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FOREWORD

This volume presents the results of an experimental study
performed from May 18, 1968 through July 31, 1969 on the use of
dynanic scale modéls to determine launch vehicle characteristics,
The investigation was conducted by the Denver Division of the
Martin Marietta Corporation, Denver, Colorado, for the National
Aeronautics and Space Administration, George C. Marshall Space
Flight Center, Huntsville, Alabama, under extension of Contract
No. NAS8-21101, Mr, L. Kiefling was the principal representative
for the contracting office, .

Mr. George Morosow was the Program Manager for the Denver
Division and all work was performed under the direction of
Mr. Morosow and Mr, Francis A, Penning, Principal Investigator.
Significant contributions were provided by C, Forsyth, D. A, Stang,
and J, T. Thompson of the Denver Division. In addition, Mr. Thomas
H, Cooper, President, Plasticrafts, Inc., Denver, Colorado,
provided many valuable discussions regarding model fabrication,

An analytical study, completed May 17, 1968, is presented
in Volume I.

The contractor's designation of this report is MCR-68-87,

i1
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ABSTRACT

This study considers the use of distorted models to provide
experimental information regarding prototype behavior. Of the
many tests performed on launch vehicles, this report details the
free vibrations of cylindrical and conical shells, The structures
are individual segments of the second stage of the Saturn V
rocket. Test conditions are clamped boundary conditicens and neo
pressure nor axial loads.

From the governing differential equations for shell vibrations
the important parameters are ldentified., These are scaled for
exact dynamic similitude then are manipulated to produce distorted
models, By using the laws of similitude and from numerical values
of scaled quantities vibration studles of models are related
directly to the prototype.

iid
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SUMMARY

Each of the several portions of the multiphased problem of
dynamic similitude of shell structures are presented; analysis,
design, fabrication, and experiment., Orthotropic cylinders and
cones are modeled using dissimilar materials both as isotropic
materials and composite materials,

Shell vibrations and ring vibrations in extensional and
inextensional modes are studied to identify the material and
geometry parameters that are important, Basic dimensions of the
- vibration problem are mass, length and time; therefore, these
are isolated by three arbiltrary scale factors., Dependent and
independent variables are made nondimensional and evaluated for
the prototype, Models are designed to provide the same numerical
values for corresponding nondimensional terms.,

From the designs models are fabricated. One group is skin-
stringer construction made of cellulose-acetate, The other group
is gridwork construction made of a composite consisting of
flexible polyvinyl chloride, steel wire, and glass filaments,
After fabrication the models are held circular and fixed at the
boundaries and excited using an acoustic driving system,

Resonance is found and wave shape determined, Comparisons
are made between theoretical predicted and measured frequencies,
Conclusions and recommendations are given based on the knowledge
gained during this study,
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1. INTRODUCTION

Dynamic models are used in the research and development
phases of aerospace vehicles. Modela serve to supplement or in
some cases to completely replace dynamic tests of the full scale
prototype launch vehicles. They are used to verify anmalytical
methods of vibration analysis, for loads and stabillity analyses

I~1

and to determine the aerocelastic characteristics of launch vehicles.,

This study concerns the use of distorted models to provide
experimental information regarding prototype behavior. O0f the
many tests performed on aerospace structures, we have considered
only the free vibrations of shells. Further, the structures are
individual shell segments of the second stage of the Saturn V
rocket, tested with clamped boundary conditions, and not subjected
to loads or pressures. From the differential equations describing
shell vibrations we obtain the several factors important to the
problem. By using the laws of similitude and from properly
scaled quantities, identified in the differential equations, vib-
ration studies of models are related directly to the prototype.

Several classes of problems occur in the study of large
aerospace structures. Significant differences in the response
and modeling requirements are imposed by continuity of structure,
aeroelastic response, liquid fuel slosh effects, £light or ground
conditions, loaded and unloaded structure, plus other loads and
environments. For some of these conditions certain scaling
conditions can be ignored between model #nid prototype such as
modulus to density ratio, or gravity force, or liquid densities
and viscosities, depending on their relative importance. Without
specific knowledge of the modeling requirements, it is not
possible to classify certain parameters as always being important.
The identical prototype structure being modeled to obtain respounse
information for several kinds of loadings may need models made of
material different than the prototype, or tested in a centrifuge,
or simulated by an eguivalent beam, or other such requirements
imposed by numerically matching nondimensional factors.

Among the more renown factors are the Reynolds number and
the Mach number used in aerodynamic model studies. No correspond-
ingly '"named" numbers have appeared for structures to be modeled
for vibration or buckling other than mention of the length to
radius of gyration ratio for an Evler column., HNonetheless, the
requirements that have established the well known numbers are
steeped in the same basic physical law requirements when applied
to either solid or fluid mechanics problems.
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The physical size and geometric scaling factor of launch
vehicle dynamic models vary over a broad range: some are the
size of intermediate range ballistic missiles, while others have
diameters of only a few inches. Scale factors range from 2,57 to
20% of the full-scale vehicle. The manufacturing technology
required to construct such models varies considerably depending
on the accuracy requirements. When a dynemic model is used
primarily to verify the analysis of the full-scale vehicle, exact
scaling of the prototype may not be necessary. When the data
acquired in the model test program are used directly to predict
or verify full-scale flight article characteristics, a more
precise approach to model scaling, design, and manufacturing is
needed. -

Two basic philosophles are prevalent in the design of dynamic
models of launch vehicles; direct geometric scaling, and distorted
geometric scaling. Both approaches preserve the external geometry
of the vehicle. However, the more gemeral modeling approach of
building mechanical analog structures of dissimilar shape has not
gained, thus far, a significant role in any launch vehicle program.

Direct geometric scaling, using similar materials for model
and prototype, satisfies more easily the nondimensional terms,
and is a more common approach to launch vehicle modeling. Direct
scaling however is limited by manufacturing and tolerance control
problems when shell skin gages become unmanageably thin and by
the inability to simulate coupled structural~slosh modes of the
boost phase. Another area where the direct scaling approach has
limited use is wind tunnel testing of aerocelastic models.

The distorted scaling approach, as applied to typical launch
vehicles, may neglect scaling parameters of small influence in
order to preserve important parameters. Thus, the use of distorted
models, in general, is oriented toward a particular type of test
program., Frequently, both the materials and the construction
techniques used to build a distorted model are different from

those used in the prototype. When such different technologies
are used, verification of the model scaling, and comstruction
techniques is essential. Such verification is accomplished by
comparing test results of simple model structures with the known
properties of full-scale structures or of analysis.

A related problem area, is the correlation of structural
damping of models and full-scale launch vehicle structures.

1
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Experimental values of structural damping obtained from fulle
scale launch vehicle tests follow an empirical equation., This
can serve as a basls for correlating measured model damping data
with full-scale damping

Symbols found in the analysis are identified in the following
tabulation.

Symbol
A stiffener or rib area
a cylinder radius of reference suxface
b stiffener or rib spacing

centroid of area from reference surface
flexural rigidity

modulus of elasticity

shear modulus

gravitational constant

shell wall thickness

moment of inertia of stiffener or rib
polar moment of inertia of stiffener or rib
extensional rigidity

shell length

unit moment

number of axial half waves

unit stress resultant

number of circumferential waves

H H =2 B B oo " 4o MH P mO® Y 0

1

independent scale factor (1 =1, 2, 3)

r. ratio number (4 =1, 2, 3, 4)

[¥]

rigidity moment
t time, also stringer or rib width

U,V,w displacements
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‘axial direction

weight density
nondimensional frequency
strain

Poisson ratio

2 < M B> o< N

nondimensional factor (i = 1, 2, 3 ... )

mass density
stress
shear stress

circumferential directiom

£ © A Q ©

frequency

Subscript

model
prototype

x direction

© K ™ 2

¢ direction

E

¢ in a plane normal to x and in ¢ direction

¢x‘ in a plane normal to ¢ and in x direction
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II. SHELL VIBRATIONS

Analytical development of dynamic response of circular
structures has a relatively long history. Rings were studied
by R. Hoppe in 1871, inextensional vibrations of cylinder by
Lord Rayleigh in 1881, and general vibrations of cylinders by
Arnold and Warburton in 1943, These and other studies show the
recurrence of geometry and material parameters that determine
frequencies and wave numbers.

For rings of circular cross section, c, frequency for wave
number n is [1]*

2
[ E n{n -1)
freq. = \/= = (where p =X )
éﬁaz P vn +l g

For cylinders undergoing inextensional vibrations [1] we
have for circular frequency

h E n(nz-l)

oma’ p(l—vz) Yo'+l

Studies by Arnold and Warburton [2] show for the more
general case

freq. =

1 E :
freq. = 353 5. /A
p(1-v7)

in which the factor vA is a function of material, geometry,
boundary conditions, and vibration modes. 1In these equations
modulus E and unit mass density p are combined im the ratio

VE/p (the dilatational wave velocity of circular rods). It will
be shown that this ratio occurs in each term of the dynamic
differential equations for gridwork, stiffemed, and monoccoque
cylinders. Although this affects the nondimensionalization

of independent scale factors the general treatment will consider
modulus and density as being independent.

Any physical problem that can be formulated mathematically,
as has been done for shell vibrations, will yield the complete
set of physical parameters that influence the phenomena [3].

*Numbers in brackets are references in Section IX.

I1-1
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Similitude requirements can be calculated for these physical
parameters therefore the number of properly scaled, poorly scaled
and neglected independent variables can be determined. The differ-
ential equations describing a freely vibrating cylinder are given
be Fligge [4] in terms of forces and moments and are presented as
Equations (IT-1). Generally the last of Equations (II-1) is
neglected because of small differences in Nx¢ and N¢x

-

oN 3N 2 _
X+ 2 S o2l herep= ) (I-1a)
ax a 9 ot 8
1M + M _ My - i iiﬁ = pha_zv (I1-1b)
2 8y dx 3¢ a ox 3t2

2
;2 BZM.E s L azux(b L oM %% . (TT-1c)
a® pp2 T 3t?
a N - aN, +M, =20 (1I-14d)

g0 ox ox -

Forces and moments appearing in these equations are shown
acting on the shell element of Fig, II-1l, The free vibrations
of the several kinds of cylindrical shells are described by these
equations. In Table ITI-1 the internal forces and moments as
produced by reference surface deformation are given for gridwork,
ring and stringer, skin-stringer and monocoque cylindrical shells.,
Details of construction, such as distribution of material in
stiffened shells, produce differences in the internal equilibrium
system of the respective shells. Because our interest is in
prototype shells made of a single isotropic material we are not
including constructions such as sandwich and filament-winding.

