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I. INTRODUCTION

This report describes a general purpose Interplanetary Trajectory
Encke Method (ITEM) Program, programmed in the FORTRAN IV language.
The method employed is designed to give the maximum available accuracy
without incurring prohibitive penalties in machine time. On the basis of
research described in Reference L4, the Encke method was selected as best
satisfying these requirements. However, the classical Encke method was
modified to eliminate some of its objectionable features. This modified
Encke method is described in Appendix A.

The perturbations included in this program are the gravitational
attractions of the Earth, Moon, Sun, Mercury and the outer planets. The
outer planets are considered as point masses. Additionally, the effects
of the zonal and tesseral harmonics of the Earth, as well as aerodynamic
drag, small corrective thrusts, and radiation pressure including the
shadow effect of the Earth, are considered. The input may be prepared
in any one of several common systems and a great variety of output

options are available.

Additional options that are currently under development are explained
in Section XIII.
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II. NOTATION

Upper case - vectors; Hats - unit vectors; Lower case - magnitudes

Description Symbol Units

Cartesian coordinatesof vehicle with respect to

reference body Xy z km
Velocity components in Cartesian Coordinates X y z km/sec
Time t hrs.
Longitude measured from Greenwich, + East

(used in Section Iv and Appendix H) 0 degrees
Longitude of vernal equinox fo degrees
Speed v km/sec
Geodetic altitude¥® h km
Geodetic latitude | P degrees
Geodetic flight path angle Y degrees
Geodetic flight path azimuth A degrees
Acceleration parameter (defined in Appendix E) u
Right ascension RA degrees
Astronomical units AU
Earth radii ER
Earth mass m,
Semi-ma jor axis a ER

¥Note: The following 3 symbols with primes denote the corresponding
geocentric quantities. Geocentric in this report refers to a
spherical earth, i.e., e2 = 0. In thils case @' = § =
declination.
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Description Symbol

Vehicle position vector R
Distance to vehicle r
Perturbation displacement vector AR
Perturbation displacement vector components €,M,C
Perturbation acceleration F
(Coordinate functions and their time derivatives f,g,f,é
Mass parameter v
Earth's eccentricity as used in Appendices H, I, L, S e
Mean motion n
Unit vectors for classical two-body orbit solution E,é
Eccentric anomaly as used in Appendix T E
Elevation angle as used in Appendix I E
Ro ° ﬁo do
Inclination of orbital plane i
Right ascension of the ascending node Q
Vector from the body to vehicle RVT
Greenwich Hour Angle G.H.A.
Argument of perigee w
Parameters which account for polar oblateness of the

earth, defined in Appendix H c, s
Right ascension of the station meridian RAs
Range measured from observation station P

Direction cosines measured in a topocentric coordinate
system A, B

Declination 6
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SUBSCRIPTS

Vehicle
ith perturbing body

Quantity obtained from Keplerian solucion of
two-body problem

Reference body as used in Appendix B
Station

RA - RB

Value at rectification time

Corresponds to x, y, z components respectively

Value at perigee
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ITI. CENERAL PROCEDURE FOR USING PROGRAMS

Initial conditions, terminal conditions and print frequency, as
well as other parameters controlling the tlow of the program, are read
a3 input. The computation of the trajectory then proceeds until one of
the terminal conditions (e.g. maximum time) has been reached or an
error is encountered. At this time the program prints the reason for
its termination and proceeds to the next case. When an end of file is

enccantered on the input tape, control is transferred to the monitor.
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IV. INITIAL CONDITi "3

The initial conditions necessary for the specification of a
trajectory are:

1. Initjial position of the wvehicle relative to the reference body.

2. Initial velocity of the vehicle relative to the reference body.

3. Initial time of launch referenced to a base time.

For specification of the intial conditions, the reference systems and

units shown below may be used.

/. Cartesian Coordinates

The coordinate system is defined as follows:
1. The origin is at the center of the reference body.

2. The x-axis is in the direction of the mean equinox of
DJecember 31.0 of the year of launch.

3. The xy plane is the mean equatorial plane of the Earth.

Initial position is given by the x, y, z coordinates of the
vehicle. Initial velocity is given by the x, y, Z com-
ponents of the vehicle. Initial time of launch from base

time(l) (t) is also given. If the program is used in its

standard form, the units(a) to be used for the above are:

X, ¥, 2 - kilometers
X, ¥, 2 - kilometers/second

t - month, day, hours, minutes, and seconds from
base time

The year of launch must also be given.

(1) The base time is 0.0 UT December 31 of the year previous to the
year of launch.

(2) Scale factors are used to convertthe input units to the units used
internally (ER or AU a-’ Ay other set of units may be used
by changing thes sco’ . .8 with the appropriate ID card as
described in Seeil - ’
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B Geodetic Polar Coordinates

Initial position of the vehicle is given by:
1. Geodetic latitude (¢)

2. Longitude(j)(e), measured from Greenwich
3. Geodetic altitude (h)

4. longitude of vermal equinox(j) at initial time (@o) . This
quantity may be computed by the program or may be loaded

Initial velocity of the vehicle is given by:

1. Speed (v) with respect to the center of the Earth.

2. Flight path azimuth (A) measured clockwise from north in
a plane normal to the geodetic altitude.

3. Flight path angle (y) measured from a plane normal to the
geodetic altitude.

|
Initial time of launch from base time\>) (t) must also be given.
The following units must be used with the above quantities:

1. @, 9, and 6o - degrees; h - kilometers
2. A andy - degrees; v - kilometers/second

3. t - month, day, hours, minutes and seconds

C Geocentric Polar Coordinates

Ordinarily an input given in polar coordinates will be interpreted
as described in the preceding Paragraph B. However, if NOPI{1l) = l(u),
the program »ill interpret latitude as declination, height as distance
above a spherical Earth of equatorial radius, and flight path angle and

azimuth with reference to a plane normal to the radius vector.

(3) If the right ascension (RA) at initial time is known, it may be used
in place of longitude (§). The longitude of the vernal equinox (60)
is then se. to zero.

(4) See INPUT Section.



D- Osculating Element Input

The osculating elements to be input are:

Argument of perigee

Longitude of ascending node
Inclination

Semi-major axis (in Earth radii)
Eccentricity

Time of perigee, mean anomaly, eccentricity anomaly,
or true anomaly (only one)

The program converts the above to Cartesian coordinates and then
continues normally. (See Section IX, ID = 10.)

E. Comments

1.

The program computes in Cartesian coordinates. Units used

internally in the computation are:

(a) -Position: Earth Radii (ER) or Astronomical Units (AU).
(b) Velocity: ER/HOUR or AU/HOUR
(c) Time : Hours
(Barth Radii units are used in the Earth or Moon
Reference. Astronomical Units are used in the

Sun, Mercury, Venus or outer planet reference).

The user is restricted to Cartesian coordinates when launching

from any body other than the Earth as directed in preceding
versions.

Equations for converting the initial conditions from Polar
to Cartesian coordinates are shown in Appendix H.



V. TERMINATING CONDITIONG

The set of conditions which will terminate a trajectory may be

summarized as: ¢
1. Maximum time of flight - hours.

2. Maximum distance from any possible reference body considered
in the solution. Iast value in R-vector of integration and
rint block "ARRAY (1,n,J)."

3. Minimum distance from any possible reference bcdy considered
*n the solution. First value in R-vector of integration and
print block ARRAY (1,n,1)*

Any of these conditions will terminate a %trajectory. Loading a
large number into any of the maxima and a zero into any of the minima
will make the corresponding conditions inoperative. A proper choice of
these numbers will permit complete compuitation of the desired trajectory,

avoid extensive unnecessary camputation and guard against faulty input.

n = 1 karth n=s 7 Saturn
n = 2 Moon n = 8 Uranus
n = 3% Sul n = 9 Neptune
n = 4 Venus n = 10 Pluto
n =5 Mars n = 12 Mercury
n = 6 Jupiter



VI. PERMISSIBLE PERTURBATIONS

The trajectory computation consists of two parts, the exact solu-
tion to the two-body problem and integrated additions to this solution
for the effect of perturbations. The successful control of round-off
errors in the modified Encke method depends on preventing the accumulated
round-off error in the integrated perturbation displacement from affecting
the computed position. This is achieved by always keeping the perturba-
tion displacement small and rectifying whenever the perturbation exceeds
specified limits. The constants mentioned below are used in determining
the allowable limits as ratios of the perturbation position and velocity
to the two-body position and velocity, respectively.

This ratio for the position vector is shown in the following sketch.

Trajectory

— T 4
. -~ ﬁ——— Perturbation Displacement

Kepler Trajectory

Encke' Method
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The recommended values for these ratios are as follows:

Position Ratio

2

POSRCS (A-E) < .0001
Velocity Ratio
.. 2
VELRCS (A-f;) < .0001

and these are incc~porated into the program. Modifications may be made
by altering the data subroutine, or by reading them in under ID = 12,
or by using Subroutine Modif.
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VII. RADAR INFORMATION PROGRAM

The program may be used to simulate radar data if desired. A
maximum of 30 stations can be processed at one time. The following

information is required for each station considered:

1. Station Name - for identification purposes

2. Position of Radar Station

a. lLongitude (6) of the station fram Greenwich - degrees,
minutes and seconds¥* - positive eastward.

b. Geodetic latitude (@) of the station - degrees, minutes
and seconds* - positive north.

c¢. Altitude (h) of station above sea level - feet.

The simulated radar information consists of azimuth, elevation,
topocentric right ascension and declination, slant range, and range rate.
It is printed.at every normal print time for which the elevation angle
is positive. Refraction is not considered.

This section is ccded as a subroutine and may be called at any time.

* Alternatively, these quantities may be given in degrees and decimels.
Zero's must be loaded into the positions reserved for minutes and seconds.

The fractional parts will not appeer in the vorintout reproducing the
station coordinates. They will, however, be included in the computation.
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VIII. SUBROUTINE MODIF

Modifications to program constants, which normally remain unchanged
during the running of a number of cases, may be made by using the
appropriate common in conjunction with a compilation of a subroutine
called MODIF. This subroutine may include data statements, FORTRAN G or
H level statements, and/or read statements. The use of read statements
is suggested to facilitate stacking of cases. Any modification included
in this subroutine will be operative for all svcceeding cases, unless it

is revoked.

Modifications required more frequently may be accomplished through
the use of IXI)'s, as described in the INPUT section (Section IX).

A.

Radiation Pressure may be included by loading a coefficient into

RACOE 3

The number to be loaded is:

KC A
=z

m

Cr is the radiation pressure in dynes/cm? at a distance of 1 AU from tne

Sun.

C. =46 x10° GYZeS (estimated value)
cm

#¥ Real number
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A area in cm?

m mass in grams

K  scaler 3600°(23455.)2/6378.165 x 10° = .11178 x 10°® seconds
to hours, ER to AU, cm to ER

The radiation pressure will only be active if sunlight impinges
on the vehicle. For correct results the radiation pressure should
therefore, be run only in conjunction with the optional shadow computa-
tion as described in Appendix O.

If, however, the expected trajectory may be safely assumed to be
entirely out of the Earth's shadow, shadow testing may be avoided with
a consequent saving in machine time. In this case, the following
modification cards should be included in MODIF:

SHIN = 1.Do¥¥*
SHDN1 = 1.DO¥**
NOPT(17) = O

B. Aerodxggg;c Drag

If inclusion of the aerodynamic drag is desired, the drag parameter
1/e ¢y A/M may be initialized by ID = 23, as described in (Section IX)
or loaded into subroutine MODIF by means of the following card:

COEFL = **

The units of Cj A/M are the area in cm® and the mass in grams. A
layered atmosphere rotating with the Earth is assumed. The density is
obtained by a linear interpolation of the density-altitude table. The
above may be incorporated into the Block DATA subroutine.

##* Real number(s)
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c. Atmospheric Tables

Atmospheric tables for the drag computation are stored in core.
They correspond to COSPAR International Reference Atmosphere of 1961,
contained in the Report of the Preparatory Group for an Internatiocnal
Reference Atmosphere, accepted at the COSPAR meeting in Florence, April
1961. The units for the air density are grams/cm® and the height is
given in ER from the center of the Earth. If it is desired to change
this atmosphere, the following procedure should be followed:

NTAR = * The number to be entered

is N - the number of
entries in the density table.

RTBL(I) = it I=1,2, - - -, N- the values
of r <for which densities are
given, in ascending order (a
maximum of 50).

RHOT(I) = 33 I=1,2, - -~, N- the values
for the air density in grams/cm®
in respective order corresponding
to the preceding r table.

