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FOREWORD
 

This is Report No. IITRI-U6002-90 (Triannual Report) of
 
IITRI Project U6002, Contract No. NAS8-5379, entitled "Investi­
-gation of Environmental Effects on Coatings for Thermal Control 
of Large Space Vehicles." This report covers the period from 
January 1 through April 30, 1970. Previous Triannual Reports 
were issued on October 25, 1963; March 5, 1964; July 20, 1964; 
December 21, 1964; February 23, 1965; July 20, 1965; November 9,
 
1965; February 21, 1966; July 11, 1966; November 30, 1966;
 
February 28, 1967; September 22, 1967; January 15, 1968; April 15,
 
1968; October 25, 1968; January 31, 1969; July 11, 1969;
 
November 17, 1969; and February 20, 1970.
 

Major'contributors to the program during this period include:
 
Gene A. Zerlaut, Project Leader; Dr. Samuel I. Baker, experimental
 
and theoretical studies pertaining to characterization of proton
 
accelerator (CREF); Mr. Robert F. Boutin, experimental work on
 
CREF; Mr. John E. Gilligan, group responsibility for CREF and 
analytical studies pertaining to its characterization; and, 
Mr. George Kimura, experimental work. 

The work reported herein was performed under the technical
 
direction of the Space Sciences Laboratory of the George C.
 
Marshall Space Flight Center; Mr. Daniel W. Gates acted as the
 
Project Manager.
 

Prior to March 15, 1966, this contract was funded under
 
Codes 
908-20

124-09-05-26-04, 
-02-01-47. 

124-09-05-00-14, 933-50-01-00-00 and 
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ABSTRACT
 

-The concept, design, construction, characterization and
 
performance of the solar wind-proton simulation facility,
 
designated Combined Radiation Environment Facility (CREF), is
 
described in this report. The CREF consists of three modules,
 
one of which, the space-ultraviolet simulator, is not physically
 
coupled to the other two. The proton accelerator (solar wind
 

simulator) is physically coupled to the basic IRIF-IX facility,
 
the vacuum system that provides for sample manipulation, irradia­

tion and in situ hemispherical spectral reflectance measurement.
 
Performance objectives are all either met or exceeded.
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Report No. IITRI-U6002-90
 
(Triannual Report)
 

DEVELOPMENT OF SPACE-STABLE THERMAL-CONTROL COATINGS
 

I. INTRODUCTION
 

The general requirement under this contract is the develop­

ment of thermal-control surface coatings that possess very low
 

but stable ratios of solar absorptance (aS ) to infrared emittance
 

(6h)O Historically, this program has been divided into three
 

major phases: (1) inorganic pigment technology, (2) silicone­

photolysis and silicone-paint investigations, and (3) general
 

coatings investigations.
 

The relative emphasis on each major task has varied during
 

the course of the program according to the urgency of the various
 

problems elucidated by our investigations as well as the avail­

ability of both funds and personnel0 The major emphasis during
 

the past two years has involved the investigation of new, poten­

tially stable white-pigments - particularly zinc orthotitanate­

and the design and construction of a combined-environment radiation
 

facility (CREF).
 

The studies reported in the last Triannual Report (IITRI­

U6002-85) included the results of the in situ optical spectros­

copy of ultraviolet-irradiated, reactively encapsulated (surface
 

treated) zinc orthotitanates (Zn2TiO4 ) The data were compiled
 

and, in conjunction with the results of electron paramagnetic
 

resonance (epr) spectroscopy presented previously, the effects
 

of various treatments were evaluated. These studies showed that
 

the single most important factor in achieving optical stability
 

with Zn 2TiO 4 is the employment of excess (-0.5%) ZnO in the
 

preparative reaction. Still of significance, however, but of
 

secondary importance, are surface treatments such as plasma
 

annealing and reaction with potassium silicate. We know from
 

previous studies that residual ZnO must be present when any
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high-temperature heat treating is performed. Of the reactive
 

surface treatments, silicating (and preparation of potassium
 

silicate-based coatings) is the most effective in improving
 

stability of Zn2TiO 4 '
 

Although considerable studies of surface-treated zinc ortho­

titanate pigment and pigmented coatings were performed during
 

the report period, as well as new pigment studies, this triannual
 

report is being devoted to the design, construction, operation,
 

characterization and performance of the low-energy proton accelerator
 

module of the CREF space simulator. The materials studies enumer­

ated above are the subject of a Triannual Report now in preparation.
 

The proton accelerator (solar wind simulator) portion of the
 

CREF was conceived, designed and characterized with funds from
 

this contract -- NAS8-5379, IITRI Project No. U6002. The proton
 

accelerator and the IRIF-II module, and all ancillary electronic
 

and vacuum facilities, were constructed, assembled and de-bugged
 

employing in-house funds furnished by IIT Research Institute.
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II. 'DESIGN- PERFORMANE--CRITERIA AND CHKARACTERZ-ATION OF CREF
 

A. General Introduction
 

1. Background
 

For approximately ten years researchers in the field of
 

spacecraft temperature control materials have been attempting to
 

develop materials whose optical properties are unaffected by the
 

hostile elements of the space environment. During this period
 

we have learned much about the manner in which we should test
 

candidate materials. Nevertheless, it was not until 4 years ago
 

(Ref.'s 1, 2) that the need for in-situ testing was clearly
 

demonstrated. Realizing this need, IITRI designed IRIF, the In­

situ Reflectance Irradiation Facility (Ref. 3). As more sophis­

ticated missions were considered and as spacecraft missions to
 

the moon and planets became more common, the requirements of these
 

missions for stable spacecraft thermal control materials became
 

more -demanding. The solar wind environment had to be added to
 

the testing scheme, because the environment of deep space includes
 

not only solar electromagnetic radiation but also solar wind
 

protons.
 

