first order terms stabilize
 

the calculation.
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The contributions from the line integral of P,Q about the cell boundary
 

are seen to have the form (F,S) for each edge. Here F is taken to be
 

the two component vector tPQ] and S the two component vector with
 

magnitude equal to the length of the edge and direction along the out­

ward normal to the edge. The notation (F,S) is the scalar product
 

between the two vectors. S can be evaluated for the edge at time to,
 

for first order accuracy in Equation (6), since the difference of T(F,S)
 

for opposite sides of the cell is already of first order relative to
 

f+12,02Gj12,1-02 .The flow quantities appearing in (F,S) must be
 

evaluated by Godunov's method for stability. Finally then, the flux 

contribution is seen to be 

t +T 

0 

dt [ Pdy - Qdx = T Z (F,S) (A7)
 

t0 L(t) (edges)
 

For axisymmetric flow the source term in Equation (6) remains to be
 

approximated. Again it is of first order compared to the leading term
 
fJ+I2 ,'+G j+'2,]+2 so that the geometric factors and flow variables can be
 

evaluated at t = t . When y # 0 inside the cell, this term will be
o 

approximated by
 

t +T
 
0


f dt 4 R(xy,t)dsdy TR B (A8) 
j+2, +12 j +-, (AS-
t lt) 

where
 

+
B+- ,I 12 I(to)Y dydx (A9)Bj+ j 


and
 

Rj+ ,+ = R(fi+ ,i12 (AIO)
 

For cells bordering the axis, the expression (A9) is not convergent and
 

must be replaced by the convergent integral
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Be0 ff dydx (All)J+ '2 0(to)y
 

°
 
and a compatible modification of R to R
 

p
 

PU
 
R°(f) = Pv 

p(e + 2) (A12)
 
p
 

Denote Godunov's evaluation of p, u, v, p, G on the cell boundaries by
 

R, U, V, P, E respectively. Let Wj,i+ denote the fluid velocity normal
 

to the segment j,i+ directed toward the body and computed from V,U.
 

Similarly let Wj+2, be the fluid velocity computed from V,U normal to
4


j+ ,i and directed along the shock layer from the axis. By Equations
 

(A3), (A4), (A7) and (AS) the finite difference approximations to
 

Equation (6) are
 

Conservation of Mass
 

- I  P[+ ,i+ = J+ 'i+ t(PG)j+,+ - T[(RWS)+ ,i+l - (RWS).+,. 

-ER(TWS+G)I - R(TWS+G) j, - k(pvB) (A13) 

Conservation of x momentum 
j + 11 . .L+ ,Gl+ - 1pu )

u)iJ+ , i+ 2 

-T[(RUS)j 4 1 - - (RUNS) A+, i 

-[RU(TWS+G) j+ i+2 - RU(TWS+G) .i+23 

-T[(PSsina)+ '+- (PSsina) I]
 

-T(PSsing)j+ ,i+l - (PSsn) j+ ,i1
 

Tk(puvB)ji j (A14) 
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Conservation of y momentum
 

vJ1+ 2,42 _ [ (pG) J+ , 42]-1t(vG
= [(pvG)j +2, i+c 

-T[RVWS) 3,i+l - (RVWS) , ] 

-[RV(TWS+G)+I,i+ - RV(TWS+G)j,1-+2
 

-T[(PScosG)+ I- (PScosO) .. ,
1 


+T[(PScos) . ,3. - (PScosU) ­1


-Tk(pv 2B)j+ ,1I+} (AI5) 

Conservation of energy
 

6- [(pG) J4+2, i+2 i1(pEG) 

-T[(REWS)o+ , 1 +1 - (REWS) J+,1] 

-[RE(TWSG)++ - RE(TWS+G).+] 

-T[(PWS) j - (PWS) 3 ] 

-T[(PWS)j+II+ - (PWS) ] + 2 

-Tk[pcv+pv)BJI 3 1i (A16)
 

