X-643-70-330

PREFRINT

NASA ITM X: 65342

INTERPLANETARY TRAJECTORY ENCKE METHOD FORTRAN PROGRAM MANUAL FOR THE I.B.M. SYSTEM/360

SEPTEMBER 1970

GSFC - GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

X-643-70-330

INTERPLANETARY TRAJECTORY ENCKE METHOD FORTRAN PROGRAM MANUAL FOR THE I. B. M. SYSTEM/360

September 1970

ITEM PROGRAM MANUAL

FORTRAN IV VERSION
by

Fred H. Whitlock
Goddard Space Flight Center Greenbelt, Maryland
and
Henry Wolf
Leon Lefton
Norman Levine
Analytical Mechanics Associates, Inc. Jericho, New Yorls

A program of this nature must, of necessity, take a period of several years for its development; it is thus impossible to mention the names of all those who have contributed to its growth. It was originally conceived by S. Pines and H. Wolf at Republic Ariation Corporation under contract to NASA (NASA-109) beginning in 1959. This version is issued under contract to the Theoretical Mechanics Branch, Liaboratory for Space Physics of the Goddard Space Flight Center. Majcr contributors have been C. Bergren, C. Hipkins, M. Wachman, L. Lefton, F. Shaffer, F. Whitlock and N. Levine.

Numerous additions and improvener: is have been made to the current version including reprogramming for : e I.B.M. Operating System 360 Computers, and development is a continuing effort. This edition covers the conversion of the original machin: language program to Fortran IV.

The program has been and is available for general use to interested organizations.** The authors express their appreciat on to Mrs. Beatrice Boccucci: for her assistance in the : inal preparation of this manual.

```
**Address: Head, Theoretical Mechanics Branch
    Laboratory for Space Fhysies, Code }64
    Goddard Space Flight Center
    Greenbelt, Maryland 20771
```


TABLE OF CONIENNS

Section Page
I. Introduction I-1
II. Notation II-I
III. General Procedure for Using Program III-1
IV. Initial Conditions IV-I
A. Cartesian Coordinates IV-I
B. Geodetic Polar Coordinates IV-2
C. Geocentric Polar Coordinates IV-2
D. Osculating Element Input IV-3
E. Comments IV-3
V. Terminating Conditions V-I
VI. Permissible Perturbations VI-I
VII. Radar Information Program VII-I
VIII. Subroutine MODIF VIII-1
A. Radiation Pressure VIII-I
B. Aerodynamic Drag VIII-2
C. Atmospheric Tables VIII-3
D. Printout VIII-4
E. Ephemeris Tim VIII-5
F. Inclusion or Exclusion of Perturbations VIII-6
IX. Input IX-I
X. Output X-1
A. Program Outputs X-1
B. Optional Outputs $x-5$

1. Coordinates of Vehicle X-5
2. Shadow Print X-7
3. Radar Output X-8
4. Reentry X-9
5. Trajectory Search X-9
6. Impact Parameters X-11
7. Apagee, Perigee, Nodal Crossing Print X-12

TABLE OF CONTENNIS (Cont.)

Section Page
XI. Internal Procedures XI-I
A. Units XI-1
B. Ephemeris Tape XI-1
C. Ephemeris in Core XI-3
D. Perturbation Program. XI-4
XII. References. XII-1
XIII. Routines Available Upon Request XIII-1
XIV. Methods of Integration. XIV-1
Appendices
A. Introduction. A-1
B. Equations of Motion B-1
C. Integration Procedure C-1
D. Solution of the Kepler Two-Body Problem D-1
E. Computation of Perturbation Terms E-I
F. Conclusions F-I
G. Oblateness Terms G-1
H. Transformation Equations from Geodetic Polar Coor- dinates to Cartesian Coordinates. H-1
I. Transformation Equations for Radar Simulation I-1
J. Variable Order Interpolation Scheme J-1
K. Drag Computation. K-I
L. Computation of Subsatellite Point L-1
M. Change of Independent Variable - Beta Mode M-I
N. Shadow Logic $\mathrm{N}-\mathrm{I}$
O. Solar Radiation Pressure 0-1
P. Ecliptic Coordinates P-1
Q. Moon Rotating and Fixed Coordinate System Q-I
R. Trajectory Search R-1
S. Equations for Flight Path Azimuth and Flight Path Angle S-I
T. Osculating Elements T-I
U. Impact Parameters U-1
V. Moon's Orbital Plane Input and Output V-1
W. Equations for Translunar Plane Input W-1

LIST OF FIGURES

Page
Figure 1. Geometry of the Elliptic Two-Body Orbit D-3
Figure 2. Relation between Declination, Geocentric and Geodetic Latitudes H-2
Figure 3. Diagram for Shadow Logic. $\mathrm{N}-3$

I. INTIRODUCTION

This report describes a general purpose Interplanetary Trajectory Encke Method (IIEM) Program, programmed in the FORIRAN IV language. The method employed is designed to give the maximum available accuracy without incurring prohibitive penalties in machine time. On the basis of research described in Reference 4, the Encke method was selected as best satisfying these requirements. However, the classical Encke method was modified to eliminate some of its objectionable features. This modified Encke method is described in Appendix A.

The perturbations included in this program are the gravitational attractions of the Earth, Moon, Sun, Mercury and the outer planets. The outer planets are considered as point masses. Additionally, the effects of the zonRl and tesseral harmonics of the Earth, as well as aerodynamic drag, small corrective thrusts, and radiation pressure including the shadow effect of the Earth, are considered. The input may be prepared in any one of several common systems and a great variety of output options are available.

Additional options that are currently under development are explained in Section XIII.

II. NOTATION		
Upper case - vectors; Hats - unit vectors; Lower case - magnitudes		
Description	Symbol	Units
Cartesian coordinatesof vehicle with respect to reference body	x y z	km
Velocity components in Cartesian Coordinates	$\dot{x} \dot{\mathrm{y}} \dot{\mathrm{z}}$	km/sec
Time	t	hrs.
Longitude measured from Greenwich, + East (used in Section Iv and Appendix H)	θ	degrees
Longitude of vernal equinox	$\theta 0$	degrees
Speed	v	km/sec
Geodetic altitude*	h	km
Geodetic latitude	φ	degrees
Geodetic flight path angle	γ	degrees
Geodetic flight path azimuth	A	degrees
Acceleration parameter (defined in Appendix E)	u	
Right ascension	RA	degrees
Astronomical units	AU	
Earth radii	ER	
Earth mass	m_{e}	
Semi-major axis	a	ER

[^0]| Description | Symbol |
| :---: | :---: |
| Vehicle position vector | R |
| Distance to venicle | r |
| Perturbation displacement vector | $\Delta \mathrm{R}$ |
| Perturbation displacement vector components | \%,7, $¢$ |
| Perturbats on acceleration | F |
| coordinate functions and their time derivatives | f,g,f,g |
| Mass parameter | μ |
| Earth's eccentricity as used in Appendices H, I, L, S | e |
| Mean motion | n |
| Unit vectors for classical two-body orbit solution | \hat{P}, \hat{Q} |
| Eccentric anomaly as used in Appendix T | E |
| Elevation angle as used in Appendix I | E |
| $\mathrm{R}_{\mathrm{O}} \cdot \dot{R}_{0}$ | d_{0} |
| Inclination of orbital plane | 1 |
| Right ascension of the ascending node | Ω |
| Vector from the body to vehicle | R_{VT} |
| Greenwich Hour Angle | G.H.A. |
| Argument of perigee | ω |
| Parameters which account for polar oblateness of the earth, defined in Appendix H | c, s |
| Right ascension of the station meridian | RA_{5} |
| Range measured from observation station | ρ |
| Direction cosines measured in a topocentric coordinate system | λ, μ |
| Declination | 6 |

SUBSCRIPTIS

Symbol
Vehicle v
ith perturbing body i
Quantity obtained from Keplerian soluivion of two-body problem k
Reference body as used in Appendix B c
Station s
$R_{A}-R_{B}$$\mathrm{R}_{\mathrm{AB}}$
Value at rectification timeCorresponds to $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components respectively$n=1,2,3$
Value at perigee p
III. GENERAL PROCEDURE FOR USING PROGRAMS

Initial conditions, terminal conditions and print frequency, as well as other parameters controlling the tilow of the program, are read as input. The computation of the trajectory then proceeds until one of the terminal conditions (e.g. maximum time) has been reached or an error is encountered. At this time the program prints the reason for its termination and proceeds to the next case. When an end of file is enccintered on the input tape, control is transferred to the monitor.

```
IV. INITIAL CONDITI';
```

The initial conditions necessary for the specification of a

trajectory are:

1. Initial position of the vehicle relative to the reference body.
2. Initial velocity of the vehicle relative to the reference body.
3. Initial time of launch referenced to a base time.

For specification of the intial conditions, the reference systems and units shown below may be used.

$\therefore \quad$ Cartesian Coordinates

The coordinate system is defined as follows:

1. The origin is at the center of the reference body.
2. The x-axis is in the direction of the mean equinox of December 31.0 of the year of launch.
3. The $x y$ plane is the mean equatorial plane of the Earth.

Initial position is given by the x, y, z coordinates of the vehicle. Initial velocity is given by the $\dot{x}, \dot{y}, \dot{z}$ components of the vehicle. Initial time of launch from base time ${ }^{(1)}(t)$ is also given. If the program is used in its standari form, the units ${ }^{(2)}$ to be used for the above are:
x, y, z - kilometers
x, y, z - kilometers/seconá
t - month, day, hours, minutes, and seconds from base time

The year of launch must also be given.
(1) The base time is 0.0^{h} UT December 31 of the year previous to the year of launch.
(2) Scale factors are used to convert the input units to the units used internally (ER or AU $e^{-} \quad A \cdot y$ other set of units may be used by changing thes sc:. \quad. s with the appropriate ID card as described in Sect :

Geodetic Polar Coordinates

Initial position of the vehicle is given by:

1. Geodetic latitude (φ)
2. Longitude ${ }^{(3)}(\theta)$, measured from Greenwich
3. Geodetic altitude (h)
4. Longitude of vernal equinox (3) at initial time (θ_{0}). This quantity may be computed by the program or may be loaded

Initial velocity of the vehicle is given by:

1. Speed (v) with respect to the center of the Earth.
2. Flight path azimuth (A) measured clockwise from north in a plane normal to the geodetic altitude.
3. Flight path angle (y) measured from a plane normal to the geodetic altitude.

Initial time of launch from base time ${ }^{(1)}(t)$ must also be given.

The following units must be used with the above quantities:

1. φ, θ, and θ_{0} - degrees; h - kilometers
2. A and γ - degrees; v - kilometers/second
3. t - month, day, hours, minutes and seconds

C Geocentric Polar Coordinates

Ordinarily an input given in polar coordinates will be interpreted as described in the preceding Paragraph B. However, if $\operatorname{NOPI}(1)=1(4)$, the program ni.il interpret latitude as declination, height as distance above a spherical Earth of equatorial radius, and flight path angle and azimuth with reference to a plane normal to the radius vector.
(3) If the right ascension (RA) at initial time is known, it may be used in place of longitude (θ). The lnngitude of the vernal equinox (θ_{0}) is then se to zero.
(4) See INPUT Section.

D. Osculating Element Input

The osculating elements to be input are:
Argument of perigee
Longitude of ascending node
Inclination
Semi-major axis (in Earth radii)
Eccentricity
Time of perigee, mean anomaly, eccentricity anomaly, or true anomaly (only one)

The program converts the above to Cartesian coordinates and then continues normally. (See Section IX, ID = 10.)
E. Comments

1. The program computes in Cartesian coordinates. Units used internally in the computation are:
(a).Position: Earth Radii (ER) or Astronomical Units (AU).
(b) Velocity: ER/HOUR or AU/HOUR
(c) Time : Hours
(Earth Radii units are used in the Earth or Moon Reference. Astronomical Units are used in the Sun, Mercury, Venus or outer planet reference).
2. The user is restricted to Cartesian coordinates when launching from any body other than the Earth as directed in preceding versions.
3. Equations for converting the initial conditions from Polar to Cartesian coordinates are shown in Appendix H.

v. TERMIITATIING CONDITIONG

The set of conditions which will terminate a trajectory may be summarized as:

1. Maximum time of flight - hours.
2. Maximum distance from any possible reference body considered in the solution. Last value in R-vector of integration and ،rint block "ARRAY ($1, n, J$)."
3. Minimum distance from any possible reference bojy considered in the solution. First value in R-vector of integration and print block ARRAY ($1, n, 1$)*

Any of these conditions will terminate a trajectory. Loading a large number into any of the maxima and a zero into any of the minima will make the corresponding conditions inoperative. A proper choice of these numbers will permit complete comntation of the desired trajectory, avoid extensive unnecessary computation and guard against faulty input.

* n designates reference body.

$n=1$ Karth	$n=7$ Saturn
$n=2$ Moon	$n=8$ Uranus
$n=3$ Sua	$n=9$ Neptune
$n=4$ Venus	$n=10$ Pluto
$n=5$ Mars	$n=12$ Mercury
$n=6$ Jupiter	

VI. PERMISSIBLE PERTURBATIONS

The trajectory computation consists of two parts, the exact solution to the two-body problem and integrated additions to this solution for the effect of perturbations. The successful control of rourd-off errors in the modified Fncke method depends on preventing the accumulated round-off error in the integrated perturbation displacement from affecting the computed position. This is achieved by always keeping the perturbation displacement small and rectifying whenever the perturbation exceeds specified limits. The constants mentioned below are used in determining the allowable limits as ratios of the perturbation position and velocity to the two-body position and velocity, respectively.

This ratio for the position vector is shown in the following sketch.

Encke Method

The recommended values for these ratios are as follows:

Position Ratio

$\operatorname{POSRCS} \quad\left(\frac{\Delta r}{r}\right)^{2} \leq .0001$

Velocity Ratio

VEIRCS $\quad\left(\frac{\Delta \dot{r}}{\dot{\dot{r}}}\right)^{2} \leqslant .0001$
and these are inccrporated into the program. Modifications may be made by altering the data subroutine, or by reading them in under $I D=12$, or by using Subroutine Modif.
VII. RADAR INFORMATION PROGRAM

The program may be used to simulate radar data if desired. A maximum of 30 stations can be processed at one time. The following information is required for each station considered:

1. Station Name - for identification purposes
2. Position of Radar Station
a. Longitude (θ) of the station fran Greenwich - degrees, minutes and seconds* - positive eastward.
b. Geodetic latitude (φ) of the station - degrees, minutes and seconds* - positive north.
c. Altitude (h) of station above sea level - feet.

The simulated zadar information consists of azimuth, elevation, topocentric right ascension and declination, slant range, and range rate. It is printed at every normal print time for which the elevation angle is positive. Refraction is not considered.

This section is coded as a subroutine and may be called at any time.

* Alternatively, these quantities may be given in degrees and decimals. Zero's must be loaded into the positions reserved for minutes and seconds.
The fractional parts will not appear in the printoli reproducing the station coordinates. They will, however, be included in the computation.

VIII. SUBROUTINE MODIF

Modifications to program constants, which normally remain unchanged during the running of a number of cases, may be made by using the appropriate common in conjunction with a compilation of a subroutine called MODIF. This subroutine may include data statements, FORTRAN G or H level statements, and/or read statements. The use of read statements is suggested to facilitate stacking of cases. Any modification included in this subroutine will be operative for all succeeding cases, unless it is revoked.

Modifications required more frequently may be accomplished through the use of ID(I)'s, as described in the INPUT section (Section IX).
A.

Radiation Pressure may be included by loading a coefficient into
\qquad

The number to be loaded is:

$$
\frac{\mathrm{KC}_{\mathrm{r}}^{\mathrm{A}}}{\mathrm{~m}}
$$

C_{r} is the radiation pressure in dynes $/ \mathrm{cm}^{2}$ at a distance of 1 AU from the Sun.

$$
C_{r}=4.6 \times 10^{-5} \frac{\text { dynes }}{\mathrm{cm}^{2}} \text { (estimated value) }
$$

** Real number

A area in cm^{2}
m mass in grams
K scaler $3600^{2}(23455 .)^{2} / 6378.165 \times 10^{5}=.11178 \times 10^{8}$ seconds
to hours, $E R$ to $A U, c m$ to $E R$

The radiation pressure will only be active if sunlight impinges on the vehicle. For correct results the radiation pressure should therefore, be run only in conjunction with the optional shadow computation as described in Appendix 0.

If, however, the expected trajectory may be safely assumed to be entirely out of the Earth's shadow, shadow testing may be avoided with a consequent saving in machine time. In this case, the following modification cards should be included in MODIF:

$$
\begin{aligned}
& \operatorname{SHDN}=1 \cdot D 0^{* *} \\
& \operatorname{SHDNI}=1 \cdot D^{* *} \\
& \operatorname{NOPT}(1 \%)=0
\end{aligned}
$$

B. Aerodynamic Drag

If inclusion of the aerodynamic drag is desired, the drag parameter $1 / 2 C_{D} A / M$ may be initialized by $I D=23$, as described in (Section IX) or loaded into subroutine MODIF by means of the following card:

COEFL $=\ldots{ }^{* *}$

The units of $C_{D} A / M$ are the area in cm^{2} and the mass in grams. A layered atmosphere rotating with the Earth is assumed. The density is obtained by a linear interpolation of the density-altitude table. The above may be incorporated into the Block DATA subroutine.

C. Atmospheric Tables

Atmospheric tables for the drag computation are stored in core. They correspond to COSPAR International. Reference Atmosphere of 1961, conteined in the Report of the Preparatory Group for an International Reference Atmosphere, accepted at the COSPAR meeting in Florence, April 1961. The units for the air density are grams $/ \mathrm{cm}^{3}$ and the height is given in ER from the center of the Earth. If it is desired to change this atmosphere, the following procedure should be followed:

NTAR $=$ \qquad * The number to be entered is N - the number of entries in the density table.
$\operatorname{RIBL}(I) \quad=$ \qquad **
$I=1,2,---, N$ - the values of r for which densities are given, in ascending order (a maximum of 50).
$I=1,2, \cdots, N-t h e ~ v a l u e s$ for the air density in grams $/ \mathrm{cm}^{3}$ in respective order corresponding to the preceding r table.