For shell analysis three assumptions are made regarding the
behavior of the shell and its material. These are reviewed to
provide guidance in the event distorted scaling may tend to
invalidate these conditions.

1. Points on a normal to the middle surface remain on the
normal after deformation;

2. Any point z away from the middle surface is unaffected
by deformations and remains at distance z;
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a. Internal Forces on Shell Element

b. Internal Moments Acting on Shell Element

Fig. II-1 Internal Forces and Moments on Shell Element



Table II-1 Integrnal Forces and MomentS™in Texms of Rigidities and Deformations
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Stregs | Dimensions - Type of Cylindrical Shell \
Result | Engr | MLT Gridwork Ring and Stringer ’ Skin-Stringer Monocoque
o K 8 L. K s K
¥ | e | Jo (3 P e fav K u Py | Zo (a_v 2u R {dv du
Ncp in,- Mr-2 a (pr'+'w)+§ga<§;2‘1 a (acp+w)+ "ax+;g§$2 a (o TV TR & a(acp+w+vaax
. K
LT S du, g P du, v Py | g fu, w(dv, Ns P (K (3, o )
N i i Rt 52 K xt3 (a +w)+ S5 | R 32 3 (aq)+w)+ *3m2 | a aax*"’an + v
N T S0 av)f’ﬂaew S fon, , 2v)y Pty [Beefae, v leodm ko (m,
Px in, a \dp aax’ a® " 3xdp a \oo A% 2% dxdp a o | Yox a® Sxap |2 V) & ox
K- . K K, ‘
1k 2 | x@({du, ov o (du , v _5_(.5.3 e K QL
b i, | ™ | (Bcp+aax) a ( cp+aax) a tp+aax) 2 (L V)(Bcp+a'c‘)x
D S D 3 D
2|22, Jofdv o 3%y ﬁ&(ﬁ )_ga@f.u ) .‘D_(Ef:w_ 2 Py
Mtp 1b -2 a2 37 " a (Btp + W) aZ dp? R aETs A Tl ESE TR, : af \3g2 " V& 52
D D
- - B Su P | v 2w Qu ° % . v 9Py Qu 4D (2% P
M 1o MLT 2 P et % Dy e T 2 5 & T T a® (ae o= aq;?)
D D D
o | X 3% Tox 9Pw _ox oPw D _ Pu
Moo |10 | MRS a oxdp a  xdp a 17 3
M iv | M-z .Ef@ FPu B : 239 ¥y ?ZQ o) | 2 (L - &Pw
P . a oxop a . oxdp a Oxdp a Y Sxdp
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3. Displacements are small with respect to the radius and
their first derivatives are much smaller than unity.

The first two assumptions presuppose the shell to be made
of an artificial anisotropic material for which the modulus of
elasticity, E3, in the thickness direction and the shear modulii
G1q and G23 (for the shearing obtains y;3 and Yg3) are infinite,
as identified on the element in the coordinate system of Fig., II-2.
Furthermore, the Poisson ratios viq and vj3 are required to be
Zero. ;

For an orthotropic material the elastic moduldii and the
Poisson's ratio are related by

Ev., = EV

1V12 = BaVoq
Eiviz = Egvgg
Eyvos = Eqvg,

Shell theory assumes the following relations hold

3=Y31=Y23=0

Therefore, the corresponding stress relations for shells are
different from those shown in Fig, II~2 and are given by

O11 = B8y + Evos€y

€. + E.e

Ogp = EqVyg 8 T EgEy

c =
33 0

T =
23 = 0
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Fig, II-2

b.

Element of Orthotropic Material

Elastic Relations for an Element of Orthotropic Marerial

1ICR-68-87

Ull: ElFl. + E2v21s?— + E3v3153

°22 = Eiv10f1 + Exfy |7 F3"32%3

o33 = Byvigey | ¥ EBpVagfy | * Egeg _

T23 €y3 Ya3°

T31 G Y3

12 7 12 12
a. Hooke's Law for an OrthotTopic Material
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31

T Y.

12 = f12M12

In order to completely formulate Equations (II-1) the several
rigidities are required. Apgain considering gridwork, ring and
stringer, skin-stringer and monocoque cylindrical shells, their
respective extensional rigidities, rigidity moments, and bending
rigidities are shown in Table I1.2. Notation used in this table
is illustrated by a portion of a stiffened shell shown in Fig. I1I-3,
By incorporating the rigidities into the stress resultants in
Table II.l and operating on them as shown in Equations (II-1) it
is possible to formulate the free vibration differential equation
in terms of displacements, elastic constants, and radius to
thickness ratio. The simplest form of these equations (for monocoque
shells) are shown as Egs. (II-2) to indicate the quantities to be
scaled that will provide dynamic similitude in models.

2 2 2 2
37 h 2™u E h &v EvV h oW g u
K -+ 6 + = + 2 ==t _
axz Zaz 3¢2 2(1-v) a Bxaé 1—v2 a 9dx Btz {(II-2a)
. 2 2 2
E h 3 G o v 1 W 1 aw v
=~ + —=h—F + K = —F+K—5—+r=hp—— (I1-2b)
2(1-v) a ox9¢ 2 3x2 a2 3¢2 a2 2 at2
2
a ox a2 a9 a2 3t2

The terms K, G, and D each contain the elastic modulus E as
shown in Table IT.2, therefore each of the terms on the left-hand
gide -of Eqs. (II-2) contain the ratio E/p. Copsideration of
boundary conditions giveS one more parameter mnot shown in the
equations, £, the length of the cylinder. Displacement functions
that satisfy boundary conditions at x=0 and x=% are of the form

u = flmx/8%, nd,wt) (II~3a)
v = g(mx/ﬂ, nd, wt) (11-3b)
w = himz/%, and,wt) {(IT-3c)



Table II-2 Shell Rigidities in Terms of Elastic Constants and Geometry

8-TI

Dimensions Stiffened Cylindrical Shells Unstiffened Cylinders
Type Engr MLT | Symbol Gridwork Ring and Stringer Skin-Stringer | Symbol Monocoque
Extensional | 1p/ip | MI~2 EA EA
Rigidity = K- - E_?_ "E‘hi " .5_?; _.Fifl.z_
LI L) 1-v 1 1-v
1A, En |, en , A ' Eh
% 1% 7t % ( 7+ % 2
2 1-v 2 ‘ i-v 2 i-vy
K ﬁhv Ehv
v 2
L-v l-v
= : =)
X 12 (P2, 2 Eh Eh ch Eh
x¢ | Byby \ET " BL_ 2010y 2(1+v) Z(1+v)
: -2
Rigidity 1ib MLT BA ¢ EA ¢
Moment S 2 —4$
¢ |5, ) .
1
LA c EA_c EA ¢
g X XX XX
x by b b, *
Bending in.-1b| Mu2r2 T, + 4, 2) 3 nt, +ac 2) 3
¢ b ¢ Eh 9 (K Eh
Rigidicy ) - ot = 5
¢ 1 | 12{1-?) 1 12 {1-v%)
2 2 ) 2
B, + Ac,”) 3 B{r, + ae’)l g3 Eft, +ac?)
D, . b 7t b e 5
2 12 1-v9) 2 12 (1-v?) 2
) ) ERy Eh°v 5 En°
v 12(1-v?) 12 (1-v?), 12 (1-v?)
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The modes of free vibration that have been found analytically
and experimentally for simply supported cylinders are shown in
Fig. IT-4. At each end the cylinder is maintained as a circular
section. The number of axial half waves is designated by m and
the number of full waves in the circumferential direction is n.
Orthogonal modal lines occur along the generators and on planes
normal to the axis. (See Ref. 2)

Although the discussion has been for circular cylinders the
physical quantities and the vibrating phenomena also apply to
conical shells as well as other shells of revolution. Portions
of this report will consider the case of modeling a wvibrating
cone and it will be treated as-an equivalent cylinder.
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1IT. STMILITUDE

Shell vibrations as well as many other physical phenomena
can be analyzed as a physical system with dimensions that are
multiples of the basic quantities, mass (M) length (L), and time
(T). After we identify all important physical quantities, and if
through the laws of scaling we create a model physical system
whose physical quantities when evaluated nondimensionally are
numerically identical to the prototype system then we can predict
the response of the prototype by studying the model.

Our interest here is to design model shells that when under-
going free vibratioms their frequencies and mode shapes will give
information regarding the prototype shells. Of further interest
will be model distortion whereby the appearance of the model shell
will not be identical with the prototype. In Section II on shell
vibrations the important physical quantities have been identified
from the mathematical formulation of this problem. Using informa-
tion from the equations and the previous tables the important
quantities are given in Table I1I-1.

Frequency w, a dependent variable is a function of at least
all the quantities listed as independent variables. From
Buckingham's Pi theorem we can reduce the number of independent
variables that must be scaled by the number of basic dimensions
shown here to be three (M, L and T), We can select three
arbitrary scale factors from the independent parameters to which
we can assign convenient ratios and also obtain a means of con-
sistently nondimensionalizing all the independent variables. These
arbitrary scale factors must be chosen so that in combination they
can produce ratios of only mass, length, and time for model and
prototype. Once chosen these values cannot be changed arbitrarily,

The arbitrary length scale factor nj is based on the ratio
of the shell radii

n =2 - O (111-1)

so that model length is related to prototype length by

L =nL (II1I-2)

Another arbitrary scale factor is unit mass density so that
we chose for model and prototype
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Table III~1 Independent and Dependent Variables

Quantity

Independent Variables

Length

Radius

Thickness

Spacing
Ececentricity

Area

Moment of Inertia
Modulus of Elasticity
Unit Mass Density
Unit Weight Density
Extensional Rigidity
Bending Rigidity
Rigidity Moment
Coordinate Angle
Wave Number

Poisson Ratio

Dependent Variables

Displacements
Stress/Unit Length
Moment/Unit Length
Frequency

Dimension
Symuul Engineering MLT
Units
2 in L
a in L
h in L
b in L
c in L
A in2 L2
I,J in% 14
E 1b/in? M-ir=2
p 1b sec 2/ in4 ML~3
¥ 1b/in3 ML~ 272
K 1b/in MT-2
D in 1b ML2r~2
s 1b MLT2
b _— _—
m,n - -
v —— -
U, V,W in L
N 1b/in MT—2
M 1b MLT2
w 1/sec -1
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_ P _ ML =3
) m = _m m_3 ‘III~3)
pp M L
PP

From this we establish mass ratios so that

_ 3
Mm =n néMP (I11-4)

Yor the third arbitrary scale factor, selected so that the
remaining basic dimension, time, can be acquired, we chose the
elastic modulus ratios such that

E
_m "
n, =3 (I1I-5)
P
from which the time ratio for model to prototype becomes
_ 1/2 -1/2
Tm =00, n, Tp (I1I-6)

From Equation (ILI-6) the well known frequency relation is
apparent when scaling with didentical materials for model and
prototype n, = 1, ng = 1 so that mm/mp = Lp/Lm.

