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By

WALTER H. TAFFORD

and

JOHN R. BUTCHER

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

It was formulated that a region existed behind an orbiting
spacecraft which was relatively drag free, Due to the interest in
conserving propellant on untethered modules flying in formation
with a "mother" spacecraft, consideration was given to inserting
these free modules inside this region. Calculations were made to
determine the dimensions of the region trailing a cylinder 600 inches
long and 260 inches in diameter. Regions were alsp calculated for
minimum diameters ranging from 200 inches to 500 inches. The results
of this study are presented graphically and in pictorial form.
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Symbol	 Definition
i

cm	 Centimeter i
I

erf	 Probability integral
i
3
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h	 height from earth surface, km

H	 Hydrogen Atom
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oK	 Degrees, in thermodynamic Kelvin scale
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FOREWORD

The high velocity motion of a space station through the
f

	

	 rarefied atmosphere of high a ptitudes causes complex gas flaw
patterns around the orbiting station. Well known are the re-
sulting drag forces. Little if any effort has been devoted
to the wake which trails a space station.

This idea of an orbital wake behind a space station came
to 'mind when the .concept of a space station was developed flying
formation with several separate sub-satellites or modules. The
higher drag forces on those modules as compared to the space
station would require constant expenditures of propellants in
order for them to maintain their position, Over a period of a
year or two this would amount to sizeable quantities.

This combination of orbital wake and independent module
resulted in the idea to place the independent module in the wake
of a spate .station and keep it there. This could result in size-
able savings of propellants, and therefore weights and complexities.

The authors undertook an investigation of this problem.

Dr. R. Oman of the Grumman Aircraft Company gave encourage-
ment to this idea and calculated drag reductions of over 50% for
bodies in the wake. We will. continue this effort. 	 ;
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INTRODUCTION

A study of void regions trailing orbiting bodies could
be of fundamental importance in conserving the propellant of
smaller utntethered modules flying in formation with a "mother"
spacecraft.

The purpose of this study was to provide dimensions of
void regions for typical cylinderical bodies of various sixes.
These objects were ccnsidered to be in circular orbits from
200 km thtvugh 500 km about the earth with a SO" inclination.

The environment of these orbiting bodies was assumed to
be of a'hyperthermal free molecular origin. Thus the approach
used was to determine, through theoretical, assumptions, the
speed rat°,ios $ divergence angles, and the configurations
as ociated with these orbiting bodies from the most probable
molecular particle velocities. (See Figure 1)
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ASSUMPTIONS

The following is a summary of the basic assumptions
used in this study:

1. Hyperthermal free molecular flow
environment.

r	

2. Cylindrical configuration 600 inches long and
260 inches in diameter. (Approximates
shape of S-IVB stage.)

3. Flow is to be steady with uniform density
upstream of the surface.

4. Gas has a maxwellian velocity distribution
superimposed on the mass flow velocity.

5. Dynamic and kinetic atmosphere criterion.
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ANALYSIS

	

1.1	 Atmosphere

The atmospheric shell or region is determined by four
basic criterions. The first criterion, being a temperature
distribution, is one of the most common ways of defining the
layers of the earth atmosphere. The second criterion is the
physicochemical process which defines the atmosphere layers
through molecular, reactions caused by the absorption of
radiation. The third criterion defines the distinction of
atmospheric layers according to photo-dissociation and gravi^
tational separation of mean molecular weights. The fourth
criterion is the dynamic and Kinetic processes which are re-
presented by the model atmosphere used in the study. In this
model, the exosphere, from which all calculations are based,
is the outer-most portion of the atmosphere. The lower boundary
of this model atmosphere is the critical level of escape,
variously estimated at 500 km to 1000 km about the earth surface.
In the exosphere, the air density is so low that the mean free
path or free molecular path of individual particles is completely
undirectional and depends upon their direction with respect to
the local vertical, being greatest for upward-moving particles.
It is only from the exosphere that atmospheric gasses can, to
any appreciable extent, escape into outer space.

The data used in this study which pertains to the
exosphere originates from talc, 1966 SupYleiu^i"st to v • S • a Laiidisrd
Atmosphere 1962.

