General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

INTERNAL NOTE MSC - EG-69-2

PROJECT APOLLO

CONSIDERATIONS IN LUNAR LANDMARK SIGHTING AND RECOMMENDED TECHNIQUES

APPROVED BY

Chief, Systems Analysis Branch

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

HOUSTON, MEAN
FEBRTJARY 2, 1969°

A major consideration in performing navigation functions in lunar orbit is the determination of the optimum tracking techniques with the Asollo CSM-LM. In this internal note, various espects of tracking that are discussed are: (1) The constraints imposed by limitations of the field of view of the SCT (scanning telescope), (2) possible different maneuvering technişues which might be employed, (3) choice of suitable landmark, (4) choice of an optimim manouvitring and sighting technique.

SUMMARY

The resulte of this landmark aighting study are: (1) It appears that the optimum techalque consists in rotating the CSM at orbital rate, with the SCT shaft axis about 30° ahsad of the local vertical. Primary constraints include limitations on the SCT FOV (fieli of view) and consideration of fuel economy, (2) choice of a set of 25 lendmarks to be programmed for automatic acquisition is a function of the envelope of ground tracks and computer programs for their selection. They should be chosen so there is an adequate interval to acquire each after the previous one has disappeared over the horizon, and there is a known relationship to the lunar landing site.

REQUIREMENTS

The requirements to be satisfied by any lunar landmark sighting and salection tecknique have been developed from considerations of computer errors, consideration of the time required to acquire and track landmarks, and the ne effects of geometrical constraints thereon.

Computer errors are minimized when two lines-of-sight (LOS's) on a landmark are perpendicular. Since the error varies as the cosecant of the angle between the LOS's, this angle should be greater than 60 degrees. The computer is capable of accepting up to five marks per landmark. More marks than two can be employed for data smoothing.

Time required for landmark recognition, acquisition and tracking, is presently difficult to define. However, it appears desirable to maximize the duration of lamdmark LOS dwell within the optics field of view (FOV).

Data in reference 6 indicates that at certain orientations of the CSM-LM, a high level of reflected sunlight way give rise to scattered light in the optics. Therefore, spacecraft attitudes may be limited by the optics scattered light constraint.

Because of the limitutions of the RCS propellant, maneuvering should be minimized. In addition, eny maneuvers zhould present a minimum interference with the task of tracking.

Controls are provided at the optics station for both the shaft and trunnion angles of the optics (sextant and scanning telescope), und for rate control of the spacecraft in pitch, roll. and yaw. Simultaneous operation of these controls may be difficult, so that it is desirable to limit vehicle maneuver to a constant, stable rate.

The optimum orientation of the vehicle with respact to the target is that which will permit the target to dwell within the FOV of the SCT for the maximum time with no maneuver with respect to the LV system. This would be satisfied by having the roll axis horizontal and the pitch axis perpendicular to the orbit plane.

To maximize the ground tracking period, two CSM orientations are possible: (1) with the roll axis horizontal, the pitch axis along the orbital angular momentum vector, ard pitched to place the forward edge of the field of view on the horizon, (2) with the roll axds in the vertical plane containing the orbital angular momentum vector, pitched and rolled to place the shaft axis projection near the ground track and the edge of the field of view on the forward horizon. The first, orientation is considered preferable to ease the tracking problem. The LOS ahould be about 15° from the shaft axds at ciosest approach to keep shaft rates from bocoming excessive.

If maneuvering is to be avoiciad, the maximum angle between mark LOS's (relative to inertial spece) will be about 90° (twice the $38^{\circ} 11$ mit on the readout plus 20° central angle traversed from target at near horizon to nadir, minus about two oinutes for acquisition at about $30 / \mathrm{min}$).