There are two points which experience makes us think are
 

highly important in the evolution of a simulation laboratory and
 

the policy under which it operates. First, we firmly believe
 

that responsible testing requires a materials science approach
 

to the R&D of thermal control materials, a basic knowledge of the
 

effects of ionizing radiations on materials, and an understanding
 

of the operating principles and characteristics of the systems
 

employed. Second, we recognize the need for credible simulation
 

criteria. The greatest need we have at present in this sense is
 

to assess the effects of non-simulation - the differences in
 

effects on materials when compositions, flux rates and/or spectral
 

flux rates are not close to space values.
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IITRI's Combined Radiation Environment Facility, CREF,
 

evolved after consideration of the above and many other points.
 

A definite need exists for determining the effects of the deep
 

space environment, where the solar wind and solar ultraviolet
 

radiation are concurrent. Since these two types of radiation
 

are fundamentally different - one massive and the other electro­

magnetic, we expect, therefore, that the mechanisms of their
 

interactions will be fundamentally different.
 

2. Facility Description
 

The Combined Radiation Environment Facility (CREF) system
 

has been described in a previous triannual report (Ref. 3).
 

Photographs of the operational facility are presented in
 

Figures 1 through 3. The components of this facility are shown
 

schematically in Figure 4 and a block diagram is shown in
 

Figure 5. Except for the ultraviolet irradiation facility (i.e.,
 

the burner and power supply), the entire integral simulation
 

laboratory is shown in Figure 1. The Beckman DK-I ultra­

violet/visable spectrometer is shown to the rear (behind the
 

CREF in the photograph); the control facilities, including the
 

high-voltage divider, are shown in the left of the photograph.
 

Figure 2 is a close-up of the operational proton accelerator and
 

shows the interface with the IRIF, the basic in situ vacuum-ir­

radiation facility, which has been described in the literature
 

(Ref. 4). The IRIF and the interface with the accelerator are
 

shown in Figure 3. The vacuum integrating sphere is shown on the
 

left of this photograph. The 12 samples, mounted radially in the
 

IRIF, are shown reflected in the 450 first surface mirror (located
 

in the multiple-source adaptor housing) employed to direct ultra­

violet down onto the samples; the proton-beam in the mirror is
 

clearly shown.
 

Referring to Figures 1 through 4, let us describe the path
 

of the protons in going from the ion source to the sample area.
 

The protons are first generated in the RF (plasma) source at a
 

potential of approximately 1200 volts. The flow of hydrogen
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into the glow discharge tube is controlled with a palladium leak.
 
The source (and the extractor and first einzel lens) is shown in
 

Figure 6; the copper RF-cage and RF-plates are removed to show
 

the glow-discharge tube. (Alligator clamps are employed in this
 

photo to identify the electrodes. The RF-cage is clearly shown
 

in Figure 1.) The proton beam is extracted through a small hole
 

in the RP source into the extractor region; two collimator lenses
 

with small diameter holes reduce the beam current from the proton
 

source, originally of the order of 175 microamps, to about 40
 

microamperes. The two electrodes controlling the extractor po­

tential are shown in Figure 6; the disassembled extractor lens,
 

showing the aperature, is shown in Figure 7. The extractor lenses
 

also shape the beam, which then moves to the first einzel lens,
 

which, in turn, focuses the beam into the magnet. The two einzel
 

lenses, showing both views, are shown in Figure 8. The highly­

regulated electromagnet is shown in Figure 6. The magnetic field
 

applied by the magnet then selectively bends the ion components
 

of the beam and thus physically separates the H+ , H2 and other
 
species. The field strength is adjusted to obtain a 450 deflec­

tion of the H+ beam, which focuses it into another einzel lens,
 

which, in turn, focuses the beam (through a valve) into a quadra­

pole lens that then smoothes the beam out and produces a geometric
 

flux-uniformity across the sample area. The disassembled 450
 

bend and the Faraday-Cup housing are shown in Figure 9. A Fara­

day Cup is located immediately downstream of the analyzer magnet
 

and this is used to characterize the beam as it moves out of the
 

magnet. The angular (geometric) separation, energy and uniformity
 

of the beam can be determined with this cup. The Faraday Cup
 

analyzer module, showing the magnetic chuck and the second einzel
 

lens, is shown in Figure 10. The eight-element Faraday Cup
 

detector and the magnetic chuck-driven positioning screw are shown
 

in Figure 11. After final focusing in the second einzel lens,
 

the beam passes through a valve unit and then into the quadrapole
 

sweep/collimator lens. This element is shown in Figures 1 and 2, 
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and is presented as a disassembled unit in Figure 12; this
 

element is integral with the vacuum plate that is the basic
 

attachment to the multiple-source adaptor housing (shown in
 

Figure 3) for the entire accelerator assembly. (The multiple­

source adaptor housing connects the proton accelerator to the
 

basic IRIF and possesses ports for simultaneous irradiation with
 

protons, ultraviolet light, and low-energy electrons.)
 

