NASA TM X-2001

NASA TECHNICAL MEMORANDUM

EXPERIMENTAL STUDY OF BLADE-TYPE HELICAL FLOW INDUCERS IN A 5/8-INCH ELECTRICALLY HEATED BOILER TUBE

by Nick J. Sekas and James R. Stone Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . APRIL 1970

1.	Report No. NASA TM X-2001	2. Government Acc	ession No. 3	3. Recipient's Catalo	og No.
4.	Title and Subtitle EXPERIMEN			. Report Date April 1970	
	TYPE HELICAL FLOW IN		6	. Performing Organi:	zation Code
	ELECTRICALLY HEATED	BOILER TUBE			
7.	Author(s) Nick J. Sekas and James F	t. Stone	8	8. Performing Organia E-5524	zation Report No.
9.	Performing Organization Name and A	ddress	10). Work Unit No. 120-27	1107-111-11-11-11-11-11-11-11-11-11-11-11-1
	Lewis Research Center National Aeronautics and S	pace Administr		. Contract or Grant	No.
	Cleveland, Ohio 44135		1:	3. Type of Report an	d Period Covered
12.	Sponsoring Agency Name and Addres	s			
	National Aeronautics and S	pace Administr	ation	Technical Me	morandum
	Washington, D.C. 20546		14	4. Sponsoring Agency	y Code
15.	Supplementary Notes	Mangel of the South State S			
16.	Abstract		an a		
	The effects of blade-type fl	low swirlers on	maximum exit q	uality of a 5/8-i	nch (1.59-cm)
	boiler tube were investigat				
	mass flow rate of 400 lbm/				
	heat flux, inlet water temp				
	sures, and axial wall temp				
	sented in tubular form. Th				
	tube are compared with val				
	flow swirlers. It was foun		-		-
	by adding five swirlers. A			e arop of the tur	be with five
	swirlers was 58 percent gr	eater than for	the plain tube.		
		ι.			
]					
17.	Key Words (Suggested by Autho	t(s))	18. Distribution State	əment	
	Boiler		Unclassified	- unlimited	
	Heat transfer				
	Pressure drop				
	Tube inserts			100	and a second
19.	Security Classif. (of this report)	20. Security Class	sif. (of this page)	21. No. of Pages	22. Price*
1		1			22. Price*
	Unclassified	Uncla	ssified	16	\$3.00

*For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151

EXPERIMENTAL STUDY OF BLADE-TYPE HELICAL FLOW INDUCERS IN A 5/8-INCH ELECTRICALLY HEATED BOILER TUBE by Nick J. Sekas and James R. Stone Lewis Research Center

SUMMARY

The effects of blade-type flow swirlers on maximum exit quality of a 5/8-inch (1.59-cm) boiler tube were investigated. Data were obtained for various swirler spacings at a mass flow rate of 400 pounds per hour $(5.0 \times 10^{-2} \text{ kg/sec})$. Measurements of mass flow rate, heat flux, inlet water temperatures and pressures, outlet vapor temperatures and pressures, and axial wall temperature distribution for each run were made and are presented in tabular form. The quality, pressure drop, and critical heat flux for the plain tube are compared with values for tubes containing various numbers and spacings of flow swirlers. It was found that maximum exit quality increased from 0.30 to 0.60 by adding five swirlers. At a 0.3 exit quality, the pressure drop of the tube with five swirlers was 58 percent greater than for the plain tube.

INTRODUCTION

One of the problem areas of Rankine-cycle space power systems has been the design of high-performance, stable, compact boilers. The boilers must operate at a high heat flux with a minimum of entrained liquid in the outlet vapor stream. Boiling at high heat flux is also applicable to the design of cooling channels for solid-propellant rocket nozzles.

A common method used to reduce liquid entrainment has been to separate the liquid droplets from the vapor by swirling the two-phase mixture, thus centrifuging the liquid to the tube wall. This swirl has been obtained by inserting helical wires or twisted ribbons into the boiler tube, by coiling the tube, or by a combination of inserts and tube coiling. These approaches have resulted in varying degrees of improvement, as for example in the mercury boiler development program (refs. 1 to 4). Some other studies of the effect of swirling on boiler performance are described in references 5 to 7 for potassium boiling and references 8 to 12 for water boiling.

