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IMPROVED SHOCK NORMALS
OBTAINED FROM COMBINED MAGNETIC FIELD
AND PLASMA DATA FROM A SINGLE SPACECRAYT
-R. P. Lepping ‘
Laboratory for Extraterrestrial Physics
a-nd
P. D. Argentiero

Mission and Trajectory Analysis Division

ABSTRACT

By agsuming the validity of the Rankine~Hugoniot conservation relations fo_r
interplanetary type shocks in an isotropic medium it is demonstrated that im-
proved shock normals can be calculated by employing a least squares technique
to combined magnetic field and plasma data from a single spacecraft., The scheme
uses only those conservation relations (six in number) which are devoid of pres-
sure and temperature terms., Transforming these equations cast for a shock
frame of reference into an arbifrary frame reduces the system to three indepen-
dent Y"overdetermination' equations, These three equations constitute a three
parameter redundancy amoﬁg the eleven measured parameters of the system:
s By, W (= V,-V,), p,, and p,, where subscripts 1 and 2 refer to before and
after the shock respectively. By exploiting this redundancy in the cases of

-

simulated shocks, whose basic noiseless characteristics are known exactly, it
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has been shown for many realistic examples, through the minimization of a least-
squares loss function, that the normals are caleulated with error improvements
of factors of about 3 or so over calculations using the magnetic field alone.

S\A corrected normal and improved shock parameters are then obtained for
a real case: the August 20, 1966 (Pioneer 7) shock, An appendix provides a
listing of the complete computer programs used in obtaining the best estimate
shock parameters, the shock surface normals, and the associated exror cones.

The scheme should prove useful in examining the shape of a shock surface

whenever data for a shock event are available from two or more spacecraft widely

separated in solar longitude.

iv



IMPROVED SHOCK NOBMALS
OBTAINED FROM COMBINED MAGNETIC FIELD

AND PLASMA DATA FROM A SINGLE SPACECRAFT

i. INTRODUCTION

In space research there is increasing need for obtaining more accurate
shock surface normals. This report presents a method of improving the calcula-
tion of obligue shock normals, over previous single gpacecraft methods, by using
combined magnetic field and plasma data from a lone spacecraft. One important
reason for obtaining improved single spacecraft shock normals, which is of
particular interest to the authors, lies in the observational study of the shape of
interplanetary shock surfaces. For this type of study if is presently rare to
obtain reliable data from {wo spacecraft widely separated in solar longitude, a
situation necessary for this surface shape determination, much less from three
or more spacecraft. ¥ N(N > 3) number of spacecraft useful for this sort of
study do exist, that is,do reliably see the same shock surface, then one can be
reasonably sure that N ~ 1 of them, or at best N -~ 2, will be located in the neaxr
earth region. And in no case in the forseeable future will a situation exist where-
by two spacecraft will be located far from the earth in solar longitude and at
the same time remain In close proximity to each other. By close proximity we
mean at least close enough to each other to see the same shock normal almost
at the same time (i.e. with a time difference on the ordf-;r tens or hundreds of

minutes). Hence, we must be satisfied with reliably calculating the shock normal



from single spacecraft data, especially for the far-from-earth spacecraft,
Figure 1 describes this situation where the far spacecraft shown is a Pioneer
spacecraft (or could be considered any other solar orbiting probe), and the
plane of the figure is approximaiely the. ecliptic plane. The near-earth space-
craft could represent one or more of the Explor;ars or any other capable space~
craft in that region. If &, the difference in solar longitude of the two spacecraft,
is sufficiently large, then for around the time of the shock sighting the two cal-
culated'shock normals n, and n, should suffer a difference great enough to
yield a respectable determination of the shock surface's curvature. In order
to accomplish this the error angles associated with the estimates of the normals,
represented in the figure as error cones of cone angles a, and a; respectively,
should each be significantly smaller than /2.

Previously when one wished to calculate the shock normal from the data of

a single spacecraft the magnetic field alone was used in the expression

1)| , I-1)

where _ﬁl and ]_32 are the magnetic fields before and after the shock respectively,
The plus or minus sign ambiguity is clarified once the sign of the plasma density
change is ascertained, but quantitative knowledge of the density is not required.

Expression (I - 1) rests on the so-called coplanarity theorem (Colburn-and



Figure 1. Two spacecraft, widely separated in solar longitude &, each detecting different portions
of the same shock surface. The plane of the Figure is approximately the ecliptic plane
which contains the unit vectors R and T, orthogonal to each other and to N which is
normal to the ecliptic. The quantities n and arefer to the unit normal vector to the shock
and its associated error cone angle, respectively.



Sonett, 1966) which in principle holds exactly, However, the values for the
vectors 'El and Ez un—dergo ﬂuctuatidns, and therefore straightforward average
values are often used. If these averages are markedly different from the
"actual” magnetic field values required by Expression (I — 1), then the effect

of the errors in the B's will usually be magnified by the non~linear nature of

the expression yielding a rather unreliable estimate of the normal. This is a
particularly serious problem when the angle between §1 and Ez is small, say 10°
or less, and the rms deviation of the field quantities is substantial, character~
igtically say 0.6 v for the components of ﬁl and perhaps 1.0 or larger for the
components of"ﬁ2 , around the shock transition region. For this case, where B 1
and §2 may be ~6 ¥ and™~117Y respectively, the error cone angies for §1 and '}§2
themselves are each about as large ag the average angle between them, These
errors are then propagated by way of the. two factors §1 X §2 and §2 —ﬁlwhich
join to increase the error in the final calculation (I - 1), leading often to a very
inaccurate result, Conversely, a small increase in the accuracies of §1 and Eg
should result in an even greater improvement in the accuracy of the shock
normal's estimate, By ufilizing the associated plasma data along with physical
relationships connecting the plasma quantities to the magnetic field quantities
we expect to obtain at least some improvement in the estimates of -]';’1 and _]§2 .
And this improvement, however small, w;vill propagate its way through Equation
(I - 1) to provide hopefully a significant improvement of the shock normal's

estimate. It is expected, in most cases, that this improvement will occur even

if the plasma data is acduired with poorer-accuracy than the field data.
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In Part IIT we describe this method of best fitting both plasma and magnetic
field data which will be done by exactly satisfying the basic conservation relation-
ships of the shock system. The best-{it magnetic field parameters are then used
with Expression (I - 1) to obtain the so-called best estimate shock normal. Con-
sistent with the proof of (I - 1) via the coplanarity theorem, which follows directly
from the conservation eguations, Part Il uses these equations through a "best
estimate" scheme to obtain the "proper" values to be used in (I - 1). It must he
stressed that without such a scheme it is not at all clear what values for B; and

B, are to be used in (I -1). Surely shock parameters do net appear as simple

step functions of time in the data, and by forcing step functiong by a straight-

forward averaging of B,(t) and B,(t) to obtain < B, > and < B, > to be used in
(I -1) is usually inadedquate and possibly very inaccurate, as was discussed above,
Part II discusses alternative methods, that is, multiple spacecraft methods,
of obtaining accurate shock normals. It reviews established means by which our
best estimate scheme can be tested, provided conditions are proper for the test,
Part IV contains a short discussion of the use of the scheme in terms of simu~
lated shock cases. And finally, the last section of Part IV deals with the actual
calculation of a real shc;ck normal previously studied by J, K, Chao (1970) and
which serves as a test case of the overall scheme and associated computer pro~
grams (which appear in Appendix C},
It should be pointed out that this scheme accomplishes a good deal more than
simply yield, in some sense, best estimate shock normals. It also provides best’

estimate values for all the eleven relevant magnetic field and plasma parameters.
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I, ALTERNATIVE METHODS

By alternative methods of obfaining shock normals we refer to multiple
spacecrait methods. These methods apply when the two or more spacecraft lie
in a small enough region (R) of space such that the two following basic assump-
tions apply:

1., The shock surface can be assumed plane as the shock traverses R.

2. The ghock veloeity remains constant over R.

These limiting assumptions are, of course, not imposed by our single space-
craft method described in Part Il below, We now briefly describe three multiple
spacecrait methods of obtaining shock normals,

A, Three Spacecrait Method

Ogilvie and Burlaga (1969) and Greenstadt et al. (1970) employ the three
spacecraft method to obtain shock normals. This method requires the shock to
be observeci at three spacecraft located in region R such that the plane in
which the three spacecraft lie has a substantial shock normal component per-
pendicular to it. Where R,, and 7,, are the relative displacement vector and the
shock time delay, respectively, between the first and second sightings efc., it

is easy to show from simple geometrical arguments that, for the shock speed V_,



and

Taa Ve = (H'ﬁzs) ' (If - 1)
where,

o= (oonn, ),
such that

n +n?+n? = 1. (-2) .

With these four equations the four unknowns n,, n,, n, and V, can easily be
calculated. If the delay times are much longer than the uncertainties in the

time measurements, then this method is usually a very reliable one.

B. Olbert Method

Professor 8. Olbert* of M. I. T. has deviged a method that requires only fwo
spacecrafl observations, one of which needs only to record time of shock on~
set and no other information (it could be the earth at sudden commencement).
‘ ™~

The other, however, must obtain magnetic field and plasma data as well as the

shock onset time. By using the continuity of massequation [See Edquation (III—A-l)]

*Privarte communication.



and the coplanarity theorem (Colburn and Sonett, 1966) Olbert shows that the

shock normal is given by

(B xW)x T
° T (B, x W) x 0 H=-3)

where _ﬁi is the magnetic field before the shock, W(= V, - vl )is the plagma

velocity difference, and U is defined as

R pzvz -r Y
-.7-_-'_ »

Pa - Py (I - 4)

U =

where R is the vector displacement and 7 the time delay between the two space-
craft, and p; and p, are the plasma densities before and after the shock measured
at one of the spacecraft (at which B,, V,, and V, are measured),

This method is useful when reliable plasma data is available and when the
magnetic field after the shock has relatively large fluctuations so that Equation

(I - 1) can not be used.

C. The Two Spacecraft Test

If through some other method 1 is estimated, then the first of Equations
(II - 1) constitutes a two spacecraft test of that estimate, provided V_ can also
be reliably calculated. This will not be a conclusive check but can gerve as a
means of "filtering out! some bad normal estimates and adding strength to the

estimates of others, We will make use of this straightforward check in SectionIV-C.



III. IMPROVED SINGLE SPACECRAFT METHOD FOR

OBLIQUE SHOCK NORMALS

A. Theoretical Basis and Conservation Equations

The shock normal improvement scheme described here rests on the follow-

ing assumptions:

1. The Rankin=-Hugoniot conservation relations expressed for an isotropic
medium are applicable to interplanetary type shocks (Ogilvie and
Burlaga, 1969 and J. K. Chao, 1970),

2. A shock can be ;'epresented as a '"noised-up" step function increase in
time ag degcribed in Section III-C,

3. Magnetic field and plasma (proton) bulk velocity and density data provide
adequate observational information for our p;lrpose. That is, temperature,
pressure, electron-data efc, are not necessary for significant normal
improvement even though they might be necessary to strictly identify
the shock in the first place.

Only oblique shocks are considered in the scheme. That is, the special cases

of the normal being either parallel with or perpendicular to the magnetic field
ave not treated here.

We now begin by stating the basic equations of our system.



The conservation equations in the shock (*) frame ¢f reference for an

isotropic medium are

- 2 —_

{pvn L = 0, - (L A - 1)

* - 2
[an v; - BnBt/4'JT]1 = o0, @IA - 2,3

* ) * 2
[vn B, -V, Bn:L = 0, - (I A - 4,5)
where t = t, or t,
2
[Bn]l = 0, (T A ~ 6)
{P+ (Bﬂ—BnZ)/8w+pvn*2]2 = 0, (LA -T7)
1

and

+y +4Wp— 477p(V*'n) 1

" 2 — LY 2
{%—2 LR NS S M KU —B)] = o0, (L A ~'8)

where p is the plasma mass density, V_ is the plasma bulk velocity component
normal to the shock surface, V" (t = t, or t,) are the components tangential
to the shock surface, B and B, (t = t, or t,) are the associated normal and

tangential components of the magnetic field, P is the total kinetic pressure, n is

10



a unit vector normal to the shock surface, and v is the usual ratio of specific
heats for the plasma. The symbol [ ] i means that the quantity within the
brackets is to be evaluated before ("1') and after (''2") the shock transition
zone and then the quantities subtracted. Equation (III.A - 1) is fthe mass con-
tinuity equation, Equations (III A - 2 and 3} are the momentum conservation
equations for the tangential components, Equations (IIT A - 4 and 5) are the
tangential electric field continuity equations, Equation (Iil A - 6) is the normal
magnetic field continuity equation, Equation (III A - 7) is the momentum con-
servation equation for the no-rmgl component, and finally Equation (Il A ~ 8) is
the energy conservation equation. According to assumption #3 above only the
first six of these eight equations will be used in the normal improvement scheme.
One sees that these equations can not be used directly without knowledge of
n and the shock speed. Conversely then these equations may be viewed as
constraints on the allowable values of n for a given set of relevant shock data.

It is in this indirect sense that these equations will be used.

B. Overdetermination Equations in Arbitrary Reference System

The first six conserv_ation equations, (IT A - 1 to III A - 6), can be separated
into two sets, three equations in each. We call these sets the shock velocity set
and the overdetermination equations set. Appendix A demonstrates how this
separation is made and provides a proof of the overdetermination equations.

The shock velocity set is

V. = V.n (3 equations) , (i B - 1)

s 5
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where

vV, = . = p, , (0B - 2)
_ ABX(_B1’<§2) , (I B - 3)
) lﬁx (B, §2)|
AB = B, - B, ., (Il B - 4)
and where the transformation equation
V, = V' +7V, (i=1, 2) (Il B - 5)

was used,

And the gecond set, constituting the remaining (three) overdetermination

equations, is

W - (ﬁlxﬁg) = 0, (ITL B - 8)
Pa _ — _ _ —
(-p-;Bl-BZ)-[wX(leBZ)]= 0, (@B - 7)

12



and

PPy (. _\_ |BB|? _ — = =
[1021‘922 (W-AB)W+ JTJ BI]‘[ABX (leBz)] = 0 (UIB - 8)

where

=|
#
L
1
<

(M B - 9)

Firstly, we notice that Equations (III B -~ 6, -7, —8) are rendered iﬁ general
vector form and are independent of the shock (*) frame of reference. Therefore
they can conveniently be used in association with whatever coordinate frame the
experimenter wishes. Their simplest use then will be for a frame fixed to and
moving with the measuring spaceéraif: and oriented in some ﬁhysically meaning~
ful way. The arbitrary system will have x ~y -~ z axes by our terminology,
where for instance the x axis might be along a direction radially away from the
sun and the z axis normal to the ecliptic plane etec. According fo this format any
three dependent variables can be isolated through the use of the three equations.

Chosihg these to be p,, 0, , and W,_the overdetermination equations become

P1 r—1

N, = HP_- = 5979.14 ( T ) R, (I B - 10)
P

N, = i 5979.14 (r -1 R, (I B ~ 11)

13
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and

. (I B - 12)

where m, is the mass of the proton, N, and N, are in units of number of protons

per ¢, all velocities are in km/sec, and magnetic fields are in7y, and where

_ B2x Sx * B2ysy: + B2z Sz)
h le Sx + Blysy + Blz Sz '

(I1l B - 13)

R = —ET%—, (I B - 14)

way+wzQz'

E = - Q ] ) (IIT B - 15)
S, = W,Q -W.Q ., (I B - 16)
s, = W,Q.-EQ,, ‘(]IIB-l‘?)
S, = EQ,.- W, Q , (IIT B - 18)

14
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i

EX, tW Y, +WZ,,

EM, + WM +W M,

leMx + Bly My + Blez !

