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THEORY OF THE CORRECTION OF CELESTIAL OBSERVATIONS

MADE FOR SPACE NAVIGATION OR TRAINING
By Burnett L. Gadeberg and Kenneth C. White

Ames Research Center
SUMMARY

This report discusses the theory of the correction of celestial
observations, made for space navigation, instrument calibration, or training;
as well as new theories concerning window refraction and lunar geometrical
librations. It presents, in an easily understood form, essentially all
current information on the corrections for celestial observations, providing
a sound basis from which the engineer can derive high-precision observations.
The corrections associated with these observations have been listed and
classified., Where the theory has been completed, equations and constants
are provided, or indicated, by which the reduction may be effected; in some
cases, the equations have been recast in a form convenient for machine com-
putation. Where the theory or knowledge was incomplete, developments are
provided, or the requirements to develop the theory are made known.

INTRODUCTION

One of the requirements of a space navigation system is that celestial
observations (measurements) of some kind be provided periodically, from which
the state vector of the vehicle may be updated or determined directly.

The types of measurements that may be classified as celestial
observations are limited by standard usage in astronomy to angular measure-
ments between celestial bodies. The body on which the observer is situated is
not included, except when consideration is given to sextant horizon-altitude
measurements. In general, however, we will be considering celestial observa-
tions as angular measurements between various combinations of stars and
bodies of the solar system, all situated some distance from the observer.

Four types of observations are considered in this discussion. They are
the measurements between: two stars; a star and the limb of a body displaying
an extended disk; a star and some permanent marking on the surface, commonly
known as a landmark; or two limbs of the same body or two different bodies.
Any of these types of observations may be made with one setting of a sextant
or two settings of a theodolite. All four types of observations are of value.
To provide position information for space navigation, an observation must
include at least one body within the solar system; however, star-star obser-
vations are very useful for instrument calibration and for the training of
observers. Measurements made between a star and the limb of an extended disk
are useful to provide position information. Observations made between a star
and a landmark also provide position information, but they may be more




accurate when the destination body is close by. Sights between the two limbs
of the same body are useful in providing distance information from the body
when its apparent diameter is large.

Such measurements have associated errors, which may be classified as
either random or systematic. Accurate utilization of the data requires that
these errors be compensated as precisely as possible. In the case of random
errors, this compensation can be accomplished only by probabilistic means
such as a weighted least squares (ref. 1) or a sequential data-processing
method in the form of a Kalman filter (ref. 2). Studies describing such opti-
mum compensation for random errors ignore the systematic errors on the premise
that they are known and, therefore, can be corrected. However, the proper
correction of systematic errors is not trivial and requires detailed attention
to the theory.

There has been much previous work, largely by astronomers, on the
systematic errors in celestial observations (refs. 3 and 4). This work, how-
ever, has been directed to satisfying particular needs, and does not consti-
tute a complete theory for the problems peculiar to space navigation. One
purpose of this report is to develop such a theory insofar as it is possible
at this time, and to present mathematical techniques suitable for application
to specific space-navigation problems. In some cases, astronomers' previous
work can be used directly, or with only minor modifications. Other cases
require additional analysis, provided herein. Where there is insufficient
knowledge for the development of precise correction formulas, the requirements
of the correction theory are outlined in general terms.

For most cases in space (position) navigation, the angle desired as an
input to the system is the ''geometric'" angle as seen by the observer, where
"geometric" angle means the instantaneous angle between the centers of the
masses of the two bodies unaffected by distance, the speed of light, or the
velocity of the observer. Since all the bodies of the universe are in a
state of dynamical motion, and the angles between them are constantly changing
for any observer, a measure of the time of observation is an essential factor.

Even under ideal circumstances, an observer rarely can measure the
desired angle. His own velocity causes aberration of the light, the apparent
position of the body differs from the true position and ephemeris position due
to the finite time of transmission of the light, the light rays may have been
refracted by an atmosphere or a window, or the point on the body that really
concerns him, the center of mass, is unmarked. There are also systematic
errors associated directly with the use of optical instruments in making the
measurements, and similar errors introduced by the human operator of the
instrument. This report provides definitive descriptions of these errors and
outlines some of the techniques whereby corrections may be applied.

The results of this work have been used to develop a series of computer
programs for reducing sights made on the surface of the Earth, in a high-
flying airplane, or in a near-Earth satellite. These have been developed for
the IBM 7094 digital computer, in FORTRAN IV language, and they correct
the sights for aberration, refraction, librations, parallax, or changes of
epochs. They have been used extensively in connection with studies made at
Ames Research Center to evaluate the sextant-observer combination (refs. 5-7).




ANALYSIS OF CELESTIAL OBSERVATION CORRECTIONS

General Procedure for Processing an Observation

When observations are made for navigation purposes, the usual procedure
for processing the observation data is to form a 'residual,' which is the
difference between the actually observed quantity and the estimate of this
quantity based on the best estimate of the observer's state (i.e., his posi-
tion and velocity in space) at the time of the observation. The residual is
then used, with appropriate weighting, to improve the estimate of the
observer's state. When deterministic corrections are to be applied to the
observation, the procedure consists of the following steps:

(1) Obtain the estimated state of the observer (assumed given or
computable) .

(2) Obtain reference data for the sighting from star catalog and
ephemeris, or both, etc.

(3) Using (1) and (2), and the appropriate correction formulas, compute
the corrected estimate of the line-of-sight vector.

(4) From (3), estimate the observation and form the residual by
subtracting this from the actual observation (corrected for instrument error).
Classification of Corrections

The corrections to be applied to celestial observations may be classified
as follows:

(1) Corrections due to finite velocity of light (aberration),
(2) Corrections dependent on position of the observer (parallax),

(3) Corrections dependent on time of observation (proper motion,
ephemeris time, Earth precession and nutation, and lunar and planetary
librations),

(4) Corrections due to medium of transmission (refraction),

(5) Corrections for instrument read-out errors (index, arc, and filter),
and

(6) Miscellaneous corrections (irradiance, limb effects, semidiameter,
and personal observer effects).

Of the six classes of observations, the first two, aberration and
parallax, plus the fifth, instrument error, have been well defined by the
astronomers. The only improvement here is to cast the equation for stellar
aberration in vector form. The majority of the effects in (3) have been well
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documented, but this report gives, for the first time, the correct vector
matrix procedure for computing the geometrical lunar librations. Refraction
through the atmosphere, part of (4), has been well defined. Refraction
through an arbitrary window is developed here. The elements of (6) are still
only poorly understood, and we will comment on what is known about them.

Table I lists, for all of these types of corrections, the maximum
correction magnitude to be expected for the four principal types of celestial
observations (star-star, star-limb and occulations, star-landmark, and limb-
limb) . It must be strictly understood that the values given are applicable
only as qualified. Under different circumstances, corrections could be of
vastly different magnitude than indicated. For example, local parallax is
quoted as 3400'", which is an approximate maximum value for an observer on the
Earth sighting the Moon. But for other positions of the observer, the
parallax may vary from 0° to 180°,

Table I also provides information on the circumstances that affect the
requirement for corrections. The applicability of the various corrections
depends on: (1) the type of observation taken, (2) the type of mission, or
more properly the mission profile variables at the time, and (3) the accuracy
requirements of the sight. The first of these conditions may be readily
determined from table I. For example, for a star-star sight made from space,
the table shows immediately that planetary aberration, local parallax, ephem-
eris time, Earth orientation, lunar librations, irradiance, limb effects, and
semidiameter may all be omitted from consideration. Conditions (2) and (3)
then determine the applicability of the remaining corrections, none of which
may be safely omitted unless their size is known to be bounded within values
that may be considered negligible for the specific case in question.

A detailed analysis of each of the corrections and methods for applying
them are given in the following sections.

Corrections Due to the Finite Velocity of Light (Aberration)

Aberration is the error in the apparent direction of the line of sight of
an illuminated body due to the vector combination of the velocities of light
and the observer relative to the inertial coordinate system. The direction
of the observed light is rotated in the direction of the observer's relative
velocity vector.

In the field of astronomy, aberration effects are classified in three
subdivisions: stellar (also known as annual), diurnal, and planetary.
Stellar aberration is that component of aberration due to the velocity of the
Earth in its orbit about the Sun (the observer assumed to be on the Earth),
and diurnal aberration the component due to the differential velocity imparted
to the observer by the rotation of the Earth on its axis. Planetary aberra-
tion is the term applied to the aberration phenomenon that exists in the
sighting of relatively near bodies whose motion must be taken into
consideration along with the motion of the observer.




TABLE I.- MAXIMUM ANGULAR CORRECTIONS DUE TO VARIOUS
SOURCES FOR CONDITIONS SPECIFIED

Star-star | Star-1imb and Star-landmark Limb-1imb
occultation
20V4 204 204 N
Stellar + for o for @& for ©
Aberration
067 067 N
Planetary + # I for @ D for &)
3400" 3400" 31"
Local N for ® ) for &) for ®)
Parallax
Stellar o778 078 078 I
Proper motion 10V25/yr 10V25/yr 10%25/yr I
L 1871 1811 N
Ephemeris time ¥ N for @ » for @ »
Precession N 50%27/yr 50"27/yr N
Earth
orientation Nutation N N o N O N
. See 1125 See
Geometrical ¥ I irregularities for o irregularities
Lunar
librations . See o015 See
Physical ¥ I irregularities for @ irregularities
. 1860" 1860" - 1860" 4"
Atmospheric O for o for @ for & for ®
Refraction
Window * * * *
Index A A A A
Instrument Arc A A A A
Filter A A A A
Irradiance I
Limb Atmospheric I N
effects [ om 8"
Irregularities # 1 for 1 I
1s 930" 1860
Semidiameter # 1 for © ) I for D
Personal equation O 20" 20" 20" 20"
] Earth
) Moon
* Magnitude depends upon window - can be computed from theory provided in this report
[ — Unknown, needs more research
+ Depends upon observer's velocity
F Depends upon observer's distance
A Depends upon instrument
N Negligible, less than OV1
1 Inapplicable
<o Horizon observation from the Earth
[}

As much as 20 sec of arc has been recorded for the personal equation for a highly
trained observer. For an unskilled observer, the personal equation may be much
higher.

