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SUMMARY
 

A physical analog of steady-state sodium and potassium transport 

in a two-membrane, three-compartment system was studied utilizing the 

principles of nonequilibrium thermodynamics. This physical system is 

analogous to physiological systems where one compartment consisting of 

a cell monolayer separates two other compartments, such as the inter­

stitial fluid and the renal tubule lumen in the kidney. The membranes
 

in the model system serve only to localize the chemical potential
 

gradients between compartments. The phenomenological equations relating
 

the flows through the membranes to the chemical potential gradients
 

we-re developed from the equation for -energy dissipation within each 

membrane. The flews defined both the nonsteady-state rates of change
 

of concentrations within -each compartment and the steady-state transport 

across eacb msmbrss 

Ion transport due to chemical convection was studied by adding
 

water to the "cell" compartment and removing it from the "interstitial" 

.
compartment The "lumen" compartment was left as a strictly passive 

+
 
compartment. The Na+, K , and C1- concentrations were measured 

periodically until a steady-state was reached. 

In'further experiments the concentrations of components in the 

"lumen" compartment were held constant by a constant flow of 

aCl-KCl-H20 solution through the compartment. The constant flow of
 

water into the "cell" compartment distributed itself among both the 

"lumen" ,and "interstitial" compartments according- to the- mechanical 
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filtration properties of each membrane. In initial experimentsj the 

flows were unidirectional into the "interstitial" compartment. In later
 

experiments the flow was distributed to both the "interstitial" and 

"lumen" compartments. After the system had reached a steady-state, the
 

concentrations of components, the flows of solution in and out of the 

"lumen" compatment, and the flow, of water into the "cell" compartment 

were measured. The magnitudes and directions of the steady-state 

transport of components were determined.
 

The' nonsteady-state experiments demonstrated a transient transport 

Of Na+j K+ , and Cl- ions from the "lumen" compartment to the 

"interstitial" compartment against a concentration gradient. At low 

solvent fluxes the ion transport occurs with the concentration gradient. 

+ 
At intermediate solvent fluxes, K+ and Na are transported in opposite 

K
+ is transported down a concentration gradient while Na+ 

directions; 

is transported against an equal or larger gradient. 

Steady-state transport of Na 
+ 

and' K from the "lumen" compartment 

to the "interstitial" compartment may be maintained by a solvent flux
 

in the direction of transport. The magnitude of this transport is 

greatest when the concentrations of components in the two compartments
 

are equal, and decreases as the concentration ratio of components in 

the "intestitial" compartment to those in the "lumen" increases. For
 

the combinations of solvent fluxes and component concentrations
 

investigated, the transport of K+ was usually greater than the transport
 

of Na+.
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INTRODUCTION 

An important problem in the field of biology concerns the ability 

of living cells to maintain stationary nonequilibrium distributions of 

molecular components across their membranes and the associated ability 

of a layer of such cells to maintain a constant flow of molecular 

components from one 
side to the other against concentration gradients
 

of the components.
 

Classical approaches dealing with this phenomenon are summarized
 

in general physiology texts (2, 4.,5, 11, 12). The system generally 

considered is one of two compartments, cellular and interstitial,
 

*separated by a cell membrane. Transport is considered to be at
 

steady-state. If the component is such that it is neither produced
 

nor consumed within the cell, the net transport is ,zero. If the 

material transported is produced or consumed at a certain rate, then
 

the transport must proceed at a rate equal to production or consumption.
 

The effect'of tha transport is to maintain a constant concentration of
 

materials within the cell, a factor vital to the viability of the cell.
 

A more complicated situation exists when the cell compartment
 

separates two different extracellular compartments, such as occurs in 

the kidney tubule, intestinal mucosa, and capillary endothelium. In
 

this'case, a steady-state transport of a material, which is neither 

consumed nor produced within the cell, can exist across the cell
 

membrane without altering the concentration of the material within the 

cell. The material enters the cell at a certain rate from one 
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compartment and leaves the cell at the same rate into the other
 

compartment. Such a system maintains constant concentrations of
 

components within an organ and within the organism as a whole.
 

Classical descriptions of biological transport generally categorize
 

transport as passive or active. Passive transport is defined as that
 

which oocurs without the utilization of metabolic energy produced at the
 

local site of transport. It is a process spontaneously driven by an
 

electrochemical gradient negative in the direction of transport and
 

with a simultaneous decrease in the free energy of the system.
 

