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AN EXPERIMENTAL COMPARISON OF SEVERAL APPROACHES

TO THE LINEAR LEAST SQUARES PROBLEM

Eugene J. Lefferts
Daniel P. Muhonen

ABSTRACT

Several computational algarithms for obtaining least square solutions to a
system of equations are made. The a l gorithms include both conventional and
pseudo inversion methods. Comparisons of running time, computer storage and
accuracy of recovery are made for each algorithm in both single and doub16
precision.
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AN EXPERIMENTAL COMPARISON OF SEVERAL APPROACHES
TO THE LINEAR LEAST SQUARES PROBLEM

SUMMARY

Experiments were made using five procedures to solve the linear least squares problem.
These were:

(1) The Gauss-Jordan algorithm on the normal equations

(2) An Andree algorithm for the Penrose pseudoinverse on the normal equations

(3) A Gram-Schmidt orthogonalization pseudoinversion scheme on the normal
equations

(4) The Gram-Schmidt procedure applied to the original rectangular data matrix

(5) Householder's algorithm for direct triangulation o the original data matrix

The experiments involved the recovery of polynomial coefficients in both double and
single precision. Computer running time and storage requirements are presented.
The following conclusions and recommendations can be made as a result of these
experiments:

• Procedures (4) and (5) above, which avoid the formation of the normal
equations, give considerably better results than do the other schemes.

• Procedure (4) should be used in double precision when there are no storage
or timing restrictions. It will handle situations of reduced rank.

• Procedure (5) should be used in double precision when timing but not storage
restrictions exist. It does not handle situations of reduced rank.

• Procedures (1), (2), and (3) give better results in double precision than do
procedures (4) and (5) in single precision. 	 .

• Procedure (1) is most efficient in running time and storage requirements, but
it should be avoided whenever possible because it cannot handle situations of reduced
computational rank.

• Procedure (2) gives somewhat better results than procedure (3), but it requires
much more storage.
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AN EXPERIMENTAL COMPARISON OF SEVERAL APPROACHES
TO THE LINEAR LEAST SQUARES PROBLEM

INTRODUCTION

In solving the linear least squares problem, complications arise due to the
introduction of errors in the computation. The magnitudes of these errors vary
considerably with the procedures used to obtain a least squares solution. One dif-
ficulty that frequently arises is that, because of accumulated truncation error in the
computation, only a few decimal figures in the original data matrix are of significance
in the least squares process. Hence, if only the computationally significant portions
of the matrix elements are considered, a matrix of maximal rank may become one
of reduced rank. Unless the computational errors are accounted for in some way, a
meaningless solution can result.

Five approaches to the least squares problem were investigated experimentally.
Using the normal equations, comparisons were made between the Gauss-Jordan in-
version algorithm and two pseudoinversion schemes: an Andree algorithm and a
Gram-Schmidt orthogonalization procedure. The advantage of implementing a pseudo-
inverse is that the minimal norm solution can be found when the matrix is not of
maximal rank. Both of these pseudoinverse algorithms use a-priori truncation error
limits to determine the effective rank of the matrix. In addition, experiments were
made using two approaches which arrive at a solution directly from the rectangular
data matrix without forming the normal equations. The Gram-Schmidt pseudo -
inversion scheme is compared here with the Householder algorithm which forms the
Cholesky decomposition of A A directly from A. The effect of truncation error
resulting from the formation of the normal equations is quite evident from these
experiments. Computer running time and storage information are also presented in
order that a more complete evaluation can be made of the advantages and disadvantages
of all procedures.

PROBLEM STATEMENT

This presentation will be concerned with the linear system

N
AX = B,

N	 y
where A is a known m x n matrix, B is a known m x 1 vector, and X is an unknown
solution vector n x 1. —he system has a solution if and only if B is in the column
space of A. If m > n, as is the case in many physical situations, this condition will
generally not be satisfied. However, it is still possible to find a solution that is
'best" in the least squares sense; that is, one can find a vector X 0 such that

AX0 - B = min.

where I	 represents the vector Euclidean norm. If A is of maximal column rank
N

(i. e., rank (A) = n), then the solution X0 is unique, and



tXo = (ATA)-1 ^T B .

This matrix equation represents what is commonly known as the normal equations.

The solution Xo in the above equation can be found by actually evaluating the
square, nonsingular matrix AT and finding its inverse by some staudard algorithm.
There are computational disadvantages in forming the normal equations, however,
since information may be lost by truncation in evaluating the inner products which
form the elements of A TA (ref. 1). There is an alternative approach developed by
Householder which can be used to find the solution vector Xo without requiring the
formation of A T  (see Appendix C). In solving a system of n linear equations in n
unknowns, a common procedure is to reduce the matrix of coefficients to upper tri-
angular form by a series of elementary row operations (ref. 2 ),j, If these transfor-
mations are performed simultaneously on the constant vector A B , the solution
vector can then be found by back substitution. In our problem this can be represented
by the following equation:

P ATA Xo = PAT B

where P represents the product of the elementary transformation 
T 

sformation matrices necessary
to reduce A TA to upper triangular form; that is, PA A is an upper triangular matrix.
Householder's scheme provides for the evaluation of PA TA and PATE directly from
A and B without requiring the formation of the inner products which can result in
serious truncation error.

The problem still remains that the matrix A may not be of maximal rank, in
which case the normal equations will not have a unique solution. From a computa-
tional point of view, this is a very real problem in many physical situations.
Certainly if the level of noise is sufficiently high in the data represented by two or
more columns in the matrix A, very few figures of significance exist in this data.
What significance there is can easily be lost in the least squares solution processes.
It may also be true that a near -linear dependence does exist in the observables
represented by two or more columns. Unless some means is provided to allow for
these errors, a solution may result having no physical meaning  whatsoever. One
approach is to reduce the dimension of the probi^:a so that A 'L'A is computationally
nonsingular. If a triangular decomposition of A A. is formed such that row operations
are done in a selective order, this can be accomplished by examining the relative
magnitudes of resulting diagonal elements as they are formed. This comparison is
made relative to some a-priori significance level which allows for errors both in
the data and in the computation. If the test fails, the column undgr investigation is
eliminated and the corresponding element of the solution vector X  is assumed to
be zero.

The above procedure will result in a least squares solution to the linear system,
but it has the disadvantage that observables are eliminated from the system, and full
use is not made of the information available. The solution obtained is also rather

H
arbitrary in that the elements of Xp which are assumed to be zero are determined by
the order in which the reduction takes place. One way of circumventing these
objections is to solve for the solution vector which has minimal Euclidlan norm.

2



The problem can then be stated as follows:

IIAX0 -B((	 min.,

I I R  I I = min.

N
The solution X  exists and is unique regardless of whether A is of maximal rank.

