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s trac t 

So lu t ions  f o r  t h e  s t eady- s t a t e ,  wind-driven c u r r e n t s  i n  Lake 

Erie have been obta ined  by numerical  methods. A shallow l a k e  model, 

which does not  r e q u i r e  the  f r i c t i o n  l a y e r s  t o  be small by comparison 

with t h e  depth of t h e  l ake ,  has  been used. I n  o rde r  t o  o b t a i n  some 

of t h e  observed f e a t u r e s  of t h e  c u r r e n t s ,  i t  was necessary t o  use 

a r e l a t i v e l y  small g r i d  (3.22 ki lometers ) .  This  g r i d  w a s  v a r i a b l e  

in size for  the mesh points adjacent to the boundaries, thus per- 

mitting an accurate approximation of the boundary. 

The v e l o c i t y  as a func t ion  of depth and h o r i z o n t a l  p o s i t i o n  has 

been determined. Resul t s  are presented  f o r  southwester ly  and 

n o r t h e a s t e r l y  winds. I n  both cases, narrow bands of s t rong  c u r r e n t s  

were found near  t h e  sho re ,  

were evident .  The c a l c u l a t e d  r e s u l t s  compare q u i t e  w e l l  wi th  seabed 

d r i f t e r  measurements and o t h e r  observa t ions .  

I n  o t h e r  areas, l a r g e  subsur face  gyres  

I 

2 



In t roduc t ion  

A cons ide rab le  amount of numerical  work has been done i n  cal- 

c u l a t i n g  t h e  s t eady- s t a t e ,  wind-driven c u r r e n t s  i n  the  Great Lakes 

with t h e  except ion of  Lake Erie. To o u r  knowledge no d e t a i l e d  

c a l c u l a t i o n s  have been done f o r  Lake Erie. 

Lake E r i e  d i f f e r s  i n  c h a r a c t e r  from t h e  o t h e r  Great Lakes i n  

t h a t  i t  is  very shallpw, As shown i n  Figure 1, the  mean depths  

of t h e  Western, Cen t ra l ,  and Eastern b a s i n s  are only 7.3, 18.3, and 

24.4 meters r e s p e c t i v e l y .  

a n a l y s i s  somewhat d i f f e r e n t  and more d i f f i c u l t  than t h a t  f o r  t he  

The shallow depth of t h e  l a k e  makes t h e  . 
o t h e r  Great Lakes s i n c e  t h e  usua l  Ekman dynamics can no longer  be  

used. 

I n  Ekman dynamics, t h e  bottom stress i s  p ropor t iona l  t o  a 

geostrophic  v e l o c i t y  and can be c a l c u l a t e d  from an i n t e g r a t e d  stream 

funct ion.  This s i m p l i f i e s  t h e  a n a l y s i s  considerably.  An example 

of t h e  a p p l i c a t i o n  of Ekman dynamics t o  t h e  deeper Great Lakes i s  

given by Rao and Murty (1969). However, Ekman dyanmics is  only 

v a l i d  when t h e  th i ckness  of  t h e  f r i c t i o n  (or Ekman) l a y e r  i s  n e g l i -  

g i b l e  by comparison wi th  t h e  depth of t h e  lake.  In  Lake Erie, f o r  

moderate winds, t he  th i ckness  of t h e  f r i c t i o n  l a y e r  is  comparable t o  

the  depth of much of t h e  l a k e ,  The necessary extension of t h e  Ekman 

a n a l y s i s  t o  t h e  case of a shallow l a k e  has been given by Welander 

(1657) and t h a t  theory has been used h e r e  with s l i g h t  modif icat ions.  

The shal low depth of t h e  l a k e  does make a s t eady- s t a t e  a n a l y s i s  va l id  

over  a g r e a t e r  pe r iod  of time s i n c e  the  set-up t i m e  should be  s h o r t e r  
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than f o r  t h e  o t h e r  Creat Lakes. 