Q, Y, -

QzZO.—

1x 2y—

Q,Z, »

0,%,

lyB2x 1
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(Il B - 19)

(Il B - 20)

(I B - 21)

(Il B - 22)

(I B - 28)

(11 B - 24)

(i1 B - 25)

(il B - 26)

(I B - 27)



F o= (x02 + Y2+ 202) 4 |
Xog = By = By, s
Y, = B,, - By, .
and
Z, = B,, - By, ,

and also from Egquation (IIT B - 9)

=
I
<
1
<

y 2y ly
and
W, = Vo, =V,

(II B - 28)
(Il B - 29)
(11 B - 30)
(I B - 31)
(TII B - 32)
(IIl B - 33)

That is, once eight parameters are fixed the remaining three, N, N, and V.,

are constrained fo fake the values dictated by Equations (IIT B - 10, -11, -12).

16



This constraint is the physical basis for the best-estimate scheme fo be de~
seribed in Section I - D,
It should be pointed out here that if Equation (III A - 7) were written in the

notation given above, it would become

AP

1l
N,

L (IIL B - 34)

where the change in pressure across the shock surface, AP, is in units of 107 1°

dynes per cm 2and where

M2 = M2 O+ MZ o+ M2 (I B - 35)

and

= 2 2 _ 2 - 2 _ 2
A = B22x + B2y t B2z B1x Bly B].z . (IIIB -36)

Equation ( III B ~ 34) does not play a direct role in the estimation scheme but it
can be used to calculate AP from the best-estimate parameters resultiné from
the scheme. Then the value of AP can be compared directly to pressure data
{(obviously the elecf;ron pressure cé.nnot be ignored if this comparison is made).

Since W = V, - V,,itis easy to see that Equation (III B - 2) can be written

17



as

=2
=
2l

2 —
v, =_N—‘-T+V1'n’ (1L B - 37}

-

where N, = p./m, (i = 1, 2) was used. In Equation (Il B ~ 37) the first term
and the factor n in the second term (from Equation (iII B - 3)) can be readily
calculated from the best-estimate resulis.' Then, in general, the calculation of
the shock speed V_ will be only as reliable as the value of 71 , the undisturbed
pre-shock plasma velocity. However, using a straightforward average to obtain
Vl should give an adequate result, because the rms deviation on the magnitude
of the pre-shock velocity is usually only a small fraction of the magnitude itself
and its direction fluctuates very little (differing from the radial only slightly).
This depends somewhat on the provision that a proper averaging interval is
chosen. Exberience shows that a proper interval might characteristically be
anywhere between 5 and 25 minutes. Finaily, Equation (III B - 1) is used to

obtain the vector shock velocity.

C. The Noise Pr_oblem

The usual conceptual model of an observation of an interplanetary type shock
consists of a step function increase in time of the magnifudes of the shock quan- "
tities B, V,P {(or T), and N as one goes from the upstream to the downstream
positions. [For a so-called slow shock |B| must decrease (J. K. Chao, 1970)].

The transition zone thickness is usually on the order of seconds, unless the probe

18



is observing the shock surface traveling edge-on. Indeed, for each physical
entity the conservation relations accept only two values (a "before' and an
Mafter" transition value}, We retain this exceedingly simple concept of a shock
but with the addition of stationary, uncorrelated., Zero mean, noise to each of the
basic shock quantities. That is, the noise is mathematically represented by a
stationary, uncorrelated, zero-mean, random process. In most cases, however,
we will find it necessary to resirict the before and after time zones to ab‘out 15
and 10 minutes respectively. Other cases might require longer time zones.
Figure 2 describes the shocl; model used in this work. Pressure (P) and tem-~

perature (T) are not shown because they are not used as part of the estimation

scheme,

MODEL. OF SHOCK

BZ ’VZ 3 N2

: n
MINS.|
o | RANDOM
Wz V-V, I -é.l:-‘;:Nl/ NOIS?
— — LD -
10 OR 15

Figure 2. The conceptual model of an observation of an interplanetary type shock treated in this
) report. The straight line segments (i.e. the step function part) of the dashed curve refer
to the basic (*‘true’), underlying values of the magnitude changes of the shock para-
meters shown. For a slow shock |§| changes in the opposite direction fo that shown.
Time intervals are only approximate.

19



D, Least-Squares Loss-Function Procedure

Guided by Section Il - B we split the eleven basic parameters of our system

into two groups: the 8-parameter indeioendent set and the 3-parameter dependent

set. The eight independent parameters then are chosen for convenience to be:

B, ,B,,B..,B,.,B,, B

1x* Biyr By, Bays Boys W, , and W,. Therefore, the three dependent

220 Vy
parameters are N;, N,, and W, . The coordinate system x-y-z is an arbitrary
orthogonal system and therefore in a R-T=N system (See Figure 1), for instance,
W, may be Wyor W; or W etc. provided one is consistent with the use of B, and
B,.

In our mathematical scheme it will be convenient to define two vectors Y
and X in the following faghion. The Y vector is the vector of observations, the
so~-called data array. If a total of N n;bservatioﬁs (including all data types: B, _,
W, etc) is to be used in the scheme, then Y will have dimension N. We have
eleven basic data types and we impose on these types an order so that it becomes
meaningful fo speak of the first data type, the second data type, etc. Define
N(i), 1 =1, 2,...11, as the number of observations of the i-th data type.

Then the first N (1) elements of ¥ are to be the observations of the first data
type, no particular order being necessary within the type, the elements of Y
from N (1) + 1 to N(1) + N(2) are to be the observations of the second type, in

any order within that type, etc. In symbolic form we write the N dimensional

vector Y as

20



¥ = (Yl(l)’ Y2, Ly Ny () g Ne Ly (D Y1§N<11)))

(IED - 1)
where, of course,

11

N = Z N(i) - (I D - 2)

i=1

Now we define the scalar symbol X, a variable, to be the "best estimate"
of the shock parameter measured by the observations in the i-th data type. The
definition of what coustitutes a best estimate will be provided below, and from this
definition a mode of calculating a numerical value for X,, i = 1, 2, ...11,
will be evident, Define an N dimensional vector X by permitting each of the
firstN(1) elements of X to be X, identically, the nextN (1) + 1 toN(1) + N(2)

elements each to be X, identically, etc. Symbolically we write

Xow (X o0 Xy ool Kpu o Xy X,,). @@D-3)

repeated N(1) times N(2) times N(11) times

The X and Y arrays must be compatible component for component with respect
to the parameter types, i.e., by the i-groupings. Notice for later reference that

any component of Y can be expressed as Yf( 1C1)) where j(i) refers to the j~th

21



observation (or j-th point) of the i-th data type. Now for definiteness we make

the following identification:

Table 1

Parameter Type

Data Array
Component Symbol

Best estimate

Array Component Symbol

B, . | YU, 51) =1,2, .. N1 | X, repeated N(1) times
B,, Y §(2) = 1, 2, ... N(2) | X, repeated N(2) times
B,, YOG j(8) =1, 2, v N(3) | X, repeated N(3) times
B,, Y4 g =1, 2, ... N(4) | X, repeated N(4) times
independentﬁ . _ .
B,, Y IGM §(5) =1, 2, ... N(5) | X4 repeated N(5) times
B, T LI §(6) = 1, 2, ..o N(8) | X4 repeated N(6) times
W, Y,( i )’ iM=1,2, ... N(T) | X, repe{ated N(7) times
W, YL §8) =1, 2, ... N(8) | X, repeated N(8) times
N, |Yde), §9)=1,2,..N@9 |X, repeated N(9) times

dependent< N,

¥, {00y = 1, 2, ... N(10)

Y, H5a1) =1, 2, ... N(1)

X, Tepeated N(10) times

X, repeated N(11) times

This scheme will be used throughout the remainder of this work.

The dependent parameters are related to the independent parameters through

the overdetermination equations given by Equations (OI B ~10, =11, ~12). In the

new notation these equations are formally expressed by the following:

X, = X, (2),
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1]

10 XIU(Z) ?

X, = X, (@), (I D - 4)
where
Z = (X.X,, - X). (IID - 5)
That is, Xy X1or and X, are functions of X9 Xps oo X, only, rendering X, given by
Equation (III D - 3); in terms of eight implicit variables, which must yet be
determined.
Also we define, the "sigma noise parameterg"” o;'s to be:

. = ol + A (i=1,2,...11) (IIE D - 6)

where

i/2

=

(i

St

) -y

o, NEOER! : (D - 7)

-
—
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the unbiased rms deviation of the ith parameter-type observations, and

(v) = Swoy— (WD - 8)

the average of the ith parameter-type observations, and where
Ao, (> 0) (D - 9)

is additional weight given to o, to account for instrumental noise.
We now define a scaler quantity known as a loss function, which is a
measure of how well Z ""fits'" the data array Y. The smaller the loss function the

better the fif, For this function we choose a standard o-weighted least squares

losg function:

11 NG /g -y GNP
L(Z) ZZ (’—03——) : @ D - 10) -

i
i1 j=1

Notice that L is a function of Z only, i.e. a function of only X;, X,, ... Xg. Other
functional forms for the logs funetion could be used provided they are positive

definite. The exact structure of L is, of course, somewhat arbitrary, We define
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the best estimate of Z to be the value of Z which minimizes the loss function
(I D - 10).
In order to minimize L(f) its gradient with respect to Xis X5y eee Xg must be

zero. Hence, we set

—x= = 0 (i=1,2,...8) (I D - 11}

for a necessary condition of solution. Because of the nonlinearity of Equations
(DI D - 4), the eight equations given by Equations (IIL D - 11) represent a non-

linear set to be solved simultaneously for the eight unknowns, the components

of Z. Strictly speaking it is the solution of these equations which yields the

components of the best estimate array, Expression (III D - 3} is more precisely

a variable state vector whose all eleven components become, with the help of
the overdetermination equations, the best fit array upon imposing condition
(I D - 11).

An iterative procedure will be used to solve the eight equation set (Ifi D - 11).
The numerical techique used is the Newton-Raphson method., See %ppendix 3.1 ‘
for a more detailed development of the overall statistical methods and the
numerical technique in use here., We outline below the numerical procedure.

We define Z as the exact solution of Equations (IIl D - 11) when an absolute

minimum is attained., Then Eo is defined as the first estimate (i.e. the "starting
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vector" for the iteration procedure) of Z J The vector EO could be, for instance,

the average of the first eight data channels of ¥, i.e. its components could be

CHRCHR AT

For AZ_. defined as

bz = Z_-Z_,, (IID - 12)
Eqguation (B - 10) of Appendix B.l shows AZ ., in explicit terms to be
5z, ¥ [paT9,? @-]l- ) (II D - 13)
where
- 9X(Z)
A(Z) = =, NID.-1i4
A(Z) 3z (1 )

whose elements are A, = axl/axj, i=1,2, ...N[N ig given by Edquation

(III D -'2)] and j = 1, 2, ... 8,

(amo;tA), (I D - 15)

= =Y =

B(Z)

*In the strictest sense this should be ’E defined in Appendix B.1. But the statement is still

cotrect, in a relative sense, as it stands.
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and where.

= ; 1
Q = ‘ (I D - 16)

such that o2 ig repeated N(1) times, o? repeated N(2) times, etc. By repeated

application of Equation (IIT D - 13) with
Z = Z_, +4AZ (ID ~ 17)

for n=1, 2, 3, ..., provided fo is carefully chosen to insure convergence of L

to its absolute minimum, Z_ should tend toward Z, the exact solution of Equations

n

(I op- 11). This iterative’ pro'cedure can be discontinued after a fixed number

of steps or when |AZ_| becomes sufficiently small, i. e, when

< e (I D - 18)

for some sufficiently small € > 0, We fix € af 0.01 and set n the total

max.?

number of iterations allowed, equal to 15, The iterative procedure continues
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from n = 1 through n = 15 unless criterion (Il D ~ 18} is satisfied. If a poor
choice of -Z_o is made the process may diverge. In this case, except under very
unusual circumstances, (I D - 18) will not be satisfied, and the process stops
at n = 15, Then a new Z, must be chosen. Since the loss function can be cal-
culated at each iteration step, then, even for a diverging case, that _Z-n associated
with the smallest loss function is the one nearest to some acceptable starting
vector fo in a least squares sense. It must then be slightly changed in usually
only a few components to provide an adequate EO. Because of the nonlinearity

of Equations (Il D - 4), and hence the nonlinearity of Equations (III D - 11), the
iterative process may converge to a false minimum, i.e, to one other than tﬁe
absolute minimum sought. It is obvious when this occurs, because it leads to

the "best estimate'" values of N,, N,, and W, differing greatly from the average
values of these quantities, i, e. by more than 2o for one or more of the three,
Other hints of a false convergence are resulis leading to N, N, or P, > P, when
the seventh conservation equation, in the form of Egquation (III B - 34), is used.
This false convergence also requires irying a new Eo to bring about true
convergence,

In this connection it ig useful to define a quality index, d, by the following

(I D - 19)
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where 'fc is that value of Z which leads to convergence within some €, and N,
given by Equation (III D = 2), is the total number of data points for all eleven
parmeter-types. Obviously the nearer Ec is to Z the larger q will be, The

dquantity d should be near, or slightly ggeater than, unity for common cases of

interplanetary shocks. For too small a q, say 9 = 1/2 or so, the convergence

may be a false one ,
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IV, TEST OF METHOD AND EXAMPLES OF ITS USE

A, Error Coneg and Simulation

The preceding section outlined a method of utilizing plasma data to obtain
"good" estimates of the before and after magnetic fields. Amnother and far simpler
method of estimating these fields is to take straightforward averages of the ob~
) serva:tions of the fields as the estimate, The justification for utilizing the more
complicated weighted least squares estimation procedure instead of the mean
value method hag been that the more complicated method yields a more accurate
estimate of the before and after fields in general. And any small increase in the
accuracy of t‘hese estimates because of the form of Equation (Il B ~ 3) can yield
substantial improvements in the estimate of the shock normal,

But, of course, this is an agssumption which must be tested and proved, at
teast within_ some reasonable basic set of assumptions. In short, it is necessary
to show that the weighted least squares estimation procedure leads to significantly
better estimates of the shock normal than the mean value proceedure within the
limiting assumptions stated in Section ITT - A, In Section IV-B we do this by
applying both estimation n;ethods to simulated observations of a shock and
assocfating with each method an error cone about the true normal to the shock
surface. The comparison of these error cones will indicate the degree of im-~
provement to be expected from the Weighte‘d least sQuares technique.

