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ABSTRACT 

Unsteady flow in a two-dimensional, rectangular cavity with 

the upper wall moving at constant velocity is investigated. A nu- 

merical solution of the Navier-Stokes equations is used in which 

a Poisson's equation i s  solved iteratively for pressure and then 

m m velocities are calculated explicitly, The calculations start with 
A 

I? 
I? 

the fluid at rest in the cavity and continue until no further changes 

in velocity occur, The aspect ratio of the cavity and the Reynolds 

number of the flow are the parameters of interest. 

Results for cavities with aspect ratios of 1/2, 1, and 2 are 

presented for a Reynolds number of 100, For a square cavity, 

results are also given for several Reynolds numbers between 100 

and 500, 

Since the velocities calculated from the unsteady Navier- 

Stokes equations ultimately become steady at large times, they 

may be compared to velocities calculated from the steady Navier- 

Stokes equations or  the results of steady experiments. This has 

been done where possible and generally satisfactory agreement 

is shown. 
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The unsteady results are illustrated by showing velocity pro- 

files and three-dimensional plots of the pressure field at several 

times during the development of the flow for a Reynolds number 

of 500 in a square cavity., The paths of the instantaneous position 

of the vortex centers are also shown for all cases considered. 

The unsteady results are also presented in an accompanying 

16 mm movie in which marked particles are used to show the 

development of the flow. Selected frames of the movie are re-  

produced in the paper to illustrate this method of data presenta- 

t ion. 

INTRODUCTION 

The flow in a two-dimensional rectangular cavity with a mov- 

ing wall gives r i s e  to several aspects of fluid behavior that are of 

interest: accelerating and decelerating portions of the flow, stag- 

nation and separation, and vortex formation, This problem is of 

interest in bearing and seal studies, is difficult to study experi- 

mentally without disturbing the flow, and is interesting in its own 

right. Time exposure photographs have been taken (1,2) of such 

flows into which a t racer  has been injected, so that the qualitative 

features of the steady flow are known. Figure 1 illustrates the 

circulatory motion of the fluid for a square cavity. For cavities 

with aspect ratios (i. e., depth/width) of one or less, most of the 

fluid rotates about a point - the vortex center - where the vector 

velocity is zero. Near the center of the vortex the flow is essen- 
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tially inviscid and velocity varies linearly with distance from the 

vortex center e owever, in the outer portion of the vortex, vis- 

cosity cannot be ignored. The main vortex occupies most of the 

cavity but small, weak, counterrotating vortices exist in both 

lower corners. For a cavity with an aspect ratio of two, Figure 2 

illustrates that there is an additional large, weak, counter- 

rotating vortex occupying most of the lower portion of the cavity. 

Two features, in addition to the experimental and analytical 

difficulties due to the complicated nature of the flow, tend to make 

a numerical solution of this cavity flow problem attractive, namely, 

the geometry is simple and no fluid enters or leaves the cavity so  

that the boundary conditions are easily satisfied. Solutions of the 

steady Navier-Stokes equations have been reported (1, 3,4,  5,6, 

7, 8); unsteady flow in a square cavity has also been solved numer- 

ically, but only steady results were presented in Reference Q, 
The technique devised by Harlow (10) for calculating free sur-  

face flows was modified and used in Reference 11 t o  solve the prob- 

lem of unsteady flow in a square cavity at a Reynolds number of 100. 

The calculations were carried out until velocities were no longer 

changing, at which point they were in excellent agreement with an 

extant numerical solution of the steady Navier-Stokes equations. 