If other units are used for the density table, the drag parameter described in Part B of this section must be read in with like units and the constant (-6378.165 D 5) $* *$ normally in DRSC has to be changed accordingly. The negative sign directs the drag force opposite to the velocity. This constant converts the drag from the units used for A, M and ρ to $E R / h^{2} r^{2}$.

```
* Integer
```

** Real number

D. Printout

The program provides a special printout near the Earth, Moon, Sun, or T-Planet reference. This prinout occurs at every integraifion step and is useful for observing the behavior of these relevant quantities during ascent and re-entry. This feature is triggered by the following modification cards:

$$
\operatorname{SERE}(I)=\ldots \quad I=1,2, \ldots \ldots
$$

For printout near Earth use index $1 \quad \therefore$ ER units.

Mc $د n$	2	ER
Sun	3	AU
Venus	4	AU
Mars	5	AU
Jupiter	6	AU
Saturn	7	AU
Uranus	8	AU
Neptune	9	AU
Pluto	10	AU
Mercury	12	AU

The numbers used above are the radial distances within which the special printout is to be effective. The units are earth radil for the Earth and Moon references and astronomical units for the remaining planet references. A zern in any of the $\operatorname{SEFE}(I)$'s suppresses this feature.

E. Ephemeris Time

The planetary coordinates are interpolated using ephemeris time.

$$
E T=U T+\Delta T E
$$

An approximate value of $\triangle T E$ (35 seconds) is used. To change this quantity, the following card, giving $\triangle T E$ in hours, is insested: ETMUT $=\ldots$ The value for $\Delta T E$ - hours.

To restore original quantity:

EIMUT $=.00988888888$ gr* $^{*} \Delta T E$ is 35 seconds.
** Real number(s)

F. Inclusion or Exclusion of Perturbations

Ordinarily included are the graviational attractions of the Moor, Sun, Mercury, and the outer planets. The gravitational field of the earth (2nd, 3rd and 4th zonal harmonics) are included if $\operatorname{NOPT}(50)=1 . *$ A maximum of 15 zonal coefficients may be used. To exclude any or all of these perturbations, the following modifications should be included in subroutine MODIF:

MOON	$\operatorname{MEI}(2)=0 . \mathrm{DO}$
SUN	$\operatorname{MEI}(3)=0 . \mathrm{DO}$
VENUS	$\operatorname{MEI}(4)=0 . \mathrm{DO}$
MARS	$\operatorname{MEI}(5)=0 . \mathrm{DO}$
JUPITER	$\operatorname{MEI}(6)=0 . \mathrm{DO}$
SATURN	$\operatorname{MEI}(7)=0 . \mathrm{DO}$
URANUS	$\operatorname{MEI}(8)=0 . \mathrm{DO}$
NEPTUNE	$\operatorname{MEI}(9)=0 . \mathrm{DO}$
PLUTO	$\operatorname{MEI}(10)=0 . \mathrm{DO}$
MERCURY	$\operatorname{MEI}(12)=0 . \mathrm{DO}$

ZONAL and/or TESSERAL HABMONICS**
Zonals
EFJ $(2,3,4, \ldots \ldots \ldots$ 15) $=0 . D 0$

Tesserals

* Described in the INPUT Section (Section IX)
** Described in Appendix G
IX. INPUT

Input to the program is read in as follows:

Erch set of input is preceded by an ID card which contains an integer number terminating in column 10. This card may also contain Hollerith information startirg in co.'umn 11.
$I D=1$ Permits one card of Hollerith information - usually used for case identification.
$I D=2$ Permits one card containing a set of 72 fixed point l's or 0 's. Each flag (1 or 0) corresponds to the same numbered subroutine. A zero is used for normal operation and a one is used to print diagnostic information in the proper subroutine. A blank card after ID $=2$ will be necessary if the system does not zero out core before load time and normal operation is desired. In the program, these flags are referred to as $\operatorname{NC}(I)$.

ID $=3$ Performs similarly to $I D=2$. It allows a card of. $\operatorname{l's}$ and 0 's to be read into $\operatorname{NOPI}(I)(I=1$ to 72). These flags permit the incorporation of various opticns into the program. Following are the currently available options: $\operatorname{NOPT}(1)=1$ indicates polar geocentric coordinates

- 2 indicates geodetic coordinates when polar load is used.
NOPT (2-13) are used for print options.
$=0$ indicates no print
$=1$ indicates print
NOPT(2) is associated with XR print
NOPT(3) is associated with XRDT print
MOPI(4) is associated with XVE print
$\operatorname{NCPI}(5)$ is associated with XVM print
$\operatorname{NOPT}(6) \quad$ is associated with XME print

```
NOPT(7) is associated with XVS print
NOPT(8) is associated with XVVN print
NOPT(9) is associated with XVMR print
NOPT(10) is associated witn XVJP print
NOPT(12) is associated with XI print
NOPT(12) is associated with XIDN print
NOPT(13) is associated with DRXI print
NOPT(14) = l prints data statement parameters
NOPT(15) = 1 deletes regular print after rectification
NOPT(16) = I deletes print in rectification
NOPT(17) = 1 activates shadow computations
NOPT(20) = 2 activates predictor only integrator*
NOPT(20) = 3 activates predictor-corrector integrator*
NOPT(25) = 1 prints spin axis angles. This option may be
    used in conjunction with NC(47) to allow the user
    to input a desired spin vector.
NOPT(33) = 2 rotates positions and velocities from equatorial
    to ecliptic coordinates for printing
NOPT(40-44) = 0 indicates no print
NOPI(40 and 4.1)=1 is associated with XVPl print
NOPT(40 and 42)=1 is associated with XVP2
NOPT(40 and 43)=1 is associated with XVP3
NOPT(40 and 44)=1 is associated with XVP4
NOPT(40 and 45)=1 is associated with XVP5
NOPT(40 and 46)=1 is associated with XVP6
NOPT(50) = N No zonal or Tesseral harmonics are used.
MOPT(50) = I Includes the gravitational field of the Earth
    (2nd, 3rd, and 4th zonal harmonics)
NOPT(50) = 2 Includes zonal and tesseral harmonics
```

```
NOPT(51) = 1 activates restart feature (See ID=9).
NOPT(65) = 1 activates trajectory search (ID=18 must be included).
NOPI(68) = 1 activates residual computations with radar stations.
    (ID=21 must be included).
NOPT(68) = 2 activates residual computations without radar stations.
    (ID=2l must be included).
NOPT(69) = l activates solar engine logic for small corrective
    thrusts. This option can be made available
    upon request.
NOPT(70) = 1 activates element roation. This option is used in
    conjunction with a variable called IELD. IELD
    should be set in subroutine MODIF as follows:
    IELD=2 Permits ecliptic elements for input, resulting in
        equatorial osculating elements output.
    IELD=3 Permits equatorial elements for input, resulting in
        ecliptic element output.
NOPT(70) = 2 Permits osculating element input, Brouwer mean
NOPT(70) = 3 element output.
    This option can be made available upon request.
NOPT(71) =1 activates Beta Integrator*
NOPT(72) = 1 permits element load with the period (HRS) sub-
    stituted for the semi-major axis A(ER).
```

ID $=4$ Used to read in start time of flight in year, month, day, hours, minites, and seconds: starting reference body; and target reference using the following format (515, F5.2, 215). The reference bodies are numbered as follows:

$$
\begin{array}{llll}
1=\text { Earth } & 4=\text { Venus } & 7=\text { Saturn } & 10=\text { Pluto } \\
2=\text { Moon } & 5=\text { Mars } & 8=\text { Uranus } & 12=\text { Mercury } \\
3=\text { Sun } & 6=\text { Jupiter } & 9=\text { Neptune } &
\end{array}
$$

$I D=5$ Used for polar load and reads in $\theta, \varphi, h, v, A, \gamma$, and θ_{0}. The format used is (3D20.0). The program expects all angles in degrees, altitude in kilometers measured from the surface of the Earth, and the velocity in kilometers per second. If θ_{0} is read in as 1000.0DO, the program will compute the proper θ_{0}.

ID $=6$ Used for Cartesian input. $x, y, z, \dot{x}, \dot{y}$, and \dot{z} are read in with format (3D20.0). The program expects these coordinates to be equatorial in kilometers and kilometers per second, with the starting reference body as center.

ID $=7$ This option generates initial sunditions for a trajectory which is designed to get a spacecraft to the target within a specified number of deys, without thrust. The input is: the Julian date of start time, the flight time in days, option number, and the radius of the Earth's sphere of influence. The format used is (3D20.0).

Option number 1 starts in Sun Reference.
Option number 2 and 3 are not activated, however, they can be made available upon request. (See Section XIII) .

When Option $=1$ is used, input for ID=7 must be followed by 4 cards

Card $1=0,0,0.51373647 \mathrm{D}-6 *$ Format (Iう, D12.6, D18.8)
Card 2 = Blank
Card 3 = Blank
Card 4 = Blank

ID $=8$ This ID permits one to read in a vector of special print times. The first card after the ID card contains the number of such print times from 1 to 50, format (IIO). The following card or cards contain the times, format (3D20.0). If this ID is used in conjunction with NOPI(69) (solar engine option), these times are used forstarting and stopping the solar engine. Odd numbers start the engine, the even numbers shut the engine off.
$I D=9$ This ID reads in the following: PRSP, RACOE, TIMEL, STI, VI, CCNT, ENPLAN, and TR using format (3DRO.0).

PRSP A non-zero value will suppress normal print times until the specified time in hours has been reached.

RACOE A non-zero value will activate radiation pressure computations.

TIMEL Maximum time of flight in hours.
STI Not activated
VI Not activated
CCNT Triggers nodal crossing print. (See ID = 14 also). If CCNT and ICCNT are set to non-zero, ICCNT will take precedent. /.

ENTPLAN A non-zero activates the number of perturbing bodies to be used in the calculations. This must be an integer 1 or 12. If 1 is used the ephemerts data tape is neigher required nor used.

```
A non-zero value, in conjunction with NOPT(51), will
activate the restart feature. TR should be set to
the desired restart time in hours.
```

ID = 10 This ID permits one to load the initial conditions as osculating elements of an ellipse. The following are read in: SOMEG, LOMEG, INC, A, ECC, ELOAD, ELIRIG with format (3D20.0).

SOMEG is the argument of perigee
LOMEG is the longitude of the ascending node
A is the semi-major axis
ECC is the eccentricity
ELOAD depends on ELIRIG
If \quad ELIRIG $=1 \quad$ ELOAD $=$ time of perigee ELIRIG $=2 \quad$ ELOAD $=$ mean anomaly ELTRIG $=3 \quad$ ELOAD $=$ eccentric anomaly ELIRIG $=4 \quad$ ELOAD $=$ true anomaly
$I D=11$ Permits one to alter the integration and print intervals of the various reference bodies. The number of cards to be read is a function of ENPLAN. (See Sample Input Data in Section IX). The data expected are read in with format (3D20.0), and terminated by any integer greater than or equal to 13 - (FORMAT IlO) as follows:
Card 1 contains eight distances from Earth in ER 2 contains seven integration intervals in hrs. 3 contains seven print intervals in hrs. 4 contains eight distances from the Moon in ER 5 contains seven integration intervals in hrs. 6 contains seven print intervals in hrs. 7 contains eight distances from the Sun in AU 8 contains seven integration intervals in hrs. 9 contains seven print intervals in hrs.

```
    10 contgins eight distances from Venus in AU
    ll contains seven integration intervals in hrs.
    12 contains seven print intervals in hrs.
    13 contains eight distances from Mars in AU
    14 contains seven integration intervals in hrs.
    15 contains seven print intervals in hrs.
    16 contains eight distances from Jupiter in AU
    17 contains seven integration intervals in hrs.
    18 contains seven print intervals in hrs.
    LAST contains an integer .GE. 13(FORMAT IlO).
ID = 12 Permits one to make changes in the program's built-in data
or to read in other-than-normal inputs. This can be done
by using a subroutine called MODIF which must contain the
proper block common.
ID = 13 Allows one to change input and output scale factors, using
    format (3DRO.0). The card following the ID card contains
    TSCL, REKM, and XMDKM.
    TSCL is the time scale factor and sits in the program
        as 3600. It is used to change seconds to hours
        and hours to seconds
    REKM sits in the program as 6378.?65, the number of
        kilometers in one ER.
XMDKM sits as 14.9599 \times 10 }\mp@subsup{0}{}{7}\mathrm{ and is the number of kilo-
        meters in one AU.
ID = 14 sets triggers for apogee, perigee, and nodal crossing prints
The following card reads in ICANT, ICPNT, and ICCNT, using
format (3IlO)
ICANT = n prints every n th apogee
ICPNT = n prints every n th perigee
ICCNT = n prints every n n

ID \(=15\) Not activated
\(I D=16\) Allows radar station data to be read in. The card following the ID card contains the number of stations to be read in with format (IIO). The next two cards contain the name and coordinates of the first station with format (A46/7D10.0). This last format is repeated until all stations have been accounted for.
\(I D=17\) is used for reading in solar engine information with corcorrective thrusts. This option is not activated*.
\(I D=18\) is used for the iterator. The card following the ID card is read in with the format (1015)
IPS \(\quad=\) Number of the dependent parameter \((s)\).
ITMAX \(\quad=\) Maximum number of iterations.
NSL \(\quad\) Number of the independent parameter(s).
IPOFL (IPS) = Identification number(s) of the quantities to be achieved.
IVAR(NSL) \(=\) Input quantities to be varied in the units and sequence of the polar load, i.e., \(\theta, \varphi, h, v, A, \gamma\).

The remining cards are read in with the formst (7D10.0) YEPS (IPS) \(=\) The tolerance to which convergence is desired. if the solution converges to within the special tolerance, the iteration will stop.
* See Section XIII
```