Nondimensional T terms from the remaining independent
variables (a, p, E selected arbitrarily) are the result of the
following arbitrary choice of nondimensional combinations.
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ﬂp terms can be rewritten as

a

]é% or, *m
a

Tﬁl or, b

D

(I11-7)

For proper scaling it is necessary for corresponding independent
terms for model and prototype to be numerically identical, therefore
with subscript m for model and p for prototype

(I11-8)
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h R oL,
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a a
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c c
m P
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a a
m b
Im I
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a a
m )Y
Jm J
4 5 °r»
a a
o P
E E
m = P
Ymam Ypap
K K
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D D
m — P
a a 4
Yﬁ m Yp o)
S S
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m
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m

III-5
h =h L
m P a
2,
c =c a
in p_m
a
D
a 2
A = A m
m P 2
r
a 4
Im =1 ( n )
p a
P
a \4
J =73 (-2
m P\,
P
a E
] m
oL, Yp T Y & _
m P oa Ep (111-9)
a 2
or, K =K m ?m
m Pl . —
P Tp
a \4 vy
or, Dm =D ( aﬁ ) 7?51
P P P
or, S =285 am Km
m P a K
b b
by = 4,
m =m
n p
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il = 1 = ™ n. = n
14 —— 0oL, n P
n
P
AY
ki) = 1 = = or Y =V
15 vp ? ™ p

We can continue to define model properties by using the MLT
dimensions previously shown for the 15 7w terms, This further
manipulation explains why the terms n,, n,, and n, have been
established. As we have shown L , T , and T can"be expressed
as functions of n,, n, and n, and ifmgiven c%mplete freedom of
choice of the numerical value of these n terms (arbitrary scale
factors) any prototype can be modeled into any size and with any
material, Our particular problem does not permit this complete
freedom as will be shown, however that does not detract from the
general presentation of providing similitude, Using the MLT
dimensions and the model quantities we continue by direct sub-
stitution from Table ITI.1 to establish

2 = £ Lm
m P ‘IT—
P
b = b Lm
m P -i——
P
L
h = h m
m ol L
P
L
c = ¢ m
o} P T
p
2
A = A Hn
m P T
d 4
I = I Lm
m P jE—-
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Lt M1 it "2 (L ‘2 M T \"2
_ mm_ m =y m n m
Yo T _ =
m P Ll oyl -2 pLP} w \T,
PP
( m)z MmLm—ZTm_z MIE Tm _2
K = K =g = {2
m P -2 =2 p M T
ML ‘T
PP D P P
4 ) 2 -2
\
Dm = DP(Lm) MmLm Tm = Dp (Lm) M111 ( Tm)
L -2 2 L M T
ML “T
P o' Tp p p
S =8 I = 5
m p L -2 P M T
M T
P oo P P
b, = o
m = m
™ P
I = n
m P
\)m =\)P

If all these model quantities aré satified then the dependent
value of model frequency can be related to the prototype simply as

i) =T
ogm Wwp

or chosing quite arbitrarily from the variables .to give

o3 1/2
ﬂw = th

and continuing as before to satisfy similitude

P
(pm 3) 1/2 ( P, 3)112
w [—— h = W K P
m Km m P P
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This gives for the model frequency

p. \L/2 fK \1/2/n 3/2
w = u P m P
m r\ P Kp h

m m

Using the MLT dimensions for mass density, extensional
stiffness and thickness we can write as we did for the independent

terms above
-3 1i/2 _2 /2 3/2
ML MT I
W= wp PP m m P
ML o MT 2 Lo
T -1
%n = mp m
T -1
P
and from Eq. (TII-6)
_ -1 -1/2 1/2
qm = (n1 n, n, h] mp (I11I-10)

By continuing in the manner just described, all the independent
variables can be scaled using the three arbitrary scale factors, If
the numerical values of n., n, and n., are established and faithfully
maintained as constants t&en the resulting model will provide dynamic
similitude. Such a model will provide reliable quantitative data
that can be applied to the prototype. The result of the algebraic
manipulations with the MLT terms and their corresponding n terms
is shown in Table IIT—2 giving the scale factors for modeling.

In those cases where the three scale factors are perfectly
arbitrary the model can be designed to meet constraints imposed by
time scale, or length restrictions, or perhaps model mass., Our
equation for time (ITI-6) can be used to investigate how the
physical dimensions such as size and mass affect the time scale or
conversely how a selected time scale factor designs the model properties.
In Fig. III-1, Tmn/Tp is plotted against model mass to prototype
mass for 1/10 and 1/20 scale models. Selection of unit mass density,
elastic modulus and size produces a wide choice in time scale. It
should be noted, however, that for smaller than prototype masses
and for both higher and lower elastic modulii the model time is
less than the prototype time for the conditions shown here.
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Table ILI~2 Scale Factors for Modeling

Quantity

Length

Radius

Thickness

Spacing
Eccentricity

Area

Moment of Inertia
Modulus of Elasticity
Unit Mass Density
Unit Weight Density
Extensional Rigidity
Bending Rigidity
Rigidity Moment
Coordinate Angle
Wave Number

Poisson Ratio

Frequency

Symbol  Scaling Relationship for Model
A Em = nllp
a a = nlap (See Eq. III-1)
h hm = nlhp
b .bm = nlbP
c c = nlcp
2
A Am = Ap
— = n b
I,J Im n, Ip, Jm Ry JP
E E = n3EP (See Eq. III-5)
o] pm = nzpp (See Eq. III-3)
-1

Y Ym oy nBYp
K Km = nln3K
D D = 3n D

m "1 T3
S S =1n n,8

m 1 3'p
6 gm0
m,n no=n,n = np
v Vo=

m P

- =1 -1/2 1/2

w mm =n ‘mn, n, wp (See Eq. III-10)
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Although the above treatment for scaling is general, the
problem of free vibrations of a shell with no masses attached to
it and in turn the subject shell not fastened to other flexible
members requires restrictions on our n., n,, and n, terms defined
in this section. As will be shown the term E/p asSumes the role
of an independent wvariable and nedither E nor p can be selected
arbitrarily., This restriction does not apply if there are other

larger masses attached to the shell whereby the shell mass becomes
insignificant.
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IV. PROTOTYPE PROPERTIES

Dynamically scaled models are analyzed and fabricated for
three of the shell structures that are a portion of the second
stage of Saturn V. These sections are second stage tank-hereafter
referred to as Cylinder A, second stage forward skirt to:be
called Cylinder B, and adapter second to third stage and designated
here as Cone C. Overall dimensions and relative positions are
shown in Fig. IV-1.

1 P - el N £ .
E :/ \\ F._ 7
396" A | ; 260"
\ /,r ____L
'S S. . L
]
CYL. A *CYL. | CONE C
B !
T t
e 650" .al164" 1*227-%-4

Fig. IV-1 Portions of Saturn V, Second
Stage Used in Modeling

In reference [5] Saturn V designs are given for flight
conditions accounting for the skin temperatures that produce
changes in elastic modulus. Our conditions will be room tem~
perature and all rigidities will be for material at room tempera~
ture, A summary of the design data and the modifications for
room temperature are shown in Table IV-1,

From the definitions of the 7 terms given in EquationsCIII—7)
the extensional rigidity 7, and flexural rigidity « are
calculated for Saturn V, s&cond stage at room temperature. These
are listed in Table IV-2 using the numbers given in Table IV-L.
Conversicn factors are given for the two cylinders and the cone
as part of the table.

A brief examination of either table reveals large differences
in the shell rigidities both in the x and ¢ directions. These
differences occur within a shell and between the shells., The
orthotropic nature of these structures is readily apparent,
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Table IV=1 Saturn V, Second Stage Extensional -and Flexural Rigidities
Extensional Rigidities Flexural Rigidities
zemp | K K, D_ D,
Component (°F (1b/in.) (1b/in.) (in, 1b). {(in., 1b)
Second Stage | _453(1) |5 33 x 10% | 2.24 x 10° | 93.0 x 10%| 5.19 x 10°
Tank -
Cylinder A | +78%) |2.07 x 10% ] 1.99 x 10° | 82.8 x 10° | 4.61 x 10°
Second Stage | L 450(2) | 61 ¥ 10°] 0.73 x 10° | 414 = 10° 247 x 10°
Forward Skirt
Cylinder B | +78 |1.69 = 10%| 0.77 = 10° | 435 x 103 .257 x 10°
Adapter 2nd 1 0003 |1 68 x 10° | 0.729 x 10%] 453 x 10° .281 x 10°
to 3rd Stage
Gone C +78) [1.86 x 10%| 0.808 x 10°] 502 x 103 .311 x 10°
For 2014-16 AL
(1) E = 11,90 x 10° psi at -423°F
(2) E = 10.10 x 10° psi at +300°F v = 0.33
(3) E=09.56 % 106 psi at +400°F vy = 0.101 lb/in%
(4) E = 10.60 x 106 psi at +78°F
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Table IV-2 Saturn V, Second Stage 1 Terms for
Extensional and Flexural Rigidities

Extensional
T Terms Flexural w Terms
Component 1T9xp 1T9¢p ﬁlep 1T10¢p
Second Stage Tank -3 _3
(Cyl A) 525 5051 0.534 x 10 0.0298 x 10
Second Stage Frwd Skrt -3 -3
(Cyl B) 427 194 ] 2.81 x 10 0.00166 x 10
Adapter Znd to 3xd
Stage -3 -3
{Cone C) 686 298] 6.89 x 10 0.00426 x 10
For Cylinders A and B
i = K = K = K
122 0,101 x 108 3960
D D D

m = = =

0P % 0,101 x 198%  155.2x 10°

For Cone C (Equivalent Cylinder Average Radius = 164 in.)

X K E

'JT = — —
9P Ca +a\?  0.101 x 164> 2716
Y

D D _ D
T = = -

10p <a +a )4 0.101 x 164%  73.06 % 10°
v

1l 2
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Large size sections through the stiffened shell (looking in
the x direction) are sketched in Fig, IV-2 for cylinder A, Fig. IV-3
for cylinder B, and Fig. IV-4 for cone C. Cylinder A is reinforced
with a T shaped integral stiffener and the prototype is a pressurized
shell filled with liquid. Both cylinder B and cone C are not
pressurized and are stiffened with hat sections running longitudinally.
Laboratory tests of the models of these three shell types are
performed with clamped boundary conditions, no axial loads, and no
pressure loads.

