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FOREWORD

The results presented in this report were the accomplishments of a
research and development project performed for the Vibration and Acoustics
Branch of the Goerge C. Marshall Space Flight Center, National Aeronautics
and Space Administration under Contract No. NAS8-21403, This work has been
accomplished by the Vibration and Acoustics Group, Structural Engineering
Branch, Chrysler Corporation Space Division, Huntsville Operations from 1
July 1968 to 31 July 1969. Eleven Monthly Progress Reports have been sub-
mitted for the past months presenting derivations of equations and analyses
of results. The final results of this project are presented in Two Volumes:
This is Volume One, Theoretical Analyses, and Volume Two is a Users' Manual
for Computer Program RANDOM.
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ABSTRACT

Formulations were derived and computer programs were written to
calculate the random vibrational responses of rectangular cylindrical
panels cross~reinforced with ribs and stringers subjected to the fluctuating
pressure enviormments. Three boundary conditions are congidered: four
edges simply supported; four edges clamped; two opposite edges simply sup-
ported and the other two clamped. Special cases of complete cylinders and
flat panels are also included. The computer programs can be selected to run
on any one or all three of the boundary conditions. Either the spectral
density or the one-third —octave level of the excitation pressure may be
input in any discrete frequencies. The computer programs will apply when
either the complete panel or a portion of it is subjected to the excitation
pressure, The frequency equations are incorporated in the computer programs.
Input data include only the geometric dimensions and material properties of
the panel. Tormulations are according to the normal mode approach. The
responses calculated are the acceleration, the displacement, and the stress
spectral densities. Mean-square and rcoot—-mean-square values are calculated by
numerical integration. All spectral densities are tabulated and plotted.
New expressions for the joint acceptance of all mode combinations for dif-
ferent correlation functions are derived. Both the main and the cross terms
are taken into account to obtain the responses. Up to 625 terms are summed
to obtain the spectral density at one data point. More than 1000 data points
are calculated for each spectrum. Both the local responses at any point and
the average responses over the complete panel are calculated. The program
can be used to investigate the contribution of main terms and cross terms.
Comparigson of calculated results with test data shows good agreement.
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I. ZINTRODUCTION

The purpose of this project was to develop computer programs to calculate
the random vibrational responses of rectangular cylindrical shell panels cross~
reinforced with ribs and stringers. The boundary conditions considered are four
edges simply-supported, four edges clamped, and two opposite edges simply-sup-
ported while other two clamped. The special cases of complete cylinders and
flat panels are also included.

A total of more than ten programs have been developed. The main program
RANDOM contained the formulations for the three boundary conditions and will
caleulate the responses with a single loading of the input data, It can also
be selected tc calculate the responses for any one of the three boundary
conditions. For accurate results, and large frequency range, programs were
written for each boundary condition to perform special investigations.

The one-third octave spectrum of the excitation pressure is read in as
input in a sequence of any discrete frequencies. Hence, any excitation pres-—
sure spectrum of any shape can be used as input. This improves the simulation
of the excitation pressure field. The excitation spectrum is converted into
pounds-per-square—inch squared per Hertz. Excitation pressure for each data
point frequency is obtained by interpolatiom. The excitation pressure spec-—
trum is plotted out both in decibel gcale and in (psi)?2 per Hertz.

The formulations are according to the normal mode approach. Both Alan
Powell's [1] joint acceptance and Y. K. Lin's [2] cross spectral density of the
peneralized foree are used in the formnlations. The relation of these two
quantities is derived. The advantages and disadvantages of each are discussed.
The analytical expressions of these two quantities for all mode combinations
for two correlation functions are derived. These are believed to be new. One
correlation function is exponentially decaying with separation distance and
frequency while the other is a cosine function with exponentially decaying
amplitude. Separate computer programs are written to study the joint acceptance
and the cross spectral density of the generalized force. It is found that the
curves of the joint acceptance and the cross spectral density of the generalized
force are very regular for the exponentially decaying correlation function. The
behavior of these quantities for the sinusoidal and exponentially decaying
correlation Ffunction is very irregular.

Contributions of both the main terms and the cross terms are summed to
obtain the responses. The one n—th octave bandwidih is used for frequency incre-
ment to save computer time and yield smooth spectral density plots of the
responses. The frequency range for the spectrum is 5000 Hertz or more. Up to
625 terms are summed to give the response spectral density at each data point.
More than 1000 data points can be calculated for each response spectral density
plot. The responses are calculated as the displacement, the acceleration, and
the stress gpectral densities. Mean-square and root-mean—square values are
calculated by numerically integrating the area under the spectral demsity curve.
The response spectral densities are tabulated and plotted in graphical forms with
the root-mean-square value printed at the top of the plot. The programs will
apply when either the complete panel or a portion is exposed to the excitation



preasure. Both the local responses at any point and the average responses over
the whole panel can be calculated by the programs,

In one of the programs, the acceleration spectral density is expressed
in decibels referenced gravity acceleration and the vibro—acoustic transfer
function is calculated as the acceleration spectral density minus the excitation.

This is very useful for the investigation of the transfer function of aerocspace
vehicle structures.

Separate programs are written to investigate the contribution of the
cross terms to the total response. It is found that although the cross terms
do not contribute very much to the mean-square response, they do affect the
shape of the response spectral density plot to a certain degree.

The natural frequencies of the panel are caleculated in the programs.
These frequency equations are newly derived or medification of those available
in the literature. For panels of upniform thickness, these equations are the
same as those in the literature., For cylindrical shell panels cross-reinforced
with stiffeners, no frequency equations can be found in the literature that can
be advantageously used in the programs. These newly derived equations though
approximate in nature, yet yield reasonable results. The frequency equations
account for the boundary cenditions, the rigidity of the stiffeners, and the
curvature of the shell. They are not very complicated so they can be incor-
porated into the computer programs without requiring a large amcunt of computer
time.

A program is written to calculate the total number of natural frequencies
up to a certain range and the modal density. This program is useful in the
investigation of the dynamic characteristics of the structure.

By utilization of the developed computer programs, investigations on the
effect of boundary conditions on the responses, on the contribution of each
mode and the cross terms to the responses are performed. It is found that the
more rigid the boundary condition, the less the displacement spectral density
and the larger the acceleration spectral density at resonance. The root-mean-
square displacements for the three boundary conditions are not very much different.
Estimation of the responses are made by the spectral density at fundamental mode.
It is found that the fundamental mode contributes up to 50%Z of the mean—square
responses, and the second mode contributes more to the acceleration than the
displacement responses.

By assuming that the continuous structure vibrates at its fundamental
mode, simple formulas are derived to calculate the response spectral density
and the mean-square responses. It is found that good approximation of the spec-
tral density at fundamental mode and the mean-square responses can be obtained by
intelligent use of these formulas.

Comparison of the computed results with experimental data from projects, the
Chrysler Huntsville Operations is presently conducting for Marshall Space Flight
Center, shows good agreement.



Since all the derivations of the equations used were reported in the
Monthly Progress Reports, only the resulting equations are presented in
this Final Report. For detail derivation, the reader will be referred to
the applicable Monthly Progress Reports,



IT. FORMULATTIONS

2.1 Frequency Equations

2.1.1

pressed as

wjk

2.1.2

Four Edges Simply-Supported Rectangular Cylindrical Shell

Panels Cross—-Reinforced With Stiffeners

The undamped natural frequencies of four—edges simply supported
rectangular shell panels cross—reinforced with ribs and stringexs may be ex-—

2o (1) m(3 ()" 5, ()

Eh(»gl)l' }1/2
2

S+ ()]

(2.1-1)

Four Edges Clamped Rectangular Cylindrical Shell Panels Cross-—

Reinforced with Stiffeners

The frequency equations for cylindrical shell panels with
edge conditions other than simply supported are involved and complicated.

However, reasonable accurate expressions may be given as follows:
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2.1.3 Two Opposite Edges Simply-Supported and the Other Two Clamped
Rectangular Cylindrical Shell Panels Cross-Reinforced With
Stiffeners

~

The frequency equations for this case are as follows:

2 4 4 2 2
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= undamped natural frequeney in radians per second

(2.1-3)



The rigidities are given by (refer to Figure 1 for geometric dimensions)

__m_, Eh
x 12(1~v%) by
5 ) q__lﬂii__ . E'12
7 12(1~-v%) it
B 12(;::;2) @
The smeared—-out mass per unit area is
M = ph+ p'h' (2.1-5)
) = Young's modulus of panel skin
E' = Young's modulus of stiffeners
h = Thickness of panel skin
k' = Smeared-out thickness of stiffeners
v = Poisson's ration of panel skin
a = Radius of shell
ag = Spacing of width-direction stiffeners
by = Spacing of length-direction stiffeners
b = (Clircumferential width of panel
2 = Axial length of panel
I; = Moment of inertia of one length-direction stiffener with respect
to neutral axis
12 = Moment of inertia of one width direction stiffener with respect

to neutral axis
p = 'Mass density of panel skin

p = Mass density of stiffeners



2.1.4 Flat Panels

The flat panel is the limit of a cylindrical shell panel when
the radius approaches infinite. All the frequency equations for the shell
panels reduce to the corresponding equations of the flat panels, when the
radius "a" approaches infinite.

2.1.5 Complete Thin-Walled Cylinders

It can be shown that the frequency equations of the two-
side simply~supported and the other two clamped rectangular cylindrical shell
panels reduces to those of complete thin-walled cylinders with both ends
simply-supported when the circumferential width "b" is equzl to ma. Similarly
the frequency equations for complete thin-walled cylinders with both ends
fixed are identical with those of four-side clamped rectangular cylindrical
shell panels with circumferential width equal to wa. Hence, the upper limit
of the circumferential width for the validity of the frequency equations is

b < mwa

When b egqual te wa, the difference between the complete cylinders and the
shell panels lies in that the index k in the frequency equations gives the
number of waves around the circumference of the complete cylinder but the
number of half-waves in the shell panel. The index j gives the number of
half-waves in both the complete cylinder and the shell panel.

2,1.6 Cylinders and Shell Panels of Uniform Thickness

When the moment of inertia of the stiffeners, [Ij and I, in
Equation (2.1-4)]approach zero or when the spacings of the stiffeners [a] and
b3l in Equation (2.1-4) approach infinite, the cylinders and the shell panels
will be of uniform thickness. Equation (2.1-4) shows this is actually the case.
Therefore all the frequency equations apply to both structures of uniform thickness
as well as reinforced by ribs and stringers.

2.2 The Normal Modes

The normal mode shapes of rectangular cylindrical shell panels cross—
reinforced with ribs and stringers subjected to different boundary conditions
may be reasonably represented as

>
ij(r) = Xj x)Y (v) (2.2-1)

The funections Xj and Yj for each boundary condition are given in the following
sections.



2.2.1 Four Edges Simply=-Supported Rectangular Cylindrical Shell
Panels Cross—Reinforced With Stiffeners

For the four edge simply-supported rectangular eylindrical shell
panel cross-reinforced with ribs and stringers, the X; and Yy functicns may
be reasonably represented by the normal modes of four edges simply supported
rectangular flat panel of uniform thickness, namely:

X; = sin 1%5 (2.2-2a)
Y, = sin kW (2.2-2b)
b

2.2.2 TFour Edges Clamped Rectangular Cylindrical Shell Panels Cross—
Reinforced With Stiffeners

For the four edge clamped rectangular cylindrical shell panel cross-—
reinforced with ribs and stringers, the Xj and Yy, functions for the normal modes

may be reasonably represented by

1.5056m% 1.5056mx
i = - gps S 2

X = Xl(x) = cosh T 7 (2.2-3a)
— 0.9825 (Sinh 1.50561% _ 4ip 1.5056ﬁx)
2 |2
Y1 = Y30 = cosh 1.5556wz = eos 1.5256ﬁz (2.2-3b)
- 0-9825 (Sinh 1-5356'”2 - sin 1-5‘(;56'”2)
Xj = Xj (X) = cosh (. +2‘l/2)1TX - cos (J +21/2)'HX (2.2-3(‘.)
- sinh (0 + 1/2)mx 4 sinp L1+ 1/2)7x
g L
i=2,3, ...
Y = Y, (y) = cosh (k +bl/2)ﬂ - cos L& +bl/2)“ (2.2-34)

- sinh (k +£1/2)ﬂ + sin {k +bl/2)wy



2.2.3 Two Opposite Edges Simply-Supported While Other Two Clamped
Rectangular Cylindrical Shell Panels Cross—-Reinforced With
Stiffeners

For two opposite edges (perpendicular to x—axis) simply-
supported and other two clamped rectangular cylindrical shell panels cross-
reinforced with ribs and stringers, the X4 function is given by Equation
(2.2-2a) while the Yy functioms is given by Equations (2.2-3b) and (2.2-3d).