XEPS(NSL) = Epsilon values of the independent va iable.
XVAR(NSL) = Epsilons to be used for generating secant
partials.

```
YCON( IPS) = The desired values of the dependent variables.

A maximum of any six dependent variables may be selected. The identification number(s) of the quantities to be achieved are as follows:
1. B - T Miss parameters
2. \(B \cdot R\) Miss parameters
3. Earth, Lunar or' T-planet inclination.*
4. Earth, Lunar or T-planet ascending node.*
5. Earth, Lunar or T-planet argument of perigee.*
6. Earth, Lunar or T-planet pericynthion radius.*

ID \(=20\) Starts the program.
\(I D=21\) Used in conjunction with NOPT(68) for reading in nominal and variational triggers with (out) radar simulation. If \(\operatorname{NOPI}(68)=1\), the card following the \(I D\) card is read with format (4IIO).

NOMLRI \(\quad 1=\) Nominal trajectory, \(0=\) variational
NOQAN \(=\) The number of radar stations
IOSCIR \(\quad 0=\) Radar residuals, \(1=\) osculating element residuals.

The user may find this option convenient for checking out numerical derivatives. If \(\operatorname{NOPT}(68)=2\), the card following the ID card is read with format (IIO).
NOMIRI \(\quad I=\) Nominal trajectory, \(0=\) variational

ID \(=23\) Used to initialize aerodynamic drag computation The card following the ID card is read in with format (3D20.0).
\[
\mathrm{COEFL}^{*} \quad 1 / 2 \mathrm{C}_{\mathrm{D}} \mathrm{~A} / \mathrm{M}
\]

DRSC*
DNTAR* number of entries in the density table.

ID \(=4\) must precede \(I D=5\). Except for this condition and ID \(=20\) which must be read in last, the ID's may be read in randonly.


\section*{SAMPLE INPUT DATA}



\section*{X. OUTPUT}
A. Program Outputs

The following information is printed as the output of the program.
1. Title
2. Case number and any identifying titles.
3. Launch time - year, month, day, hour, min, sec.
4. Input - in the same units as they were entered into the program.
5. List of parameters used in run.
6. At each rectification the following data are printed:
(b) RECTIFICATION PRTNT \(\qquad\) REPERENCE

PERT OVER UNPERT \(=\) (c) TTME \(=\) ( d ) DELTTA \(T=\) (c)
(a) Reference body
(b) and (c) indicate the reason for rectification
(c) If (c) \(=0\), rectification may be due either to switch of reference body or to change of integration interval.
If (c) \(\neq 0\), then the position, velocity, perturbations or the incremental eccentric anomaly have exceeded the permissible limits and (b) indicates which has been exceeded (see Section VI). These indications are given as:

PO - Position
VL - Velocity
TH - Incremental eccentric anomaly
(d) Time of rectification
(e) Integration interval

TIME IN YEAR, MONTH, \(\mathrm{D}_{2}\), HOUR, MIIN, SEC, ___ _ _ _ a
\(T=\) \(\qquad\) HOURS FROM EPOCH
\(\qquad\) YR \(\qquad\) ZR \(\quad\) RR RR

XRDT \(\qquad\) YRDT \(\qquad\) ZRDT \(\qquad\) RRDT \(\qquad\)(d)
RIGET ASCENSION (DEG) \(=\) DECL \(=\) _ (e)

Te SUBSAT POINT IONG \(=\) (f)
\(\qquad\)
HP = \(\qquad\)
(h)

GHA \(=\) \(\qquad\)
GEOCENTIRIC AZIMUITH
\(=\)
ELEVATION \(=\)
(k)

GEODEITC AZTMUIH
\(=\) \(\qquad\)
ELEVATION
\(=\) \(\qquad\)
(a) Year, Month, day, hour, second from time of launch
(b) Print time in hours from time of launch
(c) Position coordinates and magnitude of radius vector with respect to the reference body - kilometers/second
(d) Velocity components and magnitude of velocity vector with respect to the reference body - kilometers/second.
(e) Right ascention and declination in Earth reference system - degrees
(f) Longitude or sub-satellite point - degrees
(g) Latitude (geodetic) - degrees
(h) Geodetic height above the Earth's surface - kilometers
(i) Greenwich hour angle - degrees
(j) Geocentric flight path azimuth - degrees
(k) Geocentric flight path angle - degrees
(l) Geodetic flight path azimuth - degrees
(m) Geodetic flight path angle - degrees

(a) Moon longitude - angle between the projection of the vector from the Moon to the vehicle onto the Moon's orbital plane and the Moon-Earth vector (Moon reference only) - degrees
(b) Moon latitude - angle between the radius vector connecting the Moon and the vehicle and its projection onto the orbital plane of the Monn about the Earth (Moon reference only) degrees
(c) Selenocentric flight path azimuth - degrees
(d) Selenocentric flight path angle - degrees
(e) True anomaly - degrees
(f) Semi-major axis of trajectory - ER
\(+=\) ellipse
- = hyperbola
(g) Eccentricity of trajectory**
(h) Glosest distance to the reference boay (not necessarily the Earth)** - kilometers
(i) Farthest distance from the reference body (not necessarily the Earth)**(meaningful only for elliptic orbits) - kilometers
(j) Inclination of the orbital plane defined as the angle between the positive polar axis and the angular momentum vector** degrees

\footnotetext{
** These are the osculating values and hence only constitute an estimate of the quantities described.
}

(a) Argument of pericenter - angle measured from the ascending node to the pericenter vector**- degrees.
Set to zero for circular orbits and poorly determined for nearcircular orbits.
(b) Period**- hours
(c) Mean motion** - radians/hour
(d) Right ascension of the ascending node measured from the vernal equinox eastward along the equator**- degrees
(e) Mean anomaly** - degrees
(f) Eccentric anomaly** - degrees
(g) Time of nearest pericenter** - hours
(h) Components of the unit vector directed from reference toward pericenter**
(i) Components of the unit angular momentum vector
B. Optionsl Outputs


The above optional output appears between XRDT and RIGHT ASCENSION in the standard output. For instructions on how to obtain, see Section IX, ID \(=3\).
(a) Coordinates of vehicle with respect to the Earth - kilometers
(b) Coordinates of vehicle with respect to the Moon - kilometers
(c) Coordinates of the Moon with respect to the Earth - kilometers
(d) Coordinatiss of vehicle with respect to the Sun - kilometers
(e) Coordinates of vehicle with respect to Venus - kilometers
(f) Coordinates of vehicle with respect to Mars - kilometers
(g) Coordinates of vehicle with respect to Jupiter - kilometers
(h) Coordinatesof vehicle with respect to Saturn - kilometers
(i) Coordinates of vehicle with respect to Uranus - kilometers
(j) Coordinates of vehicle with respect to Neptune - kilometers
(k) Coordinates of vehicle with respect to Pluto - kilometers
(l) Coordinates of vehicle with respect to E-M Barycenter - kilometers
(m) Coordinates of vehicle with respect to Mercury - kilometers
(n) Perturbation vector and magnitude of the perturbations with respect to the reference body - kilometers
(0) Perturbation velocity vector and magnitude - kilometers/second
(p) Perturbation acceleration vector and magnitude - kilometers/second \({ }^{2}\)
2. Shadow Print*
\begin{tabular}{llll} 
& SHADOW & & PENUMBRA \\
PASSAGE FROM & \multirow{2}{*}{ TO } & SHADOW \\
& PENUMBRA & & PENUMBRA \\
& SUN & & \\
& PENTMBRA & & SUN
\end{tabular}
AT (a) TIME IN \begin{tabular}{l} 
SHADOW \\
PENNMBRA \\
SUN \\
PENUMBRA
\end{tabular}\(\quad\) (b) ACCUMULATED TIME ( c)

The above optional output appears before TIME IN YEAR, MONTH, DAY, HOUR, MIN, SEC in the standard output. It is controlled through the INPUT subroutine \([\operatorname{NOPT}(17)]\) (see Section IX, ID \(=3\) ).
(a) Time at which vehicle traverses denoted shadow boundary - hours
(b) Total time the vehicle spends in denoted shadow region during current traverse - hours
(c) Total accumulated time spend in denoted shadow region since launch - hours
* Apper \(¥ 1 x\) N

\section*{3. Radar Output*}
\begin{tabular}{ll} 
STATION & (a) \\
AZIMUTH & (c) \\
ELEVATION & (b) \\
TOPOC. R A & (c) \\
TOPOC. DECL. & (c) \\
SLT RNG & (d) \\
RANGE & (e)
\end{tabular}

This output appears at the tail end of a normal printout. An ID card in the INPUT subroutine will control this segment of the program (see Section IX, ID = 16).
(a) Station name (identification) for each station
(b) Azimuth and elevation with respect to each station - degrees
(c) Topocentric right ascension and declination with respect to each station - degrees
(d) The slant range to each station - kilometers
(e) Rate of change of slant range for each station - kilometers/ second

If the elevation is negative (the vehicle is below the horizon), this print is suppressed for the station in question.
* Appendix I.

\section*{4. Reentry Output}

REENTRY PRINT TIME \(\begin{aligned} & \text { INERTIAL SPEED } \\ & \text { (kilometers/second) }\end{aligned}\)

Right ascension, declination, Earth subsatellite points and flight path azimuth and angle as given above.

The above optional output appears between GEOD ELEV and MOON SUBSAT POINT in the standard output.

\section*{5. Trajectory Search Output}

The output consists of the normal ITEM output for a nominal trajectory and the same trajectory output for each variation requested for each iteration. The output format used only for the trajectory search follows:

VARIATION IN INITIAL CONDITIONS (a) (b) (c) (d) (e) (f) (g)
(a) Change in latitude - degrees
(b) Change in longitude - degrees
(c) Change in altitude - kilometers
(d) Change in velocity - kilometers/second
(e) Change in azimuth - degrees
(f) Cnange in flight path angle - degrees
(g) Change in initial time - hours
5. Trajectory Search Output (cont.)
\begin{tabular}{|c|c|}
\hline QUANTITY CODE & (a) \\
\hline DESIRED VALUES OF ABOVE QUANHITIES & (b) \\
\hline REQUIRED ACCURACY & (c) \\
\hline MATRIX OF PARTIAL DERIVATIVES & (d) \\
\hline RESIDUAIS AND HCANGES IN IVITIAL CONDITIONS & (f) \\
\hline
\end{tabular}
(a) Code indicating quantities to be searched for.
(í) Desired values of above quantities - degrees, kilometers, seconds.
(c) Tolerances allowed on above values - degrees, kilometers, seconds.
(d) Matrix with the dependent variables arranged by row. The independent by column.
(e) Residuals (desired-nominal) of quan+ifies designated by the quantity code.
(f) Change required in initial conditions.
(g) Normalized changes in initial quantities in order of the variations.

The option associated with trajectory search routines is initiated by an ID card in the INPUT subroutine (see Section IX, \(I D=18\) )
5. Impect Parameter Outpui.*
\begin{tabular}{ll} 
SHAT & \((\mathrm{a})\) \\
RHAT & \((\mathrm{b})\) \\
THAT & \((\mathrm{c})\) \\
B & \((\mathrm{a})\) \\
B•T, B•R & \((\mathrm{c})\) \\
\hline
\end{tabular}
(a) Unit vector in the direction of the incoming asymptote.
(i) Unit vector normal to THAT and the asymptote in a right-hand sense.
(c) Unit vector parallel to the ecliptic (or Moon orbital plane) and perpendicular to the incoming asymptote.
(d) Vea.ur from the body to the vehicle as it crosses the impact plane.
(e) The dot prodict of \(R_{V T}\) at the crossing and THAT.
(f) The dot product of \(R_{V T}\) at the crossing and RHAT.

\footnotetext{
* - - - - - -
}

\section*{7. Apogee, Perigee, Nodal Crossing Print}

Apogee and perigee print times are computed more accurately than formerly, and the nodal crossings are found by iteration. The trigger for apogee is ICANT; for perigee ICPNT; for nodal crossing ICCNT. The apogee and perigee print times are found by fitting a parabola through three neighboring points and determining the minimum or maximum respectively. The crossing time is found iteratively by
\[
t_{\mathrm{CN}}=t_{\mathrm{CN}-1}-\frac{z_{N-1}}{\dot{z}_{\mathrm{N}-1}}
\]

\footnotetext{
\(t_{C O}\) is the time for which \(Z\) changed in sign.
}
A. Units

The units used interneliy are Earth Radii and Earth Radii/hour in the Earth and Moon references, and Astronomical Units and Astronomical Units/hour in the Sun, Mercury, Venus thru Pluto Reference systems.
B. Ephemeris Tape

The relative positions of the solar system bodies are obtained from a tape generated by the Jet Propulsion Laboratory. A separate program prepares a binary tape referred to the mean equinox of MIDFILE*, containing 16 days perrecord, in a form compatible with the main program. The Ephemeris Subrouiine searches the tape and reads in the proper file and record, keeping 32 days of tables in core storage at a time.

The first record on each file* consists of the year, number of records and number of files* in fixed decimal form. Each of the successive records contains the foilowing information:

Word l: Initial time of record in hours from base time. ( \(0.0^{\mathrm{h}}\) UT December 31 of year previous to launch).
* Pseudo filき. Tape is prepared in overlapping two-year groups.
Equatorial coordinates of Mercury in two-day intervals follow ( 9 x
values, 9 y values, 9 z values) . Then 27 consecutive five-word
blocks containing the equatorial coordinates, in four-day intervals of

XVNE
XSE
YVNE
XAS
YSE
XIS
are followed by three 32 -word blocks containing the equatorial coordinates of the

XNE YNE ZNE Moon with respect to Earth

The Moon coordinates are stored in half-day intervals ( \(0.0^{\mathrm{h}}, 12^{\mathrm{h}} .0\) UT' with distance measured in ER. All other tables are in AU.

The equatorial coordinates of the planets and of the Moon are followed by their relocities, in exactly the same order. Moon velocities are in ER/day. All other velocities are in AU/day.

At present, an ephemeris tape is available for 1965-1969, and 1968-1982, written in 5 and 15 two year groups respectively, eech of which overlaps one year.

\section*{C. Ephemeris in Core}

The astronomical tables are stored in core in 96-hour intervals for the Sun and the planets, and l2-hour intervals for the Moon. There are always 32 -days of tables available, arranged in such a way that the value of time for which the interpolation takes place is not near either end of the table.

In location TABLE(1), the time of the first entry from the initial time is stored. In TABLE(2) to TABLE (10) there are 9 \(x\) coordinates of the Sun with respect to the Earth. The following chart indicates the storage locations of the remaining astronomical data to be saved.
\begin{tabular}{|c|c|c|c|}
\hline TABLE (12) & to & TABLE ( 19) & \(y\) coordinates of the \(S\) with respect tn the Earth \\
\hline TABLE(20) & to & TABLE \({ }^{\prime}\) (28) & \(z\) coordinates of the Sun with respect to the Earth \\
\hline TABIE(29) & to & TABLE ( 55) & \(x, y, z\) coordinates of Jupiter with respect to the Sun \\
\hline TABLE (56) & to & TABLE (82) & \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) coordinates of Mars with respect to the Sun \\
\hline TABLE (83) & to & TABLE ( 109) & \(x, y, z\) coordinates of Venus with respect to the Sun \\
\hline TABLE (110) & to & TABLE ( 136) & x: y, z coordinates of Saturn with respect to the Sun \\
\hline TABLE (137) & to & TABLE (163) & \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) coordinates of Uranus with respect to the Sun \\
\hline TABLE (164) & to & TABLE ( 190) & x, y, z coordinates of Neptune with respect to the Sun \\
\hline TABLE (191) & to & TABLE (217) & \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) coordinates of Pluto with respect to the Sun \\
\hline TABLE( 218) & to & TABLE (244) & x, y, z coordinates of the EarthMoon Barycenter with respect to the Sun \\
\hline TABLE ( 245 ) & to & TABLE (296) & \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) coordinates of Mercury with respect to the Sun \\
\hline TABLE( 299) & to & TABLE (363) & \(x\) coordinates of the Moon with respect to the Earth \\
\hline
\end{tabular}
TABLE(364) to TABLE(428) \begin{tabular}{c} 
y coordinates of the Moon with \\
respect to the Earth
\end{tabular}
TABLE(429) to TABL (4.93)
z coordinates of the Moon with
respect to the Earth

These are followed by the velocities:
\begin{tabular}{|c|c|c|c|}
\hline TABLE (494) & to & TABLE( 520) & \(\dot{x}, \dot{y}, \dot{z}\) coordinates of the Sun with respect to the Earth \\
\hline TABLE (521) & to & TABLE ( 547 ) & \(\dot{x}, \dot{y}, \dot{z}\) coordinates of Jupiter with respect to the Sun \\
\hline TABLE ( 548 ) & to & TABLE ( 601) & \(\dot{x}, \dot{y}, \dot{z}\) coordinates of Venus with respect to the Sun \\
\hline TABLE ( 791) & to & TABLE ( 985) & \(\dot{x}, \dot{y}, \dot{z}\) coorainates of the Moon with respect to the Earth \\
\hline
\end{tabular}
D. Perturbation Program

The perturbation progiam solves three differential equations for XI, ETA, ZEIA. The differential equation for XI, with the various terms replaced by the storages containing them, is representative of all three equations and is given below:
```