SIGHTINO RECHNIQUES

In the light of previous criteria, several proposed techniques have been examined. The techniquen coneldored for LMK tracking may be aumarized as followa:
e. Local vertical (LV) tracking - aline the vohicle with the center of the field-of-view along the local fertical and the pitch axis parallel to the orbit polar uxis (ω) and rotate at the orbital angular rate. Observe forward section of FOV with SCT. Mark identified LMK as early as possible when observed, then when at nadir, and just prior to exiat from FOV (figure 1).
b. Rotation at orbital rato - shaft axis 30° ahead of nadir. Align vehicle with pitch or roll exis along orbit polar axis and shaft exis 30° ahead of nadir, and rotate at orbital rate. Mark at LM K identification and at intervals of about 30° (figure 2).
c. Roll/pitch LMK traoking position and rotate vehicle as in b. When LMK is identified, pitch the vehicle et the LOS rate with the RCS. Mark at initial sighting, 45° before and after nadir and at nadir, and just prior to disappearance over horizon. After disappearance, maneuver vehicle to original orientation, at minimum rate required to be prepared to acquire next LMK.
d. Roll/pitch LV tracking with average LOS rate tracking-position and rotate vehicle as in b. When LMK is acquired, increase roll /pitch rate to an average LOS rate ($0.240 / \mathrm{sec}$) with minimum impulse control and mark as in c. above while tracking target with shaft and trunion axes of SCT or SXT. Reorient for next LMK after LMK disappears over horizon.

Considering the first method, in local vertical tracking is used with the shaft axis elong the nadir at an altitude of 60 n . mi., the vehicle traverses a 400 cone with apax at the $L M K$ and axis along the nadir in about 119 seconds. This might not provide adequate time for acquisition, tracking, and marking. To achieve marks while the line-of-sight rotates through at least 90° may require vehicin rotation because of the limitation of the sextant and telescope fields of view to a 40° cone (approximately). In addition, the early acquisition of the LKK is desired, suggesting a further rotation of the vehicie than required by the geometry. However, if multiple LMKis are tracked per orbit, frequent reorientation of the apacecraft may be required, substantially increasing fuel cost. Therefore, in order to prolong the available viewirg time without increasing the required maneuvering, technique b. is suggested. This increases the available viewing time to about eight minutes for LidK on the ground track.

If more time than this is required, the vehicle must be maneuvered to keep the LMK in the FOV of the optics during the time the LMK is above the horizon. The least expenaive maneuver is to rotate the vehicle at a constant rate during this time. This method is technique d.

In the following, it is shown that rotating the vehicle at the average LOS rate would allow the LMK to be tracked without further maneuver until it disappears over the aft horizon. The $L O S$ angular rate relative to the local vertical (from reference 2) is:

$$
\boldsymbol{w}_{\text {LOS }}=\left[\frac{r / r_{m} \cos \theta-1}{\left(r / r_{m}\right)^{2}-2 r / r_{m} \cos \theta+1}\right] \omega_{0}
$$

for S / C rotating at orbital rate. The average LOS rate (relative to the local vertical) is:

$$
\omega_{\operatorname{LOS}_{A V}}=\frac{\sin ^{-1}\left(r_{m} / r\right)}{\cos ^{-1}\left(r_{m} / r\right)} \omega_{0}
$$

This yields an average LOS rate for a $60 \mathrm{n} . \mathrm{ml}$. lunar orbit of 10.5% minute.
The difference betweer the average and the true rate is:

$$
\omega_{\text {LOS }}-\omega_{\text {LOS }}^{A V} \text { }=\left[\begin{array}{cr}
r / r_{m} \cos \theta-1 & \sin ^{-1}\left(r_{m} / r\right) \\
\left(r / r_{m}\right)^{2}-2 r / r_{m} \cos \theta+1 & \cos ^{-1}\left(r_{m} / r\right)
\end{array}\right] \omega_{0}
$$

If the vehicle is rotated at the average rato (. $24 \% / 800$), the maximum displacement between the optical axis and the LOS (assuming perfeot alinement at acquisition on the horizon) will cocur when the quantity within the brackets is zoro, which, for a 60 n , mi. orbit occurs at $\theta=5.57^{\circ}$. The corresponding angle between the LOS and LV is then 58.6 , and the angle between the center of the $F O V$ and the local vertical (LV) is 22.1°, giving a maximum difference of 36.5°, which is within the 400 cone. The maximum excursion of the LOS from the center of the FOV may be reduced oven further by suitable cinoice of initial conditions and rates relative to the LV (see Sigure 3).

