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ABSTRACT
 

An approximate method is presented for analyzing restrained
 

shrinkage stresses in ablation heat shields during space flight
 

cooling. An alternating direction iterative method is used'to "obtain
 

numerical solutions of a two-dimensional mixed boundary-value problem
 

for rectangular elastic plates. Plane strain theory is assumed with. 

the heat-shield length and thicknesses as controlling dimensions and 

the finite difference method is used to integrate the .governing) 

differential equations for displacements and-stresses. -The calculated 

stresses are shown to agree with exact results welt awayfrom -theheat­

shield edges. At the restrained-free edge corner of the heat shield,
 

the calculated stresses do not agree with the prescribed boundary
 

stresses. It is concluded that calculated stresses are "talid for
 

regions other than the corner vicinity, but are not valid near the
 

corner.
 

Experimental results from cold soak tests of ablation heat­

shield models are presented. These tests indicate that the location
 

of maximum restrained shrinkage stress depends on the ablation material
 

thickness. Calculated stresses are qualitatively compared with the
 

test data., The calculations and the test data both indicate that heat
 

shields constructed with unreinforced ablation materials are susceptible
 

to edge cracking when the ablation material thickness exceeds about
 

0.5 inch.
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CHAPTER I
 

INTRODUCTION
 

1.1 Research Problem
 

The effects of restrained shrinkage due to space flight cooling
 

must be investigated prior to the materials selection and design of
 

ablation heat shields for proposed multimission manned spacecraft. The
 

multimission spacecraft concept involves a single vehicle structure
 

which can be adapted for several space missions. The adaptation
 

required for these spacecraft is a refurbishable heat-shielding system
 

which will consist of ablation material panels with provision for
 

removing and replacing the entire system. This thesis presents an 

approximate thermal-stress analysis method which is applicable to 

refurbishable heat shields. The method of analysis, programed for 

solution with a digital computer, provides a means to investigate how
 

restrained shrinkage stresses in ablation materials are affected by
 

temrerature distribution, ablator strength properties, and ablator
 

thickness.
 

Studies of refurbishable heat shields (Ref. 1) usually consider 

rectangular planform panels of ablation material bonded to substructure 

panels constructed of conventional materials such as steel or fiber­

glass. Figure 1 shows the arrangement of such panels on a conceptual 

spacecraft and Figure 2 shows some details of an individual panel. 

The ablation materials considered for these panels are specialized
 

low-density-plastic composites which have low ultimate tensile
 



Figure 1.- Conceptual manned spacecraft with ablation heat-shield panels
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Figure 2.- Model of ablation heat-shield panel
 



strengths and high expansion coefficients. Since the heat-shield
 

panels on the multimission vehicle will be continuously exposed to the
 

space environment, the panels can experience severe cooling due to 

radiation heat transfer. This cooling will produce tension stresses 

in the ablation material because of differential thermal contraction 

between the ablation material and the substrate. The combination of 

tension stress and low ultimate strength can cause the ablation 

material to crack. From a design standpoint, cracks in the ablation 

material prior to reentry are unacceptable because the cracks com­

promise the structural integrity of the heat shield. Therefore, a 

technique for predicting' restrained shrinkage stresses must be used
 

during heat-shield design. Experiments conducted during this thesis 

investigation indicate that the location of maximum shrinkage stress 

varies with thickness and can be greatest at the edges of the heat 

shield. These data indicate the inadequacy of simplified shrinkage 

analyses which neglect edge effects. 

In this thesis, the heat shield is approximated as a flat 

rectangular slab of ablation material bonded on one side to a stiff 

substructure. Plane strain theory is used with the heat-shield length 

and thickness as the controlling dimensions. The finitd difference 

method is used to integrate the governing differential equations for 

displacements and stresses. Temperature gradients through the ablation
 

material thickness and variations of elastic constants with temperature
 

are permitted in the analysis. Thermal-stress calculations are com­

pared with exact solutions and are qualitatively compared with 
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experimental data obtained during this investigation. The restrained 

shrinkage analysis involves solving a mixed boundary problem in that 

the bonded surface of the ablation material has prescribed displace­

ments while all other surfaces have prescribed boundary stresses.
 

Experimental and analytical studies of restrained shrinkage or
 

expansion have been made by other persons. Some of these studies are
 

discussed in the following section. With but one exception, the
 

analytical methods used in these studies differ from the thesis method.
 

1.2 Historical Background of Research Problem
 

Thermal stresses in a rectangular plate, clamped along one edge, 

are analyzed in Reference 2. In this reference, plane stress theory is 

used and the thermal-stress problem with a uniform temperature change 

is converted to a problem of specified fictitious edge stresses. The
 

integral representing the strain energy is expressed in terms of normal
 

and shear stresses and minimized using the calculus of variations. The
 

analytical results show a normal stress concentration factor of 10 at
 

the corner junction of the free and clamped edges. The specified 

interface displacements axe, however, not satisfied in this analysis. 

.The analyses of a rectangular plate with a clamped edge reported 

in References 3 and 4 assume plane stress theory and uniform tempera­

ture. In these analyses, the shear and normal stresses at the ,clamped 

edge are expressed in terms of Fourier series satisfying the differ­

ential equations of equilibrium. Numerical results given in both 

references show infinite normal and shear stresses at the clamped-free
 



edge corner. Reference 4 also presents calculated stresses for plate 

regions other than the clamped edge. The author states that these
 

calculated stresses are valid since the corner stress singularity is
 

local and confined to the corner vicinity. 

Photoelastic studies of restrained shrinkage are reported in 

References 5,6, and 7. The problems associated with bonding solid 

rocket propellant grains to rocket motor cases are the bases for these 

studies. The experimental data indicate stress concentrations at the 

clamped-free edge corners. In Reference 5, the author states that 

photoelastic measurements up to 0.001 inch from the corner showed 

rapidly increasing normal tension stresses with approach to the corner. 

The author discusses, but does not reconcile the discrepancy between 

his data and the requirements for compression normal stresses to 

satisfy the boundary conditions for plane strain. 

The analysis of Reference 8 is a plane stress analysis of a 

rectangular plate clamped along one edge and subjected to a uniform 

temperature change. The mixed boundary-value problem is solved for the 

two-dimensional displacement equations of equilibrium using a finite 

difference method. The numerical results show large, but finite values 

for normal and shear stresses at the clamped-free edge corner. The 

author states that the results for other plate locations agree 

qualitatively with the results of Reference 4 and that the precise 

behavior of the solution at the corner is not known. 