3. 	 Charged Particle Interactions - General Theory
 
and Remarks
 

Charged particles lose their kinetic energy primarily in
 

interactions with the deeper-lying electronic levels of an atom.
 

As a fast-moving particle approaches an atom lying in its path,
 

part of its energy is transferred through the coulombic field
 

interaction to the electrons of the atom, with the result that
 

some of the electrons are either expelled (the atom is ionized)
 
or are raised from their ground states to highly excited states;
 

some 	of the atoms may be ejected also. Some of the ejected ions
 

and electrons, in turn, possess sufficient energy to displace,
 

ionize and excite other atoms. The probability of energy transfer
 

is greatest for multiply-charged, slow-moving particles. The
 

passage of charged particles through matter therefore involves
 

a series of interactions, the nature of which depends upon the
 

charge and initial energy of the particle. As it slows down, its
 

potential for causing displacements and thus secondary interactions
 

decrease; the probability for direct ionization also decreases
 

with decreasing velocity - until finally only minor excitations
 

will occur. The interactions most important in terms of optical
 

stability are displacement of atoms, ionization, and excitation.
 

By no means do all of the displaced atoms or excited electrons
 

remain permanently away from their previous or similar equilibrium
 

positions; most in fact, do return. One should note therefore
 

that the excitation process is followed by a recovery (luminescence)
 

process in which x-rays and ultraviolet radiation are emitted.
 

It is thus highly probable that charged particle effects will
 

include damage due to high energy electromagnetic radiation as
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well as that due to atomic displacements and chemical reactions
 

(for example, with protons). Each incident proton will generate
 

a multitude of hard ultraviolet photons. Longer wavelength
 

radiation not being present, the damage is generally much less
 

subject to radiative bleaching.
 

Seitz (Ref. 5) set forth the basic theory of charged particle
 

interactions.
 

For energetic reactions, in which the particle velocity
 

greatly exceeds the orbital electron velocities in the struck
 

atom, we can use the overall energy loss rate of a particle from
 

the expression:
 

-dE 47Z2e4 z2e4
 
=
-dE N Z log(E/B) + Zi log(s/B.), (1)
 

e p
 

where
 

dE the energy loss per unit distance per incident
 

dx - particle 

z = number of charges on the charged particle 

e = electronic charge 

M = electronic masse
 
V = velocity of charged particle
P
 
N = density of stationary atoms
o 

Z = atomic number of stationary atoms 

B a parameter characteristic of the electronic energy 
structure of the stationary atoms (of the order of 
the ionization potentials) 

Z. = number of electrons per atom in the outer shell, and1
 

B. = an energy parameter characteristic of that shell 
1 (similar to B).
 

The energy loss spent in displacement of atoms per incident
 

charged particle can be calculated from
 

-dE 2wz2Z2e4No log( 42
 

dx MV 2 (2) 
-p 
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where
 

m = mass of the charged particle, and
 

M = atomic mass of stationary atom.
 
The displacement energy, ED, is the minimum energy which must be
 

transferred to an atom to eject it from its lattice site.
 

These equations show that the rate of energy loss is
 

directly proportional to: material density, charge on the moving
 

particle, and the atomic number of the stationary atom; and that
 
it is inversely proportional to: the energy of the moving particle,
 

and, in the case of displacements, to the mass of the stationary
 

atom, and the displacement energy. The rate of displacement can
 
be calculated from Eq. 2 and from knowledge of the rate of charged
 

particle incidence and the displacement energy. This gives a
 

rough idea of the instantaneous rate of formation of interstitials
 

and vacancies (potential color centers).
 

Regarding the fates of displaced ions and electrons, it is
 

a fortunate fact that the actual induced vacancy and interstitial
 
concentrations of irradiated materials are orders of magnitude
 

less than those calculated from theory; this is because the
 
displaced atoms/ions eventually return to the vacancies they
 

generated. The estimation of induced vacancy and interstitial
 

concentrations therefore bears little relation to the actual
 

permanent concentrations of these defects. in summary then,
 

charged particle damage is certain to produce effects which
 

ultraviolet produces,as well as some which result from massive
 

interactions, and in combined radiation environments radiative
 

bleaching is undoubtedly going to create "synergism" and in­

validate any reciprocity which might have existed in single
 

environment testing.
 

B. Space Simulation Criteria.- A Discussion
 

1. Real Versus Simulated Space Environments
 

Ideal simulation implies exact duplication of the real space
 
environment, not simply the effects of the real space environ­

ment. Since the nature and composition of the real space
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environment differ from one place to another; the effects like­

wise differ. For example, the environment at 500 miles above
 

the earth's surface differs very much from that at an elevation
 

of 20,000 miles. However, beyond the radiation environment trapped
 

in the earth's magnetic field, the space environment becomes
 

uniform or fairly uniform and depends only upon distance from the
 

sun. That environment in which the solar wind is active, the
 

deep-space environment outside the earth's magnetosphere, consists
 

primarily of solar electromagnetic and particulate radiations.
 