In figure 3, the variation of the angle betrisen the LOS and $I V$ is shown as a function of time and the angle between the center of the FOV and the IV for a fixed vehicle rate about a horizontal axis perpendicular to the orbit plane. As may be seen, the maximum angle between the LOS and conter of the FOV can be reduced by pointing above the horizon and rotating the vehicle at a larger rate than average. For example, acquiring the target with the center of the FOV about 30° above the horizon and rotating the vehicle at about $4 / 3$ the average rate of the LOS (about $.30 / \mathrm{sec}$) will restrict aubsequent excursions of the LOS from the center of the FOV to about 26°.

From the foregoing, it may be concluded that LMK's may be tracked by using a amall rate in addition to the orbital rate. The exact value of the desired rate is not too critical, nor is the initial condition at target acquisition.

In the event that RCS fuel limitations preclude the maneuvering required for this technique, the only alternative yielding increased sighting time of the LMK's LOS within the 38° cone within which the CDU's may transmit precise angular data to the computer is to rotate the vehicle at the orbital rate, with the shaft axis of the SCT about 30° ahead of the LV. This will allow the arc under the orbit of the vebicle from 10° in back of the LV to the horizon to be accessible to the SCI. A target on this arc may be tracked for about 510 seconds after it appears over the horizon. If this is done, the desired sighting at an angle of about 45° after passing over the target will be impossible. Rotating of the vehicle about the roll axis has been also considered in the interest of fuel economy.

Since the optics shaft angle is about 33° from the CSM's y-z plane, orienting the vehicle With the X-axis perpendicular to the orbit plane would displace the intersection of the shaft axis projection with the lunar surfase about 2.5° of lunar central ancle from the orbit plane. Points on the ground track will then cross the field of view in about 400 seconds, and the maximum angle between mark IOS's thereon will be about 70°.

LMK's no more than 2° out of the orbital plane will be trackable with an acceptable loss in tracking time and maximum angle between marks without maneuvering. LM's with greater displacement will require vehicle maneuver in anticipation of their acquisition. The aisplacement of the shaft axis (Δ) required from the orbital plane is related to the out of plane angle (A) by the relationship,

$$
\operatorname{TAN} \Delta=\frac{\operatorname{SIN} A}{1.064-\operatorname{COS~} A}
$$

This is plotted as figure 6.

Por example, a LMK 5° from the orbital plane appears about 52° from the nadir of the orbiting vehicle. The horizon is 200 out of plane and 70° from the nadir.

The tradeoff's between these various techniques of LMK tracking is summarized in Table I.

SELECTION OF LMK's

It is desirable to develop a general list of lunar IMK's which may be used for precise navigation. These should be precisely located, easily distinguistable and distributed so that any of the expected Apollo lunar orbits will pass within easy tracking distance of two or three of them while illumation is adequate for recognition. Sets of lunar surface maps will be furnished to aid in their recognition.

The factors to be considered in selection of lunar orbit determination landmarks are: (1) The envelopes of expected ground tracks over the moon, (2) the interval desired between LMK's for convenient tracking, (3) the requirements of the LMK selection section of the CM computer program.

Figure 5 indicates the limits of the ground tracks through the selected landing sites, approximated by line segments. In any case, the maximun ground track latitude will be 13° North or South.

For optimu acquisition, tracking and data reducition, consecutive $I M K^{\prime}$ s should be $18^{\circ} \pm 2^{\circ}$ apart on the ground track or the same separation in loneitude for near-equatorial orbits.

A 15° spacing between LMK's tracked on the 8 ame orbit is probably the minimum acceptable, since from the horizon to the nadir is about 20° of central angle on the moon, Looking towards the forward ra.. : ron, about 15° of central angle could probably be used for tracking and marking a single i": if maneuvering is to be avoided. This gives about five minutes of effective tracking time.

Two sets of LMK's have been chosen by IESD for use in the G mission. These sets d not completely satisfy the criteria for longitude and latitude of a general set, but may be altered by a small number of substitutions to satisfy these criteria. A suitable modified set is presented in Table II.

