```
NASA TECHNICAL MEMORANDUM
```

NASA TM X-1866

CINEMATIC - FORTRAN SUBPROGRAMS FOR AUTOMATIC COMPUTER MICROFILM PLOTTING

by Robert G. Kannenberg
Leuis Research Center
Cleveland, Ohio

| 1. Report No.
 NASA TM X-1866 | 2. Government Accession No. | 3. Recipient's Catalog No. |
| :--- | :--- | :--- | :--- |
| 4. Title and Subtitle
 CINEMATIC - FORTRAN SUBPROGRAMS FOR AUTO-
 MATIC COMPUTER MICROFILM PLOTTING | 5. Report Date
 November 1969 | |

*For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151

CINEMATIC - FORTRAN SUBPROGRAMS FOR AUTOMATIC COMPUTER MICROFILM PLOTTING

by Robert G. Kannenberg
Lewis Research Center

SUMMARY

Abstract

CINEMATIC is a collection of computer subprograms that gives the computer user easy access to graphic output of his results on microfilm. CINEMATIC subprograms are written in and used in FORTRAN IV. The computer user programs for film output in terms of what he wants to see on film rather than in terms of how the film recorder works. As a result, the structure of CINEMATIC does not depend on the particular film recorder used.

INTRODUCTION

CINEMATIC is the result of a need at the Lewis Research Center for a language to program for graphic computer output on cathode ray tube (CRT) data display devices. The language needed to be
(1) Device-independent so that future CRT devices could be added to the computing system without significant change in users' programs
(2) A compiler-level language so that it could be used on more than one computer at Lewis
(3) General enough to produce a wide variety of graphic output formats and to exploit the special features of the plotting devices used
CINEMATIC has been in use for 18 months to make plots on the Control Data Corporation DD280 film recorder.

The CINEMATIC-FORTRAN plotting subprograms make film plotting available to users of Lewis' three large computing systems. CINEMATIC on the IBM 360/67 computer offers the user film plots in a time-shared computer environment. Several batch and conversational users can be making plots at the same time. Their plots are kept in auxiliary storage until they are sent to the film recorder as a background task. The

DD280 is online with the IBM 360/67.
Users of the Lewis IBM 7090-7040 series Direct Couple Systems make plots with the same subprogram calls as on the IBM 360/67. Plots are stored on magnetic tape. The computer operators transfer the plot tapes to the IBM $360 / 67$ with no further intervention by the user.

CINEMATIC PROGRAM DESCRIPTION

CINEMATIC is a collection of FORTRAN IV plotting subprograms for the Control Data Corporation DD280 microfilm recorder. (A guide to these subprograms is given in the appendix.) The computer user calls CINEMATIC subprograms from his FORTRAN program to make plots on frames of film. CINEMATIC enables the computer user to make plots without having to learn and program for the details of how the DD280 works. CINEMATIC is available for use on both the IBM 7090-7040 series Direct Couple Systems and the IBM 360/67 at the Lewis Research Center.

CINEMATIC PLOTS

The computer user supplies the (X, Y) coordinates of and the number of points for a microfilm plot. He gives the coordinates and number of points as arguments of a CINEMATIC subroutine. CINEMATIC scales the user's data points to fit one frame of film. CINEMATIC puts grid lines on the plot and labels them with their values. It also leaves enough margin around the grid system for plot legends. The CINEMATIC user may supply a line of print characters for legends, above, below, and to the left of the grid system. Figure 1 shows a CINEMATIC plot and the data needed to make the plot.

The CINEMATIC user may specify the number of grid lines on the plot (see fig. 2). He may specify either how many grid lines he needs or the interval between them in the same units as his data appear. He may also specify the use of tick marks instead of grid lines (see fig. 3).

The user can expand the plot horizontally to cover several frames of film (see fig. 4). This type of plot is called a butted-frame or a butted plot. Once he has specified how many frames of film he needs, the user specifies butted plots the same as single-frame plots.

The user can expand the margins around the grid. By expanding the margins, he can put several plots on one frame of film (see fig. 5), or he can leave room for more lines of legend information (see fig. 6).

The user can print legends anywhere on the plot. He specifies the starting point of

PRESSURE AS A FUNCTION OF TIME

Data for plot, 9 points:
X-coordinates $\quad Y$-coordinates

0.3	40.0	
1.3	115.0	Upper legend characters, 30:
1.6	230.0	"PRESSURE AS A FUNCTION OF TIME"
2.2	345.0	Lower legend characters, 10:
3.3	410.0	"TIME, MSEC"
4.6	390.0	Left legend characters, 13:
5.3	320.0	"PRESSURE, PS""
5.7	220.0	
9.2	30.0	

Figure 1. - A CINEMATIC plot.

Figure 2. - Twenty-five grid lines in each direction.

Figure 3. - Fifteen tick marks in each direction.

Figure 4. - Butted plot on three frames of film.

Figure 5. - Four plots on one frame of film.

DATA GENERATED ON AUGUST 15, 1969 AT THE LEWIS RESEARCH CENTER

Figure 6. - Larger bottom margin.
the legend and gives the line of print characters for the legend. He can express the starting point as a fixed point on the frame of film (see fig. 6), or he can express the starting point of a legend in the same units as the curve points appear. This type of legend is called a data point label or simply a label (see fig. 7).

The user can put several curves on the same plot (see fig. 8). He can supply the (X, Y) coordinates of the curves with one call to a CINEMATIC subroutine. If he does not have all the coordinates in the computer memory at the same time, he can supply them with several subroutine calls for the same plot.

Figure 7. - Labeled data points.

DD280 MICROFILM RECORDER

Description

The Control Data Corporation DD280 microfilm recorder contains a high precision $5 \frac{1}{4}$ inch cathode ray display tube (CRT) and a 35 -millimeter camera. The camera photographs symbols, lines, and dots displayed on the CRT. The IBM 360/67 computer sends display data directly to the DD280 through a hardware interface. The IBM 70907040 series Direct Couple Computer Systems write display data on a magnetic tape which is later read into the $360 / 67$ and sent out to the DD280.

The CRT on the DD280 has a square display area of 1024 by 1024 addressable points. The display is referred to as the raster area. The addressable points are called raster points (fig. 9(a)). Lines, symbols, and dots are positioned on the CRT in terms of

Figure 9. - DD280 cathode ray tube (CRT) display area.
raster points (fig. $9(\mathrm{~b})$). The line extends from raster point $(75,75)$ to raster point (500,900). The center of the symbol A lies at raster point (400, 200). A raster unit is the horizontal or vertical distance from one raster point to the next.

The $360 / 67$ computer program controls the time when and the location where lines, symbols, or dots are displayed on the CRT. The program also controls the time when the camera advances a frame of film.

Features

CINEMATIC makes all the features of the DD280 available to the FORTRAN user.

(a) Symbol plot

(b) Dot plot

(c) Line plot.

Figure 10. - Three types of DD280 plots.

Plot types. - The DD280 can represent the points on a curve with dots or with symbols, and it can also join two points with a straight line (a vector plot) as shown in figure 10. The CINEMATIC user can plot curves with symbols, lines, dots, or any combination of these types. The symbols available include the letters A to Z , the digits 0 to 9 , and the plotting symbols $0, \square, \Delta, \nabla, \square, \triangle, \square$,$\rangle , and \nabla$.