To duplicate these in a laboratory we must have a reasonably good
 

characterization of the solar electromagnetic spectrum as well as
 

the solar particulate radiations; the former is well known, the
 

latter is reasonably well known (Ref.'s 6, 7). There are, however,
 

several other important questions involved in designing and
 

operating simulation equipment and in the evaluation of the data.
 

First, and foremost, it is essential that in an operating
 

system the response of materials be as nearly as possible the
 

same as their response would be in the actual space environment.
 

This condition is met when the exact conditions of the space
 

environment are duplicated, i.e., when the electromagnetic
 

spectrum, the charged particle energy spectrum, the rates at
 

which both of these are incident on a surface, and when electric
 

neutrality and prescribed vacuum-thermal conditions are achieved-­

all simultaneously
 

A critical question is.that of determining the effects of
 

non-simulation. One has the choice of either trying to produce
 

a system which precisely simulates the space environment or of
 

accepting a system which will produce in real materials a response
 

identical to that which the space environment would induce. These
 

are ideal choices, however, and it is one of our objectives to
 

See how closely the first choice, exact environment simulation,
 

can be realized.
 

There are three factors in this question: the spectral energy
 

distribution of the components, their relative compositions and
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their flux rates. In a laboratory situation all these have to
 
be simulated in order that the effects on the material will be
 

realistic. As a matter of practicality the effects of nonsimula­

tion with respect to composition must be determined, for example,
 

for a beam with 50% H+ versus one with 95% H+ (ionized hydrogen).
 

Rates of irradiation also might be important, particularly if the
 

rates of the various ionized species are different than their
 

respective rates in the space environment. In multiple environ­

ment simulation tests the complexity becomes extremely great.
 

In practice we do not achieve exact environment simulation;
 

hence we must determine which parameters are most important in
 

terms of simulation. The effect of a major parameter, if different
 

from what it should be, may be quite serious. Consequently, the
 

important parameters must be correlated quantitatively with their
 

effects.
 

Guidelines for designing and operating simulation equipment
 

are a necessity, not only to assess the effects that each com­
ponent has on defining the character of the proton beam but also
 

to understand the interactions of components and the system
 

performance as a whole. For example, while it is important to
 

know the extent of energy broadening occurring in an acceleration
 

lens, it would also be important to know how differently the
 

next and other successive lens would have to be operated to com­

pensate for it (and it would be very important to know the
 

response of materials as a function of the energy spread).
 

2. The Charge Build-Up Problem
 

The incidence of protons upon a dielectric material will
 

always create a charge build-up in the material. This is true
 
because the reaction of the proton (or positive ions in general)
 

with the dielectric material implies the accumulation of a
 
positive charge. This positive charge is further compounded by
 

a secondary electron release in the case of energetic ions. In
 

most materials the rate at which these secondary electrons are
 

emitted can and often is higher than is the rate of incidence of
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the charged particles producing them0 The net charge buildup
 

therefore proceeds at a rate higher than that due to the proton
 

beam alone. Whether or not these conditions exist in space is
 

a question of major significance0 In our opinion, it is not
 

possible for a very large voltage to build up on a spacecraft
 

coating simply because the solar wind is electrically neutral
 

(Ref. 8). The build up of a positive charge would in fact attract
 

more strongly the electrons and tend to repel protons. This
 

buildup also would tend to attract the secondary electrons back
 

to the surface so that the net charge buildup could not possibly
 

get much beyond the material's work function (for the escape of
 

electrons). This is of the order of possibly 5 to 10 electron
 

volts. In the CREF the secondary electrons which escape from
 

the samples are replaced by a thermal ion source. Although it
 

can be argued that there is some buildup of charge due to an
 

excess positive charge on the coatings it is hardly likely that
 

this buildup can be significant enough to effect spectral
 

reflectance. In our opinion, however, this question is not com­

pletely resolved. Yet it is our belief that charge build-up is
 

not a significant problem on a space vehicle. It should, therefore,
 

not be permitted in simulation facilities.
 

3. Simulation Parameters
 

The important parameters in solar simulation and in solar
 

wind simulation are the spectral energy distribution of the
 

protons, of the solar electromagnetic radiation and the vacuum
 

level. The vacuum level is important in the sense that the
 

vacuum system must be such that the net pressure effect of space
 

is simulated, that is, that a molecule leaving a surface will not
 

return to it.
 

Achieving the correct energy distribution and average energy
 

level of the protons in the solar wind is a difficult task. In
 

practice, the methods for doing this are generally divided into
 

two categories -- one is electrostatic, the other magnetic.
 

Separation is a parameter that determines the amount of H2+, H3+
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and other species that may be incident upon the samples. The
 

term separation generally refers to the geometrical relationships
 

between the components of an analyzed beam. Since the magnetic
 

separation is energy-selective, there will be an energy separation
 

as well. Thus, for a given magnetic field the protons with the
 

highest energy (in a Maxwellian distribution) will not be bent
 

the lower-energy protons, while the lowest-energy H2+
 as much as 


ions will be bent most, and there may be a geometrical overlap.
 