The meaning of these error cones and the means; by which they are calculated

will now be described, First, simulated shock observations are generated hy
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assuming a simple underlying step funétion model of -a shock (See Section [J1=C)
and associating with such a shock the eight independent parameters which con~
stitute the components of the vector Z, These parameterg are chogen to be con-
sistént with previous studies of shock properties. Then the remaining.three -
-dependent parameters are obtained from the overdétermination equations of < -
Section HI-B. These eleven parameters constitute the "true" shock parameters
of the simulated shock. Zero.mean (i.e, unbiased), stationary, uncorrelated,
normally distributed noise is then imposed on-all of the eleven measurable
parameters, - The number of ;Jbservations of -each m%asurable parameter and the
variance-figures on the noise-are again'chosen to be typical of what one should
expect of shock observations. "Both the weighted least squares and the mean
vdlue ‘téchniques are then utilized to obtain estimates of the before and after.
magnetie fields (and-estimates:-of the plasma parameters), It is possible.to
obtain codvariance:matricies for both these éstimation procedures, The manner
by which this is done for the least squares method, along with general mathe-
matical details of error cone construction, is given in Appendix B.2. The .
covariance matrix of the mean value estimate can be easily obtained by.recalling
that-the variance of an estimate obtained by a mean value is just the variance of
the underlying population divided by the.sample size. This provides us with.the
diagonal elements of the desired covariance matrix., And since the noise on
each data type-is assumed to-be independent of the noise on other data types,

the off diagonal elements are zero.
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These matrices are 'measures-of the statistical dispersions of the estimaiies
abouf the true values. What interests us now is how i:hese statistical dispersions
propagate their way through the non-linear function of Expression (IIX B_-—.3) into
angular errors inﬂ the estimates of the true shock normal. Specifically we shall
obtain, for each estimation pr_ocedure,‘ a 95% critiga_l_angular error value a, that
is, an angle for which the pro};abﬂity of the ané;ular érror (caused by the use of a
particular estimation procedure) being smaller than o is 0.95. A Monte Carlo
process is necessary to obtain these critical angles. Essentially this Monte Carlo
procedure represents a method, indeed the only method, of propagating the statis-
tical dispersion of the magnetic field estimates, as measured by 4 covariance
matrix, through the highly non-linear function (Ilf B - 3). The resulting eritical
error angleis related to the statistical dispersion of the estimate of the shock
normal, The Monte Carlo procedure is also described in Appendix B.2.

These critical angular error values have an obvious geometric interpretation,
namely, a 95% critical error angle a can be represented by the defining angle-of
a right circular cone with its axis being the true shock normal.

In Section IV-C error cone angles associated with a real shock will be
calculated. True normals are not available in the cases of real shocks, of course.
Hence, in these cases the two methods of _ohtaining error cones, the mean value
and least squares methods, must have error cones defined in a slightly modified
way from those of ti1e simulated cases. In the mean value case the axis of the

error cone will be the normal obtained from taking straightforward averages of
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the field, and the cone is generated with respect to this average normal.. In the
best estimate (least squares) case the axis of the error cone is the best estimate
normal, and the cone ig generated with respect to that normal. It must be
emphasized that these real shock associated error cones can not enjoy the same
rigorous interpretation as those of the simulated shocks. But since the cone

Y .
angles are expected to depend strongly on the o, 's (i = 1, 2 ... 11), defined by
Equation (III D - 6}, and only weakly on the actual shock parameters in most
cases, then the real cones, for practical purposes, should have interpretations

analogous to the cones of the simulated cases., That is, the probability of the

true shock normal lying within the 95% critical error cone for real cases is

approximately 0.95. As in simulated cases of shocks the best estimate erroxr
cone for a real case will have a cone angle smaller, and sometimes very sub-

stantially smaller, than the mean value cone angle.

B. Study of a Simulated Case

As described in Section IV-A and Appendix B.2 realistic simulated shocks
were generated in order to 'test the degree of success of the improvement scheme
and to provide a check on the associated computer programs. The program has
the capability (See the XMONTE subroutine in Appendix C.1) of generating a
simulated Y data array using preassigned values of oy, N(1) (1 = 1, 2, ... 11), and
X, (i =1, 2,,..8), the latter being components of what we refer to as the _Z_t,ue

vector*, The "true" components Xg:X;g,and X, , (dependent parameters) are

*This is called Z in Appendix B.
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obtained from the overdetermination equations of Section I1-B. The eleven
true X, ;s are '"noised-up" by adding the output from a random number generator,
according the values of the o, 's and the N(i)'s, yielding the vector Y. Con-
sistent with our previously described ﬁmdel the random number generator
provides, for all practical purposes, samples of an unbiased, stationary, un-
correlated, normally distributed random variable., By calculating the mean
values of the first eight data types, using Y as if it were real data, gives X (mean)
i =1,2, w8, 0r EM in vector notation, The EM vector should, in most cases,
provide an acceptable starting vector for the iteration procedure of Section OI-D,
We then set _Zo = EM for all simulated shocks, Hence, we enter the simulation
problem with all of the information that would be necessary to employ the im-
provément scheme to a real shock with the important difference that here "Zt fue
is known. And by design, the simulated data does satisfy the statistical model.
Realistic input parameters o, N(i), (i = 1, 2, ... 11) and -itrue were used
to test the program. Table 2 gives an example of input values used in such a
test. The shock computer program is listed in Appendix C.1. Appendix D.1
shows an example of a printed output of the results of using the input values
given in Table 2, It represents only one 140-number sample from the 1'-andom
number generator, where 140 is the sum of the N(i)'s. Any number of samples
from the generatox, each ,g.iving a different —Y_, are available where, of course,
each Y represents just a single data sample of the true shock of Table 2. The

preface of Appendix C.1 explaing what switches have to be set, and to what
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Table 2

Example of Input Valuesg for Simulafted Shock Test,

o, (in units X (ﬂ»ue)

Parameter i N(1) of X.)
B,, 1 20 0.35 4.0 )
B, 2 20 0,50 5.0 7y
B,, 3 20 0.35 ~L0 vy
B,, . 4 10 ’0.60 3.5 v
Sindependent
By, 5 10 1.10 9.0 7
B,, 6 10 1,30 -3.0 v
W, 7 10 10.0 10.0 km/sec
W, 8 10 10.0 20.0 km/sec_z)
N, 9 10 0.7 (7.26 .#/cms)\
N, 10 10 1.0 (1’3.86 #/cm?) >dependent*
W, 11 10 10.0 (75.83 icm/secl

*Strictly speaking the three values in parenthesis are not input parameters.
values, in order to run a simulated shock program (and also for a real shock
program). In the particular case of this simulated example the switches were

get to the following values:

IPRO = 1
ISWICH = 1
ICASE = 2
ISAMPL = 5
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IPRO equal to 1 means simulated shocks being processed, and ISWTCH equal
to 1 means that XSTP;.R'I‘ (which is the same as input ftwe for a simulated
shock) is replaced by XMEAN as the starting vector for the iferation process.
ICASE of 2 simply means that two basic input shocks (or two cases) are being
studied, where here Table 2 gives the values for only one of the two cases.
ISAMPL: equal to 5 means that five samples of noise are to be imposed in
each of the two cases creating ten Yig, The input arrangement is such that the
same basic shock is asst;ciated with each of the five samples, for both cases;
that is, for each of the first five noise samples the same values of Table 2, say,
are used as input to the random number generator and for the second five samples
the same values of some other table (not shown) are used as input to the generator,
Our sample output, Appendix D.1, is then the result of one.of the ten Yts. Below
we describe the shock program output sample,

- From what has been said above the first eight lines are self evident (where SIG

iso; and NNis N(i)} INPUT XSTART is justZ The so-~called G values are

true®
the values of the quantities available from the overdetermination equations,
Equation (IIT B - 3), and Equation (IIT B - 34) all of Section ITI-B (See the CON
Subroutine: in Appendix C.1). These are the thr.ee dependent shock parameters

N, N,, and W, the x-, y-, and z~- components of n, and the total kinetic pressure
change AP. ''Corresponding G values" then refer to those G values corresponding
to Z,, .. The best estimate independent parameter matrix is a two dimensional

array whose columns are the eight independent shock parameters, the components

of Z, and whose rows correspbnd to the iteration steps. The top, or "M - row™
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(see far right for label), is composed of the mean values of Z, and immediately
below that is the starting vector Z,in the zeroth-row. Notice the Mth and zeroth
rows have the same values because XSTART is replaced by XMEAN (which is
not the case for a real shock). Th.e pr.ocess went the full 15 steps because
Z=|AZ_ |/| Z__,| did not become <0.01 asExpression (III D - 18) requires for
a number of iterations (L) less than 15, The Z ratio is printed out at the far
right, and the value of the loss function also, at each iteration step. Below that
the quality, defined by Equation (III D ~ 19), is printed out for each step. Below
the independent parameter matrix is the agsociated dependent parameter mafrix
whose columns are the values of the G-parameters described above; the rows
again correspond to the iteration steps. The B matrix is the evaluation of B,
given by Edquation (III D - 15), for Z= f, shown as the last step of the independent
parameter matrix (i.e. the best estimate step). The contracted derivative matrix

A is a contraction of A, given by Equation (II D - 14), evaluated for Z = Z. By

contracting A no information is essentially lost (See the C matrix of the AA
subroutine in Appendix C.1); the statement just below Equ’ation (dOID - 14)
concerning the elements of A, alopg with Eguation (IIL D - 3), explains why this
is so, The three numbers at the very bottom of the p:rinted output refer to angles
in degrees. These are:

AAVE is the angle between n (true) and n (Mean),

ABE is the angle between n(true) and nn (B. E.),
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and
AVE, ABE is the angle between n{Mean) and n(B. E.).
Note: In the real shock output n (true) is replaced by n calculated from
Zg» i. €., from XSTART, Hence, of the three angles only AVE, ABE has

any relevant meaning in a real ease .

The top or M-th row of the independent parameter matrix contains all eleven
mean values of the shock parameters, the lagt three of which are, strictly speak-
iné, not part of the matrix. The 'first eight parameters are the ones used to
oiotain what below are called the MEAN's G's,which are self explanaftory. Notice
that the mean values N,, N,, and W, are distinctly different from those same
quantities derived from the MEAN's G's, and this is most important (especially
in real shock cases). When this difference is very great it indicates the low
quality of using straightfoward mean values as final estimates for the shock
parameters. In fact, the mean qualifty parameter, QUALITY M -= 0.127, is quite
low compared to unity or so, which is expected for a least squares best estimate,
Notice that after only about 4 or 5 steps the calculation is -essentially com-
pleted, and little is gained after those steps. The choice of € = 0.01 in expression
(I D - 18) is obviously a conservative one since this sample output is rather
typiqal. A comp.';z,rison of the true shock parameters (i. e. XSTART and cor-
responding G's) with those from the mean value and best estimat:a calculations
shows for this case, or rather for this sample of a case, how valuable the scheme

can be. But the true test of improvement lies in a2 comparison of the two methods
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of obtaiz;ing error cones as described in Section IV-A; below this is discussed,
Notice that the best estimate normal lies only 3° away from T(true) but n(Mean)
is almost 9° away. In some cases (i.e. for other X (frue)'s, ete.) the improve-
ment might be much more dramatic and yet in others the improvement is in~
significant. It is even possible that ABE turn out to be larger than AAVE, ag one
should expect in a statistical problem of this type, but it must occur infrequently.
Appendix D.2 shows a sample of the ‘printed output of the cone computer
program listed in Appendix C.2, This example corresponds exactly to the shock
case described by Table 2, and, of course, gives the cone angles associated with
the example program output of Appendix D.1 (and all other samples of this same
case). The so-called "FI 1 RESULTS" refers to cone angles found by using the
least squares technique, and the "FI 2 RESULTS" refers to the mean value method.
Al angles are given in degrees. The designations 15-, 30-, and 150- VALUE
refer to 95?.5%, 99%, and 95% error cone angles, respectively, where a Monte
Carlo sample size of 3,000 was used. For example, consider the 150 VALUE
case: 3,000 - 150 (= 2,850) refers to 95% of 3,000, and designates the cone with-
in which 95% of the normal estimates lie. We will not be concerned with the
99.5% and the 99% error cones in this study. Notice then that, in this case, the ’
angles .a(Mea'.n) and o (Best Estimate) are 10.6° and 5.2°, respectively. This
represents an error cone angle improvement of better than a factor of 2_, and is
characteristic of realistic cases in general or perhaps is somewhat conservative.

Sometimes the improvement factor is more dramatic (i.e. valuesg of 3 and 4) for
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realistically simulated shocks, and in no realistic case will it turn out that

a{Mean) X «(Best Estimate).

C. Example of Actual Case: The August 29, 1966 (Pioneer 7) Shock

The August 29, 1966 shock, as observed in Pioneer 7 data, was first studied
by 4. K. Chao (1970) and is reexhamined here as an examiale of the use of the
1east-squa;'e technique described in this Jreport. Taylor (1968) also observed
this shock in the magnetic field data of Explorer 28, but the associated ;pla.sma
data was not existent for that spacecrafi.

In applying the least-squares scheme, 25 alternate data points, representing

12.5 minutes, were used for the i_BI field in the ¥ array of Equation (IlI D - 1), and
{

1Y

18 points, representing 9 minutes, for the §2 field, émd 5 points, representing
ﬂ‘-8 minutes, forleach plasma parameter, before and after thé shock, were used.
The quality index for the best estimate convergence value, as defined by Equatit;n
(III D - 19), was 1.03, which is a common sort of value for interplanetary type
shocks. For the total 154 data points this cov;'responds to a loss function value

of 145, Ta;,ble 3 gives the values of the shc;ck's relevant paraméters, as well as
the observed onset time. Thec's for the -magneﬁc field were obtained directly
from a caleulation of the rms deviation in the data. The o's for the plasma param-
eters were found likewise with the addition of instrumental Ac's [See Equation

(I D- 6)] to the statistical values, The values for the components of W(=V,~V,)
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Table 3
Pioneer 7 Shock Event of

August 29, 1966 (14:16:57.4%.8 U.T.)

Best
Average
Parameter o Estimate
Value
Value
B,x () -2.3 0.57 ~-2.30
By 0.9 0.65 0.68
B,y -2.3 0.35 ~2.27
B,z -3.9 0.70 =3.70
B,r 2.1 1.7 2.89
B,y -6.8 1.5 -6.98
W, (km/sec) 79.4 6.90 78.9
W, 25,2 10,2 27.9
W, -12.9(-166) 7.40 ~17.8
N, (#/cm3) 4,6(0,098) 0-.4:6 4,88
N, 14,9(0.206) 1.80 13.6
ng 0.94 0.945
nr -0.06 0.296
Ny -0.35 -0.142
AP (10"10 —d”’ﬁ) 2.2(~1.6) - 0.5 6.9
Error Cone Angle 95.3° 6.0°
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were obiained by performing a mirror image subtraction about the shock transi-

tion time, of V, from V,, rather than a chronological one, as shown below:

\F

A=t

0 9 8 7
Shock Jump

Time order of points ‘Z—A’- 5 4 3 2 1

Mirror Subtraction Chronological Subtraction
W =) - &) W) = (o) _ (&
Wi2) = y(7) - yd) W@ = 9 - F@)

Wiy = 00 g W) = o) . (D

This yielded the smallest o‘*'s for W, [This variation of o with the cho-ice of the
manner of subtracting V, from V, represents a s]igﬁt violation of the ideal step
model of the shock],

The average values taken directly from the data are given in the Table for a
comparison with the best estimate results. The quantities in parentheses in the
average value column are the values one -obtains by using the average values of
the eight indzpendent parameters with the overdetermination equations of Section
III-B. Notice that the average values of W, N,, and N, correspond poorly
with those values calculated via the overdetermination equations. This is
true even though the best estimate values, which satisfy the overdetermination
equations exactly, and the average values do not differ very appreciably

except perhaps in the case of the B, parameter. This demonstrates the sensitive
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nature of these equations. In a similar manner Equation (III B - 34) is used

to calculate AP, When avefage value parameters are used AP ig seen fo be.
negative which is impossible for an actual shock, The average value of 2.2 x 107! °
dynes/cm? corresponds to the change in ;;roton pressure only but the best estimate
value of 6.9 X 10 *%dynes/cm? refers to all particle species inéluding, of course,
electrons, and is expectedly larger. The angle between the n-average e}.nd n-best
estimate is about 24°. Since great confidence is placed on the best estimate value
owing to the large error cone angle decrease (25.3° to 6.0°) of a factor of about 4,
then n calculated via average magnetic field values only would have given an
unacceptable result. Also J. K. Chao (1970) finds & value for n(ng = 0.97,

np = 0,29, ng = -0.04) which differs from our best estimate value by less than

7°. He also uses a best-fit technique (of trial-and-error fitting to the conserva-
tion equations) to obtain the normal.