By centrifuging the liquid droplets to the tube wall, a quality higher than that obtained in a plain, straight tube is reached before film boiling occurs. Consequently, a higher heat flux is obtained before burnout occurs. These benefits are accompanied by a larger pressure drop across the boiler.

The object of this investigation was to determine the effects of blade-type helical flow swirlers at various axial spacings on the boiler exit quality, maximum heat flux, and overall pressure drop. The expected advantage of using blade-type swirlers over the types previously mentioned is higher exit qualities at much smaller pressure drops, resulting from the unobstructed flow passages between swirlers. The data from these tests are compared with those for a plain tube without swirlers.

The boiler tube used at this study was 0.625 inch (1.59 cm) in outside diameter, 0.031 inch (0.079 cm) in wall thickness, and 40.0 inches (101.6 cm) long. The swirlers were rotor elements obtained from turbine-type flowmeters, and were centrally installed in the test section without wall contact, and were nonrotating. Most of the data were obtained with boiling fluid flow rates of 400 pounds per hour (5.0×10^{-2} kg/sec). Limited data were obtained at other flow rates.

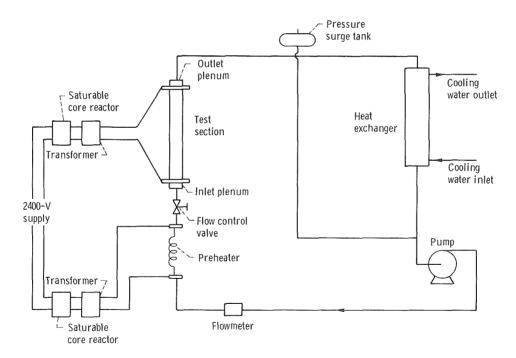


Figure 1. - System flow diagram.

APPARATUS

The experimental data were obtained with the test equipment described in detail in reference 13 and shown schematically in figure 1. The flow system is a closed loop in which water is recirculated by a gear pump. The major components of the loop consist of a resistance-heated stainless-steel preheater, a resistance-heated test section, and a water-cooled heat exchanger. The loop is pressurized at a surge tank which is connected to the loop at the pump inlet. The power for heating the test section is supplied by a saturable core reactor and a 270-kilovolt-ampere transformer.

The test sections used in this investigation were fabricated from 5/8-inch (1.59-cm) outside diameter, 0.031-inch (0.079-cm) wall thickness, type-304 stainless-steel tubing. Each test section was 40.0 inches (101.6 cm) long. Twelve-bladed rotor elements

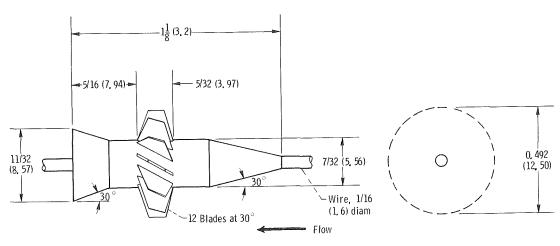


Figure 2. - Swirler diagram. (All dimensions are in inches (mm).)

(fig. 2) obtained from turbine-type flowmeters were used to swirl the flow and centrifuge the liquid droplets to the tube wall. The blades were located at a constant angle of 30° to the tube centerline. These nonrotating rotor elements were centrally installed within the test section by axially positioning them on a 1/16-inch (1.6-mm) diameter stainless-steel wire. This assembly was then centered within the test section tube. The wire and rotor elements were electrically insulated from the tube. The number of swirlers and their respective locations within the tubes are listed in the following table:

Test section	Number of swirlers	Locations of swirlers: distance from outlet, in. (cm)
A	0	
В	1	10 (25.4)
C	1	5 (12.7)
D	2	5 (12.7) and 10 (25.4)
Е	2	4 (10. 2) and 8 (20. 3)
F	3	4 (10.2), 8 (20.3), and 12 (30.5)
G	4	4 (10.2), 8 (20.3), 12 (30.5), and 16 (40.7)
H	5	4 (10. 2), 8 (20. 3), 12 (30. 5), 16 (40. 7), and 20 (50. 8)
I	6	4 (10.2), 8 (20.3), 12 (30.5), 16 (40.7), 19 (48.2), and 22 (55.9)
J	7	4 (10.2), 8 (20.3), 12 (30.5), 16 (40.7), 19 (48.2), 22 (55.9), and 25 (63.5)

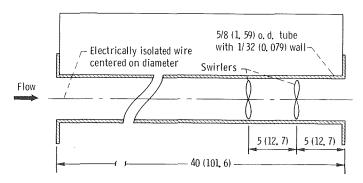
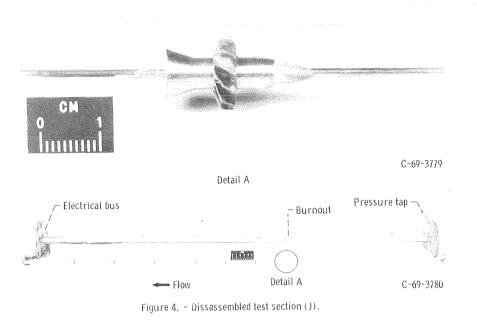



Figure 3. - Schematic diagram of test section D. (All dimensions are in inches (cm).)

The various configurations were tested in order of increasing number of swirlers, and labeled in alphabetical order. Figure 3 is a schematic diagram of a test section assembly. Copper bus bars were attached to both ends of the test section for applying electrical power. A disassembled test section is shown in figure 4.

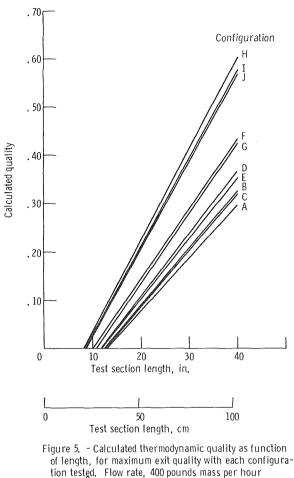
The system flow rate was measured by a turbine-type flowmeter. The flowmeter output was read from a frequency converter and checked with a counter. The test section inlet and outlet pressures were measured by Bourdon-tube gages connected at the inlet and outlet plenums. Chromel-Alumel thermocouples were spotwelded to the outer wall of the test sections at the same circumferential position for all axial temperature measurements. Inlet and outlet bulk temperatures were measured by thermocouples in the liquid stream at the inlet and outlet plenums. All the temperatures were recorded on two single-pen self-balancing potentiometers. The alternating-current power to the test section was measured by a dynamometer-type wattmeter. The voltage drop across the test section was measured by a vacuum tube voltmeter.

PROCEDURE

Each day before data were taken, water was circulated and boiled in the test section. Noncondensable gases were vented from the system through a line connected to the high point of the loop. Dissolved gas content was maintained at less than 3 ppm by weight based on the average molecular weight of air.

In order to check the thermocouples, runs were made in which heat was applied to the preheater only. Since the heat losses from the test section to the surrounding envionment were small, the tube outer-wall temperatures could be checked for consistency against the water bulk temperatures at the inlet and outlet plenums. This was done over the range of bulk temperatures encountered by adjusting the preheater power. The temperature recording instruments were calibrated before and after each series of runs.

The conditions for each run were established by setting the desired mass flow rate and increasing the power to the test section until physical burnout occurred. The inlet temperature was held constant at approximately 75° F (297 K). The burnout point was visually identified as the location at which a segment of the test section turned cherry red in color. Physical burnout and the cherry-red discoloration occurred almost simultaneously.


The criteria used for proceeding from one configuration to the next (i.e., determining the number and spacing of the swirlers) was based on the results of the previous configuration tested. After each configuration was tested and the burnout location was determined, an additional swirler was added, or the previous ones were relocated. This process was continued until no additional improvement in maximum exit quality occurred. Maximum exit quality was limited by system flow instabilities resulting from the interaction of the feed system and boiler because no boiler inlet stabilizing devices were used.