In addition, the terminal position of the unsteady vortex center 

agreed well with the position of a vortex center estimated from a 

time exposure photograph of a steady vortex, 

i 
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The object of the present paper is to extend the solution pre- 

sented in Reference 11 to rectangular cavXies .and Yo higher 

Reynolds numbers, Comparisons a r e  made where possible with 

numerical solutions of the steady Navier-Stokes equations and a 

vortex center position determined experimentally, The unsteady 

results are illustrated by presenting selected frames from a mo- 

tion picture of the development of the flow, using special marked 

particles that move with the fluid and make it visible, 

ANALYSIS 

Differential Equations 

The equations that describe the constant density, two- 

dimensional flow of interest are the continuity equation and (mod- 

ified) Navier-Stokes equations for a Newtonian fluid. 

a t  ay ax ay 

where Re = UL/V is the Reynolds number and q = p h U 2  is a 

dimensionless pressure, The u- and v- components of velocity 

are in the x- and y-directions, respectively, The length and ve- 

locity of the moving wall, L and U, have been used to  make 

these equations dimensionless, 
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Rather than convert to s t ream function and vorticity at this 

point, we have chosen to  retain the primitive variables. Applica- 

tion of the boundary conditions is straightforward and extension 

to  three-dimensions at a la%er date will be easier, We will seek 

an iterative solution to an equation for pressure obtained by dif- 

ferentiating the x- and y-momentum. equations with respect to x 

and y9 respectively, and adding the resulting equations. After 

some rearrangement one obtains a Poissonps equation for pres- 

su re  

The first t e rm to the right of the equ ity sign in Equation (4) 

is the time derivative of the left hand side of the continuity equa- 

tion and, as such, should be zero, The reason for retaining this 

te rm will be discussed in a later section, 

The initial condition and boundary conditions a r e  straight- 

forward. The fluid is at rest in the cavity at the st rt of the c a b  

culation so that initially the velocities a r e  everywhere zero and 

the pressure is uniform, No-slip and impermeability boundary 

conditions require the velocities to vanish at the walls, except at 

the moving wall where the tangential component of velocity attains 

the constant wall velocity, 

Finite Difference Representation 

The positions of the variables on the finite difference mesh 



6 

are shown in Figure 3, The positions are chosen sg that vertical 

walls paqs through positions where the u-component of velocity is 

defined, horizontal walls pass through positions where the v- 

component of velocity is defined, agd pressures are cell-centered. 

These positions have been chwen to facilitate application of the 

boundary conditions 

Tf it is necessary to  evaluate one of the variables at a position 

where it is not defined, an average is used. For example, 

+ U  ) 
1 u -  

i, j - 2 ('i, j+1/2 i, j-1/2 

Centered differences are used to represent derivatives. For ex7 

ample, 

i j - 1  au 
(ui, j+1/2 - ui, j-1/2) 

A - -  
ax m 

When the derivative of a product of undefined quantities is formed, 

the product is differeptiated and then averages are formed. For 

example, performing the differentiation first 
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Difference Equations 

The implicit finite difference form of equatiop (4) i s  

where 

!r =- 1 @, j+l - 2u2 i, j + u2 i, j -1  ) 
i, j 2 6x 

The d. 

and reflect the fact that the continuity equation was satisfied only 

approximately, The time derivative of the correction term alsQ 

are the correction te rms  from the previous time (n)Ot 
1, j 

n+ 1 involves d. j However, since it is desired that; $he cantinytity 

equation be satisfied as closely as posrsible at the new time 

(q+1)6t, the d?:; are set to qero, Tf the correction te rms  were 
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not iqcluded in Equation(9) the presqure iteraticp would have to 

be carried further; this would require more computer tirqe than 

the technique used here. Harlow and Hirt (12) diqcuss the w e  of 

the correction term in more detail. 