	

1.2	 Exospheric Density

Above. 120 km of the exosphere there is one basic para-
meter in the 1966 Supplementary Atmosphere, a set of exponential
temperature curves, which were empirically derived to provide
density - altitude profiles that coincide with satellite - drag
densities derived for various degrees of solar and geomagnetic
activity and varying solar angles. Three sets of density models
above 120 km were developed from the 1966 Supplement. At lower
altitudes eight supplementary atmospheres converged at 120 k%, to
form these three sets. A single set is applicable to.spring and
fall conditions, a set for winter, and a set for summer. Tempera-
ture and density data were taken from these winter and summer sets.
Density and number density profiles are presented in Figures 2-,
2-A, and 3. Based on satellite data, variations in nitrogen
number densities as a function of solar time are presented in
Figure 4, 4-" and 4-B. Variations of pressure_ between summer and
winter models ire shown in Figure 5.
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MODEL ATMOSPHERE
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1.3	 Exospheric Temperature

].your types of temperature variations have been
recognized at heights, greater than 200 ism, namely:

1. A variation with solar activity

2. A semiannual variation

3. A diurnal variation, and

4. A variation with geomagnetic activity.

Empirical formulas have been constructed to compute the
exospheric temperature when these parameters are known. Once
the exospheric temperature T oo is computed, atmospheric densities
and related quantities can be found for any given height.

Temperatures used in the calculations of the most
probable velocity are:

1. Winter exospheric temperature at

a. 600° K minimum, model

b. 21,00° K maximum model

2. Summer exospheric temperature at

a. 600° K minimum mo iel

b. 2100° K maximum model

Temperatures from the winter model (max) and summer model (min)
as a function of altitude are presented in Figure 6.

	

1.4	 Computations

Most probable velocitlAs were calculated from 200 km to
500 km with 30 km increments The following equation form was
used:

3.
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A speed ratio for each altitude of 50 km increments
between 200 km and 500 km was calculated as shown in Figure 7.
The following equation was used and the results are tabulated
in Table 1.

Speed Ratio S .. Circular satellite velocity/most
probable particle velocity.

Divergency angles were determined for altitudes
corresponding to the altitudes used in the previous calculations.
Angles were determined from the equation.

8 - tan -1 1 X(5W.. 
WISJ

Divergence angles determined from this equation are presented
in Fig. 8 as a function of speed ratio, S. The results are
tabulated in Table 1.

Since the minimum diameter and divergence angles are known,
trigonometric relations were used to find the length of the void
regions. The lengths are presented in Figure 9 as a function of
the minimum diameter with divergence angles as a parameter.

Figures 10, 11 and 12 il1ug trate the shape of the void
regions with angles of attack 90% 45° and 0° respectively. For
zero angles of attack the void region is a cone of 8 a half angle
and for all other angles of attack greater than zero the void
region is wedge shaped.
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Speed Ratio, S. and Divergence angles, at various circular Orbit Altitudes

Altitudes, km
19on	 12- go	 lino	 1.,150	 1400	 1450	 1500

210+9°K Summer Divergence 4.2 4.7 5.1 5.3 ,. 5.5 5.7 5.8

Exo. Temp. (max,) Speed Ratio, S 7.63 6.75 6.32 6.03 ;5.82 5.63 5.48
r.^.rwr.r.^. 1r4uw^.

-

Y wr+w+rwrt+..wr

-

w'W.i. wMM.MM

-

aM1.uiM!M •.

-2100" K Winter	 Speed patio, S 7.89	 6.81 -

Exo. Temp. (max.) Divergence Q! 4.1 4.7 - - -- - -

600° K Summer Divergence ¢ 2.8 3.1 3.3 3.5 3.9 4,8 6.1

Exo. Temp. (min.) Speed Ratio, S 11.50 10.45 9 . 80 9.23 8.16 6.64 5.17

600° K Winter Speed Ratio, S 11.61 - - - - - -

Exo. Temp. (min.) Divergence 0 2.75
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CONCLUSION

There exists a sizable wake trailing a typical

orbiting body which is dependent, to a large extent, on

the speed ratio and minimum diameter of the module. The

wake is considered large enough to accommodate reasonably

large modules.
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