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FOREWORD

This is the final report of a theoretical investigation of
"S-IC Base Radiation and Plume Interaction Reversed Flow
Study. " This report presents documentation for the base flow
analysis effort performed on the study. Documentation for
other efforts have been published previously and are not repeated
here (NASA CR-61321, "User's Manual for "RAVFAC" - A
Radiation View Factor Digital Computer Program," by J. K.

i .	 Lovin and A. W. Lubkowitz, LMSC/HREC D148620, November

1969). This work was performed by Lockheed Missiles & Space
Company, Huntsville Research & Engineering Center, for the
Aero-Astrodynamics Laboratory of the National Aeronautics and
Space Administration, George C. Marshall Space Flight Center,
under Contract NAS8-30154.

Technical monitors for this contract were Mr. H. B. Wilson,
Jr., Mr. R. F. Elkin, and Mr. E. B. Brewer of the Thermal
Environment Branch, Aero-Astrodynamics Laboratory, MSFC.
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SUMMARY

Problems associated with computing the three-dimensional base re-
circulation flow of a perfect gas from multiple-clustered nozzles are dis-
cussed. A Lax-Wendroff time-dependent, finite-difference numerical scheme
is presented as the most desirable technique for computing this flow field.
Results of a preliminary investigation indicated that including viscous terms
in this analysis was impractical because of the number of grid Foints required
for accurate resolution within strong viscous regions. However, inclusion
of viscous terms was deemed unnecessary for computing the overall flow field.
A cylindrical coordinate system with the axis at the center of the nozzle cluster
simplified the specification of some boundary conditions, but extrapolation was
required to specify conditions downstream of the nozzles and around the exterior
of the nozzle wall. Stretching transformations are presented which concentrate
grid points in the regions of the plume interaction. A possible modification to
the numerical scheme which would permit using a steady form of the energy
equation and, hence, reduce computer storage requirements is discussed.
Stability of the numerical technique used in this study is also analyzed. Two
techniques are presented for controlling the time step to ensure stability during
the computation. The first technique monitors the total change between time
steps of all dependent variables over the entire flow field and controls the time
step to ensure that this total change decreases. The second technique prevents
using a time step large enough to cause a provisional value of density to go
negative at any grid point. Conclusions resulting from this analysis and recom-
mendations for future investigations are presented.
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NOMENCLATURE

a centrifugal force vector for cylindrical coordinate system (Eq. (2..10e) )

B a T/ae

c speed of sound

cv specific heat at constant volume

E total energy

e internal energy per unit mass

f vector used to compute changes in x direction (Eq. (2, 10b) )

g vector used to compute changes in r direction (Eq. (2,10c) )

g quantity used to monitor change of dependent variables (Eq. (2.28)

h vector used to compute changes in 0 direction (Eq. (2. 10d) )

Kr stretching constant in r direction

K T stretching constant in T direction

n time step

NCN number of concentric nozzles

p pressure

q velocity vector

R. axisymmetric radial distance

R gas constant

r radial distance (Fig. 2)

r incremental parameter for stretching in r direction

T temperature

v
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NOMENCLATURE (Continued)

t	 time

U	 axisymmetric velocity component in X direction (Fig. 4)

u	 velocity component in x direction

V	 axisymmetric velocity component in R direction ( Fig. 4)

v	 velocity component in r direction

w	 velocity component in 0 direction

X	 axisymmetric longitudinal distance aft of nozzle exit plane

x	 longitudinal distance aft of nozzle exit plane

x 	 negative longitudinal distance from nozzle exit plane to heat shield

Yo	 radial distance frum nozzle centerline to centerline of cluster

Greek

tangency angle of nozzle exterior wall in r-0 plane (Fig. 3)

Y	 ratio of specific heats

A	 step size

6	 spatial step size

0	 angular direction

0 0	 angle defining reflection plane between nozzles (Fig. 2)

P	 density

'r	 normalized parameter in 0 direction

T	 incremental parameter for stretching in 0 direction

angle between axisymmetric velocity vector and nozzle centerline
( Fig. 4)