CHAPTER II
 

ANALYTICAL MODEL 

An analytical model was established to calculate the restrained
 

shrinkage stresses in a flat rectangular slab of ablation material 

bonded to a substructure. Figure 3 shows the model configuration and 

identifies the rectangular Cartesian coordinate directions. 'The 

substructure of an actual heat shield would consist of structural 

elements such as honeycomb sandwich (see Fig. 2) or face sheets and
 

stringers, but for this analysis the substructure is simply a 

restraining foundation for the ablation material. 

2.1 Assumptions
 

The assumptions used in the analysis are discussed in the
 

following paragraphs. 

As shown in Figure 3, the x7y plane is the bonded interface 

between the ablation material and the substructure. The analysis is 

applied to the x-z plane, indicated by the heavy dashed line in Figure 3,
 

whose bounded edge coincides with the line -b x _< + b, z = 0. The
 

two-dimensional displacement vector of the plane has the components
 

u(xz) in the x-direction and w(xz) in the z-direction. The two­

dimensional approximation simplifies the analysis, and it is reasonable 

from consideration of the heat-shield dimensions. The typical x and 

y dimensions for the ablation material on an actual heat shield would
 

7
 



Figure 3.- Analysis model configuration and coordinate system
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be between one and two orders of magnitude greater than the thickness. 

Therefore, if the heat-shield corner regions are excluded, a large 

area remains for which a two-dimensional approximation is applicable. 

It is assumed that the ablation material is fixed to the 

substructure at z = 0 with a bonding material having negligible 

thickness and that the composite panel is free to expand or contract, 

but restrained against curvature. Displacements at the bonded 

interface (z = 0) are determined from the substructure temperature 

change and coefficient of thermal expansion only. This assumption is 

based on the material property data for typical ablation materials 

which are reported in References 9 and 10. These data indicate that 

the ablation materials have Young's moduli which are much smaller than 

those of conventional structural materials such as steel or aluminum. 

Therefore, the substructure is much stiffer than the ablation material 

and stresses in the ablation material will not produce significant 

substructure displacements. The exterior surfaces of the ablation 

material are assumed free of external loads. This assumption is 

realistic because the aerodynamic forces on the heat-shield surface 

are negligible during space flight.
 

The analysis assumes that temperature variations occur only 

through the thickness of the ablation material, the z-direction. This 

assumption is also reasonable because heat-shield cooling results from
 

radiation to deep space from the exterior x-y surface of the ablation
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material (see Fig. 3) and the cooling rate will be uniform over this 

surface. 

The ablation materials considered in this analysis are uniform 

density mixtures without honeycomb reinforcement. These materials are 

assumed to be isotropic and elastic with the properties E and m 

being functions of temperature only. Except for the initial cooling 

period, the ablation material temperature distribution will be fairly
 

independent of time. Therefore, a steady-state temperature distribu­

tion is assumed. Heat-transfer analyses for calculating the tempera­

ture distribution are available (Ref. 11, for example). 

For this analysis, it is assumed that the deformations of the 

x-z plane, which is located well away from the heat-shield corners, are 

described by plane strain theory. The ablation material strain in the
 

y-direction (Gy) is assumed to be equal to'the substructure strain.
 

Since the substructure is assumed free to expand or contract, the value 

for Ey is equal to asT s . 

2.2 Governing Equations
 

Figure 4 shows the mixed boundary conditions on the x-z plane 

which are analyzed for u and w displacements. The bonded edge of 

'the ablation material -b < x < + b, z = 0 has prescribed displace­

ments while the other boundaries have prescribed stresses. Since the
 

temperature and material properties are constant in the x-direction 
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and boundary conditions on the x-faces are identical, the z-axis is a
 

line of symmetry. These symmetry conditions are
 

u = uz 0 on x =0, 0 < z < h 	 (I) 

Therefore only the rectangle 0 < x'< b, 0 < z < h: is considered.. 

The analysis is formulated in terms of displacements rather than str6ss 

functions because displacement boundary conditions can be prescribed on 

the x-axis, but stresses on this axis can only be determined from the 

thermal-stress solution. 

From Reference 12, the two-dimensional stress equilibrium
 

equations are
 

(oC)±+-rx )= 0
 
x z
 

(2) 

.§ 	 ) +--(r ) = 0 
z 6x 

The thermoelastic relations between stress and strain are
 

(Ref. 12)
 

ay =7?,e±+2GeX - ____6_ 

1- 2v 	 (3) 

- ____nE\e + 2Gcz = 	
S1-2v 

TTx = Gyj, yz = G7yz, Tyxz =7X 



where
 

vE G E and e=e + E + r 

(1 +v)(1 - 2v)' 2(i +v) 

Assuming linear strain displacement relationships, that is,
 

Ex = U, G7 = w, Z = +.­

and substituting equations (3)into equations (2), the two-dimensional
 

equilibrium equations for plane strain in terms of displacements may be
 

written as
 

l - v)Enx + vEv- + vEWZ
 

2x vl+)(l - 2v), (1 + v)(1 - 2v) (1 + v)(l-2v)
 

2(1 + v]j
( l- 2v)j z1 0 

(4)
 

Eer1 (i - v)Ew l
xLl 2(1 + v)j] 3zj 1I+ v)(l - 2v) 

+ (i vEux + vEvE ___ 0 
(1 +v)(l - 2v) (1 + v)(1 - 2v) _ 2v] 

6
The term vy in equation (4)is retained because the assumption y = 0 

is more restrictive than necessary for plane strain (Ref. 13)., 

Therefore, provision for retraining ey as an assumed value of 



substructure strain only, is included in the equilibrium and stress
 

equations for plane strain.
 

Since the ablation material is rigidly bonded to the sub­

structure, the 	boundary conditions at the interface are 

u = aslsTsx, w = 0 on 0 <x < b. z = 0 (5) 

The stress boundary conditions yield
 

( V)ux +VEy + vwz - (l + v)cT = 0x = b(6) 

e
+Z+ wx = O 	 0 0 < z < h 

VUx + + (I - V)Wz - (1 + v)M t= < x <bj (7) 
= nz + X 0 	 z h 

The boundary conditions for the corners at x = 0, z = h, and x b, 

z=h are 

=0
 

vux + Vy+ (1- v) - ( + v)ctt = 	 (8)}4: 
+wx =0uz 

(1 - v)u x + Vy 	 + vwz -41 l + v)MaT 0 
x=b
 

Vux + + (1 - V)wz - (! + V)a(L = 6 (9) 

uz +wx=O 

Equations (4) are integrated by finite differences., Thus the 

x-z plane is subdivided by a rectilinear mesh (see Fig. 5) with a 
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constant mesh width Ax in the x-direction and a constant mesh width
 

Lz in the z-direction. Mesh spacing with sx 4 Az is used because
 

the structures being analyzed typically have much larger dimensions in 

the x-direction than in the z-direction. The mesh lines are parallel 

to the coordinate axes with mesh lines on the edges x = b and z = h. 