Further evidence that n-best estimate is a dramatic improvement over
n-average, in this case, lies in applying the two-spacecraft test described in
Section IT ~ C. This was done by utilizing the shock onset information obtained
from Explorer 33 (See ngure 3), which also observed the August 29 shock, In
an R-T-N coordinate system centered at the earth t-he position coordinates of

Pioneer 7 and Explorer 33 were, respectively,

R, = (257,119, 7.7)R,

43



SHOCK\gyRrFACE

T L
PIONEER 7
1001
SHOCK
T -~
-~ d . )
I EXP 33 GEOMAGNETIC
=
TO SUN /77 \ TAIL R
- —rt9 : : : : : :
EARTH 100 200
WEAR \ 300Rg
\\
\\
80y~ -
S’"’Oc; - —
T [00 RE

AUGUST 29,1966 SHOCK

Figure 3. Explorer 33 and Pioneer 7 projected (onto ecliptic plane) positions during their observations of the August 29, 1966 shock.

Theoretical locations of the unaberrated earth’s bow shock and tail are shown, as well as the edge-on view of the local
plane surface of the August shock with nermal @, R is the relative position vector between the spacecraft.



and

Ry; = (54.9,26.4,-17.0)R,,

where Ry is the earth's radius. This yields a relative position displacement
vector R = (1.29, 0.59, 0,16) in units of 106 km, Since the onset time at Explorer
33 was 13:28,5+,7 the delay time between sightings, 7, was 48.5 minutes. Using

_the first of Equations (II - 1), where the trial T ig our best estimate value, &3, we

obtain an "observed" V_, which is

s,obs T sec

For a "calculated" V_ we use Equation (IIl B - 37), where Vl will be simply
the pre-shock average velocity and all other quantifies best estimate ones from

Table 3. This yields

~ km
vs,caic = 467 sec ’
where
— _ km .
VI = (353, 13.7, 24.8) sec

We see that the observed and calculated values of V_ differ by less than 1%.
This fine correspondence is partly fortuitous sincethe second term in Equation
(01 B -37) (Vl' f1), the weak link in the argument, is probably in error by
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slightly more than 1% However, we believe that in this example, and in any
case similar to it, the least squares method of calcuiating the shock normal
leads to a significantly improved estimate of the normal as well as of the

eleven relevant shock parameters,
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APPENDIX A

DERIVATION OF THE OVERDETERMINATION EQUATIONS

Let IT denote the plane containing B, and B, and define the unit vectors

T, e A -1
S| (-4
_ B, x B, :
t = —— A-2
2 B, 3B, ( )
and
no=-t,xt, (A - 3)
where
AB = B, -B,. (A - 4)
Since
t, st T 9’ (A - B)
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then

- (A ~ 6)

We see that T, is normal to the 11 plane: Let = denote a plane perpendicular to
I and containing 5B, Hence, both t, and _t.:_, must lie in the Z plane, Then n
(= ?1><_t-2) is a unit vector normal to the = plane, provided neither t, nor t, is
zero, It follows that 0 lies in the I plane. The cop}anarity theorem (Colburn
and Sonett, 1966) demands that the shock plane's normal lie in the II plane,
[Notice that AB (or t,) is common to both the Il and = planes]. One sees im-
mediately, according to these definitions, that B, * T and B, - 1 are equal, as
required by Equation (III A - 6) if n represents the shock surface normal. We
are then justified in uniquely identifying £ with the shock surface, t, and t, as
tangential to it while perpendicular to each other, and n as norzlnal to it. The
situatiori is shown in Figure 4,

Using Equations (A - 1 to 6) we-can rewrite Equations ‘(I!I A -1 to 6), which

become

(P V] =Py V) -7 = 0, (A-T)

T* .=\ Av* _l.ﬁ— Ao =
l:pl(vl 'n)AV g AB]-AB = 0 (A - 8)
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medium {("“1'"'} from the posf-shock medium (**2""). Note that AB= B]



[pl(‘_/; - 1) AV —-—-4,-T—~'Z§] - (—le'ﬁ,_,) = 0, (A -9)

| (vl'xﬁl—v;xﬁg) -8B = 0, (A - 10)
(v x B, - 97 x5,) - (B,x5,) = o, (A - 11)
and
AB 1 = 0, (A - 12)
where
_HJ* = V) -V, (A - 13)

and where Equations (A - 7 and - 12) aided in obtaining Equations (A - 8 and - 9),
We define a new velocity V related to V¥, the plasma velocity as measured in the

shock frame of reference, by

<l
i
<l

: NER AT (i=1,2) (A - 14)

where V_is the speed of the shock frame, fixed to the shock surface, measured

with respect to whatever frame Vig measured in (which could be the spacecraft
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the equation becomes
W (B,xB,) = 0 (A - 17)

where Equation (A -~ 14) wags used,

Now consider Equation (A - 9), which is, upon expangion,

B, 'n

o (7 7) [+ (5.8, -~ |58+ (5:55,)] = o

where (A - 16) was used. From Equation (A - 17) this immediately reduces to
bB - (ﬁl xB,} = 0since B, *T # 0 in the cases that we are considering, Buf
this is already expressed by Equation (A - 5) and therefore reduces to another
identity of no further use to us here.

Consider Equation (A - 11) now. By using Equation (A - 14) it becomes
[leﬁl—v2x§2+vs(;xﬁ)] - (B,xB,) = 0. (A - 18)

The third term in the brackets, with the help of Equation (A - 15), is

[(pﬁg-pﬁl) E]_ _

Py Py n x AB.
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frame of reference). By using Eduation (A - 14) fogether with Equation (A - 7)

V_ can be shown to be

(Pz V2—p1_\71) "0

v, = ey - (A - 15)

We will now use Equations (A - 14 and - 15), with 1 defined by either Equation

(A - 3)or (A - 6), to render Equations (A - 8 to ~ 12) in terms of V instead of V",
Clearly Equation (A ~ 12) represents an identity when n is replaced by the

Expression (A - 6). In this sense it is not an "overdetermined equation" and can

not be retained as such, Nexf; -we consider Equation (A - 10) which is, after

expansion,

or, by the operation exchange rule for triple scaler products (op rule), is

V) - B, xBy -V By xB -V, + B, xB, t+VS-B,xB = 0
Noticing that the second and third terms are zero and defining
W= V,-V (A - 16)
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Using Equationg (A ~ 1), {A - 2), and (A ~ 3} and the op rule this becomes

Replacing this back into Equation (A ~ 18) and noticing that T, - (B, xB,)

= |8, xB,|; we finally obtain
(3,8 - [Wx (B, x_ﬁz):] = 0 (A ~ 19)
where r is defined as
T 5 (A - 20)
end where the op rule was again employed.

Only Equation (A - 8) vemains to be reduced. By the usual substitutions it

can he written

P1Pe oo 182 1 [aeim 5| -
P p, WW-LB) + 75 By ABX(BIXBZ) = 0. (A~21)
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We refer to Equations (A - 17, - 19, and - 21) as' the Overdetermination
Equations hecause, in the sense that all eleven shock parameters of the system
are assumed measured, any thrée parameters are overdetermined by these

.equations using the other eight (independent) parameters. Notice that these
equations do not depend on finding the directions ?1, -t_2, Or N or On any para-
meter depending on the shock (*) frame of reference, such as- V*, as Edquafions
(IIT A - 1 o - 6) did, and even as Equations (A - 7 to - 12) c.lid in part,

In review then we see that Equation (A - 7) provided V_, Equation (A - 12)
and Equation (A - 9) (through the coplanarity theorem) gave us thedirectionn,
and the remaining three Equations (A ~ 8, - 10, and - 11), properly transformed,

vield the Overdetermination Equations.
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APPENDIX B
THE LEAST SQUARES ESTIMATOR OF A

SHOCK NORMAI AND ITS ASSOCIATED ERROR CONE ANGLE

B.1 The Estimation Procedure

Below we develop in somewhat general terms the estimation procedure,
necessary for a better under-standing of the less statistically oriented Section
IT-D. The dimensionality of all vectors and matrices is evident from the dis—
cussions in Section III-D, and the notation used here is consistent with that
Section.

Let the vector % repregent a state which is to be estimated.* Its cdmponents
are to be conceptually identified with some (i. e. any eight) of the magnetic field
and plasma quantities shown in Figure 2 as the shock's underlying step function
{denoted by dashed st‘raight lines) and discussed in Section I11-C. Let the vector
?, of higher dimensionality (N) than %, be ancther state functionally connected to
Eby a known function X. Thus, r\? = i(%’) . Assume that the vector v represents

.a multivariate normal distribution with mean zero and a known covariance matrix

9, defined by

0, = cov® = E[(T-x®) (F-E®)] - @®-p

where E ig the expectation operator [E(?) then gimply being the mean value of

Y, (?)] , and where the superscript T represents the transpose of the vector.

Ea v —
*Z represents Z .
true
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The problem to be solved is the following: given one sample Y from the dis-
tribution Y +7 obtain, in some sense to be discussed below, a '"best' estimate of
Z. In practice Y is considered a state which is directly observable and which
has a known relationship to a state %,’ the quantity to _be estimated. The random
variable v should be thought of as the noige on the observation of {’J, caused. by
instrumental inaccuracies and natural but unexplained fluctuations in the values
of the relevant parameters, i. e, unexplained in terms of the "known relationship"
mentioned above. The assumption that v has normally distributed components
with zero means is 2 valuable convenience from a mathematical point of view.
But it has more to recomend it than mathematical convenience. Giving ¥ a zero
mean implies we have assumed that all systematic or modeling errors have been
removed from the analysis. I significant modeling errors have not been removed,
then no estimation proceedure is likely to provide an acceptable estimate of 'f.
Hence, little appears to be lost in assuming a zero mean for v, The justification
for modeling the noise v as a normal random variable rests on the vague meta-
statistical analogue to the law of large numbers which can be stated as follows:
"If a large number of random variables are combined in a reasonably complicated
fashion to form a single random variable, then it is likely that this rando‘m vari-
able will have a nearly normal distribution."” The assumptions of this meta-
statistical principal are usually satisfied when one is making observations in
nature. Thus, the assumption that 7 is normally distributed has at least some

reasonable support.

58



It remains to be clarified in just what "best" gense E_is to be estimated,
One such common estimation procedure insists that an estimator of Z be
chosen such that the weighted sum of the squares of the differences between

observed and expected observations is minimized. More specifically we define

the so-called loss function L as
LzZy = (X@-7)"8(XZ)-7)

where the vector Z is anindependent variable which te_nds toward 2, defined as the
best estimate of %', as L tends toward an absolute minimum, and ¥ is the so-

called weighting matrix of the loss function. W is generally set ‘equal to 9 1 oor
gome slight modification of it, Then for our purposes the loss function, which is

given as Equation (ITT D - 10), is
L = X-1)To;/ ' (X-7) (B - 2)
where Q is given formally by definition (B - 1).

We minimize L in the following way, known ag the Newton-Raphson method:

The gradient, G, of Equation (B - 2) is

59



We define a matrix A as the following

- 0X(Z
sz = 22 (® - 4

it

il

[Note that the elements of A are A,; = 0X,/X,,i=1, 2, ... N {N given by

Equation (I D - 2)} and j = 1, 2, ... 8.]

From Equations (B - 3) and (B - 4) the gradient of G is

= = 2-=0"1(X-Y)+2aTg 1A . -
5 o7 O T (X-Y) S 2AT0 A (B - 5)

E(En) = E(En_ 1) = Z (fn - Eﬁ"'l) . . B9

Using Equations (B - 3) and (B - 5) and disregarding the latter's second order

term Equation (B - 6) becomes

"G(En) = 2éTQ,;1(i-?E)I—Z—n_1 + 24%g"tAl5 Az, (B-1)
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where
AZ = Z -Z _.. ' (B - 8)

For minimization of L(Z), ﬁ(fn) must be zero, as expressed by Equation

(IL D - 11). Then by defining the eight by eight matrix B in the following way

It
i

(2797t 4)” B ~9)

Equation (B - 7), upon minimization, becomes

AZ ¥ [l_aggy'l (Y - x)] _ (B - 10)
zZ
n~1
Combining Equations (B ~ 8) and (B - 10) yields
zZ = [E + B(Z)AT (Z) gy’}(?— X(‘z‘))] (n=1, 2, ...) . (B-11)
) _n-i

By repeated application of Equation (B - 11), provided fo is carefully chosen to
insure convergence fo the absolute minimum of L, En should tend toward 2, the

exact solution of Equation (III D - 11). This iterative process should converge

rapidly to the correct value Z, the best estimate of Z .
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For d;ifferent samples Y of the random variable Y + 7 the iteration pro-
cedure will yield different values of z , representing samples of the associated
distribution of a new random variable. This new entity will henceforth also be
symbolically represented as Z since there is little cha_.ﬁceiof confuging the
random variable with one of its samples, i.e., the solution of G( Z)= 0fora
given Y.