The difference Equations (A13) through (A16) contain the geometric quantites
 

Gj+ 2,ip2; Gj, , Sj,,+_, SJ+ ,3; Bj ,. if y 0 and 

B0j+,1+j when y = 0 and sin% i, coso 
242J , 1+2 O,12 + 

Thus the area of the cell is explicitly
 

j+'2, IA = todydx = 0 -j+li+ (A17) 

where 

Ct,+ cos= sing - z2 cosG.sing + (F - . cos
3 ,1+1+l j, i 1 (iL+l1iCO.i+I ji1l]+1Oi+I 

- i + t cosG singi+ Lising ).'i )(Cj,l +C, (A18)
 

S imilarly 
GJ+ ,+ = f o+dydx = j,i+ - j+l,i+ (A19) 

Oct10 +T) 
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with 

0ij1 1-2 = [(.L3, )2cosgil ingi+l -(t3,i)2cos Isingl
,ii-i
il.2
 

+ (91+i - tJ'l+icosoi+l - i +t J'icosi)(t3 il+isingl+1 +t J'sinSi)] (A20) 

where tj'i is the location of t . at the end of the time interval. The
 
J,1
 

area swept by the boundary j,i+ is
 

Gj,-+= 0j,i0-1 _ 0 (A21)
3,i% 

With the same definition holding when j is replaced by j+l. The lengths
 

of the sides S' S are given by
 

Sj+ i, = j,i - j+li (A22) 

and
 

i+1i~sl~j,il j , 1 j,i+lsini+l= -
S, - -(+ ccs - + t *cosG )2 + (L sing ­

-.j 1 sing.) 2 (A23)
 

The sine and cosine of the slope of a ray are determined from 9 while
 

the sine and cosine of the slope of a segment on the transverse inter­

polatry polygon are
 

S ising - t .sinG 
j +l i-l ,,i (A24) 

and
 

" + " 
Cosa. COS 3+l+l - 1 I S 8I -- -OC 1 t cose (A25)
 
3j,1 s3,i+
 

The factor of the source term for axial symmetry, when y A 0, is
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B3 i+'- Y( lj,j lj +l'i+ ' lj + - I jI + I (A26)B = .fdydx + I - I , i - I 

where 

lj , i = %tx t'j+l, i(A7 (A27) 

jl+2 [j+ ji+l(CS1+l i+l 1j,= - (cos sing tana 1 +)] 

isinGl
 

(A28)
31+1 1+1) 


If y = 0, the cells border the axis of symmetry, and B is given by
 

B]+ , =1 2 dydx (A29)
3+k-'(to0)y
 

Since v = 0(y) as y - 0 the above integral is convergent. The integrand
 

in Equation (A29) can be replaced by 6v/6y i to first order accuracy
 
y=O
 

throughout the cell. An integration of Equation (A29) can then be performed
 

to yield ­

av 

Bj+ ,2 dx a-0 (Yu(X) - y0 (x)) (A30) 

where yu(x) and y,(x) are the upper and lower boundaries of the cell.
 

All cell boundaries are straight lines so that yu and y. are proportional
 

to x. Moreover, let 6v /oy be approximated by the mean value of V on
o 

the boundary segment as determined by the Godunov scheme, divided by the
 

mean y coordinate, zy, of the segment. Therefore
 

dv V. 1
 
0) = (A31) 

(- 3 ,-6y
 

and
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Ov°) , (A32) 
-- +2, 1 6 iY+12, 1
 

From Equation (A30) it is seen that
 

Bj, =V. -Ax +V j +- - V (A33) 

with the definitions 

Ax. 3,= I- j,lC°1 - 0 + tj ,o (A34) 

1 


3x ,Y )cos9 (A35)

ji+ ,1 = (j,l - j+,I 

Equations (A33-A35) along with the modified definition of R in Equation
 

(A12) permit the product RB to be evaluated for cells adjoining the axis
 

of symmetry. The definitions of Equations (A26-A28) along with R given
 

in Equation (4) permit evaluation of the product in all other cells.
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