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ABSTRACT

An approximate method is presented for analyzing restrained
shrinkasge stresses in ablation heat shields during spacé f;ight“
cooling. An altermating direction ilterative method is used”toibbta%n
nmerical solutions of a two~dimensgional mixed boundary-velue pro@lem
for rectangular elastic plates. DPlane strain:theory is assumed with .
the heatﬁshield length and thicknesses as controiling‘Eieensions and
the finite difference method is used to‘integrate‘thej%overﬁingF'
differential equations for displacements and~s£ressesv Tﬁe celculated'
stresses are shown to agree with exact results well away,from the heat-

[ .

shield edges. At the restralned—free edge corner of the heat ehleld
the calculated stresses do not agree with the prescrlbed.bourdary
stresses. It is conciluded that calculated stresses ere'ﬁalid,fer
regions other than the corner vicinity, but are not valid near the
corner.

Experimental results from cold soak tests of ablation heat-
shield models are presented. These tests indicate that the location
of maximum restrained shrinkage stress depends on the ablation maberizl
thickness. Caleulated stresses are qualitatively éompared with the
test data. The calculaeions and the test data both indicate that heat
shields constructed with unreinforced ablation materials are susceptible

to edge cracking when the ablation material thickness exceeds about

0.5 inch.
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CHAFTER T
TNTRODUCTTON

1.1 ZResearch Probilem

The effects of restrained shrinkage due to space flight cooling
must be investigated prior to the materials selechion and design of
ablation heat shields for proposed multimission mammed spacecraft. The
multimission spacecraft concept involves a single vehicle structure
which can be adapted for several space missions. The adapbation
required for these spacecraft is a refurbishable heat-shielding system
which will consist of ablation material panels with provision for
removing and replacing the entire system. This thesis presents an
approximate thermal-stress analysis method which is applicable to
refurbishable heat shields. The method of analysis, programed for
solution with a digital computer, provides a means to investigate how
restrained shrinkage stresses in ablation materials are affected by
temperature distribution, ablator strength properties, and ablator
thickness.

Studies of refurbishable heat shields (Ref. 1) usually consider
rectangular planform panels of ablation material bonded to substructure
panels constructed of conventional materials such as steel or fiber-
glass., Figure 1 shows the arrangement of such pariels on a conceptual
spacecraft and Figure 2 shows some details of an individual panel.

The ablation materials considered for these panels are ‘specia;i_ized

low-density-plastic composites which have low ultimate tensile
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Honeycomb substructure

Spaceeraft structure

Figure 2.— Model of ablation heat—shield panel



strengths and high expansion coefficients. 8Since the heat-shield
panels on the multimission vehicle will be continuously exposed to the
space enviromnent, the panels can experience severe cooling due to
radiation heat transfer. This cooling will produce tension stresses
in the ablation material because of differential thermal contraction
between the ablation material and the substrate. The combination of
tension gtress and low uwltimate strength can cause the ablation
material to crack. From a design standpoint, cracks in the ablation
material prior to reentry are unacceptable because the cracks com-
promise the struectural integrity of the heat shield. Therefore, a
technique for predicting restrained shrinkage stresses must be used
during heat-shield design. Experiments conducted during this thesis
investigation indicate that the location of maximun shrinkage stress
varies with thickness and can be greatest at the edges of the heaib
shield. These dats Indicabte the inadequacy of simplified shrinkage
analyses which neglect edge effects.

In this thesis, the heat shield _:i_S approximated as a f£lat
rectangular slab of ablation material bonded on' one side to a stiff
substructure. Plane strain theory is used with the heat-shield leng%h
and thickness as the controlling dimensions. The finite difference
method is used to integrate the governing differentlal equations for
displacements and stresses. Temperature gradients through the a‘plation
maberial thickness and variations of elastic constants with temperature
are permitted in the analysis. Thermal-stress calculations are com-

pared with exact solutions eand are gualitatively compared with



experimental data obbtalined during this investigation. The restrained
shrinkasge analysis involwves solving a mixed boundary problem in that
the bonded surface of the ablation material has prescribed displace-
ménts while all other surfaces have prescribed boundary stresses.
Experimental and analytical studies of restrained shrinkage or
expansion have been made by other persons. Some of these studies are
discussed in the following section. With but one exception, the

analytical methods used in these studies differ from the thesis method.

1.2 Historical Background of Research Problem

Thermal stresses in a rectangular plate, clamped along one edge,
are analyzed in Reference 2. In this reference, plane stress theory is
used and the thermal-stress problem with a uniform temperature change
is converted to a problem of specified fictitious edge stresses. The
integral representing the strain energy is éxpressed injterms,of normal. -
and shear stresses and minimized using the calculus of variations. The
analytical results show a normal stress concentration factor of 10 at
the corner junction of the free and qlamped edgés. The specified'
interface displacements are, how;ver, not satisfied in this analysié.

. The analyses of a rectangular plate with a clémped edge reported
in References 3 and 4 assume plane stress theory and uniform tempera-
ture. 1In these analyses, the shear and normal stresses at the clamped
edge are expressed in terms of Fourier series s&tisfying the giffer-
ential equations of eguilibrium. Numerical results given in both

references show infinite normal and shear stresses at the clamped-free



edge corner. Reference U4 also presents calculated siresses for plate
regions other than the clamped edge. The author states that these
calculated stresses are wvalid since the corner stress singularity is
local and confined to the corner vicinity.

Photoelastic studies of restrained shrinkage are reported in
References 5, 6, and 7. The problems associated with bonding solid
rocket propellant graing to rocket mobor cases are the bases for these
gtudies. The experimental data Indicate stress concentrations at the
clamped~free edge corners. In Reference 5, the author stabes that
photoelastic measurements up to 0.001l inch from the corner showed
rapidly increasing normal tension stresses with approach to the corner.
The author discusses, but does not reconcile the discrepancy between
his data and the requirements for compression normal stresses to
satisfy the boundary conditions for plane strain.

The analysis of Reference 8 is a plane stress analysis of a
rectangular plate clamped along one edge and subjected to a uniform
temperature change. The mixed boundary-value problem is solved for the
two-dimensional displacement equations of egquilibrium using a finite
difference method. The mumerical results show large, but finite wvalues
for normal and shear stresses at the clamped-free edge corner. The
author states that the resulis for other plate locations agree
gualitatively with the results of Referencé b and that the precise

behavior of the solution at the corner is not known.