The explicit finite differeqce forms of Equations (2) wfl (a) 

f are 

n+l 
'i, ~ + I / z  = ui, j+1/2 1, j + l  

/2 + 'il- 



9 

Fictitious tangential velocities are defined 1/2 mesh spacing 

outside the cavity s o  that the interpolated vqlue at the wall satisn 

fies the no-slip boundary condition, For a gtatipnary vertical 

wall at j - l /2 ,  

vi-1/2, j -1  + v  i-1/z9 j = O for all i (15) 

The normal velocity component at this wall can be written direct- 

ly as 

U i, j-1/2 O for all i (16) 

Similarly, for a stationary horizontal wall at i-l/2, 

for all i U i-1, j-1/2 + ui, j-1/2 = 0 (17) 

'i- 1/2, J . = o  for all i (1 8) 

The initial pressure is chosen to be unity. Thereafter the 

reference point for pressure (where a value of unity is mais- 

tained) is the center of the wall opposite the moving wall. Fic- 

titious pressures 1/2 cell outside the cavity are defiqed since 

they are needed in the solution of Equation (9) for cells border- 

ing the inside of the cavity, Tn order to  solve Equation(9) it is 

necessary to  know the fictitious pressures outside the cavity. 

The Nayier-Stokes equations can be evaluated at the walls tQ pro- 

vide this inform@tiop since the normal cqmponent of velogity is 
alyays zero at a wall, For a left wall qt j+l /2  Equation (13) czw 

be writtelr as 
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For a bottom wall at i+l /2  Equation (14) can be written as 
4 

The velocities are known, either from the initial condition or the 

previous time cycle. 

Marked Particles 

The traditional way of presenting the results of experimental 

o r  numerical fluid mechanical investigations is not the best way 

of helping one form a coherent, overall picture of a complicated 

flow situation; this is especially true if the flow is unsteady. 

Flow visualization experiments, in which a t racer  is introduced 

into the fluid to make its movement visible, have been designed 

to overcome this difficulty in the laboratory. A numerical ana- 

logue of a flow visualization experiment offers the same advan-. 

tqges for numerical fluid dynamics studies. The technique de- 

vised by Fromm and Harlow (13) that uses a microfilm recorder 

to  photograph marked particles displayed on a cathode ray tube 

serves this purpose, 

An initial uniform distribution of one particle per cell is 

created in the fluid, Thereafter, these particles are moved with 

velocities appropriate to their location and time. The distance a 

particle is moved is simply the product of the velocity at its cur- 

rent location and the time interval over which that velocity is as- 

sumed to  exist (io e., , the time step in the solution of the Navier- 



11 

Stokes equations). The u- and v-components of the velocity of a, 

particle are the weighted averages of the velocities at the four 

closest mesh points at which those velocities a r e  defined, Since 

u and v velocities are defined at different mesh locations, ve- 

locities at eight mesh locations will be involved in the movement 

of one particle, The weight assigned to a mesh point velocity is 

inversely proportional to its distance from the particle in ques- 

tion. Figure 4 shows this schematically for a typical particle. 

An exception to this rule of particle movement occurs when 

a particle is within half a mesh spacing of a wall. It was found 

in Reference 11 that a better representation of a particle velocity 

in a boundary layer along a surface is obtained by using only the 

two mesh poiuts within the cavity in calculating the tangential ve7 

locity component, 

Solution Technique 

The computer code to solve the equations was written in 

FORTRAN TV. The solution is accomplished by starting from the 

initial conditions and stepping forward in time, as follows: 

1. At some current time (n)St solve Fquatioh (9) using SUC - 
cessive overrelaxation (14) to obtqin the new pressure field. We 

have used a relaxation factor of 1.8 without any attempt at opti- 

mization, The iteration is continued until the field converges to 

some desired degree, We have found that the criterion suggested 

by Harlow (lo), 
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where a subscript q indicates the qth iteration, is satisfactory. 

2. Increase the time to  (n+1)6t and solve EquatiQns (13) 

and (14) for the new velocities. 

3. Check to see that the continuity equation i s  satisfied suft 

ficiently closely; following Harlow (lo), we make sure  that each 
3 d. is smaller in absolute value than 3.5XlO- . 

1, j 
4. Calculate and s tore  the new positions of the particles. 

5. Store any information from this time step that will be 

needed for print outs Qr data plats. 

This procedure is repeated as long as necessary. 