In evaluating the quality of an estimator Z of %, two factors are usually
considered, One is the extent to which the estimator is biased, The bias of the
estimator Z of Z is defined as E[Z - Z]. The other factor is the dispersion of
the estimator Z about Z . This is obtained by taking the second moment of Z abou
Z defined as E [(2 -7 (- 'E)T] . Of course, the smaller the bias and the dis-
persion the better the quality of the estimator. Neither the bias nor the dis-
persion of i can be conveniently calculated without the imposition of a certain
linearity assumption, It must be assumed that X can be represented by a linear

expansion of itself about z . From Eguation (B - 4) this is
AL Z-D). (B - 12)

If one assumes that the vector root Z of G(Z) = 0 is sufficiently close to Z to

permit the use of Equation (B ~ 12}, then 5(2) = (0 can be written as

AT (D)9 1R(Z) + AT (ﬁ)gy“lg('i) (Z-% -AT(Z)9;'Y = o, (B-13)
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with the help of Equation (B - 8). By applying the expectation operator to -

Equation (B - 13) one obtains

AT (DO IRE) + AT (D A EZ - F - AT(DQ TEF =0 . (B-14

Since Y is a sample chosen from the distribution¥ + ¥ = X(¥)+ 7 and since
E[¥] = 0, as mentioned above, then it follows that E[Y) = X(Z). Therefore

Equation (B - 14) yields:

E[Z~-7 = 0, (B - 15)
and the estimator z has zero bias, i.e., itis unbiased. In the case of an unbiased
estimator the covariance of the estimator is the same as the second moment of the
estimator about the true value., Let cov (Z) represent the covarance of Z. By

multiplying both sides of Equation (B - 13) by =B(E) [s ' AT (Z) 9, 1 é(%’) ) 1]

one obtains

Z = %+ 8@ AT(Do (¥ - XEZ) (B - 16)
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But ¥ = X(Z) and Y - ¥ =7, therefore

Ny

- E = _B_.(%)QT (E)gy—'l

<

(B ~ 17)

and

cov (? - i(%)) = cov(v) <

=X
<

(B - 18)

By applying the "cov' operator to both sides of Equation (B - 17) we obtain

cov(Z-2) = BDHAT DO 9,0, AD B
= BATQJTAB
= BE'B- KD). (B - 19)
But
covZ-% = e[lG-% - 2E-DHE-B -E-DY]

= E[(Z-2®)(E - D)"]
= cov(f)
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by definition where Equation (B - 15) was used and E('Z') = 7 itself. Hence,

Eduation (B - 19) becomes

cov (2) = .B(Z). (B - 20)

N

According to Equation (B - 12) A(Z)

1=

(Z). Using this approximation along

with the definition of B, from Equation (B - 9), Equation (B - 20) becomes

cov(2) T [ATD O AD] T =ED . @-2

We wish to strongly emphasize that the usual assumption of the unbiasedness
of the least squares estimate and the assumption that Equation (B - 21) represents
the covariance of the least squares estimate rest on the linearity condition given
by Equation (B - 12). The validity of this linearity condition is influenced by the
degree of nonlinearity of the function which relates the state Z to the state of
observations ¥ and by the distance between Z and Z. This last factor is highly
correlated withv , the noise on the observations,

Since Q(E) is availa]c\)ie .at eacfl step of the iteration procedure described by
Equation (B - 11), then for the final (""best') estimate giving g(f ), assuming true
convergence, Equation (B - 21) provides us with a means of calculating the

covariance matrix of Z. This will be used in the next section (Appendix B.2) to

obtain the error cone angle associated with the best estimate arrayZ.
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For further detail concerning estimation theory in general see Deutsch

(1965).

B.2 The Construction of Error Cone Angles

In Appendix B.1 we provided a computational proceduI:e for obtaining Z R
the least squares estimate of a vectorz (and also X after the overdetermination
equations are employed using the components of Z as the independent variables).
We algo established the mean and variance of Z as a random variable by assuming
unbiaged measurements and a linearity condition. To generate error conesg for
n what we require as well is the precise distribution of the least squares estimate
of §1 and ']\3'2 . To obtain this, one further assumption, previously stated but not
used until now, is needed. That is, the noise v on the observations is assumed
normally distributed. Notice that Equation (B - 17) gives the least squares

estimate Z as

= (8T @ a®) AT ho e

¥

N

where E is, of course, a constant. Thus, Z is a linear function of 7 . A linear
function of a normal random variable is normal also. A convenient feature of

the normal distribution is that it is completely determined by its mean and
variance. The least squares estimator Z is unbiased, Hence, its expectation is
'Zu. Its covariance matrix is given by Equation (B - 21). Thus, under the agsump-

tion of normal noise on the observations, the distribution of Z is completely
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specified. However, our main interest now is focused on the distribution of the
least squares estimates of the vectors §1 and 'ﬁz, i. e, on the first six components
of Z,

Let Z' be the least squares estimate of §1 and %2, ive.Z= (Z', W, W)

gy Uz
[See Table 1 and Equation (I D - 5)]. Then, since Z is normal, 2; is also
normally distributed with expectation the true values of ']‘3'1 and ﬁg. The covariance
matrix of Z' can be obtained simply by deleting the last two rows and columns
of the covariance matrix of Z (Graybill, 1961), Using this technique we can
construct ‘thekz exact distribution of the least squares esfimate of ﬁl and §2. Also
with this background information we can perform useful simulation studies, as a
test of the estimation scheme, and obtain least squares associated error cone
estimates for simulation or real caseé.

The ultimate goal of our least squares error analysis is not to obtain best

estimates of rﬁl and ﬁz but to obtain the best possible estimate of the true shock

normal 1, This is functionally related to El and'ﬁ2 by

X = FGE,.B) ., (B - 22)

where, from Equation (A - 6),

Aﬁx(ﬁlxﬁz) — = — -
S . = F(B,, B B-23
IAB x (BIXBz)I (B By) ( )
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with

But since we do not possgess the true values ,El and Ez (except in the cases of
simulation studies), we must be satisfied with our least- sgquares best estimates-

B, and B, and obtain an estimate i of ¥ as
f = FB,, B))=FE&") . (B - 24

Of major interest to us then is the statistical distribution of the error made in
estimating & by . A natural measure of this error is the angle between & and

n. Thus, we define the function ¢(1) as
HA) = cos"l(a-A), (B - 25)
where the principal value is understood, Obviously ¢(fn) is the angular error

introduced by using A as an estimate of the true normal. Now we introduce

another function y(Z') as

#[F(z")] . (B - 26)

V¢AD!
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gb(Z' ) can be interpreted as the angular error in the normal estimate caused by
using the least squares estimates of ﬁl and ﬁz rather than their inaccessible
true values., In carrying out the least squares procedure for estimating normals,
it is the statistical distribution of ‘,b(f' ) rather than that of Z' which is of in-
terest. Since the function i is highly nonlinear the only reliable procedure for
estimating the distribution of q;(i' ) is a Monte Carlo one. As constructed, the
distribution of yi(Z') lies between zero and 180°, and our goal is to estimate a
cone angle a guch that 95% of the distribution lies bletween zero and o, [The
error cone geometrical interpretation ig given in Section IV-A.] In other words,
the probability is (_).95 that our estimate of the shock normal obtained by our least
squares procedure will lie\in this cone. This 95% error cone clearly has in-
tuitive appeal as a measure of ocur ability to estimate shock normals with the
least squares procedure, It has the disadvant-a,ge, however, of being a single
parameter measure of a cone that more precisely should not be described as
being right circular, That is, strictly speaking the covariance matrix resulting
from the least squares scheme contains enough information to be used to obtain
a cone with an eliptical cross-section rather than a circular one. There is no
reason to expeet an "isotropic noise' situation fo exiét in general, and, in fact,
there is good reason fo expect otherwise for an average interplanetary type
shock, But within the capability of the overall scheme, considering its Iimiting
assumptions, the single parameter measure of an error cone should certainly

be adequate.
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With the covariance matrix of Z' in our possession we can implement the
Monte Carlo procesé for estimating o by the following steps [Note: These same
steps are used for obtaining the mean value error cone using its covariance
matrix as discussed in Section IV-A] :

1. Sample K times randomly from the distribution for 7' as defined by its

covariance matrix.

2. Evaluate the function ¢(2' ) at each of these K points and thereby obtain
K functional values of .

3. Choose the functional value which is the smallest value that is larger
than 95% of the X functional values obtained from step 2. This value is
an unbiased estimate of «,

The variance of the estimate of @ obtained from steps 1, 2, and 3 above ié
inversely proportional {o the Monte Carlo sample size K. From elementé,ry
probability theory it can be easily shown thatr, to a 95% certainty, the true
percentage of the distribution of A -contained in the 95% critical error cone
centered at i is not-less than 94% if K > 2,420, For greater reliahility we choose

K = 3,000 for each cone angle calculation.
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APPENDIX C

COMPUTER PROGRAMS USED IN SCHEME

The programs listed here, and used in this work, were written for
the IBM 360-75 J computer,

C.1 Program to Obtain Best-Estimates; Main and Subroutines

On the eight pages following this preface there appears the shock program
listing for real and simulated shocks. Table 5 shows the input format for the
relevant input quantities.

Table 5

Input Format

Quantity Format Designation Descriptiv-e Notes
" IPRO 11 Integer with MIWH* of 1
ISWTCH 11 Integer with MFW of 1
Switches | .
ICASE 12 Integer with MFW of 2, right adjusted
_ISAMPL 12 Integer with MFW of 2, right adjusted
XSTART 8 I 6.2 FPN** with MFW of 6
SIG 11 ¥ 6.2 FPN with MFW of 6
NN 1116 Integer with M¥FW of 6, right adjusted
Y 11 ¥ 6.2 FPN with MFW of 6

“*MFW means maximum field width,

**FPN means floating point number.
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Recall that input XSTART, which is the starting vector for real shock studies,

isZ (See Section IV-B) for simulated shock studies. [A sample of the printed

true

output ig given in Appendix D.l1 and described in Seection IV—B.] The four switche

comprise four numbers on 2 gingle input card as shown below:

IPRO ICASE ISAMPL
ISWTCH

Switch One digit
card per box

The switch card is the first data card. The second data card is the XSTART

card carrying eight numbers. The third card is SIG with eleven numbers. The
fourth is NN with eleven numbers. And the last set of cardg comprises the Y

data array, each card of eleven numbers until all N (= 2 NN( i)) data points are
listed. For example, if N is 28, then the first Y card has eleven numbers, the
second eleven also, and the third card has six numbers. Table 5 shows this over-

all order for the cards. The Y array is used only for real shock cases; for

simulated shocks no Y data is necessary, of course. In all other respects the
above comments hold for both real and simulated shock cases. If in the case of |
a real shock a second or third, etc., XSTART is used, these are placed in order
immediately after the Y array. And if another real shock is to be processed,

the entire order of cards, from the 1st XSTART to the last XSTART, is repeated.
And repeated again for a third shock, etc. But each separate real shock case

must have the same number of XSTART's. In the simulated cases of more than
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one ‘shock the set of XSTART, SIG, NN is simply repeated for each case. For
any given computer run, for a real or simulated study, only one switeh card is
used and it is always the 1st card after the control cards. Table 6 schematically
represents the card order for real and simulated cases. Below we describe the
switches and how they are used. IPRO is used to control whether a real or

simulated shock is to be processed. ISWTCH can switch from XSTART unaltered

to XSTART'éhanged to XMEAN (from Y array) as the gtarting vector of the

Table 6

Imput Data Card Order (One card for each line)

Real Study Simulated Study
Switch Card Switch Card
\
XSTART(1) XSTART
1st shock
SIG SIG
case
NN NN
v 1st shock
e case 2nd shock
. e repeat
(order ) } case
XSTART(2)
XSTART(3)
J

etc.

repeat order
with same no.
of XSTART's

2nd shock
case
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iteration process. ICASE is just the number of different shocks (or cases) to be
studied, ISAMPL is the number of samples of a given sﬂock case (from the
random number generator) to be considered for a simulated case, but it is the
number of starting vectors for any given real case. [Note: Program is arranged
to require the same number of "samples" for each shock case, for both real and
simulated studies]. Table 7 shows what values the switches must have to perfor:
the duties described above. Section IV-B gives an example of their use for a

simulation study.

Table 7

Program Switches

0, real shock(s) being processed

IPRO =
1, simulated shock(s) being processed-
0, unaltered XSTART
ISWTCH =
1, X8TART changed to XMEAN for iteration
ICASE = _from 1 to 99 equal to number of shocks
ISAMPL = from 1 to 99 equal {o number of samples

for each shock.
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As an example of the use of the switches in a real shock study of two shocks

using three starting vectors, the switches would be:

IPRO = 0

ISWTCH = 0 Switch card

>
ICASE = 2 0j0j0 2|0 3
ISAMPL = 3

-

[Note: If ISAMPL is other than 1, ISWTCH should be ¢ for a real case. If this
is not adhered to, the program will successfully run but waste computer time

through repeated operations] .

For a real study of a single shock of N = 90 (number of components of Y )
with one starting vector the total program running time on the IBM 360-75-J is

only about 0.3 minutes.
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[sXaTslaNslelalalslalalakals!

IMPLICIT REAL#%8 (A=HsMs0-2Z)

DIMENSION X{1S5),G{7)sNN(11),Y{(550) XXX (8}, XX(26515},
1IB(838),A(550,8),Q(550),M{11},C(11,8),SIG6(11),GK(11)
DIMENSION XMEAN(15)+7ZZ(16) 4 XSTART(15) 4+ XLOSS{16)sQUAL(16)
COMMON/XSQR /G4A9sG5A+G6AsG4B s G5B GEB s GAE 1 GOE » GOE »

LXNINE s TENyELEVEN XLOSSMsQUAL ,ZZ, QUALM ISWTCH

COMMDN/AASUB/C
CONV =57 . 29578D0

IPRD TELLS THE PROGRAM WHETHER DR NOT WE WILL USE XMONTE TO
GENERATE THE Y ARRAY (IPRO=1 USE XMONTE{(SIMULATED SHOCK) IPRO=0
USE XMDNTE (REAL SHOCK))
ISWTCH TELLS SUBROUTINE XSQ WHETHER OR NOT TD SET XSTART=XMEAN.IF
ISWTCH=1 SET XSTART(I)sFDR I=1,:8:EQUAL TO XMEAN(I) IF ISWTCH=0 DO
NOT SET THEM EQUAL -
ICASE 1S THE NUMBER OF DIFFERENT CASES TO BE PROCESSED
ISAMPL FOR SIMULATED SHOCKS IS THE NUMBER OF SAMPLES PER CASE. FOR
SHOCKS ISAMPL IS THE NUMBER QF XSTARTS PER CASE-
READ(S5:09)IPROISWTCH, ICASE, I SAMPL
ISSAME=0
ITOTAL=1
ITOTLE=ICASE=XISAMPL
8 FORMAT(111I6)

25 FORMAT(1HOQ,,'"INPUT XSTART WAS 1L, 08{F9,+,351X))

111 FORMAT (IHO. 'XSTART REPLACED BY XMEAN!')

113 FORMAT(1H s!'SIMULATED SHOCK BEING PROCESSED!)

112 FORMAT (IH s TREAL SHOCK BEING PROCESSED')}

31 FORMAT(1H1,?!'SHOCK PROGRAM ODUTPUT!H)

& FORMAT(11F6.2)
27 FORMAT(1HO,'THE TOTAL NUMBER OF DATA POINTSsNsIS ',.I4)
18 FORMAT (1HO, YTHE INPUT Y ARRAY WAS t)
32 FORMAT(1H ,11{FQe341X))

Q@ FORMAT(2I1,212)

S7 FORMAT(1HO 124X s 3HBLX s 7X93HBLY»y TXs3HB1Z s 7X+3HB2X s 7Xy3IHB2Y,

17X s3HB2Z s 7X13H WY s 7Xs3H WZ27X»3H ML, 7X3H N2 s7X23H wX)

26 FORMAT(1H s 'THE INPUT SIG WAS *,11(F9.3,1X))

28 FORMAT(IH «'THE INPUT NN  WAS ',11(I9.1X1})

55 FORMAT(1HOs ! THE CORRESPONDING G VALUES ARE?)

70 FORMAT(1H +7{F943,1X})}

56 FORMAT(1H +6Xs2HNIs8Xs2HNZ2 38X ,,2HWX 28X s 2HNX +8X s 2HNY 48X

13 2HNZ 38X s 2HDP )
11 FORMAT(1HO, ' THE NUMBER OF ITERATIONS:LsIS 1',I5)
12 FORMAT (1HO, 'THE BEST ESTIMATE INDERPCNDENT PARAMETER MATRIX IS?')
67 FORMAT(1IH +¢5Xs3HB1Xs7TXs3HB1Ys 7Ry 3HBIZsTXs3HB2RA s TXs3HB2Y s 7K
13HBZZ s TXes3H WY sTXa3H WZsTXs3H N13T7Xe3H NZ2+sTXe3H WX
50 FORMAT(1IH +84XsF164¢5, '=L0GSS MY/ /)
114 FORMAT (IH +8(FPe331X)3a4X3F1645,'=L0OSS ",1I2,' Z= 'yF8+4)
44 FORMAT(IH 38 (F943:1X1+4XsF1645s '=LOSS f,12)

