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SUMMARY

Preliminary mission analyses for solar powered, electric rocket
propelled spacecraft on Mars orbiter, Jupiter flyby and asteroid belt explo-
ration, trajectories were undertaken within the Aerospace Systems and Mission
Analysis Research (ASMAR) Program at 2rinceton University.

Mars orbiter trajectories in the years 1971, 1973, 1975, 1977 and
1979 as analysed by the Hughes Aircraft Company were checked approximately using
an ASMAR modification of the ITEM interplanetary trajectory computer program.

Another ASMAR computer program, Gordon ., was used to optimize solar
electric propelled Jupiter flyby trajectories which identified several trajectory
modes and gave an understanding cf the sensitivities to launch vehicle and
propulsion technology.

Preliminary analyses of asteroid belt exploration missions, especially
rendezvous trajectories with advanced technology, indicate an interesting and
possibly important application of solar electric propulsion for various asteroid,

planetoid and cometary missions.
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I. INTRODUCTION

In the fall of 1965 a representative of the Office of Advanced
Research and Technology, NASA Headquarters solicited the help of the ASMAR
Program in carrying out some trajectory analyses for solar electric pro-
pelled spacecraft which certain developments in solar array technology
appeared to make practicable. Studies had been undertaken by several indus-
trial concerns under contract to the Jet Propuleion Laboratory, and the
ASMAR Program work was to be coordinatcd with this effort. A new contract,
NSR 31-001-078 was awarded to support the solar electric mission analysis
and the work was directed by Mr, j. Mullin of QART and Mr. J. W. Haughey of
the Launch Vehicles and Propulsion Program= Division, Office of Space Science
and Applications, NA3A Headquarters, who was also monitor of the ASMAR Basic
Program under Contract NASr-231.

ASMAR Program contact at the Jet Propulsion Laboratory was Mr. 1. W.
Stearns, Assistant Manager, Propulsion Research and Advanced Concepts Section;
and a doctoral candidate in the ASMAR Program, Mr. G. A. Hazelrigg, Jr., was
assigned to JPL for the period February-September 1966 to engage in the work
there on computer analyses and programming and provide close liaison. Work
at Princeton was carried out, under the overall leadership of Mr. J. P. Layton,
by Dra. P. M. Lion, M. Harndelsman and C. N. Gordon with programming assistance
provided by Analytical Mechanics Associates, Incorporated representatives,
easpecially Mr. J. H. Campbell.

Having made a timely contribution and completed a certain body of
work that approximated the undertaking initially accepted plus some preliminary
asteroid belt mission analyses, the effort by the ASMAR Program under contract
NSR 31-001-078 was terminated on 30 September 1967; however, a continuing
interest in and capability for trajectory and mission analysis witn solar electric

propulsion will be maintained under the ASMAR Basic Program.
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II. MARS ORBITER CHLCK

A. Trajectory Check of Solar Electric Propelled Mars Orbiters -
1971, 1973, 1975, 1977 and 1979

Hughes Aircraft Company, under contract to the Jet Propulsion Labo-
ratory, produced an extensive study of solar-electric propelled Mars orbiter

*
and Jupiter flyby missions.(l)

Their trajectory results for the Mars orbiter
contained certain optimizations, allowed for spacecraft limitations and for
planetary perturbations. At the request of NASA Headquarters, a modified ITEM
program (described below) was used by the ASMAR Group at Princeton to provide
a check on the Hughes' results for the Mars orbiter. The preliminary results-
shown on Tables** 1 through 5 and Figures** 1 through 5 yield a substantial
check of the Hughes data. However, Hughes was unable to supply all the neces-
sary input data in sufficient detail for a definitive check. Thus, the
differences shown in the above results could not be refined and the attempt
to obtain a better check was abandonrd.
B. The Modified ITEM Program

To check the Hughes' results the ASMAR Group undertook a gener~' rewrite
of the ITEM Computer program which was obtained from Goddard Space Flight Center.

The ITEM program is a multi-body trajectory program using the Encke
method of integration. Changes incorporated in this program by the ASMAR Group
can be divided into (a) changes to increase flexibility in the number and type

of problem which can be handled by this program and (b) chang:8 to improve the

efficiency of the computational procedures used.

*Superscript numbers in parentheses indicate References listed at the end of
the report.