The maximum coefficient in the expansions for nutation is 9%21. This has a negligible

effect when correcting for atmospheric refraction, but may require consideration if
observations are made of a near-Earth satellite.

9




For our purposes, diurnal aberration will be computed simultaneously with
the stellar aberration by simply using the total heliocentric velocity vector
of the observer to compute the required correction. Note that for an observer
on some other body (e.g., in a spacecraft) we simply use, in like manner, the
total inertial heliocentric velocity vector of the observer's platform.

Equations for computing the effect of stellar aberration are developed in
appendix A. Either of two equations may be used, depending on the exactness
desired. The rigorous equation is

B OAEE
©

observed unit vector of the star

>
>

<>
+
o

where

(€21

S true heliocentric unit vector of the star
v heliocentric unit velocity vector of the observer
V velocity of the observer

c velocity of light

If this is not convenient to use, due to the absolute magnitude
appearing in the denominator, a very close approximation is given by

ss[-@a-e)se (i

Planetary aberration needs to be treated in a different manner. Whereas
the star catalog gives the direction of the unit vector to the star as it
would be seen by a heliocentric observer, that is, the '"true'" line of sight,
a planetary ephemeris gives the geometrical direction of the body as it
actually exists from a point at the center of the Earth (moving in its orbit
about the Sun). A correction must be made because of the time required for
light to travel from the observed body to the observer, as well as a correc-
tion for the aberration. The correction for planetary aberration may be made
by simply reducing the time of observation by the light time and taking the
position of the body from the ephemeris at this reduced time. Thus, if an
observation had been made of a planet at O9h30m205, the ephemeris position of
the planet at this time would be used to determine the time required for the
light to travel from the planet to the observer. If this light time were
105, the time of observation would then be reduced to 09130M10S. The ephem-
eris position of the planet at this reduced time would then give the correct
position of the planet as seen by the observer at the time of observation. A
more complete discussion of the phenomenon is given in appendix A.




Corrections Dependent on Position of Observer (Parallax)

Star catalog and ephemeris data give the line of sight to celestial
bodies from certain reference points (e.g., center of the Sun for star data),
but generally the actual observer is at some other point. This displacement
of the observer from the reference point results in a change in direction of
the incident light rays from the observed body - the phenomenon called
parallax - and requires a correction to be applied to the data.

The parallax corrections may be divided in two classes: one representing
the parallax of relatively close objects, such as those within the solar '
system, and another representing stellar parallax.

Local parallax (within the solar system) may, under certain circumstances,
become very large. This type of parallax, however, may be handled very simply
by making a linear vector transformation and thus presents no real obstacle to
the determination of apparent position

:DIMOON of any known object. As an example,
from sketch (a), it may be seen that
the vector position of the Moon may be
corrected for parallax by writing the
vector equation

SPACECRAFT

r=M-R (1)

Stellar parallax is in all cases
very small. The maximum that has been
recorded to date is only 0.78 second of

EARTH arc, and that is for a relatively
inconspicuous star of the eleventh
Sketch (a) magnitude known as Proxima Centauri.

The parallaxes of only a relatively few
stars have been measured, due to the very remote positions of the stars in
general, and most of these are of the order of 0.1 second of arc or less.

Thus, it is a simple matter to avoid the use of stars with sensible parallaxes.
If it is necessary to use a star with a high parallax, a linear vector
transformation will account for the effect, as it does in the case of local
parallax.

Corrections Dependent on Time of Observation

For economy in presentation, star catalog and ephemeris data are given
only for certain reference times, and in using these data one must apply
corrections that depend on the difference between the reference time and the
time of the observation. These corrections are described below.

Proper motion.- Proper motion is defined as the yearly motion of a star
normal to the line of sight. In most cases, proper motion is very small. The
largest that has been recorded belongs to a tenth magnitude star and is
10.25 seconds of arc per year. Proper motion may be avoided by the judicious
selection of stars for navigation purposes, the use of a star catalog of




recent epoch; or, since the proper motions are cataloged for both right ascen-
sion and declination, simple corrections, linear with time, may be added to
the reference stellar position. Possible nonlinear components of the motion
need not be considered, for no proper motions have been measured to date with
sufficient accuracy to indicate such effects.

Ephemeris time.- Ephemeris time is the smooth flowing measure of time
implied by the dynamical physical equations of motion, and is based princi-
pally on orbital motions of the planets. All other measures of time commonly
used in the field of astronomy, for example, universal time, are associated
with the rotation of the Earth, which, for various and unknown reasons, dis-
plays some irregularities. Ephemeris time is computed, for our purposes, from

ET = UT + AT (2)
where
ET  ephemeris time
UT universal time (or Greenwich mean time)
AT  time interval

The estimated value of AT, for a given year may be found in reference 8
(p. vii). The values of AT are essentially unpredictable but are only
slowly varying from year to year. Final values for the past are determined
from a large number of observations of the Sun, Moon, and planets. For the
year 1900, the value of AT was -4 seconds of time and, for the year 1967, it
is estimated to be 37 seconds of time,.

Although universal time is the standard used for civil reckoning and most
astronomical computations, attention is here directed to ephemeris time
because most ephemerides of the bodies of the solar system use it as argument.
For example, if the transformation from universal to ephemeris time is neg-
lected, the position of the Moon, as seen from the Earth, will be in error by
approximately 18 seconds of arc. If the sight has been made in the lunar
orbital plane, the error will show up directly as an error in the measured
angle.

Earth precession and nutation.- The orientation of the Earth (i.e., the
equatorial coordinate system) changes with time and therefore is not neces-
sarily the same at an observation time as at the reference time of the star
catalog or ephemeris. The correct orientation may be important when correc-
tions are being made for parallax and atmospheric refraction for an Earth-
based observer. Also, data may be used that are expressed in coordinate
systems based on the equatorial system for different epochs. 1In either case,
corrections must be applied that amount to a transformation of coordinate
systems.

The gyroscopic forces that produce the Earth orientation changes result
in complex motions containing secular terms and periodic terms. The secular




terms are easily represented by polynomial expansions in time, These are
called precession, which has a maximum motion of approximately 50 seconds of
arc per year. The aggregate of the periodic terms, which are of both long and
short periods, are called nutation.

A simple matrix equation permits the precession transformation from an
initial epoch of 1950.0 to a later epoch:

X
v = Xy Yy, Zy v (3)
X, Y, 1z,
where
vt o= any vector in the original coordinate system )
Xy = 1.00000000 - 0.00029697T - 0.00000013T3
Yy = -Xy = -0.02234988T - 0.00000676T2 - 0.00000221T3
Zx = ~X, = -0.00971711T + 0.00000207T2 + 0.00000096T3 > (4)
Yy = 1.00000000 - 0.00024976T? - 0.00000015T3
Y, =2, = - 0.00010859T? - 0.00000003T3
Z, = 1.00000000 - 0.00004721T? + 0.00000002T3
and T 1is the time interval between the two epochs expressed iﬁ Julian

centuries of 36,525 days.

reverse process may be obtained by using the transpose.

The effects of nutation may be incorporated into the computations by

premultiplying the above matrix for precession by the matrix

where

>
Ay
Ae

and

1 -AY cos e -AY sin e
Ay cos ¢ 1 ~-Me
Ap sin € Ae 1

true obliquity of the ecliptic

nutation in longitude

nutation in obliquity

Note that this matrix is orthogonal and that the

(5)




€ = g9 *+ Ae

€0 = 23°27'08126 - 46''845T - 0"0059T? + 0'00181T3 (6)

Epoch 1900 Jan 0.313

The two quantities Ay and Ae must be tabulated values or computed from
series expressions in which there are

23 long-period terms
for Ay
46 short-period terms

16 long-period terms
for Ae
24 short-period terms

Under the circumstances, one should critically review the accuracy
requirements before it is decided to include corrections for nutation, since
the coefficient of the largest term in nutation is only 9.21 seconds of arc.
Since this represents a distance of only about 900 feet on the surface of the
Earth, any effect on the atmospheric refraction corrections would be negli-
gible. Similarly, for observations between natural members of the solar sys-
tem or the stars, the effect of this 900-foot displacement would be entirely
negligible. However, when observing an artificial satellite close to the
observer, the effect may be quite large, and then the inclusion of the effects
of nutation in the corrections would be appropriate. Most of the coordinate
transformations will be made in conjunction with refraction and parallax
corrections for more distant bodies, so one may conclude that, in all
probability, nutation may be neglected.

For more detailed discussions of precessions and nutation, one should
consult references 8, 9, and 10 for the equations and constants presently in
use, and reference 4 for a more detailed discussion of the theory and the
development of the original constants.

Lunar and planetary librations.- If landmarks are to be used in the
navigation process, their locations must be known. Consider the lunar land-
marks first. Since the Moon rotates about its own axis in the same period
that it revolves in its orbit about the Earth, on the average the same face
is presented to an observer on the Earth at all times. For this reason, the
practice in recording the locations of lunar landmarks has been to refer them
to a coordinate system associated with the mean Earth-Moon line. The presenta-
tion of the Moon's face to the observer on the Earth is not exact, however,
for three reasons. First, the Moon may be considered to rotate at a constant
angular velocity about its axis, but its orbital angular velocity about the
Earth is variable because of the eccentricity of the lunar orbit. This, com-
bined with the inclination of the lunar equator to the orbital plane, causes
an apparent oscillation in two dimensions about a mean position. These
oscillations are known as geometrical librations since they are strictly a
function of the Earth-Moon geometry existing at the time of observation.
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Second, the figure of the Moon is that of a triaxial ellipsoid, which permits
periodic rotational forces to be applied by the Earth and the Sun. These
forces result in a complex pendulum-type oscillation known as physical libra-
tions. Third, an observer on the Earth is displaced in position, during a
12-hour period, by the diameter of the Earth. The resulting parallactic effect
is known as diurnal libration. However, since diurnal libration is strictly a
parallactic effect, it can be taken care of by the local parallax corrections.