DEXI = - GME [VCOR(1)/VCOR(12) - COMP(1)/COMP(4)]
- GMVN [VCOR(19)/VCOR(22) - COMP(19)/COMP(22)]
- GMS [VCOR(13)/VCOR(16) - COMP(13)/COMP(16)]
- GMMR [VCOR(25)/VCOR(28) - COMP(}25)/\operatorname{COMP}(28)
- GMJP [VCOR(31)/VCOR(34) - COMP(31)/COMP(34)]
- GMM [VCOR(7)/VCOR(10) - COMP(7)/COMP(10)]
+ OTHER PERTURBATIONS

```
where, for example, in the first term \(G \mathbb{N}=K^{2}\) is the mass of ine Earth, and \(\operatorname{VCOR}(4)\) is the length cubed of the vector \([\operatorname{VCOR}(J), \operatorname{VCOR}(2), \operatorname{VCOR}(3)]\). cimilarly, in the other terms the denominator is the length cubed of the tor containing the corresponding numerator. In the case where the two
terms within each of the brackets are nearly equal, they are computed by the special method described in Appendix E to avoid loss of accuraoy.

The contents of the COMP storage at any time, \(t\), depends upon the reference origin at that time.

CONTENTS OF COMP STORAGE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Earth Ref. & Moon Ref. & \begin{tabular}{l}
Sun \\
Ref.
\end{tabular} & Venus Ref. & \[
\begin{aligned}
& \text { Mars } \\
& \text { Ref. }
\end{aligned}
\] & Jupiter Ref. & \(\underline{C O M P(I)}\) \\
\hline XVEO & XME & XSE & X:NE & XMRE & XJPE & \begin{tabular}{l}
(1), (2), (3) \(=x, y, z\) \\
(4), (5), (6) \(=R^{3}, R, R^{2}\)
\end{tabular} \\
\hline XEM & XVMO & XSM & XVMM & XMRM & XJPM & (7), (8), (9) \\
\hline XES & XMS & XVSO & XVNS & XMRS & XJPS & (13), (14), (15) \\
\hline XEVN & XMVN & XSVN & XVVY\% & XMRVN & XJPVN & (19), (20), (21) \\
\hline XEMR & XMMR & XSMR & XVNMR & XVMRO & XJPMR & (25), (26), (27) \\
\hline XEJP & XMJP & XSJP & XVNKP & XMRJP & XVJPO & (31), (32), (33) \\
\hline
\end{tabular}

Here XVE refers to the \(x\) component of the vehicle with respect to the Earth, with corresponding definitions for the other quantities. An additional subscript of 0 denotes quantity derived from the two-body proklem.

\section*{CONTIENS OF VCOR STORAGE}

All
Refs.
XVE
\(\operatorname{VCOR}(I)\)

XVM
(1), (2), (3), (4), (5), (6) \(=x, y, z, R^{3}, R, R^{2}\)

XVS
(7), (8), (9)

XVV
(13), (14), (15)

XVMR
(19), (20), (21)

XVJP
(25), (26), (27)
(31), (32), (33)

XII . REFFERENCES
1. Anon.; "Goddard Minimum Variance Orbit Determination Program", Report No. X-640-62-191, NASA Goddard Space Flight Center, Special Projects Branch, Theoret 1 Division, October 18, 1962.
2. Whitney, C. A.; "The Structure of the High Atmosphere," Smithsonian Institution, Astrophysical Observatory, Special Report No. 25, April 20, 1959.
3. Minzner, R. A. and Ripley, W. S.; "The ARDC Model Atmosphere, 1956," AFCRCIW-56-204, Astia Doc. 110233, December 1956.
4. Pines, S., Payne, M. and Wolf, H.; "Comparison of Special Perturbation Methods in Celstial Mechanics, ARL IR 60-281, August 1960.
5. Morrison, J. and Pines, S.; "The Reduction from Geocentric to Geodetic Coordinates," A.J. 66, No. 1, February 1961.
6. Campbell, J., Moore, W. E. and Wolf, H.; "MmNAX - A General Purpose Adaptive Iterator for Nonlinear Problems," Analytical Mechanics Associates, Inc. Report on Contract NAS 9-2527, June 30, 1964.
7. Pines, S., Lefton, L., Levine, N., Whitlock, F.; "A Veriable Order Interpolation Scheme for Integrating Second Order Differential Equations," Report on Contract NAS 5-11738, July 1969.
8. Eades, Jr., James B.; "Elements of Orbital Transfer," Virginia Polytechnic Institute, Special Report Nv. 3, Volume 58, March 1965.
9. Battin, R. H. (1964) ; "Astronautical Guidance," McGraw-Hill, New York.
10. Kallmann-Bijl, H., Boyd, R. F., Lagow, H., Poloskov, S. M., Priester, W. (1961): "Cospar International Reference Atmosphere".
11. Pines, S., Austin, G.; "Gravitational Acceleration of a Point Mass Due to a Rotating Nonspherical Body," Analytical Mechanics Associates, Inc., Report on Contract NAS 9-7805, May 1969.

\section*{XIII. Available Upon Request}

Numerous additinns and improvements are under development to the current OS/360 version. These additions can be made available for general use to interested organizations.** A brief description of some of the additions are as follows:
1. Itiple Vehicles.

It is now possible to integrate \(N\) trajectories simultaneously ( \(N=1\) to 30 ). The user has the option of using the two-body solution for all trajectories or separate two-bodies for each trajectory.
2. Lambert's Problem.

The program has the capability of generating its own initial conditions when one is interested in a specific interplanetary trajectory. This option requires a starting Julian date, a desired flight time, and a target planet. Within this option, there is a further option which computes the initial conditions on the sphere of influence of the Earth or on a parking orbit inside the Earth's sphere of influence.
3. J. P. L. Ephemeris.

It is now possible to read the J.P.L. Epinemeris directly rather than by the method described in Section XI-1. This capability is obtained by adding a module of subroutines that would permit the trajectories to be integrated with respect to the mean equinox of 1950.
4. Small Corrective Thrust.
5. Tra,jectory Search

It is planned to automate the iteration scheme to go from
**Address: Head, Theoretical Mechanics Branch, Laboratory for Space Physics, Code 643, Goddsrd Space Flight Center, Greenbelt, Maryland 2077i.
two-body, to patched conic, to full trajectory, and to increase the number of variables to be adjusted, in optimal fashion.

\section*{Section XIV Methods of Integration}

The integration scheme employed by the Interplanetary Trajectory Encke Method program is a sixth order backward difference scheme, initiated by a Runge-Kutta scheme. The routine used is ? NewtonGregory integration scheme for general second order difference equations. (See Appendix C.).

The program has an ortion (NOPI \((71) \neq 0\) ) for integrating Beta insteal of time. (See Appendix M.). Computation is much faster in this mocic, however, the user is cautioned to choose delta beta with care.

The program has an option (NOPT(20)=2 or 3) for integrating second order differential equations by means of interoolating a table of second order derivatives. The size of tine ;able and the option of using predictor-corrector, or predictor only, are inputs to the program. (See Appendix J).

\section*{MATHEMATICAL APPENDIX}

\section*{A. INITRODUCTION}

The problem of orbit determination over long time periods requires a precise technique for integrating the equations of motion. Reference 4 contains an analysis of an integration procedure that yielàs the minimum loss of information due to the accumulation of numerical round-off errors. The Encke perturbation method has been shown to require minimum machine computation time for a minimun loss of numerical accuracy. The orbit prediction scheme presented herein uses a modified form of the Encke method with the initial position and velocity vectors replacing the conventional \(P\) and \(Q\) vectors of the Fncke scheme. By avoiding reference to the position of perigee, it is possible to avoid numerical ambiguities arising from near-circular orbits and orbits of low inclination.

\section*{E. EQUATIONS OF MOTION}

In a Newtonian system, the equations of motion of a particle in the gravitational field of \(n\) attracting bodies and subject to other perturbing accelerations such as thrust, drag, oblateness, radiation pressure, etc. are given by
\[
\begin{equation*}
\xi_{v}=-\sum_{i=1}^{n} \mu_{i} \frac{R_{v i}}{r_{v i}^{3}}+\sum_{j} F_{j} \tag{B.1}
\end{equation*}
\]

These equations are put into observable form by referring them to a reference body \(c\). The equations of motion of the reference body are
\[
\begin{equation*}
\ddot{R}_{c}=-\sum_{\substack{i=1 \\ i \neq c}}^{n} \mu_{i} \frac{R_{c i}}{r_{c i}{ }^{3}} \tag{B.2}
\end{equation*}
\]

Subtraction of Equation (B.2) from Equation (B.1) results in the equations of motion of the vehicle with respect to the reference body \(c\).
\[
\ddot{R}_{v c}=-\left(\mu_{v}+\mu_{c} j \frac{R_{v c}}{r_{v c}^{3}}-\sum_{\substack{i=1 \\ i \neq c}}^{n} \mu_{i}\left[\frac{R_{v i}}{r_{v i}^{3}}-\frac{R_{c i}}{r_{c i}^{3}}\right]+\sum_{j} F_{j}\right.
\]
C. INTEGRATION PROCEDUPE

If Equation (B.3) is integrated direct,ly by some numerical scheme, there results, after a number of step-by-step iniagrations, an accumulation of error which leads to inaccurate results. To avoid this loss in precision, it is convenient to write Equation (B.3) in the form
\[
\begin{equation*}
\ddot{R}_{v c}=\ddot{R}_{k}+\ddot{\Delta} \tag{c.1}
\end{equation*}
\]

The velocity and displacement vectors can be written as
\[
\begin{align*}
& \dot{R}_{v c}=\dot{R}_{k}+\Delta \dot{R}  \tag{c.2}\\
& \mathrm{R}_{\mathrm{vc}}=\mathrm{R}_{\mathrm{k}}+\Delta \mathrm{R} \tag{c.3}
\end{align*}
\]

The reference body (the one in whose sphere of influence the vehicle travels) is chosen so as to minimize the perturbations.

In this method \(\ddot{\mathrm{R}}_{\mathrm{K}}\) is taken as
\[
\begin{equation*}
\ddot{R}_{k}=-\left(\mu_{v}+\mu_{c}\right)_{r_{k}}^{\frac{R_{k}}{r_{1}}} \tag{c.4}
\end{equation*}
\]
and
\[
\begin{equation*}
\ddot{\xi}=-\left(\mu_{v}+\mu_{c}\right)\left[\frac{R_{v c}}{r_{v c}^{3}}-\frac{R_{k}}{r_{k}^{3}}\right]-\sum_{\substack{i=1 \\ i \neq c}}^{n} \mu_{i}\left[\frac{R_{v i}}{r_{v i}^{3}}-\frac{R_{c i}}{r_{c i}^{3}}\right]+\sum_{j} F_{j} \tag{c.5}
\end{equation*}
\]

Equations (C.4) constitute the equations of motion of the Kepler nroblem and are solved as described in Appendix D.

Equations (c.5) are integrated numerically. The integration scheme employed by the ITEM program is a sixth order backward difference scheme, initiated by a Runge-Kutta scheme. The routine used is a NewtonGregory integration scheme for second order difference equations written by S. Pines and J. Mohan of Analytical Mechanics Associates, Inc.

As derived in Appendix D, the solution of the Kepier problem may be represented by the vectors \(R_{0}, \dot{R}_{0}\), the scalar a and the rectification time \(t_{o}\).

The rectification process consists of moving \(R_{v c}, R_{v c}\) into the locations \(R_{0}\) and \(\dot{R}_{0}\), \(t\) into \(t_{0}\) and the computation of \(a\) and \(n\).

For computational convenience, the coefficients appearing in Equations (D.2) are also computed during rectification.
D. SOLUTION OF THE KEPLER TWO-BODY PROBLEM

The unified formulation of the two-body problem is used for both elliptic and hyperbolic cases.
\[
\begin{align*}
& \beta=\sqrt{|a|} \cdot \theta \\
& \alpha=\beta^{2}\left(\frac{1}{a}\right) \\
& F_{i}(\alpha)=\frac{1}{6}-\frac{\alpha}{120}+\frac{\alpha^{2}}{5040} \cdots-\cdots=\sum_{i=0}^{\infty} \frac{(-\alpha)^{i}}{(2 i+3)!} \\
& F_{2}(\alpha)=\frac{1}{2}-\frac{\alpha}{24}+\frac{\alpha^{2}}{720} \cdots \sum_{i=0}^{\infty} \frac{(-\alpha)^{i}}{(2 i+2)!} \tag{D.1}
\end{align*}
\]
\(F_{3}(\alpha)=1-\alpha F_{1}\)
\[
F_{4}(\alpha)=1-\alpha F_{2}
\]
and
\[
\begin{align*}
& f=1-\frac{1}{r_{0}} \beta^{2} F_{2} \\
& g=\frac{r_{0}}{\sqrt{\mu}} \beta F_{3} \frac{d_{0} \beta^{2} F_{2}}{\mu}  \tag{D.2}\\
& \dot{f}=-\frac{\sqrt{\mu}}{r_{0}} \beta F_{3} \\
& \dot{g}=1-\frac{1}{r} \beta^{2} F_{2}
\end{align*}
\]
where
\[
\begin{aligned}
& d_{0}=R_{0} \cdot R_{0} \\
& r=\beta^{2} F_{2}+r_{0} F_{4}+\frac{d_{0}}{\sqrt{\mu}} \beta F_{3} \\
& R=f R_{0}+g \dot{R}_{0} \\
& \dot{R}=\dot{f} R_{0}+\dot{g} \dot{R}_{0} \\
& a=\left(\frac{2}{r_{0}}-\frac{V_{0}^{2}}{\mu}\right)^{-1} \\
& \frac{V_{0}}{2}=\dot{R}_{0} \cdot \dot{R}_{0}
\end{aligned}
\]
\(\boldsymbol{\alpha}\) is determined from the modified Kepler equation
\[
\begin{equation*}
\sqrt{\mu} \quad \Delta t=\beta^{3} F_{1}+r_{0} \beta F_{3}+\frac{d_{0}}{\sqrt{\mu}} \beta^{2} F_{2} \tag{D.3}
\end{equation*}
\]

See Figure 1 for the two-body orbit which results from the solution of Equation (c.4) with the initial conditions:
\[
\begin{align*}
& R_{k}\left(t_{0}\right)=R_{v c}\left(t_{0}\right)=R_{0} \\
& \dot{R}_{k}\left(t_{0}\right)=\dot{R}_{v c}\left(t_{0}\right)=\dot{R}_{0} \tag{D.4}
\end{align*}
\]


Figure 1. Geometry of the Elliptic Two-Body Orbit

\section*{E. COMPUTATION OF PERTURRATION TERMS}

The terms accounting for the Encke term and the planetary perturbations appearing on the right hand side \(f\) Equation (C.5) involve numerous terms of the form \(\frac{R}{r^{3}}-\frac{R_{0}}{r_{0}{ }^{3}}\) where \(R\) and \(R_{0}\) may differ unly by small amounts. For the Encke term, for instance \(R-R_{0}=\xi\) which is small, and for the planetary perturbations, the difference is \(R_{v c}\) which also often is small.

A computation scheme, which avoids loss of precision due to the subtraction of nearly equal terms and which also is correct when \(R_{v c}\) is not small, is employed. This scheme is described below: Find
\[
\begin{align*}
& \frac{R}{r^{3}}-\frac{R_{0}}{r_{0}^{3}} \\
& u=\frac{2}{r_{0}^{2}}\left(R_{0}+\frac{1}{2} \Delta R\right) \cdot \Delta R  \tag{E.1}\\
& \frac{R}{r^{3}}-\frac{R_{0}}{r_{0}^{3}}=\frac{\Delta R}{r_{0}^{3}}+\frac{R\left(u^{3}+3 u^{2}+3 u\right)}{\left(1+\frac{r^{3}}{r_{0}^{3}}\right)}
\end{align*}
\]

\section*{F. CONCLUSIONS}

The method presented yields accurate trajectories using relatively little computer time. Summarizing some of the important features:
1. All significant solar system bodies may be included w.thout undue complications.
2. Since the perturbations only arn integrated, the allowable integration interval is fairly large over most of the path. Even in the vicinity of Earth or another planet a relatively large interval (compared to other schemes) may be used without limiting the stability and accuracy of the solutions.
3. The perturbations are kept small in two ways. First, the twobody orbit is rectified whenever the perturbations exceed a specified maximum value compared to the corresponding unperturbed values. This limits error build-up with respect to particular reference body. Second, the reference body of the two-body problem is changed from Earth, to Sun, to planet accordingly, as that reference body would contribute the largest perturbing force otherwise.
4. This method will handle circular orbits, zero inclination, etc. The problem is defined in terms of parameters which have real physical significance (namely, the position and velccity vectors) which are directly relatable to measurable quantities.

\section*{G. OBLATENESS TERMS}

A subroutine called GOBL was modifed to obtain, inertial Cartesian coordinates, the gravitational perturbation acceleration due to a rotating nonspherical body whose mass coefficients are given in terms of the zonal and tesseral harmonics. The method described herein avoids the classical singularity, which occurs for polar passage, when using spherical coordinates to describe the gravitational potential. This method also minimizes the numerical error incurred on double applicetion of coordinate transfornation from inertial to body-fixed and back again in the case of a rotating nonspherical gravitational body.

\section*{DERIVATION OF THE EQUARTIONS}

The potential at a point \(R\), in the coordinate system fixed in the body, is given by