CHAPTER IT

ANATYTTICAL, MODEL

An analybical model was established to caleculate the restrained
shrinkage stregses in a flat rectangular slab of ablation materidl
bonded to a substructure. Figure 3 shows the model configuration and
identifies the rectangular Cartesian coordinate directiens. ' The
substructure of an actual, heat shield would consist of structural
elements such as honeycomb sandwich (see Fig. 2) or'face sheets and
stringers, but for this analysis the substructure is simply a

regtraining foundation for the ablation material.

2.1 Assumptions

The assumptions used in the analysis are discussed in the
following paragraphs.

As ghown in Figure 3, the x-y plane is the bonded interface
between the ablation material and the substructure. The analysis is
applied to the x-z plane, indicated by the heavy dashed line in Figure 3,
whose bounded edge coincides with the line -b S x S + b, 2 =0. The
two~-dimensional displacement vector of the plane has the components
u{x,z) in the x~direction and w(x,z) in the z-direction. The bwo-
dimensional approximation simplifies the analysis, and it is reasonable
from consideration of the heat-shield dimensions. The typical x and

y dimensions for the ablation material on an actual heat shield would



Figure 3.~ Analysis model configuration and coordinate system



be between one and two orders of magnitude greater than the thickness.
Therefore, if the heat-shield corner regions are excluded, a large
area remains for which a two-dimensional approximation is applicable.

It is agsumed that the ablation material is fixed to the
gubstructure at 2z = 0 with a2 bonding material having negligible
thickness and that the composite panel is free to expand or contract,
but restrained againgt curvature. Displacements at the bonded
interface (z = 0) are determined from the substructure temperature
change and coefficient of thermal expansion only. This assumption is
based on the material property data for typical ablatién materials
which are reported in References 9 and 10. These data indicate that
the ablation materials have Young's moduli which are much smaller than
those of conventional structural maberials such as steel or alum;num.
Therefore, the substructure is much stiffer than the ablation material
and stresses in the ablation material will not produce significant
substructure displacements. The exterior surfaces of the ablation
material are assumed free of external loads. This assumpfibn is
realistic because the aerodynawmic forces on the heat-shieié surface
are negligible during space flight.

The analysis assumes that temperabure variations occur only
through the thickness of the ablation material, the z-direction. This
assumption is also reasonable because heat-shield cooling results from

radiation to deep space from the exterior x-y surface of the ablation
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material. (see Fig. 3) and the cooling rate will be uniform over this
surface.

The ablation materials considered in this analysis are uwniform
density mixtures without honeycomb reinforcement. These materials are
assumed to be isotropic and elastic with the properties E and o
being funcitions of temperature only. Except for the initial cooling
period, the ablation material temperature distribution will be fairly
independent of time. Therefore, a steady-state temperature distribu-
tion 1s assumed. Heat-transfer analyses for calculating the tempera-
ture distribution are available (Ref. 11, for example).

For this analysis, it is assumed that the deformations of the

X~z Pplane, which is located well away from the heat-shield corners, are

deseribed by plane strain theory. The ablation materigl strain in the
v-direction (ey) is assumed to be eqﬁal tothe substructure stfain.
Since the substructure is assumed free to expand or contract, the value

for €

y 1s equal to aATg.

2.2 Governing Equa$iéns
Figure b4 shows the mixed boundary conditions on the X=5 plaﬁe
which are analyzed for u and w dispiaceﬁenté. 'The bonded edge of
the ablation material -b<x <+5b, 2z =0 has presé}ibed displace-
" ments while the other boundaries have prescribed stresses. Since the

temperature and material properties are constant in the x-direction
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and boundary conditions on the x-faces are identical, the z-axis 1s a

line of symmebvry. These symmetry conditions are

Therefore only the rectangle 0 <x ‘S' b, 0<z<h; is considered. .
The analysis is formulated in terms of displacements rather than ‘stréss
funetions because displacement boundary conditions‘l can be. prescribed on
the x-axis, but stresses on this axis can only be determined from the
thermal-stress solubion.

From Reference 12, the two-dimensional stress equilibrium

equations are

s ( 3
dx ¥ Jz X2
(2)
) ( d
oz 2 dx
The thermoelastic relations between stress and strain are
(Ref, 12)
af AT
= + 5Ge -
ox = Ae X 1 -2y
ot AT .
0., = ne + 2Ge,,. -
¥ ¥y o1 - ov (3)
af AT
= Ae + 2Q3¢_ -~
%z © 21 -2y

Txy = nyy, T:YZ = G')’yz’ Tyy = GV
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where

= vE , G=e——— and e =e, + ey * &y
(L +v)(1 - 2v) 2(L +v)

Assuming linear strain displacement relationships, that is,

dz” oz Ox

’
i

Ex=g—:{l’ €Z=@ TXZ=(-§-E+%) ses

and substituting equations (3) into equations (2), the two-dimensional

equilibrium equations for plane strain in terms of displacements may be

written as

B3 G -vE VEVy . VEwW,
(L +v){(1 -2v) (L +v)(1-2v) (T+v)(1-~o2v)

_ Eoor |, d| Bug B
(1 - 2v) 82'2(1 +v)  2(1 +v)

|
Qo

()

3| Euy S - (1 - v)Ewy
=|2(T Fv) 2(x +v)| 9z|(X + v)(1 - 2v)

VYR, " VEvy Fa, AT
(L +v)(L-2v) (L+v){L-2v) 1-2v

+

= 0

The term vy in equation (k) is retained because the assumption ey =0
is more restrictive than necessary for plane strain (Ref. 13).

Therefore, provision for retraining €y as an assumed value of
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substructure strain only, is included in the equilibrium and stress
equations for plane strain.
Since the ablation material is rigidly bonded to the sub-

structure, the boundary conditions at the interface are
u=aMx, w=0 on 0<x<b, z=0 (5)

The stress boundary conditions yield

(l—v)ux+vey+vwz—(l+v)cx,AT=0 X =D
. (6)
Uy +wy =0 0<z<h
vux+vey+(l-v)wz-(1+v)or.AT=O 0<x<b
(1)
u, +wye =0 7z =h
The boundary conditions for the corners at x =0, 2 =h, an@ x =D,
z =h are
u=20
. x =0
vuX+vey+(l-v)1\{Z—(l+v)oc.AT=O (8Y
z =h
Uy +wy =0
(l-v)ux+vey+vwz-,§l+v)a,AT=O .
. .
vux+vey+(l—v)wz-‘(l-%v)or,AT:O h‘ (9)
z = h- .