The method of handling the libration correction is to first compute,
separately for both the geometrical and the physical librations, the three
selenocentric angles describing the motion, and add the corresponding angles
together. The unit vector to the lunar landmark then may be transformed
through the three angles and the right ascension and the declination of the
lunar position into a unit vector expressed in the equatorial inertial
coordinate system.

The equations used to compute the geometrical and physical librations of
the Moon are relatively complex. Rather than introduce them at this time, it
is expedient to show the complete development of the equations for the geo-
metrical librations and to display them along with the final equations for the
physical librations (as taken from ref. 9) in appendix B.

In principle, observations of planetary landmarks could require a
reduction similar to that used for lunar librations, except that planetary
landmarks locations generally would not be expressed in terms of an Earth-
planet mean line-of-sight-coordinate system as are lunar landmarks. Rather,
they would usually be given in a planetocentric coordinate system, the orien-
tation of which, in the observer's coordinate system, would have to be known
(or computed) at any specific observation time to determine the line-of-sight
direction. However, situations could occur in connection with planetary
landmarks sightings such that the condition of commensurability between the
period of rotation and revolution exists (e.g., a synchronous satellite).
Then a librational-type treatment would be reasonable for line-of-sight
motions relative to a mean, and corrections similar to those for lunar
librations would be required.

Corrections Due to Medium of Transmission (Refraction)

Atmospheric refraction.- Equations developed by astronomers for this
purpose, such as those given in reference 11, are obtained by regression
analysis techniques whereby empirical functional relationships are established
between observed refraction and atmospheric variables. A major difficulty
with such equations is that they are cumbersome to use. There is also the
theoretical objection that, in reality, refraction depends on the total state
of that portion of the atmosphere through which the light rays travel. How-
ever, it is not practical to observe the total atmosphere, nor is it necessary,
since the corrections obtained from the empirical relationships between

refraction and surface conditions fit the observed data well enough for most
purposes.
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For these reasons, a simplified approximation to the empirical
relationships is believed adequate for general use. One simplified equation
(ref. 12), developed by Professor Comstock, approximates the refraction to
within 1 second of arc for all altitudes of the observed body from the zenith
down to 15° above the horizon except for extreme states of the atmosphere.
This equation is

r = ZE%§§ET-th (7
where
T refraction, seconds of arc
b barometric pressure, in. Hg
T atmospheric temperature at the observer, °F
Z zenith distance of the observed body, degrees of arc

The refraction given by the value of r in the above equation lies in
the vertical plane and apparently moves the observed body toward the zenith.
This is due to the fact that the observer is situated at the center of the
visible portion of the atmosphere, which has the shape of a planoconvex lens.
Since any ray entering the eye of the observer must necessarily lie in a plane
passing through the axis of rotation of this symmetry, the resulting refracted
ray must also lie in the plane of symmetry. Thus, when making corrections for
refraction, the ray must be transformed into the observer's topocentric
coordinate system to determine the zenith distance of the observed body.

It should be noted that the observer's local altazimuth system is fixed
in relation to the equatorial system of the Earth and therefore undergoes con-
tinuous precession and nutation along with the Earth. If an inertial system,
or epoch, is used representing the equatorial coordinate system as of the
beginning of the current year, the effects of precession and nutation on the
refraction will be very small. The gyroscopic effects of the Earth can only
affect the position of the observer's local coordinate system by approximately
50 seconds of arc in any one year, and since the refraction is a slowly
varying function, except when observations are made close to the horizon, the
effect will, in general, be negligible.

Window refraction.- The refraction of light rays occurring at the window
of a space vehicle is a field that has not received scientific attention
heretofore; consequently, although window refraction is amenable to mathemat-
ical analysis, it has not been formalized to the same extent as atmospheric
refraction. In general, two problems exist with window refraction. First,
the design of the spacecraft often dictates that the windows be of irregular
outline and that the spacecraft be pressurized. The resulting irregular
three-dimensional curve of the window does not lend itself to the normal geo-
metrical optics analysis, which assumes optical surfaces of revolution.
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Second, an iterative procedure is involved in the determination of the vector
from the sighting instrument to the window and thence to the particular
celestial body under observation. A method of handling these calculations is
outlined in appendix C; it is necessary to complete some preliminary research
on the window before the computations may be carried out. This preliminary
work consists basically of an analysis and testing of the deflection of the
window under a differential load such that the matrix of the deflection curve
polynomial may be found. A knowledge of the differential pressure and the
orientation of the spacecraft at the time of observation then permits the
calculation of the refraction of the line of sight of any given celestial
body which may have been observed.

As the equations and procedures for the reduction of the effects of
window refraction are lengthy, their development and use is displayed in
appendix C, which also compares the present theory with thin lens theory
through the computation of a numerical example.

Corrections for Instrument Read-Out Errors

The sextant is used to make angular measurements between two celestial
bodies, as needed for space navigation. The sextants of the past, and prob-
ably of the future, are light, easy to use, and amazingly accurate, for their
size and weight, compared to other astronomical instruments. The best results
are obtained when the instrument is carefully adjusted, calibrated, and
placed in the hands of a careful, well-trained observer.

After the instrument is fully adjusted, three calibrations, or error
corrections, remain to be made: index, arc, and filter. The index error is
the reading of the instrument when both lines of sight are brought to bear on
the same distant object. If the reading is not zero, an index error exists
that must be applied to any sight obtained with the instrument. The arc error
is the error made when the markings were scribed on the arc during its manu-
facture. It is determined by sighting various bodies of known angular dis-
placement and comparing these values with those read from the arc of the
instrument. Filter errors are introduced when filters, used to reduce the
intensity of bright images, are introduced into one of the lines of sight.
Most filters have a slight wedge angle that deviates any ray of light being
transmitted through them. The error is determined by measuring the position
of an object before and after the filter is placed in the line of sight. One
of the fullest discussions on the use, calibration, and adjustment of the
sextant is given in reference 13.

For accurate work the sextant must be very carefully calibrated. The
index error must be determined sufficiently frequently that the magnitude,
drift, and constancy are known within the limits of the precision required.
With careful attention to observing technique, determination of the observer's
personal equation, and calibration of the instrument, observations may be made
to a precision greater than the least count of the instrument.
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Miscellaneous Corrections

Irradiance.- Irradiance is a psychophysiological effect wherein the
image of a bright body appears to be larger than its true diameter. It is
apparently caused by an irregular refraction and scattering of light within
the eye, which thereby stimulates the retina outside the immediate area
covered by the illuminated image. This well-known effect was once thought to
be caused by imperfect optics, as indicated in reference 13 (vol. II, p. 90),
which was revised and last published in 1891. Although the phenomenon is
now known to be principally psychophysiological in origin, very little is
known about it and no satisfactory method has been devised to account for it
at the present time.

In reference 14, published recently, the effect was partially studied for
very bright extended disks. Here irradiance effects from 38 seconds of arc to
over 2° were measured. Reference 9 mentions corrections made for irradiance
varying, in different cases, from 1.5 to 2.5 seconds of arc. No reference or
explanations are given for these corrections, and the writers suspect that
they are empirical, introduced for the purpose of rectifying consistent errors
of observation (which is entirely legitimate). One approach to reduce irra-
diance is to cut down the apparent intensity of the extended body with neutral
filters. However, additional research is needed here to indicate the effects.
On the other hand, unpublished data of filtered sextant observations of the
Moon (reduced and corrected by the authors) display an irradiance effect of
15 seconds of arc. Thus it is apparent that the effects of irradiance, even
for filtered observations, are large enough to seriously impair the required
accuracy of celestial observations made for space navigation, and that
insufficient data are available to correct for this effect.

Limb effects.~ Limb effects are similar to irradiance in that they affect
the apparent diameter of the observed body. There are two sources of these
effects. The first is the effect of an atmosphere on the observed body, which
may cause an apparent increase in the visible diameter of the body, such as
the Earth, when viewed from space. Very little is actually known about the
atmospheric haze effect, except that it seems to be variable, and probably
is affected by the terrestrial weather conditions.

Second, the irregularities in the outline of the limb, such as the Moon,
may cause either an apparent increase or decrease in the diameter of the body
due to local topological features. These irregularities, due to the presence
of mountains and valleys situated on the apparent limb, can only be conveni-
ently accounted for, at the present time, when observations are made of the
Moon by an observer in the vicinity of the Earth. They have been charted by
Dr. C. B. Watts of the U.S. Naval Observatory (see ref. 15) for use with
occultation measurements. These charts are also discussed in reference 9.
For any other position of the observer, or for any body other than the Moon,
this correction may not be considered since sufficient information is
presently not available.

Semidiameter.- Since many of the observations made for space navigation
or testing will be made to the limb of an extended, illuminated body, a
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correction for the semidiameter of the body must be applied to represent the
observation to the center of the apparent disk. This may be accomplished by
one of two methods. First, if the angular measure of the semidiameter is
known for the observer's position, this may be directly added to or subtracted
from the measured angle depending on whether the observation was made to the
near limb or the far limb. Or, if parallax computations must be made, this
correction may be incorporated directly into the linear vector transforma-
tion, which was discussed under the section on parallax corrections.

In addition to the correction for semidiameter, a small correction of
-0.6 second of arc should be applied to the celestial latitude of the Moon to
account for the misalinement of the center of mass and the center of figure of
the Moon. Further reference may be made to reference 9 (p. 212) for this
effect. For many situations, this last correction may be ignored because of
its small size.