\[
\begin{equation*}
\varphi=\frac{\mu}{r}\left\{1-\sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n}\left[J_{n} P_{n}(u)-\sum_{m=1}^{n} P_{n, m}(u)\left(C_{n, m} \cos m \lambda+S_{n, m} \sin m \lambda\right)\right]\right\} \tag{1}
\end{equation*}
\]
where
\[
\begin{align*}
u & =\frac{z}{r} \\
\tan \lambda & =\frac{y}{x} \\
P_{n}(u) & =\frac{1}{2^{n} n!} \frac{d^{n}}{d u^{n}}\left(u^{2}-1\right)^{n}  \tag{2}\\
P_{n, m}(u) & =\left(1-u^{2}\right)^{m / 2} \frac{d^{m}}{d u^{m}} P_{n}(u)
\end{align*}
\]

The accelerating force vector, in the body-fixed Cartes:ian coordinates, is given by
\[
\begin{equation*}
F=\frac{\partial \varphi}{\partial x_{i}}=\frac{\partial \varphi}{\partial r} \frac{\partial r}{\partial x_{i}}+\frac{\partial \varphi}{\partial u} \frac{\partial u}{\partial x_{i}}+\frac{\partial \varphi}{\partial \lambda} \frac{\partial \lambda}{\partial x_{i}} \tag{3}
\end{equation*}
\]
where
\[
\begin{align*}
& \frac{\partial r}{\partial x_{i}}=\frac{R}{r}=\hat{R} \\
& \frac{\partial u}{\partial x_{i}}=\frac{1}{r} \hat{k}-\frac{u}{r} \hat{R}  \tag{4}\\
& \frac{\partial \lambda}{\partial x_{i}}-\frac{1}{r\left(1-u^{2}\right)} \hat{k} \times \hat{R} \\
& k=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{align*}
\]

Combining the scalar coeff_ients of the vectors \(\hat{R}, \hat{k}\), and \(\hat{k} \times \hat{R}\), we have
\[
\begin{align*}
& F=\left[\begin{array}{l}
-\frac{\mu}{r^{2}}+\sum_{n=2}^{\infty} \frac{\mu_{a}^{n}}{n+2}\left\{J_{n}^{\prime}\left[u P_{n}^{\prime}+(n+1) P_{n}\right]\right\} \\
-\sum_{n=2}^{m} \frac{\mu a^{n}}{r^{n+2}}\left\{\sum_{m=1}^{n}\left[u P_{n, m}^{\prime}+(n+1) P_{n, m}\right]\left[C_{n, m} \cos m \lambda+S_{n, m} \sin m \lambda\right]\right\}
\end{array}\right] \\
& \left.-\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} J_{n} P_{n}^{\prime}-\sum_{m=1}^{n} P_{n, m}^{\prime}\left(C_{n, m} \cos m \lambda+S_{n, m} \sin m \lambda\right)\right] \hat{k}  \tag{5}\\
& +\sum_{n=2}^{\infty} \frac{\mu a^{n}}{n+2}\left[\sum_{m=1}^{n} \frac{m}{\left(1-u^{2}\right)} P_{n, m}\left(S_{n, m} \cos m \lambda-C_{n, m} \sin m \lambda\right)\right] \hat{k} \times \hat{R}
\end{align*}
\]

Examination of Eq. (5) indicates that, for a polar passage with \(u=1\), a singularity occurs in the coefficient of the \(k x R\) term and in the derivatives of the associated Legendre polynomials \(P_{n, m}(u)\). In order to remove this singularity and to avoid numerical inaccuracy in trajectories close to \(u=1\), it is convenient to change the coordinates from the spherical \(r, u, \lambda\) system to the four-parameter system defined below.

Let the body-fixed Cartesian vector be
\[
R=r \quad\left[\begin{array}{l}
s  \tag{6}\\
t \\
u
\end{array}\right]
\]
where
\[
\begin{align*}
& s=\frac{x}{r} \\
& t=\frac{y}{r}  \tag{6a}\\
& u=\frac{z}{r}
\end{align*}
\]

In this coordinate system, the potential, \(\varphi\), is given by
\[
\varphi=\frac{\mu}{r}\left[1-\sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n}\left\{J_{n} A_{n, o}(u)-\sum_{m=1}^{n} A_{n, m}(u)\left[C_{n, m} R_{m}(s, t)+S_{n, m} I(s, t)\right]\right\}\right](7)
\]
where
\[
\begin{align*}
A_{n, m} & =\frac{1}{2^{n} n!} \frac{d^{n+m}}{d u^{n+m}}\left(u^{2}-1\right)^{n} \\
R_{n}(s, t) & \approx \text { Real Part of }(s+i t)^{m}  \tag{7a}\\
I_{m}(s, t) & =\text { Imaginary Part of }(s+i t)^{m} \\
i & =\sqrt{-1}
\end{align*}
\]

In this system, the acceleration force vector in body-fixed Cartesian coordinates is given by
\[
\begin{equation*}
F=\frac{\partial \varphi}{\partial x_{i}}=\frac{\partial \varphi}{\partial r} \frac{\dot{c} r}{\partial x_{i}}+\frac{\partial \varphi}{\partial s} \frac{\partial s}{\partial x_{i}}+\frac{\partial \varphi}{\partial t} \frac{\partial t}{\partial x_{i}}+\frac{\partial \varphi}{\partial u} \frac{\partial u}{\partial x_{i}} \tag{8}
\end{equation*}
\]

\section*{where}
\[
\begin{align*}
& \frac{\partial r}{\partial x_{i}}=\frac{R}{r}=\hat{R} \\
& \frac{\partial s}{\partial x_{i}}=\frac{1}{r} \hat{i}-\frac{s}{r} \hat{R}  \tag{8a}\\
& \frac{\partial t}{\partial x_{i}}=\frac{1}{r} \hat{j}-\frac{t}{r} \hat{R} \\
& \frac{\partial u}{\partial x_{i}}=\frac{1}{r} \hat{k}-\frac{u}{r} \hat{R} \\
& \hat{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad ; \quad \hat{j}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] ; \quad \hat{k}=\left[\begin{array}{l}
0 \\
0 \\
l
\end{array}\right]
\end{align*}
\]

Combining the scalar coefficients of the vectors \(\hat{R}, \hat{i}, \hat{\jmath}\) and \(\hat{k}\), we have
\[
\begin{equation*}
F=\left(\frac{\partial \varphi}{\partial r}-\frac{s}{r} \frac{\partial \varphi}{\partial s}-\frac{t}{r} \frac{\partial \varphi}{\partial t}-\frac{u}{r} \frac{\partial \varphi}{\partial u}\right) \hat{R}+\frac{1}{r} \frac{\partial \varphi}{\partial s} \hat{i}+\frac{1}{r} \frac{\partial \varphi}{\partial t} \hat{j}+\frac{1}{r} \frac{\partial \varphi}{\partial u} \hat{k} \tag{9}
\end{equation*}
\]
or
\[
\begin{equation*}
F=\alpha_{r} \hat{R}+\alpha_{1} \hat{i}+\alpha_{2} \hat{j}+\alpha_{3} \hat{k} \tag{9a}
\end{equation*}
\]

For the perturbation coefficient of \(R\), we have

\[
\begin{equation*}
\left.-\sum_{m=1}^{n} m A_{n, m}\left[\left(s R_{m-1}-t I_{m-1}\right) c_{n, m}+\left(s I_{m-1}+t R_{m-1}\right) S_{n, m}\right]\right\} \tag{10}
\end{equation*}
\]

However
\[
\begin{align*}
& s R_{m-1}-t I_{m-1}=R_{m}  \tag{11}\\
& s I_{m-1}+t R_{m-1}=I_{m}
\end{align*}
\]

Therefore, ii.e two inner summations over the \(m\) index can be combined to read
\[
\begin{equation*}
-\sum_{m=1}^{n}\left[j A_{n, m+1}+(n+m+1) A_{n, m}\right]\left(R_{m} C_{n, m}+I_{m} S_{n, m}\right) \tag{10a}
\end{equation*}
\]

Furthermore, if we let
\[
J_{n}=-C_{n, 0}
\]
the expression for the coefficient of \(\hat{R}\) may be written as
\[
\begin{equation*}
\alpha_{r}=-\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{m=0}^{n}\left[u A_{n, m+1}+(n+m+1) A_{n, m}\right]\left(R_{m} C_{n, m}+I_{m} S_{n, m}\right) \tag{10b}
\end{equation*}
\]

A recursion equation for \(A_{n, m}\) may be derived, which yields
\[
\begin{equation*}
A_{n+1, m+1}=u A_{n, m+1}+(n+m+1) A_{n, m} \tag{12}
\end{equation*}
\]

The final compact expression for the coefficient of \(\hat{R}\) is given by
\[
\begin{equation*}
\alpha_{r}=-\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{n=0}^{n} A_{n+1, m+1}(u)\left[R_{m}(s, t) C_{n, m}+I_{m}(s, t) S_{n, m}\right] \tag{13}
\end{equation*}
\]

Turning to the coefficient of \(\hat{k}\), we have
\[
\begin{equation*}
\alpha_{3}=-\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}}\left[J_{n} A_{n, 1}-\sum_{m=1}^{n} A_{n, m+1}\left(R_{m} C_{n, m}+I_{m} S_{n, m}\right)\right] \tag{14}
\end{equation*}
\]

Using the convention that \(J_{n}=-C_{n, 0}\), Eq. (13) becomes
\[
\begin{equation*}
\alpha_{3}=\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{m=0}^{n} A_{n, m+1}\left[R_{m}(s, t) C_{n, m}+I_{m}(s, t) S_{n, m}\right] \tag{14a}
\end{equation*}
\]

The coefficients of \(\hat{i}\) and \(\hat{j}\), respectively, follow without modification.
\[
\begin{equation*}
\alpha_{1}=\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{m=1}^{n} n A_{n, m}(u)\left[R_{m-1}(s, t) c_{n, m}+I_{m-1}(s, t) S_{n, m}\right] \tag{15}
\end{equation*}
\]
and
\[
\begin{equation*}
\alpha_{2}=\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{n=1}^{n} m A_{n, m}(u)\left[R_{m-1}(s, t) S_{n, m}-I_{m-1}(s, t) C_{n, m}\right] \tag{16}
\end{equation*}
\]

\section*{RECURSION EQUATIONS FOR THE MODIFIED LEGENDRE POLYNOMIALS AND THEIR}

\section*{DERIVATIVES}

We seek a recursion equation for the modified Legendre polynomial, \(A_{n, m}\). We have
\[
\begin{equation*}
A_{n, m}(u)=\frac{d^{m}}{d u^{m}} P_{n}(u) \tag{17}
\end{equation*}
\]

In any standard reference on Legendre polynomials, we may obtain the two recursion equations,
\[
\begin{equation*}
(n+1) P_{n}+u P_{n}^{\prime}=P_{n+1}^{\prime} \tag{18}
\end{equation*}
\]
and
\[
\begin{equation*}
(2 n+1) P_{n}+P_{n-1}^{\prime}=P_{n+1}^{\prime} \tag{19}
\end{equation*}
\]

In terms of \(A_{n, m}(u)\), Equations (18) and (19) become
\[
(n+1) A_{n, 0}+u A_{n, 1}=A_{n+1,1}
\]
and
\[
(2 n+1) A_{n, 0}+A_{n-1,1}=A_{n+1,1}
\]

Combining Eqs. (18a) and (19a) and eliminating \(A_{n, 0}\), we solve for \(A_{n+1,1}(u)\) as follows:
\[
\begin{equation*}
A_{n+1,1}=P_{n+1}^{\prime}=u\left(2+\frac{1}{n}\right) P_{n}^{\prime}-\left(1+\frac{1}{n}\right) P_{n-1}^{\prime} \tag{20}
\end{equation*}
\]
or
\[
\begin{equation*}
A_{n+1,1}=u\left(2+\frac{1}{n}\right) A_{n, 1}-\left(1+\frac{1}{n}\right) A_{n-1,1} \tag{20a}
\end{equation*}
\]

Successive differentiation of Eq. (20a) yields
\[
\begin{equation*}
A_{n, m}=(m-1)\left(2+\frac{1}{n-1}\right) A_{n-1, m-1}+u\left(2+\frac{1}{n-1}\right) A_{n-1, m}-\left(1+\frac{1}{n-1}\right) A_{n-2, m} \tag{21}
\end{equation*}
\]

This is the required recursion equation. Furthermore, we have
\[
\begin{align*}
& A_{n, m}=0, \quad m>n \\
& A_{n, n}=1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)  \tag{22}\\
& A_{n, n-1}=u A_{n, n}
\end{align*}
\]

Starting with Eq. (2?), we may generate each row of \(A_{n, m}\), for fixed \(n\), by retaining the two previous rows of \(A_{n, m}\) and through application of Eq. (21) for \(m=n-2, n-3\), , , to \(m=1\). Thus, only three rows of \(A_{n, m}\) need be retained for a given \(\alpha\).

To obtain the result given in Eq. (12), we need only differentiate Eq. (18a) and obtain
\[
\begin{equation*}
A_{n+1, m+1}=u A_{n, m+1}+(n+m+1) A_{n, m} \tag{12}
\end{equation*}
\]

An alternate recursion formula for \(A_{n, m}\), which is more stable than Eq. (21), is
\[
\begin{equation*}
A_{n, m}=\frac{1}{n-m}\left(u A_{n, m+1}-A_{n-1, m+1}\right) \tag{2la}
\end{equation*}
\]

RECURSION EQUATIONS FOR \(R_{m}\) AND \(I_{m}\), AND THE ACCETERATION EQUATIONS FOR A ROTATING BODY
\[
\begin{align*}
& \text { For the zero power of } s+i t, \text { we have } \\
& \qquad(s+i t)^{\circ}=1 \tag{23}
\end{align*}
\]

Thus
\[
\begin{align*}
& R_{0}=1  \tag{23a}\\
& I_{0}=0
\end{align*}
\]

From Eq. (11), we obtain the recursion equations for \(R_{m}\) and \(I_{m}\). Given \(s\) and \(t\), we have
\[
\begin{align*}
& R_{m}(s, t)=s R_{m-l}-t I_{m-l}  \tag{11}\\
& I_{m}(s, t)=S I_{m-l}+t R_{m-l}
\end{align*}
\]

We may define
\[
\begin{align*}
& D_{n, m}=R_{m}(s, t) E_{n, m}+I_{m}(s, t) S_{n, m} \\
& E_{n, m}=R_{m-1}(s, t) E_{n, m}+I_{m-1}(s, t) S_{n, m}  \tag{24}\\
& F_{n, m}=R_{m-1}(s, t) S_{n, m}-I_{m-1}(s, t) C_{n, m}
\end{align*}
\]

The final desired form of the equations for \(\alpha_{r}, \alpha_{1}, \alpha_{2}\), and \(\alpha_{3}\) are given by
\[
\begin{align*}
& \alpha_{r}=-\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{m=0}^{n} A_{n+1, m+1}(u) D_{n, m} \\
& \alpha_{1}=\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{m=0}^{n} m A_{n, m}(u) E_{n, m} \\
& \alpha_{2}=\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{m=1}^{n} m A_{n, m}(u) F_{n, m}  \tag{25}\\
& \alpha_{3}=\sum_{n=2}^{\infty} \frac{\mu a^{n}}{r^{n+2}} \sum_{m=1}^{n} A_{n, m+1}^{n}(u) D_{n, m}
\end{align*}
\]

In the body-fixed system, we have, for the acceleration,
\[
\begin{equation*}
F=\alpha_{r} \hat{R}+\alpha_{1} \hat{i}+\alpha_{2} \hat{j}+\alpha_{3} \hat{k} \tag{9a}
\end{equation*}
\]

Let the rotation matrix \(N(3 \times 3)\) represent the transformation of \(a\) rotating body from inertial to body-fixed coordinates.
\[
\begin{equation*}
\hat{R}=N \hat{R}_{\text {inert }} \tag{26}
\end{equation*}
\]

Then the inertial acceleration is
\[
\begin{equation*}
F_{\text {inert }}=N^{T} F \tag{27}
\end{equation*}
\]

Or, in the inertial system, we have
\[
\begin{equation*}
F_{\text {inert }}=\alpha_{r} \hat{R}_{\text {inert }}+\alpha_{1} \hat{N}+\alpha_{2} \hat{N}_{2}+\alpha_{3} \hat{N}_{3} \tag{28}
\end{equation*}
\]
where
\[
\begin{aligned}
& \hat{N}_{1}=\left[\begin{array}{l}
n_{11} \\
n_{12} \\
n_{13}
\end{array}\right] \\
& N_{2}=\left[\begin{array}{l}
n_{21} \\
n_{22} \\
n_{23}
\end{array}\right] \\
& N_{3}=\left[\begin{array}{l}
n_{31} \\
n_{32} \\
n_{33}
\end{array}\right]
\end{aligned}
\]
H. TRANSFORMATION EQUATIONS FROM GEODETIC POLAR COORDINATES TO CARTESIAN COORDINATES**

The geodetic polar coordinates in the program are referred to an ellipsoid of revolution. The equation of a cross section is given by
\[
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 \tag{H.1}
\end{equation*}
\]
where
\[
b^{2}=a^{2}\left(1-e^{\prime}\right)
\]

The slope of the normal, along which \(h\) is measured is given by
\[
\begin{equation*}
\tan \varphi=-\frac{1}{\frac{d z}{d x}}=\frac{a^{2} z}{b^{2} x} \quad \text { (See Figure 2) } \tag{H.2}
\end{equation*}
\]
and
\[
\tan \varphi^{\prime}=\frac{z}{x}=\frac{b^{2}}{b^{2}} \tan \varphi=\left(1-e^{2}\right) \tan \varphi
\]

Eliminating \(x\) between equations (H.1) and (H.2) and solving for \(z\) results in:
\[
z=\frac{a\left(1-e^{2}\right) \sin \varphi}{\left(1-e^{2} \sin ^{2} \varphi\right)}
\]

\footnotetext{
*For geocentric (i.e. \(e^{2}=0\) ) polar coordinates, \(c=s=1\). In this case the latitude input is interpreted as declination.
}


Figure 2. Relation Between Declination, Geocentric and Gendetic Latitudes
and from equation (H.2) then
\[
x=\frac{a \cos \varphi}{\left(1-e^{2} \sin ^{2} \varphi\right)^{\frac{1}{2}}}
\]

In units of \(a, R\) and \(R\) are then given by equation (H.3)
\(e=\left(1-e^{2} \sin ^{2} \varphi\right)^{-\frac{1}{2}}\)
\(s=\left(1-e^{2}\right) c\)
\(x=(c+h) \cos \varphi \cos \left(\theta-\theta_{0}\right)\)
\(\mathbf{y}=(c+h) \cos \varphi \sin \left(\theta-\theta_{0}\right)\)
\(z=(s+h) \sin \varphi\)
\(\dot{x}=v\left\{(\sin \gamma \cos \varphi-\cos \gamma \cos A \sin \varphi) \cos \left(\theta-\theta_{0}\right)\right.\)
\(\left.-\cos \gamma \sin A \sin \left(\theta-\delta_{0}\right)\right\}\)
\(\because=v\left\{(\sin \gamma \cos \varphi-\cos \gamma \cos A \sin \varphi) \sin \left(\theta-\theta_{0}\right)\right.\)
\(\left.+\cos \gamma \sin A \cos \left(\theta-\theta_{0}\right)\right\}\)
\(\dot{z}=v\{\sin \gamma \sin \varphi+\cos \gamma \cos A \cos \varphi\}\)

These equations include the effect of the rotation of the earth. The longitude of tine vernal eouinox ( \(\theta_{0}\) ) at launch time is computed by the program fram Newcomb's formula.

\section*{I. TRANSFORMATION EQUATIONS FOR RADAR SIMULATION}

The program computes sight angles (in an azimuth-elevation system), slant range and range rate data for up to 30 radar stations. The vehicle coordinates are transformed from a system of geocentric cartesian coordinates (xyz), the \(x\)-axis in the direction of the vernal equinax and the \(x-y\) plane in the equatorial plane of the earth to the requirea topocentric azimuth elevation system. This is accomplished by a series of coordinate transformations as follows:
1. A rotation of the coordinate system about the z-axis through an angle \(R A_{x}\) so that \(x y\) plane is in the meridian plane of the station.
\[
\begin{align*}
& x^{\prime}=x \cos R A_{s}+y \sin R A_{s} \\
& y^{\prime}=-x \sin R A_{s}+y \cos R A_{s}  \tag{I.1}\\
& z^{\prime}=z
\end{align*}
\]