One way of obtaining the solution X is to make use of the Penrose pseudoinverse
(see Appendix A), which has the followin% definition: For any rectangular matrix A,
let A# denote the Penrose pseudoinverse of A. It can be shown that A # is well defined
if it batisfies the following four axioms:

(i) AA#A = A

_	 (ii) A#AA# = A#

(iii) (A#A)T = A#A

(iv) (AA # )T = AA#

The axioms imply that:

A## - A ,

A# 	A-1 if A- ' exists ,

(A T)* 	 (A# )T .
If we now consider the original linear system

N	 ^
AX = B

and if we let

XO = A# B,

then it follows that, for any vector X of dimension n ,

II pX ._ BI)	 JIAX-BI)

Furthermore, if

IIXRO - BII = II AX -BII
then

I I RO II < IIX II -

3
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Hence, the Penrose pseudoinverse will provide the least squares solution with minimal
Euclidean norm.

LEAST SQUARES PROCEDURES INVESTIGATED

Computational experiments were performed on the following five approaches to
obtain a least squares solution. Three decimal digits of computational error were
allowed for in the procedures that tested for reduction in computational rank.

(1) A Gauss-Jordan matrix inversion algorithm applied to the normal equations
(ref. 2). No check was made for computational singularity of A TA. The
solution 

X 	 was evaluated as follows:

XO = (AT A) 1 (AT B)

(2) An Andree pseudoinversion algorithm applied to the normal equations (see
Appendixes B and C;. Here a series of congruence transformations were made
on the ATA matrix such that in each step the reduction was made to pivot about
the largest remaining diagonal element. A computational reduction in rank was
performed under the following test:

Let x1 be the first pivot element and ofi be a pivot element being tested. Then
reduction in rank was performed when

Q. < 103 1 0'1\ ,
1	 l

where k is the number of decimal figures carried in a computer word. Rank
reduction was effected by setting o fi and all subsequent pivot elements to zero.
The solution X  was evaluated as follows:

XO = (AT A) # (AT B)

(3) A Gram-Schmidt orthoganalization procedure for evaluating the pseudoinverse,
applied to the normal equation p tsee Appendixes B and E). Under this scheme
an orthonormal basis for the column space of A TA was evaluated, and rank
reduction was performed under the following test:

Let ( 6 11 represent the magnitude of a column vector of A TA being tested and

let 
p

jI I be the magnitude of its projection on the independent column space

already determined. Then reduction in rank was performed when

	

of - - I < 10	
10k )

4



where k is the number of decimal figures carried in a computer word. The
solution YO was evaluated as follows:

XO = (ATA) # (AT B )

(4) A Gram-Schmidt orthoganalization procedure for evaluating the pseudoinverse,
applied to the rectangular m x n matrix A. The same routine as in (3) was used,
but operations were done on the columns of A rather than A TA. The solution
XO was evaluated as follows:

XO = A# B .

(5) The Householder procedure for evaluating the least squares solution by finding
the triangular decomposition of A TA directly from A (see Appendixes C and F).
Under this scheme both A and B are pre-multiplied by an orthogonal matrix Q
which transforms A into upper triangular form, with all elements below the
main diagonal equal to zero; that is:

QA = R = U 1

C^ti N

QB - C - C
2

ti
where R is an n x n upper triangular matrix and C 1 represents the first n
elements of QB . Since the Euclidean norm is preserved under ,in orthogonal
transformation,

IIAX- B I1 - II RX - CII,

and the least squares solution is clearly

XO = R C1

provided that R -1 exists. The triangulation of A was performed by operations
on the columns of A in such an order that the diagonal elements formed were
maximizY. Since R, is the triangular decomposition of the positive definite
matrix A A, a test was made for computational reduction in rank by examining
the relative magnitudes of the diagonal elements of R. Let r be the first
diagonal element formed and let r. represent a diagonal element being tested.
Then R , and hence A, was assumed to be of reduced rank when

ri < 103 (.r,

i0k

where k is the number of decimal figures carried in a computer word.

5
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If rank was not maximal, no solution was evaluated. With maximal rank, XO
was evaluated by back substitution from the equation

RY10 = C1

COMPUTATIONAL EXPERIMENTS

In all of the experiments performed, attempts were made to recover the co-
efficients for the polynomial Z 2 + 10 Z + 1 . Matrices were generated for situations
of varying dimension and original data error. For a problem of dimension n, with
in data points, the matrix A = (a 

l
..) and the vector	 _ (b) were generated from

a starting Z 1 and 0 Z in the follow	 ifollowing manner: 

Z i = Zi-1 + 0 Z , i = 2,	 , in

bi = 1 +10Zi +Zi 2 , i=1, ..., m

aiJ = Z
lJ-1	 = 1 ... n

If there were no computational errors involved, then the solution X 0 = (1,10,1, 0, 0, • • •, 0)
would clearly be the least squares solution, since

I I AX0 - BI I = 0

Figures 1-a and 1-b represent the results with the matrices generated from
Z 1 = -1, A Z = 1/16, and in 33 . The column dimension of A was varied from 5 to
25. Single precision (24 binary digits) was used in the generation of matrices A and
B; since each Z  can be exactly represented by four binary digits, no error was
prQse,it in the A matrix up to column dimension 7. Results are presented with the
least squares solution processes, including the formation of the normal equations, -
carried out both in single and double precision. In both instances matrices A and B
were generated in single precision. Figure 1-a shows the common logarithm of the
norm of the solution error vector (log10 

I I 
X0T - (1,10,1, 0, • • • , 0) 

I ) 
plotted

against the column dimension of the A matrix. About 16 decimal digits are carried
on the computer in double precision, and it is clear from the graph that little sig-
nificance was lost up to column dimension 7 for the two double precision procedures
which avoid the formation of the normal equations. Figure 1-b represents the com-
putational rank as determined by the various algorithms tested. The three routines
which :Hake use of the normal equations gave similar results in recovery until rank
suppression occurred. In general, better recovery was observed with the Andree
and Gram - Schmidt routines when rank was suppressed. Double precision
arithmetic gave much better results up to dimension 20, at which point computational
error became very high with the normal equations. It is evident that much better

6
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results can be expected at high dimensions when the normal equations are avoided.	 ^

Figures 2-a and 2-b demonstrate the results of data generated with high original
error. Here matrices A and B were generated in single precision with row dimension
m = 100, Z 1 = 0.01 , and AZ = 0.01. Double precision was used to obtain the least
squarer-solutions. Most Z  generated here do not have exact binary representation,
and a high degree of error was present in the higher powers of Z  . Up to dimension
9, all procedures gave nearly the same results because the original data error in the
A and B matrices was much greater than the computational error which occurred
in the least squares soultions. Beyond dimension 9, the Andree algorithm applied
to the normal equations gave the best recovery because there was greater suppression
of computational rank. The Gram-Schmidt algorithm gave a different computational
rank because non-negativeness was not forced in the (ATA) # matrix as it was with
the Andree algorithm. Throughout the entire dimension range, both schemes which
avoid the normal equations gave essentially the same results because; original data
error predominated. The results applying single precision to obtain the least squares
solutions from these data matrices are shown in figures 3-a and 3-b. At high.
dimensions both single precision and double precision tended to give equally poor,
results, which further demonstrates the predominance of original data error.