The digital computer used to solve the finite difference, 

equations did not permit the use ,of zero as a subscript. Therefore, 

the mesh points xm and zn are defined by 

x. = (m - 1)6x, m = 1,2,..;,1; z. = (n - )Xz, 'n =1,2,...,J 

(10) 

2.3 Finite Difference Form of Equilibrium Equations
 

The method used to integrate-the differential equations of
 

equilibrium by means of finite differences is given in Appendix A. 

A digital computer program for solving the finite difference equations
 

was written as part of this investigation. This computer program is 

discussed in Appendix B. A summary of the finite difference equations
 

is presented in this section. Refer to Figure 5 for locations. For
 

programing the finite difference equations for computer solution the 

designations A, B, C, and D are used for recurring combinations 

of Poisson's ratio. Although this analysis assumes plane strain, plane 

stress solutions may be obtained from the computer program by using 

different values for A B C, and D. These constants for both 

plane strain and plane stress are given in Table I of Appendix A. 
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2.3.1 Corner Point 1l 

2.3.2 Axis of Syrmetry m =1 

w=0 

2 n J ­. 

(11) 

S(AEwz + 
oz 

BEc 
y 

+ BEux CEc LTA) +&nuzDw 
D- z M.) 

A (En + En+l) + Wm,n1). (En + En-l)(m . 

B E n + l um+ l n +l - En.lum+ln-£] + B +- En-1] 

- C 
26Az 

[(Em AT)n.± - (EA AT)n-±] + DEn2UMAl 
2ix z 

n l Umln-13 

+ DEn 2wn 
, x2 

+ 2wm+ln] 
n 

= 0 (12) 

2.3.3 Corner Point fl = i1 n = J 

un=O 



18, 

(Aw z + 	BEeT + BEu- CEa AT) = 

+ A 9B~(En 	+ Fm..1 ) (En-j Fn 12c rnni m'i: 
-	 (mn13,Nz2.2 	 wnmn 1l-) + 2 wn2 

+ BExsz [Y7Enum+,n -12En-lumln- + 3En_2um++,n_2] 

+! [E 	 . - 12En-j + 3En-.2] [7 AT)V­2 {7(E m' 

- 12(F ZT)n 1 + 3(Ex. AT)n_2 ] = 0 	 (13) 

2.3.4 	 Restrained Boundary 2 _ m _I, n 1 

w=0 

2.3.5 	 Interior 2 <m_< I: - 1 2 n < J -1 

(Aux + BEEy + BEwz- CEm AT) + (z(DEUz+ DEwx) = 

AEn 	 _
1 

En[u-.in - 2 Un, n + um+l,n] + F Zlz [Wn±,n+l - m+l,n-1 

+ + [E, .ln+l wim-l~n+l ) 
- Wm.1,n+i wmfl-,nl] 4, x_Dnznl (w+, 

- Enl(wm+1,n_.1 - Wmli,n.l)] + D (En + Fn+l)m 

- umnn) 	 -(E +En)(UMn - mni) = 0 (14 a)2 
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(AEw. + BEux + BEET CEa. LT) + - (Euz + fl~wX)= 

Lz2 2E -) nn - nn-A_ [ En+12+En)(w,,n+l2 _ yin) - (En 2 ±)( n ­

+ B [E + %+i,-n+ "- _-,n+,)± - 'E-(m+l,n-1 - -,n-1)] 

+-F~ - E - --E-ct AT)n j - (Em. AT)n-±] 

[ -,+ f.lE -+l,n+i ,ni1 - um+l,n-1 + Um-1,n-1I, 

+ -',n - 2,n + w-,,] = 0 (14b) 

2.3.6 Exterior Boundary 2_ i< I - 1, n = J 

t(CAEux + TEY + Bwz - CEcL nT) + -(DEuz + DEwx)
 

TX + 
 F 
32 D) + En-1)B2Enr 9(En 


(A - 7 L 2u,n + Um+l,n] + 3fl2LEn +
-} -in 

(,,n- Umn1 + (En-1 + En2 
+ D 2 '~a4n- I UM, n-2j 

. 9gE l(wm+ln _ a- 1 )
2 x L [-D7En(vi+i,n - wm l,n) 

+ 3En_2(Wm+l,n_2 - Wmil,n_2)] = 0 '(15a) 
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(w + BL)mx + BEe,1 - CEa. AT) 

A 9(En +En-!), - ,n-) + -iEn-2)(, ­[ 
wi, ni)+2%SA.2 2 w n­

* 3 [TFn(um+Tln - %ml,n _12Enl(UM+l,n_1 - I,n-l )) 

B+ B 

+ 

+ 3Fn- 2 (um+,n- 2 - m-,n-2)] + B [ 7E- 10- 3E-2] 

- -7E Tn -pF 14 Tn- + 3(E I 6T),,- 2 ] =0 (1%b) 

2.3.7 Exterior Boundary m 1, 2 n J -1 

(A + BEey + BEwz - C m ) = 

%-2,n] BE6s3 2[-9,n+ 1 'i-,n - + ls 

-12 (wm, n+l - wm-l,n-i ) + 3'(wm-2,n+1 - wm_2,n-l)]: 

- 8 n y ++- c(EM AT)n = (16a) 
BTn y 3L 



(AEw + BEmx + BEc - CF AT) + y(DEu% + DEwX) = 

A- B2)11(En + En+l) (-Wm,n+1 - wnn)Anlz2 L 2 

+ DE- -m, + 1ow_ ,n - w-2,n] + 

(En + En--) (,n2 

DE, [7(,n+± -

- Wmn-i 

%,n-1) 

- 12(%-l,n+_ 

1(-A''~~ 

- .- I,n-1) + 3(-2,n+1 

(Emt AT)n- 1 ] 

+ !L (i ')&In-,F(16b) 

- um-2,n-1)l 

+1-

2.3.8 Corner Point m= I, 

(AOux + BE: 

n = J 

+ BEwz - CEm AT) 

-,+ loU_, - 'y_2,n] 

+.A( A Bn A~)+GBcf n] o(l ) 
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z(AEwz + BEux + BEcy - CEa. LT) = 

(A /2L CE n 
1 ) 

-+ En_1 
A /3tz2 L2 

(mn-1 - m,n-2J] - ,(l"A[3En 

(En-1 
+~ 

-1 + En-2 

+ En-2) 
2 

+(E - l)-!-[3(E AT), 

+A( B)E BEn~y 

-4 (Ea + 

C(F AT)a] =-n 

(.n-2] 

(17b) 



CHAPTER III 

EXPERIMENTAL TEST PROGRAM 

A test program of limited scope was conducted to investigate the
 

behavior of ablation materials subjected to restrained shrinkage.
 