U)	 vector form of dependent variables (Eq. (2.10a) )

vi
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NOMENCLATURE (Continued)

Subscripts

w	 condition at exterior of nozzle wall

t	 total reference condition

i, j, k	 indices for grid points in x, r, 6 directions, respectively

0	 value at previous time

1	 value at current time

vii
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Section 1
INTRODUCTION

Interaction of exhaust plumes from multiple rocket nozzle configurations,
as shown in the example configuration of Fig. 1, creates a complex three-
dimensional network of shock waves. If the impingement angle is large,
which is usually the case of highly underexpanded plumes, these shock waves
may detach from a plane of symmetry existing between the plumes. This
will allow extremely hot gases to recirculate around the heat shield and the
exterior of the rocket nozzle; thus, heat transfer to these components could
be significantly increased. Although base recirculation is a well-recognized
problem of launch and space vehicles, the three-dimensionality of thQ flow
has F.revented thorough analyses. Experimental investigations (Ref. 1) have
yielded some insight into the mechanism of these flows, but applicability of
these data are very limited. The purpose of this study is to develop a theo-
retical technique which would provide the required flexibility for investigating
the base recirculation flow field of multi-nozzle configurations.

1-1
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Fig. 1 — Example of Four Nozzle Configurations

1-2
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Section 2
TECHNICAL DISCUSSION

2.1 SELECTION OF TECHNIQUE FOR SOLUTION OF FLOW FIELD
EQUATIONS

Of all the techniques used to solve fluid mechanic problems, cloied-
rorm analytical 3oluti^ms are obviously the rnoct desirable. Unfortunately,
the conservation equations of fluid motion contain nonlinear partial differen-
tial equaticns. Closed-form aol-tions to these equations require that they
be linearized either by '_ran 9 formations or by simplifying assumptions. The
co* riplexity of the equations describing the three-dimensional base recircu-
lation flow field, which contains shock waves and resulting regions of sub-
sonic ar.d s ,ipersonic flow, precludes either tranp formations or approximations
that are valid over the entire field.

Numerical solutions of the conservation equations of this recirculation
flow present the only alternative. Spatial marching techniq u es, such as the
method of characteristics or the steady-state form of the Lax-Wendroff
technique, have: been used with apparent success for plume interaction prob-
lems which are limited to oblique shock waves at the interacting reflection
planes (Refs. 2 and 3). Such initial-value techniques are restricted to
regions of hyperbolic flow; hence, they are entirely inadequate for analysis
of flow containing detached shocks with regions in which the equations are
elliptic i nature.

Two classes of numerical techniques which appear most attractive for
the solution of this type of problem are asymptotic time-dependent unsteady
techniques and relaxation techniques. Both classes involve solving finite-
uifference approximations to the Eulerian equations of motion. The time-
dependent techniques use the principle that the unsteady Eulerian equations

2-1
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are hyperbolic in nature; thus, marching forward in time is possible. If
tf►e time step is appropriately small such that the numerical scheme is
stable, the unsteady flow will asymptotically approach the steady-state
solution.

One of the few formalized relaxation techniques for fluid mechanics
applications was recently presented by Prozan (Ref. 4). His technique,
known as the Error Minimization Technique (EMT), uses the steady Eulerian
form of the conservation equations, but these equations are set equal to an
error term for each equation at each grid point. Because an initial flow field
with imposed boundary conditions does not satisfy these conservation equa-
tions, this error term is non-zero. A positive definite merit function of the
error tern is defined, and the merit function is decreased through descent
techniques. As this merit function asymptotically approaches zero, the flow
variables approach their correct steady-state values. Comparisons with
time-dependent techniques indicate that the EMT is equally as accurate and
requires comparable computation time as the unsteady techniques require
for convergence.