Equations (4) are integrated by finite differences., Thus the

x-z plane is subdivided by a rectilinear mesh (see Fig. 5) with a
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constant mesh width Ax in the x-direction and z constant mesh width
Lz in the z-direction. Mesh spacing with Ax ¥ Az is used because
the structures being analyzed typicsally have muc1-1 larger dimensions in
the x-direction than in the z-direction. The mesh lines are parailel
to the coordinate axes with megh lines on the edges x =b and 2z = h.
The digital computer used to solve the finite di)fference,
equations did not permit the use of zero as a subscript. Therefore,
the mesh points x, and =z, are definéd by | ‘
Xp = (m - Lax, m=1,2,..:,5; 2y =(n-1)2g, n= i,e,...,.r

(10)

2.3 Finite Difference Form of Equilibriﬁm Eiua’oions

The method used to integrate the differential equations glf
equilibrium by means of finite differences is gi‘vezi 1n Appendi;c A.
A Jigital computer program for solving the finite difference equations
was written as part of this investigation. This computer program is
discussed in Appendix B. A summary of the finite difference equations
is presented in this section. Refer to Figure 5 for locations. For
Programing the finite difference equations Tor computer solution, the
designations A, B, C, and D are used for recurring combinations
of Poisson's ratio. Although this analysis assumes plane strain, plane
stres% solutions may be obtained from the computer program by using

different values for A, B, C, and D. These constants for both

plane strain and plane stress are given in Table I of Appendix A.
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2.3.1 Corner Point 1,1

fur
Il
o

(11)

2.3.2 Axig of Symmetry m=1, 2<n<J -1

-a-a-z-(AEWZ + BEey + BRuy - CEa AT) + 5@; _(DjEuZ + DBwy ) =

(B, + Byaq) (Ep, + Epoq)
;2[% ) 2l (Wm,n-%-l - Wm,n-l)-" “"El"_'e—'r‘l'_(wm,n - Wm,n-'l)

1

Beyr = . ‘
+ 2&3 o [En+1um+1,n+l - En—-lumﬂ_,n-l] + %@nﬂ - En-l]

- e (B D)y - (B AT)p ] + [w+1,na - um+l,n—1]

2/_\& Z.\.Z
+ —n[ W4, n | = (12)

2.3.3 Corner Point m =1, n=4J
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k3

S (AEw, + BEey + BEu; - CEo ATY =
z

# ’
By + Ep-1) (Bp-1 + En-p)y Lo
5;2':- n.2 (Wff%’fn - Vn,n-1) ne ) (V,n-1 ~ ¥, n-2)

* 6AxBaz [-7Entnt1,m - 128011, n-1 + 3Bn-olmtl, n-2])

Re — B c :
* Zag 8 - 12801+ Senp] - o [7(E ATy
- 12(Ex AT)y, 7 + 3(Ea m)n,zj =0 ‘ (13) ‘

2.3.4 Restrained Bowndary 2<m<7I, n=1

u

1

A AT X

w=20

2.3.5 Interior 2<m<T-1, 2<n<J -1

O(AFu, + HEey + Hw, - CEq AT) + <(DEuy + DEwy) =
ox oz

AEy BEy
Zx'gﬁlm-l,n = 2up,n t Um+l,n] * mEﬁnﬂ,nﬂ = Vmtl,n-1

: D
m-1,n+1 + ¥po1,n-1] * T 2o AZ[En-i-l(Wm_-i-l,n+l Wm-l,n+l)

-

- En-l(wm+l,n—-l - Wm-l,n-l)] +

(Bp + )
A];E[En EEn+l‘ <'um,n+l

3

(B, + By_q) . .
- um,n) - — 'E_H' = (“m,n - um,nrl')] =0 (rlha)
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i(AEwZ + BEuy + BEey - CEa AT) + -a-—-(DEuZ + DBwy ) =
oz ox )

E B -1
AEE n+12+ En) (Wh‘l n+l - %’n) - ﬁ:éﬁl_]i(x%’n - Wm,n-l)jl
Nz, .

+

e AZETn-i-l(%-i-l,nﬂ < Unel,n#1) - Fne1 (el ol - Up-1,n-1)]

13 - Bge1) - g (o A)ns - (B AT

. DEn

+ e 7 E’m+l,n+l = Up-1,n41 ~ Vmtl,n-1 Um-l,n-l].
DE, ’

+ HHEE&TI-:L,I] = EWiH,n + WI]‘].—l,nJ = O (ll}:b)
I

2.3.6 Exterior Boundery 2<m<I-1, n=J

ox . dz -

2 5 [ 9®, +By1)
(A - ———) E’m—l,n 2"-111,1’1 um-*-l,n] Azg [ = ) =
yoa

(Ep-1 + Bnoa)y. ‘ ' .
n12 n-2 \um el um,n-e):l'

(um,n - Um,n—l)

t oo AZ[TEn(wmﬂ, - Wp-1,n) - 9Bne1 (W1, n-1 - th-;rlen~ll_) :,

+ 5En—2(Wm+l,n-2 - Wm—l,n-e)] =0 S (152)
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§’_Z(AEWZ+BEuX+BEey-CEo;AT)=

NEy + Ep.1) - (Bt + Bon),
5:;2[" n2nl(“m,n“""‘fm,n-l)+ EleEng(%,n-l”%,n-e)]

]

3
Py E7En(‘7i11+l,n - Up-1,n) - lEFn-l(‘U?w:L,n-l - Up.1,n~1)

?

+

Be ‘
+ 3By _o(Up4a,n-p ~ um—l,n-E)] + g-A-ZXETEn - 12B,1 + 3B,
5 ¢ ¥ -

- gz—ZET(Ea. AT), - 12(Fa AT), 1 + 3(Ea AT);n-Q]. =0 L (15b)

2.5.7 Exterior Boundery m =T, 2 < n<J-1

%(AEUX+BE%, + Bfw, - CBa AT) =

A

HE
%X—EE%,:G + 0uy-1,n - um-z,n] + = E'T(“En,nﬂ. - Wm,n-l)

12/ Ag

"12(%1—1,n+l = Vigel,ne1) Yt 3 (e, 041 - Wm—-e,n-l):ll

_3% BEjey + -B_i—x C(Ea AT), = O (16a)

-



d o
E(AEWZ + BEu, + BEey - CEo AT) + g}—c-(DEuZ + DEw, ) =

2 + B + -

DE DE
: ~[-%m,n + 10,0 - Wmeg,n ) * e (70, ne - Yn,n-1)
AT

- 12(up-3, 041 - Upe1,n-1) * 3o nl - Une2,n-1)]
- a‘iz_(l - f)&m M)y - (B A2), )
Be R . ’
+ E-V(l - %)@nﬂ - Ep1) =0 (16m)

2.3.8 Corner Point m=7T, n=4J

-a-'-(AEuX + BEey, + BEw, - CEo AT) =
ox

2
(A 5 )3&2 E9Um n ¥ 100n_1,n “m—e,nj

2o B)f B .