The s o l u t i o n s  have been obtained by numerical  methods using' 

f i n i t e  d i f f e rences .  The present. formulation allows t h e  c a l c u l a t i o n  

of t h e  magnitude of 'all t h r e e  components of t h e  v e l o c i t y  as w e l l  

as t h e  s u r f a c e  water displacement. 

s i z e  has  been used and work i s  proceeding on a 1.61 ki lometer  (1 m i l e )  

g r i d  c a l c u l a t i o n .  These g r i d  sizes are necessary i n  o r d e r  t o  o b t a i n  

an adequate approximation t o  t h e  c u r r e n t s  n e a r  shore where t h e  depth 

is  shallow and is changing q u i t e  r a p i d l y .  

A 3.22 kilometer  (2 mile) g r i d  

It is hoped, by t h e  com- 

p a r i s o n  of t h e s e  f a i r l y  d e t a i l e d  c a l c u l a t i o n s  with measurements, 

t h a t  i t  w i l l  be  p o s s i b l e  t o  b e t t e r  e s t a b l i s h  t h e  range of v a l i d i t y  

of a s t eady- s t a t e  ana lys i s  f o r  Lake Er ie .  

Mathematical Model and Method of Ca lcu la t ion  

In the  p re sen t  a n a l y s i s ,  t he  b a s i c  assumptions are t h a t  t h e  

water d e n s i t y  i s  cons t an t ,  t h e  vektical eddy v i s c o s i t y  is independent 

of depth bu t  dependent on wind v e l o c i t y  (or s u r f a c e  wind stress), t h e  

p re s su re  i s  hydros t a t i c ,  and the l a t e r a l  f r i c t i o n  and non-linear 

acce le ra t ion  terms can be neglected.  The neg lec t  of lateral f r i c t i o n  , 

means that the  two t r a n s v e r s e  f r i c t i o n  terms i n  t h e  Navier-Stokes equa- 

t i o n s  a r e  small compared t o  t h e  v e r t i c a l  f r i c t i o n  term. Lake Ekie is 

s t r a t i f i e d  during the  summer months and t h e r e f o r e  t h e  case presented 

he re  app l i e s  only t o  the fa l l ,  spr ing ,  and those  per iods  i n  the w i n t e r .  

when t h e  lake i s  not  i c e d  over.  

These assumptions reduce t h e  Naviex-Stokes equat ions t o  two 

equat ions containing t h e  h o r i z o n t a l  v e l o c i t i e s  and t h e  s u r f a c e  water 
I 

s l o p e  as unknowns. The boundary cond i t ions  are t h a t ,  a t  t h e  bottom, 
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t h e r e  is  no s l i p  and, at the  f r e e  s u r f a c e ,  t he  wind stress is  pre-  

s c r ibed .  These equat ions  and boundary cond i t ions  can then be solved 

a n a l y t i c a l l y  t o  g ive  the  v e l o c i t y  as a func t ion  of t he  depth wi th  

the  s u r f a c e  wind stress and s u r f a c e  water s l o p e  as parameters.  

r e s u l t  (Welander, 1957) i s  

The 

1 sinh E ( h  + 2) 1 [ T ~  + T ~ ]  
u + i v =  

cosh E z 

1 cosh ,@ h - 
-11  [%+ ax 

where i = a. Here x and y are h o r i z o n t a l  coord ina tes  i n  the  East 

and North d i r e c t i o n s ,  u and v are the  corresponding v e l o c i t i e s ,  and 

z is  t h e  v e r t i c a l  coord ina te  and is  p o s i t i v e  upwards. The l a k e  bottom 

is a t  z = -h(x,y) ,  t h e  f r e e  s u r f a c e  is a t  z = t ( x , y ) ,  z = 0 

corresponds t o  t h e  undis turbed s u r f a c e ,  g i s  t h e  a c c e l e r a t i o n  of 

g r a v i t y ,  v is t h e  c o e f f i c i e n t  of v e r t i c a l  eddy v i s c o s i t y ,  f i s  t h e  

C o r i o l i s  parameter,  and T i s  t h e  s u r f a c e  wind stress wi th  components 

T and T i n  t h e  x and y d i r e c t i o n s .  This s o l u t i o n  f o r  t h e  v e l o c i t i e s  

r e p r e s e n t s  t h e  sum of the  d r i f t  cu r ren t  (propor t iona l  t o  wind s t r e s s )  
X Y 

and g r a d i e n t  c u r r e n t  (p ropor t iona l  t o  the  s l o p e  of t he  f r e e  s u r f a c e ) .  