Butted plots. - A butted plot extends over several frames of film without any gaps between the frames (fig. 11). Special hardware features on the DD280 and computer programming on the $360 / 67$ make butted plots possible. On command from the $360 / 67$, the DD280 can electronically expand and exchange the display image on the CRT. The

Figure 1l. - A butted plot on microfilm.

Figure 12. - Frame sizes and orientations.
exchange has the effect of a 90° rotation of the entire display area of the CRT (fig. 12). Expanding the size of each frame makes the frames butt together to remove the gaps between frames.

CINEMATIC programming on the $360 / 67$ sorts out the lines, symbols, and dots that belong to each frame of a butted plot. CINEMATIC then outputs the lines, symbols, and dots one frame at a time to make the butted plot. CINEMATIC can make butted plots up to 50 frames long.

Motion-picture-compatible film. - The CINEMATIC user may specify motion-picture compatible orientation of frames of film (fig. 12). The frames may be expanded or nonexpanded.

Character set. - The DD280 character set has 128 printable characters (fig. 13). It includes lower case Greek, mathematical, and plotting symbols. There are also four pointers $\triangleright, \triangleleft, \Delta, \nabla$ which are useful for pointing to labeled data points.

Character size. - The DD280 has four character sizes (fig. 14). The CINEMATIC user may select any of the four sizes for printing a plot legend or data point label. If he does not select a character size, CINEMATIC selects a suitable one for him.

Horizontal and vertical printing. - The DD280 can print characters horizontally (left to right) and vertically (bottom to top), as shown in figure 15.

Italics. - The DD280 can italicize the entire character set (fig. 16), but for horizontal printing only. The CINEMATIC user can turn on and turn off italics printing mode.

Tabbing and carriage return. - The DD280 has the typewriter-type functions of tabbing and carriage return. CINEMATIC allows the FORTRAN user to tab printed

	α	β	,		δ	ϵ		n	\bigcirc	Δ					($1+$	+
8.	\triangle	4		λ	μ	v		Ω	π		P			\$*	*)	$)$	
-	1	σ		T	\cup	-		0	O	D	D				7.		$>$?
0	1	\triangle		∇	\checkmark	d				1	1			\#			
	a	b		c	d	e		f	g	h	h						
	j	k	k	1	m	n		\bigcirc	p	a	a						
		s	s	t	u	v		w	x	y	y						
	A	B		C	D	E		F	G	H	H				C [[
	\checkmark	J		L	M	N		0	P	Q	QR				< $]$]	
			5	T	U	V		W	X	Y Y	Y)		
0	1	2	2	3	4	5		6	7	8	8				@		

Figure 13. - DD280 character set.

ABCDEF
 ABCDEF

ABCDEF

ACBET

Size
Miniature
Small Medium
Large

Characters per line Lines per frame

Figure 14. - DD280 character sizes.

Vertical printing Horizontal printing
㟧
足
足
Figure 15．－Print orientations．

Figure 16．－DD280 character set in italics．

ABCDEFGH

ABCDEFGH

Figure 17. - Two image intensities.
characters or to carriage return for another line of printing.
Image intensities. - The DD280 can put images (dots, lines, or symbols) on film with either basic or high intensity (fig. 17). A high-intensity image is extra heavy and bright. Basic intensity gives a clearly recognizable image. High intensity is meant for highlighting or emphasizing part of a plot.

CONCLUDING REMARKS

Computer users at the Lewis Research Center have found CINEMATIC useful for producing film output of computed results. Programmers with limited experience in the use of FORTRAN have been able to use CINEMATIC. After reading the User's Guide, they have been able to make satisfactory plots with a minimum of personal assistance.

The flexibility of CINEMATIC has been useful for a variety of plotting applications:

1. Motion pictures of charged particle interactions and of flow patterns
2. Graphs and tables of numbers for technical publication
3. Contour plots
4. Multiple frame plots of experimental data before it is reduced on the computer

Since the structure of CINEMATIC does not depend on the film recorder hardware, it can be adapted to other plotting devices.

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, August 1, 1969, 129-04.

APPENDIX - USER'S GUIDE

1. How To Use CINEMATIC

The FORTRAN user calls the CINEMATIC subroutines needed for the type of plot he wants. Section 1.1 gives a short method to make a single-curve plot. Section 1.2 shows how to make a multiple-curve plot. Section 1.3 outlines the use of all the CINEMATIC subroutines.

Section 1.4 describes the JOB CONTROL CARD changes needed for microfilm plotting. Section 1. 5 shows how CINEMATIC identifies a computer job's film output. Section 8 discusses error messages and debug aids.
Section 9 shows how to put program listings and printed output on film instead of on a line printer.

1. 1 A Short Method For Single-Curve Plots

A) To print a horizontal legend below the plot. (If this type of legend is not wanted, do not call LRXLEG.)
B) To print a vertical legend to the left of the plot, if desired.
C) To print a titlie above the plot, if desired.
D) To put a curve and grid system on the plot.

CALL LRXLEG (CHARS, N) (Sec. 3.1)

CALL LRYLEG (CHARS, N) (Sec. 3. 2)

CALL LRTLEG (CHARS, N) (Sec. 3.3)

CALL LRPLOT (X, Y, N)
(Sec. 2.1)

Examples: Sample plots 1.1 and 1. 2.


```
C SAMPLE PLOT 1.1 --- A SYMBOL PLOT MADE BY =LRPLOT=
C
    DIMENSION X(100), Y(100)
    REAL TCHAR(15)/'SAMPLE PLOT 1.1 ---A SYMBOL PLOT USING 'LRPLOT' '/
    REAL XCHAR(7)/'SAMPLE X-DIRECTION LEGGEND '/
    REAL YCHAR(7)/'SAMPLE Y-DIRECTION LEGEND '/
C
C PRINT LEGENDS AND TTTLE
C
    CALL LRTLEG(TCHAR, 49)
    CALL LRXLEG(XCHAR, 28)
    CALL LRYLEG(YCHAR, 28)
C
    XDIFF= 8.0/89.0
    CON = 1.0/SQRT (2*3.14)
    X(1) = -4.0
    Y(1) = CON*EXP(-0. 5*X(1)*X(1))
    DO 10 I=2.90
    X(I) = X(I-1)+DIFF
    10 Y(I) = CON*EXP(-0.5*X(I)*X(I))
C
CALL LRPLOT(X,Y,90)
    STOP
    END
```

Note: The DATA statements used in the sample programs are available on the $360 / 67$ only. 1.2 How To Make A Multiple-Curve Plot
A) To print a horizontal legend below the the plot, if desired.
B) To print a vertical legend to the left of the plot, if desired.
C) To print a title above the plot, if desired.
D) To put one or more curves and a grid system on the plot.

CALL LRXLEG (CHARS, N)
(Sec. 3.1)
CALL LRYLEG (CHARS, N)
(Sec. 3. 2)
CALL LRTLEG (CHARS, N) (Sec. 3.3)
(SALL LRCPLT (X, Y, KKK)
(Sec. 2. 2)

Example: Sample plot 1.3.
Note: All of the points for the plot must be in the computer memory when LRCPLT is called. LRCURV (Sec. 2.3) is used when all the points are not in memory at the same time.