The feasibility of including viscous terms in an analysis of this type
was considered. Both the unsteady and relaxation methods are capable of
solutions involving these terms. However, a preliminary investigation indi-
cates that a Iine mesh grid system was required to obtain resolution in re-
gions where the viscous stresses dominate. When considering the staggering
number of grid points required to define the inviscid three-dimensional flow
fic O, it was concluded that the inclusion of enough additional grid points to
yield meaningful resalts of a viscous flow field of this type was impractical.
It was further concluded that the exclusion of viscous forces from the analysis
would not significantly affect the characteristics of the overall flow field,
although the possibility of rationalization is conceded.

Infinitesimally thin shock waves of various strength will obviously exist
throughout the flow field under consideration. State-of-the-art, finite-
difference techniques are not able to correctly isolate the location of shocks

2-2
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between grid points, treat them as discrete discontinuities, and apply shock
jun.p conditions. An attempt to improve the state of the art to accomplish
this was unsuccessful. An alternative approach was to introduce artificial
viscosity into the equations. This may be done explicitly as presented by
von Neumann and Richtmyer (Ref. 5) or implicitly as done by Lax and Wendroff
(Ref. 6). Either approach introduces dissipation terms which become large
in regions of high compression. As a result, shock waves occur over several
grid points. The effect of this smearing can often be reduced by using a finer
grid mesh.

Presumably, because of the similarity of the formulation of the equa-
tions, shock smearing versions could exist for either EMT or unsteady tech-

J}

	 niques. However, several versions of the unsteady techniques have proven
quite capable of computing flow fields with shock waves; whereas a shock
smearing version of EMT would require additional development. For this
reason, a recent version of the finite-difference, two-step Lax-Wendroff
unsteac ', technique is presented in Section 2.4 of this report for solving the
three-dimensional base recirculation flow field. This technique has been
coded in FORTRAN V nor use on the Univac 1105 digital computer. The

y
following sections of this report describe the application of this technique

:	 to the base recirculation problem, as well as a derivation of the finite-
difference scheme.

2.2 GEOMETRY CONSIDERATIONS

The computation technique has much versatility in respect to geometry
considerations. Flow from any number of nozzles may be computed so long
as they are positioned concentrically about a central point. Figure 2 pre-
sents an example of a four-nozzle configuration. The end view reveals eight
reflection planes for this configuration. Because of this symmetry, it is
necessary to investigate only one-eighth of the entire flow field for this con-
figuration. All distances are nondimensionalized by the exit diameter of the
nozzle. The effect of nozzle separation distance relative to the exit diameter

2-3
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may be etudied by choosing various values of y o . The heat shield location
is designated x  , where x  < 0.

2.2.1	 Coordinate System

The choice of a cylindrical coordinate system is natural when con-
sidering the region of analysis. The angle from the reference line to the
first plane of symmetry 0 o is computed from the geometry by

7
e o	 2 NCN

where PdCN is the number of concentric nozzles. For convenience of nota-
tion, a normalized parameter 'r is defined as

0-0

2 - 0o

thus, T = 0 and 1 represents the two reflection planes.

2.2.2 Exterior Nozzle Wall Equations

The exterior wall of the nozzle is represented as a cylinder as shown
in Fig. 2. For this offset cylindrical coordinate system, the equation for
this nozzle exterior wall is

2	 2	 1

sin6 = rw + yo - 4
w	 2 y0 r 

if (r - 2) < yo < (r+-! )   and x < 0 .

By defining a  as the angle between the tangent of the exterior wall
and the horizontal in the r - 0 plane (Fig. 3), then

2-5
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dr
tan(3 =	 ww — aew

yo cos8w 1 -
yo 

sin8
 w

t :1 yo cos28w

(2.4)

^s

i

This angle will be used to specify tangential flow about the nozzle exterior
wall.