To complete the  s o l u t i o n ,  t h e  c o n t i n u i t y  equat ion  
I 
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and Equation (1) a r e  i n t e g r a t e d  i n  t h e  v e r t i c a l  d i r e c t i o n  t o  g ive  

a M  a M  
X + Y _ * O  
ax ay 

r e s p e c t i v e l y ,  where M and M are t h e  i n t e g r a t e d  mass f l u x  components 

i n  t h e  x and y d i r e c t i o n s ,  and A = A(h) and B = B(h) are func t ions  

of t h e  l o c a l  depth. By e l imina t ing  the  mass f l u x e s  from these  equa- 

X Y 

. 
t i o n s ,  one arrives a t  an equat ion  f o r  t h e  s u r f a c e  e l e v a t i o n  (Welander, 

1957) of t h e  form, 

where f l ,  f 2 ,  and f 

of t h e  depth wi th  r e s p e c t  t o  x and y. 

of t h e  wind s h e a r  stresses. 

are func t ions  of t h e  depth and t h e  d e r i v a t i v e s  3 
I n  a d d i t i o n ,  f 3  is a func t ion  

However, i t  is more convenient t o  use the  i n t e g r a t e d  stream 

func t ion  9 ,  def ined  by Mx = a$/ay and My = - a+/ax, as the  dependent 

v a r i a b l e  because of t h e  s i m p l i c i t y  i n  s t a t i n g  the  boundary cond i t ions ,  

i.e., JI = cons tan t .  

Equation (3) i n t o  Equation ( 5 ) ,  one ob ta ins  

By us ing  t h e  d e f i n i t i o n  of I/J and s u b s t i t u t i n g  
I 



and g3 are func t ions  of t h e  depth and i ts  d e r i v a t i v e s  1' g2' where g 

and g 

func t ion  must be s p e c i f i e d  on t h e  boundary as determined by t h e  

r i v e r  in f lows  and outf lows.  Details 'of t h e  above formulat ion can 

be found i n  Welander (1957) and Gedney (1970). Once JI is determined 

f o r  a s p e c i f i e d  T and T 

t h r e e  velocity components can be ca l cu la t ed .  

is a l s o  a func t ion  of t he  wind shea r  stresses. The s t ream 3 

t h e  water s u r f a c e  e l e v a t i o n  and t h e  
X Y '  

I n  o rde r  t o  s o l v e  f o r  t h e  stream func t ion ,  t he  depth  and the  

d e r i v a t i v e s  of t h e  depth wi th  r e spec t  t o  x and y mus t  be  known. 

These func t ions  were determined f o r  Lake Erie a t  r e g u l a r  g r i d  

spacings by curve f i t t i n g  t h e  b e s t  a v a i l a b l e  da t a .  The i s l a n d s  i n  

t h e  wes tern  b a s i n  were approximated by underwater mounds wi th  the  

maximum water depth over  t h e  i s l a n d  i n t e r i o r  never  exceeding 2.4 

meters (8 f e e t ) .  This  i s  a f a i r l y  good approximation t o  t h e  a c t u a l  

cond i t ions  s i n c e  very l i t t l e  mass f l u x  r e s u l t s  when t h e  depths  are 

t h i s  small. 

The i n t e g r a t e d  stream func t ion  J, was solved f o r  by f i n i t e  

d i f f e r e n c e  methods. The JI d e r i v a t i v e s  were expressed i n  terms of 

c e n t r a l  d i f f e r e n c e  formulas. For p o i n t s  ad jacen t  t o  the  boundaries ,  

a non-uniform g r i d  spacing w a s  incorpora ted ,  i .e. ,  a p o i n t  on t h e  

boundary was used as p a r t  of t he  g r i d .  The method of success ive  

over - re laxa t ion  was employed t o  s o l v e  the  r e s u l t i n g  system of 5-point 

d i f f e r e n c e  equat ions .  
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Resu l t s  

The c a l c u l a t e d  Lake Erie c u r r e n t s  f o r  West 32 degrees South 

and North 40 degrees East winds a r e  presented i n  Figures  2 and 3. 