A small discrepancy occurs in calculating the Kx extensional
rigidity when comparing that quantity defined in Reférence [5] and
Fliigge's definition for skin stringer shells given in Table II-2.

From [5] K = E (h *:fz)
1~v2 b2
From Table II-2 K = Eh + EAX
e 2
1-v b2

Because the l—vz term is close to 1 and for nominal amounts
of reinforcing the differences are slight we shall disregard the
discrepancy and chose the rigidity given in Reference [5]. It is
this reference that provides the design data for the prototype
structures and therefore, the models will be scaled consistently
with the prototype, in this particular regard. It should be men—
tioned that the integral stiffemer in cylinder A departs most from
the behavior ascribed to it in Reference [5] in participating in
‘the longitudinal extensional rigidity. The hat sections of
cylinder B and cone C act more as shell-like elements because of
their shape and method of fastening. These sections are better
represented by the Reference [5] description of their action than
the integral stiffener. Numerically the differences are slight,
using either formula, .
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V. MODELING

A. MODEL DIMENSIONS

Of the three arbitrary scale factors n.,, n,, and n, given
in Section III, the one with the greatest influence is n,, the
size scale factor. PFor this study n, has been selected s 1/20
thereby establishing the size of the model. Preserving 7. from
Eq. (III-7) and satisfying boundary conditions of Eq. (II=3)
requires the length to radius ratio to remain the same. Model
dimensions are shown in Fig. V-1,

T 7] [ 1 [T~

19.8" -

N IR S 13"
- I

B - -
—'—'—___ o ___’ﬂp_" _' -—_j;_//"”
CYL.. A . CYL. CONE C

B

(2} . tr

I 32—12- S | g, 27y - 11-3- >

Fig. V-1 Dimensions cf the Three Model Shells

B. MATERIAL SELECTION

To create models of these dimensions that can provide
meaningful data we are led to examine the differential equations
of Section II. As mentioned earlier we have, for completeness,
selected arbitrary scale factors to isolate ratios of medel to
prototype mass, length, and time in terms of arbitrary numbers

, and . This is shown as Equatioms (III-2),(III-4), and
(iII—g However, examination of the equations in Section IT
reveals that all terms on the left hand side contain the quantity

E/p. Therefore, n2 and n3, material scale factors, cannot be
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selected in an arbitrary manner, Their ratio in nondimensional
form, must be kept constant for model and prototype. This com—
bination of E/p was anticipated frem the equations of ring vib-
rations in Section IL. Not all shell problems will contain this
restriction, such as the problems of static loading, buckling,
thermal stresses, and others. Our particular problem, because
of the right hand side of Eq. (II-1) restricts the selectiomn of p.
This is the only physical quantity in the problem that can isclate
the time. 1In Table ILI-1 each elastic constant contains a T~
term in addition to M and L terms. Only p contains M and L without
T thereby permitting T to be expressed in terms of n., n, and n.,.
. . X . o2 3
To isolate the E/p term we will define unit mass den8ity as

=2, am g, =2 (V-1)

in which g is a constant, the acceleration due to gravity. Using
this definition of p the ratio E/Y becomes equivalent to Efp for
model and prototype when thelr respective g terms are egual.
Substituting for p from Eq. (V-1) and recalling Tg from Eq. (III-7)
we have

_ E

£
ya pga

g,

For similitude using our previously established laws requires

T8m 8p
so that
E
Em - P
PEnlm ngpap

thereby giving the relationship

Em n P &y

mn
E
p p pP gP
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or from Egqs. (ILI-1), (ITI-3) and (III-5)

and for the same gravitational constants gm= g we have the
relationship that P

n (V-2)

This result restricts the combination of n_./n, to be the
same number as the arbitrary scale factor n,. got n, and n,
determine what materials are appropriate for modeling’

Using the result of Eq. (V-2) into the time equation
relating model and prototype time we find

Tm =0y Tﬁ (V-3)

or for the quantity of interest to vibrating shells

- . =L/2
w = u%, (V=43
thereby setting for our 1/20 models the relationship that the
model frequency becomes 4.47 times higher than the prototype
frequency for corresponding modes.

Material selection is based on dynamically scaling a prototype
structure 2014-T6 aluminum intc another structure 1/20 that size.
For the model material we have from Tg

o, By,
a
b p
For 2014 T-6 aluminum and a 1/20 model,
6
_ 10.6 x 10 1 V=5
B = 0.101 X 20 % Yu (V=5)

We convert the above equation by using the factor

1 gm/dh3 = 0.0361 1b/in3



Vet

MCR~-68=87

to a relationship for model modulus and specific gravity (making
metric mass density and specific gravity equal) such that

E_ (1b/in’) = 1.90 x 10° x sp. gr. (V=6)

This linear relationship is shown in Fig. V-2 for the specific
gravity varying from 0.8 to 1.6. Several materials taken from
Reference [6] having values of modulus that satisfy this modeling
requirement are represented by numbered bars. 0f the several
materials, No, 7, Cellulose Acetate, ASTM Grade H4-1 is the most
attractive., It is available in sheet form, can be joined by
cementing and its range of modulus appears to be small compared
to other classes of plastic materials.

Not many materials qualify for the relatiomnship given in
Eq. (V-6). Unreinforced plastics have a small range of specific
gravity when compared to metals and of all the types of plastics
very few have the desired modulus. It is interesting that any
material that can provide the proper modulus to specific gravity
ratio will produce a shell satisfying dynamic similitude. Further-
more, each of the 1/20 scale models will respond with corresponding
frequencies 4.47 times higher than the aluminum prototype.

As am indication of how very small this group of plastics is,
we have enlarged the modulus and specific gravity scales and
included both metals and wood for comparison with the modulus
line of Fig, V-2, This is shown in Fig., V-3, The modulus and
specific gravity valves are taken from Reference [7]. Along the
bottom of the graph the line from Eq. (V-6) is plotted to a
specific gravity of 30. In the lower left hand corner, the region
covered by Fig. V-2 is shown as a shaded area. The small domain
of this region is obvious when examining Fig. V-3.

Wood is included by using the empirical formula for its
longitudinal modulus as

6
Ewood = 2.80 x 10" x sp. gr.

At corresponding specific gravities the longitudinal modulus
of wood is too high by an order of magnitude, but in addition wood
is orthotropic whereas aluminum, the prototype material, is
isotropic.

0f the several metals shown in Fig. V~3 lead is surprizingly
close to the desired E/sp. gr. ratio. Values taken from
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Tensile modulus

Flexural modulus

Compressive modulus

(min-max subscripts indicate range)

T
F
c

nnn

Polypropylene, General Purpose
Cycolac LTH-P ©

Nylon, Type 12

ABS, Very High Impact

Epoxy, Cast Flexible

Polypropylene, Flame Retardant
Cellulose Acetate, H4-1
CR-39 &>
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Reference [7] for lead are E = 2,56 x 106 lb/in2 and density =
11,34 g/cm3. Depending on purity and other factors the modulus
of lead can cover a broad range and at times may be difficult to
define,

Because the elastic modulus of a material cannot be changed
at room temperature the use of many of these materials is not
feasible without deoing one of two things; either increasing the
apparent specific gravity by attaching additional mass or performing
the experiments in a centrifuge as discussed by Sedov [3]. Use
of the centrifuge to increase the weight density (for p
Zm > gp) of dynamically scaled models began in the early
1930's. With a relatively large centrifuge arm and a sufficiently
small model the centrifugal force can be a good approximation to
an increased gravity condition. The earth's gravity component,
however, is not changed during the time a model is being centrifuged,

= Dp,

The required increase in weight density to approach the 1/20
model line is very great for most materials as shown by Fig. V-3.
All points (because modulus remains constant) must move to the
right until they intercept the 1/20 model line. As mentioned
earlier the points in Fig. V-3 could be moved down by heating the
models (not changing weight density) thereby decreasing elastic
modulus. Other than saying this is possible and probably quite
unreliable when compared to a centrifuge no other discussion of
this method will be made. :

It should be kept in mind that the identification of accept-
able materials shown in Fig. V-2 based on Eq. {(V-6)} is applicable
only to a 2014-T6 aluminum prototype structure undergoing free
vibrations, without additional masses and being scaled using a
size factor of 1/20. Other materials, other loads, other responses,
or other sizes will produce their particular numerical coefficient
for Eq. (V-6). TFurthermore in this study gz = g,. The effects
of any linear accelerations, other gravity fields, or centrifuge
conditions must be taken into account (or deliberately manipulated)
when satisfying the nondimensional term ﬂg =_E .

Ya
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C. SKIN-STRINGER CYLINDER MODELS

- Several departures from the fifteen ¢ terms identified as
influencing the free vibratioms of cylindrical and conical shells
will result in, by definition, a distorted model. This model will
have the general appearance of a skin-stringer prototype, however,
stringer spacing, stringer shape (affecting polar moment of imertia,
and rigidity moment) will not be modeled geometrically. Skin-
stringer combinations will be required to satisfy longitudinal
extensional and flexural rigidities, modulus to density require-
ments and length to radius ratios. The skin will be required to
satisfy the circumferential extensional and flexural rigidities
and the radius to thickness ratios as well as modulus to deansity
ratio. We will assume the value of Poisson's ratio for the model
material to be 0.3. The model shell radius a = 9.9 in.

To find the wall thickness of the model, h , we must satisfy
the nondimensional extensional rigidity in the ¢ direction so
that ﬂ9¢m = ﬂ9¢P' From the definition of w9¢

K
"9gp =
P
Yol
Referring to Table II-2 for K¢ for a skin-stringer shell
- _ Emhm 1
J¢p l—vz Y a
m: o

From Eq. (V-5) we can substitute numerical values so that
1 10.6 x 10° 1 B

X X X
= 7 :
™5 6p -3 0.101 20 992

Solving for h_ and combining the numbers gives for the wall thickness
of the model Shell
Ll
. 9¢p
h (in) = —5
o 5.90 x 10° (V=7)

An earlier calculation and tabulation lists in Table IV-Z the values
of ﬂ9¢P for cylinder A and cylinder B, Substitution from this



MCR=~68-87 V-9

table determines the wall thicknesses. FExamination of the results
of Eq. (V-7) shows that 7, = a/h is satisfied as well,

2
We can determine the stringer area A from the T = ﬂéx
requirement and proceeding in a similar manner from thé P
definition of =
9%
K
xm
Toxp a 2
P Yoln
Referring to Reference [5] for KX for a skin-stringer shell
m o= o+ Amy 1
9xp 2 Y'm
I-v b 2
m 2m Y a
m
From Eq. (V-5) we substitute for E/v and arbitrarily select
_ 27ia _  2m.9 _ s ,
by = oL ctringers 60 = 1.038 in./stringer.