2.3 Spatial Correlation of the Excitation Pressure Field

The spatial correlation coefficient of a time stationary excitation
pressure field at any two points is defined as

-+ -
> <P(rl)P(Iz)>
p (rlsrz) = 5 (2.3-1)
Py
where
+ + > >
p(r{),p(ry) = pressure at the two points ry and r,

- -
<p(rl),p(r2)> temporal average of the pressure product

2
Py

n

2
V/<p2(rl)> <p(ry)> = reference mean-square pressure

For space stationary excitation pressure fields, the spatial correlation
coefficient will be a function of the separation distance

(T ()
<p(rq)pl(r,)>
p(]gl) = 12 2 (2.3-2)
pr
where
- > >
£ = 1r)-7T,

For the stationary both in time and space pressure field, the mean-square
pressure of the field will be used as the reference pressure.

For the fluctuating pressure field encountered in aerospace vehicle, both

theory and experiments indicate the correlation coefficient may be reasonably
represented by the following expressions

10



pq (&)
92(5)

where

Equation (2.3-3) expresses

as the separation distance and wave number increase.
be used when the pressure field 1s a boundary layer field.

exp (-4, KE)

exp(~A,KE) cos (KE)

separation distance
decay constants

w

= = wave number

circular frequency

speed of the pressure wave

(2.3-3)

(2.3-4)

the correlation coefficient decreasing exponentially

This is appropriate to
Equation (2) ex-

presses the correlation coefficient as a cosine function of the product of the
wave number and separation distance with amplitude decreasing exponentially.
This will apply to progressive pressure fields.

Typical curves for equation (2.3-3) are shown in Figures 43 and 44.

Figure 43:
A
w
¢
In Figure 44:
&
©
d

100 Hertz = 2001 radian/second

13500 inches/second

0.5

100 Hertz = 200w rad/sec

13500 in/sec

il

In



Typical curves for Equation (2.3-4) are shown in Figures 45 and 46. 1In
Figure 45:

Ay = 5
w = 100 Hertz = 2007 rad/sec
¢ = 13500 in./sec.

In Figure 46:

AZ = 0.5
w = 100 Hertz = 2007 rad/sec
c = 13500 in./sec.

2.4 The Joint Acceptance and the Cross Spectral Density of the Generalized
Foxce

New expressions for the joint acceptance squared and the cross spectral
density of the generalized force of rectangular panels subjected to the
excitation of fluctuating pressure enviromments are derived in the following.
In this deriwvation, the analytical expression of the cross spectral density
function of pressure field conforms quite accurately to the actual environ-
ments of the aerospace vehicles. Analytical expressions for the joint accept-
ance squared and the cross spectral demsity of the generalized force as a
function of frequency are derived for all possible mode combinations. This is
believed to be new.

2.4.1 Cross Spectral Density of Generalized Force, Sinusoidal Decaying
Correlation

The cross spectral density of the generalized force of the pres-
sure field is defined as [see Reference 2, Chapter 7, Section 7-2, Page 211,
Equation (7-39}1:

> > - > > >
Limn = ) | top(F1s T308) Fype(rp) Fap () drp dr, (2.4-1)

ij, an = normal modes of the structure

For space homogeneous pressure field, the cross spectral density is equal to the
product of the homogeneous spectral density and the correlation coefficient
function:

(2.4-2)

> > > >
¢pp(rl’ rzsm) = ‘I’pp (m)p(rl,rz

“12



When the correlation coefficient function is represented by Equation (2~3-4)
in Section 2-3, the cross spectral density function of the excitation pres-—
sure will be:

>
¢Pp(rl,r2,m) = @Pp(m) [ exp{-AlKE) cos RE] [ exp(—Aan) cos Kn]
(2.4-3)
where
¢pp(m) = the homogeneous spectral density of the excitation
pressure
£ = [xl - X2| = separation distance along x-axis
n= |71 - y2[ = separation distance along y-axis
> >
(Xl,yl),(xz,yz) = coordinates of r; and 1y
Al,AZ = correlation decay constants

2.4,1.1  Four Edges Simply-Supported Rectangular Panels

For four-side simply supported panels, the normal mode
is: :

F., = sin A% sin KTY (2.4-4)
d 2 b

Substitution of Equations (2.4-3) and (2.4-4) into Equation (2.4-1) gives the cross
spectral density of the generalized force:

L' .
_ _ _ jmxq  mAxp
Ijkmn ¢pp(m) { £ e exp( AlKE)cosKE sin Z sin: 2 dxldxz
. b b kny nyy
. f f e exp(—Aan) cosKn sin L sin 2 dy,dy
o 0 b b 2
= 2, LI, (2.4-5)

where Ix and IY represent the two double integrals respectively.

13



These integrals can be carried out by using the following identify:

Jrx
e exp(-A4KE) cos KE sin ™1 si X

=
n
[}
O =
[ e

2 dxldxz

2 x s
1 . JuXy . WTXg

= f f exp [—AlK (xl - xz)] coskK (xl - xz).31n - sin z dx,dxg

o 0,

L Xq .
+ [ f exp [~A K ( )] cosk ( x,) sin L in 272 44

xp [~ Xy = X c Xq — x,dx

5 2 1 2 1 ) ) 12

= Iy + 12 (2.4-6)

where I; and I2 represent the two integrals respectively in the above
expression.

The identity of the above expression can best be seen from the following
figure. If the variable xq and xj are represented on rectangular coordinates ox
and oxp, then the region of integration of the left—hand side of Equation (2.4-6
is the square OABC. This square is divided by the diagonal OB into two isosceles
right triangles. Inside triangle OAB, x; > xp, while inside triangle 0BG,

Xy > x7. On the diagonal OB, x; = X3. it is easily seen that integral I repre-
sents thg integration over the .triangle OAB, and integral I, represents the
integration over the triangle OBC. Therefore the sum of I and I, is the inte-
gration over the square OARC.

x
2 |c B
F

X

o

° - - ax,

14



Carefully carrying out the integrations in eq. (2-4-6) yields

1

=727 L1 " hae " has T Lo

=

~ ¥ o ~

Lot 7 Teoo T Teo3 T Loy (2-4-7)

+

Similar calculation gives

H
<

N=_-=N +N +n.. +n..
L= huhi it hu

+ T..+T _ _+1..+1 2.4-7a
Too1 ™ T2 T Los F Loy ( )

Substitution of eqs. (2.4-7) into eq. (2.4-6) yield the normalized cross
spectral density of the generalized force as:

I,
o — kmn =~ +ru ~ +r\.- +m +~
T j1emn 2 Lar ¥ Lz T has ™ Tas T Lon T T
b2y o
PP
Teos T eon T T Ly T has T g T Lo
~o ~ ~o (2‘-4"‘8)
+ + +
v22 T Lga3 T Tyog
where
~ 1
lel

8[&12 + (m:rf+7\1)2]

X - - jtl _al
[lell @A) Topgp * 217 7 (mnrdy) e lel3]

I., = L
12 8?12 N (mﬂ_Al)z]
X ] - . + - j+1 _ -al
Laor - @A) Topop T 2¢-1)77 (mr-A) e 7Ly ay
L= 7 7 [I 131 7 @A) Tgp - 20 1 133]
X P o + (mH-Rl) ] X x X

15



(2] 1
. = [I - m®A) I -2 I ]
x4 o2, (m“+7\1)2] X141 17 “x142 1 “x143

1., = 1
%21~ T2 o a2
8 _al + (Jrr+7\1)]
. ml "%
X [Ilel TUTE A D1 F 2617 (Gt Ae I;.:213:|
~ 1

Ly 8[0512 N (jﬂ'Kl)z]

m+1 %
X {Txazr = G™F 2D Tops + 26177 (97 - N)e T L,.,
Los = T T3 [I 231 7 U7 M) Tpgy - 20 1 233]
x Sl_a]_ + (jﬁ-hl)T x x x
~ 1
I, = : [1 ST AT -2 I ] (2.4-9)
w24 "o To T quen 7] L2t 1) “xas2 T 2% Logs
X 17 .
Eyll -T2 - 7
8 _cez + (nﬁ+7\2) .
K+l )
X [Iylll S ATE A L F2G1)T T (o + Ae Iyll3]
i = 1
y12 2 7
8[&2 + (an-7\2) ]
k+1 %
X [1}7121 - (or - 7\2) Iy122 + 2(-1) (nn - 7\2)e Iy123]
L= 17— 2[1131+(nn~7\2)1132-2a21133]
Y 8[012 + (nr=A )] y y y
2
Ly = [I 11 T @A) Loy, - 20, 1 143]
Y 8[02 + (m:+}\2)] y y y
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[ p—— 1 _
y2l 8[&’22 + (kx + ?\2)2]

X T+ A + 2¢-1)" e+ A _azz
Ioggp = (RTF M) Loip ¥ 2¢-1 7 ( e Loogs

I,,= - :
v22 2 _ 2]
8 [o:z + (kx 7\2)

X |z kn - A) I + 21" (em - A -azl
yaz1 ~ (BT = ) Togpp ¥ 261 (k- Ade T Loo)s

~ L
I : =~ [T
y23 8[&22 F (kT - 7\2)2] [Y?'?’l T R Tp5 720 I3,7233]

]

¥ 1

i, = [1 - k%+ NI —20, I ] (2.4~10)
y24 4 [0‘22 5 (Kt ?\2)2] y241 27 “y242 T2 Ty243

1 1
= et i + T sin 2\
L ™ (-1) &4 [(m‘*‘j)ﬂ + 27\1 (w-j)w + 27\1] 1
- . _ _ nﬁ'j
L ooie ™ og o epdm B0 D cos 2hy
x112 (jtm) ™ (G-m) ™ )T+ 2N
-1+ (_1)m-j cos I2?\1
(w-j)= + 2
'_al sin?\1 + (% + 7\1) c:cws}‘\1 -0y Sin?\l + (j7 - )\l) cos)\l 7
Te113 = 2 7 ¥ 5 5 (2.4-11a)
o T ) "+ (3T - A)
© poqyJtm 1 .
Iegpr = D & [(j'i‘m)il'f - 27\1 + Gy 27\1] sin 27\1
. . j¥m
: _ 1= (-1)™3 Lot (™, 1 - (-1)7 7 cos 2
x122 (mrtj) = (m-j)= (iFfmy= - 27\1

1 - (-3 cos 27
Gmym + 28]

1
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oy sin7\l +o(jn+ Rl) cos?\l
o + Ggrr n)?

x123

-0y sinA + (37 - A) cosh

0‘12 g 7‘1)2 (2. 4-11b)

+

e . . |
3y = (DT [(j«m):r 28 T Gemyn+ 2)\1] sin 2

+ § -~ 1 - -1 j+m 2
1 =-1+L-.1)m3+1_¥1)m3+ (‘) cos 7\1
x132 (mtj)n (m-3)m (jrm)ym - 20

1 - (_1)j~m cos 27\1
SEDEEIN

. -
. _ (I)Jﬂ' [—C{l cos ?\1 + (jut ]\l) sin ?\1] e L o

x133 &12 + (G + 7\1)2
kgt . (s . %,
(-1) [O:l cos 7\1 (jo - 7\1) sin 7\1] e oy
* 5 5 (2.4-11c)
RENCEER N
= mt 1 1 .