Personal equation.- One form of systematic error that has had but little
thought given to it is the error known to astronomers as the ''personal equa-
tion.'" The personal equation of an observer is that correction (error) which
must be applied to his observations, after all other corrections have been
made, to produce the true quantity that should have been observed. It may be
observed as the mean residual error remaining after all other known correc-
tions have been made. Personal equations may be quite sizable and consistent.
In some cases, they have amounted to as much as 20 seconds of arc for a
highly trained, very careful observer. Although the equation may be consis-
tent, it generally varies over a period of time. It has been found to depend
on, among other things, the type of instrument used, its size and position,
the position of the observer's body, his degree of fatigue, and the type and
velocity of the observed body. Any personal equation applied to a set of
observations should have been determined in the recent past. It is obvious
that a personal equation cannot be found when observing an unknown quantity.
Thus, the personal equation should be determined during the training and
retraining periods, and should be further updated by information obtained
during the course of a mission. Further discussion on this subject may be
found in references 12 and 13.

At this point it should also be remarked that the philosophy of the
observer in making high precision observations is also extremely important.
High precision observations require not only a highly accurate, well-
calibrated instrument, but an observer of knowledge, training, and a philos-
ophy that will not allow him to do anything but his careful best. Only with
such an observer will it be possible to have confidence in his personal
weighting of individual observations. Discussions on the philosophy of weight-
ing individual observations may generally be found in texts considering the
method of least squares (refs. 13 and 16). When a number of sophisticated
observations are made, weighting should always be used because a careful
observer always has a feeling for the relative merits of his own observations.
If he does not, he cannot be considered an accomplished observer and should
be trained and practiced with this in mind until he can.
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PROCEDURES FOR APPLYING CORRECTIONS

Order of Making Corrections

The order of the application of the corrections is important. A
judicious order will eliminate second-order effects, reduce the computations
involved, and eliminate the need for iterations. The method of ordering found
to give the least confusion may be called the method of "reverse ordering."
Consider the path of the light ray as it travels from the illuminated body
to the eye of the observer. Along the path the various phenomena under
discussion are encountered. Note the order of encounter with these phenomena
and then apply their corrections in reverse order. If a case arises where a
decision cannot be made between the time priorities for two of the corrections,
it is considered good practice to apply the largest correction first; with
the above rule of application it is apparent that the instrument corrections,
index, arc, and filter should always be applied to the instrument reading
first. On the other hand, since they all affect the light ray almost
simultaneously, they may be applied in any order.

Consider now the application of corrections to a sight made from the
surface of the Earth between a star and the limb of the Moon. Tracing the ray
from the star to the eye of the observer, the first phenomenon encountered by
the ray is that of aberration as the light approaches the Earth, which is
traveling through space with a velocity of the order of 18 miles per second.
After this the ray is affected by refraction as it traverses the atmosphere
to the observer. It then encounters the effects introduced by the sextant.
The corrections are applied in the reverse order. The sextant corrections are
first applied to the sextant reading. It is then appropriate to apply the
corrections for refraction, which depend on the altitude angle as seen by the
observer. To make these computations, one must use the known inertial coor-
dinates of the star, the latitude and longitude of the observer, and the
local sidereal time to transform the position of the star into the observer's
local altazimuth coordinate system.

After the refraction corrections have been completed, the aberration
corrections may be applied as indicated. The above corrections must be applied
to both lines of sight when more than one body is observed. However, the
corrections applied to the two lines of sight are not necessarily the same,
since, as indicated in table I, corrections for planetary aberration, libra-
tions, irradiance, limb effects, and semidiameter are not applicable to a line
of sight to a star.

A step-by-step outline follows of the recommended procedure for each of
the corrections, in the order in which they appear in table I.

Aberration.- (stellar)

1. Compute the velocity vector of the observer in any convenient
coordinate system.
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2. Transform from that convenient coordinate system to the equatorial
system of the desired epoch.

3. Compute the vector of the star as it is seen displaced due to
aberration using equation (Al) or equation (A4).

Aberration.- (planetary)

1. Determine the distance of the local body from the fundamental center,
using the recorded ephemeris.

2. Using the parallax correction (linear vector transformation)
determine the distance between the observer and the local body.

3. Using the velocity of light, compute the time of passage of the light
from the local body to the observer (light time).

4. Reduce the time of observation by the light time.

5. Using the reduced time of observation reenter the ephemeris and
determine the apparent position of the local body.

Note: Before the ephemeris of the body may be entered, the time of
observation and the reduced time of observation must be converted to ephemeris
time (see section on ephemeris time).

Parallax.- (earth-based)

1. Compute the radius vector of the observer from the center of the
Earth using the equation for an oblate spheroid.

2. For the vector of the observer in the geocentric equatorial system of
date.

3. Precess the vector from the equatorial system of date to the equa-
torial system of the desired epoch (eq. (3)).

4, Make the linear vector transformation as required for parallax

(eq. (1)).

Note: The computation of the radius vector of the observer from the
center of the Earth must be made using the geocentric latitude of the observer.

The formation of the vector of the observer in geocentric equatorial
system of date requires the computation of the local mean sidereal time. The
use of mean sidereal time is compatible with the use of precession and the
omission of nutation.

Parallax.- (non-earth-based)

1. Compute the position vector from the fundamental center in any
convenient coordinae system.
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2. Transform from the convenient coordinate system to the equatorial
system of the desired epoch.

3. Make the linear vector transformation as required for parallax.

Ephemeris time.-

1. From the American Ephemeris and Nautical Almanac, select the AT
correction for the year of the observation date.

2. Calculate ephemeris time from the universal time by equation (2):
ET = UT + AT.

3. Enter the ephemeris as required.

Note: The AT correction is given in the ephemeris only for the year of
the publication and the past. If the correction is required for a future year,
it will have to be estimated as best as possible by extrapolation of the
values given.

Past values of the AT correction are given to 0.01 second of time, and
present values are given only to the nearest second due to the fact that the
correction can only be determined by observation. As a consequence, it is
really only known after the fact.

Earth orientation.- (precession)

1. Compute and form the transformation matrix from the polynomial
expansions in time for the elements (eq. (4)).

2. Transform the vector, using the matrix of equation (3) either from
1950.0 to date, or using the inverse, from date to 1950.0. (Both transforma-
tions will have to be used if the fundamental epoch of the computations is
some date other than 1950.0.)

Note: The polynomials for the elements and the matrix have been set up
for the transformation from the epoch 1950.0 to the time used as the
independent variable in the polynomials.

The reverse of this procedure can be used to reverse the direction of
the precession (transposed matrix).

The notation 1950.0 represents the beginning of the Besselian year, which
is within a fraction of a day of January 1. It actually starts when the mean
longitude of the Sun reaches exactly 280°.

The fundamental epoch of the precession matrix (eq. (3)) may be changed
to any other epoch by suitably adjusting the coefficients of equation (4).
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Librations.- (geometrical and physical)

1. For the time of observation, compute the three libration angles using
the matrix equations developed in appendix B for geometrical librations
(eqs. (B5) and (B8)).

2. Compute and add the increments to the libration angles using the
equations for physical libratioms (eq. (B9)).

3. Form the transformation matrix with the three libration angles
(eq. (B10)).

4. Transform the selenographic vector of the landmark to the equatorial
system of date.

5. Precess the vector from the equatorial system of date to the
equatorial system of epoch (eqs. (4) and (3)).

Refraction.- (atmospheric)

1. Transform the star coordinates from the equatorial system of the

desired epoch to the equatorial system of date using the precession matrix
(eqs. (3) and (4)).

2. Transform from the equatorial system of date to the altazimuth system
of the observer.

3. Compute and apply refraction to the altitude of star (eq. (7)).

4. Transform from the altazimuth system of the observer to the equatorial
system of date.

5. Transform from the equatorial system of date back to the equatorial
system of the desired epoch using the transpose of the precession matrix.

Note: The transformation between the equatorial system of date and the
altazimuth system of the observer must be made with the geodetic latitude of
the observer.

This transformation also requires the computation of the local mean
sidereal time from an expansion in mean solar time, which is compatible with
the use of precession and the omission of nutation.

The neglect of nutation produces only very small errors in the computed
refraction.

Refraction.- (window)

1. Transform the observed star unit vector from the equatorial inertial
coordinates to the window coordinates using equation (Cl).

2. Assume any convenient value of the internal unit vector V. (Values
of a, B, and v in eq. (C10).)
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3. Compute the intersection of this vector with the plane of the
undeflected window using equation (C11).

4, Set V; = 0, equation (C12).

5. Using equations (C13) to (Cl6), iterate to find the intersection of
the ray with the deflected surface of the window.

6. Compute the normal to the surface using equation (C17).
7. Compute the refracted ray using equation (C18).
8. Repeat steps 3 to 7 for each refracting surface.

9. Using equation (C19), determine the angle between the free space
refracted ray and the star vector determined in step 1.

10. If the angle determined in step 9 is too large, compute a new
internal unit vector using equation (C20), including the gain factor computed
from equation (C21).

11. TIterate the entire process from steps 3 through 10, until the angle
determined in step 9 is small enough.

12. The final refracted ray is then coincident with the star ray and
the proper initial internal ray vector has been determined.

Instrument.- (index, arc, filter)

1. The arc correction should be determined first from the calibration
curve of the sextant. Since the arc correction is a function of the location
on the arc at which the reading is made, the arc correction should always be
taken from the calibration curve for the actual reading of the sextant at the
time of observation, that is, the recorded angle.

2. The index correction and the arc correction may then be lumped
together and applied to the sextant reading.

3. The filter correction, if applicable, may then be applied.

Note: It has been assumed here that the sextant has been properly
adjusted for coplanarity of the principal plane of the sextant, the telescope,
and the normal vectors of the horizon and index mirrors.

Irradiance.-

1. At the present time it is impossible to correct for irradiation
effects when only limited observations are available.

Note: The best that one can do presently is to use as heavy a filter as
possible and hope for the best. The only possible result that can be expected
is reduced accuracy.
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Limb effects.- (atmospheric, irregularities)

1. Atmospheric limb effects are very poorly known at the present time.
2. Irregularities of the limb are in a condition impossible to use at
the present time, except for some of the irregularities near the limb of the

Moon, as seen from the Earth.

