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TECHNICAL MEMORANDUM X-53990 

TORSIONAL VIBRATION ANALYSlS OF SATURN VEHICLES 

SUMMARY 

Methods for finding the torsional vibration modes for either a beam-like 
vehicle, such as Saturn V, o r  a multibeam vehicle, such as  Saturn IB, are  
developed. The single beam analysis is a Stodola iteration method. The 
Saturn IB vehicle is mathematically modeled as  a system of beams and connecting 
members. The modes of the vehicle are composed of the superimposed com- 
ponents of normal beam modes plus rigid body motion. 

A comparison is made with dynamic test data, The calculated frequencies 
differed from the experimental values by an average of 8 percent for the cases 
compared. 

INTRODUCTION 

This program was developed to find the normal torsional vibration modes 
(frequencies and mode shapes) of space vehicles, especially Saturn IB vehicles. 

Torsional vibration modes of the Saturn IB and other clustered booster- 
type vehicles cannot, of course, be analyzed by the usual beam type of analysis. 
While it is possible to wri te  a general matrix solution to the total vehicle 
represented as a lumped-mass system and solve for all modes, this method is 
usually not practical for large structures because of computational problems. 
The superimposed normal mode technique used here has been found to give 
accurate results for the lower modes of the vehicle. A similar method for 
bending vibrations is described in Reference I. A proof of the independence of 
the bending and torsional modes is given in Reference 2. 

In the idealized model, the beams on the vehicle centerline are  vibrating 
The torsional in torsion while the booster outer tanks are  bending tangentially. 

modes for the center beams are calculated within the program; the bending 
modes a re  calculated by the Stodola bending program [ 31 and the data are  trans- 
ferred on magnetic tape. The beam torsion portion of the program is also 
used alone to analyze single-beam vehicles, such as the Saturn V. 



ANALYSIS 
This program is divided into two parts. The first part analyzes any 

vehicle that can be represented by a beam, and the second specifically analyzes 
the Saturn IB vehicles. 

Modes for vehicles that can be represented by a beam are calculated by 
a Stodola iteration technique. Options exist for the three possible end conditions: 
free-free , cantilever, and clamped-clamped. A special feature is a data- 
interpolation routine to convert data from furnished stations and units to the 
system desired for use in the program. 

The second o r  multibeam part of the program is specifically for analysis 
of Saturn IB torsional vibrations. Torsion modes of the upper stage and center 
tank, tangential bending modes of the outer tanks, and rotations of the rigid 
masses provide the degrees of freedom for the system. Certain modes that 
involve outer tank motion only and that are of no interest are lost in grouping 
the four outer tanks of each type. Expressions for kinetic and potential energy 
are used to derive a matrix equation by use of Lagrange's equation. The matrix 
equation is solved for eigenvalues to find the vehicle mode shapes. 

Single-Beam Analysis 
The Stodola method for beam torsional vibrations is an iterative 

integration method. Basically, a torque distribution, which is integrated to 
find the deflections at each station, is assumed, and a new torque distribution 
is calculated from the inertial loading. The iteration is repeated until the 
frequency, as calculated from energy considerations, converges within the 
desired tolerance. Provision is made for all end conditions, The geometry of 
the model is given in Figure 1. 

First, an initial torque distribution is assumed: 

free-free 

(O) (x) = (x-c) (x-d) 
v= 1 

T 
P 

2 



cantilever 

(O)  (x) = (x-d)2 
v = i  

T 
P 

clamped-clamped 

The subscript p always denotes the mode number, while the superscript in 
parenthesis denotes the iteration number. 

Next, the torsional displacements are  calculated: 

free-free 

" OP J 

cantilever, clamped-clamped 

= o  (n) e 
OP 

, 

(3b, 3c) 

For modes other than the first, the mode shapes must be purified by 
removing components of all lower modes. 
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d 

J '8 2(x) dx 
V 

C 

The square of the circular frequency can now be calculated from energy 
considerations. 

C 

The mode is then normalized by dividing by the displacement with the largest 
absolute value: 

The torque caused by inertial loading can now be calculated and the boundary 
conditions applied. 
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free-free 

= o  (n) T 
OP 

cantilever 

clamped-clamped 

A test for convergence can now be made. 

If 

the program has converged. The final values of 6 (n) (x) , Tp(n) (XI and 

w (’) 
P 

, respectively. will be designated 6 (x) T (x) and w 
c1 P P c1 
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If the program has not converged, T (x) from equation (9) is 
P 

entered as T (n-i) (x) in equation (2 ) ,  and the iteration is repeated. Several 

terms of interest may be calculated after the last iteration. 
P 

w 
P f '  = -  

P 2I.I 

d 

V = 0 2 J  
P P P  

d 
J = J' (x) dx 

C 

The following are calculated only for clamped-clamped beams: 

d 
J2c = J'(x) (= d-c ' I  

(13b) 

(14) 
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A uniform beam was analyzed and comparisons were made between 
exact solution results and Stodola method results in Tables 1 and 2 for 6=0.001 
and 6=0.0001, respectively. Decreasing the tolerance from 0.001 to 0.0001 
had little effect on the frequency prediction accuracy, but the accuracy of the 
generalized mass calculations was improved. 