2.2.3 Stretching Transformations

By visualizing flow for the nozzles in Fig. 2, it may be seen that plumes
will first interact and cause shock waves along T = 0 . Slightly farther down-
stream all four plumes will intersect at r = 0 causing a complex flow
pattern to occur inside a diamond-shape shock wave for the four-nozzle
configuration. For these reasons, increased emphasis should be placed
on defining the region near T = 0 and r = 0. The following stretching trans-
formation is suggested to provide a fine mesh grid near T = 0 :

.	 T = T - K.r sin (7rT)	 (2.5)

where

Kr = arbitrary constant less than 1
7r

T = parameter varied from 0 to 1 by even increments

A similar stretching transformation in the r direction is suggested as

r = tan (Kr r)	 (2.6)

where

K r = arbitrary constant

r = parameter which may be varied from 0 to 7r/ 2Kr
by even increments

2-7
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2.2.4 Number of Grid Points

Approximately 50 grid points in the x direction, 25 in the r direction,
and 23 in the t direction are estimated to be the minimum number of grid
points required for adequate resolution of a typical problem for the geometry
shown in Fig. 2. This total comes to nearly 30,000 grid points. It will be
shown in Section. 2.4 that 10 dependent variables must be stored at each grid
point. This requires storing 300,000 variables which greatly exceeds the
core storage of any digital computer available locally. A rapid access drum
storage routine of the Univac 1108 digital computer provides an alternative
to core storage. This routine known as NTRAN has been modified to re-
linquish control of the machine while performing the time-consuming chore
of repositioning the drum to a desired location. Combining a restart capability
with this routine would be desirable to prevent loss of converging flowfield
parameters through machine error.

2.3 BASIC DIFFERENTIAL EQUATIONS

The unsteady conservation of mass and energy equations, the three un-
steady Euler equations, and the perfect gas relation give six equations in six
unknowns. These unknowns are the three velocity vectors (u, v, w), pressure
(p), total energy (E), and density (p). The pressure may immediately be
eliminated from these equations by considering the perfect gas relation

p = p6Z T
nn n

_ (y - 1) p C v T

(y-1)pe

Nondimensionalizing* by the reference total density t and speed of soundnct gives

Note: Quantities with ( A ) denote dimensional variables.

2-8
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p = (y-1) Pe

Using the definition of the total energy as the sum of the internal and kinetic
energies

	

E =P[e+ 2 q2J
	 (2.7)

where

q2 = u2 + v2 + w2

yield the pressure as

	

p = (y - 1)E - e	 (2.8)

This expression is used to eliminate pressure from the Euler equations and
the conservation of energy equation. This leaves the following set of five
equations and five unknowns shown in vector notation as

ax

where

P

pu

w =	 P 	 (2, l0a)

P 

E

2-9
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(pu)

(y - 1) E 
	 1 P) (Pu)2	

(PL

2 1 ) C PC(pv)2+(PW)2J

f= ( Pu) (Pv) 

/

(Pu) (PW) t 1P

If
 

(Pu) - (?—) ( 2 ) (Pu) [(Pu) 2 + ( Pv ) 2 + (PW )2]
P	 ^

(pv)

(Pu) (Pv) P(1)

9 =	 (y - 1 ) E	 \ 3 \ P) (pv)2	 (^, 2 / \ P) [(Pu)2 + (pw)2]

\(Pv) (PW) ( 
1p )

yp (Pv) - (Y 2 ) f 2 ) (Pv) r(Pu) 2 + (Pv) 2 + (pw)2^
P	 /

(PW)

(Pu) ww) I 1 )P

h =	 (Pv) (PW) 1 )P

( y - 1) E	
( 2 ) \ P / (PW)2 - \ v
	

p [(Pu) ,- + (pv)2 J

p(PW)	 \ 2—) (-L2) ( PW )
(;pu)2 +(Pv)2+(PW)21

(2.10b)

(2.10c)

(2.10d)
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(Pv)

(Pu) (Pv) ( 1 )

/P
a =	

\ 
1-) [(Pv) 2 - ( Pw) 2 ]	 (2.10e)
P

(L) (Pv) (Pw)

P (L)
P(Pv) {YE

?1

) 	 [2

	
+ (Pv) `^ i- (Pw)2, 1

These equations, expressed in conservative form, treat (pu), (pv), and (pw)
as dependent variables instead of u, v, w.