Semidiameter. -

1. From the relative position vector of the observed body, determined as
indicated under parallax corrections, and from the known linear radius of the
body, compute the semidiameter of the body.

2. Add or subtract the above computed semidiameter from the measured
angle according to whether the measurement has been made to the far limb or
the near limb.

3. 0Or, if direct measurements have been made of the semidiameter, step 1
may be omitted.

CONCLUDING REMARKS

This report has presented new theories concerning window refraction and
lunar geometrical librations. Further, we have indicated or collected in one
location, and in an easily understood form, essentially all available informa-
tion on the corrections for celestial observations, so that the knowledge
required by the engineer for obtaining high precision observations is readily
available. It has been pointed out that a careful analysis should be made of
the mission profile to determine which of the many corrections may be safely
omitted; some of the corrections require considerable computations and may
amount to only a few seconds of arc in themselves, and may have an even smaller
effect on the corrected observed angle.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Feb. 17, 1969
125-17-05-01-00-21
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APPENDIX A
DEVELOPMENT OF VECTOR EQUATIONS FOR THE ABERRATION OF LIGHT

Stellar Aberration

The aberration of a star is the apparent displacement of the unit vector
from the observer to the star due to the combination of the velocity of the
observer with the velocity of light. This combination is the simple linear
vector summation of the two velocities, reduced to the unit vector form.

Since the velocity of light in free space is considered a constant, if
the velocity vector of the observer were also constant, all the apparent posi-
tions of the stars would be displaced by different but constant angles from
their true positions. Under these conditions a slightly erroneous but con-
stant picture of the heavens would be obtained. Now the velocity of the Sun,
or the solar system, is essentially constant, at least over very long periods
of time, within the accuracy of our astronomical measurements. Consequently,
all star catalogs quote star positions as though they were seen by an helio-
centric observer moving with the velocity of the Sun. The important point to
be remembered here is that the correction for aberration must be based on the
heliocentric velocity of the observer.

Two vector equations will be developed for the aberration of light, one
will be rigorous, and one will be slightly more convenient to use for machine
computations. The geometry of the
STAR situation is displayed in figure 1. An
observer, located at O and moving
oo space with the velocity vester,
DIRECTION OF STAR (ﬁeliocentric direction) is given by
APPARggg?A%ECTION the unit vector S. The light from the
star approaches the observer with the
velocity vector T relative to fixed
space. The velocity of the star light

A OBSERVERS relative to the moving observer is
S /////57’PATH given by -5, and the star appears to
OBSERVER\\\ the observer to be located in direction

s. Now, if we use the convention that
any vector is composed of a magnitude

and a unit vector, then it is apparent
that

o\

J— ~

Vo= VW

(@}

~

C = cc = -cS

. . Then we may write
Figure 1.- The aberration of light due to the

heliocentric velocity of the observer. — v <
s = -
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and
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=
<
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O
s}

or

W

(AD)

This is the rigorous equation for stellar aberration.! It has the disadvantage
that the magnitude of the vector must be evaluated for the denominator. A
slightly more convenient equation may be derived from figure 1 with the help
of two additional vectors. These auxiliary vectors are @ and X, both of
which are normal to the direction to the star as given by S. Then w may
write

$=8+137 (A2)
now
a << 1
since
T = % (A3)
and
V.S <<c

Then we may also write

which may be reduced to

IThese equations have been developed in nonrelativistic mechanics and
are thus accurate for velocities of the observer where V/c << 1. It has been
kindly pointed out by Mr. William M. Adams, Jr., of Langley Research Center,
that the correct equation for a relativistic observer would be

[—— oy

This equation reduces to equation (A4) for nonrelativistic observers where
(V/c)? and higher terms may be neglected.
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Then, substituting into equation (A3),

T=-L W8S+ Ly
c C
and then into equation (A2)
. Voo alda Voo
S —[1-»E(V -SﬂS*—EV (A4)

Although equation (A4) is an approximation, it is a very good approxima-
tion, since the values of V are always very small compared to the velocity
of light <. The value of tg‘l(V/c) for the Earth, which is known as the

constant of aberration, is only 20.4 seconds of arc.

Planetary Aberration

When an observer views a planet, or any other body within the solar
system, he sees the body displaced by stellar aberration just as he would
when viewing a star. However, a fundamental difference exists in the method
of correcting for this error (see ref. 17). This difference arises as a
direct result of the fact that the position of the planet, as supplied by the
ephemeris, is fundamentally different information than that supplied by a star
catalog for the position of the star. A star catalog gives the direction from
which the light arrives when it enters the eye of the heliocentric observer.
The fact that the observer is considered to be heliocentric is not really
germane to this immediate discussion, but the fact that the catalog supplies
the direction from which the light is approaching is important. The basic
ephemeris of a planet, on the other hand, gives the true geometric position of
the planet in space at the time specified, and makes no allowances for the

travel time of the light or

MOONS any other phenomenon. Although
LN gﬁ&ﬁ;ﬁg& this may give the impression
\S P that some complication would
\ A be involved in the computation
\ / , of the correction, it will be
/ MOONS shown that the apparent posi-

VoM
7 Jg——~—~”z’”"~’”4’ PATH tion of the planet may be

taken directly from the ephem-
eris by the simple expedient
of decrementing the time of
observation by the travel time
of the light from the planet
to the observer.

OBSERVERS Figure 2 shows the
PATH combined effects of both
stellar and planetary aberra-
tion. At the time the light
leaves the body at My (say,
Figure 2.- Planetary and stellar aberration combined. the Moon) the observer is
located 0,. When the light
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reaches the observer at 0;, along the path r, the
Moon has moved on to M;. If at the time of observa-
tion we entered the ephemeris of the Moon it would
indicate that the Moon was located at M; at the
distance 1 from the observer. Now, the stellar
aberration discussed above gives the observer the
impression that the Moon is located in the direction
of the unit vector §. We assume that during the
time of light passage from Mgy to O; that the
observer has moved with uniform velocity along d
from Oy to 07 and arrives O0; with the velocity
vector V, and that the approaching light has the
velocity vector <T. Then, as discussed above in
conjunction with equation (Al), the body appears to
be located in the direction §, which is parallel to
§. Now it is apparent that T and T are colinear,
as are V and d. Then we may write, using At for
the light time

_ : d _
= At ; 7 = bt

ol

then, on elimination of At,

_d
T r

o)<

Thus, the two triangles are similar and the side D
is parallel to the side 5. Now S or § is the
apparent direction of the Moon, as seen by the
observer, and D is the direction of the Moon from
the observer at the time the light left the Moon.
Consequently, the apparent direction of the Moon, at
the time of observation, is the same as the true
direction of the Moon at the time the light left the
Moon. At the time of observation, the light has
traveled the distance r in the time At. However,
neither of these quantities is known. We do know the
distance 1, from the ephemeris, and we may assume
that

T

At = -
c

since the velocity of the Moon is very small compared
to the velocity of light and consequently 1 and T
are approximately equal. Thus, the apparent direc-
tion of the Moon at the time of observation may be
found by entering the ephemeris at the time of obser-
vation, determining the distance to the Moon and the
light time, and then reducing the time of observation
by the light time and then reentering the ephemeris
to determine the apparent direction of the Moon at
the time of observation.
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APPENDIX B
DEVELOPMENT OF EQUATIONS FOR LUNAR GEOMETRICAL LIBRATIONS

The rotation of the Moon about its axis may be separated into two
components. The first of these is a steady rotation in a counterclockwise
direction, as seen from the north, which is in the same direction as the
revolution of the Moon about the Earth in its orbit. The period of this rota-
tion is exactly equal to the sidereal period of the lunar orbit. This rota-
tion, combined with the orbital motion, the inclination of the Moon's equator
to the ecliptic, the position of the lunar node, and the inclination of the
ecliptic to the Earth's equatorial plane gives rise to the geometrical libra-
tions. The second part of the lunar rotation is a very low amplitude oscil-
latory motion, which gives rise to the physical librations. It is the
geometrical librations that are of concern here.

Several pertinent facts concerning the interrelationship between the
rotation and revolution of the Moon are expressed in the three laws of Cassini.
These three laws, which were originally empirical and later proved
mathematically by Lagrange and Laplace, state that:

1. The Moon rotates eastward, on an axis fixed in its body, with a
constant angular velocity, and the period of rotation is exactly the same as
that of the lunar sidereal revolution about the Earth.

2. The inclination of the lunar equator to the ecliptic is a constant.

3. The poles of the lunar equator, the ecliptic, and the lunar orbit all
lie in a great circle, in that order.

The rotation of the Moon about its polar axis is constant and the angle
through which it has turned after a given period of time is a linear function
of the time. Consequently, there is a direct relationship with the mean
longitude of the lunar orbital motion. If the mean motion of the Moon and the
true motion coincided, then exactly the same face of the Moon would be pre-
sented toward the Earth at all times. However, the osculating orbit of the
Moon is eccentric, and it is also perturbed by the Sun and the planets. As a
consequence, the difference between the true position and the mean position
causes the Moon to appear to oscillate about the radius vector of the Moon
from the Earth.

The investigation will now proceed along two parallel paths. In one we
will develop the transformation matrix for any selenographic vector to the
equatorial system via the laws of Cassini and the general geometry of the
orbit. In the other we will develop a similar transformation matrix via the
three libration angles and the true position of the Moon as given by its right
ascension and declination. These will then be equated and a solution obtained
for the three libration angles. If we were interested only in determining the
vector of a lunar landmark in the equatorial system as disturbed by the geo-
metrical librations, the first transformation would be sufficient. However,
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Figure 3.- Orbital geometry of the mean Moon relative to the
Earth and the equatorial inertial coordinate system,

NORTH POLE NORTH POLE
LUNAR ORBIT  ECLIPTIC NORTH POLE
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LUNAR EQUATOR

Figure 4.- Illustration of Cassini's Laws with
the mean Moon at the orbital node.

the physical librations are
given, very conveniently, as a
function of time, in terms of
the three libration angles.
Therefore, it is appropriate
to compute the angles for the
geometrical librations so that
those determined for the
physical librations may be
added directly to them. The
transformation matrix of the
landmark is then formed from
the total libration angles.