For faithful adherence to scaling we should insist that

3 = gég3 = 0.496 in./stringer.

Obviously the angular spacing of stringers is more than twice as
great on the model as on the prototype. This violates the T

term for angle coordinate ¢. To proceed with the developmen%zof
stringer area

1 10.6 x 10° L1 "ogp P
Toxp ~ 1-.3° % 0.101 20 5.90 x 10°  1.038
Solving for AXm we can establish
Mo — T
Akm - 9¢P4 (v-8)
5.68 x 10

Both values, Ty and W s are tabulated in Table IV-2. Although
the stringer arah is es%gglished by Eq. (V-8) the shape of the
stringer is not defined. We will prescribe a rectangular section,

thereby violating ﬂé, ﬂ7'and “ll' To find the dimensions of the
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rectangle we can useT.,,s the nondimensional factor containing
stringer moment of inéertia, IK.

For similitude we enforce the following equality as we have
for the W_, terms, namely T 0xm - ﬂlOXP. From the previously given

definitiohs we can require

D
L xm

ﬂlep B Y a 4
» m

From the rigidity definition this becomes for skin-stringer shells
as given in Table 1I-2

h 3 I +A ¢ Z
i) = E m XM ¥m xXm 1
10xp m > + B 4
12(1~v) 2m /Y a
i m m

Because the stringer shape is rectangular we can write

A d 2 d +h 2
3 Xxm xm_ + A Xxm m
Em hm 12 2
Toxp = A 5+ (V-9)
Py o * [12¢2-v) b
mm m 2m

The only unknown in Eq. (V-9) is the depth of the stringer d_ .

The factor E_/y 1is evaluated in Eq.—(V-3). From the 1engthxgcale
factor a = %.9™in, Thickness hm is found from Eqg. (V-7), and v

is defined as 0.3 for all materials. The area A comes from

Eq. (V-8), me has been established as 1.038 in.™38nd Tio is given

in Table TV-2, Therefore dxm appears in quadratic form and affords
a simple solution. Using the notation established in Fig., II-3

stringer width is simply ¢t = A_/d_ . A table, presented in
Section V.G, summarizes thése cafculitions.



MCR=-68=87 V-11

D. SKIN-STRINGER CONE MODELS

The cone for this study has been treated as an equivalent
cylinder with an average radius defined as the large radius plus
the small radius divided by two. Wall thickness, stringer area,
and rectangular stringer dimensions have been calculated as
described in the preceding Section V.C outlining the design of
skin-stringer cylinder models. For the equivalent a the numerical
value becomes (9.9 + 6.5)/2 = 8.2 in. Other dimensisns for the
model are shown in Fig. V-1.

A table presented as Section V.G compares the calculated and
design dimensionsof cone C.
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E. GRIDWORK CYLINDER MODELS

Skin—-stringer model distortion has been accomplished by using
a composite gridwork shell to represert an orthotropic shell (by
virtue of material distribution) made of an isotropic material.
The composite materials are selected for their large differences
in elastic modulus. Flexible PVC with a very low modulus has been
designed Lo pruvide flexural rigidity by being relatively thick.
Glass filaments or steel music wire; both with a relatively high
elastic modulus, have been designed to provide extensional rigidity.
No interaction between the two materials is assumed.

Retaining the notation previously established in Fig., II-3
but adding the composite construction features we see in Fig, V-4
a section through the composite gridwork shell. The analysis based
on the stated assumptions determines the amount of glass or wire
reinforcing and the depth of the rib sections dX and d¢.

Design of the gridwork shell is based on providing numerical
equality for the extensional T term (T,) and the flexural term
{..)., Properties of the two materials (E and y) will be used
wi%g no regard for matching T, = EY/a. Certain grid dimensions
have been selected arbitrarily, and are as follows:

bl = 1 in.
b
t = 1 =_1 .
¢ 2 5 in.
b2 = 1 in.
£ = Py- T
x 2 2 L]

The selected material flexible PVC, S-Glass, and music wire are
assumed to have the following properties;

1,200 lb/in2

Flexible PVC: E =
Y = 0.05 1b/in>
S-Glass Roving: E=12x 106 lb/in2

0.10 1b/in3

(204 filaments per Y

single end roving) area = 15 x lCll“6 inz/single end
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Fig. V-4 Section of Composite Gridwork Shell

v-13
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29 x 106 lb/in2

Music Wire: E

It

Y = 0.284 Ih/in°

Thicknesses d and d are determined by providing numerical
equivalence for thglr resPectlve flexural rigidity W terms. For d,,
symmetrical about the reference surface, (the eccentricity ¢, = )¢
we require T = Todp® Using the definitions previously ¢
established and tabulated and using flexible ¥YVC properties for
Em and Ym

T U
10¢p s
m m

For a gridwork shell from Table II-2 we have

2
E (I + A
- ] _ m( ¢m 4¢mc¢m )
10a0p
blmﬂﬁ?m

and for rectangular sections and for our selected geometry of the
gridwork pattern it follows that

: 3
E d
T = m ¢m
10¢p 4 24 (V-10)
Ya
m m

All terms except d, are known therefore this simple calculation
provides one of thg thicknesses.

Continuing in a similar manner we find the longitudinal rib
thickness, however, we must take into account the eccentricity c

Again we require that T 0xm ﬁlep and it follows that
Dxm
1T10xp - Y a 4
’ mm

For a gridwork shell from Table II-2 we can write

E(L +4A c 2
5 m ¥Xm Xm Xan
10xp 4

a
mYm. m
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For rectangular sections and using our previously described
geometry it can be shown that

E d 3 d 2d d d 2
- - m xm_ xm  ¢m PR . dm
10xp. 4 6 4 8 (V-11)
Y a
mm

Again all terms except 4 are known, d having been determined
by Eg. (V-10). Solving ¥0r both thicknébses gives all the informa-
tion required to produce that portion of the shell for which the
flexural rigidities have the same nondimensional numerical values.

Using a different class of material, to complete the composite
structure, the extensional rigidities (%_) are satisfied by using
S-Glass filaments or steel music wire. %t is assumed that there
is no interaction between either of the composite materials each
working independently of the other and fullfilling its designated
function., The requirement on scaling is made so that

from which we have

K
Xm
T =

9 2
¢P Ymam

For a gridwork shell from Table Il-2 we see that

E A
- . mdm
?¢ b, ¥ a 2
imm m

or quite directly, the area required per rib is
2
Tr9¢p bim Yoo
E

m

{(For Glass or Music Wire/Rib)

A

bm (v-12)

And without additional discussion we can write directly for the
other area
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1T9xp b2m Yo®n
E
i

(For Glass or Music-Wire/Rib)

A
Xm

(V-13)

Several interesting features of this modeling technique are
‘discussed in Section V.G wherein a summary of model dimensions and
characteristics is made.
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F. GRIDWORK CONE MODEL

The cone model made as a composite gridwork cone has been
treated as an equivalent cylinder with am average radius defined
as the average of the large and small radii. Grid dimensions are
somewhat smaller than for the cylinders. Thicknesses and
reinforcing areas are calculated in the same mammer as for the
cylinders in the previous section.

A table in Section V.G provides numerical information
regarding the cone designs.
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G, SUMMARY OF MbDEL DESIGNS

Design information developed for skin-stringer and composite
gridwork shells has been used to determine sizes, spacings, etc.
of the 1/20 models. Calculated thicknesses and specified thick-
nesses are shown in tabular form as well as comments regarding
the scaled and unscaled T terms. Whether a T term is greater or
less between model and prototype has no particular meaning. Each
of these terms is equally as correct when used as its inverse,
Therefore, a term toc large can arbitrarily be made too small and
vice versa, doing this of course to both model and prototype. A
close examination of each term is required before any conclusion
might be drawn regarding its effect when not precisely scaled.

Skin—stringer model designs are summarized in Tables V-1 and
V-2. The first of these tables gives calculated and design shell
dimensions and rigidities. Comments regarding the attempt to
scale or not scale the 15 7 terms are made in the second at these
tables, Earlier discussions have given more detailed explanations
of the summary made here. Full scale portions of the three shells
are sketched in Fig. V-5, These are 1/20 scale dynamic model
representations of the prototype shells shown in the figures of
Section IV.

In a similar manner Table V-3 lists calculated and design
data for the composite gridwork models., Both glass fiber rein-
forcement and steel music wire reinforcement are shown. Table V-4
lists the scaled and unscaled 7 terms with comments., Many more
terms are left unscaled uvsing this construction when compared to
the skin-stringer models. Discussions in the text give more
details and more reasons for the comments in the table,

Many T terms are left unscaled and in addition composite
values of density and modulus can be defined for the combipation
of flexible PVC with either glass or steel. From the law
of mixtures a composite modulus, analogous to the isotropic
material elastic modulus can be calculated. Results of such
calculations are given in Table V-5. From the previously specified
numbers for PVC and glass and steel, we see many numbers, None
of these are close to the values used in scaling and a large spread
of values occurs, Using the composite modulus for the n, term
and applying our time scaling factor we see the large differences
inmodel and prototype, all influenced by a varying modulus, and
similarly for the effect of gravity. When previously we forced
the gravity constant to be the same for model and prototype, we
see the contradictory requirements of model gravity being less or



Table V-1 Calculated and Actual Shell Dimensions and Rigidities
b, (n.) do (Ine) e (3N Lxtensional Rigidity Flexural Rigidity
Shell Calc Use Calc i Use Cale Use 1rT9x11‘1 Tr9xp TT9¢m Tr9(1)13 T10xm 1T1Oxp "lOcpm 1Tl1.0q>p
CylL A | 0.00868( 0,009 [0.0790 ] 0.080 {0.0044 | 0.004 542 525 525 | 505 10.456 |0.534 | 0,0361 | 0,0298
| x 1070 |x 1072 x 107° |x 107
|
Cyl 3 | 0.00333| 0.003 |0.0524 ] 0.50 0.094 0.090 425 427 175 | 194 2,13 2.81 0.00134 | 0.00166
x 1073 | x 1073} x 1073 |x 1072
Cone C| 0.00351 | 0.004 | 0.0583 | 0.060 |0.067 0.070 | 756 685 340 | 298 | 7.46 6.89 0,00674 | 0.00426
x 1073 21073 x 1070 |x 1073