If other units are used for the density table, the drag parameter des-
cribed in Part B of this section must be read in with like units and the
constant (-6378.165D5)%% normally in DRSC has to be changed accordingly.
The negative sign directs the drag force opposite to the velocity. This
constart converts the dreg from the units used for A, M and p to ER/hour®.

*# Real number

VIII-3



D. Printout

The program provides a special printout near the Earth, Moon, Sun,
or T-Planet reference. This prinout occurs at every integraiion step
and is useful for observing the behavior of these relevant quantities
during ascent and re-entry. This feature is triggered by the following
modification cards:

SERE(I) = o I 21,2, coooceanes ..o 12

For printout near Earth use index 1 a1 ER units.

Mcon 2 ER
Sun 3 AU
Venus L AU
Mars 5 Av
Jupiter 6 AU
Saturn T AU
Uranus 8 AU
Neptune 9 AU
Pluto 10 AU
Mercury 12 AU

The numbers used above are the radial distances within which the special
printout is to be effective. The units are earth radil for the Earth and

Moon references and astronomical units for the remaining planet references.

A zero in any of the SERE(I)'s suppresses this feature.

## Real number(s)
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E. Ephemeris Time

The planetary coordinates are interpolated using ephemeris time.
ET=UT+ATE

An approximate value of A T E (35 seconds) is used. To change this
quantity, the following card, giving A T E in hours, is insecrted:

ETMUT = i The value for 4 T E - hours.
To restore original quantity:

ETMUT = .009888888889** A T E is 35 seconds.

#¥# Real number(s)
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F. Inclusion or Exclusion of Perturbations

Ordiparily included are the graviational attractions of the Moon,

Sun, Mercury, and the outer planets. The gravitational field of

the earth (2nd, 3rd and 4th zonal harmonics) are included if

NOPT(50) = 1.* A maximum of 15 zonal coefficients may be used. To
exclude any or all of these perturbations, the following modifications
should be included in subroutine MODIF:

MOON MEI(2) = 0.DO
SUN MEI(3) = 0.DO
VENUS MEI(4) = 0.DO
MARS MEI(5) = 0.DO
JUPTTER MEI(6) = 0.DO
SATURN MEI(7) = 0.DO
URANUS MEI(8) = 0.DO
NEPTUNE MEI(9) = G.IO
PLUTO MEI(10) = 0.DO
MERCURY MEI(12) = 0.DO
ZORAL and/or TESSERAL HARMONICS**
Zonals EFJ (2,3,4,.0000... 15) = 0.D0
Tesserals ECG(I,J) = 0.DO

}IandJ-lt015
ES&I,J) = 0.DO

* Described in the INPUT Section (Section IX)
** Described in Appendix G
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INPUT

Input to the program is read in as follows:

Eech set of input is preceded by an ID card which contains an integer
number terminating in column 10. This card may also contain Hollerith

information startirg in co’um 11.

ID = 1 Permits one card of Hollerith information - usually used for

case identification.

ID = 2 Permits one card containing a set of 72 fixed point 1l's or
O's. Each flag (1 or 0) corresponds to the same numbered
subroutine. A zero is used for normal operation and a one
is used to print diagnostic information in the proper sub-
routine. A blank card after ID = 2 will be necessary if the
system does not zero out core before load time and normal
operation is desired. In the program, these flags are
referred to as NC(I).

ID = 3 Performs similarly to ID = 2. It allows a card of 1's and
O's to be read into NOPT(I) (I = 1 to 72). These flags
permit the incorporation of various opticms into the
program. Following are the currently available options:
NOPT(1) = 1 indicates polar geocentric coordinates

= 2 indicates geodetic coordinates when polar
load is used.
NOPT (2-13) are used for print options.
= 0 indicates no print
= 1 indicates print

NOPT(2) is associated with XR print
NOPT(3) is associated with XRDT print
NOPT( 4) is associated with XVE print
NGPT( 5) is associated with XVM print
NOPT( 6) is associated with XME print
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NOPT( T7) is associated with XVS print

NOPT(8) is associated with XVVN print

NOPT( 9) is associated with XVMR print

NOPT( 10) is associated with XVJP print

NOPT(11) is associated with XI print

NOPT(12) is associated with XIDI' print

NOPT(13) is associated with IBXI print

NOPT(14) = 1 prints data statement parameters

NOPT(15) = 1 deletes regular print after rectification

NOPT(16) = 1 deletes print in rectification

NOPT{17) = 1 activates shadow computations

NOPT(20) = 2 activates predictor only integrator

NOPT(20) = 3 activates predictor-corrector integrator*

NOPT(25) = 1 prints spin axis angles. This option may be
used in conjunction with NC(47) to allow the user
to input a desired spin vector.

NOPT(}}) = 2 rotates positions and velocities from equatorial

to ecliptic coordinates for printing

NOPT( 40-44) = 0 indicates no print

NOPT{ 40 and 41)= 1 is associated with XVP1l print
NOPT(L4O and 42)=1 is associated with XVP2

NOPI( 40 and 43)=1 is associated with XVP3
NOPT(40 and 44)=1 is associated with XVP4
NOPT(40 and 45)=1 is associated with XVP5
NOPT(40 and 46)=1 is associated with XVP6

NOPT(50) = 0 No zonal or Tesseral harmonics are used.

NOPT(50) = 1 Includes the gravitational field of the Earth
(2nd, 3rd, and 4th zonal harmonics)

NOPT(50) = 2 Includes zonal and tesseral harmonics

* Described in Section XIV Methods of Integration



NOPT(51) = 1 activates restart feature (See ID=9) .

NOPT(65) = 1 activates trajectory search (ID<18 must be included).

NOPT(68) = 1 activates residual computations with radar stationms.
(ID=21 must be included).

NoPT(68) = 2 activates residual computations without radar stations.
(ID=21 must be included).

NOPT(69) = 1 activates solar engine logic for small corrective
thrusts. This option can be made available
upon request.

NoPT(70) = 1 activates element roation. This option is used in
conjunction with a variable called IELD. IELD
should be set in subroutine MODIF as follows:

IELD=2 Permits ecliptic elements for input, resulting in
equatorial osculating elements output.
IELD=3 Permits equatorial elements for input, resulting in

ecliptic element output.
NOPT(70) = 2 Permits osculating element input, Brouwer mean
NOPT{70) = 3 element output.
This option can be made available upon request.
activates Beta Integrator®
permits element load with the period (HRS) sub-
stituted for the semi-major axis A(ER) .

H
]

NOPT(71)
NOoPT( 72)

il
=

- et @ e W W@ @ @ S & @ = ™ E@ ® @ @ = @ & @ e W & M * W @ e W @ = = W @ = -

* Described in Section XIV Methods of Integration.
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ID

ID = 5

ID=6

ID

Used to read in start time of flight in year, month, day,
hours, minutes, and seconds: starting reference body; and
target reference using the following formst (515, F5.2, 215).

The reference bodies are numbered as follows:

1 = Earth "} = Venus 7 = Saturn 10 = Pluto
2 = Mhon 5 = Mars 8 = Uranus 12 = Mercury
3 = Sun 6 = Jupiter 9 = Neptune

Used for polar load and reads in 6, ¢, h, v, A, Yy, and 6¢.
The format used is (3D20.0). The program expects all
angles in degrees, altitude in kilometers measured from
the surface of the Earth, and the velocity in kilometers
per second. If Qo is read in as 1000.0DO, the program
¥ill compute the proper 0¢g.

Used for Cartesian input. x, y, z, X, ¥, and Z are read
in with format (3D20.0). The program expects these coor-
dinates to be equatorial in kilometers and kilometers per
second, with the starting reference body as center.

This option generates initizl cunditions for a trajectory
wvhich is designed to get a spacecraft to the target within
a specified number of desvs, without thrust. The input is:
the Julian date of start time, the flight time in days,
option number, and the radius of the Earth's sphere of
influence. The format used is (3D20.0).
Option number 1 starts in Sun Reference.
Option number 2 and 3 are not activated, however,
they can be made available upon request. (See
Section XIIT) .



When Option = 1 is used, input for ID=T7 must be followed by
4 cards
card 1 = 0, 0, 0.51373647D-6*% Format (I5,D12.6,D18.8)
Card 2 = Blank
Card 3 = Blank
Card 4 = Blank

[0}
(00]

ID This ID permits one to read ir a vector of special print
times. The first card after the ID card contains the num-
ber of such print times from 1 to 50, format (I10).

The following card or cards contain the times, format
(3020.0) . If this ID is used in conjunction with NOPT69)
(solar engine option), these times are used forstarting
and stopping the solar engine. 0dd numbers start the

engine, the even numbers shut the engine off.

ID = 9 This ID reads in the following: PRSP, RACOE, TIMEL, ‘STI,
VI, CCNT, ENPLAN, and TR using format (3D20.0).
PRSP A non-zero value will suppress normal print times
until the specified time in hours has been reached.

RACOE A non-zero value will activate radiation pressure
computations.

TIMEL Maximum time of flight in hours.

STI Not activated

Vi Not activated

CCNT Triggers nodal crossing print. (See ID = 1k also).
If CCNT and ICCNT are set to non-zero, ICCNT will
take precedent. -

ENPLAN A non-zero activates the number of perturbing bodies
to be used in the calculations. This must be an
integer 1 or 12. If 1 is used the ephemer&s data
tape is neigher required nor used.

Gravitational constant for the Sun
IX-5



ID = 10

ID=11

TR A non-zero value, in conjunction with NOPT(51), will
activate the restart feature. TR should be set to
the desired restart time in hours.

This ID permits one to load the initial conditions as
osculating elements of an ellipse. The following are read
in: SOMEG, LOMEG, INC, A, ECC, ELOAD, ELTRIG with format
(3D20.0) .

SOMEG 1is the argument of perigee

LOMEG 1is the longitude of the ascending node

A is the semi-major axis

ECC is the eccentricity

EIOAD depends on ELTRIG

If ELTRIG = 1 ELOAD = time of perigee
ELTRIG = 2 ELOAD = mean anomaly
ELTRIG = 3 ELOAD = eccentric anomaly
ELTRIG = 4 ELOAD = true anomaly

Permits one to alter the integration and print intervals of
the various reference bodies. The number of cards to be
read is a function of ENPLAN. (See Sample Input Data in
Section 1IX). The data expected are read in with format
(3020.0), and termirated by any integer greater than or
equal to 13 - (FORMAT I10) as follows:

Card 1 ¢ontains eight distances from Earth in ER
contains seven integration intervals in hrs.
contains seven print intervals in hrs.

contains eight distances from the Moon in ER
contains seven integration intervals in hrs.
contains seven print intervals in hrs.

contains eight distances from the Sun in AU

contains seven integration intervals in hrs.

‘O O~ O\ F W

contains seven print intervals in hrs.
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10 contains eight distances from Venus in AU
11 contains seven integration intervals in hrs.
12 contains seven print intervals in hrs.
13 contains eight distances from Mars in AU
14 contains seven integration intervals in hrs.
15 contains seven print intervals in hrs.
16 contains eight distances from Jupiter in AU
17 contains seven integration intervals in hrs.
18 contains seven print intervals in hrs.

LAST contains an integer .GE. 13 {FORMAT I10).

ID = 12 Permits one to make changes in the program's built-in data

ID = 13

ID = 1k

or to read in other-than-normal inputs. This can be done
by using a subrouiine called MODIF which must contain the

proper block common.

Allows one to change input and output scale factors, using
format (3D20.0). The card following the ID card contains
TSCL, REKM, and XMIKM.

TSCL is the time scale factor and sits in the program
as 3600. It is used to change seconds to hours

and hours to seconds

REKM sits in the program as 6378.65, the number of
kilometers in one ER.

XMDKM sits as 14.9599 x 10’ and is the number of kilo-
meters in one AU.

sets triggers for apogee, perigee, and nodal crossing prints
The following card reads in ICANT, ICPNT, and ICCNT, using
format (3I10)

ICANT = n prints every nth apogee

ICPNT
ICCNT

n

n prints every nth perigee

n prints every nth nodal crossing
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ID = 15 Not activated

ID = 16 Allows radar station data to be read in. The card following
the ID card contains the number of stations to be read in
with format (I10). The next two cards contain the name and
coordinates of the first station with format (AL6/7D10.0) .
This last format is repeated until all stations have been

accounted for.

ID = 17 1is used for reading in solar engine information with cor-
corrective thrusts. This option is not activated*.
ID = 18 is used for the iterator. The card following the ID card

is read in with the format (10I5)

IPS = Number of the dependent parameter(s).

ITMAX = Maximum number of iterations.

NSL = Number of the independent parameter(s) .

IPOFL( IPS) = Identification number(s) of the quantities to
be achieved.