In figures 4-a and 4-b the same data matrices were used, but they were generated
in double precision rather than in single precision. A marked improvement in re-
covery is clearly evident, and the advantage of avoiding the normal equations is
again demonstrated. The superiority of using the pseudoinverse with reduced com-
putational rank when the normal equations are used is best shown in this example.
Above dimension 11 the Andree algorithm gave the best recovery with the normal
equations, and at very high dimensions results were comparable with the schemes
which operate directly with the A matrix. However, at the high dimension level,
computational noise be^arac very great wtn all algorithms, so the comparison has
little meaning at this point.

COMPUTER RUNNING TIME

Figures 5 and 6 show comparisons of computer running time in double and
single precision for all schemes tested. The A matrix here is the one reflected
in figures 2-a, 2-b, 3-a, and 3-b; that is, it was generated in single precision with
m = 100, Z = 0. 01

'
 and AZ = 0.01. On the IBM 360/95 computer, which was used

in all experiments, the minimum measurable time interval is 0.01664 seconds, so
comparisons could not be made when the running time was less than this. Only the
time required for the matrix inversion or pseudoinversion is reflected in these graphs,
except for the Householder algorithm which does not evaluate an inverse. The back
substitution time for obtaining the solution vector is included with the Householder
scheme.

In general, the Gauss-Jcrdan algorithm was the most economical in running
time, and the Gram-Schmidt procedure applied to the A matrix required the most
computer time. One can expect an even greater difference in running time if the
A matrix has 1 larger row dimension. Observe that on the IBM 360/95 computer
running time is essentially the same in both double precision and single precision
wnere maximal rank is maintained. The Gram-Schmidt algorithm requires more
time when there is reduction in rank, so a greater running time is shown for this



routine at the higher dimensions on the single precision plot. However, less time
is required for the Andree algorithm with reduction in rank, so this routine appears
more efficient in running time on the single precision graph at higher dimensions.
The Householder algorithm also showed less running time with reduced rank because
the solution was not completed.

COMPUTER STORAGE REQUIREMENTS

Storage restrictions may be a factor in choosing the subroutine one wishes to
use in the least squares solution. All subroutines used in this study destroy the
original data matrix, A or ATA, whichever applies. The table below lists the IBM
360/95 storage requirements for all subroutines tested. The original matrix (A or
ATA) plus working arrays required are included in this list; with the the Householder
algorithm the constant vector I is also included since it too is destroyed. The
matrix A is assumed to be of dimension m x n. (Assume m = n for the Gram-Schmidt
algorithm applied to the normal equations.)

If m is large, one may be forced to store only the ATA matrix and operate with
the normal equations. Note that the Andree algorithm requires a large amount of
working storage.

Double Precision	 Single Precision
Storage Requirements 	 Storage Requirements

Algorithm	 (Bytes)	 (Bytes)

Gauss-Jordan	 1876 + 8 (n 2 + n + 2 )	 1795 + 4 (n2 + 4n)

Andree	 4538 + 8 (6n2 + n)	 4472 + 4 (6n 2 + n)

Gram-Schmidt	 3304 + 8 (mn + n2 + 2n)	 3260 + 4 (mn + n2 + 2n)

Householder	 3190 + 8 (mn + m + 2n + 2 )	 3150 + 4 (mn + m + 3n)

CONCLUSIONS

It is clear from these experiments that it best whenever possible to avoid
formation of the normal equations in solving the linear least squares problem.
However, storage restrictions may not allow the entire data matrix to be placed in
core. In this case, some advantage is gained by making use of a pseudoinversion
subroutine which allows for reduced computational rank. Of the two pseudoinversion
schemes investigated, the Andree algorithm gave the best recovery when the normal
equations were employed. This routine requires a great deal of temporary storage,
however, and the Gram-Schmidt subroutine may be a necessary substitute. In some
situations a Gauss-Jordan subroutine must be used if storage limitations are critical.

Of the two procedures which operate directly on the original data matrix, the
Householder algorithm is more efficient in both computer running time and storage
requirements. However, it does not adequately handle situations of reduced com-
putationai rank. The Householder and the Gram-Schmidt routines gave comparable
results in recovery.



There was a highly significant improvement in recovery when double precision
rather than single precision was employed. This was true both with the least squares
solution procedures and with the generation of the data matrices. Use of the normal
equations with double precision generally gave better results than did the Gram-
Schmidt and Householder schemes applied to the original rectangular data matrix in
single precision.
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APPENDIX A

PENROSE PSEUDOINVERSE

I:et A # be defined as the Penrose pseudoinverse of A, where A# satisfies the
four axioms:

Axiom 1: AA# A = A.

Axiom 2: A# AA# = A#.

Axiom 3: (AA# ) T = A#T AT = AA#.

Axiom 4: (A# A) T = AT A#T = A# A,

We will show that the Penrose pseudoinverse always exists and is unique.
If the matrix A is non-singular, then the pseudoinverse is identical to the inverse.

THEOREM A-1: If A-1 exists, then A# = A`1.

Proof:

AA# A = A,

A- I AA# AA- 1 = (A-1A) All (AA- 1 ) = A-1AA-1,

IA# I = A- I I = IA- 1 = A-1,

A# = A-1

THEOREM A-2: A# is unique.

Proof: Assume X and Y are Penrose pseudoinverses of A. Then, both X
and Y satisfy axioms 1 through 4. Thus:

X	 XAX = (XA)X - (XA)T X = AT XT X = (ATYTAT)XTX

A-1



_ (AT YT )AT XT X = (YA) T AT XT X = YAAT XT X = YA(ATXT)X

YA(XA)T X = YA(XAX) = YAX = Y(AX) = Y(AX) T = YXTAT

YXT AT YT AT = Y(XTAT ) (YT AT ) = Y(AX) T (AY)T

= YAXAY = Y (AXA)Y = YAY = Y.

THEOREM A-3: A#T = AT#

Proof: Since (AT )# is the unique Penrose pseudoinverse of AT , it is sufficient

to show that A#T satisfies axioms 1 through 4:

(1) AA#A = A.

Transposing,

AT A#T AT = AT.

(2) A# AA# = A#.

Transposing,

A#T AT A#T = A#T .

(3) (AA#)T = AA# = A#TA.

Thus,

(A#TAT)T = (AA# )T = AA# = A#TAT.