L[8+=89-MON

6T~A
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Table V-2 Scaled and Unscaled Terms

Scaled

7 Terms | Form | Yes| No Comments

T al/s X Required for boundary conditions

T, a/h X Result of providing extensional
rigidity and realizing Efp as a
factor

s a/b x |1/2 - 1/4 as many stringers

Ty alc X | Eccentricity function of shape

s Aja® X From extensional rigidity

Te I/a4 X From flexural rigidity

L J/a4 x |Not scaled; however quantity is
provided

g Efya x Coefficient on all terms of D.E.

g K/Ya2 b4 Extensional rigidity

0 D/YaA x Flexural Rigidity

T S/Ka X | Functionof eccentricity

Ty 6 X Dimensionless coordinate

T3 m X Dimensionless wave number

LEPA n X Dimensionless wave number

ﬂ15 v b 4 0.33 on prototype, 0.3 assumed
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Fig. V-5 Details of Skin-Stringer Cylinder and Gone Models
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Table V-3. Calculated and Design Shell Dimensions and Reinforcing
for Composite Gridwork Models
1) (1) ¢direction (circumferential) ¥ direction (longitudinal)

Shell ,dqm (in-) dxm (in.) S-Glass Roving (2) | Music Wire S§-Glass Roving| Music Wire

Cale. | Use | Cale. |Use Calc. Use Calc, | Use Cale. Use | Cale.| Use
Cyl A 10.0659) 0.066 | 0.141 10.140 | 28.6 30 5.10 |5- 2Ga(3) 29.6 30 3.80 | 4- 4Ga(4)
Cyl B | 0.0254] 0.025 | 0.202 |0.200 | 10.9 11 1.92 |2~ 2Ga 24.1 24 3.09 | 3- 4Ga
Cone C| 0.0268( 0.027 | 0.212 (0.210] 9.5 10 1.09 |1~ 5Ga(5) 22.0 22 2.92 | 3~ 4Ga
(1) Flexible PVC (E = 1,200 psi)

(2)

(3) WNo.

(4)
(3)

Number of strands of single end
2 Gage Music Wire 0.011 in,
No. & Gage Music Wire 0.013 in,

No. 5 Gage Music Wire 0.014 in.

roving (204 filaments/end) in each rib

diameter
diameter

diameter

FAA Y

£8=89~40H
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Table V-4 Scaled and Unscaled T Terms for Composite
Gridwork Shell Models

V-23

Scaled _
I Terms | Form |Yes | No Comments
Hl all s Required for boundary conditions.
H2 a/h Y | Gridwork shell has no shell wall
H3 a/b v 11/2 - 1/4 as many stringers
Hé ale / | Eccentricity is function of shape
HS Afa® / Composite construction provides 2 areas
Hs 1/a% / Assuming that materials behave independéﬁtly
H7 J/at v | Not scaled, however quantity provided
HB E/ya J/ Completely disregarded, two materials used
Hg K/raa 7 A humerically correct value provided
Hlo D/7a4 ? A numerically correct value provided
Hll 5/Ka Y | Punction of eccentri?ity
oo P V/ Angular location of comparable-quantities
12 not possible
H13 m v/ Dimensionless wave number
H14 n / Dimensionless wave number
Hls v vV | Not used in gridwork theory




Table V-5 Composite Moduli, Time Séa}es,‘and Gravity'Factors;for,Gridwor% Shells

¥i-A

Gomposite Moduli (1b/in.%)

"' Time Scale, T
' . m

. i !
Gravity Facdtor gm!

VG +

TVC +.Wire

BVC + Glass PVC + Wire Glass PVC ¥ Glass’ BVC + Wire
Shell | @-dir | x-dir | o-dir | x-dir | @-dir .| x-dir | @-dir | x-dir | o-dir | -x-dir |. @-dir:| .=x-dir
Cyl A |165,000 | 80,000 | 415,000 }'220,000| 0.29 T "|0.41'T [0.18 T [0.25 T {0.62 g |0.29's |1.6g .| 0.82
' p +p P pi . °p P . ©p! p
CylL B | 155,000 | 45,000 | 435,000 115,000 [ 0.29 T _0.54 7 [0.17 ?p 9.34;Tp 0.59 5,1 0.17 g, 1.§ g, | 044 g
Cone € [150,000 | 45,000 | 375,000 [130,000 | 0.30 T_ P.S4§T§ [EBEER q.éz'Tp 0.57 8 0.17 g, 148, |0.49 g

3

£8-89 ~40H
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more than prototype gravity and different in both directions x and
¢. Only experiment can decide the influence of this approach to
scaling.

Details of the composite gridwork shells are shown as sketches.
Fig. V-6 contains details of the developed surfaces. Full-scale
sections through the composite shells are given in Fig. V-7,

Cone geometry has been developed in Fig. V-8 from which
spacings and dimensions have been used in the model designs,
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Fig. V-6 Detailsof Developed Surface for Composite Gridwork Shells
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=8,
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Fig. V-7 Reinforcing Details of Composite Gridwork Shells
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/
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)
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b. Finished Mcdel

¥ig. V-8 Details of Cone C Dimensions and Developed Surface




MCR=-68~87

VI, DISTORTED MODELS

Any attempt to model an isotropic structure, such as a
monocoque cylinder by discrete structural elements in the form
of bars or rods requires that several rigidity requirements be
met. As shown in Egqs. (3I1-2) in addition to radius to thickness
ratios the quantities that require similitude (E and p selected
as arbitrary scale factors (See Eqs. III-3 and III-5)) are
extensional rigidity K and flexural rigidity D, Considering a
skin-stringer structure modeled by discrete structural elements,
it is easily verified that the shell modeling requirement normal
to the stringers (in the ¢ direction) are the same as for
monocoque shells., See, for example, rigidities in the ¢ direction
for such shells in Table 1II-2. Shells stiffened in two directions
x and ¢ can be approximated by grid work shells.

Assuming that z monocoque shell has been faithfully modeled
by replica scaling end that this model is to be distorted using

Vi-l

bars or rods or cruciform or H-sections we will have the following -

requirements. Using the notation from Fig. VI-1, the requirement
for bending rigidity become for the bars

Ebh- rb (r h)

12 (1-v%) Ebar

and for the stretching rigidity

Ehb

l_UZ = Ebar rlhrzb
so that
2 T (1-v2?hb r
bar
which give
rl =1, T, = E

gy ()
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This means the bar is the same thickness as the plate,
depending on material the widths are matched but for individual
barg the rigidities are matched in one direction only.

Similarly for the rods shown in Fig., VI.1lb matching of
rigidities (in one direction only) requires that

R<0,411h

preoducing a condition whersby the distorted model is thinner than
the replica model,

A summary of the cruciform and H-sections that can provide
both extensional and flexural rigidities in one direction is
shown in Fig. VI-2. Procedure for determining this is exactly
the same as outlined for the bars. 1In all cases the final width
of either the cruciform or the H-section is wider than the
original width b. Therefore, overlapping of pieces would be
required in any omne direction and another overlapping layer
would be required in the transverse direction, There would be
no shear rigidity in such a system withcut fastening crossing
layers. This would then provide additicnal rigidities in
flexural and extension to each of the lavers, thereby destroying
any attempt to match a replica scaled model by a distorted model
consisting of discrete structural elements.

Distorted meodeling in which some of the physical quantities
are properly scaled can be achieved with composite materials.
This development presented in Section V with details for such
a set of models.

An indication of the orthotropic nature of skin-stringer
shell construction can be obtained by attempting to model an
orthotropic shell with an istropic shell. By finding monocoque
shell wall thicknesses that can independently satisfy the several
rigidities, we can evaluate the feasibility of ignoring rigidity
requirements. If the thicknesses are nearly the same, an averaged
value may produce an acceptable distorted model. If, however, the
calculated thicknesses are significantly different, then a distorted
model (isotropic shell for orthotropic construction) cannot provide
this similitude requirement.

We will satisfy g~scaling with a material so that

_ -1 -1
g nl 112 ntP

St e uw
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or 2

for n, = 1/20, (a 1/20 scale model). For a material such as
cellulose acetate we will specify

Y = 0.05 lb/ina, E =0.,26 x 1061b/in2, and v = 0.3.
m m m

2 G.101/ 2

pP gp
n = Em - 0.26 x ].06 - 1
3B 10.6 x 10° %0

Using the density and modulus values, we find the following
thickness relationships for the cylinders.

T
= _Jxp
9xm 58,200

)
b _ _99p
9¢m 58,200

1/3
Uy
h - ( 10xp )
10xm 49 .8

. - 1/3
h - 10¢p
10¢m 49,8

Values of the W terms are as previously tabulated. Solving for
the four h terms, and including the cone as an equivalent cylinder
the several thicknesses are given as a bar graph in Fig. VI-3,

The conflicting requirements for thickness show ratios as high

as 10 to 1 and as low as 2 to 1. It seems apparent that an
orthotropic shell cannot be successfully modeled with a monocoque
shell, even when satisfying the modulus to demsity requirements.

h

As a further illustration of the difficulties involved in
attempting distorted shell models, a calculation 1s made for
flexible PVC. Ignoring the modulus to density requirement and
using the flexible PVC properties (as assumed for the composite
gridwork shells) Y, = 0.05 1b/in3, Em = 1,200 lb/inz, and \’m = 0.3
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the several thicknesses are calculated proceeding in the same
manner as for cellulose acetate. Figure VIi-4 illustrates the

four very different thicknesses required of a single shell. The
ratios for this material, shown only for cylinder A, are much larger
than for cellulose acetate.

Satisfying the extensional and flexural rigidities as well
as the modulus to density ratio puts severe restrictions on dynamic
scale models, Several other similitude requirements are automatically
satisfied such as thickness to radius ratios, spacings and other
ratios as the model shell more nearly reproduces the prototype
shell, Not all structures impose this requirement on modeling.
Shell structures because of their curvature {or curvatures) demand
that models be more similar to their prototypes.
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VII, EXPERIMENTAL PROCEDURE

A. MODEL CONSTRUCTICN

Models of cellulose acetate (CA) and flexible polyvinyl
chloride (PVC) were fabricated by persomnel of the Martin
Marietta Corporation, Denver Division, Structures and Materials
Research Department. Detalled drawings were made from the design
information in Section V and from the details given in Figures
¥-5 through V-8, Several deviations from these drawings are noted
in the discussion of each model.