1.3 Use Of All CINEMATIC Subroutines

A) Printing on a plot.

1. to print a horizontal legend below

CALL LRXLEG (Sec. 3.1) the plot
2. to print a vertical legend to the left

CALL LRYLEG (Sec. 3. 2) of the plot
3. to print a title above the plot

CALL LRTLEG (Sec. 3.3)
4. to print anywhere on a plot
5. to change the size of printed characters
6. to "carriage return" or "tab" a printed line
7. to print the non-FORTRAN character in the DD80 character set
8. to italicize characters
9. to rotate characters
B) Curve-drawing on a plot.

1. to make a single-curve plot (symbol or dot plot)
2. to make a multiple-curve plot (symbol, dot, or vector plot)
3. for more flexibility in drawing curves (symbol, dot, or vector plot)
C) Modifying the format of a plot.
4. to specify the frequency of grid lines
5. to specify intervals between grid lines
6. to use "tick marks" instead of grid lines
7. to specify the range of data values
8. to specify a butted plot (i. e. expand the size of a plot to more than one frame of film)
9. to change margin sizes
D) Labeling a plotted data point
10. to print a label at a data point
11. to position a label slightly away from a data point
12. to convert a binary number (real or integer) into printable characters
13. all the character options of Section A, (above) also apply to LRLABL
E) Miscellaneous
14. to highlight part of a plot
15. to make movie-compatible film

CALL LRLEGN (Sec. 3.4)
CALL LRCHSZ (Sec. 6.1)
see TABBING CHARACTERS (Sec. 6. 2)
see LOWER CASE and SPECIAL CHARACTERS (Sec. 6.3)

CALL LRION (Sec. 6.4)
CALL LRTON (Sec. 6. 5)

CALL LRPLOT (Sec. 2.1)

CALL LRCPLT (Sec. 2. 2)

CALL LRCURV (Sec. 2.3)

CALL LRGRID (Sec. 4. 2)
CALL LRGRID (Sec. 4. 2)
CALL LRGRID (Sec. 4. 2)

CALL LRANGE (Sec. 4.1)
CALL LRSIZE (Sec. 4.3)

CALL LRMRGN (Sec. 4.4)

CALL LRLABL (Sec. 5.1)
see TABBING CHARACTERS (Sec. 6. 2)

CALL LRCNVT (Sec. 5. 2)

CALL LRNON (Sec. 7.1)
CALL LRMON (Sec. 7. 2)

1.4 Job Control Card Changes For Microfilm Plotting

A) 7090-7040 Direct-couple computer system.

Microfilm plotting on the direct-couple system requires two job control cards:

CC1
16
\$DECK FILMD
\$DECK FPLOT
(immediately after the \$ID card.)
(immediately after the \$IBJOB card.)

For example:
CC1
\$ID
\$DECK
16
\$DISPATCH
FILMID
\$TCP
\$ATEND
\$IBJOB
\$DECK
\$IBFTC
could be used for a microfilm plotting computer job on the direct-couple computer system

1.5 Identification Of Microfilm Output

Block lettering identifies the start of each computer job's film output.
See Figure 1.4
Figure 1. 4: Sample Identification of Film Output

For the direct-couple system, film identification includes:
programmer's name (columns 16-39 of ID card)
date
run number
2. 1

IDENTIFICATION:	LRPLOT
PURPOSE:	To specify a single curve plot.
USAGE:	
	CALL LRPLOT (X, Y, N) where

X - (floating point) is an array of X-coordinates of the curve.
Y - (floating point) is an array of Y-coordinates of the curve.
N - (fixed point) the number of (X, Y) points to be plotted.
Examples: Sample plots 1.1 and 1.2
METHOD:
Type of Plot: For $\mathrm{N} \leq 300$, the symbol " 0 " represents each point. For $\mathrm{N}>300$, a dot represents each point.

Scaling: The X and Y arrays are in the user's units. LRPLOT scales his units to the size of the plot. LRPLOT finds the range of user's data by searching the X-Y arrays. A call to LRANGE (Sec. 4. 1) will set the user's data range and no search of the X-Y arrays will occur.

Grid: Ten grid intervals in each direction. Gridintervals are equal to $Z \times 10^{\text {n }}$ where " Z " $=1.0,2.0,2.5$ or 5.0 and " n ' depends on the user's units. LRPLOT adjusts the user's data range to get ten equal intervals of $\mathrm{Z} \times 10^{\mathrm{n}}$. Use LRGRID (Sec. 4.2) to change the grid.

Margins: 0.10 frame at the left and bottom 0.04 frame at the right and top. These margins allow enough space for a title and legends printed by LRTLEG, LRXLEG and LRYLEG.
Plot Size: The size of the entire plot is one frame of film. With the above margins, the user's data range is scaled to a coordinate system of 981×981 points. Choice of a good plot size depends on how the points are distributed. As a rule of thumb, one frame of film is needed for every 1000 points on the plotted curve. Use LRSIZE (Sec. 4.3) to expand the plot size to more than one frame.

Sorting: The X-Y arrays need not be sorted for LRPLOT.
LRPLOT does not alter the content of X, Y, or N during plotting.

ERROR MESSAGES:

See Sec. 8 for complete list of error messages.

X (floating point) is an array of X -coordinates for all the curves. (See Figure 2. 1)

Y (floating point) is an array of Y-coordinates for all the curves. (See Figure 2.1)

KKK (fixed point) is an array at least six words long. It is used as follows.

KKK (1) is a switch that indicates whether CINEMATIC should duplicate any of the coordinates in the X or Y arrays.
$=1$ means duplicate X-coordinates
$=2$ means duplicate Y-coordinates
$=3$ means no duplication (See Figure 2.1)
KKK (2) indicates type of plot desired.
$=0$ means that all successive points on a curve be
$=\mathrm{N} \quad \begin{gathered}\text { connected by straight lines (a vector plot) } \\ \text { specifies a vector }\end{gathered}$
$=\mathrm{N}$ specifies a vector plot with a plotting symbol placed at every Nth point. KKK(5) indicates the symbol.
$=-\mathrm{N}$ means that every Nth point is represented by a plotting symbol. KKK(5) indicates the symbol.
$=999$ means that several curves with different KKK(2) numbers are being plotted. Let KN be the number of such curves. Then the KKK(2) number for each curve is supplied in $\mathrm{KKK}(\mathrm{KN}+6)$ through $\mathrm{KKK}(2 \mathrm{KN}+5)$.

KKK (3) is the number of curves to be plotted.
KKK (4) is a switch that indicates whether a call to LRLABL will follow this call to LRCPLT. LRLABL labels a curve point.
$=0$ means no call to LRLABL will follow.
$=1$ means a call to LRLABL will follow.
KKK (5) whenever symbols are plotted, KKK(5) equals the number of the symbol used to plot the first curve. Symbols for successive curves are chosen in order. KKK(5) > 31 is interpreted as $\operatorname{KKK}(5)$ modulo 32. See Figure 2.2 for list of symbols.
KKK (6) gives the number of points in each curve when $\operatorname{KKK}(1)$ equals 1 or 2.