An alternate form of these equations in which E may be expressed as
a function of the remaining .four dependent variables is proposed. Combining
the adiabatic, perfect gas relation,

A	 Al

T 	
a t

1 _ ^^ 1)
2	

q2

with the specific internal energy relation,

A n n
e = c Tv

A
6Z
	 A

(Y T T

and the thermally perfect expression of the speed of sound,

A2	
n A

ct = Y f t Tt

2-11
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gives

	

e _ 1 ( 1	 _ 1	 2
Y 1Y -T T q

The total energy E may then be explicitly expressed as a function of the other
four dependent variables by

E= P	 1 1 + ly 1^ q2 }
Y Y -	 )

	= Y Y 1 1 + I — 1) ? [(Pu) 2 + (Pv) 2 + (Pw) 2 ] }	 (2.11)
\

	

	 )P

Equation (2.11), which is not in diffe-ential form, can be used to decrease the
computer storage variables by 20 0/'o. Preliminary investigations on simplified
flow fields indicate that convergence time is not significantly altered by using
Eq. (2.11) to solve for the energy directly. The computer program does not
include this option because of the preliminary nature of these results.

2.4 SOLUTION OF UNSTEADY FINITE-DIFFERENCE EQUATIONS

The solution to Eq. (2.9) begins by expanding the vector Eq. (L. 10a) in
the Taylor series

wilj,k = ^ i 0^ k
 + I8lt0	 At + C(Ot) 2 	(2.12)

	

`	 J i, j, k

where superscript t refer to time and subscripts i, j, k refer to grid point
numbers in the x, r, 0 directions Direct substitution of Eq. (2.9) into Eq. (2.12)
give s

t	 t	 t	 t
^i lj,k = ^i j,k - 

\ / 0 + ®rli
0 += ae

0 	
+r

)i,j,klat
0+0(pt)2(2.13)

\ i,J,k	 ,^,k	 i,j,k 

2-12
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'	 Any fi. , ite-difference analogy to Eq. (2.13) is unconditionally unstable; however,
this equation can be modified into a form which is conditionally stable. One
popular technique is to retain higher order t,-rms, but this involves the com-
plicated and computer time-consuming process of expressing 8 2w/8t 2 as
a function of 8 2f/8 x2 , 8 2f/8x Or , etc.

A preferred method of stabilizing Eq. (2.13) is by using a two-step process.
This process, known as the two-step Lax-Wendroff technique, computes
provisional values of w in the first step which are then averaged with previous
-1raluer in a second s:ablc step. A three-dimensional., cylindrical coordinate
adaptation of a two-step version recently presented by ivlacCormack (Ref. 7)
is suggested for the solution of the base recirculation flow equations. This
technique was chosen because it ie easy to compute and has second-order
accuracy.

Consider the one-dimensional form of Eq. (2.131,

t
wi l	 wi0 - ax o At + 0(At) 2 .	 (2.14)

1

The central difference analogy of the partial derivative of Eq. (2. 14) may be
expressed as

(a f	 f 
1 

2Gx f 
1 

+ f
1 2Qx1

-1 + 0("x) 2	(2.15)
1

The first step of the technique which computes provisional values, steps
forward in time 2At and uses the forward portion of Eq. (2.15) or

wil - wi0	
(fi+l- 	 fi0 ) Ax	 (2.16)

The second and stabilizing step of the process provides second-order accuracy
by using the backward portion of E ; '. (2.15). This step marches forward in time

2-13
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At from t0 and averages provisional and original values of w by

0t 1	 ^i+ W i l	 t 	 t1	 At
\fi - fi-1/ 2 A

wt0 -	 0 - ft0 + f l - f 
i
l(ft	1 A + 0(At) 2 + 0(Ax) 2 . (2.17)

i1	 +1	 i	 i	 -1 / 2 ANI

A three-d. nensional version of Eqs. (2.16) and (2.17) is presented
below:

First Step:

n+T _ n k	 k_ Ot in 	- fn 	 + n	 n
W i, j, k	 Wi, j,	 6	 i+l, j, k	 i, j,	

(
gi, j+l, k - gi, j, k/

+ r [(h1, j, k+1 + hn j, k) B + (6) (an j, k }^	 (2.18)
I

Second Step:

n+l_ 1	 n	 n+l _ At [(fn+l_iggn+l
i,j,k	 2 Wi,j,k + wi,j,k	 6	 i,j,k	 f i -1,j,k) + ` i , j , k	 i,j-1,k/