1, Cellulose Acetate Models

Sheet material of clear cellulose acetate of the appropriate
thickness was used to form one each of Cylinder A, Cylinder B, and
Cone C, 1In addition, a monocoque model with a 0,010 inch skin
thickness was fabricated to have the same thickness, length, and
diameter as Cylinder A, This model was used to establish handling
and measuring techniques prior to testing the scaled skin~-stringer
and gridwork shells.

Material for the three shell skins and the stringers for
Cylinder A were cut by using a sharp blade gulded by a straight edge.
A band saw with a fine blade was used to cut the relatively heavy
stringers of Cylinder B and Cone C. Sawing left a slightly rough
edge that was made smooth by pulling the cut edge over finme sand
paper,

Bonding was accomplished by using acetone introduced through
a hypodermic needle and syringe., Stringers on Cylinder A were
located by using a metal template with two parallel links scribed
the length of the cylinder (33 1/2~in.) and spaced one-inch apart.
To maintain the stiffener perpendicular teo the shell wall and
straight along the scribe lines a one-inch thick metal block was
used at each end to provide a normal clamping surface and a
tightening device to hold the stringers straight until the
acetone evaporated., Good bonding was achieved for the full
length of the stringer and no stringer fallures were observed
during vibration testing. Because of the small size of the
stringer (,005 x ,080~in, with the ,005-in edge bonded) an
additional amount of acetone was required and resulted in loecal
softening of the wall that produced scme distortion in the
finished article.

Cylinder B and Cone C were made using a full scale paper
drawing of each shell, The transparent cellulose acetate was
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placed over the drawing and wall size and shape were cut and
stringers bonded at appropriate locations. This technique
prevented part of the distortion found in Cylinder A, '

Cellulose acetate Cylinder B and Cone C are shown on top of
the 010-in, wall meonocoque cylinder in Fig. VII-l. The white
rings are epoxy clamping rings used for the fixed boundary condi-
tions and are discussed later.

All cellulose acetate material was acquired from the
Celanese Plastics Company, a division of Celanese Corporation,
The material was extruded diacetate sheeting No., 704 and is
made in thicknesses from ,003~in and greater. HModels were con=-
structed from .005 and .010~in. S=704 extruded film and ,040 and
.060~in, S-~704 AA sheet, A temsile test from the material showed
linear stress—-strain behavior and a modulus of 2.3 x 105 lb/inz.

2, Flexible Polyvinyl Chloride Models

Composite construction consisting of flexible polyvinyl chloride
fér flexural rigidity, music wire for axial extensional rigidity,
and glass filaments for circumferential extensional rigidity were
combined into gridwork shells. Distorted scale models required many
more steps in comstruction, took longer to fabricate, and demanded
a2 wide variety of fabrication equipment and special tooling.

Material in sheet form was acquired from the Norton Company
in 1/32, 1/16, and 3/32-in. thicknesses., Design dimensions and
wire embedment were achieved by laminating thin sheets, Several
solvents were used to find the most efficlent bonding agent., The
most satisfactory agent was cyclohexanone and required 16 hours
at room temperature to achieve bond while contact pressure was
applied to the laminate. Occasionally after removing pressure it
was discovered that edges were not bonded and the process was
repeated,

Ribs for Cylinder A were formed in groups of five using the
room temperature process. Wires were held on a large sheet of PVC
at each rib location by templates consisting of a positioning hole
and a tightening peg for each wire. Ribs were cut to width and
centered over the wires. It was necessary to ensure that wires
did not leave the ribs when pressure (from weights) was applied,
The cyclohexanone and softened flexible PVC made a slippery
environment for the wires until set began to occur, This model,
after all ribs were attached, was placed in an oven for several
hours at 100 to 110°F to evaporate any remaining solvent,
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Ribs for Cylinder B and Cone C were made in an open top mold
of the desired dimensions with pegs at each end to tighten and
position the wires., PVC, wires, and PVC were placed in the mold
and the assembly was placed in a preheated platten press at 350°F,
Sufficient force was applied to compact the laminate and held at
350°F for 15 minutes, Ribs were removed from the mold after
cooling to room temperature,

Paper drawings of the full size modal were used to cut the
skin portion of the model and to locate the ribs, Cyclohexanone
at room temperature was used to bond the ribs to the skin and
weights were used to apply a bonding pressure, The difficulty
encountered in Cylinder A when ribs and wires tended to shift was
not encountered when bonding PVC ribs (with wires in the rib)
only to the PVC skin,

Extensional rigidity was supplied by glass filaments wound at
rings spaced at one-inch centers., Because of the extremely low
modulus (1,400 1b/in?) and relatively large thicknesses the shells
behaved in a very limp fashion., Mandrels made to the geometry of
the finished part were constructed by using a cardboard skeletal

structure on which plaster was applied and swept to a final dimension,

Fig. VII-2 is a detail of such a structure for Cone C, Further
steps in the fabrication of the cone are shown in Figures VII-3
a, b, and ¢, In Fig, VII-3a the plaster has been applied and cured
to produce a mandrel on which the PVC cone will be fitted, 1In

Fig. VII-3b the cone is on the mandrel and tapered wooden strips have

been fitted between the ribs to provide a smooth surface for
winding., The reason for the filler strips, can be observed in
Fig, V- 7. Glass filaments are shown wound on the cone in

Fig, VII-3c. A room temperature cureable epoxy was applied as

a very thin coat to bond the glass to itself and to the PVC
surface. Although the cone has been discussed and shown in detail
cylinders A and B were treated in the same amnner and they are shown
on their mandrel in Fig, VII-4, The cylinders and cone were
removed from plaster mandrels by removing the cardboard supporting
structure and breaking the plaster. After attempting to provide
square holes for the gridwork shells, it was found more expedient
to drill round holes using a cork borer, These holes were

drilled prior to breaking the plaster mandrels.

Completed Cylinder A, Cylinder B and Cone C are shown stacked
atop each other in Fig, VII.5, Clamping rings made of epoxy have
been applied to the ends to maintain each end as a circle. Flexible
PVC being very soft and showing almost no rigidity made a very
pliable shell until the ends were fixed. The photograph showing
these shells on top of each other demonstrates the necessity of

maintaining circular boundaries for proper cone and cylinder behavior.
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Figure VII-2 Cardboard Structure for Support of Plaster Mandrel
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b, Flexible PVC on Mandrel and Spaces
Between Ribs Filled with Wood Wedges

c. Glass Filaments Wound on Cone C

Figure VII-3 Steps.in Applying Glass Filaments on Cone C



Figure VII-4 Cylinders A and B on Mandrel After Glass Filaments Wound at Intervals
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3, Summary of Cylinder and Come lModels

Some departures were noted from the design drawings and the
finished shells. The most significant deviation occurred in
Cylinder A where the generators of the cylindrical surface were
not all straight lines but showed an observable curvature and each
section was not circular,

When making developable surfaces, as these were, in the developed
position, care must be exercised not to stretch or distort the
flat sheet and to maintain flat finished construction. This is
particularly true of material like cellulose acetate for it acts
as a structural material maintaining its fabricated shape. A soft
material such as flexible PVC 1s more forgiving of distortioms
introduced during fabrication.

Table VII-l is a summary of the compliance to details of the

cellulose acetate models and their design drawings. Noted are
such data as gauges, numbers of stiffeners, etc,

Table VII=-1 Summary for Cellulose Acetate Models

Skin Gauge No, of Stiff, Stiff, Size Test Length
Shell (in.) (in.) (in.)
Design Model Design| Model Design | Model |Design | Model
cyl. 004 x | ,005 x| 325 | 322
A .009 .010 60 61 .080 .080
Cyl. 090 x| 090 x| 8.2 | &
A .003 .005 60 60 .050 +040
Cone 070 x | ,070 x 11%- 12%
c 004 005 60 60 .060 060

Similarly for the flexible PVC there were some departures
between the design and the completed models. A summary of sizes and
numbers is given in Table VII-2,

Several recommendations can be made for producing high quality
stiffened plastic models from the experiences gained on this program.
These are divided into the subjects of bonding and methods of
fabrication,




Table VII=2 Summary for Flexible PVC Models
Skin Gauge Rib Size No. of Ribs Wires/Rib Glass/Ring Test Length
Shell (in.) (in.) (in.)
Design Model | Design| Model | Design | Model | Design | Model | Design | Model| Design| Model
Cyl. «140 | ,150 1 3
A 066 ,075 x"31/2°1 = ¥/2 62 62 4 4 30 30 325 32z
Cyl. +200 | 225 1
B 025 ,030 x 1/ % /2 62 6l 3 4 11 11 8,2 Sz
Cone «210 «210 7
C 027 .030 x1/2 | x1/2 60 60 3 4 10 10 11§- 12

0T-IIA

“89—=40H
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A serious effort should be undertaken to note and classify
the effects of bonding agents on the joints. Strength, local distor-
tion, and effects of time on integrity are among the items that
require study. Structural use of reinforced sheet plastics requiring
bonding techniques to attach the reinforcements has not been studied
as much as monocoque construction. An example of unreinforced shells
are mylar cones and cylinders with a taped seam. Another example of
unreinforced shells is spin cast cylinders made of birefringent
plastic and studied photoelastically.

Fabricating a reinforced developable surface as a flat
reinforced sheet may be acceptable only when the attachments are
applied without distortion to the surface. A recommended procedure
for cylinders and cones is to make a mold, form the basic shell in
the mold, then attach stringers, rings, reinforcings, etc. to the
shell wall while being restrained in the mold.

For the low cost of plastic material and ease of fabrication
the investment required to produce geometrically excellent
specimens appears to be justified.

B. BOUNDARY CONDITIONS

Cellulose acetate and flexible PVC shells had clamped boundary
conditions. Displacements and rotations at either end were prevented.
This was accomplished by encapsulating about a 1/2=in., of each end
in a circular epoxy ring about l=-in, thick. The epoxy material
was a very heavily filled, high strength, high modulus laminating
resin from Furane Plastics, Inc., To 100 parts by weight of Epocast
Resin H-1468 were added 15 parts by weight of Hardemer 9816,

Clamping plates for both ends are shown in Fig, VII=-6. The
process of encapsulation was the same for each end. With the shell
in the groove and notches cut along its edge, a circular cardboard
disc (with a hole for the 2 1/4~-in, diameter pipe and spaces for
the stiffeners) held the encapulating end centered and circular,
The 24-in, diameter plate was made level and epoxy was poured
along the outer edge between the shell and the groove, Because
of the notched edge of the shell the epoxy ran into the area
behind the shell and filled the back portion of the groove on
the inside of the shell. The 1/2 x 1 in. channel groove in the
24=in. diameter plates had small locating holes drilled in the
bottom and in a different pattern for each groove, After the
epoxy ring was removed, the shell was returned to the same groove
and in the same position for testing.
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Epoxy rings were cured at least 16 hours at room temperature
and the ring was removed from the channel groove. Release was
accomplished by using a wax mold release agent. Each channel
grooove had a 10 degree taper to ease ring removal. In additionm,
a series of bolts were put in the wet epoxy to be used as jack
points to help free the rings. This avoided strain on the shell
when removing the ring from the channel groove. These bolts can
be seen in the white epoxy rings in Figs, VII-1l and VII-5.