KKK (6) gives the number of points in the first curve when KKK(1) equals 3. The number of points for successive curves appears in $\operatorname{KKK}(7)$ through $\mathrm{KKK}(\mathrm{KN}+5)$, where KN is the number of curves being plotted.

Example: Sample plot 1.3.

METHOD:

Duplication of coordinates: When the set of X-coordinates for all the curves is the same, it may appear only once in the X array. $\operatorname{KKK}(1)=1$ indicates this arrangement of the user's data. LRCPLT will use the one set of X's for all the curves to be plotted. The Y-coordinates for all the curves must appear in the Y array. Similarly, a common set of Y -coordinates may be duplicated for several sets of X -coordinates. (See Figure 2.1).

Scaling: The X and Y arrays are in whatever units the user is working With. LRCPLT scales his units to the size of the plot. LRCPLT finds the range of the user's data by searching the X and Y arrays. A call to LRANGE (Sec. 4.1) before LRCPLT will set the user's range and no search of the arrays will occur.

Grid: Ten grid intervals in each direction. Grid intervals are equal to $\mathrm{Z} \times 10^{\mathrm{n}}$ where $\mathrm{Z}=1,2,2.5$, or 5 and n depends on the range of the user's data. LRCPLT will adjust the range of the user's data to get ten equal intervals of $\mathrm{Z} \times 10^{\mathrm{n}}$. Use LRGRID (Sec. 4.2) to change the grid.

Margins: 0.10 frame at the left and bottom, 0.04 frame at the right and top. These margins allow enough space for a title and legends printed by IRTLEG, LRXLEG and LRYLEG. Use LRMRGN (Sec. 4.4) to change margins.

Plot size: The size of the entire plot is one frame of film. If needed, the size may be expanded to several continuous frames of film by a call to LRSIZE (Sec. 4.3). With the above margins, the user's data range is scaled to a coordinate system of 981×981 distinct points. Choice of a good plot size depends on the plotting resolution needed. As a rule of thumb, one frame is needed for every 1000 points. (300 points for a symbol plot).

Sorting: The X and Y arrays need not be sorted for LRCPLT. However, for a vector plot, straight lines will connect the points in the order that they appear in the X and Y arrays.

LRCPLT does not destroy the contents of X, Y, and KKK during plotting.
ERROR MESSAGES: See Section 8 for a complete list of error messages.

Figure 2.1 Sample arrangements of (X,Y) coordinates for three curves using LRCPLT.

Figure 2. 2: Plot Symbols Used By "LRCPLT"

0	\square	8	Z	16	C	24	J
1	0	9	Y	17	D	25	K
2	Δ	10	0	18	E	26	L
3	웁	11	0	19	F	27	M
4	食	12	A	20	G	28	2
5)	13	1	21	\%	29	3
6	D	14	B	22	>	30	4
7	∇	15	-	23	H	31	

$=3$ specifies a symbol plot. Each (X,Y) point is represented by a symbol. The FORTRAN character in "SYMBOL" specifies the symbol used.
$=4$ specifies a special symbol plot. Each (X,Y) point is represented by a special symbol taken from the SPECIAL CHARACTER TABLE (Figure 6. 2). The special symbol used is the one corresponding to the FORTRAN character in "SYMBOL".
$=5$ same as " 3 " except that a smaller size symbol is used.
$=6$ same as "4" except that a smaller size symbol is used.
SYMBOL Specifies the plotting symbol when ITYPE $=3$ or 4 . When ITYPE $=1$ or 2 , SYMBOL must appear in the call list, but is not used by LRCURV. The following FORTRAN statement can be used to set SYMBOL.

DATA SYMBOL / $1 \mathrm{H}^{*} /$

EOP is a switch that indicates when the last subroutine call for a given plot is being made.
$=0.0$ The current plot is not yet complete. More subroutine calls for this plot will follow.
$=1.0$ The current plot is complete. No more printing or plotting subroutines will be called for this plot.

Example: Sample plot 1.4.

METHOD:
Greater flexibility in drawing curves: LRCURV is useful for the plotting situation in which all of (X, Y) points for a plot are not in the computer memory at the same time. Several calls to LRCURV may be made for the same plot.

Scaling: The X and Y arrays are in whatever units the user is working with. LRCURV scales his data range to fit the size of the plot on film. The user should call LRANGE (Sec. 4.1) before LRCURV to supply the range of his data points to CINEMATIC. If the user does not call LRANGE, LRCURV will take the user's data range from the first call to LRCURV for any given plot.

Grid, Margins, Plot Size, Sorting: Same as LRCPLT (Sec. 2. 2).
LRCURV does not destroy the contents of X, Y, N, ITYPE, SYMBOL or EOP during plotting.

3.3

IDENTIFICATION:

PURPOSE:

USAGE:

RESTRICTIONS:

LRTLEG

To print a title above a plot.

CALL LRTLEG (CHARS, N) where
CHARS is an array of characters to be printed. CHARS must be dimensioned large enough for the number of characters desired. (6 characters per word on the 7090-7040 series direct couples)

N (fixed point) is the number of characters to be printed.
Example: Sample plot 1.1
$\mathrm{N} \leq 58$. One line is printed.
LRTLEG must be called before LRPLOT, LRCPLT or LRCURV.
3.4

IDENTIFICATION:

PURPOSE:

USAGE:

METHOD:

LRLEGN

To print a legend anywhere on a plot.

CALL LRLEGN (CHARS, N, IORIEN, X, Y, EOP)
where
CHARS is an array of characters to be printed.CHARS must be dimensioned large enough for the number of characters desired. (4 characters per word on the $360 / 67,6$ characters per word on the 7090-7040 series direct couples)

N (fixed point) is the number of characters to be printed.
IORIEN (fixed point) is a switch. IORIEN=0 causes horizontal printing. IORIEN=1 causes vertical printing. (bottom to top).

X (floating point) X -coordinate of starting point in absolute positioning units.

Y (floating point) Y-coordinate of starting point in absolute positioning units.

EOP (floating point) is a switch. EOP=0.0 indicates the current plot is not yet complete. EOP=1.0 indicates the current plot is complete. No more calls to plotting or printing subroutines for this plot will occur.

Absolute positioning units: The user expresses the (X, Y) starting point of a line of printing in absolute positioning units. Absolute positioning units range from 0.0 to 10.0 in both the X and Y directions for one frame of film. (See Figure 3.1) Absolute positioning units give the user a coordinate system to specity (X, Y) points independent of points on a curve.

If the user wishes to give the starting (X, Y) point of a print line in the same units as his curve points, he should use LRLABL (Sec. 5.1).

Character Size: LRLEGN prints medium size characters. Section 6 describes how to get other character sizes, italics, lower case and special symbols.

FIGURE 3.1: ABSOLUTE POSITIONING UNITS

4.1

IDENTIFICATION:

PURPOSE:

USAGE:

LRANGE

To set the range of (X, Y) curve points.

CALL LRANGE (XLEFT, XRIGHT, YBOTM, YTOP)
where XLEFT is the lefthand endpoint of a plot in the user's units XRIGHT is the righthand endpoint of a plot in the user's units YBOTM is the lower endpoint of a plot in the user's units YTOP is the upper endpoint of a plot in the user's units

RESTRICTIONS:
4.2

IDENTIFICATION:

PURPOSE:

USAGE:

METHOD:

The curve-plotting subroutines LRPLOT, LRCPLT and LRCURV search the (X, Y) coordinates for maximums and minimums and scale the rest of the user's points to fit between them. A call to LRANGE before LRPLOT, LRCPLT or LRCURV suppresses the search.