Eight small models consisting of rectangular panels of ablation
 

material bonded to steel substructures were tested in a cryochamber
 

at the Langley Research Center.
 

3.1 Model Configuration
 

The model configuration is shown in Figure 6. The models were 

fabricated by bonding two 4- by 11-inch ablation material panels to a 

0.080-inch-thick steel plate. The steel plate was made wider than the 

ablation material panels to provide a means to mount the model in the
 

cryochamber. The planform area of the model was necessarily much
 

smaller than an actual heat shield, but the ablation material thickness
 

was full scale. A symmetrical model was used to eliminate bending.
 

The model substructure was sandwiched between two ablation material
 

panels which were both cooled simultaneously. The model substructure
 

provided an extensional stiffness similar to an actual structure. 

This model configuration furnished a shrinkage restraint boundary 

condition on one surface of the ablation material and stress free
 

boundaries on all other surfaces. These boundary conditions 

simulate those of an actual heat shield and agree with those
 

assumed in the analysis. To indicate ablation material cracking
 

during the tests, crack detection circuits of conducting paint
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were applied to the model surfaces. These crack detectors are visible 

in Figure 6. The models were also instrumented with thermocouples to 

measure the temperature of the ablation material and substructure 

during testing. Neither the thin layer of conducting paint nor the 

thermocouples bonded into the ablation material appeared to have any 

physical influence on the cracking of the ablation material during the 

tests.
 

3.2 Ablation Material
 

Six models were fabricated with the ablation material shown in
 

Figure 6. This material is a low density composite of nylon and
 

phenolic which has been widely tested as an ablation material (Ref. 14)
 

and is typical of the materials considered for ablative panels on 

future manned spacecraft. The phenolic nylon material was tested at 

thicknesses of 1/4, 5/8, and 1 inch. Three models were bonded with an 

adhesive having a cure temperature 6f 3250 F and the other three were 

bonded with a room temperature curing adhesive. Both adhesives are 

commonly used in heat-shield fabrication, particularly the high 

temperature curing adhesive. Thbe thermophysical properties of the 

phenolic nylon test material are reported in Reference 10. Data from
 

Reference 1O1 which are pertinent to this investigation are shown in
 

Figures 7 and 8. The faired curves shown in these figures are also 

from Reference 10. These data show large variations and indicate
 

uncertainties in derived strength properties. Such variations in data 

1lThese data are presented with the written permission of the
 
authors.
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are typical for ablation materials. Phenolic nylon ablation material
 

also exhibits dimensional instability when subjected to changes in
 

humidity. The constituent materials are hydroscopic and will absorb
 

atmospheric moisture which produces swelling. Exposure to vacuum will
 

cause the material to lose moisture and shrink.
 

Of the remaining two models, one was fabricated with NASA 602
 

and one with the Apollo spacecraft ablation material. NASA 602 is a 

silicone elastomer material described in Reference 1. This material 

differs from phenolic nylon in composition and is les brittle at room 

temperature, but has a coefficient of thermal expansion which is about 

twice as large as phenolic nylon. A 1-inch thickness of NASA 602 was 

tested and it was bonded to the substtucture by using the constituent 

silicone resin as an adhesive. The Apollo heat-shield'material is an 

epoxy-based composite reinforced with a plastic honeycomb. Heat 

shields of this material are fabricated by bonding the honeycomb to the 

spacecraft structure and then filling the honeycomb cells with ablation 

material. The resulting ablative shield consists of many small columns 

of ablation material separated by honeycomb cell walls. A 1-inch
 

thickness of the Apollo material was tested to compare its behavior to
 

the phenolic nylon.
 

3.3 Test Procedures
 

The models were tested in a cylindrical vacuum chamber whose
 

walls contained liquid nitrogen. The models were supported in the
 

test chamber so as to permit simultaneous radiation cooling of. both
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rectangular slabs of ablation material. The test procedure was as 

follows: The model was placed in the test chamber and the instrumenta­

tion was connected to recorders. Radiation shields consisting of 

fibrous insulation with an aluminum foil cover were placed over all 

exposed surfaces of the steel substructure and the model ends. Only 

the exterior surface of the two ablation material slabs was exposed 

to the cold chamber walls. The test chamber was sealed, evacuated to 

a pressure of about 1 torr, and liquid nitrogen was then introduced 

into the chamber walls.
 



CHAPTER IV 

RESULTS AND DISCUSSION 

The test program desciibed in Chapter III was performed to 

obtain data from typical ablation materials which would identify the 

critical stress regions during restrained shrinkage and which could be 

qualitatively compared with the analytical stress analysis. The 

computer program developed for this investigation was used to calculate 

stresses caused by restrained shrinkage. These calculations have been 

compared with exact solutions. Comparisons between the calculations
 

and the test data have also been made. The results of these studies
 

are presented and discussed in the following sections.
 

4.1 Experimental Results 

The phenolic nylon plate models described in Chapter III are 

shown after testing in Figure 9. The models shown in Figures 9(a) and 

9(b) had the steel substructure sandwiched between two 1/4-inch thick­

nesses of ablation material. These models developed cracks at a surface
 

temperature of -125 ° F and substructure temperature of -120 F. Thermal 

stress calculations, which are presented in a subsequent section,
 

indicate that this cracking occurred in the region of maximum in-plane
 

tension stress. Edge cracking was not observed.
 

Figure 9(c) shows the interface cracks across the narrow
 

end of the 5/8-inch thick models. These models cracked at a
 

surface temperature of 300 F and substructure temperature of 720 F.
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The crack location indicates that the cracking was caused by edge 

tension stresses. The cracked region of the models having 1-inch-thick 

ablation material is shown in Figure 9(d). The crack circuits indi­

cated that these models developed end cracks while the test chamber 

was being evacuated prior to cooling. As discussed in Chapter III, 

phenolic nylon shrinks from moisture loss during vacuum exposure and 

this shrinkage produced edge stresses large enough to crack the 

ablation material. Subsequent cooling of the model to a surface
 

temperature of -750 F increased the separation and caused the large 

crack visible in Figure 9(d).
 