RESULTS AND DISCUSSION

The experimental data for all the configurations tested are tabluated in table I. Presented in this table are the mass flow rate, heat flux, inlet and outlet bulk temperature, and inlet and outlet pressures for each run. Exit quality was calculated from a heat balance and is presented in the same table. Also presented is an axial outer-tube-wall temperature profile for each run. A complete temperature profile was not always obtained for a burnout condition because of the need to shut down the test apparatus. A summary tabulation for the overall pressure drop across each test section configuration at the same heat flux and mass flow rate is presented in the following table:

Test	Exit	Drossi	ire drop,
			- /
section	quality,		ΔP
	percent	psi	kN/m ²
A	29.9	7.0	4.8
В	32.2	8.0	5.5
C	29.2	8.0	5.5
D	28.9	8.0	5.5
E	29.8	8.5	5.9
F	29.1	8.0	5.5
G	28.7	10.0	6.9
Н	30.1	11.0	7.6
I	30.0	10.5	7.2
J	29.1	11.0	7.6

[Heat flux, 350×10^3 Btu/(hr)(ft²) (1.1×10⁶ W/m²); flow rate, 400 lbm/hr (5.0×10⁻² kg/sec).]

 $(5.0 \times 10^{-2} \text{ kg/sec}).$

Calculated thermodynamic quality as a function of length for tests in which maximum exit quality was achieved with each configuration at a flow rate of 400 pounds per hour $(5.0 \times 10^{-2} \text{ kg/sec})$ is presented in figure 5. The increase in quality at constant length with increasing number of swirlers is apparent. The maximum quality obtained was approximately 0.6 (configuration H with five swirlers). When configurations I and J, which contained six and seven swirlers, respectively, were tested, the exit quality did not improve. As shown in the preceding table, the increase in pressure drop at 0.3 exit qualbetween configuration H and A (plain tube with no swirlers) was from 7 to 11 psi (4.8 to 7.6 kN/m²). This was a 58-percent increase in pressure drop. The experiments in reference 11 showed a 400 percent increase in pressure drop for a helical wire insert at a pitch-to-diameter ratio of 1.9 over that for the plain tube at a quality of 0.30.

The maximum exit quality as a function of flow rate for configurations A, D, and H is shown in figure 6. As expected, an increase in quality was observed with decreasing

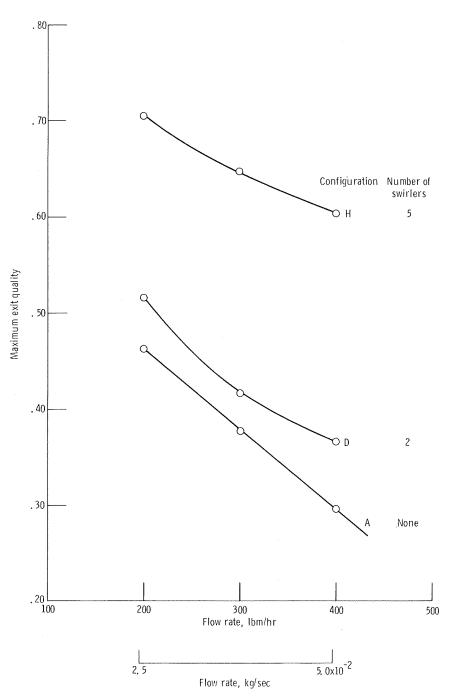
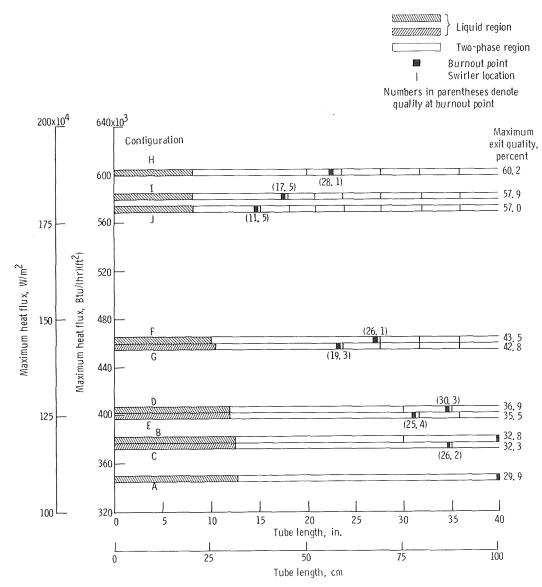
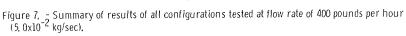