**Tables and Figures appear following the first page of text on which they
are mentioned.
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ORBIY OF NARS

Solar Electric Propelled Mars Orbiter 1971

Launch on May 8, 1971
Flight Time 231 days

FIGURE 1
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OMBIT OF EARTH

OMBiT OF NS

Solar Electric Propelled Mars Orbiter 1973

Launch on July 1&, 1973
Flight Time 290 days

FIGURE 2
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OR\ T OF MARS

Solar Electric Propelled Mars Orbiter 1975

Launch on Aug 17, 1975
Flight Time 400 days

FIGURE 3
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Solar Electric Propelled Mars Orbiter 1977

Launch on Sep 6, 1977
Flight Time 431 days

FIGURE 4
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Solar Electric Propelled Mars Orbiter 1979

Launch on Oct 1, 1979
Flight Time 406 days

B i &

FIGURE 5
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(1) Changes to increase flexibility
(a) The program has been converted into a subroutine capable of
integrating a trajectory segment, so that a trajectory of any configuration

can be created by making multiple calls on the integration routine.

(b) The number of planets has been increased from four to
nine.

(¢) The ability to stop the trajectory precisely on a given
time, flight path angle, or radius megnitude has been included. This allows
more freedom in the selection of parameters for iteration and optimization.

(d) In addition to programmed thrust modes, the ability to
integrate the adjoint equations has been included.

(2) Changes to increase efficiency

(a) Time has been replaced by beta as the independent variable

of the integration, Beta is defined by the following equation:

820 = o

where a 1is the semi-major axis of the orbit and 6 is the incremental
eccentric anomaly. This change allows Kepler's equation solution to be
obtained without iteration, and it allows a more favorable step size to be
chosen for the numerical integration.

(b) The ephemeris routine was modified to place all necessary
ephemeris data in core at the same time. This eliminates tape manipulation
during the computation of a trajectory but restricts the program to computers
of at least 65K words cf core storage.

(c) The integrator has been changed from single step to multi-
line integration. A table of 25 points is used. The value of this is:

(1) The number of Runge-Kutta steps necessary for starting
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is reduced. This allows starting of the sixth order integration in about
one-third of the time previously required.
(ii) Updating of the table is more efficient since it ia only
required once every 18 steps instrad of every step.
(iii) Plenty of points are available for interpolation if
values are desired which are not contained exactly in the table.
(iv) Editing of the tables is more efficient.
(d) Three modes of integration (all sixth order) have been included.
These are:
(i) Backwards difference predictor only.
(ii) Backwards difference predictor with a central difference
corrector.
(iii) 1Iterative central difference corrector.
Two modes of starting are included:
(i) 4 to 1 Runge-Kutta and backward difference predictor,
(ii) 1Iterative central difference corrector.
These modes allow any necessary integration accuracy with a corres-

ponding amount of .omputer time.
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IIT. JUPITER FLYBY STUDY

A. Introduction

Advances in hardware technology of solar powered, electric rocket
propelled space vehicles have, in recent years, been sufficient to justify
examination of the possible usefulness of this type of propulsion in two
ways: (1) performance of higher energy missions without requiring uprated
launch vehicles, and (2) early testing of advanced electric rocket thruster
technology without the radiaticn problewms inherent in nuclear powered systems.
The first way requires that solar electric propelled vehicles compare favorably
to existing systems for sufficiently important classes of missions. Indeed,
if this were strongly the case, then solar power could become a key step on
the road to future advanced propulsion systems. Recognizing the possibilities
for solar-powered vehicles, the Jet Propulsion Laboratory (JPL) in 1966 incor-
porated studies of solar-powered vehicles in their advanced programs. An
examination was conducted of the possible missions into which solar-power might
fit, and from the resulting possibilities, the Jupiter flyby was chosen for an
in-depth study. This mission was chosen because t represents the first advanced
mission which might benefit to a major extent from solar-electric propulsion.
This research was undertaken to support the .JPL effort by analytical and pro-
gramming work including clarification of the optimum mode by carrying out the
preliminary mission analyses reported herein.

B. Optimum Solar Electric Propelled Jupiter Flyby Trajectories

A study of optimum flyby trajectories to Jupiter using solar electric
propulsion for flight times from 600 to 900 days is reported in this section.
The launch vehicle used was the Atlas SLV3C/Centaur. A "flyby" trajectory

matches the position of the target planet - in this case Jupiter - with no
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consgtraint on the velocity. Optimum in this report means maximized payload
or net spacecraft mass at the target.

Low-thrust optimization of the Jupiter flybys was accomplished by
the Gordon 2 computer program which was developed at Princeton under Contract
NASr-231, This program is a two-body, two-dimensional, finite thrust, tra-
jectory optimization program. 1In addition to optimizing the thrcst direction
and the switch times of the propulsion system, other significant parameters
associated with the trajectory can be optimized such as jet velocity, power
level, hyperbolic excess velocity, launch-time and flight time.

Modifications to the program for this study include

(1) The capability of power variation as a function of solar
radius, including the appropriate adjoint equations,

(2) Subroutines which give the launch vehicle performance for a
variety of launch vehicles, and solar array and electric rocket ion engine
performance.