A d A A+ B




22

9

a(AEWZ+BEuX+BEeY—-CEa.AT)=
Z

2 9E, + E,. 4 +E,
(A i %)5;2[— = eEr,l l)(wm’n " Vnyne1) sl o 2

", B\Be i
(Wm,n-l - Wm,n-B-)] - (l"ﬁ")@y[ﬂn - l}En-]‘_ +tEyp

~of - ) Blem amy - e 20+ (@ 20, ]

8f, £ _BEney+b(EocAT)n o
+ )(A A)[ T :l_o , {(17b)



CHAPTER III
¢
EXPERIMENTAL TEST PROGRAM

A test program of limited scope was conducted to investigate the
behavior of ablation materials subjected to restrained shrinkage.
Eight small models consisting of rectangwlar panels of ablation
material bonded to steel substructures were tested in a cryochamber

at the lLangley Research Center.

3.1 Model Configuration

The model configuration is shown in Figure 6. The models were
fabricated by bonding two 4- by 1ll-inch ablation materisl panels to a
0.080-inch-thick steel plate. The steel plate was made wider than the
ablation material panels to provide a means to mount the model in the
cryochamber. The planform area of the model was necessarily much
smaller than an actual heat shield, but the ablation waterial thickness
was full scale. A symmetrical model was used to eliminate bending.
The model substructure was sandwiched between two ablation material
panels which were both cooled simultaneously. The model substructure
provided an extensional stiffness similar to an actual structure.
This model configuration furnished a shrinkage restraint boundary
condition on one surface of the ablation material and stress free
boundaries on all other surfaces. These boundary conditions
simulate those of an actual heat shield and agree with those
assumed in the anslysis. To indicate ablation material cracking

during the tests, crack detection circuits of conducting paint
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were applied to the model surfaces. These crack detectors are vigible
in Figure 6. The models were also instrumented with thermocouples to
measure the temperature of the ablation material and substructure
during testing. Neither the thin layer of conducting paint nor the
thermocouples bonded intce the ablation material appeared to have any
physical infiuence on the cracking of the ablation material during the

teats.

3.2 Ablation Material

Six meodels weré fabricated with the ablabtion material showm in
Figure 6. This materisl is a low density composite of nylon and
phenolic which has been widely tested as an ablation material (Ref. 1L)
and is typical of the materials considered for ablative panels on
future mammed spacecraft. The phenolic nylon material was tgsted at
thicknesses of 1/%, 5/8, and 1 inch. Three models were bonded with an
adhesive having a cure temperature &6f 5250 F and the other three were
bonded with a room btemperature cutring adhesive. Both adhesives are
commonly used in heat-shield fabricatién, particularly the high
temperature curing ad%esive. Thg thermophysical properties of the
phenokic nylon test material are reported in Reference 10. Data from
Reference lOl which are pértinent ?o‘this invegtigation sre showm in
Figures 7 end 8. The faired curves’sﬁéwn in thése figures are also

from Reference 10. These data show large variations and indicate

uncertainties in derived strength properties. Buch variations in data

IThese data are presented with the written permission of the
authors.
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are typical for ablation materials. Phenolic nylon ablation material
also exhibits dimensional instability when subjected to changes in
hunidity. The constituent materials are hydroscopiq and will absord
atmospheric moisture which produces swelling. Exposure to vacuum will
cause the material to lose moisture and shrink.

Of the remaining two models, one was fabricated with NASA 602
and one with the Apollc spacecraft ablation material. NASA 602 is a
silicone elastomer material described in Reéerence 1. fhis material
differs from phenolic nylon in composition and is less brittle at room

temperature, but has a coefficient of thermal expansion which is about

N
v

twice as large as phenolic nylon. A_l—inch,ﬁhickness of NASA 602 was
tested and it was bonded to the substriucture by usiné the constituent
silicone resin as an adhesive. The Apollo heat-shield meterial is an
epoxy-based composite reinforced with a plastic honeycomb. Heat
shields of this material are fabricated by bonding the ﬁgg;&comb to the
spacecraft structure and then £illing the honeycomb cells with ablation
meterial. The resulting ablative shield ccnsists of many small columms
of ablation material separated by honeycomb cell walls. A l-inch
thickness of the Apollo material was tested to compare its behavior to

the phenolic nylon.

3.3 Test Procedures
The models were tested in a eylindrical vacuum chamber whose
walls contained liquid nitrogen. The models were supporied in the

test chamber so as to permit simultaneous radiation cooling of. both
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rectangular slabs of ablation material. The test procedure was as
follows: The medel was placed in the test chamber and the instrumenta-
tion was connected to recorders. Radiation shields consisting of
fibrous insulation with an aluminum foil cover were placed over all
exposed surfaces of the steel substructure and the model ends. Only
the exterior surface of the two ablation material slabs was exposed

to the cold chamber walls. The test chamber was sealed, evacuabed to
a pressure of about 1 torr, and liquid nitrogen was then introduced

into the chamber walls.,



CHAPTER IV
RESULTS AND DISCUSSION

The test program described in Chapter III was performed to
obtagin data from typical ablation materials which would identify the
critical stress regions during restrained shrinkege and which could be
gualitatively compared with the snalytical stress analysis. The
computer program developed for this investigation was used to calculate
stresses caused by restrained shrinkage. These calculations have been
compared with exact solutions. Comparigons bebween the caleculations
and the test data have also been made. The results of these studies

are presented and discussed in the following sections.

L.l Experimental Results
The phenolic nylon plate models described in Chapter III are
shown after testing in Figure é. The models shown in Figures 9(a) and
9(b) had the steel substructure sandwiched between two l/h—inch thick-
nesses of ablation material. These models developed cracks at a surface

temperature of -1250 ¥ and substructure temperature of -120° F. Thermal

stress calculations, which are presented in a subsequent section,
indlcate that this eracking occurred in the region of maximum in-plane

tension stress. Edge cracking was not observed.

Figure 9(c) shows the interface cracks across the narrow
end of the 5/8-inch thick models. These models cracked at a

surface temperature of 30° F and substructure temperature of T2° F.
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The crack location indicates that the cracking was caused by edge
tension stresses. The cracked region of the models having l-inch-thick
ablation material is shown in Figure 9(d). The crack circuits indi-
cated that these models developed end cracks while the test chamber

was being evacuated prior to cooling. As discussed in Chapter IIT,
phenclic nylon shrinks from moisture loss during vacuum exposure and
this shrinkage produced edge stresses large énopgh to crack the
gblation material. Bubsequent cooling of the model to a surface
temperature of -75° F increased the sepération and cauged the large
crack visible in Figure 9(d).