Figure 6. - Maximum exit quality as function of flow rate for configurations A, D, and H.

flow rate. However, the rate of increasing quality is somewhat greater for the plain tube (configuration A) than for configuration H.

A chart summarizing the results of all the configurations tested is presented in figure 7. Maximum quality and heat flux are charted for all configurations. The calculated start of the boiling region is indicated with respect to the test section length for all configurations tested. The calculated quality at the point of burnout is shown in parentheses under the point of burnout.

CONCLUDING REMARKS

The present investigation has indicated that at constant inlet temperature and flow rate the maximum exit quality and the burnout heat flux of boiler tubes can be increased with the proper number and spacing of blade-type helical flow swirlers.

A 100 percent improvement in maximum exit quality (from 0.3 to 0.6) over the plain tube was obtained with a tube containing five swirlers spaced 4 inches (10.2 cm) apart. With this configuration, the pressure drop was increased 58 percent over the plain tube when compared at the same flow rate and exit quality.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, January 30, 1970, 120-27.

REFERENCES

- Wallerstedt, R. L.; and Miller, D. B.: Mercury Rankine Program Development Status and Multiple System Application. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 3-51.
- Gresho, P. M.; Poucher, F. W.; and Wimberly, F. C.: Mercury Rankine Program System Test Experience. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 52-102.
- Gordon, R.; and Slone, H. O.: SNAP-8 Development Status September 1965. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 103-138.
- Kreeger, A. H.; Hodgson, J. N.; and Sellers, A. J.: Development of the SNAP-8 Boiler. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 285-306.
- 5. Peterson, J. R.: High-Performance 'Once-Through' Boiling of Potassium in Single Tubes at Saturation Temperatures of 1500[°] to 1750[°] F. NASA CR-842, 1967.
- Bond, J. A.; and Converse, G. L.: Vaporization of High-Temperature Potassium in Forced Convection at Saturation Temperatures of 1800^o to 2100^o F. NASA CR-843, 1967.
- Boppart, J. A.; Parker, K. O.; and Berenson, P. J.: Multiple-Tube Potassium Boiler Performance. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 327-356.

- 8. McAdams, W. H.; Woods, W. K.; and Bryan, R. L.: Vaporization Inside Horizontal Tubes. Trans. ASME, vol. 63, no. 6, Aug. 1941, pp. 545-552.
- Carver, J. R.; Kakarala, C. R.; and Slotnik, J. S.: Heat Transfer in Coiled Tubes with Two-Phase Flow. Res. Rep. 4438, Babcock and Wilcox Co. (AEC Rep. TID-20983), July 31, 1964.
- 10. Owhadi, Ali: Boiling in Self-Induced Radial Acceleration Fields. Ph.D. Thesis, Oklahoma State Univ., 1966.
- Stone, James R.; and Sekas, Nick J.: Tests of a Single Tube-In-Shell Water-Boiling Heat Exchanger with a Helical-Wire Insert and Several Inlet Flow-Stabilizing Devices. NASA TN D-4767, 1968.
- 12. Stone, James R.; and Sekas, Nick J.: Water Flow and Cavitation in a Converging-Diverging Boiler Inlet Nozzle. NASA TM X-1689, 1968.
- Jeglic, Frank A.; Stone, James R.; and Gray, Vernon H.: Experimental Study of Subcooled Nucleate Boiling of Water Flowing in 1/4-Inch-Diameter Tubes at Low Pressures. NASA TN D-2626, 1965.