(3) Addition of an ephemeris routine which computes initial and
final conditions used in the iteration, given the Julian launch date and trip
time. A second routine searches the ephemeris tape for launch configurations
which correspond to given boundary conditions. This permits the identification
of appropriate launch dates which correspond to optimum angle trajectories.

(4) Addition of sweep capabilities for several parameters including
launch date, trip time, jet velocity, power, and hyperbolic excess velocity.

(5) Provision for a finite hyperbolic velocity at the arrival planet.
The magnitude of the hyperbolic velocity can be specified and its direction

specified or optimized,.
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(6) 1Improved integration and iteration procedures. The integration
was improved from second order to fourth order in the predictor-:orrector
scheme. The iteration routines were improved for greater stability through
the inclusion of an automatic correction limiter. The results are a faster
and more uniform convergence.

The following assumptions were used in the Jupiter flyby trajectory
optimization:

(1) The space vehicle is considered to be comprised of power supply
and thrusters, propellant, propellant tankage and payload. The payload includes
all items not included in the other categories. Mass of the power system is
assumed to be proportional to total power. The power system specific mass, a« ,
is taken to be 30 kg kWe-1 throughout the study (except for the sensitivity
analyses). Tankage mass is assumed to be proportional to fuel expended, with
the factor of proportionality 0.05. No specific allowance is made for structure
mass, o it must be considered part of the payload.

(2) Jupiter and Earth were assumed to be in coplanar, circular orbits.
Departure and arrival coordinates were taken to be the planetary centers and
their mass was ignored during the low thrust heliocentric trajectory. Depar-
ture and arrival dates were taken to give an optimum central angle.

(3) The launch vehicle was the Atlas SLV3C/Centaur. The relationship
between injected mass and hyperbolic excess velocity was obtained from the NASA

(2)

0SSA Launch Vehicle Estimating Factors and is shown in Figure 6 as a curve

fit and its derivatives.
(4) Except for sensitivity analyses all trajectories optimized power

level, jet velocity, and hyperbolic excess velocity.
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LAUNCH VEHICLE PERFORMANCE

Lounch Capoability of the Allas (SLV3C)/ Centour for the period [1973—1977

Ref: N AS A, Lounch Vehicle Estimating Factors for Ganerating OSSA Prospectus 1967, November 1966
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(5) Propulsion system efficiency is assumed to be a function of

(3)

jet velocity. This relationship, was provided by NASA Headquarters and is
shown in Figure 7.

(6) The variation of solar power with distance from the sun was
obtained from the Hughes Study Report(l), The relationship is shown in
Figure 8.

(7) The range of flight times investigated was 500 to 900 days.

One of the interesting results of the study was the identification
of three different modes for solar electric propelled Jupiter flybys over the
range of flight times investigated. Mode 1, shown in Figure 9, is a direct
flight with thrust always acting in the general direction of the velocity and
energy always increasing. Travel angles for this mode are typically four
radians. Mode 2, shown in Figure 10, requires an initial retro-thrust thus
decreasing energy and allowing the spacecraft to fall in toward the Sun. At
the perihelion of this trajectory, where power is maximum, the thrust direction
has swung around and now supports the motion so the spacecraft energy increases.
Travel angles for this mode are typically six radians. Mode 3, shown in
Figure 11, has three different phases where the thrust altermately supports,
opposes and again supports the motion and the energy is correspondingly increased,
decreased, and increared. These trajectories are typically eight radians.

The principal result, a plot of payload vs travel time is shown in °
Figure 12. For short travel times, Mode 1 is the best; whereas, for longer
trip times Mode 3 is best. For the particular vehicle characteristics used,
the crossover point is about 870 days. Mode 2 is never optimum (except locally).
Figures 13, 14 and 15 show further details on Modes 1, 2 and 3, respectively:

power, hyperbolic excess velocity and jet velocity are plotted versus trip time.

’
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ELECTROSTATIC (ION) ELECTRIC ROCKET PERFORMANCE

Electron SBombordment Thruster with Cesium for the Period 973-1977

Ref: NA S A(JPMullin) Letter Dated January 19, 1967
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SOLAR ELECTRIC ARRAY PERFORMANCE

Solar Flectric Array Technology for the Period 1973 — 1977

1
Ref: Table A-3 Hughes Repor! SSD 60374R, DoccmbcrlSSG.( )
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Figure 16 shows a typical (600 day) Mode 1 trajectory profile (See Figure 9);
similarly, Figure 17 shows a profile for 900 day Mode 3 trajectory (See Figure
11).

The trajectories just described optimized power level, jet velocity,
and hyperbolic excess velocity as well as the thrust program. The sensitivity
of Mode 1 trajectories to off-optimum conditions and variation of prescribed
parameters was also studied as described below.