The models with the ablation material bonded with;high tempera-
ture curing adhesive performed éssentially‘tée samevas those fabricated
with a room temperabture curing adhesive. The bonding operation at
325° F apparently did not cause significant thermal stress in the
models. The reason for this is that the stréngfh of this phenolic
nylon material is extremely sméll at 3?50 F (see Figs. 7 and 8).
Therefore, it is anticipated that the hot ablation material accommodated
the differential contraction strains and did not develop significant
thermal stresses during subsequent cooling to room temperature.

The test model fabricated with l-inch-thick NASA 602 also
developed end cracks at the location shown in Figure 9(d). The crack
circuits d4id not function well with this material and, therefore, the
temperature at cracking was not determined. This test result was
expected and indicates that silicone elastomers are also subject to

cracking from restrained shrinkage at low temperature. The model
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fabricated with l~inch-thick Apollo heat-shield material d4id not
develop cracks during testing. This result was also expected because
the honeycomb reinforcement is effective in preventing cracking due to

restrained shrinkage.

k.2 Analysis Results

The accuracy of the numerical amalysis is evaluated by comparing
the c;lculated gtresses with an exact solution. The exact case is the
plane strain analysis of a semi-infinite slab with constant material
properties. The slab is subjected to a uniform temperature change and
is restrained in boéh the x- and y-directions such that the strain in
these directions equals «gllg. From Reference 15, the solution for
this case (away from the edges) is oy = Oy = = Eo AT/1 - v, Oy = 0
vhere o is the difference between the slab and substructure expansion

coefficients. _

Calculated stresses in the slab subjected to a uniform temper-
ature decrease are shown in Figure 10. The siresses are normalized with
respect 4o the parameter Fo AT/L - v and the ebscissa is the ratio of
distance from the free edge to the slab thickness. As the distance from
the free edge increases, the edge effects diminish and the calculated
gtresses agree wlth the exact solution in reglons for which the exaet
solution is valid. Mesh spacings of Ax = 0.125 in. and Az = 0.025 in.
were used for all the calecunlations presented in this thesis.

The slab thermal stresses at the interface z = 0 are shown in

Figure 10(a) and serious discrepancies exist between the calculated
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values and the free edge stress boundary conditions, o, = T,

s = Os at
X = b. This result was not anticipated and the analysis was completed
before the results from the displacement analysis of Reference 8 were
known. Much effort was gpent in trying to resolve the difficulty,
including the use of extremely small mesh spacings, bub no successful
solution was obtained. It is noted that corners are excluded in
studies of finite difference approximations for mixed boundary-value
problems (Refs. 16 and 17, for example). A stress singularity at the
corner point is indicated by the large shear stress values obtained
with the present analysis. The analysis of Reference 18 also identifies
the corner point as a potential éinéulari;by p'oin'b.

A stress singularity at the cormer point, x =)b, 2z = 0, means
that the stresses at that point camnot be evg.lua'bed, but it does not
invalidate the results obtained at other regions of the slai). It is
emphasized that the singularity is one of stress, but not of displace-
ments. With the present analysis, the interface displacements are
specified as u = a AT x and w = 0. These values for u and w
also specify the values for u, and wy. The interface displacements
appear as known values in the equilibriuvm equations for the mesh points
at 1<m<I, n=2 and these displacements, therefore, are used in
the systems of equations which are solved for u and w throughout
the x-z plane. Since the interface displacements are known, however,
the equilibrium equations are not applied at the interface. This
means that the prescribed stresses at the corner point are not included

in the slab displacement equations. The interface stresses are
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caleulated with the specified values for wu, and wy and from values
for u, and w, obbained with forward difference equations using the
specified interfaces displacements and the caleulated slab displace-
ments. Since w =W, =0 1is specified along the interface, satisfying
the shear stress boundary condition requires that u;, =0 at x = Db,
but this condition is not in the slab displacement equations. Since
the slab contracts more than the restralning substructure, the u
displacements at the mesh points I,2 and I,3 are greater than
uI’ 1+ The u displacements at these three points do not lie along a
parabolic curve. Therefore, a three point forward difference eguation
gives a negative and nonzerc 1uyz. Decreasing the mesh spacing, Az,
merely increases the calculated value for u, at x =h. To sabisfy
the o, = 0 condition, with w, specified, requires negative values
for w; which are considerably gréater than the values at x less
than b. To satisfy the slab equilibrium equations along the x =D
edge of the x-z plane, however, w, must be positive at the mesh
points for n > 2 because u, 1is negative at these points. Therefore,
the forward difference equation does not give large negative values
for wy at the éorner point. The net result is that oy at the
corner point is a tension stress rather than the compression stress
given by the free edge boundary conditions.

It is noted that -for slab equilibrium, the sum of o, stresses
along the interface mus% be zero. The gy, s%resses shown in
Figure 10(a) satisfy this requirement, however, this dogs not indicate

a unique solution. It is speculated, however, that even if compressive
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o, stresses exist at the cormer point, a stress reversal must occur
near the corner. In Reference 5 the auwthor states that photoelasticity
measurements up to 0.001 inch from the corner showed tension values for
o,- The test results from the preszent investigation also indicate
tension stresses as evidenced by the edge cracking at the interface.

The numerical plane-~strain analysis gives stress distributions
in the x-z plane which: (1) agree with the exact solution well away
from the edges; (2) agree with the prescribed boundary stresses at the
slab mid-depth and surface (F:'Lgs.. 10(b) and 10(c)); and (3) qualita-
tively agree with the plane S.‘tn;ess a'nallysesy o'f References 4 and 8 at
the mid-depth and surface locations. In Referepce 4, the author states
that the effects of the stress singvlarity were highly local and that
valid solutions were obtained away from the singularity. Because of
{3) this statement can be applied to the present analysis. Also, the
displacement equations are solved by repeated iterations of simul-
taneous equations and if significant perturbstions were introduced by
the commer effect then these perturbations would influence all displace-
ments. Such perturbations would cause the cslculated stresses in all
regions of the x-z plane to diverge from exact solutions. Since this
divergence does not oceur, it is concluded that the corner effects are
confined to the immediate vicinity of the corner and that valid stresses
are calculated at other regions.