XPERIMENTAL DATA	
Ē	
'	
ц,	
TABLE	

le, ^o F Remarks hlet	30 35 40		269 275	295 287 282	296 296	306 300	306 296	309 310 304		282 303 593		298	1	286	287 Burnout		312	312 Burnout		296 293	Burnout 5 in. from outlet		328 321 311	337 337 315	340 332 323 Burnout 2 in. from outlet 319 311 303		Burnout	304 294 294	301 Burnout 10 in. from outlet		339 323 312
Temperature profile, Inches from inlet	10 15 20 25		7 278 273	5 298 292	307 302	310 313 304	3 314 318 308	323 309		L 301 304 298 295		1 321 329 318 310	323 329 319	6 303 312 303 294			2 348 353 341 334			3 346 346 337 330			4 341 337 337 332	350 343 343 337	328 328 328 328 322			310 312 311 306		L	341 328 336 330
pr p	psia 5	Configuration A	16.2 277	17.3 305			18.0 323	18.0 327		17.5 301 17.5 315		17.5 321		17.0 306		Configuration B	18.0 342	-	Configuration C	18.0 343	19.0	Configuration D	19 424	20 439	18 356		1	17.5 384	1	Configuration E	19 338
Exit Inlet quality, plenum percent pressure,	psia	Ŭ	16.5	0.12 18.5			. 23 22. 0	.26 23.0		. 22 19.0 39 99 0		.35 23.0			. 46	ŭ	0.32 26.0	. 33	ŭ	0.29 26.0	. 32 27.0	ö	0.30 27	. 33 28	.38 26		. 43	. 46 22	. 52	ŏ	0.30 27.5
Outlet tem- perature, oF			216.5	220.0	220.0	220.7	220.7	220.7	221.5	217.3			-20	218.0	218.0		225	225		221	223		223	224	225	225	224	224	224		225
(ft^2) Inlet tem-			73.		79.5	84.0	85.5	86.0	86.0	75.0	77.0	79.5	83.0	77.0	77.0) ³ 84.0	85.		3 77.	80.0) ³ 73.5	81	04 85	85	86		91.5		3 81.5
Flow Heat flux, rate, Btu/(hr)(ft ²) lbm/hr			401 126×10 ³	400 214	·						302 310	302 296		201 234			397 365×10			398 346×10		3		400 375				203 237			400 351×10 ³
Run 1 R				5					Ŀ- 0					13			15			17				20				25			27

		Burnout 12 in. from outlet				Burnout 16 in. from outlet								Burnout 17 in. from outlet			Burnout 25 in. from outlet		Burnout 12 in. from outlet					Burnout 22 in. from outlet				Burnout 25 in. from outlet
	314 315 315 303	321 310 314		301 295	323 316	321	- -		328 320	336 325	346 334	352 338	362 350	1	303 298	323 316		292 277	1 1 1 1 1		309 298	330 315	354 336	350		304 302	346 339	
		338 332		317 312	337 328	1 1 1 1		317 315	340 338	348 343	358 355	366 362	375 371		313 319	333 330		301 305			322 315	341 337	365 359	1 1 1 1		319 314	360 355	1
	332 334	343		323	347	1	1	321	338	342	354	363	368	1	314	327	345	301	314		315	339	357	368		319	359	
	339 336 346 335	352 343		325 325	355 350			339 337	365 364	374 372	384 382	393 391	388 396	1	334 330	356 357	1	316 318	1 		332 329	360 355	382 376	1		341 323	384 365	
	339 341	348		323	355			338	366	374	385	395	404	1	336	359	1	322	1 1 1		334	362	391	-		346	390	
Configuration F	19. 19. 5	19.5	Configuration G	18	20	8 1 1	Configuration H	18.5	19.5	20	21	21	21.5	:	18	18.5	1 1 1	17.5	1	Configuration I	18.5	20	21	1 1 1	Configuration J	18	20	
Conf	27 32.5	33.8	Conf	28	35	4	Cont	29.5	36	38	41	44	46	1 1 1	28	34	1	20.5	1	Con	29	36	43.5	1	Con	29	41	1
	0.29 .37	. 42		0.29	. 39	. 43		0.30	.40	.44	. 43	. 53	. 57	. 60	. 40	. 52	.65	. 53	- 70		0.30	.41	. 53	. 58		0.29	. 49	. 57
	216.5 213	213.3 213.3	-	212	213	213		218.5	221	220.7	223				220.7	220.7	220.7		218.5		220.7	221.5	223	223		217	221	221.5
	69 74.5	72.7 73		66	64	64		80.7	77.5	80.7	81.5	82.5	83	83	75	75.5	76	72.5	75		82.5	81.5	83.5	83.5		72	73.5	80.7
	349×10 ³ 408	442 455		345×10 ³	436	459		351×10 ³	436	461	500	530	565	599	324	396	479	271	347		349×10 ³	436	530	577		347×10^{3}	503	568
	400 403	400 397		401	405	399		401	401	401	402	401	400	406	300	301	306	201	206		399	400	402	406		400	401	401
	29 30	31		33	34	35		36	37	38	39	40	41	42	43	44	45	46	47		48	49	50	51		52	53	54