Since the new velocities are calculated explicitly, the time 

step is limited by stability conditions, Hirt (15) has suggeqted 

approximate cri teria 
-1 1 2 

2 
Re > - 6 t u  

and 

-1  1 2 au Re > - 6 x  - 
2 ax 

where u is the average maximum fluid speed and au/ax is the 

average maximvm velocity gradient in the direction of flow. 

example, the first criterion indicates a time step of about 0.02 

for Reynolds number of 100. Equal space increments of 0.05 were 

used to give a 20 X 20 mesh and it was observed that the second 

For 
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criterion was satisfied also. The same space and time incre- 

ments were also found to be satisfactory fgr Reynolds numberq 

at least as large as 500, indicating that the stability cri teria are 

somewhat conservative for this cavity flow. Some of the calcu- 

lations were also performed with time and space increments 

halved and essentially the same results were obtained. 

About 1/2 minute of TBM System/360 Model 67 computer 

time was required per dimensionless time t regardless of 

Reynolds number for a square cavity. However, longer runs 

were necessary to  reach steady conditions at larger Reynolds 

numbers. The criterion of steady conditions we have used is 

that the position of the vortex center change less than, 1 percwt  

over a period of 5 dimensionless time units. For a Reynolds 

number of 100 this occurred at about a dimensionless time of 

10; for a Reynolds number of 500, it was not reached until about 

a dimensionless time of 25. Twice as many points were used 

for cavities of aspect ratio 1/2 or 2 and about twice as long a 

running time as for the square cavity was needed. 

A 35 mm microfilm recorder is used to record output at the 

completion of a run. For each time step aq outline of the cavity 

and the positions of the particles are plotted on a high precision 

cathode ray tube. For the square cavity, about 0.2 minute of 

computer time per dimensionless time is required for this with 

a time step of 0.02; for the cavities with aspect ratio of 1/2 or  2, 
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this time is doubled since twice as many points are involved. 

The microfilm recorder is also used to  prepare plots of 

data. We make plots of the path of the instantaneous position 

of the vortex center, two velocity traverses through the vartex 

center, and a three-dimensional plot of the pressure field. 

DISCUSSION OF RESULTS 

Aspect Ratio of 1/2, Reynolds Number of 100 

Figure 5 shows a time exposure photograph (1) of a steady 

vortex from which the position of the vortex center can be esti- 

mated. Figure 6 compares this estimate with the position calcu- 

lated by Zuk and Renkel (8) from the steady Navier-Stokes equa- 

tions and the position determined from the unsteady Navier- 

Stokes equations at large times. The numerical solution8 are in 

good agreement with each other and in fair agreement with the 

experimental value. The path of the instantaneous position of the 

vortex center is also shown; it starts under the midpoint of the 

moving wall, shifts downstream (i. e., in the direction of move- 

ment of the wall) and into the cavity, and turns upstream slightly 

to attain its terminal position. 

Figures 7 and 8 compare terminal velocities from the solu- 

tion of the unsteady Navier-Stokes equations with velocities cal- 

culated from the steady Navier-Stokes equations (8). The com- 

parisons are shown as velocity t raverses  through the vortex cen- 

ter; Figure 7 shows velocity parallel to the moving wall in the 
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vertical t raverse  and Figure 8 shows velocity perpendicular to  the 

moving wall in the horizontal traverse.  In both figures the agree- 

ment is good. 

Aspect Ratio of 2, Reynolds Number of 100 

There are two large vortices when the aspect ratio of the 

cavity is 2, Figure 9 compares the terminal positions of both 

vortex centers calculated from solutions of the steady and un- 

steady Navier-Stokes equations at large times. The authors of 

Reference 8 calculated the steady care  for comparison with the 

unsteady result. The numerical solutions are in good agreement 

with each other; no experimental value is available for compari- 

son. The path of the instantaneous position of the upper vortex 

center is also shown and is similar to the path for cavities with 

aspect ratio of 1/2. 