The general geometry of
the situation is shown in
figure 3. The geocentric
equatorial inertial coordinate
system is shown as (IJK), the
obliquity of the ecliptic is
e, the longitude of the lunar
orbital node is @, inclina-
tion of the lunar orbit to the
ecliptic is 1, the argument
of latitude is & - Q. Note
that ¢, the mean longitude of
the Moon, is measured from the
vernal equinox T along the
ecliptic to the node and thence
along the orbit to the position
of the mean Moon (not the true
Moon). The facts expressed by
Cassini's third law are shown
in figure 4 for the instant
the Moon occupies the ascending
node. The inclination of the
lunar orbit relative to the
ecliptic is 1 and that of
the lunar equator is I. The
poles of the three planes are
coplanar, with that of the
ecliptic occupying the central
position. The coplanarity of
the poles is, of course, not
disturbed by the progress of
the Moon in its orbit.

Some time after the Moon
has passed the node it is
situated as shown in figure 3.
A close-up of the geometry at
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NORTH POLE . - .
LUNAR AXIS this lunar position is shown

in figure 5. The seleno-
graphic coordinate system,
which is fixed in the body of
the Moon, is designated (13k).
The 1 axis is located in the
equatorial plane and is the
origin of the longitude and
A latitude measurements, similar
MOON to the geographic system. The
= , k axis is situated along the
~ T—LUNAR ORBITAL lunar rotational pole, and the
PLANE j axis also lies in the plane

~ of the lunar equator. The i
LUNAR EQUATORIAL  5xis is arbitrarily chosen as

{Tome R i

y PLANE that radius of the mean Moon
(1-9)  (I+0 ~TO EARTH pointing to the center of the
QA CENTER Earth when the mean Moon is at

! the node of the orbit. (Now,
since the mean Moon and the
Figure 5.- Geometry between the mean lunar orbital true Moon coincide only aE

equatorial planes and the terrestrial radius perigee and apogee, the 1
vector. axis of the true Moon will

point to the center of the

Earth only when the true Moon
is simultaneously located at the node, either ascending or descending, and at
an apse, either perigee or apogee.) The radius vector between the Earth and
the Moon (fig. 5) has rotated, in the orbital plane, from the node by the
angle & - Q. The 1 axis has also rotated from the nodal line by the angle
£ - @ but lies in the plane of the lunar equator. Our process now is to
develop the transformations required to rotate the 1 axis into the radius
vector to the Earth, as shown in figure 5, rotate this position by 180°, to
point away from the Earth, and then, as shown in figure 3, to rotate along the
orbital plane to the node, and then along the ecliptic to the vernal equinox.
The transformations are given by the following equation:

X = [Ex][ﬂz][ix][(ﬂ—ﬂ)z][180Z][(Q—Q)Z]T{(I+i)x][(2-9)z]?“ (B1)

The individual rotation matrices are here formed from the name of the angle
and subscripted by the axis of rotation. The three rotation matrices, about
the three axes, for the angle 6, are defined as:
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[6x] = |O cos © -sin 6
0 sin 6 cos 6
cos 6 0 -sin 6

[ey] = 0 1 0
sin 8 0 cos ©
cos 6 -sin ¢ 0
[67] = |sin ¢ cos 9 0
0 0 1

The symbol X' represents any vector in the selenographic coordinate system,
while X 1is that same vector in the equatorial system. The first four
matrices of equation (Bl), in order from right to left, carry the 1 axis
into the line of nodes (fig. 5), the equatorial plane into the orbital plane,
the 1 axis into the radius vector, and then rotate it 180° so that it is now
pointing directly away from the center of the Earth. The 1 axis is now
alined with the radius vector from the Earth to the Moon (fig. 3), and the
next four rotation matrices carry the 1 axis along the orbital plane to the
node, rotate the orbital plane into the plane of the ecliptic, the 1 axis

along the ecliptic to the vernal equinox, and the ecliptic into the plane of
the Earth's equator.

The equation may now be simplified by factoring the rotation matrix
[180,] out to the left.! 1In so doing, all rotations about the 2z axis are
unaffected and any rotations about the x or y axis are transposed. The
result and the further steps in the simplifications are given below.

1180, [e ] 10,1 [ix]  [(2-2) 211 (2-0) 1 [(T+1)x ][ (2-2) ,]%"

X =
X = [180,] [ex] T [02] [ig] [ig] [Tx][(2-2),]1%" (B2)
X = [1805][ex]  [25] [T 11 (4-2) 1%

IThis is a legal operation, because of the special nature of the [180,]
matrix.
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Equation (B2) transforms any vector in the selenographic coordinate system

into a vector in the equatorial system.

As mentioned above, 1f we were

interested only in the effects of the geometrical librations this equation

would suffice.

MOON
NORTH POLE

////EQUATOR

E —W

TO EARTH
CENTER

CELESTIAL
NORTH POLE

MOON
NORTH POLE

EARTH
NORTH POLE

*
Py

SPLANE OF THE

EARTH EQUATOR CELESTIAL EQUATOR

(b) The position of the Moon in the geocentric equatorial
system.

Figure 6.- The true Moon as it appears in the heavens to an
observer on the Earth.
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We will now develop the
transformation matrix via the
libration angles and the true
position of the Moon as given
by the right ascension and
declination. In figure 6, the
Moon is shown as it appears in
the heavens to an observer on
Earth. An hour circle of the
equatorial coordinate system
is shown passing through the

apparent center C of the
Moon, and is marked N at 1its
northern part and S at its

southern part. A small circle,
known as a declination circle
is marked E for its eastern
part and W for its western
part. The central meridian,
in the selenographic coordin-
ate system, is shown passing
through C and the north pole
of the Moon. The position
angle of this meridian is
designated P, and normal to
it is the lunar equator. The
point O 1is the origin of
selenographic coordinates and
extending from it is the
principal axis 1i. To an
observer on the Moon at the
point C, the center of the
Earth appears to be in the
zenith. The selenographic
coordinates of the point C
are given as longitude A and
latitude B, both positive as
shown. The three angles A,
B, and P, are the three libra-
tion angles in longitude, lati-
tude, and position angle. In
addition, the position of the
center of the Moon is given as
o in right ascension and &
in declination relative to the
equator and equinox of our
fundamental system. We are




now in a position to formulate our transformation matrix, which we may write
as:

X = [o108,1[180,1 [P, 118,1T(1,1'%" (B3)

Here, reading the rotation matrices from right to left, we have rotated the

i axis through the longitude angle A and the latitude angle £ until it is
pointing in the direction of the center of the Earth, and then rotated the
plane of the lunar equator through the angle P, until it is coincident with
the declination circle EW and parallel to the equator. Next we have rotated
the 1 axis until it is pointing directly away from the Earth, and then
brought it into coincidence with the vernal equinox through the successive
angles § and o. As with the previous development we may factor the matrix
[180,] out to the left, producing

% = [180,1[0,108,1T[Po 118,17 [2,1'" (B4)
We now have two different expressions (eqs. (B2) and (B4)) containing

the same transformation matrix which we may equate and solve for the unknown
libration angles.

[Po, 108, 1TIA1T = [6, 100, 1T ey 1192, 1 [T, 1102 - @),] (BS)

The quantities on the left are, of course, our unknowns and all the quantities
on the right are available for computation. The only problem left is that of
unscrambling the three angles from the left side of the expression. This may
be readily accomplished by setting

[A) = [Po, 118,17 121" (B6)
and then expanding the right-hand side to provide:
(cos 8 cos }) (cos B sin A) (sin B)

[A} = | (cos Py sin A + sin Py sin B cos 1) (cos Py cos A + sin Py sin B sin A) (-sin P, cos B) (B'7)

(-sin Py sin A - cos Py sin B cos A) (sin P, cos A - cos PO sin B sin 1) (cos P, cos B)

The matrix [A] may be computed from the right-hand side of equation (BS5) and
we may then find our three libration angles from the elements of this matrix.

W
fon Ao
gA = T
A1l
sin B = A13 (BS)
A
23
o T Ey
y,
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The values of the right ascension o and the declination & of the
Moon have been precomputed and are available in tabular form or on magnetic
tape suitable for an electronic computer. The other quantities are either
constant or have been expressed as functions of time. These quantities
I, €, %, and 2 have been taken from reference 9 and are given below:

I =1°3211
e = 2392710826 - 46'845T - 0''0059T2 + 0%00181T3  Epoch = 1900.0 4
= 1900 Jan 09313
o = 270%434164 + 13°1763965268d - 070000850D? Epoch = 1900 Jan 095 ET
= JD 2415020.0
o = 259°183275 - 090529539222d + 020001557D2
where

d JD - 2415020.0
D d/10,000
T (d + 0.187)/36525.0
JD  Julian Day number
The lunar geometrical librations may be computed from the above simple
equations, which obviates the need to store the values on tape and then
interpolate them to the desired time.
The physical librations may be computed from relatively simple equations

that provide the increments AXx, AR, and AP, to be added to the libration
angles discussed above. From reference 9,

ax = 02003 sin(2-T') - 02005 sin 2(I'-9) - 09016 sin g, + AP, sin B
AB = M cos A + N sin A (B9)
AP, = (M sin A - N cos A)sec B
where
M = 09040 sin(r' - @) - 02003 sin(& - @)
N = 0920 cos(T' - Q) + 02003 cos(f - Q)
' = 3349329556 + 0°1114040803d - 02000773902  Epoch = 1900 Jan 095 ET
= JD 2415020.0
_ (0] [0} (0] 2
go = 358,475845 + 0.985600267d - 0.0000112D
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Here % and @ are as defined above, T'' is the mean longitude of the
lunar perigee, and g, 1is the mean anomaly of the Sun; M and N are merely
auxiliary quantities.