	Remarks										Burnout		-	Burnout				Burnout			Burnout		-	Burnout 12.7 cm from outlet				Burnout 12.7 cm from outlet	Burnout 12.7 cm from outlet	Burnout		Burnout 25.4 cm from outlet			Burnout 20.6 cm from outlet
			101.6		408	412	417	418	420	424	430	412	418	 	421	423	414	415		429	429		418	1		428	431	435	# 1 7 1 7 1	1	419	423		429	434
	X		89.9		405	415	420	422	426	428	1	1	1		1	1	1	1			1		420	1		434	443	440	440	1	419	1		435	439
	file, K	Centimeters from inlet	76.2		1	419	420	426	1	427	1	1	424		1	1	1	1			1 1 1		1	1		438	443	444	2	1	424	1		444	450
	Temperature profile,	s fro	63.5		407	418	423	424	427	427	1 1 1	419	425	1	428	428	419	1		441			439	1 1 1		440	443	446		1	426	1		439	445
	peratu	imeteı	50.8		410	421	426	429	432	435	1	421	428	!	432	433	424	1		445	l		443	i i		443	446	450		 	428	ł		442	449
	Temı	Centi	38.1		-	 		1	1		1 1 1	424	434	1	438	438	429	1		452	1		448	 		443	446	450	001		429	1		438	443
			25.4		-	1	1	428	430	1	1	423	431		434	435	424			449	1		448	1		445	450	454		!	428	1		445	452
			12.7	A	409	425	428	433	435	437	1	423	431	1 1 1	434	435	426	1	В	446	!	U	446	1	A	491	499	493	3 1	1	469		ы ы	443	-
(b) S.I. units	Outlet plenum	pressure, kN/m ² abs		Configuration.	111.7	119.3	117.2	120.7	124.1	124.1	124.1	117.2	120.7	1	120.7	120.7	117.2	1	Configuration	124.1	 	Configuration	124. 1	131.0	Configuration D	131.0	137.9	137.9	1.721	6 8 7 6	120.7		Configuration	131.0	137.9
	Inlet plenum	pressure, kN/m ² abs			113.8	127.6	131.0	141.3	151.7	158.6	172.4	131.0	151.7		158.6	156.5	137.9	1		179.3			179.3	186.2		186.2	193.1	206.9		8	151.7			189.6	206.9
	Exit	quanty, percent			1	0.12	. 16	. 20	. 23	. 26	. 30	. 22	. 32	. 37	. 35	.38	. 45	. 46		0.32	. 33		0.29	. 32		0.30	. 33	. 37	. 42	. 43	. 46	. 52	1	0.30	. 36
	Outlet tem-	perature, K			376	378					379	376	377							381	381		378	379		379	380	381	381	380	380	380		381	381
	Inlet tem-	perature, K			296	298	300	302	303	303	303	296	297	298	300	302	298	298		302	303		298	300		296		302	303	303	306	306			303
	Heat	w/m^2			397×10 ³		772	841	914	989	1093	687	866	97.6	932	958	737	765		1150×10^{3}	1181		1090×10^{3}			1106×10^{3}		1266	304 1052	1033	747	816			1241
	Flow rate,	kg/sec			5.045×10 ⁻²	5.032	5.070	5.007	5.057	4.994	5.032	3.749	3.787 5.760	3. 199	3.799	3.749	2.529	2.541		4.994×10 ⁻²	5, 082		5.007×10 ⁻²	5.107		5.045×10 ⁻²	5.032	5.007 2.740	3. 774	3.761	2.554	2.529		5.032×10 ⁻²	5.032
	Run				1	2	es	4	ŝ	9	£	œ	<i>с</i> ,	01	11	12	13	14		1	16		17	18		19	20	21	23	24	25	26		27	