Figures 10 through 13 compare traverses of terminal velo- 

cities calculated from the unsteady Navier-Stokes equations with 

velocities calculated from the steady Navier-Stokes equations. 

The Mreement between the solutions is good. Figures 10 and 11 

are traverses  through the upper vortex center. It can be seen 

that the flow in the upper part of the cavity is similar to the flow 

in the cavity with aspect ratio of 1/2 shown in Figures 7 and 8. 

Figures 12 and 13 a r e  traverses through the lower vortex center. 

The flow in the lower part of the cavity is much slower (about two 

orders  of magnitude) than in the upper part. 
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Square Cavity 

Figure 14 shows a time exposure photograph (1) of a steady 

vortex in a square cavity at a Reynolds number of 100 from which 

the position of the vortex center can be estimated. 

compares this estimate with the positions determined from two 

numerical solutions of the steady Navier-Stokes equations (5, 8) 

and the unsteady Navier-Stokes equations of large times. The 

agreement among these various methods is excellent. The path 

of the instantaneous position of the vortex center is also shown; 

it is similar to the paths for cavities with aspect ratios of 1/2 

and 2. 

Figure 15 

Figures 16 and 17 compare terminal velocities frorp the so- 

lution of the unsteady Navier-Stokes equations with velocities cal- 

culated from the steady Navier-Stokes equations (8). The curves, 

showing t raverses  through the vortex center, are similar to those 

already presented for a cavity with aspect ratio of 1/2. The 

agreement between the solutions is excellent. The flow in this 

square cavity is similar to the flows in the cavity with aspect 

ratio of 1/2 and the upper part of the cavity with aspect ratio of 2 .  

Figures 18 and 19 show how the velocity traverse through the 

vortex center changes as Reynolds number is increased from 200 

to 400. Inspection of these figures shows that an increasing 

Reynolds number increases the extent of the inviscid portion of 

the flow about the vortex center. The only prior calculation 
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available for  comparison (5), a vertical t raverse  from a solution of 

the steady Navier-Stokes equations at Reynolds number of 400, 

shows good agreement in Figure 20 with the solution of the un- 

steady Navier - Stokes equations at large times . 
Figures 21 and 22 show velocity traverses through the vortex 

center for Reynolds number of 500 at various times. It can be 

seen that at successively larger  times the inviscid portion of the 

flow occupies progressively larger fractions of the cavity. 

Figure 23 shows three-dimensional plots of the pressure 

fields for Reynolds number of 500 and the same times as the ve- 

locity traverses shown in Figures 21 and 22. At the upper left 

corner of the cavity the pressure is below the reference pressure.  

The pressure rises along the moving wall, reaching a value about 

40 percent greater than the reference pressure near the upper 

right corner on the last frame. A local minimum, about 8 per- 

cent below the reference pressure, exists at the vortex center. 

The pressure fields for lower Reynolds numbers were similar to 

those shown in Figure 23, but the minimums and maximums along 

the moving wall were more pronounced. 

Figure 24 shows the effect of Reynolds number on the posi- 

tions of the unsteady vortex centers as well as the terminal posi- 

tions of the vortex centers for several Reynolds numbers from 

100 to  500. It can be seen that increasing the Reynolds number 

shifts the terminal position of the vortex center upstream and 
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farther into the cavity. These positions fall quite close to  the 

asymptote from linear theory (5), shown as the line drawn f rom 

the center of the cavity to  the moving wall. The path of the in- 

stantaneous vortex centers moves farther downstream before 

turning down and upstream as Reynolds number increases. 

Marked Particle Plots 

Selected frames from the movie of flow in a cavity with as- 

pect ratio of 2 at a Reynolds number of 100, chosen to  ilhs- 

trate the marked particle plots, are given in Figure 25. The 

first frame shows the initial unifwm distribution of particles at 

rest at the start of the calculation. Succeeding frames show the 

development of the flow at dimensionless t imes of 1, 2, 3, 4, and 

10. The small  triangle above the cavity is used to shqw the ve- 

locity of the moving wall in the movie. 