IVAR(NSL) = Input quantities to be varied in the units and

sequence of the polar load, i.e., 0,¢,h,v,A,y.

The remining cards are read in with the formst (7D10.0)
YEPS(IPS) = The tolerance to which convergence is desired.
if the solution converges to within the special
tolerance, the iteration will stop.

* See Section XIII



XEPS(NSL) Epsilon values of the independent ve' iable.

XVAR(NSL) =  Epsilons to be used for generating secant
partials.
YCON( IPS) = The desired values of the dependent variables.

A maximum of any six dependent variables may be selected. The identi-
fication number(s) of the quantities to be achieved are as follows:

l. B+ T Miss parameters

2. B+ R Miss parameters

3. Earth, Lunar or' T-planet inclination.*

4. Earth, Lunar or T-planet ascending node.*

5. Earth, Lunar or T-planet argument of perigee.¥
6. Earth, Lunar or T-planet pericynthion radius.*

ID = 20 Starts the program.

21 Used in conjunction with NOPT(68) for reading in nominal
and variational triggers with (out) radar simulation.
If NOPT(68) = 1, the card following the ID card is read
with format (4I10).

ID

NOMTIRI 1 = Nominal trajectory, O = variational
NOQAN = The number of radar stations
IOSCTR 0 = Radar residuals, 1 = osculating element residuals.

The user may find this option convenient for checking out
numerical derivatives. If NOPT(68) = 2, the card following
the ID card is read with format (I10).

NOMIRI 1l = Nominal trajectory, O = variational

* See Appendix R.



ID = 235 Used to initialize aserodynamic drag computation
The card following the ID card is read in with format

(3020.0) .
COEFL#* 1/2 Cy A/M.
DRSC*
DNTAR¥* number of entries in the density table.

ID = 4 must precede ID = 5. Except for this condition and
ID = 20 which must be read in last, the ID's may be read
in randomly.

* See Section VIII-B
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20100

20300
20400
mm C * %k h &
20600
20700
20800

21000

SAMPLE LIST OF SUBROUTINE MODIF

SUBROUTINE MODIF

IMPLICIT REAL*8 (A=H, O=2)

COMMON/HENRY/H1(480), MEI (12), H2(226)

REAL * 8 MEI

[ EE X R EXERE RSB FEEELEEEEESESA RS R EEE EEEEE R R RE SRR R AR R R R E R EE RSN
MEI (4) = 0.0D0

MEI (6) = 0.0D0

MEI (9) = 0.0D0

RETURN

END

SUBROUTINE MODIF
IMPLICIT REAL*8 (A—H, O—2)
COMMON/GLOBE/FJG(15),CG(15,15),5G(15,15), EF ECG(15,15),

XFSG(15, 15), EJG(4), ES22, EC22, ES31, EC31, E>os, EC33, NIZ, N25, NaT, NOQ
AR A Z AR AR EEEEEEEEEENREE RN AR R R RN RN R RN R R R A RERRER R R R AN RN R R R K R X X 3
EFJ(2) = 1082.30D-6
EFJ(3) = -2.30D-6
EFJ(4) = -1.80D-6
RETURN
END
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// GO.DATAS DD *
1

SAMPLE INPUT DATA

TEST CASE FOR 1.B.M. 360 VERSION
NOPT(50) = 1 FOR OBLATENESS

211111111111110000000000000000000000000000000000010000000000000000000000

6 CARTESIAN LOAD.

6095.8926D0 604.36567D0 2406.3589D0
10 1.101985D0 9.8589445D0 -4.4549856D0
n 4
12 1965 5 0 12 70.0 1 4
13 14
14 0 0 0
15 9
16 0.000 0.0D0 10.0D0
17 0.0D0 0.0D0 0.0D0
18 1.0D0 0.000
19 11 SET VECTORS FOR DESIREN PLANETS
2 1 SET EARTH VECT .
21 1.0D0 4.000 §.0D0
22 125.0D00
23
24 0.06250D0 0.0625D0 0.500
25
26
27 1.D0 2.D0 6.D0
28
29
0 13 SET K TO TERMINATE READ.
3! 16 RADAR STATIONS
32 2
33 ROSMAN
34 277.0 7.0 4.2 35. 12.
35 CANBERA
36 148. 57. 20.9 -35. 37.
37 2 STARTS THE PROGRAM.
8B/*

IX~12

1

2

3

4 2

5 000000000000000000000000000000000000000000000000000000000000000000000000
6 3

7

8

9

.7 2874.56
52.7 3766.588



1// GO.DATASDD *

2 1 ITERATOR DATA FOR MARS TRAJ. 1973

3 NOPT(65) = 1 FOR SEARCH.

4 2

5 00000000000000000000000000000000000000000000000000000000000000000000000
6 3 POLAR GEOC

7 11110010100001110000000000000000000000000000000001000000000000001000000
8 4 START TIME

9 1973 8 1 13 4 1.0 1 5

10 5 POLAR LOAD (LONG, LAT, ALT, VEL, AZ, FPA, LVE)
11 112.309990D0 -25.700D0 262.12960D0
12 11.6050000D0 77.780000000 6.6500000000
13 1000.0D0

14 9

15 8000.0D0 0.0D0 8000.0D0

16 0.0D0 0.0D0 0.0D0

17 12.0D0

18 1 SET VECTORS FOR DESIRED PLANETS

19 1 SET EARTH VECTOR

20 1.0D0 4.0D0 8.0D0
21 125.0D0
22

23 0.062500 0.125D0 0.5D0
24
25
26 12.0D0 12.0D0 48.0D0
27
28
29 3 SET SUN VECTOR
1]) 0.0DO 1.30979948D0 10.D0

3

32

3 12.D0 12.D0

M4

35

36 24.0D0 24.0D0

k74

38

39 5 SET MARS VECTOR
40 .000040776D0 .000160D0 .00032D0
4 .005D0

42

83 0.0625D0 0.125D0 0.5D0
44

45

4 1.000 12.0D0 12.0D0
47
48

49 13 SET K TO TERMINATE READ.

50 14

51 0 0 1

52 18 ITERATOR

33 2 10 2 1 2 i 4

54 100.0 -100.0 .0000i .000001 -.0002 -.000001 0.0
5 0.0 1. i. i. i. i. 1.
56 1 i.

57 2 START

58/°*
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X. OUTPUT

A. Program Outputs

The following information is printed as the output of the program.
1. Title
Case number and any identifying titles.
. Launch time - year, month, day, hour, min, sec.
Input - in the same units as they were entered into the program.
List of parameters used in run.
At each rectification the following data are printed:

N\ &

(v) RECTIFICATION PRINT (a) REFERENCE
PERT OVER UNPERT = __ (c) TIME = (a) DELTA T = (c)

(a) Reference body
(b) and (c¢) indicate the reason for rectification

(¢) If (c) = 0, rectification may be due either to switch of
reference body or to change of integration interval.

If (c) # 0, then the position, velocity, perturbations or
the incremental eccentric anomaly have exceeded the permis-
sible limits and (b) indicates which has been exceeded

(see Section VI). These indications are given as:

PO - Position
VL - Velocity
TH - Incremental eccentric anomaly

(d) Time of rectification
(e) Integration interval



TIME IN YEAR, MONTH, Dn:, HOUR, MIN, SEC,

T = HOURS FROM EPOCH

XR______ YR____ ZR____ RR_____
XRDF ____ YRDP __ ZRDF ____ RRDF __
RIGPT ASCENSION (DEG) = ___ DECL = __
72 SUBSAT POINT IONG =
LAT =____
HT =—-—-—_
GHA = ___
GEOCENTRIC AZIMUTH =__
ELEVATION =
GEODETIC AZIMUTH =
ELEVATION =

(2) Year, Month, day, hour, second from time of launch
(b) Print time in hours from time of launch

(c) Position coordinates and magnitude of radius vector with respect
to the reference body - kilometers/second

(d) Velocity components and magnitude of velocity vector with respect
to the reference body - kilometers/second.

(e) Right ascention and declination in Earth reference system - degrees
(£f) Longitude or sub-satellite point - degrees

(g) Latitude (geodetic) - degrees

(h) Geodetic height above the Earth's surface - kilometers

(i) Greenwich hour angle - degrees

(3) Geocentric flight path azimuth - degrees

(k) Geocentric flight path anéle - degrees

(4) Geodetic flight path azimuth - degrees

(m) Geodetic flight path angle - degrees

(a)
(b)
(c)
(a)
(e)
(£)
(g)
(n)
(1)
(3)
(x)
(¢)
(m)



MOON SUBSAT POINT LONG

(a)

LAT = ()

AZIM = (c)

ELEV = (a)

OSCULATING ELEMENTS AT TIME T =

TRUE ANOMALY = (e)
SEM MAJ AXIS = (£)
ECCENT - (g)
PERICENT = (h)
APOCENT = (1)
INCLINATION = (J)

(a) Moon longitude - angle between the projection of the vector
from the Moon to the vehicle onto the Moon's orbital plane
and the Moon-Earth vector (Moon reference only) - degrees

(b) Moon latitude - angle between the radius vector connecting
the Moon and the vehicle and its projection onto the orbital
plane of the Moon about the Earth (Moon reference only) -

degrees
(c) Selenocentric flight path azimuth - degrees
(d) sSelenocentric flight path angle - degrees
(e) True anomaly - degrees
(f) Semi-major sxis of trajectory - ER
(g) Eccentricity of trajectory®*

(h) (losest distance to the reference body (not necessarily the
Barth)#®* - kilometers

(1) Farthest distance from the reference body (not necessarily the
Earth)®#(meaningful only for elliptic orbits) - kilometers

(j) 1Inclination of the orbital plane defined as the angle between
the positive polar axis and the angular momentum vectoris -
degrees

+ = ellipse
- = hyperbola

#* These are the osculating values and hence only constitute an estimate
of the quantities described.
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ARG PERIC

H

(a)

PERIOD = (b)
MEAN MOT = (c)
R A ASC NODE = (d)
M ANOMALY = (e)
E ANOMALY = (£)
T PERIC = ()
UNIT PERICENTER POSITION VECTOR = (n)
UNIT ANGULAR MOMENTUM VECTOR = (1)

(a) Argument of pericenter - angle measured from the ascending
node to the pericenter vector®¥- degrees.

Set to zero for circular orbits and poorly determined for near-
circular orbits.

(b) Period##*- hours
(c) Mean motion** - radians/hour

(d) Right ascension of the ascending node measured from the vernal
equinox eastward along the equator¥¥- degrees

(e) Mean anomaly** - degrees
(f) Eccentric anomaly** - degrees
(g) Time of nearest pericenter®# - hours

(n) Components of the unit vector directed from refecence toward
pericenterits#

(1) Components of the unit angular momentum vector

*¥% Osculating values



Optional OQutputs

XVJP
XVP1
xvee
XVP3
XVPL
XVP5
XVP6
X1

XIDT

Dex1

]

YVJP

YVP1

YVP3
YVP4

ETA
ETADT
DCETA

{4

The above optional output

in the standard output.

Section IX, ID = 3.

(a)
(v)
(e)
(a)
(e)
(f)
(e)

Coordinates
Coordinates
Coordinates
Coordinat=s
Coordinates
Coordinates
Coordinates

of vehicle with respect to the Earth - kilometers

ZVE

ZVJp
ZVPL
VA 2%
ZVP5
ZVP4
ZVP5
ZVP6
ZETA
ZETADT

D2ZETA

appears between XRDT and RIGHT ASCENSION

i

-—
-

RVM

RVJP

RVF1

RVP6
PERT
VPERT
APERT

For instructions on how to obtain, see

of vehicle with respect to the Moon - kilometers

of the Moon with respect to the Earth - kilometers

of vehicle with respect to the Sun - kilometers

of vehicle with respect to Venus - kilometers

of vehicle with respect to Mars - kilemeters

of vehicle with respect to Jupiter - kilometers
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(a)
(b)
(c)
(@)
(e)
(£)
(g)
(b)
(1)
(J)
(k)
(1)
(m)
(n)
(o)
(p)



(h)
(1)
(3)
(k)
()
(m)
(n)

(o)
(p)

Coordinmatesof vehicle with respect to Saturn - kilometers

Coordinates
Coordinates
Coordinates
Coordinates
Coordinates

of vehicle
of vehicle
of vehicle
of vehicle
of vehicle

with respect to Uranus - kilometers

with respect to Neptune - kilometers

with respect to Pluto - kilometers

with respect to E-M Barycenter - kilometers
with respect to Mercury - kilometers

Perturbation vector and magnitude of the perturbations with
respect to the reference body - kilometers

Perturbation velocity vector and magnitude - kilometers/second

Perturbation acceleration vector and magnitude - kilometers/second2



2. Shadow Print*

SHADOW PENUMBRA
PENUMBRA SHADOW
PASSAGE FROM oo TO PENUMERA
PENUMBRA SUN
SHADOW
PENUMBRA
AT (a) TIME IN SUN (b) ACCUMULATED TIME (ec)
PENUMBRA

The above optional output appears before TIME IN YEAR, MONTH, DAY, HOUR,
MIN, SEC in the standard output. It is controlled through the INPUT
subroutine [NOPT(17)] (see Section IX, ID = 3).