Leagr = D o [:(m+j)nt TN + oy T 27\1] sin 2
I I (-1 L oL+ (-1)'1-m+'1 - D™ cos 2N
x142 (jtm) = (Gm) =« (ortj)sc + 23

1

Lol 1™ cos 2N
(@)% 2%,

18



. _ (--l)j+l [- 0y cos 7\1 + (jut ;\1) sin 7\1] e L oy
143 2 ) p) ;
* "+ (Gt A)
. e
("1)J+l [Ofl cos A * (7 - A) sin 7\J e L+ o
+ .
2 . 2
O‘l + (th - ?\1)
1 = 1

jtm 1
xa1 = T [kj+m)ﬂ 728 T G 2“1] sin 2h

1- D™ 1o @™ 1o )™ eos 2,
Yt T T@r 0 @pE | Grmn T A

-1+ (—-1)j_m cos 27\1
(G-m)T + 2A -

1

o gin 7\l + (mm + 7\1) cos 7\1

x213 ().’12 + (mr + ?\1)2

. - sin 7\1 + (mv - ?\1) cos ?\l

2 2
al + (m:l( - 7\1)

= ¢-1y™t] 1 1 )
Ix221 (-1) O.’l [(m’l'j)ﬂ - 27\1 + AT 2?\1] sin 27\1

. . nrl-j
1 - (-]_)J-hn -1 + (_1)J‘m 1 - (-1) cos 2?\1

Ty222 = T (ftmymn G-mr | @)% - 2h

1 - (_1)m-j cos 2?\1
(m-1)7 + 27

19
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o sin A+ (@rTE A) cos A

Leoos =

2 2
+
(Xl + (mx™ ?\l)

- i + -
.\ Q; sin ?\1 (mm 7\1) cos 7\1

2 2
% - AD

g
Il

ot j 1 N 1 ‘
x231 (-1) & l:(m-g-j)n - 27\1 (m-j) 7 + 2;\1] sin 2?\1

_elt (3T L gyim 1o (-1 I cos 2N
Loz = (GFrm) @ + Gt DTN

1- ('1)m-j cos 2?\]'_

(m-j)n + 27\1
mtl -Ocl _
. _ (-1 [- 0y cos A + (mm + A) sin 7\]_] e o
x233 2 5
Ctl + (mn + 7\1)
mtl —Cﬂl
N (-1) [011 cos ?\1 + (mm - 7\1) sin 7\1] e + o

2 2
o {mx - 7\1)

= (- m-j 1 1 .
Ix24l (-1) & l:(j+m):r£ + 27\1 + G-y T 2?\1] sin 27\1

. s o j+m
1 _ -+ (-1)™3 Lozl (1™ . L-(1 cos 2N
x242 (mt3)= (m-3)x (Frmy= + 22

-1+ ("1)j-m cos 27\l
(3-m)m + 27

20
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Lx243

Tg111

5112

Iyi13

IylZl

Iy122

i

-0
(—l)m+l[—-Ot1 cos hy + (@r + Ay) sin Al]e 1_ oy

2 2
oy + {mm + ll)

w1 %1
(-1 [“1 cos oy + {(mr ~ ll)sin A ]e + ooy

2 2
&y + (mm - Al)

ntk 1
D [ + 1 ]sin 21,
(nik)m + 2X, (n~k)}m + 239
k= o ntk
I 1- (1) L1 (-1} cos 2}y
(letn)m (k—n) {(nt)w + 22 9

-1+ (D" F cos 21,

(n~k)n + 2h
ay Sin Ay + {(kw + )\2) cos A

(122 + (k7 + 7\.2)2

2

- 2 sin 12 + (k’ﬂ' - Az) cos )12
0'.22

2
+ (kr - )\2)

_pyktn 1 1 ] .
D ®2 [ (kin)w - 23, + (k=n) 7 + 2A2 sin 23,

— kin
1- (_1)n+k . “L+ (-1)" k 1- (-1 cos 2X,

(ntk) ¢ (n-k)w * (kin)m = 23,

i- (-1)k‘"1:1 cos 2},
(k-n)w + 2)\2

21
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o123 ~

L3t

5132

Io133 =

Ty141

Iy 142

a, sin }\2 + (k7 + 7\2) cos 7\2

2 2
Q, * (knt 7\2)

. -0, sin ?\2 + (kn - ?\2) cos 7\2

oczz + (kn - 7\2)2

_ okt 1 1 .
=GN |:(k+n)rr- 2%, | Gemix 27\2] sin 23,

ntlk
-1 (_1)k+n 1 - (_l)k-n 1 - (-1) cos 2?\2

(ktn)dn * (k-n)r * (otk)n - 27’\2

1 - (-l)n"k cos 27\2

(n-k) + 2?\2
1)k+1 [—o: A, + (kt + A i 7\] 2 C,
(- > €05 A, ( 2) sin A, | e -9,
2 2
a” + (ot + 7\2)
(-l)kﬂ' [O.’ cos A, + (kn - A)) sin A ] e-a2 -q
. 2 2 2 2 2
2 2
c, + (kn - 7\2)
— ntk 1 1 .
=D o l:(n‘i-k):rt + 20, T Ty + 27\2] sin 22,

+k
a4 R e 1o (DT eos 2h
(ktn)# (k-n)x (otl) T + 27\2

-1+ 1™ cos 22,

* (a-k)x + 23,

22
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L ~ (--l)kui_1 ['Ob cos hg + (kT + Az) sin Kz] e 2 c,
143 2 2
vi43 o, +(kﬂ+7\2)
Kl "%
. {-1) [05 cos hz + (kn - Kz) sin Kz] e - 0,
2 2
%" F (kT = D) (2.4-12d)
- kin - 1 1 .
Top1p = 1 7 o [(k‘f'n)ﬁ ¥ Zh, ¢ Gm f z?\zj, sin 22,
k+tn
. _1- (_l)n-i—k L Ll- (_l)n-k . 1 - (-1) cos 2?\2
v212 (ntk)n {(n-k)n {ktn)x + 27\2
-1+ (—l)k_n cos 2K2
* (k-m) T + 27\2
. _ a, sin 7\2 + (nn + 7\2) cos ?\2
v213 (2'622 + (ar + 7\2)2
. -Q, sin KQ + (ar - Kz) cos hz
2 2
o, + (n7n - Rz) (2.4-12e)

— otk 1 1 )
To91 = ¢ 7 o [(nﬂc)sr B A CES 2;\2] sin 23,

' ntk
. _1- (_l)#+n Lol :_l:k~n . 1 - (-1) cos 232
v222 (ktn)n (k-n)x (ntk)n - 2)2

1l - (-l)ﬂ‘-k cos 2%2
(n-k)n + 2}\2

-+

23



%, sin 7\2 4+ (nm + 7\2) cos 7\2

Ly203 = 2 s
2 + (ox+ 7\2)

-a, sin ?\2 + (nn - 7\2) cos 7\2
2

+

2
Q,” (n7w - 7\2)

ntk

- 1 1 .
Tgo3p = 1 7 % [gn+k)n -5, " w * 2}2] sin 22,

ntk
. -l (_l)k+n 1- (_Dk-n . 1 - (-1 cos 27\2
y232 (k¥n)r " (k-n)=x (ntk)w - 23,

1 - DF cos 2,

(n-k)n + 2?\2
-,
+
: _ (_1)11 1 [-0:2 cos 7\2 + (nxm + 7\2) sin ?\2] e 2 Q,
y233 2 2
Q,” + (nm + 7\2)
(—1)n+1 [o: cos A, *+ (nx - A ) sin 7\] e-.Oﬂ2 +
2 2 2 2 2

+

2 2
Ob + (nﬂ - 7\2)

_ ktn 1 1 .

ktn
1 -1+ -1~k Lol -1y F . L= (-1)7 7 cos 2M
y242 (otk)x (n-k)x (kn)m + 20,

A1+ DE cos 2,

¥ (c-nya + 2%,

24
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-0
(—l)n+1 [—az cos )‘2 + {ay + )tz) sin )tz]e. 2 _ Gy
Toos3 7 ' 2 2 '
+1 o
(—l)n [a2 cos 12 + (oW - }\2) sin ?\2 ]e 2 4 e,
+ . (2.4-12h)
2
o, + (om - Az)

Note: When j=m or k=n, the indeterminate terms (9) in the above expressions

for the I should be set equal to zero.

o = AlKQ

0’.2 = Asz

K = ...U.J.. (2.4"‘13)

c
2.4.1.2 Four Edges Clamped Rectangular Panels
For the four edge clamped rectangular panel, the no}mal

mode is:

ij = X (x) Y (v)
where

X3(x) = cosh %x; ~ cos X1

- 0.9825 (sinh x; - sin xl)
Yl(Y) = cosh y; - cos ¥;

- 0.9825 (sinh y; - sin y;)

X. = X, — x: — (sinh X; — sin x,
g (x) cosh xj cos xy {sinh X sin XJ)

j=2,3...
25



Yy (y) =

cosh §k - COSs §k
k=2, 3.

1.5056 mx
2

1.5056 my
b

(G + 1/2)ax
i)

(k + 1/2)ny
b

- (sinh §k - sin §k)

(2.4-15)

For this case the carrying out of the integration in FEquation (2.4-1) is too

complicated and is nct practical.

to be done by numerical integration.
Equation (2.4-1) and representing the double integration by double summation

yields

T4 3emn ()

2pp (@)

L2

i
O =y
(=)

o
O Y-y

exp (-AKE) cos (REDX; (x1) X, (xp) dxydx,

exp (~AjKn) cos (Kn)Yy (v1) Y, (yy) dy,dy,

Therefore the calculation for the I.;,. has

Substitution of Equation (2.4-15) into

= g g exp (-A1K¢) cos(KE)Xj (xp) X (xq) Axy sz

. gf é' exp (-A9Kn) cos (Kn)Y; (ypr) Y, (yq,) Ay, by,

When the length & and width b are divided into s and s' equal divisions re-
spectively, simple calculation gives

Axl

Ayl

nljgt w6
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g = é p - q |
= E _ ot
no= 2 le'-q'l
1. 2
x, = -7
1, 2
x, = @-3) g
b
— L -
yP' = (p 2 Sl
1. b
Voo~ @ -
>~ - 1.5056 1 < = 1.5056 w (p - 1/2)
*1 A B s
o = 1.5056w _ _ 1.5056 m (p' -1/2)
71 b P s
o= (3 +1/2) = (p — 1/2) 2,3 ....
J s
~ k + 1/2 - 172
j = LX) s /2) k=2,3 ..., (2.4-17)

Substitution of Equation (2.4-17) into Equation (2.4-16) yields the normalized
cross spectral density of the generalized force as

5-_ (w) _ . Ijkmn (m)
Jkmn 22
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K& _
. cos[;——- (p q)]xj}gm

A Kb
2 Kb
. exp['“ - lp* - q'] ]cos[? (p' - q')] Y Y, (2.4-18)

where the X and Y functions are given by Egquation (2.4-15) with the x and y
arguments given by Equation (2.4-17).

The numerical method described above can be applied to any cerrelation
function and any mode shape.

2.4.2 Cross Spectral Density of Generalized Force, Exponentially
Decaying Correlation

When the correlation coefficient is represented by Equatiom (2.3-3)
in Section 2.3, the cross spectral density function of the excitation pressure becomes

¢pp(r1,r2,w) = @PP(w) exp(—AlKE) exp (—Aan) (2.4~19)

Substitution of Equations (2.4-19) and (2.4-4) into Equation (2.4-1) yields

A .
. - ALK, - jwxy . muXo
Ikan Qpp(w)of £ exp ( 1 £) sin _Ef*-Sln - dxldX2
. exp(—Aan sin Sin'-E__' dyl Yo 2,4-20)
o 0

The above integration can be carried out by the following identity:

L %

m 0
[ [ exp (-A1KZ) sin 171 gin B2
o0

L

dxldx2

2 %1 jmx mnx
£ dx, £ exp[AlK(xl - xz)]sin 1 sin 2 dx

2 L 2
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2 XZ jn'xl mTIXz
+ f dx2 f exp [—AZK(X2 - xl)]sin ——— sin 7 dxq
o 0
= I;+ 12 (2.4-21)
Carrying out the integrals Il and 12 yields
1 L L ' Jjnx mEX
Ijm = E‘T £ g exp (—AlKE) sin — sin ) cfl.xldx2

Y ——
2 0512 + (jﬂ')z (112 + (m'lr)z

2 + [~ + ™ (~ay)
+  (§n) (mw) - TP T for j =m

[0‘12 + (jﬁ)z][alz + (m'tr)z]

(2.4~22)
\ 1 L 8 i j'ITXl . mnx
Ijm = E?_- of Of exp(—AlKﬂ) s:‘.n T sin dxydx,
o 24 [ DI+ 0™ exp-ap)
= Um@Emn 2 . .. .2 2 2
[05]_ + (J'ﬂ') 1 Gq + (mm)"]
+ i ™3 o1, ™ - 1]
o, ” + gm?* [2 @D 2 (wt])
(end™ o1, i 1]
+ m . :
053_2 + (mTr)z [2 G-m) T2 (j+m) for j ¥ m
(2.4-23)