The circulatory nature of the flow is evident in these figures 

even though it is seen much more dramatically in the movies, 

The effect of the moving wall can be seen to propagate into the 

cavity with time, The lower portion of the cavity remains rela- 

tively quiescent, even at a dimensionless t ime of 10. Later 

frames show the beginnings of the development of the weak vor- 

tices, 

CONCLUDING REMAkKS 

Unsteady flow in a two-dimensional, rectangular cavity with 

a moving wall was investigated by numerically solving the Navier- 



Stokes equations, The calculations started with the fluid at rest 

in the cavity and continued until no further changes in velocity oc- 

curred. Results for cavities with aspect ratios of 1/2, 1, and 2 

were presented for a Reynolds number of 100. 

cavity, results were also given for several Reynolds numbers be- 

tween 100 and 500. 

For a square 

Flow in cavities with aspect ratios of 1/2 and 1, and in the 

upper part of a cavity with aspect ratio of 2, were similar at a 

Reynolds number of $00. This was t rue of the unsteady, as well 

as the steady, flow. 

As the Reynolds number increased from 100 to 500 in a 

square cavity the inviscid portion of the flow occupied a progres- 

sively larger portion of the cavity. At all of these Reynolds nurn- 

bers the inviscid portion of the flow about the vortex center in- 

creased during the initial period. 

For a square cavity the path of the instantaneous position of 

the vortex center approached the downstream wall more closely 

with increasing Reynolds number, even though the terminal po- 

sition Qf the vortex center moved closer to the upstream wall. 

The unsteady results were also presented in an accompanying 

16 mm movie in which marked particles were used to show the 

development of the flow. Selected frames of the movie were re- 

produced in the paper to illustrate this method of data presenta- 

tion. A loan copy of the movie is available on request from the 

author . 
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NOTATION 

correction term, equation (12) 

subscript indicating vertical posit ion 

subscript indicating horizontal position 

reference length (length of moving wall) 

superscript denoting nth time step 

Reynolds number, LU/V 

abbreviation, equation (10) 

time, TU/L 
reference velocity (velocity of moving wall) 

velocity in x-direction, G/U 

velocity in y-direction, V/U 

horizontal direction, X/L 

vertical direction, y/L 

A dimensional quantity is denoted by an overbar o r  capital letter 

Greek letters: 

6t  time step 

6x, 6y space increments 

v kinematic viscosity of fluid 

P density of fluid 

50 

- 
- 

pressure, F,@U 2 
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Figure 4. - Mesh point  velocities used 
to calculate particle velocity. 



p. 
cc 
VI 
VI 

Figure 5. - Time exposure photograph of vortex in cavity of aspect rat io 1/2. Reynolds number = 100 (Ref. 1). 

0 NUMERICAL SOLUTION OF STEADY EQUATIONS 
(REF. 8) - NUMERICAL SOLUTION OF UNSTEADY EQUATIONS 

MOVING 
0 EXPERIMENTALLY DETERMINED FROM FLOW 

VISUALIZATION STUDY (REF. 1) 
0 

TIONS (REF. 8) 
A NUMERICAL SOLUTION OF UNSTEADY 

EQUATIONS 

VORTEX CENTER 

NUMERICAL SOLUTION OF STEADY EQUA- 

PATH OF INSTANTANEOUS POSITION OF - 

VERTICAL 
POSITION 

MOVING WALL 
___+_ 

I.,--START OF CAL- 1 

I I I J 
HORIZONTAL POSITION 

Figure 6. - Position of vortex center in cavity of 
aspect rat io of 1/2. Reynolds number = 100. 