(a) Time at which vehicle traverses denoted shadow boundary - hours

(b) Total time the vehicle spends in denoted shadow region during
current traverse - hours

(c) Total accumlated time spend in denoted shadow region since
launch - hours

*# Apperiix N

y olf



3. Radar Output®

STATION (a)
AZIMUTH (t)
ELEVATION (v)
TOPOC. R A (e)
TOPOC. DECL. (c)
SLT RNG (@)
RANGE (e)

This output appears at the tail end of & normal printout. An ID
card in the INPUT subroutine will control this segment of the
program (see Section IX, ID = 16).

(a)
(b)
(c)

(a)
(e)

Station name (identification) for each station
Azimuth and elevation with respect to each station - degrees

Topocentric right ascension and declination with respect to
each station - degrees

The slant range to each station - kilometers

Rate of change of slant range for each station - kilometers/
second

If the elevation is negative (the vehicle is below the horizonm),

this print is suppressed for the station in question.

* Appendix I.



Reentry Output

REENTRY PRINT TIME INERTIAL SPEED
(kilometers/second)

Right ascension, declination, Earth subsatellite points and flight
path azimuth and angle as given above.

The above optional output appears between GEOD ELEV and MOON
SUBSAT POINT in the standard output.

Tra jectory Search Qutput

The output consists of the normal ITEM output for a nominal trajectory
and the same trajectory output for each variation requested for each
iteration. The output format used only for the trajectory search

follows:

VARIATION IN INITIAL
CONDITIONS (a) (b) (c) (a) (e) (£) (g)

(a) Change in latitude - degrees

(b) Change in longitude - degrees

(c) Change in altitude - kilometers

(d) Change in velocity - kilometers/second
(e) Change in azimuth - degrees

(f) Cnange in flight path angle - degrees
(g) Change in initiel time - hours



5.

Trajectory Search Qutput (cont.)

(e)

{F)
(&)

QUANTITY CODE (a)
DESIRED VALUES OF ABOVE

QUANTITIES (b)
REQUIRED ACCURACY (c)

MATRIX OF PARTIAL DERIVATIVES (a)

RESIDUAIS AND HCANGES IN
INITIAL CONDITIONS (e) (£) (g)

Code indicating quantities to be searched for.

Desired values of above quantities - degrees, kilometers,
seconds.,

Tolerances allowed on above values - degrees, kiiometers,
seconds.

Metrix with the dependent variables arranged by row. The
independent by column.

Residuals (desired-nominal) of quan*i:ies designated by the
quantity code.

Change required in initial conditionms.

Normalized changes in initial quantities in order of the
variations.

The option associated with trajectory search routines is initiated
by an ID card in the INPUT subroutine (see Section IX, ID = 18)
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(a)
(o)
(c)

(a)
(e)

(£

Impect Parameter Output®

SHAT (a)
RUAT (b)
THAT (c)
B (a)

B-T, BR (e) (£)

Unit vector in the direction of the incoming asymptote.

Unit vector normal to THAT and the asymptote in a right-hand sense.

Unit vector parallel to the ecliptic (or Moon ortital plane) and
p2rpendicvlar to the incoming asymptote.

Veo -ur from the body to the vehicle as it crosses the impact plane.

The dot prod.ct of RVT at the crossing and THAT.

The dot product of RVT at the crossing and RHAT.



7.

Apogee, Perigee, Nodal Crossing Print

Apogee and perigee print times are computed more accurately
than formerly, and the nodal crossings are found by iteration.
The trigger for apogee is ICANT; for perigee ICPNT; for nodal
crossing ICCNT. The avogee and perigee print times are found by
fitting a parabola through three neighboring points and deter-
mining the minimum or maximum respectively. The crossing time is

found iteratively by

I 5|
CN CN-1 .

Z-1

tCO is the time for which Z changed in sign.



XI  INTERNAL PROCEDURES

A. Units

The units used internslly are Barth Radii and Earth Radii/hour
in the Earth and Moon references, and Astronomical Units and Astro-
nomical Units/hour in the Sun , Mercury, Venus thru Pluto Reference

systems .

3. Ephemeris Tape

The relative positions of the solar system bodies are obtained
from a tape generated by the Jet Propulsion Laboratory. A separate
program prepares a binary tape referred to the mean equinox of MID-
FILE*, containing 16 days perrecord, in a form compatible with the
main program. The Ephemeris Subroutine searches the tape and
reads in the proper file and reccrd, keeping 32 days of tables in

core storage at a time.
The first record on each file* consists of the year, number
of records and number of files¥® in fixed decimal form. Each of the

successive records contains the foilowing information:

Word 1: Initial time of record in hours from base time.
(0.0hUT December 31 of year previous to launch).

* Pseudo fil>. Tape is prepared in overlapping two-year groups.

xI-1



Equatorial coordinates of Mercury in two-day intervals follow (9 x
values, 9 y values, 9 2z values). Then 27 consecutive five-word
blocks containing the equatorial coordinates, in four-day intervals of

XVNE YVNE ZVNE Venus with respect to the Sun
XSE YSE ZSE Sun with respect to the Earth
XAS YAS ZAS Mars with respect to the Sun
XJS YJS ZJS Jupiter with respect to the Sun
XSAS YSAS ZSAS Seturn with respect to the Sun
XUs YUS ALS] Uranus with resmect tc the Sun
XNS INS ZNS Neptune with respect to the Sun
XPS YPS ZPS Pluto with respect to the Sun
XBS YBS ZBS Earth-Moon barycenter with

respect to the Sun

are followed by three 32-word blocks containing the equatorial coor-
dinates of the

XME YME ZME Moon with respect to Earth

The Moon coordinates are stored in half-day intervals (o.oh, 12% UT,

with distance measured in ER. All other tables are in AU.

The equatorial coordinates of the planets and of the Moon are
followed by their velocities, in exactly the same order. Moon velocities
are in ER/day. All other velocities are in AU/day.

At present, an ephemeris tape is available for 1965 - 1969, and
1968 - 1982, written in 5 and 15 two year groups respectively, eech of
vhich overlaps one year.



Ephemeris in Core

The astronomical tables are stored in core in 96-hour intervals
for the Sun and the planets, and 12-hour intervals for the Moon.
There are always 32-days of tables available, arranged in such a way
that the value of time for which the interpolation takes place is

not near either end of the table.

In location TABLE(1), the time of the first entry from the
initial time is stored. In TABLE(2) to TABLE(10) there are 9
X coordinates of the Sun with respect to the Earth. The following
chart indicates the storage locations of the remaining astronomical
data to be saved.

TABLE(11) to TABLE(19) y coordinates of the Sun with
respect tn the Earth
TABLE(20) to TABLE{28) z coordinates of the Sun with
respect to the Earth
TABLE(29) to  TABLE(55) X, ¥, z coordinates of Jupiter
with respect to the Sun
TABLE(56) to TABLE(82) X, ¥y, z coordinates of Mars
with respect to the Sun
TABLE(83) to TABLE(109) X, ¥, z coordinates of Venus
with respect to the Sun
TABLE(110) to TABLE(136) X, ¥, z coordinates of Saturn
with respect to the Sun
TABLE(137) to TABLE(163) X, ¥, z coordinates of Uranus
with respect to the Sun
TARLE(164) to  TABLE(190) X, y, z coordinates of Neptune
with respect to the Sun
TARLE(191) to  TABLE(217) X, ¥, z coordinates of Pluto
with respect to the Sun
TASLE(218) to  TABLE(2L4k4) X, ¥, z coordinates of the Earth-
Moon Barycenter with respect to
the Sun
TABLE(245) to  TABLE(296) X, ¥, z coordinates of Mercury
with respect to the Sun
TABLE(299) to  TABLE(363) x coordinates of the Moon with

respect to the Earth
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TABLE(364) to  TABLE(L428) y coordinates of the Moon with
respect to the Earth

TABLE(429) to TABL (1:93) z coordinates of the Moon with
respect to the Earth

These are followed by the velocities:

TABLE(494) +to  TABLE(520) X, ¥y, 2 coordinates of the Sun
with respect to the Earth
TABLE(521) to  TABLE(547) %, ¥, 7 coordinates of Jupiter
with respect to the Sun
TABLE(548) to  TABLE(601) X, ¥, Z coordinates of Venus
with respect to the Sun
TABLE(791) to  TABLE(985) X, ¥, 2 coordinates of the Moon

with respect to the Earth

D. Perturbation Program

The perturbation progiam solves three differential equations for
XI, ETA, ZETA. The differential equation for XI, with the various
terms replaced by the storages containing them, is representative of
all three equations and is given below:

DeXTI =

GME [VCOR(1) /VCOR(") COMP( 1) /COMP( &4) ]

- GMVN [VCOR(19) /VCOR(22) - coMP(19)/coMp(22)]
- GMS [VCOR(13)/VCOR(16) - coMP(13)/coMP(16)]
- GMR [VCOR(25) /VCOR(28) - COMP(<5)/coMp(28)]
- GWP [VCOR(31) /VCOR(34) - COMP(31)/COMP(34)]
- G [VCOR(T) /VCOR(10) coMp( 7) /coMP( 10) ]
+ OTHER PERTURBATIONS

where, for example, in the first term GME = K° is the mass of .he Earth,
and VCOR(4) is the length cubed of the vector [VCOR(J), VCOR(2), VCOR(3)].
Similarly, in the other terms the denominator is the length cubed of the

. tor containing the corresponding numerator. In the case where the two
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terms within each of the brackets are nearly equal, they are computed

by the special method described in Appendix E to avoid loss of accuraocy.

The contents of the COMP storage at any time, t, depends upon

the reference origin at that time.

CONTENTS OF COM™ STORAGE

Earth Moon Sun Venus Mars Jupiter

Ref. Ref. Ref. Ref. Ref. Ref. COMP( I)

XVEO XME XSE XYNE  XMRE XJPE (1), (2), (3) =
(&), (5), (6) =

XEN VMO  XSM XVMM XMRM XJPM (D, (8), (9)

XES XMS XVSO  XVNS XMRS XJPS (13), (14), (15)

XEVN XMVN  XSVN  XVVNO  XMRVN XJPVN (19), (20), (21)

XEMR XMMR XSMR XVNMR  XVMRO XJPMR (25), (26), (27)

XEJP XMJP XSJP XVNKP  XMRJP XVJPO (31), (32), (33)

Here XVE refers to the x component of the vehicle with respect to the
Earth, with corresponding definitions for the other quantities. An
additional subscript of O denotes quantity derived from the two-body

problem.
CONTENS OF VCOR STORAGE
A11
Refs. VCOR(T)
XVE (1), (2), (3), (), (5), (6) =x, y, z, R®, R, R®
XVM (7), (8), (9)
XVs (13), (1%), (15)
XVVi (19), (20), (21)
XVMR (25), (26), (27)
XVJP (31), (32), (33)
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XIII. Available Upon Request

Numerous additions and improvements are under development to the
current 0S/360 version. These additions can be made available for
general use to interested organizations.®¥* A brief description of some
of the additions are as follows:

1. - 1tiple Vehicles.
It is now possible to integrate N trajectories simul-
taneously (N = 1 to 30). The user has the option of using the
two-body solution for all trajectories or separate two-bodies

for each trajectory.

2. Lambert's Problem.

The program has the capability of generating its own
initial conditions when one is interested in a specific inter-
planetary trajectory. This option requires a starting Julian
date, a desired flight time, and & target planet. Within this
option, there is a further option which computes the initial
conditions on the sphere of influence of the Earth or on a
parking orbit inside the Earth's sphere of influence.

3. J. P. L. Ephemeris.

It is now possible to read the J.P.L. Epuemeris directly
rather than by the method described in Section XI-1l. This
capability is obtained by adding a module of subroutines that
would permit the trajectories to be integrated with respect to
the mean equinox of 1950.