A D e t r o i t  r iver inf low and a Niagara r i v e r  outflow of  5,380 cub ic  

meterslsec. has  been included.  These c u r r e n t s  have been c a l c u l a t e d  

using a f r i c t i o n  l a y e r  depth d of 18h3 meters (60 f e e t ) .  

d = r m  where v and f are as def ined previously.  

Here 

The va lue  of 

t h e  s h e a r  stress used w a s  t h a t  corresponding t o  a 2.7 meter/sec. 

( 5  m i l e l h r . )  v e l o c i t y  wind. The va lue  of t h e  wind speed chosen i s  

somewhat t y p i c a l  of t h e  d a i l y  r e s u l t a n t  wind as published by t h e  

U. S. Weather Bureau. The r e s u l t a n t  wind is  t h e  v e c t o r  sum of  t h e  

wind v e l o c i t y  observed a t  r e g u l a r  i n t e r v a l s  divided by t h e  number 

of observat ions.  Because of t h e  v a r i a t i o n  i n  wind d i r e c t i o n ,  t h e  

r e s u l t a n t  speed i s  t y p i c a l l y  1/2 of t h e  average wind speed f o r  t h e  

day and very o f t e n  i s  i n  t h e  2.5 t o  3.0 meter/sec. range. By t h e  

use of t h e  d a i l y  r e s u l t a n t  wind it i s  hoped t h a t  some agreement can 

be reached between t h e  present  a n a l y s i s  and d a i l y  average cu r ren t  meas- 

urements and thus  demonstrate t h e  u t i l i t y  of s t e a d y - s t a t e  wind analyses .  

For both Figures  2 and 3, p a r t s  A through C show t h e  h o r i z o n t a l  

c u r r e n t s  f o r  Lake E r i e  a t  0, 4 .27  and 7.32 meters below t h e  s u r f a c e .  

P a r t  D shows h o r i z o n t a l  c u r r e n t s  f o r  a constant  1.22 meters above 

t h e  l a k e  bottom. The beginning of t h e  arrow r e p r e s e n t s  t h e  a c t u a l  

l o c a t i o n  of t h e  c u r r e n t  r ep resen ted  by t h e  arrow. The magnitude 

of' t h e  v e l o c i t y  can b e  determined from t h e  v e l o c i t y  scale i n d i c a t e d  

on t h e  f igu re .  Note t h a t  t h e  v e l o c i t y  scale f o r  t he  bottom c u r r e n t s  

i n  p a r t  D is d i f f e r e n t  f r o m t h e s c a l e  f o r  t h e  A,  B and C p a r t s .  
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The Cen t ra l  and Eastern Basin s u r f a c e  c u r r e n t s  shown i n  Figures  

2A and 2B are t r a n s p o r t i n g  mass toward t h e  Eastern and Southern 

boundaries.  A subsurface c u r r e n t  r e t u r n s  t h i s  mass i n  t h e  oppos i t e  

d i r e c t i o n  as shown i n  Figures  2C and 2D, The Cen t ra l  and Eastern Basin 

s u r f a c e  c u r r e n t s  are i n  gene ra l  smaller i n  t h e  c e n t e r  of  t h e  l a k e  

than n e a r  t h e  sho re ,  This e f f e c t  is e s s e n t i a l l y  due t o  t h e  r e l a t i v e l y  

l a r g e  subsu r face  r e t u r n  c u r r e n t  down the  c e n t e r  of t h e  l ake  which i s  

oppos i t e  i n  d i r e c t i o n  t o  t h e  s u r f a c e  c u r r e n t  and s u b t r a c t s  from i t .  

Near t h e  sho res  t h e  subsu r face  c u r r e n t s  are almost normal t o  t h e  

sho re ,  causing a d e f l e c t i o n  of the  top s u r f a c e  v e c t o r  and inc reas ing  

its magnitude. 
. 