The velocity transformation mast take the rotational velocity ois the new coordinate system into account.
\[
\begin{aligned}
& \dot{x}^{\prime}=y^{\prime} \omega_{e}+\dot{x} \cos R A_{s}+\dot{y} \sin R A_{s} \\
& \dot{y}^{\prime}=-x^{\prime} \omega_{e}-\dot{x} \sin R A_{s}+\dot{y} \cos R A_{s} \\
& \dot{z}^{\prime}=\dot{z}
\end{aligned}
\]
where \(x^{\prime}, y^{\prime}, z^{\prime}\) are the rotated coordinates and \(R A_{s}\) is the right ascension of the station and \(\omega_{e}\) is the sidereal rate of the earth's rotation. The G.H.A. necessary to obtain \(R A_{s}\) from the station longitude is computeu by the program.
2. A translation of the origin of the coordinate system from the center of the earth to the station in question
\[
\begin{align*}
& x^{\prime \prime}=x^{\prime}-(c+h) \cos \varphi \\
& y^{\prime \prime}=y^{\prime} \\
& z^{\prime \prime}=z^{\prime}-(s+h) \sin \varphi \tag{I.2}
\end{align*}
\]
where
\[
\begin{aligned}
& c=\left(1-e^{2} \sin ^{2} \varphi\right)^{-\frac{1}{2}} \\
& s=\left(1-e^{2}\right) c \\
& \dot{x}^{\prime}=\dot{x}^{\prime} ; \quad \dot{y}^{\prime \prime}=\dot{y}^{\prime} ; \quad \dot{z}^{\prime \prime}=\dot{z}^{\prime}
\end{aligned}
\]
where \(x!^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\) are the translated coordinates. \(\varphi\) is the geodetic latitude and \(h\) the height above sea level of the station in question.
3. A rotation of ( \(90-\varphi\) ) about the \(y^{\prime \prime}\) axis to place the ( \(x^{\prime \prime}, z^{\prime \prime}\) ) plane into the horizon plane
\[
\begin{align*}
& x^{\prime \prime \prime}=x^{\prime \prime} \sin \varphi+z^{\prime \prime} \cos \varphi \\
& y^{\prime \prime \prime}=y^{\prime \prime} \\
& z^{\prime \prime \prime}=-x^{\prime \prime} \cos \varphi+z^{\prime \prime} \sin \varphi \\
& \dot{x}^{\prime \prime \prime}=\dot{x}^{\prime \prime} \sin \varphi+\dot{z}^{\prime \prime} \cos \varphi  \tag{I.3}\\
& \dot{y}^{\prime \prime \prime}=\dot{y}^{\prime \prime} \\
& \dot{z}^{\prime \prime \prime}=-\dot{x} \cos \varphi+z^{\prime \prime} \sin \varphi
\end{align*}
\]

Now \(x^{\prime \prime \prime}, y^{\prime \prime \prime}, z^{\prime \prime \prime}\) are the coordinates of the vehicle in a topocentric azimuth elevation system, with \(z^{\prime \prime}\) 'axis pointing to zenith and the \(x^{\prime \prime \prime}\) pointing south along the meridian. Range, range rate, azimuth and e?-vation are then given by
\[
\begin{aligned}
& \rho=\left(x^{\prime \prime \prime}+y^{\prime \prime \prime}+z^{\prime \prime 2}\right)^{\frac{1}{2}}=\text { Slant range } \\
& \dot{\rho}=\frac{x^{\prime \prime \prime} \dot{x}^{\prime \prime}+y^{\prime \prime \prime} \dot{y}^{\prime \prime \prime}+z^{\prime \prime} \dot{z}^{\prime \prime \prime}}{f} \\
& E=\tan ^{-1} \frac{z^{\prime \prime \prime}}{\left(x^{\prime \prime \prime}{ }^{\prime 2}+y^{\prime \prime \prime}\right)^{\frac{1}{2}}}=\text { Elevation } \\
& A^{\prime}=\tan ^{-2} \frac{y^{\prime \prime \prime}}{x^{\prime \prime \prime}} \\
& A=\left\{\begin{array}{ll}
\pi-A^{\prime} & A^{\prime}<\pi \\
3 \pi-A^{\prime} & A^{\prime}>\pi
\end{array}\right\}
\end{aligned}
\]

\section*{J. \\ A VARTABLE ORDER INTERPOLATION SCHEME FOR INTEGRATING SECOND OFDER DIFFERENTIAL EQUATIONS}

A subroutine called AMAINT was programmed to integrate second order differential equations by means of interpolating a table of second order derivatives. The size of the table and the option of using predictor-corrector, or predictor only, are inputs to the program. This subroutine operates in a fixed step-size mode only.

The program uses a self-starting scheme instead of the usual Runge-Kutta starter to build a table of second derivatives. This scheme employs the following technique; a first guess for the tables is made by stepping up the independent variable and calling the derivative routine; now, using this table and the predictor only formulas, calculate every point on the table in succession. When either a) all of the first derivatives, or b) all of the second derivatives, from one iteration to the next agree to 15 digits, we consider the scheme converged and we now have a starting table. Normally this converges in 8 iterations. For a twelfth-order integrator, our starter routine calls the derivative routine 89 times; the Runge-Kutta starter would require 176 calls. Whenever a step size other than the normal is required, the program can take that step using the stored table of second derivatives, rather than using Runge-Kutta again as is usually done.

Derivation of Equations Used

The function to be integrated is:
\[
\begin{equation*}
\ddot{\mathrm{y}}(\mathrm{t})=\mathrm{f}[\dot{\mathrm{y}}(\mathrm{t}), \mathrm{y}(\mathrm{t}), \mathrm{t}] \tag{1.0}
\end{equation*}
\]

We assume that we have \(n\) function values
\[
f_{s-n}, \cdots, f_{0}, \cdots, f_{s-1}
\]
over some constant increment \(h\) of \(t\)
h

where \(s\) is chosen to be at the midpoint or close to it. We choose \(s\) in such a manner that our coefficients will be integers for a large \(n\). The maximum \(n\) depends on the word size of the computer being used.

The function may be extrapolated to \(t_{s}\) using an nth order Lagrange interpolation formula:
\[
\begin{equation*}
\ddot{y}(t)=\sum_{\substack{s-1}}^{\substack{i=s-n \\ j=s-n \\ i \neq j \\ i \neq s-n \\ i \neq j}}\left(t-t_{j}\right) \tag{1.1}
\end{equation*}
\]

This results in a poljnomial in \(t\)
\[
\ddot{y}(t)=\sum_{j \neq 1}^{n}\left(\sum_{i=n-1}^{0} s_{j, i} t^{i}\right) f_{j} ; \quad s_{j, n-1}=1
\]

Integrating we get:
\[
\begin{align*}
& \dot{y}(t)=\sum_{j=1}^{n}\left[\left(\sum_{i=n-1}^{0} \frac{S_{j, i} t^{i+1}}{i+1}\right) f_{j}+c_{j}\right] \\
& \left.y(t)=\sum_{j=1}^{n} i\left(\sum_{i=n-1}^{0} \frac{\varepsilon_{j, i} t^{i+2}}{(i+1)(i+2)}\right) f_{j}+c_{j} t\right]+d \\
& y\left(t_{s}\right)=\sum_{j=1}^{n}\left[\sum_{i=n-1} \frac{s_{j, i}\left(t_{s}^{i+2}-t_{s-1}^{i+2}\right)}{(i+1)(i+2)}-\left(t_{s}-t_{s-1}\right.\right. \\
& \sum_{i=n-1}^{0} \frac{s_{j, i} t_{s-1}^{i+1}}{(i+1)} f_{j}+y\left(t_{s-1}\right)\left(t_{s}-t_{s-1}\right)+y\left(t_{s-1}\right)  \tag{1.2}\\
& \dot{y}\left(t_{s}\right)=\sum_{j=1}^{n}\left[\sum_{i=n-1} \frac{S_{j, i}\left(t_{s}^{i+1}-t_{s-1}^{i+1}\right)}{(i+1)}\right]_{f_{j}}+y\left(t_{s-1}\right) \tag{1.3}
\end{align*}
\]

Consider each interval as 1 since they are equally spaced. Now \(t_{s}=h \cdot s . S_{j, i}\) is an \(n \times n\) matrix \(S \cdot D_{n \times n}\) where \(S_{n \times n}\) is formed in the following manner: The first row is all one's; the second is (-) the sum of the \(t_{1}\) 's of Equation (1.1) in the numerators of the varying \(j\) 's; the next is the sum of the products of the \(t_{i}\) 's taken two at a time; etc. Thus we have a matrix of the coefficients of the polynomials formed by
the numerators of (1.1) sitting column wise. The \(D\) matrix is a diagonal matrix whose elements are the denominators of (1.1).
\[
\begin{aligned}
& \text { We now form matrices } A \text { and } B \text { where } \\
& A_{n \times n}=a_{i j}=\frac{\left(s-n-l+i+e_{k}\right)^{n+l-j}-(s-n-l+i)^{n+1-j}}{n+l-j}
\end{aligned}
\]
and
\[
B_{n \times n}=b_{i j}=\frac{\left(s-n-1+i+e_{k}\right)^{n+2-j}-(s-n-l+i)^{n+2-j}-(n+2-j) e_{k}(s-n-l+i)^{n+l-j}}{(n+l-j)(n+2-j)}
\]

Now
\[
A S D=\alpha_{i j} \quad B S D=\beta_{i j}
\]

Equation (1.2) becomes
\[
\begin{equation*}
y\left(t_{s}\right)=\left(y\left(t_{s-1}\right)+h_{1} \dot{y}\left(t_{s-1}\right)+h^{2} \sum_{j=1}^{n} \beta_{n, j} f_{j}\right. \tag{2.1}
\end{equation*}
\]
and Equation (1.3) becomes
\[
\begin{equation*}
y\left(t_{s}\right)=y\left(t_{s-1}\right)+h \sum_{j=1}^{n} \alpha_{n, j^{f}} \tag{2.2}
\end{equation*}
\]
where \(e_{k}=h_{l} / h, h_{1} \neq h\) when \(t_{s}-t_{s-1} \neq h\). These are the predictor equations.

If we desire a corrector formula, we generate
\[
\alpha_{n, j}^{c} \text { and } \beta_{n, j}^{c} \quad j=1, n+1
\]

We use Eqs. (2.1) and (2.2) to find \(y\left(t_{s}\right)\) and \(\dot{y}\left(t_{s}\right)\). Then using Eq.
(1.0), we find \(\ddot{y}\left(t_{s}\right)\). Now we have a table of \(n+1 f_{j}^{\prime} s\) and we can find our corrected functions and first derivatives by:
\[
\begin{aligned}
& y_{c}\left(t_{s}\right)=y\left(t_{s-1}\right)+h \dot{y}\left(t_{s-1}\right)+h^{2} \sum_{j=1}^{n+1} \beta_{n, j}^{c} f_{j} \\
& \dot{y}_{c}\left(t_{s}\right)=y\left(t_{s-1}\right)+h \sum_{j=1}^{n+1} \alpha_{n, j}^{c} f_{j}
\end{aligned}
\]

When \(h_{1} \neq h\), the corrector formulas are not valid. Therefore, when an odd integration step is required, predictor only may be used.

The \(\alpha_{i j}\) and \(\beta_{i j}\) matrices are used to generate the initial table of \(\mathbf{f}_{j}\) 's at each restart by means of an iterative method. In generating the coefficients \(\alpha_{i j}, \beta_{i j}, \alpha_{n, j}^{c}, \beta_{n, j}^{c}\) on a computer, we attempt to keep then integers by limiting \(n\) to conform to the word size of the computer being used. We also use a least common denominator technique to perform one, instead of \(n\), divisions. Thus we see that the word size of the computer controls the order of the integrator to be used. When our constants do not sit as integers in the machine, the resulting round-off causes biased errors.

A study was made using this routine on an IBM 360 Model 91 computer tio integrate the sine and cosine functions. The Univac 1108 computer was also used to runa a small number of cases. Orders from \(T\) to 12 , and integration intervals from \(\pi / 16\) to \(\pi / 526\), predictor anly and precitorcorrector, were used with the following results:
\begin{tabular}{|c|c|c|}
\hline Predictor-Corrector & \(\Delta t\) & \(\underline{\operatorname{Sin} \pi}\) \\
\hline \multirow[t]{5}{*}{\(\mathrm{n}=6\)} & \(\pi / 32\) & . \(68 \times 10^{-9}\) \\
\hline & \(\pi / 64\) & . \(27 \times 10^{-12}\) \\
\hline & T/128 & . \(12 \times 10^{-13}\) \\
\hline & \%/256 & . \(28 \times 10^{-14}\) \\
\hline & \(\pi / 512\) & . \(53 \times 10^{-14}\) \\
\hline \multirow[t]{5}{*}{\(\mathrm{n}=7\)} & \(\pi / 32\) & \(.75 \times 10^{-10}\) \\
\hline & \(\pi / 64\) & . \(40 \times 10^{-12}\) \\
\hline & \(\pi / 128\) & . \(12 \times 10^{-13}\) \\
\hline & \%/256 & \(.29 \times 10^{-14}\) \\
\hline & \(\pi / 512\) & . \(54 \times 10^{-14}\) \\
\hline \multirow[t]{5}{*}{\(\mathrm{n}=8\)} & \(\pi / 32\) & . \(58 \times 10^{-11}\) \\
\hline & \%/64 & . \(49 \times 10^{-14}\) \\
\hline & \(\pi / 128\) & . \(16 \times 10^{-14}\) \\
\hline & \(\pi / 256\) & . \(26 \times 10^{-14}\) \\
\hline & \(\pi / 512\) & . \(49 \times 10^{-14}\) \\
\hline \multirow[t]{4}{*}{\(\mathrm{n}=9\)} & \(\pi / 32\) & . \(12 \times 10^{-12}\) \\
\hline & \(\pi / 64\) & . \(18 \times 10^{-14}\) \\
\hline & \(\pi / 128\) & \(.17 \times 10^{-14}\) \\
\hline & \(\pi / 256\) & \(.30 \times 10^{-94}\) \\
\hline \multirow[t]{4}{*}{\(n=10\)} & \(\pi / 32\) & \(.52 \times 10^{-13}\) \\
\hline & \(\pi / 64\) & . \(11 \times 10^{-74}\) \\
\hline & \(\pi / 128\) & \(.19 \times 10^{-14}\) \\
\hline & \(\pi / 256\) & \(.31 \times 10^{-1.4}\) \\
\hline
\end{tabular}

Predictor-Corrector
\(\mathrm{n}=11\)

\section*{\(n=12\)}
\(\pi / 16\)
\(\pi / 32\)
\(\pi / 64\)
\(\pi / 128\)
\(\pi / 16\)
\(\pi / 32\)
\(\pi / 64\)
\(\pi / 128\)
\(\pi / 32\)
\(\pi / 64\)
\(\pi / 128\)
п/256
\(\pi / 512\)
\(\pi / 32\)
\(\pi / 64\)
\(\pi / 128\)
\(\pi / 256\)
\(\pi / 512\)
\(\pi / 32\)
\(\pi / 64\)
\(\pi / 128\)
\(\pi / 256\)
\(\pi / 512\)
Predictor Only

\section*{Sin \(\pi\)}
\(.12 \times 10^{-11}\)
\(.84 \times 10^{-15}\)
\(.11 \times 10^{-14}\)
\(.18 \times 10^{-14}\)
\(.34 \times 10^{-11}\)
\(.81 \times 10^{-13}\)
\(.74 \times 10^{-13}\)
\(.71 \times 10^{-13}\)
\begin{tabular}{lll}
\(\mathrm{n}=6\) & \(\pi / 32\) & \(.42 \times 10^{-6}\) \\
& \(\pi / 64\) & \(.69 \times 10^{-8}\) \\
& \(\pi / 128\) & \(.11 \times 10^{-9}\) \\
& \(\pi / 256\) & \(.17 \times 10^{-11}\) \\
\(n=7\) & \(\pi / 512\) & \(.21 \times 10^{-13}\) \\
& \(\pi / 32\) & \(.84 \times 10^{-8}\) \\
& \(\pi / 64\) & \(.43 \times 10^{-10}\) \\
& \(\pi / 128\) & \(.19 \times 10^{-12}\) \\
& \(\pi / 256\) & \(.18 \times 10^{-14}\) \\
& \(\pi / 512\) & \(.45 \times 10^{-14}\) \\
& \(\pi / 32\) & \(.37 \times 10^{-10}\) \\
& \(\pi / 64\) & \(.15 \times 10^{-10}\) \\
& \(\pi / 128\) & \(.62 \times 10^{-13}\) \\
& \(\pi / 256\) & \(.31 \times 10^{-14}\) \\
& \(\pi / 512\) & \(.51 \times 10^{-14}\)
\end{tabular}
\begin{tabular}{lll} 
Predictor only & \(\frac{\Delta t}{}\) & Sin \(\pi\) \\
\(n=9\) & \(\pi / 32\) & \(.82 \times 10^{-10}\) \\
& \(\pi / 64\) & \(.11 \times 10^{-12}\) \\
& \(\pi / 128\) & \(.14 \times 10^{-14}\) \\
& \(\pi / 256\) & \(.25 \times 10^{-14}\) \\
& \(\pi / 512\) & \(.46 \times 10^{-14}\) \\
& & \\
& \(\pi / 16\) & \(.16 \times 10^{-7}\) \\
& \(\pi / 32\) & \(.31 \times 10^{-10}\) \\
& \(\pi / 54\) & \(.34 \times 10^{-13}\) \\
& \(\pi / 128\) & \(.15 \times 10^{-14}\) \\
& & \\
& \(\pi / 16\) & \(.48 \times 10^{-9}\) \\
& \(\pi / 32\) & \(.73 \times 10^{-12}\) \\
& \(\pi / 64\) & \(.66 \times 10^{-16}\) \\
& \(\pi / 128\) & \(.39 \times 10^{-15}\) \\
& & \\
& \(\pi / 16\) & \(.33 \times 10^{-9}\) \\
& \(\pi\) & \(.23 \times 10^{-32}\) \\
& \(\pi / 64\) & \(.40 \times 10^{-13}\) \\
& \(\pi / 128\) & \(.41 \times 10^{-13}\)
\end{tabular}

Univac 1108 Ouly
Predictor-Corrector
\(n=12\)
\begin{tabular}{ll}
\(\Delta t\) & Sin \(\pi\) \\
\(\pi / 16\) & \(.34 \times 10^{-11}\) \\
\(\pi / 32\) & \(.17 \times 10^{-15}\) \\
\(\pi / 64\) & \(.27 \times 10^{-15}\) \\
\(\pi / 128\) & \(.29 \times 10^{-15}\)
\end{tabular}

From the above we see that, as we increase \(n\), we can also increase the \(\Delta t\) up to a point. The optimum appears at \(n=11\) for the IBM 360 Model 91. On the Univac 1108, the optimum was at \(n=12\). When using ;he predictor-corrector method, we can maintain the same accuracy as predictor only, using twice the integration interval at the optimum \(n\). Therefore, we conclude that using the predictor-corrector judiciously (i.e., with the proper integration interval for the function to be integrated) may prove to be better than predictor cnly, with a very slight cost in computer time.

Our optimum \(\Delta t\) for the sine function was \(\pi / 64\) for predictor only and \(\pi / 32\) for predictor-corrector. The precediñ, data \(a \leq\) true for the IBM Model 91 computer and for the function tested. We believe that, with a computer having a larger word size capacity, we would find a larger \(n\) to be optimal since it would be possible to generate integers For the integration coefficients.

A change in the hardware of the IBM 360 Model 91 was made which increased precision in multiplication. Using this machine, we 'ien ran trajectories similar to those discussed in the Fehlberg paper. \({ }^{l}\) Instead of using a rotating coordinate system, we used an inertial coordinate system and integrated in an Encke mode, using \(\beta\) as an independent variable instead of time. We converted Fehliderg's initial conditions \(\left(x_{0}=1.2, \dot{x}_{0}=0, y_{0}=0, \dot{y}_{0}=1.049357509830320, \mu_{m}=1 / 82.45\right)\) to our system and they became
```