4. Small Corrective Thrust.

5. Trajectory Search
It is planned to automate the iteration scheme to go from

*#Address: Head, Theoretical Mechanics Branch, Laboratory for Space
Physics, Code 643, Goddsrd Space Flight Center, Greenbelt,
Maryland 20771.
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two-body, to patched conic, to full trajectory, and to increase
the number of variables to be adjusted, in optimal fashion.
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Section XIV Methods of Integration

The integration scheme employed by the Interplanetary Trajectory
Encke Method program is a sixth order backward difference scheme,
initiated by a Runge-Kutta scheme. The routine used is ~ Newton-
Gregory integration scheme for general second order difference equations.
(See Appendix C.).

The program has an ortion (NOPT(71) # O) for integrating Beta
instead of time. (See Appendix M.). Computation is much faste» in
this mode, however, the user is cautioned to choose delta beta with

care.

The program has an option (NOPT(20) = 2 or 3) for integrating
second order differential equations by means of intervolating a table
of second order derivatives. The size of the ;able and the option of
using predictor-corrector, or predictor only, are inputs to the program.
(See Appendix J).
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MATHEMATICAL APPENDIX

INTRODUCTION

The problem of orbit determination over long time periods
requires a precise technique for integrating the equations of
motion. Reference 4 contains an analysis of an integration
procedure that yields the minimum loss of information due to the
accumlation of numerical round-off errors. The Encke perturba-
tion method has been shown to require minimur machine computation
time for a minim:n loss of numerical accuracy. The orbit pre-
diction scheme presented herein uses a modified form of the Encke
method with the initial position and velocity vectors replacing the
conventional P and Q vectors of the Encke scheme. By avoiding
reference to the position of perigee, it is possible to avoid
numerical ambiguities arising from near-circular orbits and orbits

of low inclination.



b.

EQUATIONS OF MOTION

In a Newtonian system, the equations of motion of a particle in
the gravitational field of n attracting bodies and subject to other
perturbing accelerations such as thrust, drag, oblateness, radiation
pressure, etc. are given by

r

2 R
R, = - 2,,,1 "13+ ZFJ (B.1)
i=1 Tyt J

These equations are put into observable form by referring them to a
reference body c¢. The equations of wotion of the reference body are

2 R

oo ‘_' ci

Rc = /_. By r 3 (B.2)
i=1 ci
i#c

Subtraction of Equation (B.2) from Equation (B.1l) results in the
equations of motion of the vehicle with respect to the reference body c.

n
R R R
B oa - Ve vi _ _ci (B.%)
R, (hg * 1) ~ s Z”'i[r 377 3] +ZFJ
ve i=] vi ci J
ifc
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C.  INTEGRATION PROCEDURE

If Equation (B.3) is integrated directly by some numerical
scheme, there results, after a number of step-by-step inuegrations,
an accumulation of error which leads to inaccurate results. To
avoid this loss in precision, it is convenient to write Equation
(8.3) in the form

R, =R +AR (c.1)
The velocity and displacement vectors can be written as

ﬁvc = Rk + AR (c.2)

=R+ AR (c.3)

ve

The reference body (the one in whose sphere of influence the

vehicle travels) is chosen so as to minimize the perturbations.

In this method Rk is taken as

Ry = Gy ) 5 (c.b)
r
k
and
R R 2 R R
€= - (uv +uc) [;!93 -;.5-5] -Zui [ ﬁa - Cis] +ZFJ (c.5)
ve k 1=l rvi rci 3
i#c

Equations (C.4) constitute the equations of motion of the Kepler

rroblem and are solved as described in Appendix D.



Equations (C.5) are integrated numerically. The integration
scheme emrloyed by the ITEM program is a sixth order backward difference
scheme, initiated by a Runge-Kutta scheme. The routine used is a Newton-
Gregory integration scheme for second order difference equations written
by S. Pines and J. Mohan of Analytical Mechanics Associates, Inc.

As derived in Appendix D, the solution of the Kepler problem may be
represented by the vectors Rp, Ro, the scalar a and the rectification
time to.

The rectification process consists of moving va, va into the
locations Ro and Ry, t imto to and the computation of 2 and n.

For computational convenience, the coefficients appearing in
Equations (D.2) are also computed during rectification.



D.

and

SOLUTION OF THE KEPLER TWO-BODY PROBLEM

The unified formulation of the two-body problem is used for

both elliptic and hyperbolic cases.

B:s Ial LA

«= 8 ()

i_ o . o ____.
Rle) =2 - 155 * 5050
F()z-l'-a +———a'2 -----
2@/ =% T2k T 720 B

Fa(a) =1 -aF

Fala)

]
-]
1

R
N

. 2
r, dOB F,
g =— B Fa —
m
1:"'9‘31"3

g=1-=p2F;

D-1
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where

do = Ro * Ro
d
r=p%Fo+1roFy +— B Fa
m
= R+
R f o g R
R=fRo +g Ro
2
( o Y )“
a=( > -—
o M
2 . -
Vo = R, * R,

a is determined from the modified Kepler equation

d
i ot =p°F +rop Fs+ — % Fa (D.3)

See Figure 1 for the two-body orbit which results from the solution of
Equetion (C.4) with the initial conditions:

R (to) = R .(to) = Ro

(D.4)
ﬁk(to) = évc(to) = f}0
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Figure 1. Geometry of the Elliptic Two=Body Orbit
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COMPUTATION OF PERTURBATION TERMS

The terms accounting for the Encke term and the planetary per-
turbations appearing on the right hand side f Equation (C.5)

involve numerous terms of the form -13?3- - Eo_é_ where R and Rp may
r ro

differ only by small amounts. For the Encke term, for instance
R - Ro = € which is small, and for the planetary perturbations, the
difference is va vhich also often is small.

A computation scheme, which avoids loss of precision due to
the subtraction of nearly equal terms and which also is correct
when va is not small, is employed. This scheme 1s described
below: Find

—_- 2
3 3
r T,
2 1
u=—3 (R, +5 AR) * AR
r
0
R R, AR  R(u® + 3u® + 3u)
— = +
3 3 3 3
r T, r, <1+1'—5)
I'O

(E.1)



CONCLUSIONS

The method presented yields accurate trajectories using

relatively little computer time. Summarizing some of the important

features:

1.

‘N

All significant solar systewm bodies may be included w.thout
undue complications.

Since the perturbations only ar~ .ntegrated, the allowable
integration interval is fairly large over most of the path.
Even in the vicinity of Earth or another planet a relatively
large interval (compared to other schemes) may be used
without limiting the stability and accuracy of the solutions.

The perturbations are kept small in two ways. First, the two-
body orbit is rectified whenever the perturbations exceed a
specified maximum value compared to the corresponding unper-
turbed values. This limits error build-up with respect to
particular reference body. Second, the reference body of the
two-body problem is changed from Earth, to Sun, to planet
accordingly, as that reference body would contribute the
largest perturbing force otherwise.

This method will handle circular orbits, zero inclinatiocn, etc.
The problem is defined in terms of parameters which have real
physical significance (namely, the position and velccity
vectors) which are directly relatable to measurable cuantities.



OBLATENESS TERMS

A subroutine called GOSL was modifed to obtain, inertial
Cartesian coordinates, the gravitational perturbation acceleration
due to a rotating nonspherical body whose mass coefficients are
given in terms of the zonal and tesseral harmonics. The method
described herein avoids the classical singularity, which occurs
for polar passage, when using spherical coordinates to describe
the gravitational potential. This method also minimizes the
numerical error incurred on double applicetion of coordinate
transfornation from inertial to body-fixed and back again in the
case of a rotating nonspherical gravitational body.



DERIVATION OF THE EQUATIONS

The potential at a point R, in the coordinate system fixed in the
body, is given by

u
® n
= B - ?‘- - N . }
¢ = {l ZKr> [JnPn( u) Z Pn,m( Ul)(Cn,m c.:os m\ + sn,m sin m)) |} (1)
=2 m=1

where

Z
u=-=
r
= 4
tan A X

. n

d \n
P(u) =—— = (u® - 1) (2)
2°’n! du

m
S (1 - 22 a4
Pn,m(u) = (1 - u<) " Pn(u)

The accelerating force vector, in the body-fixed Cartes:ilan coordinates,

is given by
o) o dr 09 du oQ A
p-20 _93r 393 29 (3)
3%y or Bxi au axi dA axi
where
dr _ R 2
> "R
u _le wug ’
X, T & r B (4)
i
A 1 S

=
]
re———
O O
[ A



"~ ~ ~ >~

Combining the scalar coeff..ients of the vectors R, k, and k x R, we

n
(-]

_ m T Ha ' }

o ) - * L o 1Jn[u Pn + (n41) Pn]
n=2

F

n
_2 L2 L [u P' +(n+1)P ][C cos m)\ + S sin mk]l

n+2 n,m
ns2 m=1

]

- Z. —{ o (Cn,mcos mA + Sn,m sin m)\)] K (5)

n=2 l

n
e- b a o A A
[2_‘ (1 5 P, m(sn,m cos m)\ - Cn,m sin m\) | kxR

n=-2 r

Examination of Eq. (5) indicates that, for a polar passage with u = 1,
3 singularity occurs in the coefficient of the kxR term and in the
derivatives of the associated Iegeundre polynomials Pn,m( u). In order to
remove this singularity and to avoid numerical inaccuracy in trajectories
close tou =1, it is convenient to change the coordinates from the

spherical r, u, A system to the four-parameter system defined below.
Let the body-fixed Cartesian vector be

R=r t (6)



where

©w
]
I

ct
i
3

(6a)

=
"
N

In this coordinate system, the potential, ¢, is given by

2 n n
= B - N E) - ) }]
? r [l L (1‘ JnAn,o(u) .{_.An,m(u)[cn,mRm(s’t) * Sn,m]:(s’t':l (7)
n=2 m=1
where
A = 1 ———dn+m (u2 - l)n
n,m n n+m
? 2 n! du
R (s,t) = Real Part of (s + 1 £)® (7a)

I(s,t) = Imginary Part of (s + i t)"
1=,/~1

In this system, the acceleration force vector in body-fixed
Cartesian coordinates is given by

W:ﬂ.:-a—?géz_‘—-f.w_ai-.f._agal..p-agb_u_ (8)
axi araxi as axi ot axi auax_,L



where

>

ar R
s = — = R
axi r
ox; T r
(8a)
ot 14 _t 2
ox. r J r R
i
.1t
i
1 " 0 . 0]
1= 0 3 Jd = > k = 0
0 0 1
Combining the scalar coefficients of the vectors R, I, J and &k, we
have
J-EQQ-E?E_E@E’)“ 19 ,13%+ 139
anr rds 1rdt ru R+r sl+rat raﬁ (9)
or
F = arR + a,i + @pd + 05]& (o)
For the perturbation coefficient of R, we have
]
Z n+2 IJD[:u A n+1)A ] 2[ n, m+1+(n l)A m]( m n,m+ msn,m)
n=2 T
zm A ,m.(s Rm l m l n,m + (s Im-l+ t Rm-l)sn,m:D (10)
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However

m-1 m-1 m
(11)
s Im_1 +t Rm-l = Im
Therefore, ii.e two inner summations over the m index can be combined
to 1ead
n
- [ ]
L J A'n,m+l * (n+m+1)An’m (Rm Cn,m * Im Sn,m) (108)
m=1
Furthermore, if we let
Jh - Cn,o
the expression for the coefficient of ﬁ may be written as
® n n
L2 :] ) (10b)
@, = - v )3 [u An,mﬂ_ +(n+m+l)An,m (Ran,m + ImSn,m
n=2 =0
A recursion equation for An o Y be derived, which yields
2
2
An+l,m+l s u An,m+l + (n+m+1)An’m (12)
The final compact expression for the coefficient of R is given by
@®Q u‘ an I_l‘ -
¥ = 7 Z _n+2 ZAn+1,m+l(u) [Rm(s”t)cn,m+ Im(s,t)Sn’mJ (13)
n=2 »=0



Turning to the coefficient of k, we have

n n
B a
@3 = = z rn+2 [JnAn,l - zAn,mﬂ (Rmcn,m * Imsn,m):l (14)
n=2 m=1

Using the convention that J_ = -C_ _, Eq. (13) becomes
2

© n n
2 ua

T B!
@3 = Z. rn+2 Z. An,m+l [Rm(s’t)cn,m * Im(s’t)sn,mJ (1ka)
n=2 m=0

The coefficients of i and J, respectively, follow without modification.