B n+1	 n+1	 Ot	 1 2.1+ r C i,j,k - hi,j,k-1^ - r (ai,j,k'^+ ) `	 (2. 1 9)

where

n = superscript used to increment t by t = (n+l) At

i, j, k = subscripts referring to grid points in the x, r, -r directions,
respectively

6 = Ax = Ar = pT
B _ 8 T = NCN

a88	 r

2-14
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As suggested by MacCormack, increased stability (larger permissible
values of At) might be obtained by a cyclic procedure using the
forward and backward portions of Eq. (2.15) in the first and second step.
Following this suggestion, Eq. (2.13), which consists of three separate
partial derivatives, was approximated by eight (i.e., 2 3 ) combinations of
forward and backward finite difference equations. Equations (2.18) and (2.19)
represent the first of these eight combinations. Programming these eight
schemes was simplified by using a variable indices technique suggested by
E. B. Brewer, NASA Technical Monitor.

2.5 BOUNDARY CONDITIONS

The choice of a cylindrical coordinate system (Fig. 2) simplified the
specification of boundary conditions. Along the planes T = 0, 1 , reflection
principles can be applied with no qualification. Axial symmetry provides
the boundary condition at r = 0. Because of the singularity of the equations
at r = 0, the grid was chosen such that this line was straddled. Downstream
boundary conditions for maximum values of x were obtained. by linear extrapo-
lation. Flow in this region is supersonic; therefore, this approximation appears
warranted. Similarly, conditions at maximum values of r were obtained by
linear extrapolation. These grid points of r which lie within the plr.me are
again in a supersonic flow regime. It is anticipated that others (i.e., x < 0)
will have a negligible effect on the plume interaction region.

Conditions along the heat shield are also easy to specify. As pointed out
by Moretti (Ref. 8), applying reflection techniques at solLd boundaries might
constitute improperly forcing to zero certain derivatives in the direction
normal to the wall. This could bias the solution. However, it would be
possible to substitute a mirror image flow ,Leld behind the flat surface of the
heat shield without altering the flow. Thus, refection principles along the
heat shield are applicable and were used.

Specifying boundary conditions to ensure that flow about the exterior
wall of the nozzle is tangential is more difficult. Figure 3, which shows
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the exterior of the nozzle in the r - 0 plane, reveals that grid points will
not lie on the surface of this wall. From geometry considerations specified
in Eq. (2. 3), three simple tests will reveal if a grid point lies inside of the
nozzle plane. Interior grid points adjacent to the wall may then be used to
specify boundary conditions at the wall. An extrapolation in the T (i.-e., 0)
direction using values of p, pu, and E at neighboring exterior points pro-
vide values of p, pu, and E at the wall and interior adjacent points. Re-
arranging Eq. (2.11) to solve for q2 gives a wall value of

2	 —Z Ew	 1	 (2.20)qw, = Y - 1 P  - ,y(y - 1)

Multiplying the definition

q2 ° u2 + v + w2

by pW yields

(Pw qw )2 = (Pu) 2 + pW (v2 + W2 )

or which may be rearranged as

PW (vW + wW) _ (Pw qw ) 2 - (Pu)W

Applying the wall tangency condition gives

(Pv)v, = C (Pw q,) 2 - (Pu) 2 
I

ain Rw	 (2.21)

and

(Pw)w = [;PW  gy	 - (Pu) _ ]cos aw	 (2.22)

where P  may be computed from Eq. (2.4) .

2-16

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



2-17

I It

LMSC/HREC D162322

Boundary values of pv and pw at adjacent interior grid points are then
obtained by extrapolating in the T direction using values of pv and pw at
exterior grid points and those computed at the wall by the tangency condition.
Admittedly, this technique involves approximations and assumptions, but it
is felt that more sophistication is unwarranted when considering computation
time.