$x_{0}=1.212128562765311$

```
\(\dot{x}_{0}=0\).
\(\mathrm{yo}_{\mathrm{o}}=0\).
у̀o \(=.162771052934991\)
\(\mu_{m}=1 / 82.45\)
\(\mu_{e}=.987871447234689\)
\(\mathrm{x}_{\mathrm{o}_{\mathrm{m}}}=1\).
\(\dot{x}_{o_{m}}=0\)
\(\mathrm{yo}_{\mathrm{m}}=0\).
\(\dot{y_{0}}{ }_{m}=1\)
(The \(o_{m}\) subscript denotes the Moon's initial conditions.)

The starting point of our trajectories was at apogee behind the Moon, on the line of centers of the Earth and Moon. Our integrations traced a figure eight around the Moon and terminated at the second apogee. We ran six different trajectories, using 3 different \(\Delta 8\) 's with llth and 12th order predictor-corrector schemes Ior each. The results were as follows:

1 "New One-Step Integration Meihods of High-Order Accuracy Applied to Some Problems of Celestial Mechanics", Erwin Fehlberg, NASA George C. Marshall Space Flight Center, Huntsville, Ala.
\begin{tabular}{lccccc}
\(\Delta \beta\) & No. of Steps & \begin{tabular}{c} 
Order of \\
Integration
\end{tabular} & & Starting_Apogee & \\
& 1258 & 12 & & 2nd Apogee \\
.0078125 & 1258 & 11 & 1.2128562765311 & 1.2128562765114 \\
.0078125 & 2515 & 12 & 1.2128562765311 & 1.2128562764704 \\
.00390625 & 2515 & 11 & 1.2128562765311 & 1.2128562765350 \\
.00390625 & 5028 & 12 & 1.2128562765311 & 1.2128562765353 \\
.001953125 & 50211 & 1.2128562765340 \\
.001953125 & 5028 & 11 & 1.2128562765311 & 1.2128562765368
\end{tabular}

For this particular problem, \(\Delta \beta=.00390625\) with the 12 th order predictor-corrector scheme appears to be the optimum trajectory.

Use of Routine:
In order to utilize this subroutine, a programmer must supply the following common cards:

COMMON/AMI/DELT, T, DII, XI(30), XID(30), \(\operatorname{DRXI}(30), \operatorname{IFST}(30)\).
COMMON/AMI/M(14), IS, NI, N2, N21, NEQN.

Th, - mon names may not be changed.
The varisiole names may be changed providing the notation for integer or real numbers is maintained.
\(\mathrm{M}(14)\) is a dummy block of storage used internally by the routine.
IS is the reference point for generating the integration coefficients. N I is the order of integration.
\(\mathrm{N} 2=\mathrm{NL}+1\) is used for the corrector.
N21 \(=0\) is used for the predictor only.
N21 = 1 is used for the predictor-corrector.
NEQN is the number of equations to be integrated.
DELT is the normal integration interval.
\(T\) is the independent variable.
DII is the current integration interval, oddball or normal.
\(\mathrm{XI}(\mathrm{I})\) is the \(i^{\text {th }}\) function value.
\(X I D(I)\) is the \(i^{\text {th }}\) first derivative.
\(\operatorname{DeXI}(I)\) is the \(i^{\text {th }}\) second derivative.
\(\operatorname{IFST}(I)=0\) means the ith equation is second order.
\(\operatorname{IFST}(I)=1\) means the \(i^{\text {th }}\) equation is of first order.
For COMMON AMI, the user must define \(N 1\), N21, and NEQN in his program.
For COMMON AMI, the user also must define DELT, \(\operatorname{DII}, X I(I), X I D(I)\), \(\operatorname{TeXI}(I), \operatorname{IFST}(I)(I=1, N E Q N)\) at \(T=T_{0}\).

The user must also supply a subroutine called DERTV, with the proper COMNON included and which computes DeXI(I) as a function of XI(I), \(\operatorname{XID}(I)\) and T. If first order equations are desired, the first derivative should be stored in \(\operatorname{DeXI}(I)\), and \(\operatorname{DeXI}(I)\) should be a function of XI(I) and T.

The following calls to AMAINP are usci:
Call AMAINT ( 0 ) - initializes the integrator and calls DERIV.
Call AMAINT (3) - generates integration table. DELT may be changed before this call and the user must make sure that the proper Call DERIV has been made.
Call AMAINT (1) - takes one normal integration step and calls DERLV.
Call AMAINT (2) - requires thi DITI be defined prior to the call, takes an integration step of size DII, and calls the derivative routine.

\section*{K. DRAG COMPUTATION}

The drag acceleration is computed, assuming a spherically symmetric atmosphere rotating with the earth. Thus:
\[
D=-1 / 2 \rho A\left|V_{e f f}\right| V_{e f f}
\]
\[
\ddot{\mathrm{R}}_{\mathrm{D}}=\frac{D}{10}
\]
where
\[
\mathrm{V}_{\mathrm{eff}}=\dot{R}-\omega \times R
\]
\(\omega\) is the sideral rotation rate vector of the Earth.

\section*{L. COMPUTATION OF SUBSATELLITTE POINT}

The geodetic coordinates of the subsatellite point are computed by the following method:

The geoce eric latitude (declination) is obtained from
\[
\begin{equation*}
\sin \varphi^{\prime}=\frac{z}{r} \tag{LII}
\end{equation*}
\]

This latitude is then corrected +* geodetic latitude by the formula \(\varphi=\varphi^{\prime}+a_{2} \sin 2 \varphi^{\prime}+a_{4} \sin 4 \varphi^{\prime}+a_{6} \sin 6 q^{\prime}+a_{8} \sin 8 \varphi^{\prime}\)
where
\[
\begin{align*}
a_{2} & =\frac{1}{1024_{r}}\left\{512 e^{2}+128 e^{4}+60 e^{6}+35 e^{8}\right\} \\
& +\frac{1}{32 r^{2}}\left\{e^{6}+e^{8}\right\}-\frac{3}{256_{r}^{3}}\left\{4 e^{6}+3 e^{8}\right\} \\
a_{4} & =-\frac{1}{1024_{r}}\left\{64 e^{4}+48 e^{6}+35 e^{8}\right\} \\
& +\frac{1}{16_{r}^{2}}\left\{4 e^{4}+2 e^{6}+e^{8}\right\}+\frac{15 e^{8}}{256_{r}^{3}}-\frac{e^{8}}{16_{r}^{4}} \\
a_{6} & =\frac{3}{104_{r}}\left\{4 e^{6}+5 e^{8}\right\}-\frac{3}{32 r^{2}}\left\{e^{8}+e^{8}\right\} \\
& +\frac{35}{768 r^{3}}\left\{4 e^{6}+3 e^{8}\right\} \tag{LI}
\end{align*}
\]
\[
\begin{aligned}
& a_{8}=\frac{e^{8}}{2048}\left\{-\frac{5}{r}+\frac{64}{r^{2}}-\frac{252}{r^{3}}+\frac{320}{r^{4}}\right\} \\
& e=\text { the escentricity of the earth } \\
& r=\text { the distance from earth's center }
\end{aligned}
\]

\section*{See Reference 5.}

The geodetic height is then given by
\[
\begin{equation*}
h=r \cos \left(\varphi-\varphi^{\prime}\right)-\sqrt{1-e^{2} \sin ^{2} \varphi} \tag{L.4}
\end{equation*}
\]

The longitude is obtained by subtracting the sidereal time of Greenwich from the right ascension given by
\[
\begin{equation*}
\tan R A=\frac{y}{x} \tag{L.5}
\end{equation*}
\]

\section*{M. CHANGE OF INDEPENDENT VARTABLE - BETA MODE}

According to the standard Encke method, we introduce a differential equation
\[
\begin{equation*}
\ddot{\rho}=-\mu \frac{\rho}{|\rho|^{3}} \tag{Y.1}
\end{equation*}
\]

In the construction of the closed-form solution for (Y.1), a parameter \(\beta\) arises. It is related to \(t\) by Kepler's equation,
\[
\begin{equation*}
t=t_{0}+\frac{f(\beta)}{\sqrt{\mu}} \tag{Y.2}
\end{equation*}
\]
where \(f\) is a transcendental function of \(\beta\) and is obtained by summing several power series.

If \(t\) is taken as the independent variable, Equation (Y.2) has to be solved for \(\beta\) by an iterative method, requiring numerous timeconsuming evaluations of the function \(f\) for each integration step. Using \(\beta\) as the independent variable, however, only requires a single evaluation.

It remains, of course, to see what becomes of equation (Y.1) and
\[
\begin{align*}
\dot{\xi} & =x-\ddot{\rho} \\
& =-\mu\left(\frac{x}{|x|^{3}}-\frac{\rho}{|\rho|^{3}}\right)+F \tag{Y.3}
\end{align*}
\]

If \(\beta\) is the independent variable. We have, from Kepler's equation, that
\[
\begin{equation*}
\frac{\partial t}{\partial \beta}=\frac{|\rho|}{\sqrt{\mu}} \tag{Y.4}
\end{equation*}
\]
at any point along the solution of (Y.1). Thus
\[
\rho=\rho^{\prime} \frac{\sqrt{\mu}}{|\rho|} \text { and } \rho^{\prime}=\rho \frac{\perp \rho \mid}{\sqrt{\mu}}
\]
at any point along the solution of (Y.1) and the initial conditions become
\[
\rho\left(\beta_{0}\right)=x_{0} \text { and } \rho^{\prime}\left(\beta_{0}\right)=\frac{\dot{x}_{0}\left|x_{0}\right|}{\sqrt{\mu}}
\]
when
\[
\beta_{0}=\beta\left(t_{0}\right)=0
\]

Now the solution for (Y.1), \(\rho\) and \(\rho^{\prime}\), can be written in closed form for any \(\beta\). As auxiliary quantities in this solution, we have \(|\rho|\) and \(D=\frac{\rho \cdot \rho^{\prime}}{|\rho|}\). They are computed as functions of \(\beta\) before \(\rho\) and \(\rho^{\prime}\) are known; that is, with accuracy at least as good as that of \(\rho\) and \(\rho^{\prime}\). Not only are they needed and easy to compute, but they also have the interesting property that
\[
\frac{d t}{d \beta}=\frac{|\rho|}{\sqrt{\mu}}
\]
and
\[
\begin{array}{r}
\frac{a^{2} t}{d \beta^{2}}=\frac{D}{\sqrt{\mu}} \\
M-2
\end{array}
\]

Thus Equation (Y.1) is solved more economically in terms of \(\beta\) than in terms of \(t\).

Now we turn to Equation (Y.3). To treat it, we want to express \(\xi^{\prime \prime}\) ' in terms of \(\xi\). From (Y.5) we have that
\[
\begin{equation*}
\xi^{\prime}=\dot{\xi} \frac{d t}{d \beta}=\dot{\xi} \frac{|\rho|}{\sqrt{\mu}} \tag{Y.6}
\end{equation*}
\]

Differentiating with respect to \(\beta\),
\[
\begin{align*}
\xi^{\prime \prime} & =\frac{d \dot{\xi}}{d \beta} \frac{|\rho|}{\sqrt{\mu}}+\dot{\xi} \frac{d}{d \beta}\left(\frac{|\rho|}{\sqrt{\mu}}\right) \\
& =\ddot{\xi}\left(\frac{|\rho|}{\sqrt{\mu}}\right)^{2}+\xi^{\prime} \frac{\sqrt{\mu}}{|\rho|} \frac{D}{\sqrt{\mu}} \\
& =-|\rho|^{2}\left(\frac{x}{|x|^{3}}-\frac{\rho}{|\rho|^{3}}\right)+\frac{|\rho|^{2}}{\mu} F+\xi^{\prime} \frac{D}{|\rho|} \tag{Y.7}
\end{align*}
\]

Thus (Y.7) is the equation to be integraied numerically, instead of (Y.3). The coefficients \(\left.\frac{\perp \rho}{\mu}\right|^{2}\) and \(\frac{D}{\rho \mid}\) can be calculated with much more accuracy than the factors involving \(\xi\), since they depend only on the two-body solution. For analysis of error propagation, we write (Y.7) as
\[
\begin{equation*}
\xi^{\prime \prime}=-\frac{I}{|\rho|}\left[(\rho+\xi) \frac{|\rho|^{3}}{|\rho+\xi|^{3}}-\rho\right]+\frac{|\rho|^{2}}{\mu} F+\xi^{\prime} \frac{D}{|\rho|} \tag{Y.8}
\end{equation*}
\]

The mechanics of the procedure, thei, are easy io erumerate. The initial conditiuns are \(x_{0}\) and ao. Let
\[
\begin{align*}
\rho\left(t_{0}\right) & =x_{0} \\
\rho^{\prime}\left(t_{0}\right) & =\frac{\dot{x}_{0}\left|x_{0}\right|}{\sqrt{\mu}} \tag{Y.9}
\end{align*}
\]

Using these initial conditions, evaluate \(t, \frac{|\rho|^{2}}{\mu}, \frac{D}{|\rho|}, \rho, \rho^{\prime}\) for each value of \(\beta\) to be considered.

Let \(\xi_{0}=\xi_{0}^{\prime}=0\). Using these initial conditions, integrat Equation \(\because, 7)\) to get \(\xi(\beta)\) and \(\xi^{\prime}(\beta)\). Fote that the first two terms on the right-hand side of Equation (Y.7) are functions of \(x\) and possibly \(x^{\prime}\). These are obtained by
\[
\begin{align*}
& x(\beta)=\rho(\beta)+\xi(\beta) \\
& x^{\prime}(\beta)=\rho^{\prime}(\beta)+\xi^{\prime}(\beta) \tag{Y.10}
\end{align*}
\]

If at any point \(x\) is required, it can be found from
\[
\begin{equation*}
\dot{x}[t(\beta)]=x^{\prime}(\beta) \frac{\sqrt{\mu}}{|\rho(\beta)|} \tag{Y.11}
\end{equation*}
\]

Depending on the recitification control logic, there will be places where the solution to Equation (Y.1) must be started over. At this point, the values \(t, x, \dot{x}\) becom the new \(t_{0}, x_{0}\), and \(\dot{x}_{O}\), while \(\beta, \xi\), and \(\xi^{\prime}\) are reset to zero.
a) It is immediately apparent that eliminating the necessity of iteratively solving Equation (Y.2) will substantic.ily increase the speed of couputation.
b) An importan: advantage arises further from eliminating the sometimes ponderous logic which supplies initial guesses for the iterati \(\cdots=\) process and guarantees convergence of the solution.
c) A third advantage of the \(\beta\)-method is not quite so apparent, but no less important. It is well known that the size of the integration time step can he increased as the distance from the center of attraction increases. This change of the integration interval requires a cumbersome restart procedure. An examination of Equation (Y.5) show that equal intervals of \(\beta\) correspond to tif ervals of increasing lengtins as the distance incre.ses. The time interval thus automatically expands and contracts correctly without outside intervention.
d) Geometric stupping and printing conditions can ally be conveniently expressed in terms of \(\beta\), whereas they cften require iterative determination. of the time. Tris advantage, however, is slight.
e) If state vectors are required at fixed times, an iteration is necessary to find the corresponding value of \(\beta\). In this case the \(\beta\) method is no better, and ro worse, than the standard methods. If suci vectors are required at frequent, closely spaced, time points (as in orbit determination, for instance), the advantage of the \(\beta\)-method is marginal.

\section*{N. SHADOW LOGIC}

A coordinate system is set up in the plane defined by the centers of the light-emitting source, the shadowing body, and the probe. Both bodies are assumed to be spherical, and hence all testing can be carried out in this plane. The diagram in Figure 3 shows this plane.

The coordinates are defined by unit vectors \(i\) and \(j\) :
\[
\begin{align*}
& \underline{i}=\frac{R_{c l}}{r_{c l}} ; \quad \underline{i} \cdot \underline{i}=1 ; \quad \underline{i} \cdot \underline{j}=0  \tag{N.1}\\
& \ell_{\underline{j}}=-\frac{d i}{\underline{i}} \underline{R}_{\mathrm{vc}} ; \quad \underline{j} \cdot \underline{j}=1 \tag{N.2}
\end{align*}
\]
where
\[
\mathrm{d}=\underline{\mathrm{R}}_{\mathrm{vc}} \cdot \underline{\mathbf{i}}
\]

Vehicle coordinates in this system are given by:
\[
\begin{align*}
& x_{v}=\underline{R}_{v c} \cdot \underline{i}=d  \tag{N.3}\\
& y_{v}=\underline{R}_{v c} \cdot \underline{j}=\left[-d^{2}+r_{v c}^{2}\right]^{1 / 2}  \tag{N.4}\\
& z_{v}=\underline{R}_{v c} \cdot \underline{K}=0 \tag{N.5}
\end{align*}
\]

\section*{1. Shadow Parameters}
a) The ti,s of the umbra and penumbra cones are:
\[
a_{u}=\frac{r_{c l}}{\frac{r_{l}}{r_{c}}-1}, \quad a_{p}=-\frac{r_{c l}}{\frac{r_{l}}{r_{c}}+1}
\]
b) The slopes of the bounding lines are:
\[
\begin{aligned}
& \sin \alpha_{u}=\cos \theta_{u}=\frac{r_{c}}{d_{u}} \\
& -\cos \alpha_{u}=\sin \theta_{u}=\left[1-\left(\frac{r_{c}}{\alpha_{u}}\right)^{2-\frac{1}{2}}\right]^{2} \\
& \tan \alpha_{u}=\frac{\sin \alpha_{u}}{\cos \alpha_{u}} \\
& \tan \theta_{u}=\frac{\sin \theta_{u}}{\cos \theta_{u}} \\
& \left\lvert\, \cos \theta_{p}=\sin \alpha_{p}=\frac{r_{z}}{\left|d_{p}\right|}\right. \\
& \begin{array}{l}
\sin \theta_{p}=\cos \alpha_{p}=\left[1-\left(\frac{r}{\alpha_{p}}\right)^{2}\right]^{\frac{1}{2}} \\
\tan \alpha_{p}=\frac{\sin \alpha_{p}}{\cos \alpha_{p}}
\end{array} \\
& \tan \theta_{p}=\frac{\sin \theta_{p}}{\cos \theta_{p}}
\end{aligned}
\]
c) Refraction Correction: (UMBRA)
\[
\begin{aligned}
& \alpha_{u}^{\prime}=\alpha_{u}-\epsilon, \quad \theta_{u}^{\prime}=\theta_{u}-\epsilon \\
& \sin \alpha_{u}^{\prime}=\sin \alpha_{u} \cos \epsilon-\cos \alpha_{u} \sin \epsilon \\
& \tan \alpha_{u}^{\prime}=\frac{\tan \alpha_{u}-\tan \epsilon}{1+\tan \frac{\tan \epsilon}{\alpha_{u}}} \\
& \tan \theta_{u}^{\prime}=\frac{\tan \theta_{u}-\tan \epsilon}{1+\tan \theta_{u} \tan \epsilon}
\end{aligned}
\]

N-3
\[
d_{u}^{\prime}=\frac{r_{c}}{\sin \alpha_{u}^{\prime}}
\]
d) Refraction Correction: (PENUMBRA)
\[
\begin{aligned}
& \text { Both } \varepsilon<\alpha_{p} \quad \epsilon>\alpha_{p} ; \quad \alpha_{p}^{\prime}=\alpha_{p}-\epsilon \\
& \sin \alpha_{p}^{\prime}=\left|\sin \alpha_{p} \cos \epsilon-\cos \alpha_{p} \sin \epsilon\right| \\
& \tan \alpha_{p}^{\prime}=\frac{\tan \alpha_{p}-\tan \epsilon}{1+\tan \alpha_{p} \tan \epsilon} \\