- a0 D
o = Z —r L An’m(u) [Rm_l(s,t)cn,m + Im_l(s,t)Sn’m] (15)

n=2 m=1

and n n
YA Ve (w[r ) 6
ez = ) Lar2 Zm n,m' " [Rm—l s’t)sn,xn i Im-l(s’t Cn,m] (16)

n=2 n=1

G-7



RECURSION EQUATIONS FOR THE MODIFIED LEGENDRE POLYNOMIALS AND THEIR
DERIVATIVES

We seek a recursion equation for the modified ILegendre polynomial,

A . We have
n,m

m

Ay ol = Zjn 2 (u) (11)

In any standard reference on Legendre polynomials, we may obtain the two

recursion equations,

[ R 1
(n+1)Pn *uP' =P (18)
and
\ -— -
(en+l)P + P! , =P (19)

In terms of A m(u), Equations (18) and (19) become
2

(1) A o+ uh g =hg (182
and
(2041) &) 6 * Ap1,1 = Aon1 (1%

Combining Egs. (18a) and (19a) and eliminating A

An+1,1(u) as follows:

0 Ve solve for
J

- P! = Lype _ Lype
An+1,l Phep = ¢ (2+ n)Pn (1+ n)Pn-l (20)



or
1 1
An+l,l =u(2 + n)An,l -1+ n)An-l,l (20e)

Successive differentiation of Eq. (20a) yields

\

= (me L A0 - =
An,m = (m-1) (2 * n-1 )An-l,m.-l+ u(2 * n-1 )An-l,m (l * n-1 )An-2,m (21)

This is the required recursion equation. Furthermore, we have

A = 0, m>n

n,m

An,n=l-3'5'---(2n-l) (22)
An,n-l “ An,n

Starting with Eq. (22), we may generate each row of A ., for fixed
J
n, by retaining the two previous rows of An m and through application of
)

Eq. (21) for m = n-2, n-3, , , , o m=1. Thus, only three rows of A o
2

need be retained for a given .

To obtain the result given in Eq. (12), we need only differentiate
Eq. (18a) and obtain

An+l’m+l = u An,mﬂ + (n+m+l)An’m (12)
An alternate recursion formula for An o’ which is more stable than Eq.

J
(21), is

A = (u A ) (21a)

- A
n,m n-m n,m+l n-1,m+l




RECURSION EQUATIONS FOR Rm AND Im’ AND THE ACCELERATION EQUATIONS FOR

A ROTATING BODY

For the zero power of s + it, we have

Thus

From Eq. (11), we obtain the recursion equations for R and I .

s and t, we have

We may define

The final desired form of the equations for ar, ¥y Ops and

are given by

R (s,t) =sR_

(s +it)9 =1

Ro = 1

Io=o

1 m-1

Im(s,t) =SI _;+tR_;

AR
Rm(s,t,mn nt Im(s,t)Sn o

Rm—l(s’

2

t)E + Im_l(s,t)s

2

n,m
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o3

(23)

(23a)

(11)

(24)



o n n
YA (w
@ ¥ 7 L rn+2 Z. An+l,m+l 4 Dn,m
n=2 m=0
© gL B
@ = z n+2 2. mAn,m(u) En,m
n=2 m=0
n n
yhe T ()
% T L "nve L mAn,mu Fo,m
n= m=1
2 pa’ o

03 - L rn+2

In the body-fixed system, we have, for the acceleration,
F==erR+ali+Q12

Let the rotation matrix N(3x3) represent the transformation of a

n=2

m=1

»

Z. An ,m+l( w)

A

Jteag k

3

D

rotating body from inertial to body-fixed coordinates.

Then the inertial acceleration is

Finert

s N F

Or, in the inertial system, we have

F

inert ~ %r

Ripert ¥ 01

G-11

N+a2

N2+

¥z

~

N

(25)

(%)

(26)

(27)

(28)



where

21

>

I'll3

05y
Ny = | 2 (29)

Dos

n51

35
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TRANSFORMATION EQUATIONS FROM GEODETIC POLAR COORDINATES TO

CARTESIAN COORDINATES*

The geodetic polar coordinates in the program aie referrzd to
an ellipsoid of revolution. The equation of a cross section is

given by

N
N

= 1 (H.l)

mm |><
o‘m 'N

where

b2 = a82(1l -¢e)

The slope of the normal, along which h 1is measured is given by

2
tan ¢ S (See Figure 2) (H.2)
dz bex

dx

and
2
1]

tan;ps;zc-z.zitan(ps(l-ea) tan @

Eliminating x between equations (H.1) and (H.2) and solving for
z pesults in:

, <81 -¢€%) sing
{1 - €2 sin® ¢)

#For geocentric (i.e. e = 0) polar coordinates, ¢ = s = 1. In this

case the latitude input is interpreted as declination.
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Figure 2. Relation Between Declination, Geocentric and
Gecdetic Latitudes

and from equation (H.2) then

a cos @
(1 - &2 sin® cp)t

X =



In units of a, R and R are then given by equation (H.3)

e = (1-e° sin® ¢).%

s = (1-¢€2) ¢

x = f{c +h) cos @ cos
y = (c +h) cos ¢ sin
z = (s +h) sin

v {(sin Y cos @ -

Mo
&

- cos y sin A

- 3 v {(sin y cos ¢ -

+ cos vy sin A

I

v i sin y sin @ +

Ne
]

These equations include the effect of the rotation of the earth.
The longitude of the vermal eouinox (8o) at launch time is computed

(6 - 60)

(o - 80)

cos y cos A sin ¢) cos (8 - 80)

sin (0 - 60)}

cos y cos A sin ¢) sin (6 - 8o)
]
cos (0 - eo)j

20S y COS A cos é}

by the program fram Newcomb's formula.

(H.3)



TRANSFORMATION EQUATIONS FOR RADAR SIMULATION

The program computes sight angles (in an azimuth-elevation
system), slant range and range rate data for up to 30 radar
stations. The vehicle coordinates are transformed from a system
of geocentric cartesian coordinates (xyz), the x-axis in the
direction of the vernal equinox and the x-y plane in the equa-
torial plane of the earth to the required topocentric azimuth
elevation system. This is accomplished by a series of coordinate
transformations as follows:

1. A rotation of the coordinate system about the z-axis
through an angle RAx so that x y plane is in the meridian plane
of the station.

x'" = xcos RA.L + ysinRA
s s

y' =-xsinRAS + ycosRAs

The velocity transformation must take the rotational velocity of
the new coordinate system into account.

=y we+1'ccosRAs+jsinRAs

g . .
y X' wg xsinRAs+ycosRAs

where x', y¥', 2' are the rotated coordinates and RAS is the right
ascension of the station and Wg is the sidereal rate of the earth's
rotation. The G.H.A. necessary to obtain RAs from the station
longitude is computed by tine program.

(1.1)



2. A translation of the origin of the coordinate system from the

center of the earth to the station in question

x'" =x'" - (c +h) cos @
y't =y
z'"=z2' - (s +h) sin @ (1.2)
vhere
%

where x'', y'', 2'' are the translated coordinates. ¢ is the
geodetic latitude anéd h the height above sea level of the station

in question.

3. A rotation of (90 - ¢) about the y'' axis to place the (x'',z'"')
plane into the horizon plane

x'"'"'" 2 x'"" sin g + 2'' cos g
ylll =yll
2'"'"'' =« x'"' cos @ +z'" sin @
(1.3)
X''""'= %' sin g + 2'' cos ¢
y°ll' ___}',.tv
z'''s - xcos p+zZ' sine
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Now x''', y''', 2''' are the coordinates of the vehicle in a topo-
centric azimuth elevation system, with z''' axis pointing to zenith
and the x''' pointing south along the meridian. Range, range rate,

azimuth and el~vation are then given by

p = (X'“2 + y|||2 + Z!th)% = Slant range (ILI-)
. xlll x'l'lullljlll_’.zlll Z'l'l (
= I.5)
P P
-1 gt
E = tan I = Elevation (1.6)
(X"'2 +y|n2)
. -1 1y
A = taa Lo
(1.7)
(7 - A" A' <m }
A 1 T - A A' > 1



J. A VARIAELE ORDER INTERPOLATION SCHEME
FOR INTEGRATING SECOND ORDER DIFFERENTIAL EQUATIONS

A subroutine called AMAINT was programmed to integrate second
order differential equations by means of interpolating a table of second
order derivatives. The size of the table and the option of using
predictor-corrector, or predictor only, are inputs to the program. This

subroutine operates in a fixed step-size mode only.

The program uses a self-starting scheme instead of the usual
Runge-Kutta starter to build a table of second derivatives. This scheme
employs the following technique; a first guess for the tables is made by
stepping up the independent variable and calling the derivative routine;
now, using this table and the predictor only formulas, calculate every
point on the table in succession. When either a) all of the first
derivatives, or b) all of the second derivatives, from one iteration to
the next agree to 15 digits, we consider the scheme converged and we now
have a starting table. Normelly this converges in 8 iterations. For a
twelfth-order integrator, our starter routine calls the derivative
routine 89 times; the Runge-Kutta starter would require 176 calls.
Whenever a step size other than the normal is required, the program can
take that step using the stored table of second derivatives, rather
than using Runge-Kutta again as is usually don=.



Derivation of Equations Used

The function to be integrated is:
¥(t) = £y(t), y(t),t]
We assume that we have n function values

fs_n) ===, %o, - - -, fs-l

over some constant increment h of t

|

s-n ts-n+1 s-1

where s 1is chosen to be at the midpoint or close to it.

in such a manner that our coefficients will be integers for a large n.

The maximum n depends on the word size of the computer being used.

The function may be extrapolated to ts using an nth order Lagrange

interpolation formula:

s=1
1 (t - ti)
s=1 i_; s-n
. _ 143
ye) = Z s=1 ( ) t
Il t-t
J=8-R y _gan I 13
1# 3

We choose

(1.0

(1.1)



This results in a pol;momial in t

n 0
v, o\ A A i _
e =) (g Syut )fa T
J=l i=n-1
Integrating we get:
n 0 3 ti+l
. Y ! + oo
5(t) Z[( L T )fj ¢5l
jsl isn-1
n 0 . ti+2
o - [
= YERY L ) ]
e = ) 10 e M et e
j*1 i=n-1
n i+2 i+2
yi0) = 5 % S.afts 7 ) - (t-t
s L L oL (i+1) (i+2) s s-1
Jj=1 i=n-1
0 i+l
WEJ—(—i—tS—}l]f +y(t. e -t ) +y(t. )
ZL i+l J s=-1"'"s “s-1 s-1
i=n-1
n i+l i+l
— S, .(t -
. - \ ~J,i' s s=1" 7
y(tg) Z [ L (1+L) oEy tvltgy)
j=sl  i=n-l

Consider each interval as 1 since they are equally spaced. Now
ts= h-s. Sj,i

lowing manner: The first row is all one's; the second is (-) the sum

is an nxn matrix S+D where S is formed in the fol-
nxn nxn

of the ti's of Equation (1.1) in the numerators of the varying j's; the

next is the sum of the products of the t,'s taken two at a time; etc.

i
Thus we have a matrix of the coefficients of the polynomials formed by

J-5

(1.2)

(1.3)



the numerators of (1.l) sitting column~wise. The D matrix is a

diagonal matrix whose elements are the denominators of (1.1).

We now form matrices A and B where

n+l-j -
(s-n-l+i+ek) - (s-n-.1+i)n+l J
A = 8 =
nxn 1] n+l-j
and
(s-n-Ltive, )220 (5on-141)2"27J- (me2-j)e, (s-n-141)7"37
B = Pij5 = (n+1-3) (n+2-3)
Now

L5

ASD = ay 4 BSD = By 5
Equation (1.2) becomes

n
y(tg) = (vt q) + by e _g) +12 ) B S, (2.1)
J=l

and Equation (1.3) becomes
n
v{tg) =yt ) +B ; ay 4f, (2.2)
J=l

where e, = hl/h’ hy ¥ h when ts-ts_l¥ h. These are the predictor

equations.

If we desire a corrector formula, we generate

c c
“n,j and Bn,J J =1, n+l

We use Eqs. (2.1) and (2.2) to find y(ts) and y(t_ ). Then using Eq.

J-k



(1.0), we find &(ts). Now we have a table of n+l fJ‘s and we can Tind

our corrected functions and first derivatives by:

n+l .
= . 2
yc(ts) - y(ts-l) th y(ts-l) +h }Z Ba, 3 ts
J=1
n+l
¥.(t,) =

c
slig ) vn ) a1
j=1

When hl # h, the corrector formulas are not valid. Therefore, when an

odd integration step is required, predictor only may be used.

The dij end Bij matrices are used to generate the initial table of
fj's at each restart by means of an iterative method. In generating
¢

the coefficients aij’ Bij’ o, on a computer, we attempt to keep

Bc
»d7 "o,
then integers by limiting n to conform to the word size of the computer
being used. We also use a least common denominator technique to perform
one, instead of n, divisions. Thus we see that the word size of the
computer controls the order of the integrator to be used. When our
constants do not sit as integers in the machine, the resulting round-off

causes biased errors.