This is illustrated in Figure 13, where it can be seen that the
 

beam incident on the x-axis after separation have an energy
 

distribution along the beam-isolation plate. In space the separa­

tion parameter for H+ is of the order of .96, i.e., the ratio of
 

H+ to everything else. The solar wind, therefore, is effectively
 

simulated by a pure H+ beam along with the accompanying thermal
 

electrons which provide an essentially neutral beam. In practice
 

there also has to be a uniformity of the incident beam. Con­

sequently, uniformity becomes a practical requirement. The rates
 

at which the particles strike the surface along with the rates of
 

the solar electromagnetic radiation should be very nearly that of
 

space. The ratio of the two fluxes (particulate and electro­

magnetic) should be very nearly unity; that is, the ratios of the
 

intensities of these two fluxes should be very nearly that of the
 

space environment.
 

The solar wind consists of 2.5 x 108 protons/cm2-sec with
 

ion energies centered approximately at 1.8 keV; they may rise
 

during solar flares to approximately 5 keV, where the energy
 

distribution of these protons is of the order of 0.01 of the maxi­

mum energies, or .01 of the average energy (in other words about
 

a 1% spread of energy). In practice the flux rate corresponds
 
-11 2
 

to a current level of 4.0 x 10- amp/cm The methods that are
 

used to determine the degree to which a simulation device is
 

achieving its purpose aredifficult to decide upon. The
 

detector/monitor for a solar wind simulator must be a Faraday
 

Cup which has the capability of scanning the entire beam to
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measure its intensity in a horizontal plane. It must also be
 

able to measure the intensity of the beam on a unit area basis
 

and it must be able to scan the beam energy distribution. Con­

sequently, devices for measuring both the flux incident per unit
 

area and the energy of the beam itself must be provided at the
 

sample location. The total environment of the samples must be
 

such that they will respond to the incident beam solar electro­

magnetic and particulate radiations in very much, if not identically,
 

the same way they would respond in space. Consequently one must
 

also provide a charge buildup detector, because in reality the
 

buildup of charge induced by proton reactions will occur and
 

provisions for effectively neutralizing the charge must be pro­

-vided-.
 

C. Performance
 

1. Objectives
 

The calibration and characterization measurements performed
 

on the CREF have been quite successful. The system has been
 

under test for approximately 6 months and is now operational.
 

In general, the CREF operates quite well within the tolerance
 

levels that were anticipated. Major operational problems have
 

not occurred. Numerous minor ones have kept the system from
 

being operational at an earlier date. However, our experience
 

with the CREF indicates that the basic design of the system as
 

a whole is fundamentally sound. Individually, the components
 

and ancillary equipment operate well within satisfactory limits.
 

Typical of some of the minor problems that we have encountered
 

to date was the necessity for maintaining the system electro­

magnetically shielded (i.e., not allowing RF to get out of the
 

building). Numerous electrical problems have occurred; ground
 

connections and ground loops, interaction between instruments
 

and power grounds, faulty connectors and connections, etc. have
 

kept appearing. Components also have often given us problems
 

because of poor construction, insufficient ratings, or general
 

defects. Operational problems have been relatively minor except
 

lIT RESEARCH INSTITUTE 

26 IITRI-U6002-90
 



for a number of vacuum leaks, ion-pump failures and secondary
 

electron emission. The inability of operators to recognize or
 
detect certain performance flaws has been removed with experience.
 

The system is sufficiently complex and the diagnostics of
 

its performance are so complicated that in most cases it is very
 
difficult to interpret the experimental results or correlate
 

them from one test to another without making a great effort to
 
ensure that all the important operating conditions are well known
 

and under close control.
 

The objectives of these activities were mainly to determine
 

the effects of each of the major parameters on the performance
 

characteristics of the system as a whole. In general, we have
 

wished to vary the proton flux at the sample locations from
 

roughly one solar wind, or 4 x 108 protons/cm -sec, up to approxi­

mately 25 solar winds, or 10 protons/cm2_sec. We have also
 

wanted the beam purity, that is the proton (H+ ) species, to be
 
greater than 95%, and approximately ± 5% energy spread about the
 

effective energy. Geometric uniformity at the sample location
 

is a little more difficult to achieve in most cases; for example,
 

the microscopic flux at the sample location should be within 20%
 
of the total beam flux averaged over the whole sample location.
 

These objectives have largely been met and the effects that
 

each of the major components have on these individual performance
 

objectives have been determined.
 

2. Characteristics of Operation
 

Rather than indicate the effects each component (for example,
 

each Einzel lens) may have on the succeeding elements and even­

tually on the conditions at the sample position, we will present
 
some of the more important variables which fix these conditions
 

or have the most important effect on them.
 

The probe voltage, which is a positive voltage applied
 

directly to the RF-source tube, determines directly the beam
 

energy. This voltage is critical; the voltage drop between the
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power supply and the probe must be accounted for or made extremely
 

minimal. The actual energy of the protons eminating from the
 

system is slightly less by some small amount (roughly 25-30 eV)
 

than the actual set energy as determined by the probe voltage.
 