& \tan \theta_{p}^{\prime}=\frac{\tan \theta_{p}-\tan \epsilon}{1+\tan \theta_{p} \tan \epsilon} \\
& d_{p}^{\prime}=-\operatorname{sign}\left(\tan \alpha_{p}^{\prime}\right) \frac{r_{c}}{\sin \alpha_{p}^{\prime}}
\end{aligned}
\]

The equations of the bounding lines are given below.

\section*{2. The Testing Procedure}
\[
\begin{aligned}
& \frac{\left.\right|^{y_{v i}}}{\tan \theta_{p}^{\prime}}-x_{v} \geq 0 \quad \text { Sunlight } \\
& Q_{1}=\theta_{p} \text { Line } \\
& \frac{\left|y_{v}\right|}{\tan \theta_{p}^{\prime}}-x_{v}<0 \quad \text { Go to next test }
\end{aligned}
\]
\[
Q_{Q_{2}=\mid}^{\left|y_{v}\right|-\left(x_{v}-d_{p}^{\prime}\right) \tan \alpha_{p}^{\prime}} \gg 0 \text { Sunlight } \quad \begin{aligned}
\left.\right|_{v} ^{y}-\left(x_{v}-a_{p}^{\prime}\right) \tan \alpha_{p}^{\prime} & \Rightarrow ; \text { Sunlight penumbra boundary } \\
& <0 \text { Go to next test }
\end{aligned}
\]

If \(F_{l}=0\), exit here.
\[
Q_{3}=\frac{\left.\right|^{y_{v i} \mid}}{\tan \theta_{u}^{\prime}}-x_{v} \quad<0 \text { Penumbra } \quad \text { Go to next test }
\]
\[
>0 \text { Penumbra }
\]
\[
Q_{4}=\left.\right|^{y_{v}} \mid-\left(x_{v}-d_{u}^{\prime}\right) \tan \alpha_{u}^{\prime}=0 \text { Shadow penumbra boundary }
\]
\[
<0 \text { Shadow }
\]
\(Q_{2}\) and \(Q_{4}\) are stored and saved. The crossing times are found by linearly interpolating for 0 -values of \(Q_{2}\) and \(Q_{4}\) respectively, to guarant ie that crossing from one region into another always occurs across these boundaries.

\section*{0. SOLAR RADIATION PRESSURE}

The radiation pressure subroutine computes the force of solar radiation on the spacecraft if an appropriate pressure coefficient is used. The calculation relies on the shadow routine to set a trigger to multiply the pressure coefficient by l.0, 0.5 , or 0.0 for full sunlight, penumbra or umbra respectively. Therefore, the shadow subroutine must be used in conjunction with the radiation pressure routine for most cases. If the spacecraft is known to be continually in sun-ight See Section VIII-2 to avoid elaborate shadow testing.
\[
\begin{equation*}
P_{R P}=\frac{C_{R} A_{V S}}{\mathrm{mr}_{\mathrm{Vs}}^{3}} \tag{0.1}
\end{equation*}
\]
(See Section VIII-A-2 for definition of symbols.)

This radiation pressure subroutine has been found to be inexact for setellites of large area to mass ratio since it only controls the pressure to the nearest integration step. For such spacecraft (e.g. balloons) several degrees error in true anomaly may result after 100 days unless the integration is carried exactly to the boundaries. A modification to achieve this increased precision is available and will be included in future versions of the program.

\section*{P. ECLIPTIC COORDINATES}

The ecliptic coordinates are an approximate set obtained by a simple rotation of the equatorial coordir tas about the \(x\)-axis through a fixed angle \(i=23^{\circ} 26^{\prime} 35^{\prime \prime}\) whici is app: oximately the true obliquity for Jan 0.0, 1970. More exact coordinates may be obtained by changing SNE (unit normal to the ecliptic) as desired.

\section*{Q. MOON ROTATING AND FIXED COORDINATE SYSTEM}

Geocentric coordinates of the vehicle based on the earth-moon plane are generated from the geocentric equatorial radius vector to the vehicle, \(R_{V E}\), the geocentric unit vector in the direction of the moon \(R_{M E}\), and the vector in the direction of the moon's velocity, \(\dot{R}_{\text {ME }}\).

Coordinates in the rotating system, XROT etc., are found by using the current values of these vectors at each time step in the relations
\[
\begin{gather*}
\mathrm{XROT}=\mathrm{R}_{\mathrm{VE}} \cdot \hat{\mathrm{R}}_{\mathrm{ME}} \\
\mathrm{YROT}=\mathrm{R}_{\mathrm{VE}} \cdot\left(\hat{H}_{\mathrm{ME}} \times \hat{R}_{\mathrm{ME}}\right) \\
\mathrm{ZROY}=\mathrm{K}_{\mathrm{VE}} \cdot \hat{\mathrm{H}}_{\mathrm{ME}} \tag{Q.1}
\end{gather*}
\]
where
\[
H_{M E}=\frac{\hat{R}_{M E} \times \dot{R}_{M E}}{\left|\hat{R}_{M E} \times \dot{R}_{M E}\right|}
\]

For the fixed axis system XINJ, etc., the initial vectors \(\hat{\mathrm{R}}_{\mathrm{ME}}\) ( \(t_{0}\) ) and \(\dot{R}_{M E}\left(t_{0}\right)\) ai the time of injection are used with the current value of \(R_{V E}\).

\section*{R. TRAJECIORY SEARCH}

The program provides a search routine to obtain selected trajectories. The search is based on linear theory and varies the polar load input quantities (independent variables) to search for desired dependent variables. A mayimum of any six dependent variables may be selected. However, at this .riting, the user is restricted to two dependent variable. Modifications to incorporate the remaining five are available and will be included in future versions of the program. The quantities at present are \(B \cdot T\) and \(B \cdot R\).

The components of the impact parameter vector ( \(B \cdot \hat{\mathrm{~T}}_{\text {INP }}, B \cdot \hat{R}_{\text {IMP }}\) ) are referred to the ecliptic plane for T-planet trajectories and the Moon's orbital plane for lunar trajectories. The number of independent variables must equal the number of dependent variables for this routine to function.

This version of the search routine is time consuming if the initial conditions are poorly approximated. Before using this routine, twc things should be done.
1. A first guess of the initial conditions of the nominal trajectory should be obtained from a patched conic or a similar search program.
2. The number of variables should be kept to a minimum. It is lanned to automate the iteration scheme to go from two-body, to patched conic, to full trajectory, and to increase the number of variables to be adjusted, in optimal fashion. Even in its present form, however, it is extremely useful.

The iterator uses a modified version of the MIN-MAX Principle (Reference 6).
\begin{tabular}{ll}
\(A_{i j}\) & is the matrix of partials \\
\(\Delta x_{i}\) & is the vector of changes in the independent variables \\
\(\lambda_{i j}\) & is a diagonal matrix of weigiss \\
\(y_{i}\) & is a vector of residuals
\end{tabular}

The system to be solved is
\[
\begin{aligned}
& \left(A_{j i} A_{i j}+\lambda_{i j}\right) \Delta x_{i}=A_{j i} y_{i} \\
& A_{j i} A_{i j}+\lambda_{i i}=B_{i j} \\
& A_{j 1} y_{i}=z_{i}
\end{aligned}
\]

\section*{Procedure}

\section*{The system}
\[
B_{i j} \Delta x_{i}=z_{i}
\]
is solved. If the value of \(\Delta x_{i}\) is greater than SIZER, some arbitrary amount, se;
\[
B_{i j}=B_{i j}+\lambda_{i i}
\]
and solve the systcm again. Repeat these operations until \(\Delta \mathrm{X}_{i}\) is less than or equal to SIZER. Now, run a new nominal * fifetory with the new independent variable
\[
x_{i}=x_{i}+\Delta x_{i}
\]
a) If the new residuals \(y_{i}\) are greater than the previous ones, set
\[
B_{i j}=B_{i j}+\lambda_{i i}
\]

Solve the system again and continue solving until the dew residuals are less than the old. Now the system is \(r \in d y\) for a nev iteration.
b) If the nev residuals \(y_{i}\) are less than the old, set
\[
B_{i j}=B_{i j}-\lambda_{i i}
\]

Solve tie sy stem again and continue solving until the new residupis are greater or equal to the ol?.

The iteration continues until eitner the maximun number of iteratic as (input) is exceeded or the residuals are less than or ratul to an inp \(t\) tolerance.

\section*{3. EQUATIONS FOR FLIGHT PAITH AZTMUTH AND FLIGHP PATH ANGLE}

A subroutine computes the flight path azimuth and flight path angle with the following eqcations:
1. Flight path angle
\[
\begin{equation*}
v=\sin ^{-1}\left[\frac{\dot{R}}{\hat{V}} \cdot \hat{\mathbf{N}}\right] \tag{s.1}
\end{equation*}
\]
\(\hat{H}\) is the vertical unit vector. In the geodetic system \(\hat{\mathbb{N}}\) is given by
\[
\hat{\mathbf{N}}=\left[\cos \varphi \cos \left(\theta-\theta_{0}\right), \cos \varphi \sin \left(\theta-\theta_{0}, \sin \varphi\right]\right.
\]

In the geocentric system \(\varphi\) is replaced by \(\varphi^{\prime}\). Alternatively, in the latter system
\[
\hat{\mathbf{N}}=\frac{\mathbf{R}}{\mathbf{r}}
\]

\section*{2. Flight path azimuth}
\[
\begin{aligned}
& A=\sin ^{-1}\left[\frac{1}{\cos v}\left\{\frac{\dot{y}}{v} \cos \left(\theta-\theta_{0}\right)-\frac{\dot{x}}{v} \sin \left(\theta-\theta_{0}\right)\right\}\right] \\
& A=\cos ^{-1}\left[\frac{1}{\cos \gamma \cos \varphi}\left\{\frac{\dot{z}}{v}-\sin \gamma \sin \varphi\right\}\right]
\end{aligned}
\]

Both formulas are used to determine the proper quadrant of A. To obtain the gencentric output, \(\mathrm{e}^{2}=0, \varphi\) is replaced by declination \(\delta=\varphi^{\prime}\).

\section*{T. OSCULAITING ELPMEANIS}

The osculating elfments are obtained from the following equations:
\[
\left.\begin{array}{l}
a=\left(\frac{2}{r}-\frac{v^{2}}{\mu}\right)^{-1} \\
n=\mu^{1 / 2}|a|^{-3 / 2} \\
e \cos E \text { e }\}=\left(1-\frac{r}{a}\right) \\
e \cosh E
\end{array}\right\} \begin{aligned}
& e \sin E\}=\frac{d}{|\mu a|} \\
& e \sinh E\} \\
& M=\left\{\begin{array}{l}
E-e \sin E \\
e \sinh E-E
\end{array}\right.  \tag{т.6}\\
& t_{p}=t-\frac{M}{n}
\end{aligned}
\]

The angles \(\Omega\), \(\omega\), \(i\) are obtained from the vectors \(H\) and \(\hat{P}\), where
\[
\begin{gather*}
H=R \times \dot{R} \\
e P=\left(\frac{l}{r}-\frac{l}{a}\right) R-\frac{d}{\mu} \dot{R} \tag{т.8}
\end{gather*}
\]

In terms of these vectors.
\[
\begin{equation*}
\cos i=\frac{H_{Z}}{h} \text { in the first or fourth quadrant } \tag{T.9}
\end{equation*}
\]
\(\sin \Omega=\frac{H_{x}}{h \sin 1}\)
\(\cos \Omega=\frac{-\mathrm{H}_{\mathrm{y}}}{\mathrm{h} \sin i}\)
\(\cos \omega=P_{z} \cos \Omega+P_{y} \sin \Omega\)
(T.11)
\(\sin \omega=\frac{\mathrm{P}_{\mathrm{Z}}}{\sin \mathrm{i}}\).

\section*{U. IMPACT PARAMETERS}

The "impact parameters" are coordinates in the "impact" plane. This plane passes through the body (planet or the moon) and is normal to the incoming asymptote. The direction cosines of the asymptote are given by equations (U.1, U.2) in terms of unit vectors \(P\) (Afpendix \(T\) ) and
\[
\begin{align*}
& \hat{Q}=\frac{H}{h} \times \hat{P}  \tag{U.1}\\
& \hat{S}=\frac{1}{e}\left[\hat{P}+\sqrt{\left(e^{2}-1\right)} \hat{Q}\right] \tag{U.2}
\end{align*}
\]

In the plane defined by \(S\) as its normal, two unit vectors \(\hat{T}_{\text {IMP }}\) and \(\hat{\mathrm{R}}_{\text {IMP }}\) are defined. \(\hat{\mathrm{T}}_{\text {IMP }}\) is parallel to the ecliptic plane for T-planet impacts, and to the moon's orbital plane for moon impacts. Explicitly
\[
\begin{equation*}
\hat{\mathrm{T}}_{\mathrm{IMP}}=\frac{\hat{\mathbf{N}} \times \hat{\mathrm{S}}}{|\hat{\mathrm{~N}} \times \hat{\mathrm{S}}|} \tag{U.3}
\end{equation*}
\]
where \(\hat{N}\) is the unit normal to the ecliptic plane, or the moon's orbital plane. \(\hat{R}_{\text {IMP }}\) is normal to both \(\hat{S}\) and \(\hat{\mathrm{T}}_{\text {IMP }} . B_{\text {INP }}\) is the vector from the body to the vehicle as it crosses the impact plane. The data computed are the dot products
\[
\mathrm{B}_{\mathrm{INP}} \cdot \hat{\mathbf{T}}_{\mathrm{IMP}}
\]
and
\[
\mathrm{R}_{\mathrm{IMP}} \cdot \hat{\mathrm{R}}_{\mathrm{IMP}}
\]

\section*{V. MOON'S ORBITAL PLANE INPUT AND OUTPUT}

A polar ccordinate system is available for input and output which uses as its reference plane the moon's orbital plane and the vector fram the moon to eerth as unit rector. Polar coordinates in this system are defined analogous to geocentric polar coordinates. The cartesian coordinates in this system are computed by equations (H.3) with
\[
c=s=r_{B}
\]
and
\[
\theta_{0}=0
\]

Here \(r_{B}\) is the radius of the body of departure (earth or moon).
These coordinates are then transformed to equatorial coordinates by a matrix \(C\) computed as follows:
\[
\begin{gather*}
\hat{\mathbf{i}}=\frac{R_{E M}}{r_{E M}} \\
\hat{\mathbf{k}}=\frac{\mathrm{R}_{E M} \times \dot{R}_{\mathrm{EM}}}{\left|\mathrm{R}_{\mathrm{EM}} \times \dot{R}_{\mathrm{EM}}\right|}  \tag{V.1}\\
\hat{\jmath}=\hat{\mathbf{k}} \times \hat{\mathrm{i}}
\end{gather*}
\]

The transformation matrix \(C\) is then given by
\[
c=\left[\begin{array}{ccc}
i_{x} & j_{x} & k_{x}  \tag{v.2}\\
i_{y} & j_{y} & k_{y} \\
i_{s} & j_{s} & k_{s}
\end{array}\right]
\]
and
\[
\begin{aligned}
& \mathrm{R}=\mathrm{CR}_{\mathrm{MOP}} \\
& \dot{\mathrm{R}}=\mathrm{C} \dot{R}_{\mathrm{MOP}}
\end{aligned}
\]

The matrix \(C\) is unitary, and \(C^{-1}=C^{*}\), permitting easy inversion of equations (V.2).

\section*{W. EQUATIONS FOR TRANSLUNAR PLANE INPUT}

The translunar piane input is designed to permit easy visualization of the geometric relationships between initial conditions for circumlunar trajectories and the motion of the moon.

The initial conditions are given in a coordinate system referred to the translunar plane. This system has its \(x\) axis along the ascending node of the vehicle with respect to the moon's orbital plane, its \(y\) axis in the translunar plane at right angles to the ascending node, in the direction of motion. In this coordinate system, initial position and velocity vectors are given by
\[
\begin{align*}
& x_{T L}=\left(r_{B}+h\right) \cos \Psi \\
& y_{T L}=\left(r_{B}+\dot{h}\right) \sin \Psi  \tag{W.1}\\
& z_{T L}=0
\end{align*}
\]
\[
\dot{z}_{T L}=0
\]

The translunar plane is positioned by giving its inclination \(i_{T L}\) with respect to the moon's orbital plane and the lunar lead angle 0 , the angle between the moon's position at injection and the descending node. The vectors \(R_{T L}\) and \(R_{T H}\) may then be transformed into the equatorial system by the following series of rotations:
1. A rotation - \(i_{T L}\) about the \(X_{T L}\) axis will rotate the translunar plane into the moon's orbital plane.
2. A rotation of \(\pi-\left(\lambda_{M}+\varphi\right)\) about the new z-axis will refer the moon's orbital plane coordinate system to the ascending node of the moon's orbital plane (with respect to the equator) as \(x\)-axis.

Here \(\lambda_{M}\) stands for the argument of latitude of the moon. These rotations are performed by multiplying \(R_{T L}\) and \(\dot{R}_{T L}\) by the matrix:
\(A=\left[\begin{array}{ccc}-\cos \left(\lambda_{M}+\varphi\right) & \sin \left(\lambda_{M}+\varphi\right) & -\sin \left(\lambda_{M}+\varphi\right) \sin i_{T L} \\ -\sin \left(\lambda_{M}+\varphi\right) & -\cos \left(\lambda_{M}+\varphi\right) \cos i_{T L} & \cos \left(\lambda_{M}+\varphi\right) \sin i_{T L} \\ 0 & \sin i_{T L} & \cos i_{T L}\end{array}\right](W .3)\)
3. The moon's orbital plane (MOP) is rotated about its node through an angle - \(i_{M}\) (the inclination of the MOP)
4. The ascending node is brought into coincidence with the vernal equinox by a rotation \(-\Omega_{M}\). These two rotations are embodied in the matrix
\(B=\left[\begin{array}{ccc}\cos \Omega_{M} & -\sin \Omega_{M} \cos i_{M} & \sin \Omega_{M} \sin i_{M} \\ \sin \Omega_{M} & \cos \Omega_{M} \cos i_{M} & -\cos \Omega_{M} \sin i_{M} \\ 0 & \sin i_{M} & \cos i_{M}\end{array}\right]\)
and thus:
\[
\begin{align*}
& R=(B A) R_{T L L} \\
& \dot{R}=(B A) \dot{R}_{T L L} \tag{W.5}
\end{align*}
\]```


[^0]:    *Note: The following 3 symbols with primes denote the corresponding geocentric quantities. Geocentric in this report refers to a spherical earth, i.e., $e^{2}=0$. In this case $\varphi^{\prime}=\delta=$ declination.