A study was made using this rcutine on an IEM 360 Model 91 computer
io integrate the sine and cosine functions. The Univac 1108 computer
was also used to runa a small number of cases. Orders from T to 12, and
integration intervals from /16 to 1/526, predictor only and precitor-
corrector, were used with the following results:



Predictor-Corrector

n

n-=

6

10

Number of points (not differences)

At
/32
/64
m/128
/256
n/512

/32
/64
/128
m/256
n/s512

/32
/64
/128
/256
n/512

n/32
/64
m/128
/256

/32
/64
/128
/256

Sin n

.68 x
27 x
12 x
.28 x
.53 x

O x
40 x
A2 x
.29 x
54 x

.58 x
49 x
.16 x
26 x
4o x

12 x
.18 x
AT x
.50 x

52 x
Al x
19 x
31 x



Predictor-Corrector

ns 1l

Predictor Only

n==6
n=7T7
n=28

n/16
/32
/64
/128

/16
n/32
/64
n/128

n/52
/64
m/128
n/256
n/512

/32
m/64
n/128
n/256
n/512

n/32
/6k
/128
/256
n/512

L2 x
.69 x
A1 x
A7 x
21 x

Bl x
A3 x
19 x
.18 x
A5 x

BT x
A5 x
.62 x
Sl x
Bl x

1071
-14
-14

10



Predictor Only

n=9

7/128

Sin

82 x 10
11 x 10
A x 10

16 x 10
31 x 10
34 x 107
A5 x 10

48 x 1079
73 x 107
.66 x 1C
.39 x 10

33 x lO"9
23 x 10

40 x 107%2
4l x 107



Univac 1108 Only

Predictor-Corrector At Sin n

n =12 n/16 34 x 107
'n/32 A7 x 10-15
n/64 2T x lO-l5
n/128 .29 x 10.15

From the above we see that, as we increase n, we can also increase
the At up to a point. The optimum appears at n = 11 for the IBM 360
Model 91. Om the Univac 1108, the optimum was at n = 12. Wwhen using >he
predictor-corrector method, we can maintain the same accuracy as pre-
dictor only, using twice the integration interval at the optimm n.
Therefore, we conclude that usiag the predictor-corrector judiciously
(i.e., with tbe proper integration interval for the function to be
integrated) may prove to be better than predictor cnly, with a very
slight cost in computer time.

Our optimum At for the sine function was n/64 for predictor omly
and 11/32 for predictor-corrector. The preceding; data a2 true for the
IBMM Model 91 computer and for the function tested. We believe that,
with a computer having a larger word size capacity, we would find a
larger n to be optimml since it would be possible to generate integers
ror the integration coefficients.



A change in the hardware of the IBM 360 Model 91 was made which in-
creased precision in multiplication. Using this machine, we "en ran
trajectories similar to those discussed in the Fehlberg paper.l Instead
of using a rotating coordinate system, we used an inertial coordinate
system and integrated in an Encke mode, using B as an independent
variable instead of time. We converted Fehloerg's initial conditions
(%0 = 1.2, %0 = 0, Yo = 0, Yo = 1.049357509830320, p, = 1/82.45) to ocur
system and they became

Xo = 1-212128562765311
%o = O.

Yo = O.

Yo = .162771052934991
by = 1/82.45

be = -9BTBTLANT234689
xom =1.

Jiom =0

Yo, = O.

$'om =1

(The ° subscript denotes the Moon's initial conditions.)

The starting point of our trajectories was at apogee behind the Moon,
on the line of centers of the Earth and Moon. Our integrations traced a
figure eight around the Moon and terminated at the second apogee. We
ran six different trajectories, using 3 different AB's with 11lth and 12th

order predictor-corrector schemes ror each. The results were as follows:

- e @ @ @ = = v S ® @ W ® s @ W @B = @ S & S @ T B @ e M e B @ W = = = = -

1 "New One-Step Integration Methods of High-Order Accuracy Applied to
Some Problems of Celestial Mechanics", Erwin Fehlberg, NASA George C.
Marshall Space Flight Center, Hunisville, Ala.
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Order of

AB No. of Steps Integration Starting Apogee
.0078125 1258 12 1.2128562765311
.0078125 1258 11 1.2128562765311
.00390625 2515 12 1.2128562765311
00390625 2515 11 1.2128562765311
.001953125 5028 12 1.2128562765311
.001953125 5028 11 1.2128562765311

2nd Apogee
1.2128562765114%

1.2128562764 704
1.2128562765340
1.21285627€5550
1.2128562765353
1.2128562765368

For this particular problem, AB = .00390625 with the 12th order
predictor-corrector scheme appears to be the optimum trajectory.



Use of Routine:

In order to utilize this subroutine, a programmer must supply the

following common cards:

COMMON/AM1/DELT, T, DIT, XI(30), XIX30), DeXI(30), IFST(30).
COMMON/AMI/M(1%4), IS, N1, N2, N21, NEQN.

Ths . mon names may not be changed.

The variasble names may be changed providing the notation for integer or
real numbers is maintained.

M(14) is a dummy block of storage used internally by the routine.

IS 1is the reference point for generating the integretion coefficients.
N1 1is the order of integratiom.

N2 = N1+1 1is used for the corrector.

N2l = 0 1is used for the predictor only.

N2l = 1 is used for the predictor-corrector.

NEQN is the number of equations to be integrated.

DELT is the normal integration interval.

T 1is the independent variable.

DII 1is the current integration interval, oddball or normal.

XI(I) is the ith function value.

XID(I) is the ith first derivative.

D2XI(I) is the ith second derivative.

IFST(I) = 0 means the ith equation is second order.

IFS(I) = 1 means the ith equation is of first order.

For COMMON AMI, the user must define N1, N21, and NEQN In his program.

For COMMON AMl, the user also must define DELT, DTI, XI(I), XIDI),
™eXI(I), IFST(I) (I = 1, NEQN) at T = To.



The user must also supply a subroutine called DERIV, with the
proper COMMON included and which computes DRXI(I) as a function of XI(I),
XID(I) and T. If first order equations are desired, the first deriva-
tive should be stored in D2XI(I), and DeXI(I) should be a function of
XI(I) and T.

The following calls to AMAINT are use.u:
Call AMAINT (0) - initializes the integrator and calls DERIV.

Call AMAINT (3) - generates integration table. DELT may be changed
before this call and the user must make sure that the
proper Call DERIV has been made.

Call AMAINT (1) - takes one normal integration step and calls DERIV.

Call AMAINT (2) - requires tk ¢ DII be defined prior to the call, takes
an integration step of size DI'I, and calls the
derivative routine.
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K.  DRAG COMPUTATION

The drag acceleration is computed, assuming a spherically symmetric
atmosphere rotating with the earth. Thus:

D=-1/2p A |veff|veff

(K.1)

ARy = ¢
where

Vepr SR - @ xR

w 1is the sideral rotation rate vector of the Earth.



L. COMPUTATION OF SUBSATELLITE POINT

The geodetic coordinates of the subsatellite point are computed
by the following method:

The geoce.tric latitude (declination) is obtained from

. v _ 2
sin o' = < (L.1)
This latitude is then corrected ‘- geodetic latitude by the formula
® = ¢' +az sin 29' + a4 sin L' + ag sin 6" + ag sin 8¢’ (L.2)
where
ag = 'io—:é'E' {512e2 + 128e* + 60e€ + 35e8}
r
I R SR
32r° 256 2
By = - —2— {6he* + 48e® + 35%
1024,
15¢° 8
. {he4+2e6+e8}+ —3-34
l6r2 256, 16,
8g = —2— {’-Lee + 568} - 2 {es + ea}
102k , 32r2
22— {ie® + 37} (L.3)
76813

L-1



3
I‘2 r I‘4

8 64 252 20}
w3822

e = the eccentricity of the earth

r = the distance from earth's center

See Reference 5.

The geodetic height is then given by

h=rcos (p - ) - Jl-eaéinch

The longitude is obtained by subtracting the sidereal time of Greenwich

from the right ascension given by

tan RA = ¥
X

L-2

(L.4)

(L.5)



M. CHANGE OF INDEPENDENT VARIAELE - BETA MODE

According to the standard Fncke method, we introduce a differential

equation

-2 (y.1)

p=-u
lo]®

In the comstruction of the closed-form solution for (Y.l), a parameter

B arises. It is related to t by Kepler's equationm,

, ()
i

t = to (y.2)

where f 1is a transcendental function of P and is obtained by summing

several power series.

If +t is taken as the irdependent variable, Equation (Y.2) has to
be solved for B Dby an iterative method, requiring numerous time-
consuming evaluations of the function f for each integration step.
Using B as the independent variable, however, only requires a single

evaluation.

It remains, of course, to see what becomes of equation (Y.l) and

(74 ~
]}

% -

gl o




If B 1is the independent variable. We have, from Kepler's equation,
that

at

== = (Y.4)
d
PR
at any point along the solution of (Y.l). Thus
p =p'“/:]—"|‘—andp' =p'l'el
Jh
at any point along the solution of (Y.l) and the initial conditions
become
, J.{lec)'
p(Bo) = %0 and p'(Bo) =
A
when
Bo = B(to) = 0
Now the solution for (Y.l) » p and p', can be written in closed form for
any B. As auxiliary quantities in this solution, we have |p| and
. p'
D =£8&—f | They are computed as functions of B before p and p' are
loy
known; that is, with accuracy at least as good as that of p and p'.
Not only are they neeGed and easy to compute, but they also have the
interesting property that
at _ lol
d
S
and (¥.5)
2 . D
a8 Ju



Thus Equaticn (Y.l) is solved more economically in terms of g than in

terms of t.

Now we turn to Egquation (Y.3). To treat it, we want to express
£'' in terms of . From (Y.5) we have that

Iel

. dt .
g’ §a—=§/u

Differentiating with respect to B,

e gl g (1)

_g(.l__l.> = _D_

pI

=-|p|2('x - L ) lpl F+ & —2

x|® fp]® 7 ¥ lel

Thus (Y¥.7) is the equation tg be integrated numerically, instead of

(Y.j). The coefficients 3 and.T%% can be calculated with much more

accuracy than the factors involving €, since they depend only on the

two-body solution. For analysis of error propsgation, we write (Y.7) as

FU! = o +)__LEI.__- __l_ + v D
‘ |p|l'p : lp +€]® p] T lol

(Y.6)

(x.7)

(Y.8)



The mechanic¢s of the procedure, thea, are easy io enumerate. The
initial conditions are xp and ... ILet

P(to) = Xo

iolxol

o' (to) =
m

2
Using these initial conditions, evaluate t, l&l— s T%%-’ p, p' for each
value of B to be considered.

Iet €0 = €4 = O. Using these initial conditions, integrato Equation
¢0.7) to get €(B) and E'(B) . Mote that the first two terms on the
right-hand side of Equaticn (Y.7) are functions of x and possibly x'.
These are obtained by

x(B) = p(B) + €(B)

{Y.10)
x'(B) =p'(p) +='(B)
If at any point x is required, it can be found from
x(t(B)] = x'(p) LE— (v.11)

|p(8)]

Depending on the recitification control logic, there will be places
where the solution to Equation (Y.l) must be started over. At this

point, the values t, x, x becom the new to, xo, and xp, while B8, €,

and 5' are reset to zero.



.« a.’ison of Modes

a) It is immediately apparent that eliminating the necessity of
iteratively solving Equation (Y.2) will substantieily increase tne

speed cof couputation.

b) An importan. advantage arises further from eliminatirg the some-
times ponderous logic which supplies initial guesses for the

iterativ: process and guarantees convergence cf the solution.

c) A third advantage of the f-method is not quite so apparent, but no
less importart. It is well known that the size of the integration
time step can be increased as the distance from the center of
attraction increases. This change of the integration interval
requires a cumbersome restart procedure. An examination of
Equation (Y.5) show:z that equal intervals of B correspond to
tie -ervals of increasing lengths as the distance incre.ses.

The time interval thus automatically expands and contracts correctly

without outside intervention.

d) Geometric stupping and printing conditions can 'ally be conveniently
expressed in terms of 8, whereas they cften require iterative deter-

minations of the time. Thmis advantage, however, is slight.

ej If state vectors are required at fixed times, an iteration is aeces-
sary to find the corresponding vaiue of B. In this case the B-
method is no better, »ud ro worse, than the standard methods. If
suca vectors are required at frequent, closely spaced, time points
(as in orbit determination, for instance), the advantage or the
B-method is marginal.



N. SHADOW LOGIC

A coordinate system is set up in the plane defined by the centers
of the light-emitting source, the shadowing body, and the probe. Both
bodies are assumed to be spherical, and hence all testing can be carried
out in this plane. The diagram in Figure 3 shows this plane.