Figure 10(b) shows thet at the mid-depth, sz = h/ 2, of the
restrained slab the edge stresses are minimal. Therefore, to investi-

gate edge tension stresses which might cause the ablation material to
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crack, it was necessary to select an edge region which was somewhat
removed from the corner point, x =D, =z =0, and yet in the highly
stressed region. A location at z = 0.05 inch was selected. At this
location, good agreement was obtained with the prescribed boundary
condition that oy = 0. The calculated shear stresses at this boundary
location reached peak values near the edge and indicated a rapid
decrease toward the prescribed edge value. Figure 11 shows the
calculated values for oy; normalized with respect to Eo AE/l -V,
for various thickness slabs subjected to a uniform temperature
decrease. These values are calculated at x =D, 2z = 0.05 inch, and
show that the edge tension stress inereases with slab thickness.

This result agrees with the experimental data preseﬁted herein.

In actual applications, én ablation heat shield would have a
temperature gradient in the z~-direction rather‘than the uniform
temperature assumed in Figure 11. Therefore, the iﬁfluénce of
three different temperature distributirr:ms on restrained thermal
stresses was investigated.. Case I assumed a uniform temperature
distribution, Case II assumed a linear temperature distribution through
the ablation material thicknesé with AT =0 at z =0 and Case ITI
assumed a uniform temperature in the upper half-of the slab thickness
(n/2 < z < h) and a parabolically increasing temperature to AT = 0
at z =0 in the lower half of the slab {0 <z SZh/E). The value for
AP at z =h was the same for all three cases. The temperabure
distributions for Case IT and Case ITT are suggested by the temperature

distribution measured during model tests. The calculated stresses are
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compared in Figure 12 which shows the ratio of o, at x =T,
z = 0.05 inch to e for various assumed =lab thicknesses.

Figure 12 shows that the edge tension.stress inecreases with slab
thickness for all three temperature distributions. Thé»Case I11
temperature distribution induces the greatest slab curvature and
causes the highest edge ‘tension stress near the nonbending interface.
As expected, the linear temperature distributidn,of Cage Ii produced
the lowest tension stress. The‘mosﬁ inﬁeresting point.about ﬁhese
calculations is the indication that %he region;oflmaximum Gtension
stress shifts from the slab interior to the edge when the slab thick-
ness exceeds about 0.5 inch. - The calculations are con;isfent with the
test results. Interior cracks developéd in ﬁhé test modéls with a
slab thickness of 1/4 inch and Figure 12 shows a value of cz/quax
less than 1.0. The models with slab thickness of 5/8 and 1 inch
developed edge cracks and the value of UZ/UXmax for tgg;; thicknesses

is greater than 1.0.

k.3 Cemparison of Calculations and Test Results
Thermal stresses were calculated for a phenolic nylon material
at the temperature when model cracking occurred. The test data
indicated that the model with l/h-inchmthick gblation material
'(Fig. 9(a)) cracked when the surface temperature was -125° F and the
substructure temperature was --120o ¥. The reference temperature was
80°, The meterial properties were obtained from data in Reference 10.

These data indicate that at the measured temperature the thermal
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expansion coefficient is 23.5 X 106 in/in/deg F. However, as shown in
Figure T the data for Poisson's rabio and Ybung‘s‘moﬁulus show wide
variations. The values selected were: Vv = 0.1 and E = 120,000 psi.
The expansion coefficient for the steel substructure was taken as
6.76 X lO'6 in/in/deg F. The thermal!stress célculations indicated a
meximum tension stress of 460 psi at the top surface of the ablation
material. A caleulation assuming Poisson's ratio equal to 0.25
produced a maximum stress of 550 psi. Examination o'f the ultimate
tensile strength data in Figure § shows that these stress values would
cause gblation material cracking such as occurred in the model tests.
Thermal stress calculations were also made for comparison with
the 5/8-inch model (Fig. 9(c)). The model cracked at = surface
tmperatﬁe of 30° F, a mid-depth temperature of 32° ¥, and a sub-
structure temperature of 72° ¥. The reference temperature was 80° F.
The material properties were the same as previously discussed with the
exception of Poisson's ratic which was assumed to be 0.15. The maximm
tension stress occurred at the edge, but was only 150 psi, and well
below the ultimate tension value from Figure 8. Apparently the stress
resulting from moisture-loss shrinkage was primarily responsible for
the model cracking and not the stress from the relatively small

decrease in temperature.



CHAPTER V
CONCLUDING REMARKS

An approximate numerical anaiysis for restrained shrinkage *
stresses in rectangular slabs has been presented. Test results from
rectangular silabs of ablation mate;'ial subjected to severe ;:'estrained
shrinkage have also been presented and quali@atiyely compared with
analysis calculations. The present analysis which is programed for
solution with a digital computer calculated restrained shrinkage
stresses which are consistent with the test results reported herein
and with other experimental investigations. The alternating direction
technique (Ref. 19) which was programed to solve the finite difference
equations appears to be rapid and efficient.

The analysis was an attempt to solve-the mixed boundary-value
problem of a rectangular plane having both specified displacement and
stress boundary conditions. The analysis objective was not fully
achieved because no satisfactory solutions were obbtained at the
boundary corner point for which both displacements and stresses were
specified. The numerical analysis did not determine the strains and
stresses at this boundary point with any precision. Extensgive and
time consuming efforts were made to improve the corner point solution,
but these efforts were unsuccessful. It is not known what modifica-
tions to the analysis would be required to obtain better solutions.

Both the test results and the stress calculations from this

investigation indicate that a heat shield subjected to restrained

k9o
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shrinkage can develop edge separations between the ablation material
and the substructure. Heat shields fabricated with bonded,
unreinforced ablation materials appear susceptible to edge separation
or cracking when the ablation material thickness exceeds about

0.5 inch. The data also indicate that this cracking may occur merely
because of changes in the moisture content of the ablation material
and at temperatures much less severe than those which could be
encountered in space flight. The desirsbility of using honeycomb
'reinforced ablation material to withstand restrained shrinksge is
evident, but must be weighed sgainst fabricabion cost and difficulty.
A reinforced region at the heat-shield periphery might be an ;cceptable

compromise solution.
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APPENDIX A
FINITE DIFFERENCE EQUATICNS

In this section, the partial differential equationsg of equili-
brium are expressed in finite difference format suitable for numerical
calculations. The resulting series of difference equations is solved
by an iterative procedure which is discussed in Appendix B.

The finite difference expressions for second derivatives are
obtained using the "half station" approximation which is the natural
result of making the finite difference approximation before expanding
the derivatives. This approximation is used because the modulus of
elasticity is wvariable and the results of Reference 20 indic;ate that
the "half station" approximation is more accurate than the "full

station" approximation. Accordingly,

%(sz)m,n - -A];zsz )m,n-i- 1/2 B (sz)m,n- 1/2]
= A_]Z'E[Em 1/2%n, 041 = Bne 1/2 + For 1/2)%0n
* By l/EWm,n-l] (a-1)
The values of E are evaluated at the temperature of a point midway

between grid points myn and m,n+l; m,h and m,n-l. Thus

equation (A-1) becomes

5k
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(Bn + )
i(EWZ) = A::E[ = 2En+l ( m,n+l "~ Wm,n)
(g +2En—l) (¥, - Wm’n'li! (A-2)

The finite difference expressions for first derivatives are obtained
with the "full station" approximation. Three-point central difference
equations are used at interior mesh points and three-point forward

differences are used at exterior boundary mesh points.