(4) (A# A)T = AT A#T = A# A .

Thus,

(AT A#T )T = (A# A)T = A# A = AT A#T .

A-2



THEOREM A-4: (A# ) # = A.

Proof: Since A # is the pseudoinverse of A, it follows that A is the pseudo-
inverse of (A# ), from the symmetry of the axioms. By definition (A# ) # is the
pseudoinverse of A #, thus (A#) # = A by theorem A-2.

THEOREM A-5: A# exists.

Proof 1: Let A be a diagonal matrix:

A = diag(k 1 , k 2 , ... , /^n) .

Define A# to be the diagonal matrix:

A# = diag (/al, 42 , ... , µn ) ,

where

µi = 1/Ai, &i 9 0

µi = 0, k 	 = 0.

We now show that A# satisfies axioms 1 and 2:

(1) AA# A = diag(X i ) diag(µi) diag(Xi ) = diag(/^i2 µi ) = diag(Xi ) = A.

(2) A# AA# = diag (µi) diag (X i ) diag ( a j ) = diag (/l? X i ) = diag (µi ) = A#.

Since the product of diagonal matrices is diagonal, symmetry is preserved, thus
satisfying axioms 3 and 4.

Proof 2: Let A be symmetric; that is, let A = AT . Then, A has the repre-
sentation

A = STDS,
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where D is a diagonal matrix [D = diag (,k i )] and S is orthogonal, that is ST =
S -1 . Define A# as:

A# = ST D# S.

We now show that A ll satisfies axioms 1 through 4:

(1) AA#A 	= ST DSST D# SST DS# = ST DD# DS = ST DS = A.

(2) A#AA# = STD" SST DSST D# S = ST D# DD# S = ST D# S = A#.

(3) (AA#)T = ( ST DSST D# S) T = ( ST DD# S) T = STDD# )T S = STDD#S

= ST DSST D# S = AA# .

(4) (A#A)T = ( ST D# SST DS) T = ( ST D# DS) T = ST (D# D) T S = STD#DS

- STD# SST DS = A#A.

Proof 3: Let A be arbitrary, then we define A# as either

A# = (AT A) # AT

or

A# = AT (AAT ) # ,

depending upon which resulting symmetric matrix, AT A or AAT , has the smaller
dimension.

We now show that A # satisfies axioms 1 through 4:

(1)	 AA#A = A(AT A) # ATA

A-4



Let

C	 A(ATA)#ATA - A,

then CT is given by

CT = AT A (ATA) # AT - AT

and CT C is given by

CT C 
= I 

AT A (AT A) # AT - AT 
J I 

A (ATA) # AT A - AI

= AT A(AT A) # AT A(AT A) # AT A - AT A(AT A) # ATA

- AT A(AT A) # AT A + ATA

= AT A - AT A - AT A + ATA

= 0.

Thus, C = 0, or

A(ATA)# AT A = A.

(2) All AA# = (AT A) # AT A(AT A) # AT = (AT A) # AT = A#.

(3) ( A#A ) T = [(
ATA)# ATAIT = [ fi#1j]T = B#B = (AT A) # ATA = A#A.

(4) (AA# )T = [A (AT A)" AT
I
T = AT (AT A) #T A = AT 	A

= AT (AT A) # A = AA#

e
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The main utility of the Penrose pseudoinverse is contained in the following result.
Let the system of equations

AX = B

be given, and let

Xo

Then, for any X,

IAXo — 911 < I IAX - E I 1

If for some X the equality holds, then

180 11 < 11X11-

Thus, the solution given by the Penrose pseudoinverse is the least squares solu-
tion. If there is more than one least squares solution, the solution given by the
Penrose pseudoinverse is the smallest solution in norm.

THEOREM A-6 (Projection Lemma):

AXo - si I = 
MXN 

I I AX - 911

if and only if

XTAT(AR - B) = 0

for all R.

Proof: Assume that

XTAT(AXo - B) = 0

A-6



for all X, and let 
H
Y be given by

H
y = X0+Z.

We then have

IIAy -EII Z = IIAXo -B+AZI1 2 = IIAxo-BIIZ+2ZTA'(AXo-B)+IIAz112,

since by assumption

Z T AT ( A?to - B) = 0 .

Then,

I l AY - Bl 1 2 = 11 Az^ - !ill' + I I AZI 12

Thus,

I AY - Bl I
2 < I IAXo - B112

since

IAZI 1 2 > 0.

We now assume that

I AXo -BI1 < IIAy - BlI

and wish to show that this implies that

X TAT (AXO - B) = 0

for all X. Assume that
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X T AT (AXo - B) = a/0

for some R. Let V and Y be defined as

V = —a x

1 IAxI 1	
,

Y := X  + V.

Then,

	

IAY-B11 2 - lIA O-811 2 = IIAXo_B-
  Axa 

2 11 2 - I 	 -B112
i IAxI

-2aX T AT (A3o - f3)	 1 IAXI 12

I IAxI 
12	

- + a2 I lAxl 14

- 2a2	 +a?	 -a2

1 IAXI 1 
2	

1 IAxI 1 2	 I IAxI 1 2'

which is a contradiction.

THEOREM A-7: In the system of equations

Ax = -B,

where

go = A# B

and

R ;K Xo
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either

IAX - $I I > I I AR - $I

or

I IAx - BI I	 =	 I !MX - BI I and I IXI I > 1 I3^11.

Proof: First we must show that

X' TAT (AX'o - $) = 0

as follows:

XT AT ( AA# $ - $) = XT AT AA# $ - X T AT$

R T AT (AA# ) $ - X T AT $'

= X T AT (AA# ) T $ - X T AT $

X T AT A T AT B' - XT AT

X T AT $ - XTAT$'

= 0.

Thus, from theorem A-6,

IAX - $I I > I I Ak - $I I .

Assume the equality holds:

I AX - $11 = 1 I AXo - B! I .
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If

ti
X = Xo + Y ,

then, by hypothesis,

IAx — BI 1 2 — I IAxo — BI 1 2 = 2Y T AT (Axo — B) + I IAYI I z

=	 IIAY11 2 = o.

Now,

IXo I I 2 = I IX — (x — Xo )I ! z = I IXI I
2 

+ I IX — Xo l I 2 — ZX T (X — Xo)

=	 I IxI I s 
+ I lYl 1 2 — 2 (xo + Y )T Y

_	 ! Ixl I Z + I IYI I Z — 2BT A#T Y - 21 IYI 12

= 1 IxI 1 2 — I IYI I Z — 2BT A#T Y

IIxI 1 2	 I IYI I Z — 2BT A#T AT \#T y.

= I Ix) 1 2 — I IYI 1
2 

— 2BT A#T ( A# A)T Y

= I IxI I ^ — I IYI I s — 2B T A#T AT (AY) .