The coordinates are defined by unit vectors i amd :

R
‘j__.-.'?(-:!'-; i-_]:=1; 1..!1:0
cl
] = - <4 4 - =
t] a+RB d-4 =1
where
d = R

Vehicle coordinates in this system are given by:

x =R -i=ad
\'2 -—vVC -—

- . _a2 241/2
yv"-l—‘vc 4 =L[-a +rvc]

Zg =By, K= 0

(N.1)

(N.2)

(K.3)

(N.4)

(N.5)



Shadow Parameters

a) The tis of the umbra and penumbra cones are:

4 -t 4 -
u ?L ? P :L
= -1 = 41
r r
c c
b) The slopes of the bounding lines are:
rc
sin @, = cos eu =-a— cos B =
u
r 1
D
-cos @ =sin 9 = [l - ( = ) 12 sing =
u u du J p
sin o
tan o = 4 tan a_ =
u cos o p
u
<" eu
tan § = tane =
u cos 0 P
u
¢) Refraction Correction: (UMBRA)
' = - ! -
“u u_ ¢ eu‘eu €
sin o' = sin o ¢cOs ¢ - cos @ sin €
u u u

tan a, - tan e

_l+tanautan:

tan © - tan ¢
u

o

B

<
)

a 1+ tan 6, tan ¢

r"
sina = d“
p
r oo
i c\“ )2
cos ay 11 '(dp) ]
sin o
COSs ¢
sin ©
cos 0



‘¢ 9unByy
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r
C

a' =
U  sin o
u

d) Refraction Correction: (PENUMBERA)

Both € < > 5 "s o - €
Q'p € Q’p ) Q’p P

sin o' sin cos - cos o sin €
ap | ab € b |

tan - tan ¢
%

1 + tan ab tan ¢

tan © - tan €
P

p 1l + tan ep tan ¢

r
t = - &% ' c
dp sign \tun Q'p) ;E-&;

The equations of the bounding lines are given below.

2. The TMesting Procedure

0 Line
P
1Yvi
tan 6" - xv 20 Sunlight
P
| Yv
EEEFET - xv < 0 Go to next test
P



- - 1 1
|yVi (xv dp) tan o > 0 Sunlight

Qza

s

|Yv| - (xv - dé) tan o' = Sunlight penumbra boundary

P
< O Go to next test
Ir RL = 0, exit here.
Yol =2 O Penumbra
%atanell-x" < 0 Go to next test

> O Penumbra
Shadow penumbra boundary
< O Shadow

H
(@

Qll» = val - (xv - dl’l) tan a‘l

Q2 and Qh are stored and saved. The crossing times are found %y
linearly interpolating for O-values of Q2 and Qh respectively, to
guarant :e that crossing from one region into another always occurs

across these boundaries.
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0. SOLAR RADIATION PRESSURE

The radiation pressure subroutine computes the force of solar
radiation on the spacecraft if an appropriate pressure coefficient
is used. The calculation relies on the shadow routine to set a
trigger to multiply the pressure coefficient by 1.0, 0.5, or 0.0 for
full sunlight, penumbra or umbra respectively. Therefore, the shadow
subroutine must be used in conjunction with the radiation pressure
routine for most cases. If the spacecraft is known to be continually

in sun_ight See Section VIII-2 to avoid elaborate shadow testing.

o . KNS

RP
m r3
Vs

(See section VIII-A-2 for definition of symbols.)

This radiation pressure subroutine has been found to be inexact
for setellites of large area to mass ratio since it only controls the
pressure to the nearest integration step. For such spacecraft (e.g.
balloons) several degrees error in true anomaly may result after 100
days unless the integration is carried exactly to the boundaries. A
modification to achieve this increased precision is available and will

be included in future versions of the program.

(0.1)



P. ECLIPTIC COORDINATES

The ecliptic coordinates are an approximate .et obtained by a
simple rotation of the equatorial coordir- *es about the x-axis through
a fixed angle i = 23926'35" which is app: oximately the true obliquity
for Jan 0.0, 1970. More exact coordinates may be obtained by changing
SNE (unit normal to the ecliptic) as desired.



Q. MOON ROTATING AND FIXED COORDINATE SYSTEM

Geocentric coordinates of the vehicle based on the earth-moon plane
are generated from the geocentric equatorial radius vector to the vehicle,
RVE’ the geocentric unit vector in the direction.of the moon RME’ and the
vector in the direction of the moon's velocity, RME'

Coordinstes in the rotating system, XROT etc., are found by using

the current values of these vectors at each time step in the relations
XROT = Re " Ryp
TROT = Ry (Byp X RME)

A

ZROY = Rop * B (Q.1)

where
_Rp xRy
B X Byl

Bl

For the fixed axis system XINJ, etc., the initial vectors Ry (to)

and ﬁME (to) at the time of injection are used with the current
value of RVE'



R. TRAJECTORY SEARCH

The program provides & search routine to obtain selected trajec-
tories. The search is based on linear theory and varies the polar load
input quantities (independent variables) to search for desired dependent
variables. A mav'mum of any six dependent variables may be selected.
However, at this . riting, the user 1s restricted to two dependent variable.
Modifications to incorporate the remaining five are available and will
be included in fEture versions of the program. The quantities at
present, are B - T and B - 1'%

The components of the impact parameter vector (B - %IMP’ B - ﬁIMP)
are referred to the ecliptic plane for T-planet trajectories and the
Moon's orbital plane for lunar trajectories. The number of Independent
variables must equal the number of dependent variables for this routine
to function.

This version of the search routine is time consuming Zf the initial

conditions are poorly approacimated. Before using this routine, twc
things should be dome.
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1. A first guess of the initial conditions of the nominal trajectory
should be obtained from a patched conic or a similar search

progran.

2. The number of variables should be kept to & minimum. It is - lsnned
to automete the iteration scheme to go from two-body, to patched
conic, to full trajectory, and to increase the number of variables
to be adjusted, in optimal fashion. Even in its present form,

however, it is =2xtremely useful.

The iterator uses a modified version of the MIN-MAX Principle
( Reference 6).

Aij is the matrix of partials

Axi is the vector of changes in the independent variables
Xii is a diagonal matrix of weigi.'s

Yy is a vector of residuals

The system to be solved is

(Agghyy * 000 = Ayy,

= B

Boghiy * My = By

Ayg¥y = 24



Procedure
The system
By 0%y = 2y

is solved. If the value of Axi is greater than SIZER, some arbitrary

amount, ses

Bij = Bij + A

ii

and solve the system again. Repeat these operations until Axi is less
than or eyual to SIZER. Now, run a new nominal * 4j-ctory with the new
independent variable

xi = xi + Axi

a) If the new residuals ¥y are greater than the previous ones, set

B,, =B,. + A

13~ P13 T Mt

Solve the system again and continue solving until the aew residuals

are less than the old. Now the system is re dy for a new iteration.
b) If the new residusls y; ere less than the old, set

B

13 = B

15 7 Mt
Solve the system again and continue solving until the new residue s

are greater or equal to the old.

The iteration continues until either the maximun number of iteratic.us
(input) is exceeded or the residuals =re less +han or ~qural to an inp &
F P

tolerance.
R-3



8. EQUATIONS FOR FLIGHT PATH AZIMUTH AND FLIGHT PATH ANGLE

A subroutine computes the flight path azimuth and flight path anglé
with the following equations:
1. Flight path angle
st B R]
vy =sin " |5 )| | (s.1)
R <5 the vertical unit vector. In the geodetic system N is given by

R = [cos ? cos (8 - 80), cos ? sin (@ - 0o, sin P]

In the geocentric system @ is replaced by @'. Alternatively, in the
latter system

2
]
H |

2. Flight path azimuth

A = sin-l [coi y {% cos (9-980) - -;5 sin (6-90)}]

(s.2)

A = cos-l[ 1 {_z_ - sin y sin }]
cos y cos @ \v Y @

Both formulas are used to determine the proper quadrant of A. To

obtalin the gencentric output, e? = 0, ¢ is replaced by declination
6 = 9.

S-1



OSCULAYWING ELEMENTS

Tte osculating elements are obtained from the following equations:

-1
B
n u‘/alal‘a/a

e cos E =(1-£)
e cosh E a

e sin E]| _ d

e sinh - f—
Jual

M = 1esinh E- E
t = t-M
P n

The angles , w, i are obtained from the vectors H and f’, where

H=Rxf2
eP = l-l)R-ER
r a u

In terms of these vectors.

H

cos 1 = -BE in the first or fourth quadrant

(7.1)

(T.2)

(7.3)

(T.4)

(T.5)

(T.6)

(7.7)

(7.8)

(7.9)



X
sin 1 = T5in 1
(7.10)
-Hy
cos 1 = hsini
cos @ = Pz cosQ+PysinQ
(7.11)
Pz
sin o sini °’

T-2



U. IMPACT PARAMETERS

The "impact parameters" are coordinates in the "impact"” plane.
This plane passes through the body (planet or the moon) and is normal to
the incoming asymptote. The direction cosines of the asymptote are
given by equations (U.1, U.2) in terms of unit vectors P (Appendix T)

and

§ = Exp (u.1)
h
§ = -];r§+J(e2-1) 6] (u.2)
e L
In the plane defined by S as its normal, two unit vectors i‘IMP and

-

RIMP are defined. ﬁ"IMP is parallel to the ecliptic plane for T-planet
impacts, and to the moon's orbital plane for moon impacts. Explicitly

-
-

T (u.3)

= [ty
> (U

X

x 5|
where N is the unit normal to the ecliptic plane, or the moon's
orbital plane. RIMP is normal to both S and ™MP* BD{P is the vector

from the body to the vehicle as it crosses the impact plane. The data
computed are the dot products

S ——————

B * Towp
and

e * Bowp



V. MOON'S ORBITAL PLANE INPUT AND OUTPUT

A polar ccordinate system is available for input and output which
uses a5 its reference plane the moon's orbital plane and the vector
from the moon to earth as unit rector. Polar coordinates in this
system are defined analogous to geocentric polar coordinates. The
cartesian coordinates in this system are computed by equations (H.3)

with
and

Here r_ is the radius of the body of departure (earth or moon).

B

These coordinates are then transformed to equatorial coordinates

by a matrix C computed as follows:

. Regg X Ry
| Reyy X Byl

k

ix 'jx kx
c = i J k
y y y
iS JS kS
L J

(v.1)

(v.2)



and

R = CRyop

(v.3)
R = CRyp

The matrix C is unitary, and C L = C*, permitting easy inversion of
equations (V.2).



Ww. EQUATIONS FOR TRANSLUNAR PLANE INPUT

The translunar piane input is designed to permit easy visualization
of the geometric relationships between initial conditions for circum-

lunar trajectories and the motion of the moon.

The initial conditions are given in a coordinate system referred to
the translunar plane. This system has its x axis along the ascending
node of the vehicle with respect to the moon's orbital plane, its y axis
in the translunar plane at right angles to the ascending node, in the
direction of motion. In this coordinate system, initial position and

velocity vectors are given by

X, = (rB + h)cos ¥
Yo, = (rB + h)sin ¥ (w.1)
zTL =0

HBere rp is the radius of the body of departure (earth or moon) .
iTL = v sin (y - ¥)
iTL = v cos (y - Y) (w.2)
z'TL=o

The translunar plane is positioned by giving its inclination iTL
with respect to the moon's orbital plane and the lunar lead angle O,

the angle between the moon's position at injection and the descending
node. The vectors RTL and éTL may then be transformed into the equatorial

system by the following series of rotations:



1. A rotation - iTL about the X1, axis will rotate the translunar plane

into the moon's orbital plane.

2, A rotation of m - (XM

orbital plane coordinate system to the ascending node of the moon's orbital

+ ¢) about the new z-axis will refer the moon's

plane (with respect to the equator) as x-axis.

Here AM stands for the argument of latitude of the moon. These
rotations are performed by multiplying RTL and ﬁTL by the matrix:

-cos (AM + o) sin (AM.+ ¢) -sin (AM + ) sin o
A = -sin (AM + o) -cos (AM + @) cos igp, cos (AM + ¢@)sin Loy, (W.3)
L 0 sin iTL cos iTL

3. The moon's orbital plane (MOP) is rotated about its node through an
angle - 1, (the inclination of the MOP)

4. The ascending node is brought into coincidence with the vernal
equinox by a rotation - QM. These two rotations are embodied in the

matrix
]
cos QM -sin QM cos iM sin QM sin iM
B = sin QM cos QM cos iM -cos QM sin iM (W.k)
0 sin iM cos iM
and thus:
R = (BA) Ror,
(W.5)

R = (BA)I}TL

w=-2