The probe voltage also affects the flux and the ionic composition
 

of the emergent particle flux. All of these, of course, affect
 

the strength of the magnetic field required to separate (analyze)
 

the protons, and this in turn affects the focal properties of the
 

beam, the space charge, and the energy distribution of the beam.
 

We have found in measuring, or monitoring, the proton flux
 

that it is very important to account for the secondary electron
 

emission. The net effect of the secondary electrons is to in­

crease the apparent beam flux so that the actual beam flux is
 

slightly less (sometimes much less) than the apparent flux. At
 

approximately 1.2 kilovolts (kv) the correction is of the order
 

of 20%. At 2 kv the correction is of the order of about 2% (for
 

aluminum targets). In other words, an indicated flux of 2 x 108
 

2-keV protons would in fact be 1 x 108 under these conditions.
 

To measure beam purity, the separated (individual) beams
 

are scanned across the Faraday Cup using the magnetic separator
 

(or analyzer) and the resulting scan of Faraday Cup current (beam
 

intensity) versus magnetic field strength (such as Figure 14
 

shows) can be used to determine the magnetic separation between
 

the two beams and the amount of field strength required to pro­

duce these two beams at their individual locations on the Faraday
 

Cup. Since the Faraday Cup is divided into eight elements (see
 

Figure 11) each of known size and geometrical relationship to one
 

another, the beam can be tracked across each of the cups and the
 

amount of field strength required to move it from one element to
 

another can then be determined. The purity then can be determined
 

by the fact that, sufficiently far from the magnet, the divergence
 

of the two beams, H+ and H2+, is great enough to cause them (these
 

respective beams) to hit different elements of the Faraday Cup.
 

This divergence ordinarily is greater than the diameter of the
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downstream aperture into which one beam or the other is effec­

tively focused. In effect the H+ beam (first peak) is focused
 

directly into the downstream aperature and only that part of it
 

is focused which is at the top of the peak. Beam purity is thus
 

achieved by magnetic separation followed by geometric isolation.
 

The beam energy spread is determined by a scan, such as presented
 

in Figure 14, in which the bias potential on the Faraday Cup is
 

increased up to the order of the beam energy. When the current
 

drops effectively to zero, the shape of the curve in this region
 

is related to the energy spread (indicated by the dotted line).
 

The peak of the distribution is at the effective energy of the
 

proton beam. The width of the curve indicates its energy spread
 

and this is taken to be the energy difference between the half
 

power points as indicated by the + El/2 points on the curve. 

For an energy of 1.2 kv this energy spread has generally been of 

the order of about-50 volts; the total spread has been slightly 

less than about 1/10 of a kv or less than about ± 5%. Beam
 

uniformity has been measured at the sample location using a
 

23-element Faraday Cup detector (shown in Figure 15). In this
 

method the entire Faraday Cup is placed above the sample location
 

and all 23 locations, or elements, of the Faraday Cup are scanned.
 

In general, the quadrapole lens has a fairly strong effect on
 

the beam uniformity. The beam can be spread out across all of
 

the samples by simply increasing the voltage across any two of
 

the lenses. A voltage of approximately -800v applied on two of
 

the four quadrapoles gives a beam uniformity of about 80%. Each
 
2
element of the detector is one cm in cross-section and the
 

geometric relationship between each detector is known; hence the
 

relative flux uniformity throughout the sample area can be
 

determined quite well. Intensities at the center of the sample
 
x 10­location were determined to be of the order of 1.1 10
 

ampere/cm22 which is roughly 4 solar winds. Correcting for
 

secondary-electron emission, this flux would be slightly less
 

than 4 solar winds.
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The total flux or the flux at the sample location can be
 

decreased to a flux of the order of 1 solar wind by one of several
 

means. An aperture located just above the second einzel lens can
 

be installed with a much smaller diameter; another possibility is
 

increasing the voltage potential on the first collimator lens.
 

Figure 16 shows the relationship between the potential
 

applied to this lens and the resulting maximum flux at the sample
 

location; on the right side of the figure are the intensities in
 

solar winds. Figure 17 shows the flux distribution over the
 

sample area at the sample location. This plot is at full scale
 

and shows the beam energy distribution, the samples and the
 

Faraday Cup elements superimposed upon each other. Figure 18 is
 

a plot of the total flux at the sample location versus the voltage
 

required to suppress it.
 

3. Operating Conditions
 

We have found a number of operational procedures which seem
 

to stabilize and regulate the beam intensity. The hydrogen supply
 

system was found to be quite critical. We use a very high-purity
 

(research-grade) hydrogen gas. We pass this through a regulator
 

and control the inlet pressure to a palladium leak at 16 psig.
 

The differential pressure across the palladium leak is therefore
 

kept very constant. The intensity of the flux is maintained
 

constant for the reason that there are no pressure surges or
 

transients in the ion source. The heater current to the palladium
 

leak is another critical factor. This must be highly regulated
 

and for this purpose we use a titanium sublimation pump power
 

supply.
 