Figure 18 shows the variation of payload versus hyperbolic excess
velocity for a number of flight times. 1In this cise the optimum is quite flat.
Figure 19 shows the effect on payload of an improvement in powerplant specific
mass over a range of flight times, The original trajectories were computed
using « = 30.0 kg kwe-l. The effect of a reduction to a« = 27.0 and 24.0 is
shown. For this plot, trajectories were re-optimized using these new values
of a . Over the range investigated the effect on netamass is for practical
purposes, linear with « , and independent of flight time. Figure 20 shows the
effect of an improvement in thruster system efficiency over a range of flight
times. For this plot, the % vs Vj curve, originally provided by Reference 3
was increased by 10 and 20%. The trajectories were then re-optimized. Again
the improvement appears to be relatively independent of flight time.

To determine the effect upon payload of variations in power level,
jet velocity, and hyperbolic excess velocity, two example trajectories were
chogen. The first is a Mode 1, 600 day flight with payload of about 181 kg,
This direct trajectory is similar to that plotted in Figure 9, and the actual
trajectory profile is shown in Figure 21. Sensitivity of payload to the above

parameters is shown in Figure 22,
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Jupiter Flyby Trajectory - Mode 3 900 days

8
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The other trajectory chosen for study was a Mode 3, 900 day flight
with payload of about 355 kg. The plot of a similer trajectory is shown in
Figure 11 and the actual trajectory profile in Figure 23. Sensitivity of the
payload to power, effective jet velocity and hyperbolic excess velocity is
shown in Figure 24,

Referring to the sharp falloff of payload with power variation seen
in Figures 22 and 24, it should be noted that both effective jet velocity and
hyperbolic excess velocity (and thus initial mass) were held constant while
the power was varied. Therefore, varying power is essentially the same as
varying initial thrust to mass ratio. Previous studies at Princeton have
shown also that the payload was quite sensi: . to this parameter. If
effective jet velocity and hyperbolic excess velocity had been re-optimized
for each new power level as has been done in a number of previously studies,
the falloff of payload with power would be more gradual and the curve would
lie above that shown in Figures 22 and 24.

An interesting comparison of the capabilities of three launch
vehicles was made using the Gordon Program: Atlas (SLV3C)/Centaur,

Titan III-C(1207)/Centaur and Saturn IB/Centaur. The results are shown in
Table 6 below. The mission is a 600 day, solar electric, Jupiter flyby,
assuming coplanar circular orbits. The trajectories are fully optimized:
thrusting program, effective jet velocity, initial acceleration, power and
hyperbolic excess velocity. Transfer angle has also been optimized. The
resulting payloads are:

Atlas (SLV3C)/Centaur 174.86 kg

Titan III-C(1207)/Centaur 1943.39 kg

Saturn IB/Centaur 1778.50 kg
The specific mass of the powerplant was taken to be 26.0 kg kwe-l. Tankage

and structure factor were assumed to be .06 and .08, respectively.

}9\’%?‘ SR,
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Table 6

Lasunch Vehicle Comparison - Jupiter Flyby
Mode 1 - Flight Time 600 days

Atlas SLV3C Titan III-C (1207) Saturn 1B
/Centaur /Centaur /Centaur
Initial Mass, kg 696.21 3563.62 3485.39
: Powerplant, kg 303.32 913.30 972.72
2 Propellant, kg 153.15 397.96 429.52
: Propellant Tanks, kg 9.19 23.88 25.77
; Structure, kg 55.70 285.09 278.83
i Payload, kg 174.86 1943.39 1778.50
Initial Power, lie 1.67 35.13 37.41
| Efficiency, % 0.54 0.55 0.54
Hyperbolic Excess
Velocity, km s-1 4.03 6.92 6.62
Effective Jet Velocity,
km s-1 32.532 32.836 32.805
Initif% Acceleration, -3 -3 _
ms 0.5583x10 0.3272x10 0.3565x10
é
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IV. ASTEROID BELT EXPLORATION MISSIONS
A. Introduction
The interest in and value of scientific missions to explore the
asteroid belt has been discussed in a number of published papers and reports.
In addition to scientific interest in the asteroids per se, there is also the
need to know more about the asteroids from the viewpoint of Eoll;sion - avoid-
ance between the asteroids and any interplanetary spacecraft passing through
the belt as well as the contribution of the asteroids to the dangerous-:ized
particles and debris throughout the rest of the solar syetem.(ll'ls) An
asteroid belt fly-through mission is examined in Refs. 4 and 5. Four rendezvous
missions to the asteroids Eros, Ceres, Icarus, and Vesta, respectively, are
examined. in Ref, 5. Since all of these mission studies are based upon chemical
propulsion, it was decided to make some preliminary analyses based on solar
electr.c rocket propulsion.
B. Discussion of Solar-Electric Asteroid Belt Trajectory Results
The feasibility of optimal rendezvous trajectories to targets within
the asteroid belt, using a solar-electric propelled spacecraft, launched by one
of three designated boosters [Atlas (SLV3C)/Centaur, Titan ITI-C(1207)//entaur,
or Saturn 1B/Centaur] was initially reported in ASMAR Status Report dated