Since (I AYj I = 0, it follows that

Ixo l 1 2	 =	 I IxI i 2 — I IY112.

t
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APPENDIX B

PSEUDOIiv'VERSE ALGORITHMS

There exist many algorithms for the generation of the pseudoinverse of
Penrose. Unfortunately, not much information is available in terms of their
efficiency and computer requirements. Such a comparison is presently Deing
made and will be the subject of a future report. In the interim, we will present
two such algorithms which have been used extensively by the author. These
algorithms possess the desirable property of allowing a limited control of the
computational rank.

In the first method, the pseudoinverse is formed by means of the Andree
algorithm. This routine computes the pseudoinverse by means of the equation

A# _ (AT p)a AT

Actually, the pseudoinverse of

B = (ATA)

is formed. This routine insures the symmetry of B# and also imposes the re-
quirement that B# be non-negative. Thus, if computational errors leading to the
loss of the positive definiteness of B exist, they are partially alleviated by this
scheme.

The second algorithm, which is basically aGram-Schmidt orthogonalization
procedure, can operate directly on the rectangular matrix A. There is no need
t^ form the matrix associated with the normal equations, thus one major source
of computational errors is eliminated. The penalty paid for this lies in the larger
computer storage required to handle the rectangular matrix.

ANDREE ALGORITHM

The algorithm used in this paper `.s a modific. Lion of the Andree algorithm
by T. S. Englar 1 . The steps of this alp^orithm are ^ s follows:

1Kalman, R. D. and Englar, T. S., "An Auromaric Synthesis Prog: ^n for Optics' Filrers and Conrrol
Systems," NASA, July 19G3.
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1. Compute A TA or AAT , whichever has the smallest dimension. Call this
resulting matrix B. It will be sufficient to compute B # , since A# is
given by

A# _ (AT A) 4 AT or A" = AT(AAT)#.

2. Compute a non-singular matrix, S = (s ii ), such that

SBST = E,'

where E _ (e i ) is a diagonal matrix with elements either zero or one.

3. If E = I then B is invertible, and

B- 1 = STS.

If E ^ I then we define the matrix U = (u i ) by the following:

For i	 j,	 ui) _ - s ib	 if	 eii = 0,

	= 0	 if	 e..	 =	 1.

For i = j,	 Uii = 0	 if	 eii = 0,

=	 1	 if	 e..	 =	 1.

4. Compute

C = UT BU.

Delete the rows and columns of C corresponding to C i i = 0, and call
the resulting matrix D. Observe that D is a non-singular matrix of
rank m. Compute D- 1 by means of the Andree algorithm as in step 2.
Compute B # by means of

B-2



B# = U D-

1	0 U

T . )

0	 0

5. Commute A# either by means of

All = B# AT

or

A# = AT B# .

In the computation of step 2, the generation of the matrix S is done in
at most 2n steps. The reduction is based upon pivoting in each step
about the largest of the remaining diagonal elements. If after any step
of iteration the largest of the remaining diagonal elements is less than
the product of a preassigned constant, K, and the first pivotal element,
then the rows and columns containing these elements are set to zero
thus reducing the rank of the matrix.

GRAM-SCHMIDT PROCEDURE

This algorithm2 permits one to pseudoinvert a rectangular matrix, A,
directly. The algorithm is based upon partitioning A in the form

A = (R , RU) ,

where all columns of R are linearly independent. The pseudoinverse A # is given
by

(I + UUT ) -i R# (

A# _

UT (I + UUT)-i R#

2 Rust, B., Burnes, W. R. and Schneeberger, C., "A Simple Algorithm for computing the Generalized
Inverse of a Matrix," Communications of the ACM, Vol. 9, No. 5, May 1966, pp 381-387.
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This representation may be checked by substitution into the axioms.

If (a l , a2 , ... a, ) is any set of linearly independent vectors, then it can be
replaced by an orthonormal set (q l , q2' ... qn ) in the following manner:

a1

ql	 I^all^	 C2	 a2	
(a2 q l) ql

ti
_	 C2	 _	 _	 _

q` 	 1^ ^ ^	

C3 - a3	 ( a3 %) ql 	(a3q2) q2.

2

_	 C3

q3 - 1 I °3 1

n-1

Cn = an -	 (a^ qi ) qi
i=1

C
.^	 n

qn	 IICnII

Observe that the resulting matrix Q is such that

QT Q = I .

Let us apply this transformation to A = (R, RU) and keep track of the trans-
formation by applying it simultaneously to the identity matrix partitioned as

I 	 0

I =

0	 In-k).n-k
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A will transform into

A	 =	 (R RU) ► (Q ,	 0)

I  0 Z X

0 I, 0 I ,-k -k

Thus, we must have

Z	 X

(R , RU)	 _ (RZ , RX + RU) = (Q , 0)

0	 1, -k

or

RZ = Q
	

R = QZ -1

RX + RU = 0
	

X = -U

and R# is given by

R# = Z QT

since

R# = (RT R)- 1 RT = ( Z-1T 
QT QZ- 1 ) Z- IT QT = ZQT

Thus, the matrices R# and U are generated. It is still necessary to compute the
matrices (I + UU T) - 1 and UT (I + UU T )- 1 . The first of these expressions can be
written as

(I + UUT ) -i = I - U(UTU + I) -1 UT

e
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If both sides are post-multiplied by (I + UUT ), the identity follows. The second
expression can be written as

UT (I + UUT ) - I = (UT U + 1) -IUT.
since

UT (I + UUT ) -I = UT - UT U(UT U + I) -IUT

= I I 
- UTU (UTU + I ) -I I UT

= I 
I + (UTU + I) -I - (UT U + I) `I - UTU(UTU + I) - II UT

II + (UTU + I ) -I	 (I + UTU ) (I + UTU) -I JUT

_
I I + (UTU +

J) 
-I - IIuT

_	 (UT U + I)-IUT.

If the Gram-Schmidt orthogonalization process is now applied to the matrix

-U

I,-k

this will transform to

-U(-Up,, 

P = 	 ),

I n -k	 P

B-6



where we have

-UP 
T (-Up) = PT UT UP + PT P = I,

P i	 P

or this becomes

PT(UTU + I)P = I

(UTU + I) = pT- 1 p-i

(UTU + I)- 1 = ppT

Also,

I - U(UT U + I) - I UT = I - UPPTUT

= I - (U p) (U p)T

and

(UTU .* I)- I UT = P(UP)T.

Thus, A# takes the form

[I (UP) (UP)T J R#

A# -

P(UP)T R#

e
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APPENDIX C

HOUSEHOLDER'S TRIANGULATION METHOD

FOR OBTAINING THE LEAST SQUARES SOLUTION

The following is a description of the triangulation scheme used in this study for
obtaining the least squares solution directly from the data matrix without forming the
normal equations. This procedure, originally described by Householder, Pas been
developed into a workable algorithm for least squares problems by Golub. The sub-
routine aV its description was taken from the IBM system 360 scientific subroutine
package.