Similarly the double integration on ¥y and Yy in Equation (24~20) can be carried
out to give
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kn

l

b b
1 ) kﬁyl ATy,

-5 exp(—A,Kn) sin sin dy_ dy
b2 of of 9 195
N 2

2 [ 1 . 1 ]
2 (x22 + (k)2 o+ (am?

ey 2 (D 4 D™ axp (cag)
w nmw
[o2" + @?][e,” + @m® ]

for k = n

(2.4-24)
b b
kny T
g%— [ exp (-A,Kn) sin - L sin nbyz dy,dy,
o) o]
2+ LD 5 D™ exp(eay)
(kw) (om)
[a22 + (kTI‘)z] [u22 + (mr)z]
- +Hk
Kk [ ", " —l]
I:122 + (k“)z 2(n-k) 2 (nrtk)
k-n ktn
n CDFR1 -1]
+ for k # n
0L22+ (nm)2 [ 2(k-n) 2 (k+n)
(2.4-25)

Substitution of Equations (2.4-22), (2.4-23), (2.4~24), and (2.4~25) into Equation
(2.4-20) yields the cross spectral density of the generalized force of the ex-—

citation as:

Tikmn

i

2
(b)) @PP {w) Iijkn for j=m, k=n

It
Z
t
.
o]

2 . .
(bi) (DPP (w) Iijkn for j
(bz)z %p (w) Ijﬁlkm for j #m, k=n
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2 - - . -
= (bs) ®pp(w) Ijm In for § #m, kK # n {(2.4-26)
2.4.3 Joint Acceptance and Normalized Cross Spectral Density of
Generalized Force

The normalized cross spectral density of the generalized force
of the excitation is defined as

T = Lykmn
Ijkmn = ; (2.4~27)
5 ¢Pp(w)
where
§ = b2, = area of the panel

The relation between the joint acceptance squared and the normalized cross
spectral density of the generzlized force is given by [see Reference 3, Chapter
VI, Section 6.2, Page 24, Equation (6-25) and Reference 2, Chapter 7, Section
7.2, Page 212}.

J?kmn = ijkmn cos (Tjk - %mn) (2.4-28)
w(rj; - Tmn) = phase difference of the jk and mn modes

At = [1- (w/m-k)z] [1 - (/e )2] b b 6 (w0 )

J ] mn JK mm Jjkmm

C?kmn = A'::?kmn + B;kmn

= 27 _ 2
Bjkmn = 2{[1 - (m/mjk) ]Cmnw/mmn - [l - (w/w ) ]Cjkw/mjk}

A

kmn
cos w{T.;, - T..) = —1=n (2.4-29)
ik e Cjkmn
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2.5 The Displacement Response

.-)-
The displacement response spectral density at any point r(x,y) is given
by [see Reference 3, Section VI, Equation 6-24, Page 24].

-
QW'W (rs LU)

where

ET

ijsan

24

12 2
ST 0pp (@) ) Fﬁkaanjkl 'H;nijjkmn

: 2
displacement spectral density in (inch)
rad./sec.

(2.5-1)

2
area of panel subjected to excitaticn in (inch)

width of panel subjected to excitation in inches

length of panel subjected to excitation in inches

normal modes

spectral density of the spatial homogeneous excita—

tion pressure in (psi)2/radian per second

The magnitudes of the complex frequency response functions and their complex

conjugates are given by

|

%
2

where

2 2,2 2 -1/2
Mjk [m ik ~ W) + (Zgjkwjkw) ]

-1/2
- 2 2.2 2
an [ t mn - ) + (2 Eml‘l.m'mnw) ]

frequercy in radians per second
2 mf

frequency in Hertz
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The modal masses are

Mjk = 'M:mn = f ME jk dr = T (2.5—3)
with

M

i}

ph + p'h' = mass distribution per unit area

The joint acceptance squared for different mode combinations are given by
Equation (2.4-28), in Section 2.4.

The displacement response spectral density in inchz/Hertz is given by

- -
Sww(r,f) Zﬂ@ww(r,w) (2.5-4)
The mean—-square displacement response in :‘anh2 is given by
9.7 -+
wi(r) = [ s (r,D)df (2.5-5)

The root-mean-square displacement in inches is given by

v@ = wrm1? (2.5-6)

2.6 The Excitation Pressure Data

For derivation c¢f the formulas, see Reference &, Section 6.1. The excita-
tion spectral density in _ (psi) 2 is given by
radian/sec.

Spp(f) - 170.576

o1 10 6-1
@Pp(w) = 55 [10] (2.6-1)

The excitation spectral density in decibels/Hertz is given by

S,p(E) = S5.4(E) - 10 logyy (0.23157£) (2.6-2)
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where

5 (f) = one-third octave excitation pressure level
3rd . . .
in decibels (input)

The excitation spectral density in (psi)z/Hertz is given by
s' (f = 2nd (w 2.6-3
PP( ) PP( ) ( )

The relations between the overall mean-square pressure and the overall pressure
level of the excitation are:

- L
P2 = 875526 x 10 18 [19La/10 (2.6-4)
and-
2
La = 170.576 + 10 loglO (pa) (2.6-5)
where 9
; .82
P, = mean—square pressure in (psi)
L, =  excitation overall pressure level in decibels

referenced 0.00002 ¥Wewton/meter

2,7 The Acceleration Response

>
The acceleration respomnse spectral demsity at any point r(x,y) in

inch \ 2 1 : .
is given by
(SECZ) rad/sec
e 4 -+
es(r,w) = o g (rw) (2.7-1)

N
where the displacement response & (r,») is given by equation (2.5-1) in
Section 2.5.

The acceleration response spectral density in gz/Hertz is given by [see
Reference 4, Section 6.1, Page 18].

(o =5
Sww(r,f) = 4,215093 x 10 @WW(r,m) (2.7-2a)
The acceleration spectral density in decibels referenced "g" jig

-+ -+
S{&g (].",f) = 10 10810 [Sm;(r,f)] (2-7*2]))
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The mean-square acceleration response in "gzu is given by

2@ = [ Sua(r,0)as (2.7-3)

The root-mean square acceleration in '"g" is given by

cm) = [62m)1*? (2.7-4)

2.8 The Stress Response

For derivation of the formulas, see Reference 3, Section 6.1. The stress
response spectral density in (psi)zlradian per sec. is given by

bog(Fae) = YR (Fa0) (2.8-1)

.
where the displacement response spectral density @Ww(r,w) is given by
Equation (2.5-1). The factor to convert the displacement response into
stress response is given by

2 - 2 2
2 > (Ehq) Q" +Q
v ) = e R (2.8-2)
4(1-v*) Q“w
>3
h2 = largest height of stiffeners at r (See Figure 1)
2 2 2 2 sin 5% sin 5
o = 2 L[(EE) N \,(E)
X m,n mn i b b on\ 2 g
=1,3 ... DX(E) + ZH(-E-B-) + Dy(-b—)
(2.8-3)
w g . WX .,  nuy
2 _ Z T (3)2 32 sin —-—-—2 Sn———b
¥ mn b + “(g)
m,I1 m 2 4
_ D (*) + 28({ 22 ) + D2
(2.8~4)
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Q, = m, 9

1.;,3,... mn[])x (%)4-1-21-1(%%) + Dy(%)é]

(2.8-5)
The stress response spectral density in (psi)zlﬂertz is given by
+
Sgg (x,£) = 2ﬁ¢00(r,w) (2.8-6)
The mean—-square stress response in (psi)2 is given by
- >
2@ = [ Seo(r,f)dt (2.8~7)
The root-mean—square stress response in pounds/inch2 is given by
-+ -+ .1
o@ = [2@1? (2.8-8)

2.9 Average Responses Over the Whole Structure

The average response over the whole structure is obtained by integrating
and dividing the result with the area of the structure. Detail derivation of
the formulas is given in Reference 5, Secticn 2.5. The final results are

summatrized. as follows: The average displacement spectral density in inch“/rad./
se¢, is

— 12 2 2
S = ST (w) ] IXIy[ijl Iikik (2.9-1)

isk
where the expressions for I, and Iy for different boundary conditions are as
follows:
2.9-1 Four Edges Simply-Supported Panels

= = — -9"'

2.9.2 Four Edges Clamped Panels

_ I 1 .
Ix(l) = IY(l) = 1.5056T [(1.5056)11'—1 + E sinh 2(1.5056“’)
—sinh® (1.5056m) — 2 exp (-1.505610] (2.9-3a)
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x L = —“L*—Uj+%w—1+%um2(j+%ﬂ

G+ %)n

e
It

~stan® (§ + P - 2607 e -G+ P

i=2,3, ... (2.9-3b)

1 1 1 1
g 1,00 = —2— [t Pr- 147 sinh 2 (k+ P

7 k +‘§)1r

H
]

-sinh2 (k +-2]:) - 2(-1)k+l exp [-(k +%) ]]
k=2, 3, ... (2.9-3¢)

2.9-3 Two opposite edges simply-supperted while other two clamped panels
- 1
L, = 3 (2.9-4)
Iy(k) is given by Equations (2.9-3a) and (2.9-3¢)

2.10 One-nth Octave Frequency Increment and Number of Data Polnts

In the calculation of the response spectrum as a function of frequency,
uniform frequency increment is not convenient, because when the spectrum is
plotted with the frequency in logarithmic scale, the points will be too close
in high frequency and too separated in low frequency. In order to obtain good
plots and save computer time, it is the most convenient to use cne—nth octave
frequency inecrement in the calculation.

The interval from frequency £. to f2 will be one-nth octave if

1

f n
(_4;) _ (2.10-1a)
fl .

2l/n g (2.10-1b)

or f2

The bandwidth of the one—nth octave band expregsed in terms of the lower limit
£4 is:
1

AE = fy-fy= @Y™ 1y g = pif (2.10-1¢)

K

37



where

-1 (2.10-14)

The geometric mean frequency of f; and f2 is

£ = (£1f,) 12 (2.10-2)

Solving equations (2.10-1a) and (2.10-1b) gives the lower and the upper
}imits of the one-nth octave band in terms of the geometric mean frequency:

-1
= 2n
£, = (2 £
1
£, = () ™ ¢ (2.10-3b)

Therefore the band-width of the one n-th octave band is

Af = f2 - fl = an . {2.10-3c)

where the one n—-th octave band width constant is given by

1 ~ 1

o, = 228, (2.10-34)

The values of Dy and D, for n from 1 through 50 are as follows. Note that
when n equals to 1, 2, and 3, the values of D& and D, are the corresponding ome-
octave, one-half-octave and one-third-octave band width constants.
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Value of Value of

1/2n -
Value of n D' =2 l/n-—l D=2 / -2 1/2n
1 1. 0.7071067
2 0.41421 0.348311
3 0.25992 0.231563
4 0.18920 0.173504
5 0.14869 0.138740
6 0.12246 0.115588
7 0.10409 0.0990615
8 0.09050 0.0866705
9 0.08006 0.0770354
10 0.07177 0.0693286
11 0.06504 0.0630238
12 0.05946 0.0577703
13 0.05476 0.0533253
14 0.05075 0.0495156
15 0.04729 0.0462139
16 0.04427 0.0433251
17 0.04161 0.0407762
18 0.03925 0.0285106
19 0.03715 0.0364835
20 0.03526 0.0346591
21 0.03355 0.0330085
22 0.03200 G.0315080
23 0.03059 0.0301380
24 T 0.02930 0.0288821
25 0.02811 0.0277268
26 0.02701 0.0266603
27 0.02600 0.0256728
28 0.02506 0.0247559
29 0.02419 0.0239022
30 0.02337 0.0231054
31 0.02261 0.0223601
32 0.02189 0.0216613
33 0.02122 0.0210048
34 0.02059 0.0203870
35 0.02000 0.0198045
36 0.01944 0.0192544
37 0.01891 0.0187340
38 0.01840 0.0182410
39 0.01793 06.0177732
40 0.01748 0.0173289
41, 0.01.705 0.0169062
42 0.01664 0.0165037
43 0.01625 0.0161299
44 0.01587 0.0157535
45 0.01552 0.0154034
46 0.01518 0.0150686
47 0.01485 0.0147479
48 0.01454 0.0144407
49 0.01424 0.0141460
50 0.01395 0.0138631
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When the one nth octave bandwidth is used for frequency increments, the expression
for the number of data points can be derived as follows.