The models with the ablation material bonded with high tempera­

ture curing adhesive performed essentially the same as those fabricated 

with a room temperature curing adhesive. The bonding operation at 

3250 F apparently did not cause significant thermal stress in the
 

models. The reason for this is that the strength of this phenolic
 

°
 nylon material is extremely small at 250 F (see Figs. 7 and 8).
 

Therefore, it is anticipated that the hot ablation material accommodated
 

the differential contraction strains and did not develop significant
 

thermal stresses during subsequent cooling to room temperature.
 

The test model fabricated with 1-inch-thick NASA 602 also 

developed end cracks at the location shown in Figure 9(d). The crack
 

circuits did not function well with this material and, therefore, the
 

temperature at cracking was not determined. This test result was
 

expected and indicates that silicone elastomers are also subject to
 

cracking from restrained shrinkage at low temperature. The model
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fabricated with 1-inch-thick Apollo heat-shield material did not 

develop cracks during testing. This iesult was also expected because 

the honeycomb reinforcement is effective in preventing cracking due to
 

-restrained shrinkage. 

4.2 Analysis Results 

The accuracy of the numerical analysis is evaluated by comparing 

the calculated stresses with an exact solution. The exact case is the
 

plane strain analysis of a semi-infinite slab with constant material
 

properties. The slab is subjected to a uniform temperature change and 

is restrained in both the x- and y-directions such that the strain in
 

these directions equals csaT . From Reference 15, the solution for
s


=this case (away from the edges) is Cx = a - E .ET/l - V, z = 0 

where m is the difference between the slab and substructure expansion 

coefficients.
 

Calculated stresses in the slab subjected to a uniform temper­

ature decrease are shown in Figure 10. The stresses are normalized with 

respect to the parameter Em a/l - v and the abscissa is the ratio of 

distance from the free edge to the slab thickness. As the distance from 

the free edge increases, the edge effects diminish and the calculated 

stresses agree with the exact solution in regions for which the exact 

solution is valid. Mesh spacings of Ax = 0.125 in. and Lz = 0.025 in. 

were used for all the calculations presented in this thesis. 

The slab thermal stresses at the interface z = 0 are shown in 

Figure 10(a) and serious discrepancies exist between the calculated 
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=
values and the free edge stress boundary conditions, cx = rxz O, at
 

x = b. This result was not anticipated and the analysis was completed 

before the results from the displacement analysis of Reference 8 were 

known. Much effort was spent in trying to resolve the difficulty, 

including the use of extremely small mesh spacings, but no successful
 

solution was obtained. It is noted that corners are excluded in
 

studies of finite difference approximations for mixed boundary-value
 

problems (Refs. 16 and 17, for example). A stress singularity at the
 

corner point is indicated by the large shear stress values obtained
 

with the present analysis. The analysis of Reference 18 also identifies
 

the corner point as a potential singularity point.
 

A stress singularity at the corner point, x b, z 0, means 

that the stresses at that point cannot be evaluated, but it does not 

invalidate the results obtained at other regions of the slab. It is 

emphasized that the singularity is one of stress, but not of displace­

ments. With the present analysis, the interface displacements are 

specified as u = ms%/Tsx and w = 0. These values for u and w 

also specify the values for ux and Wx" The interface displacements 

appear as known values in the equilibrium equations for the mesh points 

at 1 < m < I, n = 2 and these displacements, therefore, are used in 

the systems of equations which are solved for u and w throughout 

the x-z plane. Since the interface displacements are known, however, 

the equilibrium equations are not applied at the interface. This 

means that the prescribed stresses at the corner point are not included 

in the slab displacement equations. The interface stresses are 
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calculated with the specified values for ux and wx and from values
 

for uz and wz obtained with forward difference equations using the 

specified interface displacements and the calculated slab displace­

ments. Since w = wx = 0 is specified along the interface, satisfying 

the shear stress boundary condition requires that uz = 0 at x = b, 

but this condition is not in the slab displacement equations. Since 

the slab contracts more than the restraining substructure, the u 

displacements at the mesh points 1,2 and 1,3 are greater than 

U I . - The u displacements at these three points do not lie along a 

parabolic curve. Therefore, a three point forward difference equation 

gives a negative and nonzero uz . Decreasing the mesh spacing, 'nz, 

merely increases the calculated value for u. at x = b. To satisfy 

the crx = 0 condition, with ux specified, requires negative values 

for wz which are considerably greater than the values at x less
 

than b. To satisfy the slab equilibrium equations along the x = b
 

edge of the x-z plane, however, w must be positive at the meshx 

points for n > 2 because uz is negative at these points. Therefore, 

the forward difference equation does not give large negative values 

for wz at the corner point. The net result is that Oz at the 

corner point is a tension stress rather than the compression stress 

given by the free edge boundary conditions. 

It is noted that for slab equilibrium, the sum of az stresses
 

along the interface must be zero. The az stresses shown in
 

Figure 10(a) satisfy this requirement, however, this does not indicate
 

a unique solution. It is speculated, however, that even if compressive
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Uz stresses exist at the corner point, a stress reversal must occur
 

near the corner. In Reference 5 the author states that photoelasticity
 

measurements up to 0.001 inch from the corner showed tension values for
 

z" The test results from the present investigation also indicate
 

tension stresses as evidenced by the edge cracking at the interface.
 

The numerical plane-strain analysis gives stress distributions 

in the x-z plane which: (1) agree with the exact solution well away 

from the edges; (2) agree with the prescribed boundary stresses at the 

slab mid-depth and surface (Figs. 10(b) and 10(c)); and (3)qualita­

tively agree with the plane stress analyses of References 4 and 8 at 

the mid-depth and surface locations. In Reference 4, the author states 

that the effects of the stress singularity were highly local and that 

valid solutions were obtained away from the singularity. Because of
 

(3) this statement can be applied to the present analysis. Also, the
 

displacement equations are solved by repeated iterations of simul­

taneous equations and if significant perturbations were introduced by 

the corner effect then these perturbations would influence all displace­

ments. Such perturbations would cause the calculated stresses in all 

regions of the x-z plane to diverge from exact solutions. Since this 

divergence does not occur, it is concluded that the corner effects are 

confined to the immediate vicinity of the corner and that valid stresses 

are calculated at other regions.
 