(16) A more complete set of data ir presented and summarized

1 October 1967.
in this report.
‘The general pattern of the asteroid rendezvous trajectories is showm
in the FRONTISPIECE.
Figures 25, 26, 27 and 28 show curves of payload nbl’ initial solar

electric power at 1 AU Po’ hyperbolic excess velocity squared 03, and effective

(4-10)

s At = A -
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jet velocity V, vs flight time for the Atlas (SLV3C)/Centaur and the Saturn

3
1B/Centaur boosters, for rendezvous m:ssions to radii R = 2.0, 3.0, 3.5 and
4.0 AU, which includes the approximate radial extent of the asteroid belt,
This data is also presented in tabular form in Table 7. These trajectories
are fixed-time, two-dimensional optimized for maximum payload with respect
s C

to the thrust program, Po’ \ and travel angle. The following quantities

i’ "3
are input data: electric rocket propulsion system specific mass factor a« =
20.0 kg ke ', (44 1bs/kWe), structure factor = 0.08, tankage factor = 0.06,

thruster system efficiency 7 = a function of Vv, (Figure 7), the solar power

3
fall-off function = a function of solar distance R (Figure 8), and the launch

(2

vehicle characteristics. The specific mass factor is considered to be repre-
sentative of advanced solar array technology in the period when these missions
would be performed. These are rendezvous trajectories, which match the local
heliocentric circular orbital velocity at each designated radius, R. Thus the
trajectory matches the orbit of the average asteroid, assumed circular. Match
to prescribed elliptical orbits is easily obtainable, if desired. Since the
asteroids are closely grouped about the ecliptic plane, there is not expected
to be a significant change in payload performance between these two-dimensional
(ecliptic plane) trajectories and actual three-dimer.sional ones. The justifi-
cation for this statement is that it is known that for small orbital inclination
angles, which is the casa here, there is only a small payload performance penalty
for non-coplanarity, using electric propulsion on interplanetary trajectories.(ls)
Figures 25 through 28 and Table 7 show clearly, assuming & minimum
payload limit of about 340 kg (750 1lbs), that rendezvous missions witnin the

entire astercid belt sare feasible using the Saturn 1B/Centaur booster and solar

electric propulsion. The payload masses, while function of the trip time as
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i Table 7
: Soler Electric Asteroid Rendegvous
£
Net Electric Final Jet Electric
b Final Time (Final less Power  Electric Exhaust Engine c Travel Payload
Y Radius Poverplant) at 1 AU  Power Velocity Efficiency Angle Maas
Mass Po Pf VJ
AU days kg kWe kWe kn 8! % (km s’ 12 raa kg
Saturn 1B/Centaur Plus Solsr Electric
2.0 300 1245 123.6 37.7 30.0 60 17.8  2.66 695
: 400 3310 99.2 30.0 35.4 66 5.6  3.60 2710
: 500 4365 70.9 21.6 42.5 73 3.4 4.48 3750
; 3.0 550 840 140.0 19.1 29.1 58 13.0  3.26 188
; 600 1505 135.0 18.4 31.0 61 8.9  3.57 881
¢ 700 2560 114.4 15.6 35.2 66 5.4 4.16 1921
£ 3.5 650 385 113.2 11.5 27.5 56 28.8  3.14 0
o 700 900 138.7 14.1 29.2 59 12.5  3.50 313
2 800 1870 128.8 13.1 32.7 63 6.6  4.03 1227
£ 900 2595 115.0 11.7 36.7 68 3.4 4,59 1927
f 4.0 900 1300 137.0 10.8 30.7 61 8.5 3.91 663
H 1000 2010 125.4 10.0 33.9 65 5.2 4.36 1337
é Atlas (SLV3C)/Centaur Plus Solar Electric
f 2.0 300 170 21.3 6.5 30.0 60 9.4  2.73 78
K 350 370 20.8 6.3 32.8 64 4.3 3.22 268
- 400 530 17.7 5.4 35.7 67 2.7 3.68 425
’ 500 720 12.9 3.9 42.9 73 1.3 4.60 610
N 3.0 500 20 12.8 1.8 27.0 55 23.6  2.92 0
y % 550 120 22.1 3.0 29.2 59 8.6 3.3 20
- 600 230 23.5 3.2 31.2 61 4.1  3.67 122
' g 700 415 20.3 2.8 35.6 67 2.0 4.30 300
Tk 3.5 650 45 18.7 1.9 27.5 56 4.3 3.27 0
; 700 130 23.5 2.4 29.3 59 6.3  3.60 27
800 300 23.1 2.4 33.1 64 2.0 4.19 185
900 425 20.0 2.0 37.0 68 1.3 4.7 310
4.0 750 5 8.2 0.65 26.1 4 31.1  3.13
800 60 21.4 1.7 27.7 56 10.2  3.51 0
900 200 23.4 1.9 30.9 61 4.1 64.02 90
1000 325 22.64 1.8 3%.3 65 1.3 4.55 208
i Optimal Thrust, Vy» C3» By - Structure Factor = 0.08 ®=20.0 kg ioe "L