The general philosophy in the development of procedures was
 

to proceed from the ion source down to the sample location,
 

characterizing the effect at the sample location of each of the
 

lenses in the system. The total ion current extracted from the
 

source is shown in Figure 19 as a function of applied (probe)
 

potential. The relationship is essentially linear. The primary
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investigation, however, was to determine the focusing properties
 

of each of the lenses and the effects that each lens would have
 

on the succeeding lens, and also, for example, the ability of
 

the einzel lens to focus the beam into the analyzer magnet. The
 

conditions best suited for this latter .situation were found to
 

be with the middle element of the einzel lens at approximately
 

+800 volts, or roughly 2/3 of the probe potential, and the two
 

outer lenses grounded. Further down the system the einzel
 

immediately following the analyzer lens has a very small aperture
 

which geometrically selects the H+ beam. This lens has in all
 

cases been grounded because the aperture on the exit side of the
 

einzel lens was inadvertently made too small to allow the einzel
 

lens to function effectively as a focusing element. Fortunately,
 

however, the four quadrapole lenses have a very strong focusing
 

effect.
 

The current operating conditions are: the first collimater
 

lens is set at -1200 volts, the second collimater lens at -1300
 

volts, the three elements of the first einzel lens at 0, +800,
 

and 0 volts respectively, all elements of the second einzel at
 

0 (ground), two of the four quadrapole elements at -830 volts
 

and two at 0, and with zero bias on the samples.
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III. RESULTS OF PROTON (SOLAR-WIND) IRRADIATION 

A. 'Test Conditions
 

The results of two solar-wind simulation tests are presented.
 

The figures shown (Figure 20 through 25) represent the form in
 

which the in situ hemispherical reflectance data are displayed.
 

The data, taken with a Beckman DK-l strip recorder, is typical of
 

-the data taken with the basic.IRIF-II ultraviolet facility.
 
6
 

The irradiations were performed at a pressure of 1 x 10
­

torr and at a specimen temperature of 120 C. Reflectance measure­

ments were performed initially at -10-7 torr pressure and after
 

depositing the total fluence of protons (indicated in Table 1).
 

Three specimens were irradiated in-each test (Figures 20, 22 and
 

25 in one test and Figures 21, 23 and 24 in the other). The
 

voltages, conditions and the beam pattern employed in these
 

irradiation tests were those specified in the last section (II.C).
 

B. Results
 

The effects of irradiation with -2 x 1015 protons/cm2 on
 
zinc oxide and the two specification paints based on zinc oxide,
 

Z93 and S-13G, are shown in Figures 20, 21 and 22. The data are
 

summarized in Table 1. Examinations of the damage spectra show
 

that the SP500 zinc oxide powder underwent damage in both the
 

visible and infrared spectrum: The Z93 specimen sustained similar,
 

but slightly diminished damage in these two regions. Surprisingly,
 

the S-13G exhibited only slight damage in the visible spectrum;
 

damage in the infrared was only slightly less than for the Z93
 

specimen.
 

The effects of proton irradiation on zinc orthotitanate and
 

zinc orthotitanate paints are presented in Figures 23, 24 and 25.
 

Again, the pigment powder (in this case plasma-calcined Zn2TiO4),
 

Figure 23, exhibited the greatest damage in the visible spectrum,
 

while the silicone paint (in this case, based on Owens-Illinois
 

650 resin) exhibited no visible-region damage. The acid phosphate­

treated pigment prepared as a potassium silicate paint (Figure 24)
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Table I
 

SUMMARY OF PROTON-IRRADIATION DAMAGE
 

Proton Damage
 

Fluence Flux Visable IR
 

Figure Material 1015/2 10p/cm2-sec 'max(v AR(%) 'max( AR()
 

20* SP500 ZnO 2.5 4.9 425 6.3 2500 6.0
 

21* Z93 2.7 5.4 425 5.6 2500 4.0
 

22 S-13G (B-031) 2.5 4.9 450 1.5 2000 3.2
 

M 23 Zn2 TiO4 (Plasma) 
 2.7 5.4 400 5.7 950 2.0
 

24 Zn2 TiO4 (NaH2PO 4 - 2.7 5.4 400 2.0 900 5.0
 
o 	 treated) in PS7
 

z 25 	 Zn2 TiO4 (Fe+/Fe+++) 2.5 4.9 None 2000 1.5
 
in 01 650
 

M*Main target in each of two irradiations.
 

H 
H 

H 
H 

C
 

to 



developed a mildly intense band at 900-nm wavelength and the
 

powder specimen exhibited a much less intense band in that wave­

length region. The Owens-Illinois 650-resin-based paint prepared
 

from pigment that had been treated with ferric/ferrocyanide
 

exhibited no specific damage at -900-nm wavelength, but did degrade
 

slightly in the entire infrared region.
 

C. Discussion
 

Although at this time it is impossible to correlate preparation
 

and treatment parameters of the zinc orthotitanates with their
 

proton-damage spectra, the behavior of the pure powders versus
 

that of the silicone paints is intriguing. It may be that the
 

binderless pigments are damaged physically by the proton ir­

radiations and develop lattice-strain related damage similar to
 

that attributed to grinding of zinc oxide. The explanation might
 

then be that the pigments are physically protected by silicone
 

binders from the "sand-blast" effects of the protons and that
 

the threshhold for damage to the silicone (ionization-wise) is
 

greater than the threshhold for development of a physically­

induced B-band, as discussed previously by Gilligan (Ref. 9).
 