In our linear system,
N

AX= B,	 (1)

both matrix A and vector B are premultiplied by an orthogonal matrix Q which trans-
forms A into upper triangular form. All elements below the main diagonal will then be
equal to zero; that is,

QA = R = 6 .1	 (2)

-N

_	 C

	

QB = C = -t 	 (3)
2

where R is an n x n upper triangular matrix and C 1 represent the first n elements
of QB . Since the Euclidean norm is preserved under an orthogonal transformation,

I I AX - BI I = 1 I RX - C11 ,	 (4)

and the least squares solution is clearly

X = R-1 C0	 1
	 (5)

provided T-1 exists.

An effective way to realize this decomposition is via Householder transformations.
The algorithm is a recursive n-step procedure defined by the following recursion
formulas:

A 	 (aij (1) ) = A ,	 (6)

1Golub, G., "Numerical Methods for Solving Linear Least Squares Problems,
Numerische Mathematic, Vol. 7, No. 3 (196, pp. 206-216.

2 IBM System 360 Publication No. H2O-0205-2, 1967, pp. 191-194.
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A (k+1) _ (ai,(k+1)) = P (k) A (k) , k = 1,2,..., n	 (7)

In order to get an upper triangular matrix A(n+ 1)
, every matrix P (k) (k = 1, 2, • •• , n)

should be defined po that it is sv,^mnmetric and orthogonal, and so that it transforms all
A ihelements of the k th column of	 ) below the main diagonal to zero. All of these

restrictions to P (k) are satisfied, setting

P (k) = I -^ U (k) J 
(k)T	

(8)k

with

_	 1
Pk	

`7k k	 kk(k)
	 (9)

(v + a	 )

and

m	 k 2	 •+ for	 (k ) .,0
? k = +	 ^ , (aik ( ))	 with	 ^	 (10)

i=k	 - for akk (k)< 0

where I is the identity matrix.

'r	 _
TJ( k) denotes the transpose of column vector U (k) = (ui (k) ) , the m components

of which are defined as follows:

ui(k) = 0 for i < k , 	 (11)

uk(k) = Qk + akk	 ,	 (12)

u i (k)	 aik(k) for i >k .	 (13)

Neither matrices P (k) (k = 1, 2, • • • , n) nor matrix Q = P(n) P (n - 1) ... p(1) are
computed explicitly, since from (7) and (8):

	

A(k + 1) = A(k) - U (k) Y (k)T	 (14)

with
Y(k)T =U

(k)T A (k)	 {15)k
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T
Writing the components of row vector Y (k ) explicitly-

y. (k) = 0 for j <k ,	 (16)

yk (k) = 1 ,	 (17)

m
yj(k)	 ^k F, ui(k) aij (k) for j >k	 (18)

i=k

UsiI (14), (16), (17), and (18), the explicit transformation formulas for
matrix A( appear as follows:

(kT1 ) _akk	 - _ 7k	 (19

a ik (k+1) = 0 , i = k+1, k+2, ... , m	 (20)

aij (k+1) = aij(k ) - ui (k) yj (k) . j = k + 1, k+2, ..., n

	

i = k, k+1, •••, m	 (21)

All other elements of matrix A (k) do not change. Natura. ly the same transformation
is performed on vector B .

Using (6) and (7) :

B (1) = (bi (1) ) = B ,	 (22)

	

B (k+1) _ (bi (k+1) = P (k) B(k) k = 1, 2, ...^ n	 (23)

Using (F) and (23) :

B(k + 1) = B (k) _. U (k) Z (k)T	 (24)

with

Z (k)1 = k U (k)T B(k) '	 (25)
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or explicitly:

b.(k+l) = b.(k) _u i 
(k)  Z (k) , i = 1,2, ... , m	 (26)

with

m
7 (k) _ Ok	 ui(k) b i (k)	 (27)

i=k

In order to keep roundoff errors as small as possible, column interchange is
performed in such a way that, at the kth stage, the column of A(k) is chosen to be
reduced next which will maximize I akk(k+l) I	 Using (19) and (10), the index of
this column is determined by giving the maximum overall j of:

m
s, (k ) =	

E	
(aij(k))2 , j = k, k+1, ..., n	 (28)

i=k

After A (k+l) has been computed, it is possible to compute s i (k+l) as follows:

S.	 S.= S.	 - ( ,̂ ^ + 1) )2	j = k+1 , k+2....^ n	 (29)

since the orthogonal transformations leave the column lengths invariant.

After having computed matrices A (n+1) (upper triangular matrix) and B(n +1),
the computation of the n by 1 solution vector X 0 = (xi ) is performed by back sub-
stitution according to the following formulas:

1	 (n + 1)x  = a (n + l) bn	 ( 30)

nn

=	 1	 b (n+l) - a	 (n+1)	 (n+l)x	 - ...k	 ^(n+1)	 k	 k,k+l	 xk+1 ak, k+2	 xk+2

_	 (n+l)	 _	 (n+l )	 k = n - j + 1

	

ak, n-1	 xn-1 akn	 xn	 j = 2, 3, • • • , n. (31)
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After vector XD has been computed, back interchange of elements is performed
according t.) column interchanges in matrices A (k) in order to get the correct
sequence of components in the solution vector Y1 .

The only case in which the whole procedure can fail occurs when, at any stage
k, no column with nonzero parameter 

'7k 
can be found; that is, no nonzero main

diagonal element can be generated. In this case, the rank of matrix A is less than n.
With respect to roundoff errors, the test is made in the following way.

At first, all elements s. (1) are computed according to (28), and the maximum
overall j (i. e., (7 1 2 ) is determined. With the relative tolerance E given by input, the
following absolute tolerance is generated:

tol = Q1 E .
	 (32)

If at any stage k (=1, 2, • • • , n+1 ) the square root of the maximum overall
j - k+ 1, • . • , n of s  (k + 1) is not greater than or I  , the rank of matrix A is
declared to be k < n , and no solution can be found.
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APPENDIX D

ANDREE ALGORITHM SUBROUTINE

The Andree algorithm for calculating the Penrose pseudoinverse of a matrix
of equations has been converted into a FORTRAN subroutine. The listing for this
subroutine appears on the following pages.
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SUBROUTINE ANDREE(V.N.NR.EPS)
f)OUBLE PRECtSi-ON -VoBoT.1VsX.U.P.RR.DSQRT
DIMENSION V(30930)9B%3D.30). R (3U)oT(30930).W(30930)vX(30930)
DIMENSION U(30930)
HILL = EPS
N8 = 56
IND = 0
LEE = 0	 -	 -
DO 333 1 = 1.N
DO 333 J = 1.N

333 B(I.J) = V(I.J)
56b DO 98 1 = 1•N

R(I) = O.
DO 97 J = l.N -

97 TiI.J) = 0.
98 T(I.O = 1.
35 LEE = LEEtl

IF (LEF-N) 77.77,78-
77 P = 0.