Tenkage Factor = 0.06

P,
L.
1
i
1
!
i
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shown, remain amply adequate in most cases for a wide spectrum of experiments,

communication capabilities, terminal maneuvers, cruising among a number of
locations within the asteroid belt, orbiting around or surface-landing upon an
asteroid, etc. A detsiled examination of such experiments and terminal maneuvers,
while of considerable interest and importance, was beyond the planned scope of
this work, and has not been performed. The Atlas (SLV3C)/Centaur booster plus
solar electric propulsion appears adequate (based upon the 340 kg minimum pay-

load limit) at R = 2.0 AU for trip times greater thean about 400 days, not

0,y gt e e

adequate at R = 3.0 AU for trip times less than 700 days, marginally adeq e
at R = 3.5 AU for trip times greater than about 950 days and not adequate at

R = 4.0 AU for trip times less thun 1,000 days. Thus, it appears that the

ARG Wy g v -

Atlas (SLV3C)/Centaur booster plus solar electric propulsion is marginally
suitable for rendezvous missions to regions within the asteroid belt up to
about R = 3.5 AU, depending upon the maximum allowable flight time and the mini-
mum allowable payload mass.

It must be kept in mind that the solar-electric powerplant masses are
not included in the above payloads, This is an important point when making

comparisons with non-electric propelled systems, which require separate sources

R Pty <ohasccor ) s 2L v

of electric power, and which are usually charged against the payload mass. On

the other hand, the optimum power levels are in some iustances larger than prac~

#

ticable with certain constraints such as shrouds, etc.

' The electric power available at the trajectory terminals is listed

A" 15

i under the heading Pf

in Table 7. The power at any distance R is given by the

usual equation
Pf -‘Po f(R) (1)

where Po is the initial power at 1 AU and £(R) is the prescribed variation of

power with solar distance R. For the Saturn 1B/Centaur, the terminal power

P exceeds 10 kWe in all cases. This power level (10 kWe) at S-band (2300 MHz),
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using & spacecraft antenna diameter of 7.5 feet, should be adequate for most
communication needs, ind can provide a bit rate of 20,000 bits/sec at 5.0 AU
range to Earth, using the 85 foot DSIF ground lntenna.(s) This power level
(10 Kw) is also adequate for the larger of two experimental radars mentioned
in the following section of this report. The desirability of a television
capability, not necessarily real-time, implies that high data rates will be
required at ranges up to 5.0 AU. Por real-time television, using Apollo tele-
vision parameters, FM modulation, 5.0 AU range, 85 foot ground antenna, 7.5 foot
spacecraft antenna, 160 kWe c¢f power would be required. This would be reduced
to 30 kile by use of an 18 foot spacecraft antenna.

The circularized rendezvous trajectorvies diacussed above comprise
only one subclas; of the total number of potentially useful trajectories to
explore the asteroids. For example, another subclass of wendezvous trajectories
are rendezvous missions to specific named astz:roids, with known orbital elements.
Still other types of trajectories, such as a "cruiser" or spiraling trajectory
may provide better sampling of the total asteroid distribution within the belt,
if this is the scientific mission obj-ctive, in radius (solar distance), in
angle (circumsolar) and in depth (direction rormal to ecliptic plene) than
rendezvous trajectories, Such missions may accomplish more per mission dollar
measured in terms oi data-gathering and in accumulation of scientific knowledge
than rendezvous trajectories. Of course, it may be possible tc design rendez-
vous trajectoriel which provide a good sampling of the belt prior to or even
subsequent to rendezyoun with a specific asteroid, if sufficient propuleion
capability is availasble. '