By definition of the one-nth octave band, the number of band between frequencies
f and 2f is n. Hence for the geometric series

£, = £
fl = 2fo
- 2 (2.10-4a)
f2 = 2 fo
= 3
fj 2 fo

between each consecutive pair of frequencies, there are n bands. Therefore the
total number of data points is

i = =nj+1 (2.10-4b)
But
o3 I
£
or c
log i
. o
J':
Jog 2

Substituting into Equation (2.10-4b) gives

£
log o
i = pe—— (2.10-4¢)
log 2

When the result of Equation (2.10-4c) is not an integer, it should be increased to
the next integer. Equation (2.10-4c) is very convenient for hand calculation tc
cdetermine the number of data points. For example

n = 33
f, = 5
fj = 5000
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Substituting inte Equation (2.10-4c} gives the number of data points

0
log 2 go

log 2

+ 1= 331
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ITI. ANALYSES OF THE RESULTS

3.1 Effect of Boundary Conditions

For a typical run (Run No. 8010) of the Program RANDOM with input data
described in Section 5.7, the frequency of the fundamental mode, the displace-
ment,the stress and the acceleration spectral densities at fundamental mode,
the root-mean-square displacement, stress, and acceleration at the center of
the panel for the three boundary conditions are as follows:

Fundamental Displacement Stress Spectral Acceleration
Mode Spectral Density at Funda- Spectral
Boundary Frequency in Density at mental Mode in Density at
Condition Hertz Fundamental (psi)2/Hertz Fundamental
Mode in in.*/ Mode in g2/
Hertz Hertz
588S 148.0 0.4&8339292E~05 7304.0415 24.259805
CCGC 215.2 0.37594843E~05 5680.5610 84.278543
5CSC 206.4 0.18984536E-05 2868.5533 36.038467
Here
8855 =  Four edges simply-Supportad
CCCC =  Four edges clamped
5C5C = Two opposite edges simply-supported while other two clamped
Boundary RMS RMs RMS RMS
Condition Displacement . Stress in Acceleration Excitation
in inch psi in g psi
§8s5 0.010248574 398.37757 T 23.549822 0.22680647
ccece 0.011197214 435.25270 49.516272 0.22680647
SCSsC 0.0078521891 305.22652 34.075105 0.22680647

It is interesting to note the following results from the effect of the
boundary conditions:

(1) The more rigid the boundary condition, the higher the natural frequency.
Hence, the four edges clamped panel has the highest frequency, the SCSC panel next
and the four edges simply-supported panel has the lowest frequency.

(2) The more rigid the boundary condition, the less the displacement and
the stress spectral densities at resonance. The panel with four edges clamped has
the least displacement and stress spectral densities at the fundamental mode, the
SCSC panel next, and the panel with four edges 31mp1y—supported has the largest.
This conforms to common sense reasoning.
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(3) The four edges clamped panel has the largest acceleration spectral
density at the fundamentzl mode and the largest root—mean-square acceleratiomn,
the SCSC panel has the second largest, while the four edges simply—supported
panel has the lowest. This is because that acceleration is proportional to the
square of the frequency, and acceleration spectral density to the fourth power
of the frequency.

(4) The root-mean-square displacements and stresses for all three cases
are not much different. The four edges clamped parnel is 10%Z higher than the four
edges simply-supported panel. The SCSC panel is 20% lower than the four -edges simply-
supported panel.

The plots of the response spectral densities are shown in Figures 2 through
10. .

3.2 Contribution of Each Mode

The contribution of each mode to the responses can be estimated from the
response spectral density at each mode and the half-power bandwidth at each fre-
quency. The contributions of each mode to the mean—square displacement and
acceleration are given respectively by

2 - _
wi = Bisww (3.2-1a)
2 —3 LI T
Gi = BiSWW
where 9
vy = contribution of the ith mode to the mean-square
displacement
Gf = contribution of the ith mode to the mean-square
acceleration
Sy = displacement spectral demnsity at the ith mode
Sﬁ§ = acceleration spectral density at the ith mode

The half-power bandwidth of the ith mode is given by

B. = 2. £,
1 1 (3.2-2)
where
ty = damping ratio at the ith mode
£, = frequency of the ith mode

Here in the typical test run described in Sections 3.1 and 5.7, the damping
ratio for all modes is

¢ = 0.04
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The contributions of the fundamental mode to the mean-square displacement and
acceleration are calculated as follows:

Bandwidth At Fundamental Fundamental % of M.S. % of M.5.
Boundary Fundanental Mode Mode Displacement Acceleration
Condition Mode in Contribution’ Contribution Contributed Contributed
Hertz to M.S. Dis- to M. S. by Funda- by Funda-
placement in Acceleration mental Mode mental Mode
__inchZ in g
SSSS 11.85 57. 2 x 107 288.5 54,5 52
ceee 17.22 64. 7 x 10~° 1453 51.8 59
SCSe 16.55 31, 41 x 1076 597 51.0 49

From the above results, it is seen that the contribution of the fundamental
mode to the mean-square response amounts to approximately 50% of the total mean-
square value for both the displacement and the acceleration.

It is to be noted that when the mean—square value contributed by the
fundamental mode is used to estimate the root-mean-square response, the result
will amount to

2
(0.50)1/ = 0.706 = 70.6%

of the actual root-mean-square response for both the displacement and the accel-~
eration. The detail values for each boundary condition are tabulated as follows:

RMS3 RMS
Displacement Acceleration Estimate Estimate
Boundary Estimated ; Estimated Amounts Amounts to
Condition from from to % of # of Total
Fundamental Fundamental Total rms rms
Mode in inch Mode in g Displacement Acceleration
5558 0.00757 16.95 73.8 72
CCCC 0.00804 38.1 71.8 ' 76.8
8CSC 0.0056 24,4 71.3 70

It is seen that the estimation of the root-mean-square response by the principal mode
yields a result approximately 28% lower both in displacement and acceleration.

The contributions of the (3,1) mode to the mean-square displacement and
acceleraticn are estimated as follows:
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Displacement Acceleration
Boundary (3,1) Mode Spectral Density Spectral Density
Condition Frequency At (3,1) Mode at (3,1) Mode
in Hertz in inZ /Hz in g*/Hz
-10
8888 571.6 9.848 x 10 1.099
ceee 764.7 5.254 x 10710 1.879
SCSC 548.4 3.528 x 10~10 3.335
Bandwidth {(3,1) Mode {(3,1) Mode Z of M.S % of M.S.
Boundary at (3.1) Contribution Contribution Displacement  Acceleration
Condition Mode in to M.S. Dis- to M.S. Contributed Contributed
Hertz placement in Acce%eratlon by (3,1)° by (3,1)
inch in g Mode Mode
$SSS 45.7 45 x 1072 50.2 0.0428 9
cece 61.2 32.3 x 1077 115 0.0289 4,67
SCSC 43.9 156 x 10~ 146 0.252 12.6

It is seen that the higher mode contributes more to the acceleratlon than to

the displacement response.

3.3 Contribution of the

Cross—~Terms

In the expression for the displacement spectral density, the summation

may be separated into two groups of terms — the main terms and the cross terms

as follows:

-5
@W(r,(ﬂ)

where

+
@Ww(r,m)

2
= §"¢ (w
PP( )

+ 1
S @pp(w)

I

j.ksm,n
j=m,k=n

I

j.k,m,n
j#m

k#n

- 2
Fap () an(?:*) |ijl IHmlem(w)
Py () By gy [ 5,197, ()

>

(3.3~1)

= displacement spectral density at any peint r as function
of frequency w

= area of structure subjected to excitation
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@pp(m) = Homogeneous spectral density of the excitation pressure
ij,an normal modes

lij|4Hmn‘ = magnitudes of the frequency response function

2 s . s

Jj] =  joint acceptance of the ik and mn modes combination as

function of frequency

It is generally true that the cross terms contribute only a small portion
of the total displacement. This is because ]H k||H I is much smaller than

IH ] . As to how small the summatlon of the cross~terms is and how it affects
% spectrum of the response, there is limited dinformation available in the
llterature.

Program RSRPC3 is a modification of Program RSRPCl designed to study the
contribution of the cross-terms and their effect on the response spectrum.
Typical results of this program are given in the following. The input data
for these results are the same as those of Section 5.7 except the radius of
curvature is 70 inches instead of 100 inches. The fundamental mode frequency
is 216.92 Hertz. Data in item 1 are the results of summation of all the terms
while data in item 2 are the results of the summation of the main terms only.
The range of the index j,k,m,n is from 1, 2,... to 5. That is 54 = 625 terms are
summed for each frequency to obtain the spectral density. The plots of the dis-
placement and acceleration responses for four locations are shown in Figures
11 to 34. It is seen that the cross—terms contribute nct very much to the
response but affect the response spectrum to some degree. It is to be noticed
that the cross-terms sums up to positive values in scme locations and negative
in other locatioms.

a. Location: Center of Panel X = %-= 23.75 inches
b
Yy =5 = 29.187 inches
Run No. 4220 Frequency Increment n = 33
Displacement Stress Spectral Acceleration  Excitation
Spectral Density at Funda~- Sgectiral Spectral
Density at mental Mode in Dengity at Density at
Item Fundamental 9 (psi)Z/Hertz Fundamental Fundamental
Mode in inch*/ Mode in g2/ Mode in
Hertz Hertz (psi)?/rad.
per sec.
1 0.22309226E-05 3072.8148 50.011887 0.14171840E-04
2 0.22350181E-05 3078.4558 50.103698 0.141718408-04
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RMS

RMS . RMS RMS
Displacement Stress in Acceleration Excitation
Item in inch psi in g in psi
1 0.86932536E~02 322.63266 39.575629 0.090482687
2 0.87852818E-02 326.04810 39.582968 0.090482687
b Location X = -% = 11.87 Inches
b .
y =7 = 14,594 Inches
Run No. 4519 Frequency Increment =n = 33
Displacement Stress Spectral Acceleration Excitation
Spectral Density at Spectral Spectral
Density at Fundamental Density at Density at
Fundamental Mode in Fundamental Fundamental
Mode in (psi)2 Hertz Mgde in Mode in
Item inch?/Hertz g /Hertz (psi)2/rad
per sec.
1 0.56087514E-06 938.52039 125.73464 0.14171840E-04
2 0.55967865E-06 936.51828 125,46641 0.14171840E-04
RMS RMS RMS RMS
Displacement Stress Acceleration Excitation
Ttem in inch in psi in g in psi
i 0.0045961768 188.01195 25.549804 0.090482687
2 0.00453378169 185.62468 25,572445 0.090482687
Note: For frequency increment n = 33, the peak of the response spectrum
occurs at 215.2 Hertz.
c. Location = = 23.75 Inches

Run No.

&g Nle

14.595 Inches

Frequency Increment n
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Displacement Stress Spectral Acceleration Excitation
Spectral Density at Spectral Spectral
Ttem Density at Fundamental Density at Density at
Fundamental Mode in (psi)”/ Fundamental Fundamental
Mode in Hertz Mode in gz/Hertz Mode in (psi)”/
inchz/ﬂertz rad per sec
1 0.11141607E-05 1644.1638 26.010334 0.14039524E-04
2 0.11142897E-05 1644,3542 26.013345 0.14039524E-04
RMS RMS RMS RMS
Item Displacement Stress in Acceleration Bxcitation
in inch psi in g in psi
1 0.0062653206 240.68110 28.105585 0.090482687
2 0.0062120453 238.63453 28.061311 0.090482687
d. Locatien: x = %' = 11.87 Inches
y = 1‘2l = 29.187 Inches
Run No. 7412 Freguency Increment n = 50
Displacement Stress Spectral Acceleration Excitation
Spectral Density At Spectral Spectral
Item Density at Fundamental Density at Density at
Funda@ental Mode in Fundamental Fundamental
Modezln (psi)2/Hertz Mode in Mode in
inch~/Hertsz gZ/Hertz (psi)z/rad
per sec.
1 0.11158915E-05 1670.4033 26.050740 0.14039524E~-04
2 0.11161287E~05 1670.7584 26.056278 0.14039524E~04
RMS RMS RMS RMS
Displacement Stress Acceleration Excitation
Ttem in inch in psi in g in psi
1 0.0063428457 245.40528 36.238683 0.090482687
2 0.0064173551 248.28806 36.224862 0.090482687
Note: For frequency increment n = 50, the peak of the response spectrum

ocurrs at 217.4 Hertz
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3.4  Average Responses Over the Whole Structure

The formulations for the average responses over the wheole strxucture are

given in Section 2.9.

The 4-series programs, RSRPC4, RFRPC4, and RSFRP4, are

written te calculate the average responses over the complete structure as well

as those at any local point.