TABLE I. - Concluded. EXPERIMENTAL DATA

				Burnout 30.5 cm from outlet				Burnout 40.7 cm from outlet								Burnout 43.2 cm from outlet			Burnout 63.5 cm from outlet		Burnout 30.5 cm from outlet					Burnout 55.9 cm from outlet				Burnout 63.5 cm from outlet
	431	424	428	430		419	431	434		422	433	436	441	443	450	1	421	431	1	409	1		421	431	442	450		423	444	1
	430	431	434	1		423	435	1		426	438	442	448	451	457	1	424	435	1	418	1		427	439	452	1		424	448	;
	434	436	440	1 1 1		429	438			431	443	446	453	457	462	1	433	439	1	425	1		431	443	455	1		430	453	:
	437	439	443			432	443	1 		432	444	449	454	459	464	:	429	441	1	423	1 1 1		434	445	458	1		433	456	
	440	441	446	1		435	448	ł		434	443	446	452	457	460		430	437	447	423	430		431	444	454	460		433	455	
	442	442	446			436	450	}		443	458	462	468	473	476	4 5 1	439	454		432	1		438	453	464	1		435	458	-
	444	448	451	1		436	453	1 1		444	458	463	469	474	471	1	441	453	1	431	1		440	456	468	1		445	458	
E.	444	445	449	-	U	435	453	1	Н	443	459	463	469	475	480	1	442	455	!	434	1	I	441	457	473	1	J	448	472	4
Configuration	131.0	134.5	134, 5		Configuration	124. 1	137.9		Configuration	127.6	134.5	137.9	144.8	144.8	148.2		124.1	127.6		120.7		Configuration	127.6	137.9	144.8	1 7 1 1	Configuration	124. 1	137.9	-
	186.2	224.1	233.1	****		193.1	241.3	1		203.4	248.2	262.0	282.7	303.4	317.1	k k 1	193.1	234.4		141.3	6 6 8 8 8		200	248.2	299.9	6 6 8 8		200.0	282.7	1
	0.29	. 37	. 42	. 44		0.29	. 39	. 43		0.30	. 40	. 44	. 43	. 53	. 57	. 60	. 40	. 52	. 65	. 53	. 70		0.30	.41	. 53	. 58		0.29	. 49	. 57
	376	374	374	374		373	374	374		377	378	378	379				378	378	378	377	377		378	379	379	379		376	378	378
	294	297	296	296		292		291		300	299	300	301	301	302	302	297	298	298	296	297		301	301	302	302		296		300
	1099×10	1285	1392	1433		1087×10^{3}		1446		1106×10^{3}		1452	1575	1670	1780	1887	1021	1247	1509	854	1093		1099×10^{3}		1670	1818		1093×10^{3}		1789
	5.032×10 ⁻²	5.070	5.032	4.994		5.045×10 ⁻²	4.095	5.019		5.045×10 ⁻²	5.045	5.045	5.057	5.045	5.032	5.107	3.774	3.787	3.849		2.591		5.019×10 ⁻²	5.032	5.057	5. 107		5.032×10^{-2}	5.045	5.045
	29		31			33	34	35		36	37	38	39	40	41	42	43	44	45	46	47		48	49	50	51		52	53	54

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 OFFICIAL BUSINESS

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546