Another trajectory subclass is the flyby or fly-through type of

mission which can deliver more payload than the rendezvous type, but also has
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disadvantages, as will be discussed now. Two examples of fly-by or fly-

through trajectories were inwi.stigated briefly. The results are tabulated

in Tables 8 and 9. The first trajectory type (labeled Type 1, Table 8)
consists of a 450-day trip to R = 4,0 AU. Optimal thrust 1is used to R = 2.0 AU,
then thrust is cut off, and the vehicle coasts to 4,0 AU. The trajectory goex
on be, nd 4.0 AU but was not computed. This trajectory has the fo..owing
advantage over the rendezvous types: A solar distance of 4.0 AU (spanning the
belt) is reached in only 450 days, which trip time is not achievable at all,

with any of the designated boosters, for the circular-orbit rendezvous type

i
¥
’
:
g
I,
i
3

trajectory to R = 4.0 AU, and this with payloads comparable to those of the
circular-orbit rendezvous ty: at R = 2,0 AU. However, there are corresponding
disedvantages, such as ¢ 3imaller travel angle (poorer circumsolar sampling)

and faster transit time through the belt (increased experiment observational
difficulties) compared with the open-angle circular-orbit rendezvous trajec-

tories. For example, for the Saturn 1B/Centaur, comparison between the above

450 day Type 1 trajectory, and the 900-day circulir-orbit rendezvous trajec-
tory shows that the travel angle and time within the belt 2 to 4 AU ) for the

latter are -espectively each approximately twice that of the former. This is

2
i
+
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¥
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shown in Table 8.

It can be seen from Table 8 that the performance of the Titan ITI-C
(1207)/Centaur and the Sa.urn 1B/Centaur boosters are very similar to each
other. Partly for this reason an extensive separate set of trajectory compu-
tations using the Titan booster was not undertaken. Another comment on
Table 8 (and 9) is that a powerplant specific mass factor of a = 26.0 kg kwe'l
was used instead of 20.0 kg kwe'l used for Table 7, due to the computation bcing

done at two different time periods. While this difference in « can produce
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Table 8

*
Solar Electric Asteroid Fly-Through Trajectory Type 1

Saturn 1B Titan 1III C

/Centaur (1207)/Centaur
Initial Power, Po’ ke 31.2 27.17
Effective Jet Velocity, vj, km s-1 31.4 31.4
Hypeibolic Excess Velocity Squared,

Cys (km s 12 44.1 48.4
Initial Thrust Accel., FMO, m s-2 0.30 x 10-3 0.26 x 10.3
Initial Mass, -, kg 3,475 3,530
Engine Rfficiency, % 0.53 0.53
Payload Mass, -pl’ kg 2,085 2,270

Saturn 1B Titan III C (1207)
/Centaur /Centaur
Travel Travel
Time, Distance, Angle, Distance, Angle,
days AU rad. AU rad.
0 1.00 0 1.00 0
75 1.34 1.32 1.36 1.31
150 2.00 1.99 2.00 1.93
300 3.14 2.49 3.16 2.46
450 4.00 2.75 4.00 2.73
within belt (™~ 2-4 AU): within belt (~2-4 AU):
time = 300 days time = 300 days
angle = 0.76 rad. angle = 0.8 rad.

For comparison: Saturn 1B/Centaur, 900-day, 4.0 AU rendezvous: within

belt: time = 700 days, angle = 1.7 rad.

*
Type 1 trajectory: 450 days to R = 4.0 AU. timal thrust control to
R = 2.0 AU, coast to 4.0 AU. a = 26.0 kg kWe~!, tankage factor = 0.06,

structure factor = 0.08.
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Table 9

*
Solar Electric Asteroid Fly-Through Trajectory Type 2

Titan IXI-C(1207) /Centaur

Initial power, Po, kile 53.3
Jet exhaust velocity, vj’ km s—1 31.4
Hyperbolic Excesg Velocity Squared

c;s (lm s-1)2 ) 53.7

. -2 -3
Initial thrust accel., FMO, m 8§ 0.30 x 10
Initial mas., Hb’ kg 3,240
Engine efficiency, y 0.53
Payload mass, mpl, kg 850

Travel
Time, Distance, Angle, Mass,
days AU rad. Normalized
0 1.00 0 1.00

125 2.00 1.61 0.88
250 3.00 2.02 0.84
435 4.00 2.30 0.81
700 4.50 2.5 0.78

Wichin belt (~ 2-4 AU), outward-bound leg:
Time = 310 days
Angle = 0.69 rad.

*Type 2 trajectory: 700 days to R = 4.5 AU. OQptimal continuous thrust.

Terminal velocity = O, tangential velocity open
and less than local circular velocity, so that
spacecraft falls back into belt.
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meaningful differences in payload, it is not large enough tc invalidate the
overall remerks on comparative performance between rendezvous and nonrendezvous
subclasses of trajectories made in the preceeding paragraph.

The second type of trajectory (labeled Type 2, Table 9) consists
of a 700 day trip to R = 4.5 AU, optimal continuous thrust, terminal radial
velocity = 0 and terminal horizontal velocity = open, but less than local
circular velocity at R = 4.5 AU, so that the spacecraft falls back into the
belt. The results (Table 9) are not very promising, as compared to pre.:ious
trajectories, in terms of payload, and time and angle spent within the belt
on the outbound leg. A possible significant improvement might be achieved
by shortening the trip time somewhat by :recuciang the radius to R = 4.0 AU,
and by including the return (inbound) leg contributions to the time and angle
within the belt.