The input data for these programs are the same

as those for the l-series program and Program RANDOM (see Section 5.7).
Following are the results of typical runs of Program RSRPC4 with input data des-—

cribed in Section 5.7.

Data in item 1 are the local response at local point of the
panel and those in item 2 are the average responses over the whole panel.

Typical

plots of average response spectral densities are shown in Figures 35 through

46, with plots of respomses at

a local point for comparison.

a. Local point: x = %— = 23.75 Inches
y = % = 29.187 Inches
Run No. 8009 Frequency Increment n = 33
Radius of curvature a = 100 Inches
Fundamental mode Frequency 167.7 Hertz
Displacement Stress Spectral Acceleration Excitation
Spectral Density at Spectral Spectral
Item Density at Fundamental Density at Density at
Fundamental Mode in Fundamental Fundamental
Mode in (psi)z/Hertz Mode in Mode in
inch2 /Hertz g2 /Hertz (psi)2/rad.
DEr Sec.
1 0.93176196E-05 12833.847 77.012151 0.16478916E-04
2 0.23318242E-05 3211.794 19.27303 0.164789106E-04
Ratio of 0.25 0.25 0.25
Item 2 to
1
RMS RMS RMS RMS
Displacement Stress in Acceleration Excitation
Ttem in inch psi in g in psi
i 0.15389093E-01 571.13519 43.193045 0.090482687
2 0.78098409E-02 289.84552 25.131164 0.090482687
Ratio of 0.507 0.507 0.58
Ttem 2
to 1
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For this particular case, it is seen that the root-mean—-square responses
at the center of the panel are approximately twice the average responses over
the whole panel.

b. Local Point: =x = %- = 23,75 inches
= b - ;
y = - 14,595 dinches
Run No. 6072 Frequency Increment n = 33
Radius of curvature a = 70 Inches
Fundamental Mode Frequency : 215.2 Hertz
Displacement Stress Spectral Acceleration Excitation
Spectral Density at Spectral Spectral
Item Density at Fundamental Density at Density at
Fundamental Mode in Fundamental Fundamental
Mode in (pei)2/Hertz . Mode in Mode in
inch2/Hertz o2 /Hertz (psi)2/rad.per sec.
1 0.11195455E-05  1652.1102 25,097502 0.14171840E-04
2 0.55951962E-06 8§25.23883 12.536351 0.14171840E-04
Ratio 0.501 0.501 0.501
RMS RMS RMS ) RMS
Item Displacement Stress in Acceleration Excitation
in inch psi in g in psi
1 0.62654106E-02 240.68455 28.105819 0.090482687
2 0.44660961FE-02 171.56422 23.146045 0.090482687
Ratio 0.712 0.712 0.822
. L .
c. Local Point: x = 7 - 11.87 inches
y = % = 29.187 inches
Run No. 6654 Frequency Increment n = 33

Radius of Curvature a = 70 inches

Fundamental Mode Frequency: 215.2 Hertz
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Displacement Stress Spectral Acceleration  Excitation
Spectral Density at Spectral Spectral
Density at Fundamental Mode Density at Density at
Item Fundamental in (psi)2/Hertz Fundamental Fundamental
Mode in Mode in gz/ Mode in (psi)z/
inchc/Hertz Hertz rad. per sec.
1 0.11169505E~-05 1671.9886 25.039328 0.14171840E-04
2 0.55961962E-06 837.10857 12.536351 0.14171840E-04
Ratio 0.501 0.501 0.501
RMS RMS RMS RMS
Displacement Stress Acceleration Excitation
Item in inch in psi in g in psi
1l 0.63429322E~02 245.40861 36.238836 0.090482687
2 0.4460961E~02 172.79365 23.146045 0.090482687
Ratio 0.704 0.704 0.639

Comparisons of the average responses over the whole panel and the responses

at several local points for several panel configurations and subjected to

different spectra of excitation pressure have been investigated.
can be summarized as follows:

The results

The ratio of the average response over the whole panel to the
local response at a certain point is affected by many factors -
the panel configuration and properties, the excitation spectrum and

the position of the local point, ete.

Because of the relations in the formulations, the ratios of the
average response spectral densities to the local ones at a certain

point for any frequency should be equal.
for the computation,

This can serve as a check

The ratio of the average displacement and stress overall root-mean-
square responses to the local ones at a certain point are approximately
equal to the square root of the ratioc of the average displacement and
stress spectral densities at fundamental mode to the local ones. This
is an indication that the fundamental mcde dominates the overall

responses.

Because of the assumption of linear structure, the ratios of the
average displacement and stress to the local ones at a certain
point are always the same.
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3.5 Estimation By Formulas of Single Degree of Freedom

3.5.1 Derivation of Formulas

Since the fundamental mode contributes the most of the response,
the responses of a continuous structure subjected to random loading may be
estimated by assuming the structure as a single-degree-~of-freedom system
vibrating at its fundamental fregquency. ¥For a single degree of freedom system,
it is well known that the following relation holds for the spectral densities
of the displacement response and the excitation force:

_ 2 -
B® = & (@) [HW)] (3.5-1)
where
wa(m) = displacement spectral density
@pp(m) =  exeltation spectral density

The square of the magnitude of the frequency response function is given by

2 1
|BE@W) | = i > 5 (3.5-2)
w’[ () - w2207
where
m = mass of the system
wy = frequency of the system
w = Iindependent frequency variable
£ = damping ratio of the system
By definition, the mean-square displacement is given by
2 [e-]
w'= ¢ (©)dw
o
T 2
= [ o (w)|H(w)] dw (3.5-3)
o PP
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When the excitation spectral density is constant for all frequency, the inte-
gration in Equation (3.5-3) can be carried to yield the mean-square displace-
ment as

Té

w = % (3.5-4)

Cmg m

When the excitation spectral demsity is not comstant, Equation (5.3-4) still
gives very good approximation of the mean—square displacements.

The half-power bandwidth at the fundamental mode is
B, = 2Cwg (3.5-5)

The displacement spectral density at resonance can be obtained by setting
@ = w, in Equation (3.5~2) and substituting the result into Equation (3.5-1)
as

Pppwy)

(3.5-6)
(2zuZm)?

éww(wo) =
The mean-square displacement may also be approximated by the product of the
displacement spectral density and the bandwidth at resonant frequency:

WP = Bod,(wo) (3.5-7)

The acceleration spectral density of the single degree of freedom system will
be given by

u

By () Wy @) = 0he () [H(w)|? (3.5-8)
where

& () is given by Equation (3.5-1).

The acceleration spectral density at resonance can be obtained by setting

w = wy in Equation (3.5-8):

& (03
@ﬁi&(mo) = wi q’ww(wo) = ———--——-(I;P ‘:Z (3.5-9)
rm
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The mean-square acceleration is given by
2 - -
G° = [ p(w)dw (3.5-10)

In genercl, the excitation spectral demsity ®__(w) can not be .expressed in an
analytical form. Hence, the integration in Equation (3.5~10) has to be evalu-
ated numerically. However, approximation to the mean-square acceleration can
be obtained by miltiplying the spectral density at rescnance with the half-
power bandwidth at rescnance frequency:

3}
|

BoQaa(m)
pp (15
Yo 2§m2

méwz (3.5-11)

When these equations are used to estimate the responses of a continucus
structure, the fundamental frequency will be used for w,, the spectral density
of the excitation pressure will be used for @ ps the mass per unit area of the
structure will be used for m, and the damping ratio for the fundamental mode
will be used for z. '

If only a portion of the structure is subjected to the excitation, the
square of the ratio of the area under excitation to the total area may be used
te multiply the results to give the responses:

1\ 2 2
Y () ( %%‘) tpp () [ B | (3.5-12)
2 g'\2 % )
s ('§_) of ®pp(w)[H(w)|2dw (3.5-13)
] 2 o]
2 _ ii_) pp
T (3.5-14)
( 5 4rwdm2

(3.5~15)
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2 & (w. ) 1\2
o (@) = (.gl ) .jﬁi_%;_ =(3§ ) o Gy () (3.5-16)
(2zm)
2 gt N2 W¥plwe) oo 4 9
() (5] 4

3.5.2 Example
As an example to illustrate the application, the above formulas
are used to estimate the responses of the panel described in Section 3.4. 1In
this case:
The spectral density of the excitation pressure corresponding to the

fundamental frequency is

Sop = 1.648 x ZI.O--5 (psi)zlrad. per sec.

The fundamental frequency is

w 167.7 Hertz = 1055 rad/sec.

[}

The damping ratic is
r = 0.04

The smeared—-out mass per square inch is

4

2.51 x 10 % % 0.05 + 2.60 x 10°* x 0.05

m = ph+op'h'

2.555 x 107 lbf—sec2/1n3

The area of the panel is

S = be = 58.375 x 47.5 = 2871 inch’

The area of the panel exposed to the excitation pressure is

S' =  p'e' = 50 x 45 = 2250 inch?
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Substitution of the above values iInto Equation (3.5-14) gives the mean-square
displacement as

2 T(1.648 x 1077) : ( 2250 ) 2
W = v —_—
4(0.04) (1054)3 (2.555 x 1072)° 2871

4

2.6 x 1074 inch?

or the root-mean-square displacement is

-4) 1/2

w = (2.6 x 10 0.0161 inch

This agrees very closely with the actual root-mean-square displacement at the
center of the panel calculated by Program RSRPC4 which is

W = 0,01539 inch

Substitution of the above values into Equation (3.5-6) gives the displacement
spectral demsity at the fundamental frequency as

5

5 (o) = 1.648 x 10 _ (4250‘ 2
w0 (2 x 0.04 x 1055% x 2.555 x 107°)2 4511
= 1.96 x 1078 in.zlrad. per sec. = 12.3 in?/Hertz

The actual displacement spectral density at the fundamental frequency calculated
by Program RSRPC4 is

_ 2
wa(“o) = 9.3176 4in./Hertz
From Equation (3.5-5) the bandwidth of the fundamental frequency is

B, = 2x0.04x 1055 = B84.4 rad./sec.
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Substituting these values into Equation (3.5-7) gives mean-square displacement as

84.4 x 1.96 x 10°°

£
It

4

i

1.655 x 10 inch?

Hence, the root—-mean-square displacement is
- 2
w o= (1.655 x 10741/

= 0.01286 inch

From Equation (3.5-9), the acceleration spectral density at the fundamental
frequency is

e(wy) = 1054% (1.96 x 107 = 16.3 g?/rad. per sec.

Froﬁ Equation (3.5-11), the mean-square acceleration is
G = 84,4 x 16.3 = 1377 g*

Hence, the root-mean-square acceleration is
G = 37.05 ¢

The actual root-mean-square acceleration calculated with Program RSRPC4 is
43.193 g.
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3.6 HNumber of Modes and Modal Density

Analytical expressions for the total number of modes and the modal density
are involved. Only approximate solutions to simple cases can be found in the
literature. When the natural frequency of a structure have been calculated from
the frequency equations, the total number of modes and modal density can be
solved easily with the computer.

Let f‘k be the frequency of a two dimensional structure as solved from the
frequency e&uations or some other method. Arrange fjk in the ascending order in
a single array.

£ n=1, 2, ...
The curve of n versus f will give the total number of modes up to any fre~-

quency range.

The slope of the n—f curve will yield the modal density as a function of
frequency. In the calculation, the slope of the curve is approximated by

Ans
&) - i (3.6-1)

Af .

f=f, J

J
where
AL, = £, - f. 3.6-2
ki j+1 j ¢ )
3 = 1, 2, 3 ...

The plot of Anj/Afj versus fj gives the variation of modal demsity as a function
of frequency.

Program NFUOPL is written to investigate the total number of modes and the
modal density. Figures 41 and 42 are typical plots of the total number of modes
and the modal density. These curves are very useful im the analysis of the
dynamic characteristics of the structure. It is seen that the plot of the
total number of mode is a rather smooth curve while the modal density curve is
not. The peaks in the modal density plot indicate where two frequencies are very
close together. Sudden change in plot of the number of modes will imply some
peculiar dynamic characteristics of the structure.
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3.7 Joint Acceptance and Correlation Coefficients

Because of their influence on the responses and the complexity of the
analytical expressions for the joint acceptance and the cross spectral density
of the generalized force, Program JAESR! is specially written to investigate
the behavior of these two quantities as a function of the frequency with mode
indices as parameter for both correlation functions described in Section 2.3.
This program also computes and plots the curves of the correlation coefficient
as a function of separation distance with the frequency as parameter. Figures
43 and 44 are typical curves of the exponentially decaying correlation coefficient
(Equation 2.3-3). Representative curves of the sinusocidal decaying correlation
coefficient (Equation 2.3~4} are shown in Figures 45 and 46. TFigures 47 through
52 are typical curves of these quantities for the exponentially decaying corre-
lation. Typical plots of the two quantities for the sinusoidal decaying corre~
lation are shown in Figures 33 through 58. It is noted that szkjk is identical
with Is:psx . The curves of these two quantities are more regular for the ex-
ponentilally decaying correlation than for the sinusoidal decaying correlation.