The settings of LRANGE remain in effect for all successive plots until changed by another call to LRANGE. XLEFT $=$ XRIGHT $=0.0$ can be used to remove the LRANGE X-settings without providing new ones. YBOTM $=\mathrm{YTOP}=0.0$ does the same for Y -settings.

Grid adjustment: If necessary, CINEMATIC will adjust the user's curve endpoints slightly when grid line frequency rather than a grid line interval is needed. (See LRGRID Sec. 4.2)

LRANGE must be called before the curve plotting routine it applies to. The settings of LRANGE remain in effect until changed by the user.

LRGRID

To specify grid line changes.

CALL LRGRID (IXCODE, IYCODE, DX, DY)
where
IXCODE (fixed point) is a switch used as follows. It applies to vertical grid lines.
$=0$ means return to using CINEMATIC's built-in grid format. (11 grid lines)
$= \pm 1$ DX specifies how many grid lines, -1 suppresses grid labels.
$= \pm 2$ DX specifies grid intervals, -2 suppresses grid labels.
$= \pm 3$ DX specifies how many "tick marks" instead of grid lines, -3 suppresses grid labels.
$= \pm 4 \quad$ DX specifies interval between "tick marks" rather than grid lines, -4 suppresses grid labels.
DX (floating point) specifies grid line or "tick mark" frequency or intervals depending on how IXCODE is set.
IYCODE (fixed point) is the same as IXCODE but it applies to horizontal grid lines.
DY (floating point) same as DX but for horizontal grid lines.
Example: Sample plots 4.1 and 4.3

CINEMATIC puts eleven horizontal and eleven vertical grid lines on every plot, unless LRGRID is called.

When a grid line frequency is specified, CINEMATIC sets the interval between the specified number of grid lines to be equal to $\mathrm{Z} \mathrm{x} 1 \mathrm{o}^{\text {n }}$ $\mathrm{Z}=1.0,2.0,2.5$, or 5.0 . " n^{11} depends on the magnitude of the user's data. To get these intervals, CINEMATIC will adjust the endpoints of the plot, if necessary. This adjustment occurs only when a grid line frequency is specified. To avoid any adjustments, specify grid intervals. settings of LRGRID remain in effect until changed by another call to LRGRID.

C		SAMPLE PLOT 4.1---USE OF LRSCAN, LRANGE, AND LRGRID
		DIMENSION XCHAR (15)
		DIMENSION $\mathrm{X}(31), \mathrm{Y}(31)$, TCHAR(15)
		DIMENSION YY(31), ZZ(31)
		DATA TCHAR/'SAMPLE PLOT 4. 1 USE OF LRGRID, LRANGE AND LRSCAN ${ }^{\text {™ }}$
		DATA XCHAR/'DATA RANGES AND GRID LINE INTERVALS SET BY USER '/
C		PRINT TITLE AND LEGEND
		CALL LRXLEG (XCHAR, 48)
		CALL LRTLEG (TCHAR, 49)
		$\mathrm{X}(1)=10.0$
		DO $2 \mathrm{I}=2,31$
	2	$\mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I}-1)+1.0$
		DO $4 \mathrm{I}=1,31$
	3	$\mathrm{Y}(\mathrm{I})=\mathrm{X}(\mathrm{I}) * \mathbf{X}(\mathrm{I})$
		$\mathrm{ZZ}(\mathrm{I})=\mathrm{Y}(\mathrm{I})+500.0$
	4	$Y Y(I)=Y(I)-500.0$
C		
C		THE CONTENTS OF ' X ', ' Y^{\prime}, 'YY', and 'ZZ' ARE ASSUMED TO BE
C		UNKNOWN TO PROGRAMMER. USE LRSCAN TO FIND THEM.
C		
		CALL LRSCAN (X, 31, XMIN, XMAX)

	Choice of plot size: A good plot size depends on how the curve points are distributed along the X -axis. It also depends on the plotter resolution desired. As a rule of thumb, 1000 curve points will fit on one frame of film.
RESTRICTIONS:	A plot can be expanded in the X -direction (horizontal) only.
	LRSIZE must be called before the plotting routine it applies to. The settings of LRSIZE remain in effect until changed by another call to LRSIZE.
	CALL LRSIZE (0.0, $10.0,0.0,10.0$) will set the size back to one frame of film.
4.4	
IDENTIFICATION:	LRMRGN
PURPOSE:	To change the width of plot margins.
USAGE:	CALL LRMRGN (XLEFT, XRIGHT, YBOTM, YTOP)
	where XLEFT (floating point) is the lefthand margin width in absolute positioning units.
	XRIGHT (floating point) is the righthand margin width in absolute positioning units.
	YBOTM (floating point) is the lower margin width in absolute positioning units.
	YTOP (floating point) is the upper margin width in absolute positioning units.
	Example: Sample plot 4.2
METHOD:	CINEMATIC sets margins around the plotting area as follows:
	LEFT and BOTTOM 1.0 absolute positioning units RIGHT and TOP 0.4 absolute positioning units
	A call to LRMRGN before LRPLOT, LRCPLT or LRCURV will change the width of the margins.
	Absolute positioning units: A frame of film contains 10 absolute positioning units in the horizontal and in the vertical directions. Thus a margin of 1.0 absolute positioning unit is $1 / 10$ of a frame wide.
RESTRICTIONS:	LRMRGN must be called before the plotting routine it applies to. The settings of LRMRGN remain in effect until changed by another call to LRMRGN.
	Margins less than 0.4 absolute positioning unit wide do not allow enough room for grid line labels.

are distributed along the X -axis. It also depends on the plotter resolution desired. As a rule of thumb, 1000 curve points will fit on one frame of film.

A plot can be expanded in the X-direction (horizontal) only.
LRSIZE must be called before the plotting routine it applies to. The settings of LRSIZE remain in effect until changed by another call to LRSIZE.

CALL LRSIZE ($0.0,10.0,0.0,10.0$) will set the size back to one frame of film.

LRMRGN

To change the width of plot margins.

CALL LRMRGN (XLEFT, XRIGHT, YBOTM, YTOP)
where XLEFT (floating point) is the lefthand margin width in absolute positioning units. positioning units. (floating point) is
positioning units positioning units.

Example: Sample plot 4.2

CINEMATIC sets margins around the plotting area as follows:
LEFT and BOTTOM 1.0 absolute positioning units RIGHT and TOP 0.4 absolute positioning units

A call to LRMRGN before LRPLOT, LRCPLT or LRCURV will change the width of the margins.

Absolute positioning units: A frame of film contains 10 absolute positioning units in the horizontal and in the vertical directions. Thus a margin of 1.0 absolute positioning unit is $1 / 10$ of a frame wide.

LRMRGN must be called before the plotting routine it applies to. The settings of LRMRGN remain in effect until changed by another call to LRMRGN.
enough room for grid line labels.