The total libration anglés are then computed by adding the increments
found from equations (B9) above to the geometrical libration angles computed
from equations (B8).

At = X o+ AR
B' = B + AB
Pyl = Py o+ AP,

and the vector of the landmark in equatorial coordinates is then found by
substituting into the equation (B4), which becomes

% = [180,][0,]08,)" [Py JIEg] T IA3)T" (810)

It will be noted that the equations for €, 2, @, I'', and g, are
referenced to a particular epoch and that they are given in terms of the time
variables d, D, and T. The quantity d is the number of Julian days that
have elapsed since the epoch 1900 January 045 (or Julian day number 2415020.0).
In Civil time, this epoch is December 31, 1899, at Greenwich noon. The
quantity D 1is the same as d but expressed in terms of 10,000 Julian
days. Similarly, T is essentially the same as d expressed in terms of
Julian centuries of 36525 days. The quantity 0.187, in the defining equation
for T, is an adjustment for the difference in epochs between the one equation
containing T (the equation for <€), whose epoch is 1900 January 04313, and
the other equations containing d and D whose epoch is 1900 January 045.

The difference between ephemeris and universal time at these fundamental
epochs, which is -33%9, has been considered to be sufficiently small to be
ignored for the present purposes. It should be carefully noted that all of
these equations provide values of their respective variables relative to the
mean equator and equinox of date. As a consequence our landmark vector found
from equation (B10) is represented in this same coordinate system and must be
precessed to the fundamental system before further use is made of it.
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APPENDIX C

DEVELOPMENT OF EQUATIONS FOR WINDOW REFRACTION

An observer in a presurrized spacecraft may be required teke his
navigation observations through a window, or a set of window panes. The
windows will undoubtedly be deflected by the differential pressure existing
between the interior and the exterior, and any light ray traversing the win-
dow will be refracted due to both the difference in pressure and the deflec-
tion of the window. The external ray to the object sighted may always be
considered to be approximately known, since we assume that a navigation sight
to a known object is being made.

The first step to an understanding of the process is to realize that an
entire bundle of parallel rays from the object intercepts the window at all
points on the surface. And that, even though all these rays are transmitted
through the window, only one ray enters the eye of the observer, or the
instrument he may be using. The real problem, then, is that of discovering
this particular ray. Since the mathematical description of optical phenomenon
is reversible we will consider a ray to be emerging from the eye of the
observer, extending it to the window, refracting it at the window, and then
continuing it on to the body under observation. When a higher order function
is used to represent the surface of the refracting window, the problem is
mathematically unsolvable in an analytical form and recourse must be had to
the process of approximating the solution by some method of iteration. The
method that has been set up to be used at Ames in a digital computer program
(see ref. 18) is that of first assuming the direction of a ray from the eye
of the observer toward the window. This ray is then carried forward by an
iterative process until it intersects the surface of discontinuity, at which
point the refracted ray beyond the surface is determined. The process is
repeated in sequence for each surface of the window. When the last surface
has been considered, the direction of the refracted ray beyond the window is
then known and can be compared with the direction of the body specified as
having been observed. The rotation vector between the refracted ray and the
true ray to the object is then determined, modified by the amount of the
refraction and applied to the original, assumed, interior ray. The whole
process is then repeated as many times as necessary until the refracted ray
and the true ray coincide. At this point the last modified ray is the one
desired. As many steps in this loop may be added as desired to account for
multiple refracting surfaces.

It is necessary then, to formulate equations that will represent: the
three-dimensional window surface, the normal to the surface, the refraction
of the ray, and the iterations that may be required. All are to be repre-
sented in vector-matrix form for ease in computing these three-dimensional
entities.

The computation of the refraction of the rays of an object observed
through the windows of a pressurized space capsule is complicated by the fact
that the window shape must necessarily be dictated by considerations of space
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available for windows and their placement to accommodate critical modes of
flight and maneuver. As a consequence, the windows, as bowed under a differ-
ential pressure, are almost certain to have a distinct lack of symmetry, and
the rays to be considered are almost certain to be nonradial; previously
developed ray trace analyses therefore are not applicable.

The purpose of this appendix is to develop an applicable ray-trace
analysis. The development of this analysis will be carried out in window
coordinates, since that is the coordinate system in which the window is most
easily described and is thus
most convenient to use when
iterations are required.
One vector, however, must be
transformed into the window
coordinate system before the
process may be carried
through. This is the unit

. vector of the observed celes-
tial body, which is provided
in the equatorial inertial
coordinate system.

The geometry of the
transformation may be under-
stood by referring to fig-
ures 7 and 8. In figure 7,
the fundamental inertial
coordinate system is desig-
nated as (ijk), with the
principal axis indicated by

the direction to the vernal

Figure 7. gricwtacion of the spacecralt wodinte  equinox T. The body axis
inertial coordinate system (IJK). of the space capsule is

given as (I'J'K'), and the
orientation angles relative
to the fundamental system as
¢, ¥, and 6. The angles ¢
and ¥ are similar to right
ascension and declination,
and they describe the inter-
section of the principal
body axis with the celestial
sphere, while 6 1is the
roll angle of the body. Fig-
ure 8 shows the orientation
of the window coordinate
system (1Jk) with respect to
the body axis system (I'J'KO
The space capsule is shown
as conical in shape, since
that seems to be the type of

Figure &.- Orientation of the window coordinate system (ijk) configuration being consid-
with respect to the spacecraft coordinate system (I'J'K'). ered for space capsules of
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the near future. The half-cone angle of the body is shown as C, and the
roll angle of the window out of the reference plane of the space capsule is
given as W. From figure 8, it can be seen that the transformation from the
body axis to the window axis system may be written as

11

(RS

(Y

= [Tygl

.

=
=

where

[Tys] = [Cy1IW, 1T

And the transformation from the equatorial system to the body axis system may
be written as

(Sps -1
i
—
—3
o}
T
[ —
[

>
=>

where
[Tpg] = [6x] 10, 1700,1"

Then the complete transformation from the equatorial system to the window
coordinate system may be given as

i 1
ig= [TypllTgel yJ
k K

Or in terms of a unit vector Sg in the equatorial system and a unit vector
Sy in the window coordinate system

Sy = [, 1w, 16,1 1w, 170,185 (cn

The notation used here for unit angular rotation matrices is the same as that
given in appendix B.

Next, one must develop a vector-matrix equation representing the three-
dimensional refracting surface which may be accomplished in two steps. The
first of these requires that the general shape of the surface be generated by
means of a structural deformation-type program that makes use of the physical
characteristics of the window, the shape and thickness of the window, and the
pressure differential across the window. Programs of this type are available
for use; one of these is described in reference 19. The output of this
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program is the deflection of the window at discrete points over its surface
for any pressure differential. Although this type of information represents
the surface with sufficient accuracy, it is in a nonanalytical form, and if it
is used directly a great deal of interpolation is required since the rays will
invariably fall between the points for which the discrete data are available
Consequently, as a second step, it is considered desirable to convert the

data to an analytical form that is smooth and tractable over the portion of
the window that will come under consideration, and in addition, may be
expressed in the desired vector-matrix form. This may be accomplished by
fitting polynomials to cuts through the surface, and fitting the coefficients
of these equations with polynomials in the remaining variable. The edges of
the windows, as installed in the space capsule, may have clamped or unclamped
edges. Our equation should be capable of representing the highest order

curve thus generated. This would be the case with clamped edges, which pro-
duce curves with two points of inflection. A fourth-degree equation, used
here, will represent this type of surface. This technique can be used for
higher order equations, for which the necessary modifications will be
apparent.

Let us now consider that we have taken cuts through our surface in
planes parallel to the yz plane at constant values of the x coordinate.
Fitting the resultant deflections, in the 2z coordinate, by least squares we
now have several equations of the form

z = Ayt + BXy3 + Cy? + Dy + Eg (C2)

where the coefficients are functions of x. Equation (C2) may now be factored
into the form

Ax Ay
b3 U2 Bx T Bx
z=(y"y>y y 1) {Cxy =Y Cx (C3)
DX DX
EX EX

Since the coefficients are functions of x and are known from the above
mentioned least-squares fits to the original data, we may represent them as

Ax = mppxt + mppx® 4 mygx? ¢ mpx + mlsw

By = mp X' + mypx® + mygx? 4 myuX + mpg

Cx = Mg X' + m3px® + mggx? + mguX + mgg } (C4)
Dx = myy X" + my,x® + mgx? 4 m, X+ om

Ex = mg) X'+ mopx® + mgax® 4+ mg,x + mgg

The values on the left of these equations are known, as is the variable x;
hence we may fit these coefficients with a least-square process also.
Equations (C4) may now be factored into the form
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/AMW Pﬁ 'W (4

X 11 myz mp3 M3y M35 X
By Mpyp Mpp Mp3  Mpy  M2s x3
Cy p=|m31 mgp mg3 m3y M35 x? 5 = [MIX (C5)
Dy My  Myp  My3 My Mg X

k?%/ |Ms1  Ms2  Ms3 sy m5§J k}/

Combining equations (C3) and (C5) yields
z = YI[M]X (C6)

where

~

my;  myp my3  myy M)
M2y my 2 my 3 Moy my 5
[M] = | m3; m3p mg3 mzy M3 (€7)

My  Myp M3 Myy o Mys

sy ms5o mg3 Mey M55
L 2

X - (x* x3 x2 x 1)

?T

1]

ot yiyry 1)

Equation (C7) is known as the surface matrix since it represents the shape of
the surface of the bowed window under a differential pressure of unity. When
the differential pressure is other than unity, equation (C6) is multiplied

by the gage pressure Ap, since we may consider the deflection to be a linear
function of the pressure.