Figure 10(b) shows that at the mid-depth, z = h/2, of the 

restrained slab the edge stresses are minimal. Therefore, to investi­

gate edge tension stresses which might cause the ablation material to
 



43 

crack, it was necessary to select an edge region which was somewhat 

removed from the corner point, x = b, z = 0, and yet in the highly 

stressed region. A location at z 0.05 inch was selected. At this 

location, good agreement was obtained with the prescribed boundary 

=condition that ax 0. The calculated shear stresses at this boundary 

location reached peak values near the edge and indicated a rapid 

decrease toward the prescribed edge value. Figure 11 shows the 

calculated values for azj normalized with respect to Em AT/1 - V, 

for various thickness slabs subjected to a uniform temperature 

decrease. These values are calculated at x = b, z = 0.05 inch, and 

show that the edge tension stress increases with slab thickness.
 

This result agrees with the experimental data presented herein.
 

In actual applications, an ablation heat shield would have a
 

temperature gradient in the z-direction rather than the uniform 

temperature assumed in Figure 11. Therefore, the influence of 

three different temperature distributions on restrained thermal
 

stresses was investigated. Case I assumed a uniform temperature 

distribution, Case II assumed a linear temperature distribution through 

the ablation material thickness with AT = 0 at z = 0 and Case III 

assumed a uniform temperature in the upper half-of the slab thickness 

(h/2 < z < h) and a parabolically increasing temperature to AT = 0 

at z = 0 in the lower half of the slab (0 < z <h/2). The value for 

,AT at z = h was the same for all three cases. The temperature 

distributions for Case II and Case III are suggested by the temperature
 

distribution measured during model tests. The calculated stresses are 
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compared in Figure 12 which shows the ratio of az at x = b) 

z = 0.05 inch to TXmax for various assumed slab thicknesses. 

Figure 12 shows that the edge tension stress increases with slab
 

thickness for all three temperature distributions. The Case III
 

temperature distribution induces the greatest slab curvature and
 

causes the highest edge tension stress near the nonbending interface. 

As expected, the linear temperature distribution of Case II produced 

the lowest tension stress. The most interesting point.about these 

calculations is the indication that the region of maximum tension 

stress shifts from the slab interior t6 the edge when the slab thick­

ness exceeds about 0.5 inch.- The calculations are consistent with the
 

test results. Interior cracks developed in the test models with a
 

slab thickness of 1/4 inch and Figure 12 shows a value of Gz/xnmax 

less than 1.0. The models with slab thickness of 5/8 and 1 inch 

developed edge cracks and the value of uz/ xmax for these thicknesses 

is greater than 1.0.
 

4.3 Comparison of Calculations and Test Results 

Thermal stresses were calculated for a phenolic nylon material
 

at the temperature when model cracking occurred. The test data 

indicated that the model with 1/4-inch-thick ablation material
 

(Fig. 9(a)) cracked when the surface temperature was -1250 F and the 

substructure temperature was -120 ° F. The reference temperature was 

800 . The material properties were obtained from data in Reference 10. 

These data indicate that at the measured temperature the thermal 
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expansion coefficient is 23.5 x 10-6 in/in/deg F. However, as shown in 

Figure 7 the data for Poisson's ratio and Young's'modulus show wide 

variations. The values selected were: V = 0.1 and E = 120,000 psi. 

The expansion coefficient for the steel substructure -was taken as 

6.76 x io - 6 in/in/deg F. The thermal stress calculations indicated a 

maximum tension stress of 460 psi at the top surface of the ablation 

material. A calculation assuming Poisson's ratio equal to 0.25 

produced a maximum stress of 550 psi. Examination of the ultimate 

tensile strength data in Figure 8 shows that these stress values would 

cause ablation material cracking such as occurred in the model tests. 

Thermal stress calculations were also made for comparison with 

the 5/8-inch model (Fig. 9(c)). The model cracked at a surface 

temperature of 300 F, a mid-depth temperature of 320 F, and a sub­

structure temperature of 720 F. The reference temperature was 800 F. 

The material properties were the same as previously discussed with the 

exception of Poisson's ratio which was assumed to be 0.15. The maximum 

tension stress occurred at the edge, but was only 150 psi, and well 

below the ultimate tension value from Figure 8. Apparently the stress 

resulting from moistue-loss shrinkage was primarily responsible for, 

the model cracking and not the stress from the relatively small
 

decrease in temperature.
 



CHAPTER V 

CONCLUDING REMARKS
 

An approximate numerical analysis for 'restrained shrinkage 

stresses in rectangular slabs has been presented. Test results from 

rectangular slabs of ablation material subjected to severe restrained 

shrinkage have also been presented and qualitatively compared with
 

analysis calculations. The present analysis which is programed for
 

solution with a digital computer calculated restrained shrinkage 

stresses which are consistent with the test results reported herein 

and with other experimental investigations. The alternating direction 

technique (Ref. 19) which was programed to solve the finite difference
 

equations appears to be rapid and efficient.
 

The analysis was an attempt to solve the mixed boundary-value
 

problem of a rectangular plane having both specified displacement and 

stress boundary conditions. The analysis objective was not fully 

achieved because no satisfactory solutions were obtained at the 

boundary corner point for which both displacements and stresses were 

specified. The numerical analysis did not determine the strains and 

stresses at this boundary point with any precision. Extensive and 

time consuming efforts were made to improve the corner point solution,
 

but these efforts were unsuccessful. It is not known what modifica­

tions to the analysis would be required to obtain better solutions.
 

Both the test results and the stress calculations from this
 

investigation indicate that a heat shield subjected to restrained
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shrinkage can develop edge separations between the ablation material
 

and the substructure. Heat shields fabricated with bonded,
 

unreinforced ablation materials appear susceptible to edge separation
 

or cracking when the ablation material thickness exceeds about
 

0.5 inch. The data also indicate that this cracking may occur merely
 

because of changes in the moisture content of the ablation material
 

and at temperatures much less severe than those which could be
 

encountered in space flight. The desirability of using honeycomb
 

reinforced ablation material to withstand restrained shrinkage is
 

evident, but must be weighed against fabrication cost and difficulty.
 

A reinforced region at the heat-shield periphery might be an acceptable
 

compromise solution.
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APPENDIX A 

FINITE DIFFERENCE EQUATIONS 

In this section the partial differential equations of equili­

brium are expressed in finite difference format suitable for numerical
 

calculations. The resulting series of difference equations is solved
 

by an iterative procedure which is discussed in Appendix B.
 