--K = O
DO 22 I = 1.N
If (R(I)) 224124.22

124 IF (V(I.I)) 82.82.83
82 DO 84 J = 1 aN	 -	 -

V(I.J) = 0.
84 V (J. I ) = 0.

GO TO 22
83 IF (P-V(T.T)) 21.22922
21 P = V(19T)

K = I
IF (LEF_.E0.1) DMAX = P

-22 CONTINUE
IF ( P-10.**DILL*DMAX/2.**NB) 28.2897

7 R(K) = K
P = DSORT(W K.K) )
DO 19 I = 1 vN
V(I.K) = V(I.K)/P

- T(I.K)- = TEi-%iO/P_..-

V(K.1) = V(K.I)/P
19 T(K.i) = T(K.i) /P 	 -

V(K.K) = 1.
T(K.K)	 1./P
DO 25 I = I.N
IF ( I-K) -26912Sr26 _-

125 DO 126 J = l.N
IF (f—J) 1279128.i27

127 W(I.J) = 0.
X(I.J) - T(IaJ)-
GO TO 126

128 will{)- Ia._.
X(I.I) = T(I.I)

126 CONTINUE	 --
GO TO 25

26 DO 10 J= 1. N
W(I.J) = V(T.J)-'w(I.K)*V(K*J)
X(19J1 = T(IvJ)-V4lvK)*T(KaJ)
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IO CONTINUE

25 CONTINUE

DO • 24 I = 1.N
DO 24 J = i.N
V(I•J) = W(I.J)

24-T4I•J) = X41.4>
GO TO 35

28 DO 30 1 - 104
IF (w(I)) 30.34.30

34 DO 33 J = t •N -	 -
V(I.J) = 0.

33 V(J.I) s 0.
30 CONTINUE
78 HILL = O.

IF (IND) 38.39938
39 JOE = -N

DO 40 I = I.N
IF (V(19I)) 40.42940	 -

42 JOE = JOE--t
40 CONTINUF---

IF (JOE-N) 43944.43
44 DO 45 I = 19N

DO 45 11 = 1.N
RR = 0.
DO 46 J = 1.N

46 PR = RR+T(J• I)*Tf Jbi-I)	 -
V(I.1I) = RR

45 CONTINUE	 -
GO TO 36

43 90 47 I = l.N
IF (R(I)) 48.49948

49 DO 60 J - ( rN- ---.._-
60 U(19J) _ -T(I.J)

GO TO 47
48 00 61 J - 1.N
61 U(19J) = 0.

U( 1. 1)
47 CONTINUE

DO 50 1 = 1•N .. 	-
00 50 II = !.N
RR a 0.	 - -
DO 51 J = 1.N

51 RR - RR+J{ J. I-) *S( J-rI 13
W(I.II) = RR

50 CONTINUE
DO 52 I = 1 •N
00 52 It = 1 V14--- --
RR = 0.
DO ti3 J -- 3 •N----

53 RR = RR+W(I.J)*U(J.II)
V41411) - RR

52 CONTINUE
IND = I	 -I 	LEE = 0
GO TO 666
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38 DO 54 I = 1•N
DQ 54 If = ION
RR = 0.
DO 55 J = 1 . N

55 RR = RR+T(J.I)*T(J.II)
W(1.11) = RR

54 CONTINUF
DO 56 I = 1.N
DO 56 II = 1.N
RR = O.
DO 57 J = ION

57 RR = RR+U(IsJ)**(J.II)
So T(I.II) = RR

DO 58 1 = 1.N

DO 58 II = ION
RR = 0.
DO 59 J = 1.N

59 RR = RR+T(I.J)*U(I1iJ)
V(I.II) = RR

58 CONTINUE
36 NR = JOE

RETURN
END

t
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APPENDIX E

GRAM-SCHMIDT PSEUDOINVERSION SUBROUTINE

The Gram-Schmidt procedure for calculating the Penrose pseudoinverse of a
matrix of equations has been converted into a FORTRAN subroutine. The listing
for this subroutine appears on the following pages.
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SU8ROUTINF GINV2(A.U.AFLAG*ATEMP.MR.NR*NC.NRI.EPS)
UOUdLE PRECISION A(MR. NC)9U(NC#MC). AFL AG(NC)9ATEMP(NC)
DOUBLE PRECISION FAC9OOT9DOTL.00T2.TOL*1wSQRT
DO 10 I = I•NC
DO 5 J = 19NC

5 U(i.J) = 0.
10 U(191) = 1.

FAC = OOT( &lR.NR * A.i.i)	 -
FAC = 1./DSQRT(FAC)
DO 15 I = I .NR

15 A(I * 1) = A(I *l) *FAC
00 20 i = 1.NC

20 U(I.l) = U(I.1) *FAC

AFLAG(l) = 1.
N = 56
NR 1 = NC	 -
TOL = (10.**EPS*.5**N)**2
DO 100 J = 2.NC
DOTI = DOT(MR*NR.A*J*J)
JM1 = J-1
DO 50 L = 1.2
DO 30 K = 19JMI

30 ATEMP(K) = DOT(MR*NR.A.J*K)
DO 45 K = I.JMI
DO 35 I = 1.NR

35 A(I.J)	 A(lyJ)—ATEMP(K)*A((.K)*AFLAG(K)
DO 40 I = 1.NC

40 U(I.J) = U(I.J)—ATEMP(K)*U(I.K)
45 CONTINUE
50 CONTINUE

DOT2 = DOT(MR.NR.A.J.J)
IF ((D0T2/DOTI)—TOL) 5S.35-v70

55 DO 60 I = 19JM1
ATEMP(I) = 0.
DO 60 K = 1.1

60 ATEMP(() = ATEMP(I)+U(K.I)*U(K*J)
DO 65 I = 1*NR
A(I *J) =-O.	 -

DO u5 K = !.JAI
65 A(I.J) = A(I.J)-A(I.K)*ATEMP(K)*AFLAG(K)

AFLAG(J) = 0.
FAC = DOT(NC.NC.U.J.J)
FAC = 1./DSORT(FAC)
NRl = NQI-1
GO TO 75

70 AFLAG(J) = 1.
FAC = 1./DSQRT(DOT2)

75 DO 80 1 = I . NR
80 A(19J) = A(19J)*FAC

DO 8 5 1 _ I-. NC
85 U(19J) = U(I..J)*FAC
100 CONTINUE

DO 130 J = I.NC
DO l30 I = 1.NR
FAC = 0.
00 120 K z J . !1C
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120 FAC :e FAC +A(I•K)*U(J•K)
130 A(I..±) = FAC