3.8 Vibro—Acoustic Transfer Function

The vibro-acoustic transfer function at any point of a structure is defined
as the ratio of the response to the excitation. When the response and the ex-—
citation are expressed in dgcibel scale, the vibro-acoustic transfer function in
decibel scale at any point r will be the excitation in decibels minus the response
in decibels:

- -
To(r,£) = Sﬁg(r,f) - S'Pp(f) ' {3.8-1)
where
+
To(r,£) =  Vibro-acoustic transfer function in decibels with
excitation pressure referenced 0.00002 Newton/meter?
and acceleraticn response referenced g
+
Sﬁg(r,f) =  Acceleration spectral density in decibels referenced
g given by Equation (2.7-2b) in Section 2.7
S;P(f) = The spatial homogeneous excitation spectral density

in (psi)2/Hertz given by Equation (2.6-3) in Section
2.6.

Program RSRPC2 is written to investigate the vibro-accustic transfer funection
of four edges simply-supported rectangular cylindrical shell panels cross re-
inforced with ribs and stringers. Typical plote of this program are shown in
Figures 59 and 60.
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IV. COMPARISON OF COMPUTED RESULTS WITH TEST DATA

The developed computer programs have been used in the research project
which Chrysler Huntsville Operations was currently conducting for Marshall Space

Flight Center under Contract No. NAS8-21425., The

object of this project is to

develop comparative analysis of acoustic testing techniques and to determine
the time for acoustic qualification test at level other than specified levels.
Comparison of the computed results with test data shows good agreement.

One of the test specimens in Project NAS8-21425 was a 4 in. x 13 in.,

0.2 in. thick aluminum flat plate.

The plate is knife-edges supported on

four sides and is subjected to high level acoustic pressure until fatigue fail~

ure occurs.

The input spectrum of the acoustic pressure 1s shown in Figure

61. The following input data are used in Program RFRPCl to calculate the

responses at six locations of the plate.

Figure 62 shows the calculated

acceleration spectral density compared with test data at location number 9, the

coordinates of which are x = 6.5 inches and y = 1 inch.

Notation
In Fortran
Formulas Notation
E E
E' EP
v VIP
p RHO
o' RHOP
Ejk CI
a RAD
[ PL
b B
2! PLP
b' BP
a; ATl

Definition
and

Description
Young's modulus of panel skin
Young's modulus of stiffeners
Poisson's ratio of panel skin
Mass density of panel skin
Mass density of stiffeners
Damping ratio of panel
Radius of panel
Axial length of panel

Width of panel

Length of panel subjected to
excitation

Width of panel subjected to
excitation

Spacing of width-direction
stiffeners
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Data Used
In
Test Run
10 x 10% 1b£/in.?
0
0.3

2.58 % 1074 lbf—seczlin.4
0

0.065

@ inches
13 inches
4 inches

13 inches
4 inches

« inches



Notation
In
Formulas

Fortran
Notation

BL1

HS

H2

ATl

AIZ

Al

A2

S3RD

FINN

Definition
and
Description

Spacing of length-direction
stiffeners

Thickness of panel skin

Smeared-out thickness of
stiffeners

Largest height of stiffeners
at point investigated

Mcment of inertia of one length-
direction stiffener with respect
to neutral axis

Moment of inertia of one width-
direction stiffener with respect
to neutral axis

+
Coordinate of

r
+
Coordinate of r

Correlation decay constant
in axial length~direction

Correlation decay constant
in circumferential width~
direction

Speed of sound in air

One-third octave pressure
level spectrum of excitation

L

One-nth octave increment

61

Data Used
In
Test Run

® inches

0.2 inch

0 inch

0 inch

0 inch4

6.5 inches

1l inch

i0

13500 in./sec.

See Figure 61

33



V. DESCRIPTION OF THE COMPUTER PROGRAMS

5.1 Program RANDOM

Program RANDOM is a combination of the three main programs RSRPCl, RFRPCI,
and RSFRP1 described in the following sections. With this program a single loading
of the input data will be sufficient to obtain the responses of a rectangular
cylindrical shell panel cross—-reinforced with stiffeners and subjected to three
different boundary conditions : all edges simply—-supported, all edges clamped,
and two opposite edges simply-supported with other two clamped. Controls are
also provided to run any one of the three boundary conditions.

The input data for this program are (a) the material constants, the geometric
dimensions and properties of the shell panel and stiffeners, (b) the one-third
octave spectrum of the excitation pressure, (c) the x and y coordinates of the
point of interest and, (d)} some control constants. (see Section 5.7).

The output data of this program include:
a. All the input data with nomenclature.

b. The input ome—third octave spectrum of the excitation pressure, this
excitation spectrum is also converted into spectral density both in decibel/
Hertz and (psi) 2/Hertz, tabulated and plotted in graphical forms.

c. The natural frequencies of the panel both in Hertz and radians/second.

d. The spectral densities of displacement in (1nch) /Hertz, of stress
response in (psi) /Hertz, of acceleration response in g 2/Eertz and the excitation
spectral density in (psi)2/rad. per sec. In additiomn to tabulation, all three
response spectral densities are plotted out in graphical forms.

e. The mean-square and the root-mean—square values of the responses
and excitation,

f. The constants Qg, Qs and Gy (QX, QY and QW) and the constant 72
(GAMMAZ) to convert the dlsplacement spectral density into stress spectral
density.

. Some values of the joint aecceptance squared of all combination of
modes for the beginning frequency.

5.2 Programs RSRPCl, RSRPC2, RSRPC3 and RSRPC4

These four programs are writen and designed to calculate the responses
of the simply-supported cylindrical shell rectangular panel cross-reinforced
with ribs and stringers for various specific purposes. The input data for these
programs are the same as for Program RANDOM described in Section 5.7. The
output data for these four programs are the same as Program RANDOM but with
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extra output for each individual program.

Program RSRPCl calculates the spectral demsities of the displacement
response in (inch)Z/Hertz, the stress response in (psi)Z/Hertz, and the accel-
eration response in gZ/Hertz. Therefore the output data are idemtical with
Program RANDOM rum in the case of all edges simply-supported.

In addition to those as in Program RSRPCLl, the output data of Program
RSRPGC2 include the acceleration spectral density in decibels referenced gravity
acceleration (g) and the vibro-acoustic transfer function as a function of fre-
quency. Both the transfer function and the decibel scale acceleration spectral
density are also plotted out in graphical forms.

Program RSRPC3 is designed to investigate the contribution of the cross
terms to the vibrational responses. 3Both the responses of all terms summation
and cross terms neglected are tabulated and plotted for comparison. Formulations
for responses with all terms summation and cross terms neglected and analysis

of the results are given in Section 3.3. Typical plots of this program are shecwn
in Figures 11 through 34,

Program RSRPC4 is a modification of Program RSRPC1 and is writtem to calcu-
late responses at any point of the structure and the average responses cover the
whole structure. Formulations for the average displacement response over the panel
are derived in Section 2.9. Analysis of the results is given in Section 3.4,
Typical plots of this program are shown in Figuree 35 through 40.

5.3 Program RFRPC1 and RFRPC4

These programs are written to calculate the vibrational responses of the
four edges clamped cylindrical shell rectangnlar panel cross—reinforced with
ribs and stringers. The input data for these programs are the same as those for
Program RANDOM described in Section 5.7. The output data for these programs are
essentially the same as Program RANDOM except Program RFRPC4 alsc gives the
average responses cver the whole panel.

Program RFRPC1 calculates and plots the spectral densities of the displace-
ment response in (inch)2/Hertz, the stress response in (psi)z/Hertz, and the
acceleration response in g</Hertz. Therefore, the output data are identical
with Program RANDOM run in the case of all edge clamped, except the frequency
range can be higher and the frequency increment can be smaller.

Program RFRPC4 is a modification of Program RFRPC1. Tn addition to the
output of Program RFRPCL, Program RFRPC4 calculates the average responses over
the whole structure. Formulations for the average respomses over the whole
panel are derived in Section 2.9.
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5.4 Programs RSFRP1 and RSFRP4

These programs are written to calculate the vibrational response of the
twe opposite edges simply-supported while other two clamped rectangular cylin-
drical shell panel cross—-reinforced with ribs and stringers. The imnput data
for these programs are the same as Program RANDOM described in Section 5.7. The
output dataz for these programs are the same as Program RANDOM except that Program
RSFRP4 also calculates the average responses over the whole panel.

Program RSFRP1 calculates and plots the spectral densities of the displace-
ment response in (inch)2/Hertz, the stress response in (psi)2/Hertz, and the
acceleration response in g“/Hertz. Therefore, the output data are identical
with Progrsm RANDOM run in the case of two opposite edges simply-suppoerted while
other two clamped, except with higher frequency range and smaller frequency
inerement.

Program RSFRP4 is a modification of RSFRP1. In addition to calculating the
local respomses at any point of the structure, Program RSFRP4 also calculates and
plots the average responges over the whole panel. Formulations for the average
responses over the whole panel are derived in Section 2.9.

5.5 Program JARSR1

This is a computer program written to study the correlation coefficient as
a function of separation distance, the joint acceptance and the normalized cross
spectral density of the generalized force as a function of frequency for various
correlation functions. The correlation functions investigated and the derivation
of the expressions for the joint acceptance and -the normalized cross spectral
density of the generalized force are given in Sections 2.3 and 2.4. Typical
plots of the correlation coefficients, the joint acceptance and the normalized

‘cross spectral demsity of the gemneralized force are shown in Figures 43 through
58.

5.6 Program NFUOP1

Program NFUOPLl is to calculate the total number of modes and the modal
density. The input data to this program are the material constants, the geo—
metric dimensions and properties of the structure required in the frequency
equaticns. The output data of this program are the tabulated and plotted number
of modes and the modal demnsity as a function of frequency. Formulations of this
program are given in Section 3.6. Sample results are given in Figures 41 and
42. The analysis of the number of modes and modal density is very useful
in the evaluation of the frequency equations. It enables the structures engineer
to determine the accuracy and the behavior of the frequency equations. This
program can be modified to apply to any structure.
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5.7 The Input Data

The input data for these programs include:
geometric dimensions and properties of the shell
the one-third octave pressure level spectrum and
of the execitation pressure field,
(d) some control constants.

Notation
In
Formulas

E

El

2,'

b'

a3

Fortran
Notation

E

EP

VIP

RHO

EHOP

CT

PL

PLP

BF

ALL

BL1

HS

H2

Definition
And

Descritption
Young's modulus of panel skin
Young's modulus of stiffeners
Poisson's ratio of panel skin
Mass density of panel skin
Mass density of stiffeners
Damping ratio of panel

Radius of panel

Axial length of panel (along
w-axis)

Width of panel (along y—axis)

Length of panel subjected to
excitation

Width of panel subjected to
excitation

Spacing of width-direction .
stiffeners

Spacing of length-direction
stiffeners

Thickness of panel skin

Smeared-~out thickness of
stiffeners

Largest height of stiffeners
at point investigated
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{a) the material constants, the
panel and the stiffeners, (b)
the spatial correlation properties
(c) the coordinates of the point concerned, and
These are listed as follows:

Typical Data Used
In
Test Run

10 x 10° 1bf£/in.2

12 x 10% 1b£/in.?
0.3
2.51 x lCl_4 lbf-—secz/in.4

2,60 x 10~% Ibf-sec?/in.%*
0.04
100 inches

47.5 inches

58.375 inches

45 inches
50 inches
11.9 inches
14.6 inches

0.1 inch

0.08 inch

1.0 inch



Notation Definition Data Used

In Fortran and In
Formulas Notation Description Test Run
I, ALl Moment of inertia of one length- 0.5 inch4

direction stiffener with respect
to neutral axis

I2 AIZ Moment of inertia of one width— 0.6 inch4
direction stiffener with respect
to neutral axis.