The finite difference expressions for second derivatives are
 

obtained using the "half station" approximation which is the natural
 

result of making the finite difference approximation before expanding 

the derivatives. This approximation is used because the modulus of
 

elasticity is variable and the results of Reference 20 indicate that
 

the "half station" approximation is more accurate than the "full 

station" approximation. Accordingly,
 

T(Wz)mn =zA Z)m,n+( 1/2 - m,n- 1/2 

= [-n+ 1/ 2wm,+l - (n- 1/2 E2n+ 1/2)Wm,n 

+ En- 1/2wm,nl] (A-1) 

The values of E are evaluated at the temperature of a point midway 

between grid points mn and mn+l; m~n and mn-l. Thus 

equation (A-1) becomes
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(En + En+l) n +!  
(EWz) = L 2 (Wm, win, n)TZA,2 1 

- (Fn +E -wi, n - wmn I (A-2) 

The finite difference expressions for first derivatives are obtained
 

with the "full station" approximation. Three-point central difference 

equations are used at interior mesh points and three-point forward
 

differences are used at exterior boundary mesh points.
 

Interior Points
 

The equilibrium equations for plane strain are, 

AEu + B+ + BEty- CEa. AT] +[ uz + DEw] = 

(A-3a)
 

0&Ewz + BEmx + 3%- CEmtAT] + -E,Euz + DEwxj= O

.(A-in) 

The values for A,B,C and D are given in Table I.
 

The finite difference form of these equations is obtained as follows:
 

The first term in equation (A-3a) is obtained by a three-point central
 

difference approximation
 

AEn=(AEU (A-4)
I n [um-1,n - 2 um,n + um+,n] 
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The second term of equation (A-4), a mixed derivative, is obtained by
 

making a full station approximation in the x-direction before expanding
 

the derivative.
 

BE ,7z6-m~ 2A(BEw,;)11 [w=BE
 w
 

4 gwm+ln+l - m+l,n_1 - Wml,n+l 

+ Wm-.,n~i] (A-5) 

The third and fourth terms in equation (A-3a) are constant in the 

x-direction and, therefore, are dropped. The fifth term in
 

equation (A-4) is obtained as shown in equations (A-i) and (A-2). 

n+l - um, n) +E-- (%",;n2- uim, n-1IS(DEUz) ' =Z(Du)(En +2En+l) (Umn, (En(un+-un
 

,n'z2 2
 

(A-6)
 

The sixth term in equation (A4) is obtained in the same manner as
 

equation (A-6) except that E is considered to vary in the z-direction.
 

m-1 n+l) ]
Z(DE m,n = A LEn+l(Wm+ ,n+! - - W 11 9m-ln-l)

(A-7) 

By combining equations (A-4) through (A-7) the finite difference form
 

of equation (A-3a) becomes
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AEn +mn ­ + ,n] BE - 1ml,n++ 4zN At[w + m 'nl l 

-Wm+1,n-1 +wm-1,n-1 ~Lns2 +[2 +j ("rn +J - mn
 

(En + 2Enj-j 1 ( u,n-I)
- + D2[En+(wm+±,n+± rljn1 

- Enl(wm+,n-I - wni-,n-Al = 0 (A-8) 

r similar proceaures equation (A-3b) becomes
 

in_A[ 2 En+1)(-mn+l2 - E+ 2En-!),(,Wm n n-(En +.1) 

Az- [n+(um+l,n+±B4,x - Thnl,n+i) - Enl(um+l,n-1 - ln-1) ] 

+ t+ E-] AT).+ 1 - (Ec AT)n-l]- L_(E 

DEn[u,,,+in,+i -
+

+, L ui,,r,+1 - ti,,+1_,n-1. + ,-.n 

+ LE~nln- 2m,n + Wm+1,,n] = 0 A9 

External Boundary
 

2 <m < I - l, n = J
 



58 

The following procedure is used to obtain the finite difference
 

form of the equilibrium equations at the external boundary. The first 

term of equation (A-3a) is
 

6A( ) = [u%-ln - uinUm+n] (A-10) 

The second term in equation (A-3a), 6/)x (BEw), is obtained using the
 

normal stress boundary condition, that is, 

aZ = O= -AEw BEn + BEEy - CEs &T (A-11)z 

This gives
 

(BEwz) = - 2En [um-.-,.n - 2 Um,n + um+l,n] (A-12)
27x M~n A x

The third and fourth terms in (A-3a) are constant in the x-direction 

and are dropped. The pattern for the fifth term / z (DEuz) is 

obtained with a three-point "half station" forward difference 

approximation. 

z(DEuz)mn = 3 [8Euzmf - 9Euzn- 1/2 + EUzmn-3/2] 

(A-13) 

Applying the shear-stress boundary condition, (Euz)m = -(Ewx)mn,n 

equation (A-13) becomes
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E[8(Ewx)m,n + D 9(EnE + En-± ) (m,n - umn'l) 

+ (En-l + En-2) (,n- - u,n-2 (A-14) 

The sixth term in (A-3a) is obtained with a three-point "full station" 

forward difference approximation.
 

z(DEwx)mn 4=x z[3En(wm+l,n - wm-ln) 

- 4En-l(m+ln-I - wm-ln-!) + En-2(Wm+l,n-2 - Wm-l,n-2)] 

(A-15) 

By combining equations (A-l0), (A-12), (A-i4), and (A-15) the finite 

difference form of the equilibrium equation (A-3a) becomes
 

- -L,n - 2 ,n Umln +...t - 9(En +EnI 

+ ETn(wm±,n-wm-l+n)+ (En- 1 +En-2)(um2 n -Pi- "Um, nI'2ln-m-~n2] + 

- 9Enl(wm+ln_1 - wmjl,n) + 3En2(Wm+l,n_2 - Wln_2)] 0 

(A-16) 

The finite difference form of the second equilibrium equation (A-3b) 

is obtained in a similar manner. This equation is
 



6o 

A [ 9(En + En-1) (En-i + En-2) 

3/7.2 L2 tinll + ( -- 2 2 ) (iNn,nl - w~ ­3_______2 

+126x r['7En(Um+l,n - umnl,n) - 12Enl(Um+l,n__-m-ln-l) 

+ 3Fn-2(Um+,ln-2 - Um-ln- 2 )] + "Y_ - 12En 1 + 5En- 2 ] 

-c[ 
- 7(c ')n - 12(Em T)11_. + 3(EM AT)n-2] = 0 (A-17) 

External Boundary
 

m = !, 2 <n < J - 1
 

The finite difference form of the equilibrium equations (A-3a)
 

and (A-3b) for this boundary is obtained in the same manner as
 

equations (A-16) and (A-17). The equations are
 

E[9%,n + %-l,. -U-2,n] BEn 7(Wm,n+[
3, x2 12Lx sz - W,- l) 