106 FORMAT({1HO.'THE BEST ESTIMATE DEPENDENT PARAMETER MATRIX IS ')

107 FORMAT{(IH 316X:2HN] 38X s2HNZ2 28X +s2HWX s 8X s 2HNX 28X +2HNY 48X s 2HNZ »

18X 4 2HOP )

109 FORMAT(IH s10X,7(F9«3s1X)s04XsF1645y F'T=QUALITY 1412}

105 FORMAT(1H s I0HMEAN'S G!'Ss 7(FO9e3s1X)s4XsF1645s '=QUALITY M*//)
16 FORMAT{(1HO,'By THE COVARIANCE MATRIX OF FINAL ESTIMATE, IS ?)
29 FORMAT(1H ,11{(F9e3,1X),"MEAN VALUES')

40 FORMAT(1HO s 'THE CONTRACTED FORM OF DERIVATIVE MATRIXsAs ISt)
23 FORMAT(1H +8(F2s3+1X)s10X)
21 FORMAT(1IH +8(F9.541X))
71 FORMAT(1HO s "AAVE=! 5, F7a345X,; "ABES'4F7e3+5Xy 'AVESABE=",2F743)
1114 FORMAT(8F6.2)
1115 FORMAT (1HO, '"THE NUMBER OF DIFFERENT CASES TO BE PROCESSED IS ',I3})
3 READ(S,1114)(X{(I1),1I=1,08)
DO 115 1=1,8
115 XXX{I)=X(1L)}
READ (54695106
READ (5+8 INN
NTOT=NN(1I+NN(2)ENN(3)+NN{4I+NN{SIFNN(EI+NN{(T7I+NN(8)+NN{IF) +NN{10)
1+NN{12)

230 WRITE(6,31)

IE(ISHWTCHEQ+1)IWRITE(6+111)
IF{IPRO.EQ.OIWRITE(6,112) °
IF{IPRO.EQ.1}WRITE(6,113)
WRITE{6,1115)ICASE

WRITE (6527 INTOT
IF(IPROWEQe1}GO TO 24
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100

101
13

102

41

20

116

118
119

G9

IF{{IPRO+EQ0 )+ ANDL {ISSAME.NE.0))GD TO 120
DO 17 I=1,MTOT,11

IKK=I+10

READ(S 6 )} (Y {JXCY s JXC=1 sIKK)

WRITE (6,181}

PO 19 I=1,NTDT,11

IKK=I+10

WRITE(6 332 (Y {(JXC) 3 JXC=I4IKK)

CONT INUE

WRITE(6+57)

WRITE(6+26151IG

WRITE (6,28 )NN

CALL COM(X G}

WRITE(6.25)Y(X(1),I=1,08)

WRITE (6+55)

WRITE(6.56)

WRITE(6.70)6G

IF(IPROWEQs1)CALL XMONTE(SIG,NNsYsX)

CALL XSQ(SIGsMNN,Y X 1 XX eLa By XLOSS s XMEAN)
WRITE(6s11)L
VRITE(6,12)
VRITE(6+67)
JTOP=LL+1

DO 13 I=1,JTAP
IF{l sEQ0.1)WRITE{(G,
IF(I+EQ.1)WRITE(S
NCOUNT=I~-1
JJITOP=16

29) (XMEAN(LM) ,LM=1,8) , XNINE,TEN, ELEVEN
s SO YXLOSSHM

IF(I sEQ.JJTORP)IWRITE (6,44} (XX(I,LM),LM=1,8),XL0SS (I}, NCOUNT
IF(ILWNEWJITOPIVRITE(Ss114) (XX (I LM} LM=14+8)sXLOSS(I)+NCOUNTZZ (1)
IF(I+EQ.2TOP}GO TO 100 .

GO TO 13

DO 101 I1I=1+8
GK(ITI)I=XX(I,1I1)
CONT INUE
CONTINUVE
WRITE (64106
WRITE(6,107
DO 102 I=1,
NCOUNT=I-1
IF(I «EQel}V
WRITE(6+109
CONT I NUE
CALL AA(GKshN,A
WRITE({(&,16)}

DO 41 1=1,3
WRITE(&4+21)(B(ILM).LM=1,8)

CONTINUE

WRITE(&+40)

DO 20 I=1,11

WRITE(G6,23)(C{IsLM),LM=1,8)

CONTINUE .

CEA=( (GA4EX*G4AY+ (GSEXGSA) +{ GBEXGHA) )
CEB=((G4E*G4B )+ {({GSE=GS5B) + (GOEXGHB) )

CAB=( (G4 A*GC4BY+ (GSAXGSB) +(GBARGHE ) )

CC=NARCOS(CEA)

BB=DARCQS({CEB)

DD=DARCOS (CAB)

AAVE=CCHCONV

ABE=BBxCONV

AVEABE =DD% CONV

WRITE(6471)AAVE s ABE, AVEABE

IF(ITOTALLEQ.ITOTLE}GO TOD 99

ITOTAL=ITOTAL+1

ISSAME=I SSAME+]

IF(ISSAME 4EQ« I SAMPLYISSAME=0

IF(IPROEQ.0)GD TO 118

DO 116 1=1:+8

X(I)=XXX (I}

GO TO 119 .
IF((IPROEQ+02}+ AND (ISSAME+NE0 ) JREAD{S+1114)(X(1)s1I=1,08)
IF(ISSAME.EQ.0)G0 TO 3

GO TO 230

STOP

END

)
)
JTOP
RITE{6,105) (XMEAN(LM)+LM=9,+15}),0UALM
FJOAX AT 2LMI s LM=9,15), QUAL ( 1) s NCOUNT
)

SUBROUTINE CON(XsG)
IMPLICIT REAL*B (A~-H.M,0-Z)
REAL#8 M1,N2

DIMENSION X(15),G(7)

-
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I Wyl

HKXHKRAHX

XX=B2X=B1X
Y=B2Y~-B1lY
Z=BR2Z-B1Z
PIE=3.1415927
Fo{ XA XD EYHND LT LD T /(4.0
ASBR2X%H2+B2Y %%22+B2Z #%2—8
QX=(B1Y%*B2Z )= (B1iZ%B2Y)
QY= (B1Z*B2X)—{(B1X%®B22Z)
QZ =z (B1XXxB2Y )—-{(B1Y%B82X )
MX=(QZ*Y }~(QY*Z)
MY = (QX¥Z)—(QZ XX )
MZ=(QYHXX)—(QXxY)
Ez=—- ((WY*QY)I+(WZ%QZ) ) QX
T=ERXXAWYRY W77
D=ExMX+WY SMY+WZ % MZ
GGEBIXEMX+BIYRMY+B1Z%MZ
M=DSOR T (MX%%Z+MY %k 2HMZ %2
SHU=HY HQZ ~WZ2QY
SY=WZRQX-E*QZ
SZEE=QY-WYFQAX
R=(B2X%SX+B2Y %
RR==({ (F*GG) /(T
/|
(

D
1

2
>
&

30

EBT?ZZ*SZ)/(BlX*SX+BlY*SY+BlZ*SZ)
WX=E

N1I=((R-=1.,0D0)}/R)%(5979.14D0%RR)
NZ2=(R—1.0D0 )% ({5979 «14D0%*RR)

G(1)Y=N1

G{2)=N2

G(3)=ux

G{& )=MX /M

G(5)=MY /M

G(6)I=MZ /M
GI7TI=(((RR*DZ&2) /(MEx2))~{ A/ (B« *PIE}) )
S '

noon

SUBROUTINE FI(XsNN.F}

IMPLICIT REAL*8 (A-H,0-2)}

DIMENSION X(15),MNN(11).F(5350),M(11)4G(7}

FI CALCULATES EXPECTED VALUE OF OBSERVATIONS AND STORES THEM IN F
NN(I) IS NUMBER OF OBSERVATIONS OF ITH VARIABLE

X ARRAY CONTAINMS SHOCK PARAMETERS

CALL CON{X,G}

)
2
3

bl (Y A
et e [}
Inne
5N~
-~ b

[

—
[y
[

= Z o=
Zzo
~ 1l

2 I=1sN
I..E.M{J))GO TO 2
+

LHDLEZOZHRK N
BTQI~1OH ~—~—~

(234 Xelalp]

IMPLICI
DIMENSION
1+4G(7)

XL IS THE LOSS FUNCTION

X IS THE ESTIMATE OF SHOCK PARAMETERS

)
Y{550),0(550)+sNNC11)sB(11),F(S50)sM(11)

SIG(I) IS THE SIGMA VALUE ON ITH VARIABLE

¥(I)} IS THE ¥ITH OBSERVATION

NT(I) IS NUMBER OF OBSERVATIDNS ON ITH VARIABLE
J=

MN=0

DO 1 I=1s11

B{I)=1.0D0/(SIG(I)*SIG(I})

N=N+NN(I)

M(I)¥=N

DO 2 I=1eN
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YEF(I)®F(I))

IF(I.LE.M({J))GO TO 2
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SS{1+1)=W(2)FRXK(3eI1-W(3)xXK{2:1)
SS(2,I1)=W(3)EXK{14I)=E*XK{(3,I1)-Q(3)%C{11,1)}
SS{ByI I=EXXK{2+:1)=W(2)1#XK(1,I)+0(2)%C(11,1}
XETA(I)=0.000

XXI{I)=0.0DO

oo 8 J=i.3
XKXI{II=XXI(EY+ID(Js1)%S{IIFBII=SS{UI,1)

8 XETA(I)I=XETA(I)+ID(J+3:I)%S{(J)+B(IJ+33#5S(J»I)
HIIJ={XTIH=XETA(I)Y~ETARXXI (I)})/(XIxx2)
C(lOsI)=DEN*{H(I)/(R—-1.0D0)+XJ(I)/RR)}
C(2s11=(R¥C(10,I)-DEN¥H(I }}/(Rx%=2)

6 CONTINUE
DO 9 I=2,3
WS{1,1)=Q{3)*ID(2,1)-Q(2)%ID(3,1)
WS(251)=Q(1)%ID({3+s1)=Q(3)34C(11sI+5)
WS{3+I)=Q(2)%C(11.1+5)=-Q(1)*ID(2y1I)

W ({l)=0.0D0
WEA{I )=0.0D0
DO 10 J=1,3
WE(I )=SWE (I )+B(J+3I%WS(Js1)

10 WW({I)=wWw{I)+B{I}2WS(J,1)
VIEY=S(XISWE(I)—ETAXWW(I})/(XI*x%2)
TWIT)=XXEC{ 11 3 T+5)4+YHID(2,1)F+Z*ID(3Z,1)
DWIT)=XM(I)EC{11,1+534+XM(2)%ID(2,1)+XM{3)*xID(3,1)
U(T )==RR%(TW(I ) /T4+DW(I ) D)

C{l0+I+5 y=DEN*(U(I}/RR+V(I}/(R-1.0D0)]
C{9+1+5)=(R¥C{10+I+5)-DEN&V(I)})/(R%Ex2)

9 CONTINUE
PO 11 i=1,8
DO 12 J=14+8
C(JsI)=ID{Jsl}

12 CONTINUE

11 CONTINUE
N=0
DO 13 L=1,11
N=N-+iMNN (L }

13 MIL)I=N
DD 15 K=1.8
J=1
DO 14 I=1.N
IF{I«LE«M(J}}IGO TO 14
J=J+1

14 A(IsKI=C{JsK}

15 CONTINUE
RETURN
END

[alalsNslslialalinlsgl

W

SUBROUTINE XSQ(SIGsNNsY s XSTARTsXXsL s B XLUSS s XMEAN)
IMPLICIT REAL%®8 (A—-H+0-Z)

DIMENSION SIG{(11)sNN{11),¥Y(550),XSTART{15),XX(26,15),2Z2(16
1B(8,8)+XL0OSS(16) s XMEAN(15),0(550):G(7)s+G1(7),C{(B)sM(11)+QU
COMMON/XSQR/C4AsGSA1GOA+GA4B s GEB»GOBy GAE1GSE » GOE »

IXNINE s TEN» ELEVEN XL.OSSM, QUAL s ZZs QUALM, ISWTCH

SIG(I} IS SIGMA VALUE ON ITH PARAMETER

NM(I) IS NUMBER OF OBSERVATIONS OF ITH PARAMETER

Y(I) 1S ITH OBSERVATION,OR ITH COMPONENT OF DATA ARRAY
XSTART IS5 STARTING VECTOR FOR NUMERICAL SOLUTEION

XX{1sJd) IS5 I1TH ESTIMATE OF JTH PARAMETER

L IS NUMBER OF ITERATIONS USED

B IS FINAL PROPAGATED COVARIANCE MATRIX OF BEST ESTIMATE

)
A

]
L(1i6)

¥LOSS({I) IS VALUE OF LOSS FUNCTION FOR ITH STEFP OF ITERATION

XMEAN IS5 DATA AVERAGE VALUE PARAMETER ARRAY
MTT=0

N=0 .

CNORM=0.0D0

J=1

XNORM=0.0D0

DO 1 I=1,11

XMEAN (I )=0.0D0

N=N+NN(I )

M{I)=N

DO 2 I=1eN i

IF(I «LE.M({J)}GD TO 3

J=Jd+1
QIIN=140D0/(S1G(J)%RSIG(J})
KMEANM{JI=XMEAN (J)+ (Y {I)/NN{J))
XNINE=XMEAN(9)
TEN=XMEANI(10)
ELEVEN=XMEAN(11)
XLDSSM:XL(XMEAN,SIGstNN)
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QUALM
CALL C
G&A=G (
GSA=G {
G6A=G(
CALL C
GA4E=G1
GS5E=G
GEE=G
Do 4

LOSSM)

~0
xn
Z0
mo
Py
=
- Z
(RN
X

XSTARTSG1)

Pt b o

fl s~ OO QO
RONR Z———2Z|
W N N e

DO 12 1I=1,15
XSTART (I JSXMEAN(I)

DO S I=1,15
XX(1,1)=XSTART(I)
XLOSS (1)=XL (XSTART,SIG
QUAL (1)=DSQRTIN/XLOSS!
CALL P(XSTARTQsNiNsY 8
DO 20 L=2,16

DO 6 I=1,8
CNORM=CNORM+ (C (I )%
XNORM=XNDRM+ (XSTAR
XNORM=DSQRT({ XNORM)
CNDRM=DSQRT (CNORM )
Z=CNORM/XNORM
IF(L.EQe2)ZZ(1)=2
IF({ZLE..010D0IGO TO 25
MTT=lL =1

ZZ (MTT)=Z

DO 7 I=1.8

XSTART(I }=XSTART(I)~C(
KLOSS(L)=XL (XSTART»SIG
QUAL (L)=DSORT{N/XLOSS (
CALL CON(XSTART:G)

DO 8 I=1,7

J=1+8

XSTART(J)=G(I)

DO 9 I=1,15

XX (Lo )=XSTART(I)

CALL P{XSTART»QsNNyY2BsC)
CONT INUE

KMT =MTT+1

Z2Z (KMT )=2Z

L=MTT

CALL CON(XSTARTG)
G4B=G (4 )

GSB=6G (5)

GEB=G(6)

RETURN

END

C(I))
T(I}XXSTART(I))

1)
s Y o NING
L))

L™

- hh

SUBROUTINE P{X3QsNMNsY By C)
IMPLICIT REAL®8 (A—-H.0-2Z)}
REAL ¥4 EPS

DIMENSION U(8s8)s AFLAG (8)sATEMP(8),Q(550) +X
D(8+550)+F(550),A(550,8)sB(8,8}+C(8),6(7

NC=8

MR =8

NR=8

ERS=3 .0

N=0

CALL AA(X.NMN,A}
DO 1 I=1,8
C(I}=0.0B0
DO 2 J=1,.8
B(I,J)=0.0DC
CONTINUE

DO 3 I=1,11
N=N+NNC(I }

s JYFLA(LSIIXG{LIFA{L,J))
CONTINUE

CALL GINV2(BsUs AFLAGyATEMP MR, NR 3 NC s NRANK sEPS )
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SUBROUTINE XMONTE(SIGsNNeY s X)

IMPLICIT REAL *8 {A-H,0-Z)

DIMENSION SIG{11)4NN(11)+sY{550})},X(15),M(11),G(7)
SIG ARE SIGMA VALUES

NN GIVES MUMBER 0OF EACH TYPE OF MEASUREMENT

X IS TRUE SHOCK PARAMETERS

Y IS5 MONTE CARLDO SAMPLE OF MEASUREMENT

N=0

(J})}GO TO 3

|L=HOAHRMNX
PRI | Tu PR

{J)+BARNI(—1,1+12787-51G{J)}
CONT I NUE

SUBRDUTINE GAUSS (/IX/+S+AM,V,H)
éMﬁLICIT REAL¥S (A—~H,0-2)
A=0.0D0

DO S50 1=1,.K

caLl. RANDU(IXaIYsY)

IX=IY

A= A+Y

HO=H/12.