Mult iple Beam Analysis 
The Saturn IB vehicle is idealized as a system of beams connected by 

elastic and rigid members. A schematic view of the model is shown in Figure 1. 
The upper stages a re  modeled as a torsional beam cantilevered from the top of 
the spider beam, and the center tank is modeled as a clamped-clamped torsional 
beam. The outer tanks of the booster are given degrees of freedom bending 
tangentially. Because of the symmetry, the four tanks of each kind (LOX and 
fuel) can be lumped into one beam of each kind. The outer tanks have a hinge 
with a rotational spring at each end. The tail structure is considered to be 
rigid. The spider beam has degrees of freedom defined for the rigid-ring 
attach points of the center tank, outer tanks, and upper stages. 

The motion of the vehicle is defined in terms of the linear and angular 
displacements defined above and in Figure I. The kinetic energy (KE) and 
potential energy 

i KE = - 
2 

(PE) can be expressed as follows: 

R2 m' (x) 1 + "( ia2-b,) 
+ 4 C : J  t=i It t xa-Xb 

2 i 2 1  I 
2 ai a i  2 a2 a2 2 a3 a3 2 b b 

+ - J  6 + - J  i + - J  2+LJi 
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A MATRJX 
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- 
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B = H  - N  
j4 cj cj 

B.. = J forj =i , = 0 for ' j  $1 u cj 

JT tk + ( m e  t - xB t ) HTtk 

Btk3 = 0 

JT + (I - m e t  + xBt)H Btk4 tk 
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where 

N , J , H H J , and J are as definedfor the 
J ~ c ’  J2c’ cj u ui’ cj’ ui cj 

single -beam analysis with subscripts Iruff and I fCff  designating upper stage 
and center tank, respectively, and rciff and fljlf are  modal indexes. 

XMC = mass center for outer tank. t 

MOt = Jxml (x) dx 
1 

xB = outer tank lower end coordinate. t 

COMPARISON WITH EXPER IMENT 

Mode shapes and frequencies calculated by the multibeam torsion pro- 
gram are compared with experimentally determined modes in Figures 2 
through 8. The experimental data were taken from References 4 and 5, which 
report dynamic tests of a Saturn IB type launch vehicle. The particular data 
compared are for the test vehicle in the SA-202 configuration (Fig. 9) and 
for mass distributions corresponding to the conditions at lift-off and at first 
stage cut-off. 
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In the ‘dynamic tests two of the first stage oxygen tanks and two fuel 
tanks were instrumented. The dynamic tests, therefore, showed some of the 
modes involving motion of one oxygen tank relative to the other and the fuel 
tanks relative to each other. These modes a re  not defined by the program since 
the mathematical model used only three beams to represent the first stage; one 
beam represented the four outer LOX tanks, one represented the four fuel tanks, 
and one represented the center tank. The first four calculated modes corre- 
sponded to the first four experimental modes (Fig. 2 through 5). Two of the 
modes involving relative motion of first stage oxygen and fuel tanks were found 
in the dynamic tests at frequencies between those in Figures 5 and 6. For the 
modes and frequencies presented, the calculated frequencies differed from 
the measured freqpencies by an average of 8 percent. 

16 



TABLE 1. FREQUENCY AND GENERALIZED MASS ACCURACY 
(tolerance = 0.001) 

End 
Cond. Mode Exact Stodola 

0.01283 0.01283 
0.03848 0.03848 ' 0.06413 0.06417 
0.08977 0.08988 

0.02565 0.02565 
0.05130 0.05132 
0.07695 0.07701 
0.10260 0.10274 

t 

Canti- 
lever 

Free- I 1 
free 2 

3 
4 'T 4 

0.02565 0.02565 
0,05130 0.05132 
0.07695 0.07701 
0.10260 0.10277 

TABLE 2. FREQUENCY AND GENERALIZED MASS ACCURACY 
(tolerance = 0.0001) 

2. MasE 
Exact 

:. Mass 
Stodola 

Percent 
Error  

0.03 
0. 14 
0.33 
0. 28 

0.03 
0. 20 
0. 44 
0. 61 

0.01 
0. 32 
0. 41 
1.11 
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End w w Percent 
Cond. Mode Exact Stodola Error  

1 
2 
3 
4 

1 
2 
3 
4 

- 

150.00 
150.00 
150.00 
150.00 

150.05 
149.79 
149. 51 
149.58 

Canti- 
lever 

0.01283 0.01283 
0.03848 0.03848 
0.06413 0.06416 
0.08977 0.08987 

0.02565 0.02565 
0.05130 0.05132 
0.07695 0.07701 
0.10260 0.10274 

0. 00 
0. 00 
0. 05 
0. 11 

0. 00 
0. 04 
0. 07 
0. 14 

Free- 
free 

150.00 
150.00 
150.00 
150.00 

149. 95 
149.70 
149. 34 
149.08 

Clamped- 
clamped 

0. 00 
0. 04 
0. 07 
0. 14 

150.00 
150.00 
150.00 
150.00 

150.01 
149. 52 
149. 38 
148. 34 

0.02565 0.02565 
0.05130 0.05132 
0.07695 0.07701 
0.10260 0.10274 
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