The Western Basin is g r e a t l y  inf luenced by t h e  i s l a n d s ,  t h e  

D e t r o i t  r iver  inf low and its shallow depth. A s  shown i n  2B t h e r e  

i s  a subsu r face  r e t u r n  flow a t  a depth of 4.27 meters i n  the  Western 

Basin. This  r e t u r n  flow is  n o t  dominant i n  t h e  o t h e r  bas ins  a t  

t h i s  depth.  This of course i s  due t o  t h e  shal low depth of t h e  

Western Basin. Observations seem t o  i n d i c a t e  a clockwise s u r f a c e  

flow around Pe lee  and Kel ley 's  i s l a n d s  ( t h e  two most eastern i s l a n d s )  

f o r  a southwest wind. There is p a r t i a l  evidence of t h i s  as seen i n  

Figure 2A. A t  a depth of 4.27 meters, Figure 2B, t h e r e  i s  even more 

evidence of t h e s e  clockwise flows. The s t r o n g  s u r f a c e  c u r r e n t  

oppos i t e  t o  t h e  wind d i r e c t i o n  a t  t h e  Southern end of Ke l l ey ' s  i s l a n d  

has  been noted by measurements. I n  gene ra l  however, t h e  agreement 

with measurements i s  n o t  e n t i r e l y  s a t i s f a c t o r y  i n  the  i s l a n d  area. 
I 

If t h e  measurements are c o r r e c t ,  t h i s  may be due t o  ( a )  t r e a t i n g  the  
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i s l a n d s  as underwater mounds, (b) using a r e l a t i v e l y  l a r g e  g r i d  

compared t o  t h e  s i z e  of  t h e  i s l a n d s ,  o r  ( c )  spec i fy ing  the  wrong wind 

d i r e c t i o n .  Therefore  w e  are proceeding t o  c a l c u l a t e  t he  c u r r e n t s  i n  

t h e  i s l a n d  area wi th  a smaller mesh s i z e  and a t r u e r  geometry. I n  

a d d i t i o n  the  e f f e c t s  of  wind d i r e c t i o n  w i l l  be  i n v e s t i g a t e d .  

ong p o r t i o n s  of t h e  North Shore i n  t h e  Cen t ra l  Basin t h e  

bottom c u r r e n t  as shown i n  Figure 2 D  is  g e n e r a l l y  toward t h e  shore 

i n d i c a t i n g  areas of upwelling. This upwelling f o r  Southwest winds 

has been observed and, according t o  Hart ley (1970), may b r ing  

n u t r i e n t s  up from t h e  bottom sediment t o  the  s u r f a c e  waters causing 

t h e  l a r g e  a l g a e  blooms i n  Late summer. 

Along o t h e r  po r t ions  of t h e  Central  Basin we f i n d  p a r a l l e l  

sho re  c u r r e n t s  f o r  a l l  depths.  These occur i n  f a i r l y  narrow bands 

and can only be c a l c u l a t e d  a c c u r a t e l y  by a f a i r l y  small v a r i a b l e  

g r i d  of t h e  type used here.  We see t h a t  i n  t h e  Eastern b a s i n  the  

depths  are deep enough near  t h e  sho re  so t h a t  t h e  bottom c u r r e n t s  

shown i n  Figure 2D are more perpendicular  than p a r a l l e l  t o  t h e  shore.  

It is  of interest t o  compare the  bottom c u r r e n t s  shown i n  

Figure 2D near t h e  sho re  wi th  seabed d r i f t e r  measurements r epor t ed  

by Hart ley (1968) and given h e r e  i n  Figures  4 and 5. The seabed 

d r i f t e r s  were set ou t  i n  the  summer of 1965. I n  comparing t h e s e  

measurements with t h e  c a l c u l a t e d  r e s u l t s  w e  must make the  assumption 

t h a t  t h e  thermocline i n  t h e  c e n t r a l  bas in  does no t  s i g n i f i c a n t l y  

change the flow nea r  t h e  shore from t h a t  which occurs i n  the  constant  
I 

d e n s i t y  lake.  The thermocline i n  t h e  las t  h a l f  of summer is approxi- 

mately r e s t r i c t e d  t o  t h e  i n t e r i o r  of t h e  18.3 meter (60 f o o t )  contour 
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shown i n  Figure 1. It is  be l i eved  t h a t  t h e  d r i f t e r s  with which we 

are t r y i n g  t o  compare our  r e s u l t s  were not  dropped i n  t h e  region of 

t h e  thermocline e 

The seabed d r i f t e r  a t  t he  top of Figure 4 i n  the c e n t r a l  b a s i n  

which t r a v e l e d  t h e  g r e a t e s t  d i s t a n c e  was r e l eased  on 7/30/65 a t  the  

o r i g i n  of t h e  arrow and beached at Long Po in t  on 8/10/65. 