A very novel possibility is a solar-electric mission to accomplish
a complete 360° sampling in circumsolar angle in the belt in a reasonable
time by use of a retrograde solar orbit. 1t is proposed to establish such an
orbit by means of a Jupiter sving-bf, to put the spacecraft into a retrograde
circular or elliptic orbit within the belt. Oae disadvantage of such a tra-
jectory would be the very high relative velocities between the asteroids in
their posigrade orbits and the spacecraft in its retrograde orbit. More study
is needed to establish trajectory feasibility, and to assess the aggravated

experimental difficulties due to the high spacecraft velocity relative to the

asteroids,
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C. Spacecraft Radar
The desirability of an on-board radar for detection, range, angle
and other possible measurements on asteroids in a program aimed at exploration

4,5)

of the belt is discussed in the literature. In addition, some type of

radar is required to furnish input data for asteroid collision avoidance
systems.(11’12’13) For exploration, the radar would need to be supplemented
by other equipment for detailed measurements of asteroid size, orbital elements,
rotation, and surface characteristics. For collision avoidance, additional
subsystems would be needed for asteroid target tracking, trajectory prediction,
and maneuverability command and control.

A study of the feasibility of such a radar was completed, and is
reported in detail in Ref. 18, and in summary form in Ref. 16. Since Ref. 18
is an available and self-contained report, there is no need to repeat details
at length in this final report. It is concluded in Ref. 18 that some type
of radar will be both useful and feasible assuming continued development of
the state-of-the-art into the 1970's. There is presently a problem in estimating
the radar capabilities. As an exploration tool, the value of the radar would
be measured by the number of detected asteroids. Any estinate of this number
depends upon an assumed asteroid distribution in number, size and velocity in
the belt, At present, this distribution is completely unknown, except for the
largest asteroids, which comprise, it is thought, a very small fraction of the
total, Hénce the calculated radar usefulness varies by several orders of
magnitude, depending upon the assumed distribution. 7Two radars and various scan
modes are examined, a smaller one at 0.1 kWe and a larger one at 10 kWe average

power, using an up-to-date asteroid distribution.
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V. CONCLUSION WITH RECOMMENDATIONS

The work presented in this report must be considered to be pre-
liminary and exploratory in nature from the standpoint of fully optimized
missions. However, the results do attest to a considerable capability for
broad optimization of solar electric propelled spacecraft trajectories
recognizing constraints related to realistic modelling of flight paths in the
solar system using actual planetary ephemerides. Further development of
trajectory analysis capability is recommended to understand more fully the
interactions between realistic trajectories, available space:raft technologies
and actual mission performance with solar electric propulsion. The capability
for analyzing other more complex and detailed missions should be established
without undue delay.

The Mars orbiter 1971-79 checks provided a substantial, although
tentative, agreement with the Hughes Aircraft Company trajectories. It is
recommended that in the future full record of input data and constraints be
retained so that cross checks of the results can be made with definitive accu-
racy.

The solar electric propelled Jupiter flyby trajectories using the
Atlas (SLV3C)/Centaur launch vehicle disclosed several distinct modes and their
relative characteristics. The trajectory analysis computer programs were shown
to be capable of extensive flexibility in optimizing the mission and in deter-
mining the sensitivities among the various parameters. It is recommended that
further and improved analyses of Jupice£ flybys and swingbys be undertaken as
the definition of mission requirements; i.e. - payloads, flight times, et al.,
become more certain and detailed and in the light of technology advances. Launch
vehicle, espacially Titan family and newer booster, characteristics and costs

will be of considerable importance and must be factored into the analyses.
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Asteroid missions are shown to be interesting possibilities for
solar powered-electric rocket propelled spacecraft. The asteroid rendezvous
missions are particularly suited to solar electric propulsion and the power
requirements of the payloads, which may include radare, can probably be well
satisfied from the solar array power sources. Other asteroi&, planetoid and
cometary missions including retrograde flight paths may benefit from the unique
characteristics of solar electric propulsion. It is recommended agair that the
Titan femily and other intermediate launch vehicles be studied for their
applicability of these missions.

There are many more variables to be exploited in the concepting of
spacecraft and their trajectories for missions where solar electric propulsion
may be applicable and optimum. It is recommended that attention be given well
ahead of the requirement for the aralysis of future missions to the development
of the needed trajectory analysis capability for use in the concepting of the
spacecraft with their payloads. To do this it will be necessary to handle
solar system constraints and flight path requirements in realistic and detailed
fashion in the trajectory analysis, project the applicable propulsion and other
systems technology, and identify the science payloads with their mass, volume
and power requirements as part of an ongoing program for solar system

exploration.
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