HZ2=H /2.

V= {S*{A~H2) )/DSQRT (HO) +AM
RETURN

END

S04

SUBROUTINE RANDU{/IX/,1Y,,YFL)}
IMPLICIT REAL= (A-Hs+0-Z)

DATA JJJIS/10277

IY=IX#JIIS

IF(IY)5,6456

Iv=IY+2147483647+1 -
YFL=1Y

YFL=YFL#%ae 465661309

RETURN

END

[eXslalg!

FUNCTION BARNI1(I yIKEYsIFRNsSD)
IMPLICIT REAL*8 (A-H.0-Z}

Sp——=—m THE DESIRED STANDARD DEVIATION
AMEAN=——mm e THE DESIRED MEA
Hem—— e e THE POPULATION 5125

DATA AMEAN/0.DO/
DATA IHERE/12787/
DATA H/36.D0/
IF{IKEY)S+44+4
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IHERE=IFRN

IF(I)6s747

CALL GAUSS(IHERE,SDsAMEANs VAL s H)
IFRN=IHERE

GO TO 8

CALL RANDU{IHEREsIFRN,yVAL}
IHERE=IFRNM

BARNI1=VAL

RETURN

END

[oW RS

SUBROUTINE GINVZ(A,U,AFLAGsATEMP sMR,NRsNCsNR1+EPS)}
DOUBLE PRECISION FAC,DOT,DO0T1,D0T2:TOL sDSQRT
DOUBLE PRECISION A{MR,NC)sU(NCsNC) s AFLAG(NC )} ATEMP (NC)
DO 10 I=1-4NC
DO 5 J=14NC
5 U(IsJ)=0.
10 U I.T)=1.
FACT1../0SQRT(FAC)
DO 15 I=14NR
15 A{I +1)=AC(L 1 )%FAC
DO 20 1I=1.NC
20 U(I4+1)=0U(Is1)%FAC
AFLAG(1)=1+
N=56
NR 1 =NC
TOL=(10 « RREPS¥ « %N} %
PO 100 J=2,NC
DOT1=DOT(MRsNRsAy JsJ}
JM1=J-1
DO 50 L=1.2
DD 30 K=1,JM1
30 ATEMP(K)=DOT{MRsNRyAsJyK}
DO 45 K=1,JM:
DO 35 I=1,sNR
35 A(I+J)=A(I+J)-ATEMP{K)*A(T ,K}XAFLAG{K)
DO 40 I=1sNC
40 U(T J)=U(T-,)-ATEMP {K)FU(T 4K}
45 CONTINUE
50 CONTINUE
DOT2=D0T (MR yNR s Ay Js J)
IF({DOT2/D0T1)-TOL) 55455, 70
55 DD 60 I1I=1sJM1
ATEMP(I}=0.
DD 60 K=1,1
60 ATEMP(I)I=ATEMP (I HU(KsIIxU(K,J)
BD 65 I=1,NR
A(l»J)=0.
DO 65 K=1,JM1
65 A({I.J)= A(I,J}—A(IsK)mATEMp(K}*AFLAG(K)
AFLAG(J)}=0e
FAC=DOT{NCsNCyUsJsJ)
FAC=1+/DSART(FAC)
NR1=NR1~-1
GO TO 75
70 AFLAG(J}=1.
FAC=1./DSQRT(DOTZ2)
75 DO 80 I=1.NR
80 A{I,J)=A(I,J)%*FAC
DO 85 I=14sNC
85 U(IJI=U{I,J)I®FAC
100 CONTINUE
DO 130 J=1,NC
B0 130 I=14NR
FAC=0 o
DO 120 K=JsNC
120 FAC=FACH+A(I+K)=®U(JsK)
130 A(IsJ)=FAC
RETURN
END

FUNCTION DOT({MR+NRsAsJyK)
DOUBLE PRECISION A(MR,1)+X,DOT
X=0.00
DO S0 I=14NR
X=X+A(I s JI*A(I+K)
50 CONTINUE
BOT=X
RETURN
END
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C.2 Program to Generate Error Cone Angles; Main and Subroutines

On the five pages following this preface there appears the error cone program
ligting for real and simulated shocks, Table 8 shows the input format for the

relevant .input quantities. X refers to the first six components of z for a

true

or Z (best estimate) for a real shock study

n

simulation study or of either Z___
(program must be run twice for real cases — See Section IV-A). SIG and_ NN
refer to the first six components of_.:the SIG's and NN's corresponding to the
associated shock program, and N is the Monte Carlo sample size number (K in
Appendix B.2) which is usually set equal to 3,000, B1 is the matrix g(i) with
the last two rows and columns deleted\ (See Appendix B.2 for explanation), The
first four rows of Table 8 represent the first four data cards of the program in

the order shown., The next six cards are the next six rows of the Bl matrix,

respectively,
Table 8
Input Data Format
Quantity Format Designation Descriptive Notes

N 14 Integer with MFW* of 4, right adjusted
X 6 F 5.2 FPN** with MFW of 5
NN 613 Integer with MFW of 3, right adjusted
SIG 6 F 5.2 FPN with MFW of 5

every
Bl 6 F 9.6{ row of FPN with MFW of 9

matrix

*MFW means maximum field width.

**FPN means floating point nzmber,
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The printed output of the program is given, in sample form, in Appendix
D.2 and is described in Section IV-B, The total program running time for

N = 3,000 and

NN(i) = 90

i=1

on the IBM 360-75 J computer is only about 3 minutes,
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NN(&},X(8)

+ VTHE IMPUT NN VALUES WERE 1,6(15s1X))

+ 'THE INPUT X VALUES WERE 1 36(F5241X))
+ '"THE INPUT VALUE FOR N WAS '4+1I3) -

»'THE INPUT SIG VALUES WERE ' ,6(F5+42451X))

'THE INPUT VALUES FOR Bl WERE 1)

P
V=P O = N P
T
[m]
bl
=
=
-

END

SUBROUTINE FIND(MM; A

IMPLICIT REAL%*8 {A~H,0-Z)

BIMENSION A{(10000)

XM =pM

ISIG1I=XM*{+03D0)+1.0D0C

I1S1G2=XM%(01D0)+1.0D0

ISIG3=XM* (00500 )+1.0D0

WRITE(6,200)ISI1G1,ISIG2,I35I1G3
Q00 FORMATI(1HO, ' ISIGI= V1,I3,71 ISIG2= 1,I3,¢' ISIG3= ',1I3)

DO 15 I=1,I81G1

X=A(1)

K=1
DO 5 J=2Zs,MM
IF(R«GT«A(I))}GO TO 5
K=J
X=A(J)
CONT INUE
A(K)==10.0D0

IF(IeEQeISIGleURI+EQeISIGReURI+EQeISIG3IWRITE(G, I969)I4X
1969 FORMAT(1HO»'THE '»I3s' VALUE WAS 'yD17.8)

15 CONTINUE
RETURN
END

alelzsiaksialalil

SUBROUTINE CONE(BlsSIGsNNsXsN)
IMPLICIT REAL®E8 (A-H.0-Z)
DIMENSION Bi1(6+6)}3SIG(B8),NN{6}X(6
1aTZ2{B8)sELI(HB)sT1{B)sFIT(10000),FI2(
2sXM(6)+B2(6)
Bl IS COVARIANCE DOF L5« ESTIMATE
SIG IS DEVIATION ARRAY
NN ARRAY GIVES NUMBER OF READINGS IN EACH DATA CHANNEL
X ARRAY GIVES TRUE SHOCK PARAMETERS
N IS MONTECARLO SAMPLE SIZE
SUBSCRIPT 1 REFERS TO Le+Se ESTIMATE
SUBSCRIPT 2 REFERS TO MEAN VALUE ESTIMATE
DATA ON LeSe CONE IS5 PRINTED FIRST
CALL XNORM({X +XM)
DD !} I=146
XNN(IJ)=NN{I)
1 B2(I)=SIG(I)/DSQRT(XNN(TI)}
CALL, EIGEN(Bl:AI:&,l)
DO 2 I=1,
2 ZI(I)‘DSQRT(A!(I))
DO 100 I=1sN
DO 10 L=1.6
T2 (L)=BARN1{—1s1:12787+8B2(L)
10 EL(L)=BARNL(=-1+1:12787,21(L)
D0 89 LL=1s+6
F=0.000
b0 85 LLL=1,6
85 F=F+{E1(LLL)%B1(LL,LLL))
89 Til(LL)=F

)
10

)
)
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DO 15 L=14+6
TLLY=TF1(L)+X (L)

15 T2(L)=T2 (L)+X (L)
CALL XNORM(T14XM1)
CALL XNORM{TZs:XM2)
DOTEI=S (XML )ARXMI( 1YY+ {XM{2)EXML(2) )+ (XM{3)%XM
DOT2= (XM (L }EXM2 (1) )4+ (XMI2)2XM2(2) I+ (XM(3)=XM
FI1(1)=DARCOS(DOTL1}
FI2{(I)}=DARCDS(DOTZ)
FI1(I)=FI1l(I}%57 2957800
FIZ2{I}=F12(1I)%57.29578D0

100 CONTINUE
VIRITE (6470}

70 FORMAT(1HO, 'WE WILL NOW PRINT FI1 RESULTS ¢}
CALL FIND(NsFI1)
WRITE(6sT71)

71 FORMAT(1HO, 'WE WILL NOW PRINT FI2 RESULTS ')
CALL FIND(N,FIZ)
RETURN ‘
END

SUBROUTINE XNORM(T1.M1}
IMPLICIT REAL*8 (A~H,Ms0-Z)
DIMENSION T1(6),M1(3)

BLlX=T

Z=B272-B12Z
QX=(B1Y*B2Z)=(B1Z=B2Y}
QY=(B1Z=B2X }~{(B1X*B2Z)
QZ={B1XxB2Y)—=(BlY*xB2X}
MX=(QZ=Y)-(QY=Z)
MY=(GXFZ )= {(QZFXK)
MZ=(QYHXX I~ (QXFY )
M=DSQRT (MX¥%2+MY #k2+MZ 42 )
M1(1}=MX/M

M1(2)}=MY /M

M1{3)=MZ/M

RETURN

END

SUBROUTINE GAUSS(/IXA9SyAMsVaH)
IMPLICIT REAL%8. (A=Hs0=Z)}
K=H
A=0.0D0
DO S50 I=1sK
CALL RANDU(IX 1Y sY)
IX=1Y
50 A=A+Y
HO=H/12.
H2=H/2
Vv=(S¥(A-H2)) /DSQRT(HO)+AM
RETURN
END

SUBRDUTINE RANDU(A/IX/ZsIYsYFL}
IMPLICIT REAL¥8 (A~H.0-2Z)
DATA JJJ5/1027/

I¥Y=IXxJJJI5

IF{(IY)S5+64+46
IY=IY+2147483647+1

YFL=1Y

YFL=YFL*.4656613D-9

RETURN

END

o

[aXalnlg]

FUNCTION BARNI1{I,IKEYsIFRN,SD}
IMPLICIT REAL%8 (A-HL0-Z)

Sp——-————=————-THE DESIRED STANDARD DEVIATION
AMEAN—————~—— THE DESIRED MEAN
Mo e e e THE POPULATION SIZE

DATA AMEAN/0.DO/
DATA IHERE/12787/
DATA H/36D0/
IF(IKEY)5 444

4 IHERE=IFRN

5 IF{I1)6+747
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& CALL GAUSS{IHEREsSDsAMEANSVAL yH)
IFRN=IHERE
GO 70 8

7 CALL RANDU(THERE, IFRN,VAL)
IHERE=IFRN

8 BARN1=VAL
RETURN
END

SUBROUTINE EIGEN(AAsVALUSNR M)

IMPLICIT REAL*8B{A-H,0-2}

REAL=*8 IND
C EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX
Crw—— CRITICAL NOTE EIGEN LIMITED . + «RANK MUST BE GE 2 0OR LE 8
Cmmme NOT REALLY CAPABLE OF N X N MATRICES

DIMENSIOM A{
1+s5(7)sC(7)4D
EQUIVALENCE
X (VALL (1)
1 TCH) »

8
{
(
D
s
( Ys (ANORM, ANDRMZ)

or

TAU,BETA
CALCULATE NORM OF MATRIX

[alske

M=NR
ORMA =
J =1
DO t I=
ORMA =
1 J=J+n4-1
DO 2 I=1.
NE=N==(I-1]}
PO 2 J=1sN
IJ=NIt+J
2 A(Js1) = AA(IJ)/0RMA
ANORMZ2=0+0D0O
DO &6 I=1sN
DO & J=1sN
ANORMZ=ANORMZ+A(I ¢ J} %22
ANORM=DSQRT (ANORMZ2)

GENERATE IDENTITY MATRIX

9 IF (M) 10, 45, 10
10 PO 40 I=1sN
12 DD 40 J=1sN
20 IF(1-J) 35, 25, 35
25 B8{l,J)=1.0D0
30 GD'TO 40
35 B(I,J)=0.0D0
40 CONTINUE

PERFORM ROTATIONS TO REDUCE MATRIX TO JACOBI FORM

o

o

D
IeN
ORMA+AAL{ L)
N

~NoePw

nno

gk 48]

45 IEXIT=1

S0 NN=N-2

52 IF (NN) 890s 170, 5%
55 0O 160 I=14NN

90 DO 105

95 T2=CUS*%

00 A{KsJ)=C
A(KSI+1)=T2
DO 125 K=IsN

[N

F4+1Y+SUN%A{K, 4
3 Al

105

110

115 T2=CUSHA(I+]1 +KIF+SUNFA(JIVK)
120

125

KsJ}=SUNKkA(KsI+1)

AlJsRKI=CUSHFA{JsK)I-SUNFA(IF+1,K)
A(I+14K)=T2

128 iF (M) 130, 160, 130

130 DO 150 K=14+N

. 135 T2=CUS*B{KsI+1}+SUNXBI(K,J)

140 BlKs JI=CUSHB(Ks J)-SUN*B(KsI1+1)

150 B{K,I+1)=T2

160 CONTINUE
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[e]g!

[aXeNe!