C SAMPLE PLOT 4.2 --- EXPANDED PLOT SIZE AND MARGINS

DIMENSION $\mathrm{X}(401), \mathrm{Y}(401), \mathrm{YY}(401), \mathrm{YYY}(401)$
DIMENSION XLEG(9), ZLEG(9), TLEG(13)
DIMENSION YLEG1(12), YLEG2(12), YLEG3(12)
DATA TLEG/'SAMPLE PLOT 4.2: EXPANDED SIZE AND MARGINS i/
DATA YLEG1 / \$GNX\$GF SINE CURVE A
DATA YLEG2 $/$ \$C2\$GNW\$GF COSINE CURVE
DATA YLEG3 / \$C4/ SINE CURVE B
DATA SQUARE / ' $\mathrm{X}^{\prime} /$, CIRCLE/' ${ }^{\prime} /$
EXPAND PLOT SIZE IN X-DIRECTION TO TWO AND ONE HALF FRAMES
$X M A X=25.0$
CALL LRSIZE (0.0, XMAX, $0.0,10.0$)
C EXPAND BOTTOM MARGIN
C NEGATIVE ARGUMENTS LEAVE OTHER MARGINS THE SAME
$\mathrm{YBOT}=2.0$
CALL LRMRGN (-1.0, -1.0, YBOT, -1.0)
C
CALL LRTLEG (TLEG, 44)
$\mathrm{ZX}=11.0$
$\mathrm{ZY}=1.5$
CALL LRLEGN (YLEG1, 28, 0, ZX, ZY, 0.0)
CALL LRLEGN (YLEG2, 28, 0, ZX,ZY, 0.0)
CALL LRLEGN (YLEG3, 28, 0, ZX, ZY, 0.0)
C GENERATE DATA POINTS FORSINE'CURVE A IN ARRAYS X AND Y $X(1)=-.15$
$\mathrm{DO} 2 \mathrm{E}=2,401$
$2 \quad \mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I}-1)+.0375$
DO $3 \mathrm{I}=1,401$
$3 \quad \mathrm{Y}(\mathrm{I})=\operatorname{SIN}(\mathrm{X}(\mathrm{I}))$
C
GENERATE DATA POINTS FOR COSINE CURVE IN ARRAYS X AND YY DO $4 \mathrm{I}=1,401$
$4 \quad \mathrm{YY}(\mathrm{I})=\operatorname{COS}(\mathrm{X}(\mathrm{I}))$
GENERATE DATA POINTS FOR SINE CURVE B IN ARRAYS X AND YYY
DO $5 \mathrm{I}=1,401$
5
$\mathrm{YYY}(\mathrm{I})=\operatorname{SIN}(\mathrm{X}(\mathrm{I})+.7854)$
CA LL LRSPIL

C PLOT SINE CURVE A
CALL LRCURV (X, Y, 401, 4, SQUARE, 0. 0)
C PLOT COSINE CURVE
CALL LRSPIL
CALL LRCURV (X, YYY, 401, 4, CIRCLE, 0.0)
CALL LRSPIL
C PLOT SINE CURVE B
CALL LRCURV (X, YY, 401, 2, SYMBOL, 1.0)
STOP
END

DIMENSION TITLE(13), X(9), Y(9), LEG1(5), LEG2(5), LEG3(5), LEG4(5)
DATA TITLE/SAMPLE PLOT 4. 3: FOUR PLOTS ON ONE FRAME OF FILM ${ }^{\text {T/ }}$ DATA SYMBOL/s $2^{〔 /}$
DATA X / 0.3,1.3, 1.6, 2. 2, 3. 3, 4. 6, 5. 3, 5.7, $9_{.}^{-} 2 /$
DATA Y $/ 40^{\circ}, 115_{\circ}, 230_{0}, 345_{.}, 410_{\circ}, 390_{0}, 320_{0}, 220 ., 30 . /$
DATA LEG1/iTOP LEFT PLOT:/
DATA LEG2 ${ }^{\circ}$ TOP RIGHT PLOT $1 /$
DATA LEG3/iBOTTOM LEFT PLOT $\% /$
DATA LEG4/ BOTTOM RIGHT PLOT


```
    X(1)=10.0
    DO 2 I=2,31
    2 X(I) = X(I-1)+1.0
    DO 3 I=1,31
    3 Y(I) = X(I)* X(I)
        CALL LRANGE ( 10.0,40.0,10.0,1600.0)
        CALL LRGRID (3, 3, 11.0, 11.0)
    N=31
    ITYPE=2
    EOP=0.0
    CALL LRCURV(X, Y, N, ITYPE, SYMBOL, EOP)
    CONVERT TENTH X AND Y VALUES FROM BINARY FLOATING POINT
    NUMBERS TO PRINTABLE CHARACTERS
    CALL LRCNVT (X(10), 3,XVALUE(3), 4, 13,6
    CALL LRCNVT (Y(10), 3, YVALUE (4), 4, 13,6)
C
    NOW LABEL THE TENTH X-Y POINT WITH THE WORDS 'THIS IS THE
    TENTH POINT' AND WITH THE NUMERICAL VALUES OF X(10) and Y(10)
    CALL LRLABL (TENTH, 34, 0, X(10), Y(10), 0.0)
    CALL LRLABL ( XVALUE, 20, 0, X(10), Y(10), 0.0)
    EOP=1.0
    CALL LRLABL (YVALUE, 24, 0, X(10), Y(10), EOP)
    STOP
    END
5. 2
```

IDENTIFICATION:

PURPOSE:

USAGE:

LRCNVT

To convert a fixed or floating point number into printable characters.

CALL LRCNVT (X, ITYPE, CHARS, IFORM, N, M)
where X is the number to be converted.
ITYPE=1 means X is fixed point.
ITYPE=2 means X is INTEGER*2 (used on 360 only).
ITYPE=3 means X is floating point.
CHARS array to receive printable characters. CHARS must be dimensioned large enough to hold the N characters requested.

IFORM is a switch that describes the format of the characters
$=1$ convert to FORTRAN ' I ' format
$=2$ convert to FORTRAN "Z"' format
(used on 360 only)
=3 convert to FORTRAN " $\mathrm{F}^{\prime \prime}$ format
$=4$ convert to FORTRAN ' E "' format
N total number of characters desired
M number of characters to right of decimal point. $\mathrm{M}=0$ for
Example: Sample plot 5.1

If IFORM $=4, \mathrm{~N}$ must be at least $\mathrm{M}+7$.
If ITYPE $=1$ or 2 , IFORM may equal 1 or 2 only.
If ITYPE=3, IFORM may equal 2,3 , or 4 only.
6.1

IDENTIFICATION:

PURPOSE:

USAGE:

METHOD:

RESTRICTION:

LRCHSZ

To change the size of printed characters.

CALL LRCHSZ (ISIZE) where
ISIZE (fixed point) gives the size.
$=0$ let CINEMATIC resume selecting the size
$=1$ miniature characters
$=2$ small characters
$=3$ medium characters
$=4$ large characters
Example: Figure 6.3
LRCHSZ changes the character size for all character printing that follows. The specified size remains in effect until changed by another call to LRCHSZ.

Large	43 char/line	22 lines/frame
Medium	64 char/line	32 lines/frame
Small	86 char/line	43 lines/frame
Miniature	128 char/line	64 lines/frame

LRCHSZ must be called before the printing subroutine it applies to.