X X Coordinate of ? . 23.75 dinches
>
v Y Coordinate of r 28.1875 inches
Ay Al Correlation decay constant 10
in axial length-direction
A A2 Correlation decay constant 0
in circumferential width-
directicn
c c Speed of sound in aitr 13500 in./sec
SBr(f) S3RD One-third octave pressure See Figures §3
level spectrum of excitation and 64 and the

following table
£ F3RD Input spectrum frequencies

n FINN One-nth octave increment 33

Note: Refer to Figure 1 for identification of geometrical dimensions.
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The one~thrid octave level spectrum of the excitation pressure input data
in a typical test rum is as follows:

One-3RD Octave One~3RD Octave Level
Mean Fregquency In Decibels
F3RD S3rd
5.000 129.000
6.300 131.000
8.000 133.000
10.000 135.000
12.500 136.000
16.000 138.000
20.000 139.000
25,000 140.500
31.500 142.000
40.000 143,000
50.000 144,000
63.000 145.000
80.000 145.500
100.00 145.000
125,000 146.500
160.000 146.500
200.000 147.000
250.000 147.000
315.000 . 146.000
400.000 145.500
500.000 145.500
630.000 144,000
800.000 142.500
1000. 000 141.000
1250.000 139.500
1600.000 137.500
2000.000 136.000
2500.000 134.500
3150.000 133.000
4000.000 131.000
5000.000 129.500

Note: Point frequencies can be any discrete frequencies with any increment.
The above spectrum is the preliminary acoustic test specification for

components of Saturn IB vehicle in Subzone 7-1 for static firing, (See reference
6, Page 64).
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The input data spectrum of the excitation pressure is converted into
spectral density in decibels/Hertz, (psi)z/Hertz and (psi)?/rad./sec. by the
computer and plotted as in Figures 63 and 64 .

Frequency Spectral Density Spectral Density
In In Decibels/Hertz In PSI SQ/RAD/SEC
Hertz SPPF FIFW
5 128.365 0.95653E~05
6.3 129.361 0.12032E-04
8 130.324 0.15017E-04
10 131.354 0.19040E-04
12.5 131.885 0.21516E-04
16 132.313 0.23744E-04
20 132.344 0.23913E-04
25 132.875 0.27023E-04
31 133.371 0.30294E~04
40 133.334 0.30034E-04
50 133.365 0.30248E-04
63 133.361 0.30222E-04
80 132.824 0.26704E-04
100 132.354 0.23970E~04
125 131.885 0.21516E-04
160 130.813 0.16809E~04
200 130.344 0.15088E-04
250 129.375 0.12071E-04
315 127.371 0.76095E-05
400 125.834 0.53408E-05
500 124.865 0.42727E-05
630 122.361 0.24006E-05
800 119.824 0.13384E~05
1000 117.354 0.75800E-06
1250 114.885 0.42930E~06
1600 111.813 0.21162E-06
2000 109.344 0.11985E-06
2500 106.875 0.67878E-07
3150 104.371 0.38138E-07
4000 101.334 0.18950E~07
5000 98.865 0.10732E-07
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5.8 The Output Data

-

The output data of the programs for the responses are as follows:

a. All the input data.
b. The excltation spectrum expressed in one-third octave level in
decibels, in spectral density in decibels per Hextz, and in (psi)2 per radian

per secoud.

C. The natural frequencies of the structure both in Hextz and radians
per second.

d. The displacement, the stress, the acceleration and the excitation
pressure spectral densities both in tabulations and plots.

e. The mean—square and the root—mean—square values of the responses
and the excitatiom.

£. Some values of the joint acceptance.

g- Other special output and plots for each individual program.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

5.1.1 In the calculation of the random structural vibrational responses
due to the fluctuating pressure environments by the normal mode approach, the
important factors that have to be determined are:

a. The normal modes
b. The natural frequencies

C. The joint acceptance or the cross spectral density of
the generalized force which in turn depends on:

(1) The normal modes
(2) The correlation properties of the pressure field.
(3} The spectral density of the excitation pressure,

6.1.2 For simple structures, the determination of the mode shapes and
frequencies can be obtained to a certain degree of accuracy. For complex
structures, the mode shapes and frequencies are difficult to determine in
general,

6.1.3 Except for simple pressure fields, the correlation propertiles
are not easy to determine. Some experiments have been done in this field,
but scattering of the test data is tremendous.

6.1.4 Any discrepancy of the factors mentiomed in 6.1.1 will affect the
accuracy of the computed results.

6.1.5 To develop computer programs for the calculation of this kind of
random vibrations, the important tasks are to search or develop the necessary
frequency equaticans, the normal modes, the analytical expressions for the
correlation properties and the joint acceptance. The degree of accuracy of
the expressions for these quantities must be consistent. When these quantities
are incorporated in the formulations of the programs, the requirement of com—
puter time should be moderate as to make them practical for use. Such tasks
have been done in this project.

6.1.6 One of the important features of the computer programs developed
here is that any shape of the spectrum of the excitation pressure can be input
into the programs. Thus, the simulation of the excitation will be as accurate
as the spectral analysis of the random pressure.

6.1.7 The discrepancy in the determination of the natural frequencies

will affect the response spectrum to some degree while it will not affect the
overall mean-square response very much.
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6.1.8 It is well known that the determination of the damping properties
of structures is very difficult. By utilization of the developed computer
programs and the results of test data, the damping properties of structures
can be determined. This is another application of these programs.

6.1.9 1In the design stage of structures of aerospace vehicles, desk
calculation to estimate the responses is very important. The developed
computer programs are good guides for the designer as to the degree of approxi-
mation that can be obtained by assuming the structure vibrating at its funda-
mental mode and estimating the responses by intelligent use of simple formulas.

6.2 Recommendations for Further Investigation

A study of the random vibration of structures is a very complicated pro-
ject. There are many additional areas not studied in detall during the per-~
formance of this project that represent opportunities to extend the field. It
is believed the following recommendations are worthy of further investigations.

6.2.1 When a shell structure is reinforced by ribs and stringers, in
addition to the vibrations of the complete structure as a system, there are
local vibrations of the porticns between the stiffeners. Thus the resultant
vibration of any point should be the superposition of the system vibrations
and the local vibrations. The computer programs developed in this project
can be easily modified to account for the local vibrations. When this is done,
the prediction of the structural vibrations will be significantly improved,

6.2.2 In the development of the computer programs, it is found that the
analytical expressions for the joint acceptance are the most complicated to
incorporate into the programs. Further study cam be made to derive more
analytical expressions of the joint acceptance for some of the available
correlation functions and structure mode shapes. TFor the cases analytical
expressions are not practical, numerical integration should be incorporated.

6.2.3 TFor complex structures, only finite element methods will be
effective for the determination of the mode shapes and frequencies. Tremendous
progress has been made in the stress analysis of structures with the finite
element method. However, little has been done in structural random vibration
with this method. It is believed that application of the finite element method
to random vibrations of structures provides a promising field of research. The
program developed in this project can be adapted to the fipnite element method
without difficulty.

6.2.4 The vibro-acoustic transfer function is as important to random
vibrations as the impedance to harmonic vibrations. Experimental determination
of the vibro-acoustic transfer functions is expensive. The development of the
2-series programs to calculate the transfer functions at any point of the
structure subjected to any excitation pressure is promising. Further development
in this respect is recommended.
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6.2.5 In practical -applications, it may happen that the average responses
over the whole structure are of interest. Formulations for the average responses
have been derived for different boundary conditions. Further study in the pro-
grams is necessary.

72



VIL. NOMENCLATURE

Notation Deseription

Al Decay constant along x—axis

AZ‘ Decay constant along y—axis
Ajkmn See equation (2.4-29)

B, Half-power bandwidth of ith mode
Bjkmn See equation (2.4-29)

Cjkmn See equation (2.4-29)

One-nth octave bandwidth constant referred to
geometric mean frequency

D, =2"""-1 One-nth octave bandwidth constant referred to
lower limit
D Rigidity, equatibn (2.1-4)
Dy Rigidity, equation (2.1-4)
E Young's modulus of panel skin
E' Young's modulus of stiffeners
-5

ij(r) Normal mode

-
G(x) Root-mean-square acceleration in g

20 2
G~ (r) Mean—square acceleration in g
Gg Mean~square acceleration contributed by the ith mode
H Rigidity, equation (2.1-4)
ij Frequency response function

" .
Hmn Conjugate of Hon
Iy Moment of inertia of ome length-direction stiffener

with respect to neutral axis

L Moment of inertia of one width—direction stiffener

with respect to neutral axis
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VIL. NOMENCLATURE (Continued)

Notation Description
I, I, Integrals, equation (2.4~6)
L, Iy Integrals, equation (2.4-5); also different

use in equation (2.9-1)

Iys Iy See equations (2.4~7) and (2.4~7a)

Ijm See equation {(2.4-22)

Ijm See equation (2.4-23)

Tin See equation (2,4-24)

t —

Ikn See equation (2.4-25)

Ixij’ Iyij See equation (2.4-8)

Ixijk See equation (2.4-9)

Iyijk See equation (2.4-10)

Ijkmn Cross spectral density of generalized force
ijkmn Normalized Cross Spectral Density of generalized

Force

32 Joint accept d

fkmn nt acceptance sgquare

w

K= 7 Wave number
L, Excitation overall pressure level in decibels
M Smeared-out mass per unit area
M, Modal mass

jk
Qx See equation (2.8-3)
Qy See equation (2.8-4)
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Notation

Qy
]
Sl

Spp ()

Spp(f)

Sa}g (xr,f)

-
Sww(r,f)
Saﬁ(r,f)

-
Sy (T2 E)
S3pq (F)

-+
T%(r,f)

Yy ()

ai

bl

VII. NOMENCLATURE {Continued)

Deseription
See equation (2.8-5)
Area of panel
Area of panel subjected to excitation

Excitation spectral density in decibels/Hertz

Excitation spectral density in (psi)z/Hertz

Acceleration spectral density in decibels
referenced g

. L 2
Displacement spectral density in inch /Hertz

Acceleration spectral demsity in gz/Hertz

Stress spectral density in (psi)Z/Hertz

One-third octave excitation pressure level
in decibels

Vibro—acoustic transfer function in decibels
See equation (2.2-1)
See equation (2.2-1)

Radius of shell

Spacing of width-direction stiffeners
Circumferential width of panel

Width of panel subjected to excitation
Spacing of length-direction stiffeners
Speed of sound in medium

Base of natural logarithm

Frequency in Hertz
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VII. NOMENCLATURE (Continued}

Notation Description
g Gravity acceleration
h Thickness of panel skin
h' Smeared-but thickness of stiffeners
hy = h + h2 Height
>
h, Largest height of stiffeners at r
(see figure 1)
i Y-1 ; also index
Jok,m,n Mode indices
A Axial length of panel
2! Length of panel subjected to excitation
n One-nth octave increment
- -~
p(r) Pressure at r
Py Referenced pressure
2 . 2
a Overall mean-square pressure in {(psi)
>
T Position vector
s, 8" Number of divisions
_).
w(r) Root-mean—square displacement
-5
wz(r) Mean—square displacement
-5
X,¥ Cartesian coordinates of r
;j= §k See egquation (2.4-15)
L c tral densit
ensi
¢Pp(r1,r2,m) ross spectra y
@PP(N) Excitation spectral density in (psi)z/rad. per sec.
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VII. MNOMENCLATURE (Concluded)

Notation Description
o3 (?,m) Displacement speetral density in inchz/rad. per
w sec,
8 g (@) Average displacement spectral density in inchz/
rad. per sec.
7 2,2
B (xs00) Acceleration spectral demsity in (inch/sec”™)”/
rad. per sec.
= 2
@Gg(r,w) Stress spectral demsity in (psi)“/rad. per sec.
o1 = AqKR See equation (2.4-13)
Gy = AZKb See eguation (2.4-13)
2—)-
Yo (x) Constant to convert displacement spectral density

into stress

Cjk damping ratio
n Separation distance along y-axis
A1 = Ke See equation (2.4-13)
kz = Kb Bee equation (2.4-13)
v Poisson's ratio
£ Separation distance along x—axis
p Mass density of panel skin
p' Mass density of stiffeners
> >
p(rl,rz) Correlation coefficlent
>
o{r) Root-mean-square stress in psi
2.7 . .02
a”(r) mean-square stress in (psi)
w frequency in rad/sec.
W3y Natural frequency in rad/sec.
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IX. APPENDIX-

9.1 Figures
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