[alaks)

ann

[alaksy]

170
180
190
200
210
220
230

235
240
260
270
277
280
2290
300
310
3Z2Q
330
335
340
345
350
355
360
370
380
390
395
400

410
420
425
430
440
450

460
465
470
480
430
520
525
530
540
550
560
570
575
580
585

590
393
595
600
610
615
620
621
&622
623
625

630
635

MOVE JACOBI FORM ELEMENTS AND INITIALIZE EIGENVALUE BOUNDS

DO 200 I=IsN

DIAG(I)}=A(I 1)
VALU (I )sANORM
VALL (I)=-ANORM

0O 230 I=2,N
SUPERD(I=1)=A(I=141}
Q(I-1)={SUPERD(I-1))%%2

CETERMINE SIGNS OF PRINCIPAL MINORS
TAU=0.0D0O
I=1

MATCH =0
T2=0..0D0

Ti=1.0D0

DO 450 J=1s+N
P=DIAG{JI-TAU

IF(T2) 300, 330, 300
IF(T1) 310, 370, 310
T=P*T1=-Q(J=1)%T2

GO TO 410

IF({T1) 335, 350, 350
Ti=—1.0D0

T=—p

GO TO alo

Ti=1.00D0

T=p

GO TO 410

IF(Q{J-1)) 380. 330, 380
IF(T2) 400, 390, 390

==1+0D00
G0} TO 410
T=1.0D0

COUNT AGREEMENTS IN SIGN

IF{T1) 425, 420+ 420
IF(T) 440, 430, 430
IF(T) 430, 440, 440
MATCH=MATCH+1

T2=T1

T1=T

ESTABLISH TIGHTER BOUNDS ON EIGENVALUES

DO 530 K=1,N

IF (K-MATCH) 4705 470s 520
IF({TAU=VALL (K)) 3530+ 530, 480

VALL (K)=TAaU

GO TO 530

IF(TAU~VALLU(K}) 525, 530y 530
VALU(K)=TAU

CONT I NUE

IF(VALU(I)-VALL(I)-5.,0D~8) 570, 570, 550
IF(VALU(I)) 560, 580+ 560

IF(DABS (VALL{I)/VALU(I)—1,0D0}~50D~8) 5704 .570,

I=I+1

IF(I-N) 540, 540, 590
TAUS{VALL(I)+VALU(I )} /2.0D0
GO TQ 260

JACOBI EIGENVECTORS BY ROTATIONAL TRIANGULARIZATION

IF (M) 3593, 890, 593

IF{J—1) 680+ 6803 640

89

IEXIT=2

DO 610 I=14+WN

DO 610 J=1sN

A(I 4J}=0.0D0

DO 850 I=1.+N

IF (I-1) 625y 625+ 621

IF (VALU{I=-1)=VALU(I)=5.0D=7) 730s 730, 622
IF (VALU(I-1)} 623, 625, 623

IF (DABS (VALU(I )} /VALUL{TI=1)-1.0D03=-5.0D0-7) 730>
CUS=1.0D0

SUN=0.0D0

DO 700 J=1sN

730,

580

625



640 GO TO 900

£50 S{J-1)=SUN

660 C{J-1)=CUS

670 D(J=1)=Ti%CUS+T2%SUN

680 T1=(DIAG({J)-VALU{I})*CUS—BETA%SUN
690 T2=SUPERD{J)

700 BETA=SUPERD (J)*CUS

710 D(N)I=T1

720 DO 725 J=1.N

725 IND(J)=0.0D0

730 SMALLD=ANORM

735 DO 780 J=1,N

740 IF (IDINT(IND(J))=1) 750,:7804780
750 IF (DABS {(SMALLD)~DABS (D(J))}780: 780s 760
760 SMALLD=D(J)

T7T0 NN=J

780 CONTINUE

790 INDI(NN)I=1.0D0

800 PRODS=1.0D0

805 IF (NN-1) 810, 850, 810
810 DO 840 K=Z,NN

820 II=NN+1-K

830 A(II+1,1)=C{II)*#PRODS
840 PRODS=—PRODS*S(II)

850 A(1,1)=PRODS

FORM MATRIX PRODUCT DOF ROTATION MATRIX WITH JACDBLI VECTOR MATRIX

ano

855 DO 885 J=1sN
860 DO 8635 K=1sNM
B65 U(KISA(KS J)
870 DD 8851 I=1sN
875 A{I,+.4)=0.0D0
880 DO 8852 K=l
AlT + 0)1=B{I,KIFU{K)I+A(TsJ)
8852 CONTINUE
8851 CONTINUE
885 CONTINUE
by 886 I=1.,N
NI=N=(I~1)
DD 886 J=1sN
IJ=NI+J
886 AA(TIJI=A(JLI)
890 CONT INUE
DO 891 I=1asN

891 VALU(T) = VALU{T }#DRMA

RETURN
C- -
E CALCULATE SINE AND COSINE OF ANGLE OF ROTATION

900 IF (T2) 910, $40, 910 Y
210 T=DSQRT (T1* 2+T2**2)
o200 CUS=TLI/T
925 SUN=T2/T
930 GO TO (90,650), IE
940 GO TO (1604910}, I
RETURN
END

XIT .
EXIT
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APPENDIX D

SAMPLES OF OUTPUTS OF PROGRAMS

D.1 Shock Progam Output

The output, as it appears in printed form (the u‘pper portion on the next two
pages; the lower portion appears on the two pages after that). The sample shown
is for a simulated shock example and is fully described in Section IV-B of the
report. A real shock sample output would be almost identical except that also
printed out in the upper portion would be the Y array, and XMEAN does not usually
replace XSTART as in the simulated cases, but it can.

D.2 Cone Program Output

A sample of this output (app/ears_ on the single page following the Shock
Program output sample), Section IV-B also fully describes this printed output

for simulated shocks. It is identical in appearance for real shock cases.
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—SHOCK—PROGRAM—DUTPUT - —— -

— A ST ART R EBLEACEDBYXMEAN-
SIMULATED SHOCK BEING PROCESSED

THE MUMBER OF DIFFERENT CASES TO 3E PRUCESSED IS 2

THE TOTAL NUMBER OF DATA PQOINTS,.N,IS 140

B1X BLY B1Z BZ2X
THE INPUT NN WAS 20 20 20 10
INPUT XSTART WAS 44000 5000 —~1«000 3.500

THE CORRESPONDING G VALUES ARE

LY e

N N2 b NR Y N
Te250 13.861 TS 833 0.953 Q0222 Q.207
THE NUMBER OF JITERATIONS,L,IS 15

THE BEST ESTIMATE INDEPENDENT PARAMETIR MATRIX IS

T = 2 . T = I e e = i 1 - = i N == -

3598 5095 0377 3. 860 9475 —3.829
3598 5.095 —Qe€77 3+ 860 Q475 ~3.829
423 S e FF— 30— v 82— 9 09— 25 B 3 —
4,021 5.057 -1.033 3 754 D649 —3.069
A0 65055102 3+ ¥2R2— 62— 14—
42026 5.056 ~1024 3.723 F.615 —3.213
AR 5,056 1024 35723 G te— —F D15 —
’ 4026 5.0856 —~1.024 3723 F.014 ~3.215
— RS S 03 PP S+ ot F= 25—
44026 5.056 —1la024 3. 723 GeHlh —3.215
4026 5+ 056 1024 3v 723 SO w215
4,026 5056 -l«024 3,723 Qe614 —3.215
—— A 26— 55 0561 02— S T2 I F+ o325
4,026 5.056 ~ 12024 3. 723 G614 —3.215
— A RS 5t 02— PRI =Gt — & to—
4.026 5.056 —1.024 3.723 9.614 -3.215

— 4 025051 824SR 3643215
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B2Y Bz2Z WY ¥z N1 N2 WX

3

10 10 10 10 10 10 10
G000 -3.000 10.000 20.000
iy
13.361
"y C e Y N2 WX
4 255 17.933 H4890 13486 Tlesa04 MEAN VALUES

- == 87075 94392510055 M

4 255 17.983 B707.94392=1.055 ¢ ZI= 042197
T30 224003 2TE v TOeo—tR5S—1—Z= O+153%
4.073 20.107 163.04689=L. 0S5 2 2= D.0931
3515 P10 2T — - — 13 73685210885 —F-Z=—OH 0568 ———
3.4839 21 +296 ) 136.97695=L.0SS 4 Z= 0.0487
F+503 21323 P EGVITETI=L OS5 &S00S I ——
3+504 21.324 136.97673=L.0SS & Z= 0+0413
— S S0 3 > = = O
34504 21.324 136 .97673=L0SS 8 ZI= 0.0397
350521 324 iI36+97673=LOSS—9 = O+039%
3+504 21324 136.97673=1.0SS 10 Z= 0.0393
—— - 350421324 136+ 9F6TI=8SS5~1—Z= D63I52
L3504 21324 136.97673=L0SS 12 Z= 0.0392
e Py S 2t 3R 136 T GTI= 8BSt I E= G032 —
3.504 214324 136.97673=L0SS5 14 Z= 0. 0392

F3504——2te324 —————— ~9TE 7 I=ERSS +5— e
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TH!E—'-—BF-S?-—E STIMATEDEPENDEN T -PARAMETER MATRIX- IS———-- - -~ -~ -~
N1 N2 LYS NX NY NZ
— AN S 1 B O e B e S B T RO O B SO

18,943 3R.518 36. 737 0.903 0.254 0.367

— == Te232 - 14,048  107.7089 0e977 0+115 04189
7510 14e 64T 77.978 0.967 0.148 0.208

Fr 69O F B 6Ot Fh - BEA————Or 95— O T RRS—
6+931 13.457 71. 097 0.958 0.174 0.223
e i e 649320 138 85800 PLeGT2- —-02958 - --04 174~ - 04229
Ga932 i3.438 71.071 "0.958 Qe 174 0222
s s s 649325 - 130458 -2 TEe0T1- - - 04958 - - - Q.FT4 - -0.229
6+932 13,458 71.C71 0+958 0e174 0229

—_— e DAt F ISR T BT B 95—yt PG 2RI
6.932 13. 459 71.¢€71 0.958 0.174 0.223

P e — = - G232 13s458.- - FTEeCFL B e 355— O - F4—— -0 « 225-
6.932 13.458 71.¢71 0.958 0,178 0 .229
m—m s = £4932 - 133858 - 71307k —+~ 04958 —-— ~0vi74- - 0.229
6.932 13. 458 71471 0.958 0,174 0.229
6.932 13,458 71. 071 0.958 0.174 0.229

- Sy —THE ~COVARTANCE-MATRIX OF FINAL ESTIMATE s £5- TS T e e -
0.00585 0.00016 ¢.00018 0.00173 0.00012 —0.00181% 002443

00— 6501068 -~ — (R 000210 00071 — 0= 0088 — 0w 00284 0303608 -
0.00018 =0.00021 0.0C556 =0.00057 0.00104 G« 00797 000433
OO0 VAFRBAVLY O 00T C= 02485 O G2 O 0029 e I 3OS
0.,00012 0.00584 0.00108 —-0.,0029 0.07419 -0.01690 ~—0.29265

———— G 318G G2 84— G0 0 FIT-—— 0% 0N 22— 0w 01 69— 0505350 —0s15 013 -
0.02443 0.03608 0.00433 =0.18015 —0.292456 —0.15013 574353
— =02 7240+ 01930027 T 0 I 56O O-— 070042207 3T LB 2501930

— I HE—EENTRAETFE B RM—H—BER- AT R E— - R P ey b 5rm—

1.000 Neh 0.0 D.C 0.0 0.0 0.0
cm e e Qe e O O —— O O — — 05O — 00 o0 0<0
0.0 Ce0O 1.000 0. C 0.0 0.0 G0
- O+ ¢ Fat——— —0~-0 1= €00 050 O=0 =0
0.0 Qa0 040 0«0 1000 0.0 20
>x ) R S v S0 =000 O
0.0 0.0 O.0 0.0 0.0 D.0 1.000
Ml ¥ 0 2 A 0 et £ £ 0 ¢ p 0O 00— 00—
~10.618 2.474 12. 937 Q. 9562 0.145 —5.866 0« 445
— 2062w 226 — RS SI 15 30— L o 08— L1606 5939
33.718 —472999 —108.491 —17.369 24 725% 532824 1424
AAVE= B.734 ABE= 3..088 AVE +ABE= 8.772
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DP
e A — s — G P B O G A

Te024 0412680=QUALITY

o
27292 - Ve 708T=GUALEFY—1
13.634 D.92663=QUALITY 2
+6835% ¥ 0095 3=0UAEFY—3
10.007 1.01097=QUALITY 4
1i0.003 - e e e 0 1O9B=GUAL I-T Y =]
10.003 1.01098=0QUALITY ©
10.003 - s e - 1 0L O98=RUAL Y -—TF
10.003 1.01098=QUALITY 8
e} G I - . 0159 8=UAi T Pr—
10.003 1.01098=0UALITY L
19,003 —— s e —— 31 B9 B =R UA LT Y ——————
10,003 1.01098=UALITY 12
10.003~ - w1 5 OHOB=QUAETTY- 13
10003 1.01098=QUALITY 14
10.003 . 101098=QUALITY 15
-0 02724
001494 — - ~ —--mm— -
0.02770
e 100
0.,00422
—3433189 — - - e o
2.01930
Tel0262— ~omems
0.0
os0 ~— - -
0e0
- =00 - R
0.0
00—
0.0
- =1 #0000 ——-
—0.723
e e A LT et s e
3,099 -
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THE INPUT SIG VALUES WwWERE Q¢35 Q.50 035 Ce60 1419 1«30
—IHE INDUT VALCUE FOR I WAS 3000
THE INPUT NN VALUES wWERE 20 20 20 10 ig 10
THE INPUT VALUES FOR Bl - #ERE
T OS85 UV UIS DI OCUIE T CUTT3 Or 000 I 2050018t
ND.00016 0.01068 —-90.,0002]1 =0,000T71 0.00884 0.00284
e T T8 = U o2t T TUSS6 =020 0057t =061 0% O Y77
04600173 —000G71 —5.00057 Ces02461 —0.00297 000291
L ] ] L I L] el - L] -
—-0.020181 0.00284% Q.CO0T797 CeD0291 —0,C1690 C«05350
WE WILL NOW PRINT FI1 RESULTS
ISIGlI= 150 isi1G62= 30 ISIg3= {5
THE 15 VALUE WAS C.70047671D0 D1
THE 30 VALUE WAS Q.65018983D0 01
THE 150 VALUE WAS Qe31747948D Q1%
WE wWILL NOW PRINT FIZ2 RESULTS
ISIGl= 1530 IsSiG2= 30 I151G3= ig8
THE 15 VALUE WAS O.146112719D 12
fHE 30 VALUE WAS D«13564¢57D 02
THE 150 VALUE WAS De10634€617D0 02
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