When the shells were replaced on the end plates, a clamping
device was used to ensure seating the epoxy ring in the channel
groove, Details of this arrangement are shown in a later figure.

C., EXCITATION AND MEASURING

Cylinders A and B and Cone C were excited acoustically by a
speaker driven with a signal generator and an amplifier. The
sound energy from the speaker was directed onto the specimen
through a horn with large end over the speaker and small end
held near the shell, A sine wave was produced by the signal
generator and the amplitude was controlled by the gain on the
amplifier, As required, a very large or a small quantity of air
could be pumped by the horn, The baffle tended to prevent wave
cancellation between the from and back of the speaker cone.

In Fig. VII=7 a schematic representation of the experimental
arrangement identifies all major components used in finding the
natural frequencies. The method used to determine resonance was
by Lissajous figures on an oscilloscope., As shown in the figure
a strain gauge was mounted to act along a generator at about one-
third the distance from one end. This gauge responded to vibrationms
in the axial direction and its amplified output (200,000 times)
was recorded as a vertical output on the oscilloscope. Along the
horizontal axis of the oscilloscope the output from the signal
generator was recorded as a horizontal point undergoing simple
harmonic motion. When resonance occurred, the result was an
ellipse (axis either horizontal or vertical depending on relative
magnifications) that remained stable.

The strain gauge was positioned about 135 degrees from the
point of excitation. Rotating the specimen when at a natural freq
frequency had little effect on the Lissajous figure, and was
demonstrated for one specimen,

Circumferential waves were determined by using a crystal
phonograph cartridge excited by a mechanical device touching
the surface, Again a Lissajous figure was used to find nodal lines
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and points of maximum amplitude by recording the response of
radial motion., The crystal output was on the vertical axis and
the frequency from the signal generator was on the horizontal
axis, When the strain gauge output indicated a resonance on its
oscilloscope the phonograph cartridge produced elliptical figures.,
When the specimen was not at resonance the figures from the radial
motion were not regular and generally did not show an elliptical
pattern., The relative amplitude as measured by the vertical scale
of the oscilloscope was recorded to indicate the amount of radial
motion,

In Fig., VII-8 the baffle is shown in front of the_ speaker and
the horn is fastened to the baffle., The assembly was mounted on
a cart permitting back and forth movement to bring the end of the
horn near the specimen,

Cellulose acetate Cylinder A is shown in Fig, VII-9 fastened to
the lower clamping ring with bolts through an angle-like clamping
device, Also shown is the strobe light used to observe the
overall motion during vibrations. Whenever the strobe light
fired the strain gauge circuit would record a blip on the
oscilloscope. At perfect synchronization a single blip remained
stationary on the Lissajous figure, For a slight mismatch in
synchronization the blip from the strobe would travel around the
Lissajous figure at the mismatch frequency. When producing a
double image, once at each extreme of the vibration two blips
would appear on the oscilloscope face, Thus by watching the
oscilloscope it was possible to synchronize and single strobe
or multiple strobe the vibrating model and the know exactly
what condition was in effect.

The major pieces of electronic equipment are shown in
Fig, VII-10. The oscilloscope, amplifiers, power supplies, and
signal generator were the items necessary to excite and to
record., Strobe, bridge network and filters are also included.

VII-15
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VIII. RESULTS

A. EXPERIMENTAL DATA

Using the techniques described in Section VII data were acquired
for the vibrating cylinders and cones. Boundary conditions were
clamped, excitation was at one point from an acoustic driver.
Extensive use was made of Lissajous figures and stroboscopic light,
and a phono cartridge pickup measured radial motiomns.

A list of the observable frequencies up to 1300 cps for
cellulose acetate shells is given in Table VIII-1, About 90
frequencies are listed for the three shells, however, data on wave
number is given for 14 frequencies, These frequencies were
designated by a Lissajous figure from the response of a strain
gauge mounted axially on the shell and from the signal generator
exciting the speaker. Resonance was clearly identified as an
elliptical figure stable during the time of test.

Each of the shells was illuminated by a strobe light and an
attempt was made to count the nodal lines both axially and
circumferentially. Limited success was possible using this
system, however, the most useful condition was found to be a
strobing frequency twice the fundamental frequency. This provided
a double image on clearly defined lines,

The frequencies given in Table VIII~1 are a combination of motions,.
Because the shells are stiffened, the wall portions between stringers
respond as plates between flexible supports. In addition,-the
behavior similar to the monocoque response is also present. The
data given in the table are not considered to be complete, however,
they are intended to indicate that cellulose acetate shells can
be excited to produce complex vibrational patterns,

In an attempt to provide distorted modeling the flexible PVC
shells were designed to provide vibration data., The walls of PVC
were assumed to scale the flexural rigidity, steel wires the
longitudinal extensional rigidity, and glass filaments the cir-
cumferential extensional rigidity, For the two cylinders and one
cone a total of eight frequencies were observed, Cylinder A had
five frequencies ranging from 12 to 59 cps, Cylinder B had only
one frequency at 42 cps and Cone C had two frequencies, 25 and 29
cps. A list of these observations is given in Table VIII-2,

By using the strobe light it was possible to count the axial
and circumferential waves for two of the frequencies for Cylinder
A, Comparing the frequencies at n=4 and n=5 for m=1, on the
inextensional curve for the Cellulose Acetate Cylinder A we find that:
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Table VIII-1 Observed Frequencies for Cellulose
Acetate Shells

Cylinder A Cylinder B Cone C
39% cps 140%%cps 99%%%cps
44% 158%% 132%%%
46% 188%* 140%%%
54% 198 150%%*

o4* 231 189%%%

68% 248 216

75 260 226

83 290 241
102 295 - 252
113 327 259
124 410 279
136 436 308
153 454 324
176 486 347
188 499 377
205 505 396
214 527 405
253 608 422
262 655 443
279 665 481
285 ‘960 490
291 1026 532
315 1103 548
323 615
342 - 643
369 702
400 769
407 816
437 839
473 894
543 908
579 927
764 1020

1110
1340

#See Fig, VIII-1
*kSee Fig, VIII-2

*%%See Fig, VIII=3
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Teble VIII~2 Observed Frequencies for

Flexible PVC Shells

Cylinder A Cylinder B Cone C
12 cps, m=l, n=4% 42 cps 25 cps
20 cps, m=l, n=5%* 29 cps

34 cps
43 cps

59 cps

#*Observed with stroboscope

VIII-3
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For n=4, PVC measured = 12 cps
CA calc., = 10 cps

For n=5, PVC measured = 20 cps
CA calc, = 16 cps

For this response to be excited around the cylinder the displace-
ments at the point of forcing were about a half inch. At higher
frequencies although at the point of forcing the shell may have
been deflecting on the order of an inch the diametric point was
not responding, The flexible PV( offered too much damping and
the interaction between rigidities did not appear to occur,

B. COMPARISONS WITH OTHER DATA

For the several frequencies that were surveyed for the Cellulose
Acetate shells comparisons have been made to the data presented by '
Arnold and Warburton [8] for fixed end cylinders. The cone was
included as an equivalent cylinder, Also included i3 the
inextensional vibrational mode [1] that becomes & bound for all
other modes, For the relatively long length to radius ratio of
Cylinder A the more exact and the inextensilonal modes are nearly
the same as shown in Fig. VIII-1,

For a short length to radius ratio as for Cylinder B the
more exact solution accounts for the effects of boundaries at
the lower wave numbers as shown in Fig., VIII=-2,

Treating Cone C as a cylinder with an average radius of the
two end radii, the curves in Fig, VIII-3 are given for m=l and m=~2,
For low wave numbers the effects of boundaries become apparent.
Although these appear to be frequencies considerably below the
99 cps first observed for Cone ¢ these could not be observed on
the oscilloscope, From the experimental points on the figure
the cone appears to be undergoing very complex motions,.

To iIndicate the effect of longitudinal stiffening, the work
of Sewall and Nauman [9] has beer included. Fig, VIII-4 shows that when
the stiffener area is about equal to the skin area there are no
large differences in the response for the first axial wave, m=1,
Neither internal nor external arrangements are particularly
influential as shown by the crossover points. For Cylinder B
and Cone C the stiffener area and the skin area are nearly the
same, Therefore, the comparisons made with Arnocld and Warburton
f[8] are felt to be good comparisons and are based on the
unstiffened shell,
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To convert the response found for the 1/20 size plastic
models to the full size aluminum prototype, the mode shapes are
the same but the corresponding prototype frequencies are lower by
0.223 times the model frequency. For the basis of this factor
see Equation (V-4),

C. CONCLUSIONS

Distorted scaling as applied to three~dimensional shell
problems has limited application., For two dimensional shell
problems where the shell is treated as a beam distorted scaling
can be applied with confidence, When interactions between the
longitudinal and circumferential,flexural and extensional
rigidities become important, the model can provide this
requirement when it is geometrically similar to the prototype.

For free vibrations of unloaded three-dimensional shell
structures the most important scaling parameter (other than
geometry) is the modulus to density ratio. When the prototype
is made of an isotropic material with orthotropic construction,
then the model, to be applicable, must be made similarly.,

Plastic materials can be used foxr model construction,
however, the tolerances required must be as good as or better
than tolerances on metal models, All circular sections must
be circular and concentric, All straight line generators must
be maintained as straight line generators, Irregular surfaces
caused by bonding produce a much more complicated structure than
one of straight lines and circlea. This more complicated
structure vibrates in a more complicated manner than simple sine
waves convering the surface,

The most difficult problem encountered was measuring wave
numbers, Many useful techniques have been developed for metal
shells and shells with smooth surfaces, The absence of a well
defined reference surface from which to measure relative amounts
of motion was the largest handicap. A technique that shows great
promise and should be very useful is the use of holography to
produce interference patterns, Other non~contacting, very
sensitive devices applicable to nommetallic surfaces are
necessary.

With the ease of fabrication and low cost of the material
nodeling with dissimilar materials appears feasible, Strict
adherence to the T terms particularly modulus to density and the
several extensional and flexural rigidities can provide good
scaling for three-dimensicnal vibrating shell problems,

VIII~9
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