50 1. DO 
VELOCITY COMPONENT PARALLEL TO MOVING WALL 

Figure 7. -Ver t i ca l  velocity traverse th rough  vortex center in 
cav i tyo f  aspect ratio 1/2. Reynolds number = 100. 



MOVING WALL - 
.50 

0 

-. 50 

MOVING 
WALL 

z 
0 

v) 

0 a 
A 

- 
t 

3 c 
(r 

2 

LOWER 
WALL 

- 

0 - NUMERICAL SOLUTION OF STEADY EQUATIONS (REF. 8) 
NUMERICAL SOLUTION OF UNSTEADY EQUATIONS 

VERTICAL 
POSITION 

I I 
DOWNSTREAM WALL 

WALL HORIZONTAL POSITION 
Figure 8. - Horizontal velocity traverse th rough vortex center in 

cavity of aspect rat io 1/2. Reynolds number = 100. I HORIZONTAL POSlTlOl 

;TART OF 
:ALCULATION 

0 NUMERICAL SOLUTION 
OF STEADY EQUATIONS 
(AUTHORS OF REF. 8) 

A NUMERICAL SOLUTION 
OF UNSTEADY EQUA- 
TIONS 

PATH OF INSTANTANEOUS 
POSITION OF VORTEX 
CENTER 

- 

Figure 9. - Position of vortex centers in cav i tyo f  aspect rat io of 2. 
Reynolds number = 100. 

NUMERICAL SOLUTION OF STEADY EQUATIONS 

NUMERICAL SOLUTION OF UNSTEADY EQUATIONS 
0 (AUTHORS OF REF. 8)  - 

-. 50 0 .50 
VELOCITY COMPONENT PARALLEL TO MOVING WALL 

0 NUMERICAL SOLUTION OF STEADY EQUATIONS 
2 (AUTHORS OF REF. 8)  

NUMERICAL SOLUTION OF UNSTEADY EQUATIONS u 
n z .50r - 
w 
n - 1  
E &  

Eg 
2 =  g c  

9 _. 

a 3  

w z  

t. 
t 
V s 

Figure 11. - Horizontal velocity t raverse th rough  upper vortex 
center in cavity of aspect ratio 2. Reynolds number  = 100. 

Figure 10. -Ver t i ca l  velocity traverse th rough  upper vortex 
center ' in  cavi tyof  aspect rat io 2. Reynolds number = 100. 
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Figure 12. -Ver t i ca l  velocity traverse th rough lower vortex 
center in cav i tyo f  aspect ratio 2. Reynolds number = 100. 
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Figure 13. - Horizontal velocity traverse th rough  lower vortex 
center in cavity of aspect ratio 2. Reynolds number = 100. 

Figure 14. - Time exposure photograph of vortex in square cavity. Reynolds number = 100 (Ref. 1). 
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Figure 16. -Ver t i ca l  velocity traverse th rough  vortex center 
in square cavity. Reynolds number = 100. 

Figure 15. - Position of vortex center in square cavity. Reynolds 
number=  100. 
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Figure 17. - Horizontal velocity traverse th rough vortex center 
in square cavity. Reynolds number = 100. 
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Figure 18. -Ver t i ca l  velocity t raverse th rough  vortex center 
in square cavity. 
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Figure 19. - Horizontal velocity traverse th rough vortex center 

in square cavity. 
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Figure 21. - Vertical velocity traverses through vortex 
centers in square cavity. Reynolds number = 500. 
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Figure 20. -Ver t i ca l  velocity traverse th rough vortex center 
in square cavity. Reynolds number = 400. 
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Figure 22. - Horizontal velocity traverses th rough vortex 
centers in square cavity. Reynolds number = 500. 
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Figure 23. - Pressure distribution i n  square cavity. Reynolds number = SOO. 
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Figure 24. - Path of instantaneous position of vortex centers in 
square cavity. 



(b) Time = 1. 

(d) Time = 3. (e) Time = 4. 

Figure 25. - Marked particle plots. Aspect ratio of 2. Reynolds 
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