Interior Points

The equilibrium equations for plane strain are,

I
Q

—a%@mx + BBwy + BEe,- CEx AT| + %I:I}Euz + DBy | =

(A-3a)

SBE-EAEWZ + Bfu, + BEey~ CBa AT + %@Euz + DEwy |

[l
. @

- (A-3b)

The values for A,B, and D are given in Table I.

The finite difference form of these equations is obtained as follows:
The first term in equation (A-3a) is obtained by a three-point central

difference approximation

o AEy
ox AEuX}n,n = Axgtum'lxn - 2um,n ¥ um-!-l_,n:] (A-lt)
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The second term of equation (A-L), a mixed derivative, is obtained by
meking a full station approximation in the x-direction before expanding

the derivative.

d _ BEp
B P2, 0 = @Efzmﬂ,n - Wzm-l,.n}

By
" hax AZE‘Tm+l,n+l T m+l,n-1l " ¥m-l,n+l

* Wy 1,01 (a-5)

The third and fourth terms in equation (A-3a) are constant in the

x~-direction and, therefore, are dropped. The fifth term in

equation (A-4) is obtained as shown in equations (A~1) and (A-2).
p [(En+En41) (Bn +Bn-1

3 ) -
'a'z(DEuz )m,n = 2 - (W, n+1 - Um,n) = - (um,n - um,n-l)J

(4-6)

The sixth term in equation (Ak) is obtained in the same manner as

equation (A-6) except that E is considered to vary in the z—direction.

.

d D
P I s o (e, n1 = 1, m2) = Bt Ot ne1 = ¥ipe1, 01

(A-T7)

By combining equations (A-4) through (A-7) the finite difference form

of eguation (A-3a) becomes



o7

AR, BEy,
gcé[iim-l,n - 2up,p t um+2L,nJ +‘mE~'m+l,n+l = Wm-1,n+1

D —(En + E1’1+l)
/_\ZE K 2

(um,n+l - um,n)

~ Ymtl,n-1 T Wm—l,n-l] +

(By + Bp.1) . D
- —"'é"‘_—(um,n - Um,n-l) + M@n-*—l(wmﬂ,nﬂ - W —l,n+l)

- En-l(wmﬂ,n—l - Wm—l,n-l)] =0 (4-8)

7 similar procedures equation (A-3b) becomes

A (En + En+l)( (En + En-l) .
Azg[ 5 \Wm,n+l " Wm,n) - '_'(”m,n - Wm,n-l)
+_B

T AZE‘JnﬂL(U=.m+1,n+3. - Un-1,m41) - Ened (g1, n-1 - Upe1,n-1)]

+ %Eﬁ"nﬂ - By - '2Z_Z[IE‘I' M)y - (Ber AT)n'lJ.

DE
+ = E’mﬂ n+l ~ Yp-1,n4 " Untl,n-1 * Y-l n-l:[

bk Nz ? ? ? 2

DE, .
* A_XEE'TH-l,n L Wm+1,:c1] =0 (&%—9)“

ternal Boundary
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The following procedure is used to obtain the finite difference
form of the equilibrium equatlions at the extermal boundary. The first

term of equation (A-3a) is

) AR
S 0 = 5 [Bne1,n - Pon,n Ui, n (a-10)

The second term in equabion (A-3a), O/dx (BEWZ) , is obtained using the

normal stress boundary condition, that is,

o, = 0 = AEw_ + BEu_+ BEe, . - CEa AT {A-11)
This gives
A
d B°Eyp
—_— — - + ~12
ax(BEWZ)m,n A A‘XEElm--l,-n 20, n um-l-l,n] (A-12)

The third and fourth terms in (A-3%a) are constant in the x-direction
and are dropped. The patbtern for the fifth term 0/dz (DEug) is
obtained with a three-point "half station" forward difference

approximation.

3 D
(D ’ = — |8 ~ OFE Eu
Bz( Euz)m,n_ BAZ[ uZm,n 3 uZm,n~ 1/2 ¥ Zm,n- 3/2

(A-13)

Applying the shear-stress boundary condition, (Eu,) = ~(Bwg)
m,n m,n

equation (A-13) becomes
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D D (B, + Epy)
5E[-B(EWX)m’n] + 3&2[- s 5 o= (u, - Upyn-1)

L By ; En-g)(%n_l i %n_a)] (a-14)

The sixth term in (A-3a) is obtained with a three-point "full station”

forward difference approximation.

SB-E(DEWX)ITI,II = E&QEEBEH(Wm+1’n - Wm-l,n)
¢
- lLEn—ll.(““'rmﬂ.,n-l - Wpl,n-1) t En-Q(Wmﬂ_,n-E - Wm—l,n-E)]
- {A-15)

By combining equations (A-10), (A-12), (A-14), and (A-15) the finite

difference form of the equilibrium equation (A-3a) becomes

- B2\ By D
(A - _AT)EE’m-l,n = 217111,1’1 "Um+l,n_:l + 3&2['

9(En +En-1) (

2 %,n—ljm’n"l)

(Ep.q +By_p)
+ -1 Bn_p {um,n-l""um,n-E) +_..._D__. "7En(Wm+l,n"Wm-l,n)
5 120x A

= 91 O3, no1 = Yo 1, n-1) + PBnoo (W43 n-p = W3, n-2)] =0
(A-16)

The finite difference form of the second equilibrium equation (A-3b)

is obtained in a similayr manner. This equation is
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A [— 9(En + En-l)(

re? > \¥in,n = ¥n,n-1) *

4
(Pn-y 5 En-a)("ﬁn,n-l = ‘ﬁn,n-e)]

B
+ m[‘mﬂ(%ﬂ,n < Uyo1,n) - 12801 (Wpi1,p-1 - Unel,n-1)

* B2 (1,2 - Une,nen)] ¥ LR - 128, * 3]
B} 6%2[-7(%. Ar), - 12(Ba AT), 4 + 3(Ba A7), 5] =0 (A-17)

External Boundary
m=I 2<n<J-1

The finite difference form of the equilibrium equations (A-3a)
and (A-3b) for this boundary is obtained in the same manner as

equations (A-16) and (A-17). The equations are

AEI:{
3%

BEn
E9Um,n + 0up-1,n - um—E,n:] + m[‘ﬂ“&n,nﬂ - ¥p,n-1)