FIGURE 6.1: DD280 CHARACTER SET

5:GLRE 6.2: SPECIAL CHARACTER TABLE

FJRTRAN	SPECIAL	LOWER	FORTRAN	SPECIAL	LOWER
A	α	a	S	0	S
B	β	b	T	T	t
C	-	c	U	U	U
D	δ	d	V	0	V
E	ϵ	e	W	0	w
F	n	f	X	\square	X
G	0	g	Y	0	y
H	Δ	h	Z		Z
1		i	0	0	0
J	4	j	1	0	1
K	4	k	2	0	2
L	λ	1	3	∇	3
M	u	m	4	$\sqrt{ }$	4
N	ν	n	5	∂	5
0	Ω	0	6	.	6
P	π	D	7	-	7
0		a	8	1	8
R	p	r	9		9

FIGURE 6.3: CHARACTER SIZES AND ITALICS
an Example of large characters an Example of medium characters
AN EXAMPLE OF SMALL CHARACTERS


```
AN EXAMPLE OF ITALICITED CHARACTERS
AN EXAMPLE OF ITALICIZED CHARACTERS
AN EYAMOL OF:TLICIEDC CHARACTERS
```


an example of lower case characters an example of lower case characters an erample of lower case characters

FIGURE 6.4: DD280 CHARACTER SET IN ITALICS

0123456789 A B C D EF									
1									
2									
3									
4	$\alpha \beta$	- 6	S 67	no	\triangle				$+1$
5	\& $0 \cdot 0$	14	" ν	1π		18		,	
6	- 10	10	- 0	$0 \square$					
7	010	Vr	¢ 2.	- ${ }^{\circ}$		\#			
8	ab	$c d$	def	$f 9$	hi				
9	jk	1 m	n 0	00					
A	s	tu	$\checkmark \times$	w \times					
B									
C	$A B$	co	E	F6	${ }^{\prime}$				
d	$\checkmark K$	$\angle M$	YNO	$\bigcirc P$	$Q R$				
E		$T U$	UV	WX	y 2		2		
$\stackrel{L}{F}$	0112		456	677					

6. 2 TABBING CHARACTERS

Tabbing (positioning) characters may be included in the array of characters specified by the "CHARS' argument of LRLEGN, LRLABL, LRXLEG, LRYLEG or LRTLEG. Three characters are used for each positioning order. The first of the three is always a "\$". (See sample plots 4.2 and 5.1)
'\$Ln' ($1 \leq \mathrm{n} \leq 9$) implies space ${ }^{\text {' } \mathrm{n}} \mathrm{n}$ " character positions to the left of the current
' $\$ R n$ ' space " n " positions to the right
'\$Un' space " n " positions up
' $\$ \mathrm{Dn}^{\prime}$ space ${ }^{\prime \prime} \mathrm{n}{ }^{\prime \prime}$ positions down
' $\$ \mathrm{Cn}^{\prime}$ implies return to the beginning of the line and do " n " line feeds
For very precise character positioning, the following may be used:
' $\$ \mathrm{Mn}^{\prime}$ space " n " raster units to the left
' $\$ \mathrm{Sn}^{\prime}$ space " n " raster units to the right
' $\$ V n^{\prime}$ space " n " raster units up
'\$En' space ' n ' raster units down
A raster unit is smallest X or Y increment recognized by the microfilm recorder. Each absolute positioning unit contains 102.4 rasters.
A MINIATURE character is 8 rasters wide and 16 raster high

A SMALL character is 12 rasters wide and 24 rasters high
A MEDIUM character is 16 rasters wide and 32 rasters high
A LARGE character is 24 rasters wide and 48 rasters high

6. 3 LOWER CASE AND SPECIAL CHARACTERS

Many of the special characters that can be printed on film are not in the FORTRAN character set. (See figure 6.1 for complete microfilm recorder character set and hexadecimal equivalents). To enable a FORTRAN programmer to use FORTRAN characters to specify non-FORTRAN special characters, two mode-setting capabilities are available. If "Greek mode" is turned on, characters in the second column of the SPECIAL CHARACTER TABLE (See figure 6.2) are substituted for the FORTRAN characters in column 1. "Lower case mode" uses the third column of the SPECIAL CHARACTER TABLE. Greek mode is turned on by putting the three characters "\$GN" into the array of BCD characters just before the characters to be translated into Greek mode. " $\$ G F "$ turns off Greek mode. "\$WN" turns on lower case mode. "\$WF" turns it off. For example, the array of characters '\$GNABD\$GFXYZ' is printed as $\alpha \beta \delta$ XYZ.

Greek mode stays on only during the subroutine call in which it appears. Lower case mode works the same as Greek mode. The FORTRAN character set is not limited to the characters appearing in the first column of the "SPECIAL CHARACTER TABLE". Any character that appears on a keypunch (except " \ddagger ") can be printed directly by the DD280.
6.4

IDENTIFICATION: LRION, LRIOFF

PURPOSE: To italicize printed characters.

USAGE:
CALL LRION causes all printed characters that follow to be italicized.
CALL LRIOFF turns off italicized mode of printing.
Example: Figures 6.3 and 6.4

RESTTRICTION: Vertical printing cannot be italicized.

6. 5

IDENTIFICATION: LRTON, LRTOFF

PURPOSE: To cause printed or plotted characters to be rotated 90 degrees.

USAGE:

METHOD:
CALL LRTON turns on orientation mode
CALL LRTOFF turns off orientation mode

When orientation mode is on, all printed and plotted characters are oriented with a 90 degree rotation. For example,
' A ' becomes 1 《 '
Once, turned on, orientation mode stays on until turned off by a call to LRTOFF.

The primary use of orientation mode is to rotate characters used as plotting symbols on a curve.

IDENTIFICATION:

PURPOSE:

USAGE:

METHOD:

LRNON, LRNOFF

To highlight part of a plot.

CALL LRNON turns on highlight mode.
CALL LRNOFF turns off highlight mode.
Example: Sample plot 7.1

Turning on "highlight mode" causes all images that follow (points, lines and characters) to appear more intense than images produced with highlight mode off.

Once turned on, highlight mode stays on until turned off by LRNOFF.

8. 1 ERROR MESSAGES

ERR001 OFF-PLOT PRINT COORDINATES

N	X	Y	XMIN	XMAX	YMIN	YMAX
nn	$\mathrm{xx} . \mathrm{x}$	$\mathrm{yy} . \mathrm{y}$	$\mathrm{xx} . \mathrm{x}$	$\mathrm{xx} . \mathrm{x}$	$\mathrm{yy} . \mathrm{y}$	$\mathrm{yy} . \mathrm{y}$

Attempt to print off the plot. The X-Y coordinates (absolute positioning units) of the off-plot character is given along withlimits it should fall into. N gives the faulty characters' location in the array of characters being printed.

ERR002 CALL NUMBER. nn TO PRINT CONTAINS A TOTAL OF mmm CHARACTERS OFF THE PLOT

Calls to LRXLEG, LRYLEEG, LRLEGN give this message. Message "ERR001" precedes this message unless the printing started off the plot. The point at which characters went off the plot is given by message "ERR001".