Conditions at the nozzle exit are input as initial conditions and not
allowed to vary. Grid points at this exit may also be located by using Eq. (2.3).

2.6 INITIAL CONDITIONS

It is desirable to input as initial conditions the best possible values
of the dependent variables at each grid point throughout the field. This
should significantly decrease the computation time required for convergence
to the steady-state solution. For this reason, provisions were made in the
computer program for inputting results of a method-of-characteristics (MOC)
solution of a single-nozzle configuration.

An interpolation routine is used to determine flowfield parameters at
grid points which will not coincide with the axisymmetric characteristic grid
points. Figure 4 illustrates the relation between the geometry of the axi-
symmetric flow of the nozzle and the coordinate system used in this analysis.
The calculation of p and pu are obtained directly from the interpolation
routine which gives q, p, and 0 at any specified point. The energy E may
then be computed from Eq. (2.11).

The two remaining flow variables, pv and pw, must be computed from
geometry considerations. At a given grid point, values of r and a are
known, and the axisymmetric radial distance may be computed by

R =	 r2 - 2ry0 sine + yo	 .	 (2.23)

lr
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The axisymmetric radial velocity at that point is given by

V = gsino .	 (2.24)

Using Eqs. (2.23) and (2.24) and the fact that the flow is axisymmetric give

(r - yo sing) pV
pv =

	

	 (2.25)R 
and

Y
Pw = - R—° PV cosh	 (2.26)

For grid points lying outside of the axisymmetric plume, velocity
components are set equal to zero and ambient conditions are prescribed
for p and E.

Boundary conditions along the 'r = 0 plane and the r = 0 line are the
only ones not identically satisfied. The reflection plane 'r = 0 is the plane
of impingement of the two plumes; hence, care must be taken in specifying
initial conditions along this plane which will not cause an initial instability.
Following a suggestion by D'Attorre (Ref. 9), cl.ensity and energy will be left
as computed by the MOC program. Likewise, the computed parameter pu
will be left unchanged, but pw will be set to zero with the calculated value
of pw added to the calculated value of pu at that point.

Reflection principles are used to specify boundary values of parameters
across the T= 0 plane, and axial symmetry is used across the r = 0 line.

2.7 STABILITY

A stable time-dependent technique is one which begins with an initial
unsteady flow field and modifies flow variables so that they asymptotically
converge to steady-state values. The maximum possible time step is given
by
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bt \ 	 + c / < 1	 (2.27 )

which is the well-known Courant- Friedricks -Lewy (CFL) condition. For
this analysis, it should be noted that the appropriate S to be considered for
Eq. (2.27) is the smallest value of Ax, Ar, or AO , regardless of stretching
transformations used.

A more restrictive stability condition for unsteady techniques is pre-
sented by Von Neumann. Unfortunately, this condition can only be applied to
linearized equations, b-it linearization of the flow equations over the entire
flow field is impos^,ibl(t because of the presence of shock waves and boundaries.
It was, therefore, concluded that any attempt to predict a priori a stable time
step, and claimthat this time step should apply over the entire field through-
out the analysis, would be unrealistic. Alternative approaches for measuring
stability were, therefore, sought.

One alternative approach is to use a technique similar to that used by
Prozan in the EMT. By defining

g =r[(Pn-pn-1 +(P un	 -pun-1/2 +...+EnEn-1 	 (2.28)i,j,ki,j,k)	 i.j,k	 i,j,k	 ( l , j ,k	 i,j,k 

it is possible to monitor the total change of flow variables from one time
step to the next. If it is appropriate to assume that the initial flow field,
with boundary conditions applied, is more different from the steady-state
flow than at any time during the convergence process, then g should be
largest initially. By monitoring g and controlling the time step, it is
possible to force g to monotonically decrease toward the asymptotic value
of zero. Comparisons of g to a previous value should be made only after
a complete cycle of the difference schemes discussed in Section 2.4 because
some combinations of forward and backward differences are more stable
and allow less change than others. It is possible that this technique of
controlling the time step by monitoring g could result in neutral stability
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(i.e., instability prevented, but the solution does not converge). Results
obtained by this technique should be analyzed to ensure that the solution
represents a reasonable steady-state flow field.