- lg("ﬁn-l,n-!-l - 1“§11—l,3n.-:|.) + 3(“531—2,n~!~]. - W1':1—-2,11-1)]

- 3%{- BEpey + 3%{ C(Ex AT}, = O (4-18)
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Be\ 1 (En + Bpi1) (En +Epy)

(A" _A_/Aze[ > (Wm,n+l - Wm,n) B > (Wm,n - Wm,n-l)
DEp, - DEn

+ 2E9Wm,n + 10wy 0 - Wm-e,nj + m—ET(um,n+l - Uy p-1)

A

s o) o)

(B &)y - (B2 0Dy ] + —2—5(1 - B—f)@n+l SE,)-0 (a19)

Corner Point

At this corner point, the normal stresses o, d,, and the
chear stresses are zero. The eguilibrium equations are converted to
finite difference forms with the following procedure: With E and T

constant in the x-direction and with zero shear stress the equilibrium

equation (A-3a) becomes
d
g--(mi.“u}C + BBwg) = O (A-20)

After substituting the value for BEw, obtained from the boundary

condition ¢, = 0, equation (A-20) is

2
a—ax (A - %)Eux =0 (a-21)
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Equation (A-21) is expended with a three-point "half station”

difference approximation.

d B2 _ |y 82\ En ) o
x ) I)Eu}Jm,n— (A _AT)gA-;ES(ux)m,n 9(ux)m- l/2-,n+(ux)m—- ,7)/2,n]

(A-22)
From the normal stress conditions at the corner point,
BEqey + C(Ex AT )y
o = - : A-2
SR . (a-23)

The finite difference form for equation (A-21) is obtained by com-

bining equations (A-22) and (A-23)

2
( - }L)_E}__E%’n + 10Uy 3,5 - “m-e,n]

A Jzp2
8 B2\ | BEpSy + C(Eo AT)y| )
+§§G‘1ﬂ[ - ol i (a-2h)

Similarly, the finite difference form of equation (A-3b) is
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(W, n-1 = Wm,nue)} - (B - 'B;')%@% - M v Epo] .

+0(2 - 1)z [le an), - WEa A), + (5 &), ]

r 2 B_E)[ Biney * OB M’n} -0 (a-25)

Infernal Boundary
At the internal boundary the u displacement is zero.
Therefore, only the w displacements are unknown and these are

obtained from the finite difference form of 'equation (A-3b) which

considering symmebry is

a [(Ey +Epaq), (En + Bp1)
AZ2[ = 5 = (Wm,n-i-l = Wm,n-l) - “—I—l—?——(wm,n - ‘ﬁn,n-l)

B
* 2&3 o [Bannst,ni = En-1me1,n-1) * _‘EZZZ[Enﬂ - Fp-1] :

DE
- iz (B 20) g - (B0 am), ] o UL, n 4L - Pl n-1]

D
+ =2, + 2] = O (a-26)
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Internal Corner
The finite diffsrence form of equation (A-3b) for this cormer

point is obtained in the same mamner as equation (A-17) and is

+ Ep. (Ep-1 * Epop)
3;2E 9(En‘ eEn l)(Wm,n - Vp,no1) * ool 5 o=z G Wm:n“E)J

BK
v 6AxBAzE'7Enum+l,n - 12En_10n41,n-1 + SEn-olnil,n-2) * @-ETEn

- 12En) + 3Bq.3) - Z=[-T(Ra M)y - 12(Ba M)y
+ 3(Ea AT), g) = O ' (a-27)

The finite difference equations given in this Appendix are
sclved for w and w displacements with a digital computer program
which was written as part of this investigation. Some details of this

computer program are given in Appendix B.



TABLE I.- VALIUES OF CONSTANTS IN THE

EQUILIERIUM AND STRESS EQUATICNS

Plane strain

Plane stress

A 1l-v i 1
(L +v)(L -~ 2v) (1 - v2)
B v .
(L +v)(1 - 2v) (1 - v2)
1 L
¢ (1 - 2v) (1 -v)
1 1
D 2(1 + v) 2(1 + v)
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APPENDTX B

This section describes the procedure used Lo solve the finite
difference equations of Appendix A for the u and w displacements of
each mesh peint. The method for calculating stresses from these
displacements is also discussed.

Since the present analysis is concerned with edge stresses, it
is necessary to use relatively small mesh spacing which in turn requires
the solution of large sets of simultaneous equations. These equations
are solved by an alternating direction method (see Ref. 19) programed
for a Control Data Corp. €600 Digital Computer. The alternating
direction procedure is based on a line-by-line solution of relatively
small sets of simultaneous equations that can be solved by direct,
noniterative methods. With this method the finite difference formula-
tions for equation (A-3a) are solved for u displacements and
similarly the w displacements are obtained from the finite difference
formulations of equation (A-3b). ‘ 2N

The displacenent calculations are étarted by assuming wvalues for

the u and w displacements at each mesh point. The wuw and w

‘
4

displacements at mesh points in each horizontal line are calculated and

L]
1

stored. The displacements in each vertical line are then calculated
and compared to the stored values. Thé:caiduiations of displacements
are continued line-by-line unéil.the absolute values frdﬁ successive
iterations agree within a séecified percentage. The coefficient

matrices for Um,n and w s are tridisgonal in both the horizontal

m,n
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and vertical directions except on the boundaries x =b and z = h.

. At these boundaries the coefficients are modified by an algebraic
transformation so that each set of simultaneous equations can be
solved by a direct factoring method.

The number of iteraticns required to achieve a selected con-
vergence varies with the number of mesh points. A convergence
accelerating factor is néf used, but a procedure is programed whereby
the displacements calculated for a coarse mesh spacing are used as
initial inputs for successively finer mesh spacings. This procedure
produces significant savings in computer time. No problems of
stability are encountered since the program sol%es steady-state
elliptic equations.

‘The normal and shear stresses at each mesh point are calculated

with the finite difference forms of the following equations:

+

Oy = ABu, + BEw, + BEe, - CEa AT (B-1)

6, = ABw, + BEu, + BEe, - CEx AT (B-2)
¥

Ty, = D(Bu, + Ew.) (B-3)

Equations (B-1), (B-2), and (B~3) are programed using three-point
central differences for interior mesh points and three-point forward

differences for external boundary mesh points. The computer program



uses the displacements computed for each mesh point to evaluate the
strain values in equations (B-1), (B-2), and (B-3) with the exception

of &y which ies constant for this analysis.
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