ERR003 CALL NUMBER nn to LRLABL CONTAINS A TOTAL OF mmm CHARACTERS OFF THE PLOT

Message "ERR001" precedes this message unless the labeling started off the plot. The point at which characters went off the plot is given by message "ERR001".

ERR004 CALL NUMBER nn TO LRLABL ATTEMPTS TO LABEL A DATA POINT FOR WHICH RANGE IS UNKNOWN

LRLABL must be called after LRCURV or LRCPLT.
ERR005 CALL NUMBER nn TO PLOT A CURVE CONTAINS A TOTAL OF mmm POINTS OUT OF RANGE

This message is preceded by "ERR007" which gives the coordinates of the first ten points out range. Points are out of range when they do not fall within the maximum and minimum values established for scaling.

ERR007 FIRST TEN OUT OF RANGE COORDINATES FOR PLOTTING A CURVE

$\mathrm{N} \quad \mathrm{X} \quad \mathrm{Y} \quad \mathrm{XMIN} \quad \mathrm{XMAX} \quad Y M I N \quad$ YMAX

The $N^{\text {th }}$ point (X, Y) in a request to draw a curve is out of range. The first ten out of range coordinates are printed. Total number of out of range points given by "ERR005".

ERR008 CALL NUMBER nn TO PLOT A CURVE HAS AN ILLEGAL PLOT TYPE. A POINT PLOT WAS USED INSTEAD: See description of "ITYPE's argument to LRCURV.

RESTRICTION: Only one line prints page of error messages will appear. Subsequent error messages are not reported.
8.2

IDENTIFICATION: LRSPIL

PURPOSE: \quad To print out all of CINEMATIC's current plot settings.

USAGE:
CALL LRSPIL
Example: Figure 8.1

METHOD:
The current plot settings include the plot size, user's data ranges, margin sizes, character sizes, etc.

Figure 8. 1: Table of CINEMATIC Plot Settings

*TABLE DUMP ROUTINE	ALL 1			VALUE	
ORD CONTAINING.	VALUE	WOR	D CONTAINING.		
1 DEVICE		2	DEVICE TYPE		2
3 X A. P. U.	0.1023 E 03	4	Y A.P.U.	0.1023 E	03
5 SCREEN SIZE X-MAX	0.1023 E 04	6	SCREEN SIZE Y-MAX	0.1023 E	04
7 SCREEN SİE X-MIN	0.0	8	SCREEN SIZE Y-MIN	0.0	
9 X ORIGIN	0.0	10	Y ORIGIN	0.0	
11 LEFTMARGIN	0.1000E 01	12	RIGHT MARGIN	0.4000 E	00
13 TOP MARGIN	0.4000E 00	14	BOTTOM MARGIN	0.1000 E	01
15 GRAPH LENGTH	0.0	16	POINT DENSITY	0.0	
17 DATA RANGE MAXX	0.4000E 02	18	DATA RANGE MAXY	0.2100 E	04
19 DATA RANGE MINX	$0.1000 \mathrm{E}^{02}$	20	DATA RANGE MINY	$-0.4000 \mathrm{E}$	03
21 X GRID INTERVAL	0.2000E 01	22	Y GRID INTERVAL	0.1000 E	03
23 X-RANGE SET	1	24	Y-RANGE SET		1
25 X GRID TYPE	2	26	DEBUG REQUEST		0
27 NO. WORDS INSCOPE	0	28	X SCALE FACTOR	0.0	
29 Y SCALE FACTOR	0.0	30	RIGHT PLOT LIMIT	0.0	
31 TOP PLOTLIMIT	0.0	32	LEFT PLOT LIMIT	0.0	
33 LOWER PLOT LIMIT	0.0	34	X ADD FACTOR	0.0	
35 Y ADD FACTOR	0.0	36	MODES		0
37 Y GRID TYPE	2	38	SPARE		0
39 CHARACTER SIZE	0.0	40		0.0	

The following words are of interest to the user:

$5-8$	Plot size (0.0 - 1023.0 for each frame)
$11-14$	Plot margins (in absolut e positioning units)
$17-20$	The user's data ranges in his units
$21-22$	Grid intervals or frequencies
$23-24$	Are non-zero when LRANGE was called
$25-37$	Type of grid options requested by LRGRID
39	Character size as set by LRCHSZ (0-4)

8. 3

IDENTIFICATION: LRBON, LRBOFF

PURPOSE: \quad To turn debug mode on or off.
USAGE: CALL LRBON turns on debug mode
CALL LRBOFF turns off debug mode

METHOD:
Turning debug mode on causes the following messages to be printed:
"MICROFILM PLOTTING STARTED" when the first call to a CINEMATIC subroutine is made. "END OF PLOT" at the completion of every plot. Once turned on, debug mode stays on until turned off by a call to LRBOFF.


```
9.2 Program listings and diagnostics on film.
IDENTIFICATION: FLIST
PURPOSE: To send FORTRAN listings, diagnostics and error messages to the film recorder instead of to a line printer.
USAGE: Use of FLIST requires two job control cards on the 7090-7040 series direct couple systems:
\begin{tabular}{ll} 
C. C. 1 & 16 \\
\$DECK & FILMID \\
\$DECK & FLIST
\end{tabular}
(immediately after the \(\$ I D\) card)
\begin{tabular}{lll} 
Examples: & \$ID & JOHN SMITH \\
& \$DECK & FILMID \\
& \$DECK & FLIST \\
& \$TCP & TIME=1 \\
& \$IBJOB & NOGO \\
& \$IBFTC &
\end{tabular}
causes program listings, diagnostics, and error messages to go to the film recorder instead of the line printer.
```

METHOD:

RESTRICTIONS:

One frame of film replaces one page of paper on the printer.

The "NOGO" must be used on the \$IBJOB control card. The job cannot continue into execution after the compiler listing has been sent to film.

Tbe actominicil ind ipice activitice of the Unived Smact sbiall he
 edse of phenomenat in the atmophere snd space. The Admimitrulion shill provilte low the minilest practicable and attepprate disemination

- National Aeronagucs and Sbace Actor 1958

NASA SCIENTIFIC AND TECHNICAL PUBIICATIONS

TECHNICAT:REPORIC:Scientific and technicalinformation considered important. complete and alisting contributian to existing knowledge

TECHNICAI NOTES IIformmion less hroad in stopet bit nevertheless of:upportince as a contribuition fog ckisting knowledge:

TECHEICATMEMORAMDUMS: Informitionstecerving limited distributiont becanse of preliminay data, secitigy darsifict timntor other reasons.

COLXIRACIOR REPORTS:Scienifienal tchnicilimformation gencratell minter itNASA
 chatibutinn rif exising :nowletst:

TECHNICAL TRANSLATIONS: Information published ing foreign languige considered 2o merit NASA distribution in English

SPECIAI. PUBLICATIONS: Information derured from or of talie to NASA zativities.
 momogtiphs, data compilations, handborks, setriceboults, and sperait bibliogryphics:

TLCHNOLOEXY TMILZATION

PUETLCATIOASS: Informaion an technology used ly NaSA that may he of partichlaf
 Xyplications Publicatimes melude Téch Brief:
 and Tecinclogy Surveys:

SCIENIIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