For a nominally equatorial orbit adequate LMK's are available within 2° of the ground track. From the data in reference 5, it appars that for all ground tracks within the extremes of orbital inclination and azimuth of the parking orbit ascending mode, there will be an adequate distribution of available LMK's, with intervals of $16^{\circ}-20^{\circ}$ of central angle and within one or two degrees of the ground track.

RECOMAENDATIONS

It is recomnended that lunar LMK's be tracked by maintaining a constant orientation to the lunar local vertical which places the forward edge of the SCT FOV on the lunar horizon near the projected ground track. This is most readily accomplished by orienting the CSM with the roll axis horizontal, in the orbit plane, and rolled to place the shaft axis projection near the ground track. An alternative is to have the roll axis horizontal and perpendicular to the orbit plane. This would yield a somewhat reduced (about 20 percent less) viewing tine (without maneuvering) for LMK's on the ground track, but reduce fuel cost if maneuvering to extend tracking time is required. The projection of the chaft axis should be about $5^{\circ}-10^{\circ}$ from the LMK LOS to avoid excessive shaft angle rates, which may create same tracking difficulty.

Technique	Major Advantages	Major Disadvantages	Fuel Usage
LV Tracking (center of FOV along LV) ahead of nadir	Low fuel usage, no maneuvering	Minimum target visibility (time 119 sec)	$\begin{aligned} & \text { 4.8\#/orbit (roll-pitch } \\ & 4.61 \# / \mathrm{I} \mathrm{\prime} \text { (roll) } \\ & 4.94 \# / " \text { (pitch) } \\ & \text { (ref. 4) } \end{aligned}$
Rotation at orbital rateshaft axis 30°	Same plus increased target visibility	None, except possible glare problem on sunrise portion of orbit	Probably same as above
Roll LMK tracking (LOS rate after acquisition)	Maximum sighting time 12.3 min . (horizon to horizon)	Higher fucl usage plus continusl reorientation	$10 \mathrm{lb} /$ orbit approx.
Pitch LMK tracking (LOS rate after acquisition)	Maximum sighting time 12.3 min (horizon to horizon)	Much higher fuel usage and reorientation	Approx. $31 \mathrm{lb} /$ orbit
Roll LV tracking plus average LOS rate over LMK	Maximum sighting time 12.3 min (horizon to horizon)	Higher fuel usage and reorientation	Approx. 9 Lb/orbit
Pitch LV tracking plus average LOS rate over LMK	Maximum sighting time 12.3 min (horizon to horizon)	Much higher fuel usage and reorientation	Approx. $9 \mathrm{lb} /$ orbit
Pitch LV tracking plus average LOS rate over LMK	Maximum sighting time 12.3 min (horizon to horizon)	Much higher fuel usage and reorientation	Approx. 27 Ib/orbit