RETURN
END
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DOUBLE PRECISION FUNCTION DOT(MR.NR*A.J•K)
DOUBLE PREC 16 ION A (MP 9 1) • K
x =' o.no
DO 50 1 = 1•NR
X = X+A(I,J)*h(I.K)

50 CONTINUE
DOT = X
RETURN
END
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APPENDIX F

HOUSEHOLDER'S ALGORITHM SUBROUTINE

The Householder algorithm for obtaining a least squares solution is available
as a FORTRAN subroutine in the IBM system 360 scientific subroutine package. The
listing appears on the following pages.
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SUBROUTINE OLLSO(A.N.M•N.L*X.IPIV*EPS.IER.AUX)
C	 _r

DIMENSION A(1)*8(1).X(1)*IPIV(I)*AUX(1)
DOUBLE PRECIS I ON Av4ivXvAUX . PIVvH.S(G.BETA.TOL
DOUBLE PRECISION DSORT

C	 ^RR{)R- TF3T - -	 -- -	 - -
IF(M-N ) 30*l.l

C
C	 GENERATION OF INITIAL VECTOR S K 	 K 1 * 29 * .. * N IN STORAGE
C	 LOCATIONS AUX-K --K 1*2,....N

I PIV=0.00
TEND-9
DO 4 K=1.N
IPIV(K)-K - ---
H=0.D0
IST-I£NO+1	 - --	 -
IEND=IEND+M
UO 2 I-ISTv1ENH- - 	 -

2 H=H+A(I)*A(I)

IF(H-PIV)4*4*3
3 PIV-H

KPIV=K
4 CONTINUE

C
1C	 ERROR

(F(PIV)3193195

C	 DEFINE TOLERANCE FOR CHECKING RANK OF A
5 StG=DSORT(PIV)

TOL=SIG*ABS(EPS)
C-	 -- - -- ---- --	 _ _ .	 - - -	 -- - -
C
C	 DECOMPOSITION LOOP	 -

LM=L*M
IST--#+	 -- --
DO 21 K=1.N

IENn=IST+M-K
I-KPIV-K
IF(I)8*8*6

C
C	 INTEgCHANGE K-TH COLUMN OF A WITH KPIV-TH IN CASE KPIV.GT.K

6-Ha AUX4K4	 - — --- - ._.	 -	 -	 -- --
AUX(K)=AUX(KPIV)
AUX(KPIV ) n H	 -.	 -- - --
ID=1*M
10-7 I- IST•IEN'd	 - -
J=I+IO

A(I)=A(J)
7 AIJ)+H

C
C	 COMPUTA-11ON OF PARAMETER SI6

8 IF(K-1)11*1199
9 SIS-G~	 -- - -
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DO 10 I=IST.IEND
19 SIG= 916+Ai t)+Aff

SIG=DSORT(SIG)
C-- -- -	 -
C	 TEST ON SINGULARITY

IFISIG-TOtt3-2v-32•-1-t__
C
C	 GENERATE CORR£C-f-SifiN-OF PARAMETER S[6

it H=A(IST)

12 SIG=-SIG
C
C	 SAVE INTERCHANGE INFORMATION

13 IP[V(KPIV)-[PfV(K-) 
IPIV ( K)=KPIV

C
C	 GF-NERAT:ON OF VECTOR UK IN K-TH COLUMN OF MATRIX A AND OF
C	 PARAME ' ER BETA-

BET .-+i--S I G
-- A!^Si) =BETA - ------	 -

Pt--TA=1.DO/(SIG*BF^fA)
J= N+K 
;%UX(J)=-SIr

C
C	 TR A'+SFOR #4A7T f 6N- «- M-rTRilt

14 P I V=0.D0

JST=K+I
-KPIV; JST	 -- ------- - -
DO 18 J=JST.N	 -	 -

H=0.DO
DO 15 [-IS, v tENB- - - -- - - - - --	 - -
1I=I+ID

-15-H-H+A( I )*A( Ft4---- -	 - - -- -	 -	 --	 - -
H=BETA*H
DO t6 t I-ST.-tE-ND---
[I=1+ID

C
C	 UPDATING OF-ELEMENT- S-4- STORED IN LOCATION AUX- J -

II=IST+ID

AUX(J)=H

17 PIV=H
KPIV =J.

18 CONTINUE
C._..- -
C	 TRANSFORMATION OF RIGHT HAND SIDE MATRIX 8

H=0.DO
I E ND= J+M-K	 - - ----- - -	 -- -	 _ _
II=IST
00 20 t^rff1^19	 - --
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H=H+A(11)*B(I)
20 11-11+(

H=BETA*H

DO 21 I=J.IEND
L3( I I=8( I )-A-4-144*1+-- --- - 	 - -- -	 - ---

21 II=1I+1
C	 END OF QF_CGM+305-1-T ION --LOOP -__----.--.-._	 --- --	 -- -

C
C

C	 BACK SUBSTITUTION AND BACK INTERCHANGE
IER=J-
I=N
LN-L*N
PIV=I .DO/AUX(2*N)
DO 22 K=N*LN,N
X(K)=PIV*B(I)

22 (=i+M	 -

IF(N-1)26926,23
23 JST=( N-1) *M+N --__ ___._

DO 25 J=2.N
JST=JST-M►-1
K=N+N+1-J
PIV=1.00/AUX{K) .---- ------ -- 	 _.._	 __
KST=K-N

IST=2-J
DO 25 K= l ,t-- - - - ---- --	 --	 -	 - -
H=B(KST)
IST=IST+V-
IENJ=IST+J-2
I t=JST	 - ---- ---_ -	 --
DO 24 I=IST.IEND

24 H=H-A (1 I )*X (I )
I=(ST-1	 -
II=I+ID
X( 1 )=Xt i --.-----
X(II)=PIV*H

25 KST=KST+M	 - -	 - -	 -
C
C
C	 COMPUTATION OF LEAST SQUARES

26 1 ST=N+l	 --- -- --- -
IEND=O
DO 29 J=1, L -	 -
IFND=IEND+M
H=0.D0
IF(M-N)29*29,27

27 DO 28
28 H-H+B(I)*B(I)

IST-IST+M	 - ---	 -
29 AUX(J)=H

RETURN

C

C	 ERROR RE TURN 14 CASE M l_FSS - THAN M
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30 IER=-2
RETURN

C
C	 ERROR RETURN IN CASE OF ZERO-MATRIX A

31 IER=-I
RETURN	 -

C
C	 ERROR RETURN IN CASE-OF RANK OF-MATRIX A LESS THAN N	 -	 -

32 IER=K-1
RETURN
ENO
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