2 = spY [M]X (c8)
Although the quantities Y and X are not true geometrical vectors, since
their elements are not independent, the form of the equation suits our pur-

poses because an expansion of equation (C6) or (C8) produces the mixed
polynomial that we require.
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As indicated in the above development, the [M] matrix would be developed
by first fitting curves as a function of y by least squares at several con-
stant values of x, and then the coefficients from these first fits would
themselves be fitted by least squares as a function of x. A more expeditious
method may be that of forming matrices from the various given values of x, vy,
and z, and solving for the [M] matrix in a single matrix least-squares solu-
tion. This method may be readily developed as follows from equation (C6).

z =Y [M]X

By stacking several of these equations under each other for a constant value
of x and factoring into vector-matrix form we have

Z = [Y][MIX

Now if we stack several of these equations alongside of each other at constant
values of 1y, again factoring into the vector-matrix form, we obtain

(2] = [Y][M][X]

The standard method of forming the normal equations in matrix notation may now
be applied by multiplying through the equation from the left by (Y17 and from
the right by [X]T. Thus

Ty xarxa® o= vatrzaoxgt

Now if sufficient, redundant, independent observations are_available for the
least-squares reduction, the quantities [YIT[Y] and [X][X]T are square,
nonsingular, and symmetrical, but nonorthogonal. Thus if we solve for the
matrix [M] we have

i = (T yD Tz Texapa H (€9)

This is the equation used to deter-
mine the surface matrix [M] when the
description of the surface is
supplied in a rectangular tabular
form.

(Z,~AV,V-k)

Now, having the mathematical
description of the window surface, we
~can determine the intersection of the
assumed interior ray with this sur-
face. This is an iterative procedure,
v and is illustrated in figure 9. Here
the window coordinate system is given
as (1jk), the vector from the origin
locating either the eye of the
observer or some reference of the
instrument used, is given as S, some
Figure 9.- Geometry of the scheme for i{litial ];ay vector as Vi, which ter-

“iterating from the base plane to the minates in the xy plane, and a vec-
surface of discontinuity. tor in the Xy plane closing with
V} as d. Let
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S = Syd + Syj + S5k
Vy = 0i + 85 + yﬁ (C10)
vV, = v,V

where V; is unknown. Now d is of the form

ol

= xli + ylj + 0k
and from figure 9,

d

§+V1{/

decomposing

Y
0 =85, + Viy
then from the third equation
Sy
Vy = - —
! Y
and from the first two
o
Xy = Sx - ;‘Sz
8 (C11)
Y]_zsy_:{-SZ
Now, if we set
AV] = 0 (c12)
compute
~T. .-
z; = ApY, [M]X; (C13)

and project the increment of z; above the V), vector onto the V direction
Ry = (21 - AViV - )k - ¥V = (27 - AViy)y (C14)

Now form
AV, = AVy + Ry (C15)

and compute
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He>
{

Xy + RIQ .

X9 = X7 + Rlu
(C16)

y; * Rlv .

y1 * RyB

e
it

Yo

We may now loop back to the equation for z (eq. (C13)) and continue to
compute until |IR| < e. At this time, the last values computed for x, y,

and z are the coordinates of the point of intersection of our ray with the
refracting surface, to the accuracy which we have specified for e. The basic
scheme of this 1terat10n is that by successively projecting the value of

(z - RV + k) onto the vector V we approach the point of intersection with
the window surface. This system appears to be stable for all continuous
smooth surface functions.

When the coordinates of the point of intersection of the ray vector with
the surface has been established, the unit vector normal to the surface (N)
may be determined from the gradient of the scalar function F

N (€17)
| vF|
where
=T e
F(x,y,z) = z - ApY [M]X =
VF =

3F\ ¢ OF\ 2 3F \ ¢
RN AL
() - e ()

T
gg) = -Ap <%%i> [M]X
dF

<1
<§§%> = (4x3 3x? 2x 1 0)

T
BY _ 3 2
<%;f> = (4y° 3y“ 2y 10)
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and

After the unit vector normal to the surface has been established, the
refracted ray may be computed by an equation which will be developed with the
help of figure 10. The unit vector N is the normal to the surface of
discontinuity, on either side of which exist
| a medium of transmission whose indices of
| refraction, relative to free space, are
| no, and ny;. The incident ray has unit vector
| I and angle of incidence i, while the
refracted ray has unit vector R and refrac-
tion angle r. The two principal precepts of
geometrical optics are that the vectors
I, R, and N are coplanar, and that Snell's
Law holds:

sin i _ N2

sinr m

From the requirement of coplanarity, we may
write

~ ~ ~

I xN sin 1 ¢

I

and

R x N sinr c

Figure 10.- Refraction at a surface of

discontinuity. where ¢ 1is a unit vector normal to I, R,
and N. The elimination of ¢ from the two
equations leaves
. . .

S n 5 1
RxN) =202 (T xN) = — (I xN)
sin i Ny

If now, we cross through this equation with N from the left, we may solve
for the vector R, which gives us

2‘
5 nl N nl A nl A A ~ .
R_<n—2>1+ 1-<n—2) [1—(T-N)2]~<n—2>(I-N)N (C18)

Although this equation has been developed on the basis of refraction, and we
will use it for that purpose, it applies equally well to reflection by merely
setting n; and n, equal to each other and taking the negative sign on the
radical.
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The star unit vector, already transformed into the window coordinate
system, is now compared with the refracted ray R. (For simplicity, we will
call the star vector in the window coordinate system S.) This may be
accomplished by comparing the angle with an arbitrary assigned limit, such as

A ~

IR x §] < ¢ (C19)

Now if the refracted ray R is not alined with the star vector (fig. 11), it
is necessary to modify the internal vector V and continue with another
iteration. The modification
Y ; of the old internal vector
K A _—* may be lished in th
R 70 STAR y _accomplished in the
following manner. Two
assumptions are made. The
first is that the internal
vectors and the external vec-
tors are coplanar; that is

R x § - Vo1d * Vnew
/, ? IR x S| [Vo1d * Vnewl
A di The second is that the magni-
A Vnew tude of the angle change is

modified by the ratio of the
change in the angle of inci-
) dence to the change in the
Figure 11.- Rotation of R into the star vector and generation angle of refraction. If G
of Vnew from Voiq- represents this ratio, then

A
Vold

G‘ﬁ x él = lvold X vnew‘

When the second of these equations is substituted into the first the result
is

vold x Unew = G(R x §)

This may be solved for vhew by crossing through the equation from the
right with Vg,34. The result is

Vnew = G[(R X S) X VOld] + VOld
with the assumption that
Vnew * Vo14 = 1

Since this assumption will destroy the unit magnitude of the vector, the
unit vector may be found from

~ A~

R G[(ﬁ X §) x V 1 +V
0 _ old old (C20)

new - A R N ~
IGIR x 8) x V5141 *+ Vo14l
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The gain factor G may be derived simply by starting with the equation
sin i N2~
sinr m

and differentiating, we have
. np
cos i di = — cos 1 dr
ny

di) _ (M2} R - )
dr ny (iﬁ)
which is the gain factor through a single refracting surface. Now if several

refracting surfaces are in the path of the ray, then we may write, with
sufficient approximation

CEORE @ e

since the change in the incident ray at a surface is equal to the change in
the refracted ray at the preceding surface.

and this we may reduce to

The entire process in its proper order may be conveniently listed in
step form as follows:

1. Transform the observed star unit vector from equatorial inertial
coordinates to window coordinates using equation (Cl1).

2. Assume any convenient value of the internal unit vector V (values
of o, B, and vy in eq. (C10)). A convenient value is o =8 = 0, and vy = 1.

3. Compute the intersection of this vector with the plane of the
undeflected window using equation (C11).

4. Set V; = 0, equation (C12).

5. Using equations (C13) to (C16), iterate to find the intersection of
the ray with the deflected surface of the window.

6. Compute the normal to the surface using equation (C17).
7. Compute the refracted ray using equation (C18).
8. Repeat steps 3 to 7 for each of the refracting surfaces.

9. Using equation (C19), determine the angle between the free-space
refracted ray and the star vector determined in step 1.
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10. If the angle determined in step 9 is too large, compute a new
internal unit vector using equation (C20), including the gain factor computed
from equation (C21).

11. Iterate the entire process from steps 3 through 10 until the angle
determined in step 8 is small enough.

12. The final refracted ray is then coincident with the star ray and
the proper initial internal ray vector has been determined.

This theory has been programmed in FORTRAN IV for operation on an
IBM 7094 digital computer. The operation of the program is completely dis-
cussed in reference 14. An indication of the accuracy of the theory, as
programmed, relative to thin lens theory may be gained by comparing the fig-
ures in table II. These were obtained by computing the deflection of

TABLE II.- COMPARISON BETWEEN DEFLECTION ANGLE COMPUTED BY THIN

LENS THEORY AND THE PRESENT THEORY AND COMPUTER PROGRAM

Angle of | Vertical Deflectlon.angle Deflection angle
.o . from thin from present
incident | location
of ra of T4 lens theory theory and program
Y 4 (sec of arc) (sec of arc)
2.5 12.176 12,182
1.25 6.088 6.094
0 0 0 .006
-1.25 -6.088 -6.082
-2.5 -12.176 -12.170

para-axial rays passing through a thin spherical lens 6 inches in diameter,
0.38 inch thick at the edges with two spherical surfaces of 11.60x107° inch
sagittal height. The dimensions of this lens corresponds to a portion of a
simulated spacecraft window for which other test data were computed. The
equation, in thin lens theory, used as a check was

where
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n,/n, = 1.458
D = 0.380 in.
R = 38,793.10 in. (radius of curvature)

The matrix [M] used in equation (C7) for the computation in the present theory
was

— ~
15 p-y 3 s Lp-s
7 R 0 - 7gR 0 - &R
0 0 0 0 0
N T 1 ,-3 1 -1
M] = Tz R 0 -ZR 0 - 3R
0 0 0 0 0
1 r-3 1o
- g R 0 -3R 0 ho |

This was obtained from the equation for a spherical surface of sagittal
height h

z=h- R+ [RZ - x2 - y2]
by expanding in the binomial theorem. It is apparent from the two right-hand
columns of table II that the two methods of computation differ by a maximum

of only 0'006. This difference could well be due to round off errors in the
computation.
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