No.	*Source	Longitude	Latitude	Altitude
1	80 III	$63^{\circ} 24^{\prime \prime} \mathrm{E}$	$2^{\circ} 15^{\prime} \mathrm{s}$	Not Available
2	80 III	$58^{\circ} 14^{\prime \prime} \mathrm{E}$	$5^{\circ} 30^{\prime \prime} \mathrm{s}$	Not Available
3	80 IV	$58^{\circ} 26^{\prime \prime} \mathrm{E}$	$6^{\circ} 35^{\prime} \mathrm{N}$	Not Available
4	364-2	$52^{\circ} 19{ }^{\prime} \mathrm{E}$	$0^{\circ} 51^{\prime} \mathrm{N}$	1736.3 km
5	364-2	$38^{\circ} 42^{\prime} \mathrm{E}$	$3^{\circ} 36^{\prime \prime} \mathrm{N}$	1737.2
6	364-2	$38^{\circ} 071$ E	$0^{\circ} 39^{\prime \prime} \mathrm{N}$	1739.0
7	80 III	$38^{\circ} 31^{\prime \prime} \mathrm{E}$	$2^{\circ} 18{ }^{\prime} \mathrm{s}$	1738.1
8	364-2	$38^{\circ} 20^{\prime \prime} \mathrm{E}$	$4^{\circ} 53 \mathrm{l}$	1737.2
9	80 III	$33^{\circ} 03^{\prime \prime} \mathrm{E}$	$6^{\circ} 49^{\prime} \mathrm{N}$	1737.5
10	364-2	$33^{\circ} 54^{\prime \prime} \mathrm{E}$	$2^{\circ} 24^{\prime} \mathrm{N}$	1736.6
11	364-2	$23^{\circ} 42^{\prime} \mathrm{E}$	$1^{\circ} 14^{\prime} \mathrm{N}$	1734.9
12	80 II	$21^{\circ} 06{ }^{\prime} \mathrm{E}$	$4^{\circ} 02{ }^{\prime} \mathrm{s}$	1741.1
13	364-2	$18^{\circ} 15^{\prime} \mathrm{E}$	$1^{\circ} 40$ ' s	1743.2
14	364-2	$12^{\circ} 33^{\prime} \mathrm{E}$	$5^{\circ} 58^{\prime \prime} \mathrm{N}$	1743.2
15	364-2	$11^{\circ} 48^{\prime} \mathrm{E}$	$2^{\circ} \cdot 53^{\prime} \mathrm{N}$	2743.2
16	80 II	0° O1' E	$4^{\circ} 30^{\prime} \mathrm{s}$	1741.4
17	364-2	$1^{\circ} 201 \mathrm{~W}$	$0^{\circ} 06{ }^{\prime} \mathrm{N}$	1737.2
18	38-1	$7^{\circ} 27^{\prime} \mathrm{W}$	$4^{\circ} 05^{\prime} \mathrm{N}$	1745.8
19	364-2	$18^{\circ} 28^{\prime} \mathrm{W}$	$2^{\circ} 45^{\prime} \mathrm{s}$	1738.4
20	80 II	$20^{\circ} 16^{\prime \prime}$ W	$4^{\circ} 34^{\prime}$ s	1733.1
21	364-2	$24^{\circ} 55^{\prime \prime}$ W	$1^{\circ} 121 \mathrm{~N}$	1739.1
22	364-2	$36^{\circ} 42^{\prime} \mathrm{W}$	$2^{\circ} 49^{\prime} \mathrm{S}$	1735.4
23	364-2	$42^{\circ} 16^{\prime} \mathrm{W}$	$1^{\circ} 57 \mathrm{l}$	1735.7
24	364-2	$53^{\circ} 16^{\prime} \mathrm{W}$	$5^{\circ} 10 \mathrm{~s}$	1781.1
25	364-2	$60^{\circ} 38^{\prime} \mathrm{W}$	$0^{\circ} 52 \cdot \mathrm{~N}$	1738.1

* The sources referred to are: Memoranda TH3-68-38 (Table I), TH3-68-364 (Set 2), and TH3-68-80 (Tables II and III).

Figure 1.- Local vertical tracking.

Figure 2.- Orbital rate roll or pitch with center of FOV 30° ahead of local vertical.

Figure 3.- Relative motion of field-of-view center and LOS to target for $60 \mathrm{n} . \mathrm{mi}$. circular orbit.

Figure 4.- Apollo Command Module scanning telescope field of view constraints.

Figure 6.- Maneuver angle for out-of plane targets.

References

1. MIT SFA Memorandum \#9-68, "Studies of Onboard Lunar Orbital Navigation with (1) Unknown and Known Landmarks and (2) Some Observations on Non-Linear Propagation", by David Baker.
2. MSC IN 66-EG-46, "A Study of Lunar Orbit Navigation and Landing Accuracy", by Rudolph L. Saldana, et al. .
3. MSC Memorandum TH3-68-280, "Lunar landmarks for use in the determination of the lunar parking orbit", by P. R. Bell.
4. MSC Memorandum TH3-68-364, "Lunar landmark selections", by Wilmot N. Hess.
5. MSC Memorandum TH3-68-238, "Locations of lunar landmarks for orbital. navigation", by P. R. Bell.
6. MSC Memorandum EG26-68-81, "Project MOSES", by Enoch Jones.