A second approach to monitoring stability is the antimatter (negative
density) method. An initial time step of slightly less than that given by the
CFL condition (Eq. 2.27) is assumed. Throughout the computer calculations,
the provisional value of density calculated at each grid point during the first
step is monitored. If this density should become negative, the time step is
decreased and new provisional values are computed over the entire flow field.
The basis for this procedure is the fact that all variables change more during
the first step than during the second; hence, stability of variables computed by
the second step might be maintained by rejecting an impossible value (negative
density) computed during the first step. The danger of this approach is that
the solution could have diverged to such an unrealistic condition when negative
density occurs that recovery is very difficult.
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Section 3
CONCLUSIONS

The following conclusions were reached as a result of this analysis:

1. Closed form analytical methods and spatial marching numerical
techniques are inadequate for treating base recirculation flows
with regions of subsonic flow; however, either time-dependent
or relaxation finite difference numerical techniques may be used
to analyze these flows.

2. Techniques are not currently available for locating and treating
shock waves as discrete discontinuities between finite difference
grid points; therefore, shock smearing techniques using pseudo
viscosity must be used.

3. It appeared ._,e ither practical nor necessary to include viscous
terms in this analysis.

4. A recent version of a two-step Lax-Wendroff time-dependent,
finite-difference technique appeared to be the most attractive
numerical scheme for solving the three-dimensional base
recirculation flow field.

5. A cylindrical coordinate system greatly simplified the appli-
cation of boundary conditions.

6. Stretching transformations are desirable to concentrate grid
points near regions where the flow is complicated by shock
waves of plume interactions.

7. A rapid access drum storage routine of the Univac 1108 digital
computer provides an acceptable alternative to the limiting
core storage of this computer.

8. It is possible to solve for the total energy of the flow at each
grid point as a function of the local density and velocity com-
ponents. This constitutes using a steady-state form of the
energy equation and permits reducCion of storage variables
by 20%.

9. Computation time can be significantly reduced by beginning
with an initial flow field from a single nozzle calculated by
the method of characteristics.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTLR
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T!	 10. Because of the complexity of the flow field, it is not possible
to mathematically calculate the largest possible time step
which will yield a stable solution. An alternative technique
is suggested by which the maximum stable time step is esti-
mated as slightly less than that given by the CFL condition.
Stability is then monitored either by comparing changes of
flow variables or checking for negative density.

1,0

I

i
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Section 4

RECOMMENDATIONS

Although the objective of this investigation was to develop a technique
for predicting the base recirculation flow field of Saturn-class launch vehicles,
the method appears applicable for Space Shuttle configurations. It is, there-
fore, recommended that modifications to this technique be explored so that
base recirculation of Space Shuttle vehicles may be computed.

In principle, the numerical technique described in Section 2.4 of this
report should be capable of predicting a base recirculation flow field with
shock waves occurring as smeared shocks over several grid points. However,
such a vast number of grid points might be required to adequately define the
shock wave patterns that this technique could be wholly unattractive from a
computational standpoint. It is also questionable if the amount of mass
reversed by a detached smeared shock near a reflection plane or centerline
will adequately approximate the mass reversed by a true detached shock which
will be infinitesimally thin. For these reasons it is recommended that some
future effort be directed toward improving numerical methods so that shock
waves could be located between grid points and treated as discrete discontinuities.
Independent Research efforts at Lockheed/Huntsville into such areas as finite-
element applications to fluid mechanics could provide an attractive alternative
technique for the solution of such complex three-dimensional flow fields.

A literature survey also indicated that there exists a lack of quantitative
information as t what happens in the region of plume impingement and re-
sulting shock detachment. Such essential information as the dominating
parameters controlling the shock detachment height and magnitudes of re-
versed flow components behind a strong shock are still unknown. This
problem is akin to blunt body flow, and it is believed that much could be
learned about dominant terms and controlling parameters as has recently
been done for blunt bodies by Brainerd and Waldrop (Ref. 10).
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