t h e  arrows shown i n  Figure 4 do no t  n e c e s s a r i l y  denote t h e  pa ths  of 

d r i f t e r  movement. 

Note t h a t  

During t h e  t i m e  pe r iod  from 7/30 t o  8/10, t h e  winds were 

predominantly ou t  of t h e  South with a r e s u l t a n t  speed nea r  3 meterslsec. 

For t h e  W32S wind case given i n  Figure 20 w e  have a c u r r e n t  which 

ag rees  with t h e  d r i f t e r  movement. 

t h i s  c a l c u l a t i o n  a t  t h e  h e i g h t  from the bottom the  d r i f t e r  w a s  

supposed t o  act ,  t h e  est imated t r i p  t i m e  w a s  c a l c u l a t e d  t o  be 5 

times longe r  than  observed. This may poss ib ly  be  due t o  t h e  f a c t  

t h a t  t h e  wind d i r e c t i o n  i n  t h e  c a l c u l a t i o n  is  n o t  from t h e  South. 

A more Souther ly  wind w i l l  produce h ighe r  c u r r e n t s  i n  the  d i r e c t i o n  

of t h e  d r i f t e r  movement. 

sho re  c u r r e n t s  i n  t h e  area of  Long Po in t  are much reduced o r  completely 

By using t h e  v e l o c i t y  d a t a  from 

' 

For a more n o r t h e r l y  wind t h e  p a r a l l e l  

e l iminated.  See F igu re  31, f o r  t h e  e f f e c t  of a N40E wind. 

Some of t h e  d r i f t e r  r e t u r n s  a long t h e  South shore of t h e  Central 

b a s i n  were a l s o  r e tu rned  i n  a s h o r t  t i m e  ( l e s s  than 15 days) a f t e r  

being r e l e a s e d  during a per iod o f  predominantly Southwesterly winds. 

These r e s u l t s  are i n  g e n e r a l  agreement with t h e  c u r r e n t s  shown i n  

Figure 3D. Many o t h e r  of t he  d r i f t e r s  dep ic t ed  i n  Figure 4 and a l l  

11 



those depicted in Figure 5were not recovered until a relatively 

long time had elapsed and winds of a variety of directions had 

occurred. During this time period the drifters probably moved in 

many directions f o r  varying lengths of time and a comparison with 

data is not possible. 

N40E and W32S wind indicates some of the extremes in direction 

A comparison of the bottom currents of a 

the drifters could have taken. 
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Figure aa). = Surface velocities. 
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Figure 2(b). - Horizontal velocities at a constant 4.27 meters (14 feet) from surface. 



INFLOW 
i WIND W32S 

+ 

+ 
e 

. 
h 

f - c  

f . 6 .  c l. 

c r, 
f - c  

f- 

L 

4 - c  

CMiSEC 
\ . '  

c 
c 

Figure 2(cL - Horizontal velocities at a constant 7.32 meters (24 feet) from surface. 



Figure 2(d) Horizontal velocities at a constant 1.22 meters (4.0 feet) from lake bottom. 
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Figure 3(a) Surface velocities. 



Figure 3(b) Horizontal velocities at a anstant  4.27 meters (14 ft) from surface.. 
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Figure 3(c) Horizontal velocities at a constant 7.32 meters (24 ft) from surface. 
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Figure 3(d). - Horizontal velocities at a constant 1.22 meters (4..0 f?) from lake bottom. 
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Figure 4. - Seabed dri f ter returns dur ing last half of 1965. 
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Figure 5. - Seabed drifter returns during f irst half of 1966. 
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