- 12(w-in+l - i-l,,n-1) + 3(Wm-2,n+l - m-2,n-1)] 

8x BnSY + - C(EG A')
3,nx 5nx n = 05Ax 
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A - ()1[En+ En~i) (w.nn± inn (En + En.1) mn1BAS2 L 2) 2 (w,,n-'~­

P-l~9winn ­+nD + lOwi.., wi.2,.] + fln 1 E7(um,nl- .. l 
36l 2,Ax 6z + 

- 12 (umin,n+i - uln-)+ 3 6 'm-2,n±± - 1%n-2,n-JI - 3 j(l 2A 

=
[(ETA)n+l - (Fm. AT) n- + hG (1 - -)n+l - En- 0 (A-19) 

Corner Point
 

m=I, n=J 

At this corner point, the normal stresses ax 0z, and the
 

shear stresses are zero. The equilibrium equations are converted to
 

finite difference forms with the following procedure: With E and T
 

constant in the x-direction and with zero shear stress the equilibrium
 

equation (A-3a) becomes
 

A(AEux + BEwz) = 0 (A-20)
 

After substituting the value for BEw obtained from the boundary
z 


=
condition az 0, equation (A-20) is
 

A - B2EU 0o(A-21)
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Equation (A-21) is expanded with a three-point "half station"
 

difference approximation.
 

,x +A-AEUx n A A ) ()mn -(x m- //,n i()m5/2,n] 

(A-22)
 

From the normal stress conditions at the corner point,
 

n("XM~ =- A + B 
-(Ux)m~n = BEney , C(Ecm A) (-3(A-23) 

The finite difference form for equation (A-21) is obtained by com­

bining eauations (A-22) and (A-23)
 

E nA- B 2 ) 

(A-)3 -9um,n+ lOUm-l,n - %-2,n] 

+ _L- ( 2 BE~y+ -C(Em M)
+ -T) L BEner A + B ) (A-24) 

Similarly, the finite difference form of equation (A-3b) is 
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/ - w, n-) + (En + En-2) 

A/yA;2 L 2 ~ ~ ~ l + 2 

(wan1- Wmaln-2)- (B _- y[F - 4.l+ , 

C - l)-.L[(Fm.AT)n - If(Ect AT) 1 + (En. TVn-2 1 

++ 	 8x(Az AJ A + B- B2)_BEncy + (E ALTX] = 	 (A-.25) 

Internal Boundary 

At the internal boundary the u displacement is zero. 

Therefore, only the w displacements are unknown and these are 

obtained from the finite difference form of equation (A-3b) which 

considering syrmmetry is
 

A [En + En+l)(vmn+± - win, n- (En+nl)(wm, n - win,n- 1 

+ 	 ~ Lz LEn+liam+1,,n+1 En-..um+,n-1] + BE[En+1 -%-l
 
B E M) 3j++I
 

-	 1 n*z - (EmA)- * 2zs,n-x]--- L,n+± ­

+ P-t2wmn,+ 2wm+l,n] = 0 	 (A-26) 
Ax2 



Internal Corner
 

The finite difference form of equation (A-3b) for this corner
 

point is obtained in the same manner as equation (A-17) and is
 

' lA [ 9(En l)( - n- + (En-i + En-2) (Wmn - winn2 

+ BK
 

6 Lz[-Enum+l,n - 12En-ilm+i,n-1 + 3En_2um+l,n-2] + BK -7En 

- ! 2 En I + 3En 3] - iE7(Em6 )n - 12(Fl AT)n I 

+ 5(EA ttn2] = 0 (A-27) 

The finite difference equations given in this Appendix are
 

solved for u and w displacements with a digital computer program
 

which was written as part of this investigation. Some details of this
 

computer program are given in Appendix B.
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TABLE I.- VALUES OF CONSTANTS IN THE 

EQUILIBRIUM AND STRESS EQUATIONS 

Plane strain Plane stress
 

A I- v
(I+v)(1 -2v) (I-
1 
V2) 

v
B (I+ v)(1 - 2v) (1 
v 
Ae 

1
C 1 

(l -2v) (l- v) 

2(l + v) (1+ v)
 



APPENDIX B 

This section describes the procedure used to solve the finite
 

difference equations of Appendix A for the u and w displacements of
 

each mesh point. The method for calculating stresses from these
 

displacements is also discussed.
 

Since the present analysis is concerned with edge stresses, it
 

is necessary to use relatively small mesh spacing which in turn requires
 

the solution of large sets of simultaneous equations. These equations
 

are solved by an alternating direction method (see Ref. 19) programed
 

for a Control Data Corp. 6600 Digital Computer. The alternating
 

direction procedure is based on a line-by-line solution of relatively
 

small sets of simultaneous equations that can be solved by direct, 

noniterative methods. With this method the finite difference formula­

tions for equation (A-3a) are solved for u displacements and
 

similarly the w displacements are obtained from the finite difference
 

formulations of equation (A-3b).
 

The displacement calculations are started by assuming values for 

the u and w displacements at each mesh point. The u and w 

displacements at mesh points in each horizontal line are calculated and 

stored. The displacements in each vertical line are then calculated 

and compared to the stored values. The calculations of displacements
 

are continued line-by-line until the absolute values from successive
 

iterations agree within a specified percentage. The coefficient
 

matrices for um~n and wmn are tridiagonal in both the horizontal 

66
 



67 

and vertical directions except on the boundaries x = b ahd z = h. 

At these boundaries the coefficients are modified by an algebraic 

transformation so that each set of simultaneous eauations can be 

solved by a direct factoring method. 

The number of iterations required to achieve a selected con­

vergence varies with the number of mesh points. A convergence 

accelerating factor is not used, but a procedure is programed whereby 

the displacements calculated for a coarse mesh spacing are used as
 

initial inputs for successively finer mesh spacings. This procedure
 

produces significant savings in-computer time. No problems of
 

stability are encountered since the program solves steady-state
 

elliptic equations.
 

The normal and shear stresses at each mesh point are calculated
 

with the finite difference forms of the following equations: 

ax=AEx + BEwz + BEEy - CEt AT (B-I) 

G zAEwz+ BEu x + BEEy -CEa, M (B2) 

Pxz =D (Euz + Ewx) (B-3) 

Equations (B-l), (B-2), and (B-3) are p rogramed using three-point
 

central differences for interior mesh points and three-point forward
 

differences for external boundary mesh points. The computer program
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uses the displacements computed for each mesh point to evaluate the
 

strain values in equations (B-1), (B-2), and (B-3) with the exception
 

of y which is constant for this analysis.
 