(Current studies are devoted to increasing the total proton
 

fluence deposited on the six specimens discussed herein.)
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IV. -ONCLUSIONS
 

Referring to the performance requirements, i.e., the proton
 

flux, beam purity, beam energy, and energy spread and uniformity
 

at the sample location, we have determined the important opera­

tional parameters affecting them. The most important parameter
 

in regulating proton flux is the RF power applied and the vacuum
 

pressure inside the system. The ion current out of the ion
 

source is not a very strong function of voltage applied. Beam
 

purity is primarily a function of the degree of separation and
 

the angular geometrical constraints placed on the system. Beam
 

energy is very well defined by the applied voltage at the probe.
 

The energy spread is determined primarily on the basis of the
 

number of lenses and the randomness imparted in the velocity dis­

tribution by any misalignment and nonuniform field potentials
 

across the lenses. The einzel lenses help to correct this by
 

achieving a fairly strong focus. The uniformity of the beam at
 

the sample location is achieved principally by the quadrapole
 

lenses and the application of a rather uniform electrical field
 

which tends to spread the beam more than does the einzel. The
 

beam at the sample location can be swept by using a saw-tooth
 

generator or similar time-varying potential on the quadrapole
 

lenses, thus achieving a better degree of uniformity. The
 

characterization now is essentially complete.
 

Of prime importance in the characterization of this system
 

is the assumption that the first peak in making a scan of current
 

versus magnetic field strength is that the first peak is in
 
+
fact the H peak and succeeding peaks are due to H2 or to other
 

ionized species. We have calculated the magnetic field strength
 

required to bend the proton beam 450 and have compared the cal­

culated values with the actual numbers. We are quite certain
 

that the first peak is, in fact, H+ . The second peak is un­

doubtedly H2 , probably with a slight amount of He++ . The third
 

peak is He+ , or other materials with similar charge-to-mass ratios. 
In the appendix we have indicated the calculations that were made 
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to substantiate the spectral location of the proton beam employed
 

in the plot of ion current versus magnetic field strength. A
 

number of calculations of the magnetic field required to bend
 

the proton beam 450 were made for each of several different
 

configurations of pole caps on the magnets. A representative
 

calculation is shown in the Appendix.
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APPENDIX
 

CALCULATION OF BENDING
 

Using the magnetic field profiles measured with a gaussmeter,
 

we must determine what magnetic field strength at the center will
 

be required to bend the H+ particles 450. Let us use the equation
 

B mvc
 e
 
r
 

repeatedly, breaking up the path into a series of lengths, each
 

1/2", and using the average B field for that length to be the
 

value at the center of that length. This will underestimate the
 

field by a small amount beyond the pole forces. Let us assume
 

1200 eV for the proton entering the field and start with B = 337
 

gauss it the center of the pole face, since that was the average
 

-determined empirically for a 48.50 bend. To determine the field
 

at any point, we will multiply its value on the plot by 337/400
 

or 0.82, where 400 was the setting which produced this reading.
 

Hence
 

r =mvc _ 5.12 x 103
 

cm eB B
 gauss
 

The total angle for cup #5 is 48.50 + 3.30. The total angle, e,
 
for all 16 increments is
 

16 1.
 
0 Z 3 6 0-(2r ) = 3600(0.202)(0.963) = 50.40,
i=l i
 

which is within the limits of cup #5.
 

The difference is about 4% (or about 13 gauss); 324 gauss
 

should be required. For a bend of 450, the strength should be
 

300 gauss. The actual magnitude is about 275 gauss, and the
 

difference may be because of slight energy losses in the plasma,
 

effectively reducing the proton energy.
 

IIT RESEARCH INSTITUTE 

A-1 IITRI-U6002"90
 



For H2+ the radius will be -V2times that for H in the' 

same field. Therefore 

166 _1 166 1 _ 0.693 

r ) f - =Z­i=l (H2 ) /2 i=I r(H+)i 2 

50.4o
 
Angle = 5.- 35.60
 

At 9/16" between cups and 4-3/16" from center of cup #5 to the
 

center of the bend:
 
initial direction
 
from source
 

.60 4-3/16" 4-3
 

tan 4-3/16 tan(48.5 - 35.6)
 

67" 67" 
A = 1 tan 12.90- = (0.229) = 0.96".

16T6
 

Therefore a 3/4" dia. hole will separate the two beams. The
 

diameter of the hole in the first element of the second einzel
 

is 0.496".
 

The peaks found on element #5 (48.50 bend) at a 1200-v probe
 

voltage were BH+ = 330 gauss and B H + = 495 gauss, with half­

maximum points averaging 343 gauss ?300 + 385) and 483 gauss
 

(445 and 525).
 

Therefore H and H2 are supposed to be separated by V2 BH+:
 

peak 330V2 = 467, average 343-/2 = 485.
 

At 2000 v, the peaks were found at BH+ = 448 gauss and
 

BH + = 638 gauss, with half maximum points at 420 gauss and
 

603 gauss. Therefore­

peak 448J/2 = 634, average 4207/2 = 595.
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V The H+ peak should change with probe voltage as 


120- 1.29
V200

Therefore
 

peak 330(1.29) = 425, average 343(1.29) = 442
 

average 483(1.29) = 622, peak 495(1.29) = 638.
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