Active transport is defined as transport phenomena that require
 

utilization of metabolic energy at the site of transfer. 
In this
 

zase, material may be transported against an electrochemical gradient,
 

and the change in free energy in the local system becomes positive.
 

By this mechanism a living cell may maintain concentration differences 

in the face of passive gradients, or, in the case -of a tissue layer, 

this mechanism provides a means for sustaining a constant, steady-state
 

transport 'ofmaterialagainst an electrochemical potential gradient.
 

The above definitions hold true when the mechanism observed is purely
 

passive or purely active. However, in most situations these mechanisms
 

occur simultaneously. Various classical criteria have been developed
 

The most
for determining whether active transport is taking place. 


the Nernst equation and the Ussing criterion.
ndtedare 
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The Nernst equation (2) for zero net ion flux is generally written
 

as
 

- 20(01/02)BE2 BEl='T 
zF
 

where E denotes electrical potential, C denotes ion concentration,,F
 

is the Faraday constant, 	 R is the universal gas constant, T is absolute 

temperature, and z denotes the charge of the ion. The numbers 1 and 2
 

denote the intra and extracellular compartments. When the transport
 

phenomenon is strictly passive, a concentration gradient is balanced
 

by an electrical gradient, and the Nernst equation is followed. When
 

the Nernst equation is not followed, the concentration and electrical
 

gradients are out of balance, resulting in a concentration gradient
 

component unaccounted for by the passive forces defined in the Nernst
 

equation. This requires the addition of an active transport component.
 

The Ussing criterion (2, 39) relates the ratio of the unidirection
 

fluxes of a component,. i.e., fluxes of the same material in opposing 

directions, to the concentration ratio and electrical potential
 

difference across the membrane:
 

B
C2 e
2) 	 M2 ,11 

M21 =le 



M2, 1 is the flux of the material from side 2 to side 1, while 

M1 .2 is the flux from side 1 to side 2. C2 and 91 are the concentrations 

on sides 2 and sides 1 of the membrane. E2 El is the-electrical
 

potential difference. If the ratio of unidirectional fluxes relates to
 

the concentrations and electrical potentials as defined by the Ussing
 

equation, passive mechanisms are sufficient ,t6 account for the transport
 

phenomena. If, however, the Ussing equation is not followed, active
 

mechanisms are -hypothesized to account for the unbalance. The unidi­

rectional fluxes may be experimentally determined by utilizing a radio­

active isotope of the material on one side of the membrane.
 

Since it is difficult to investigate the molecular processes
 

occurring on the membrane surface and within the membrane., the specific 

mechanisms of active transport are not known. However, several
 

hypotheses have been proposed. The two hypotheses that are currently
 

most popular relate -active transport to carrier-mediated movement and 

directional binding sites within the membrane (2, 20, 41). In the 

first hypothesis, the ion to be transported is bound to a carrier 

molecule on one side of the membrane, diffuses through the membrane as 

a complex, and is dissociated from the carrier at the other side. The
 

energy for the dissociation is derived from the breakdown of a high
 

energy compound. In the case of sodium transport out of a cell and 

potassium transport into a cell, the carrier molecule is thought to be
 

sodium-potassium-activated adenosine triphosphatase and the energy for 

dissociation is provided by the breakdown of ATP to the lower energy
 

compound ADP.
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The directional binding site hypothesis contends that'the membrane 

pore is lined with binding sites with specinciy or toe ion transporre 

and with directional characteristics such that the sites bind the ion 

more strongly in one direction than in the opposing direction.
 

Utilizing energy from the breakdown of high energy compounds, the bond
 

configuration of the binding site is thought to change and release the
 

bound ion.
 

One problem of the classical approach to ion transport is that it
 

treats each component as a separate entity, thus creating a multitude
 

of one-component systems. This requires that the free energy for each
 

process decrease in order for the transport of that component to occur
 

spontaneously and therefore be of a passive nature. If a change in
 

free energy is positive, the transport needs an active mechanism in
 

order to occur. What is neglected is the irreversible frictional
 

interaction or coupling between component processes. If this coupling
 

factor is included in a multicomponent treatment, the only requirement
 

for transport to occur passively is that the total change in free
 

energy for all components be negative. If the changes in free energy
 

for the transport of all but one component are positive, the total
 

change in free energy for the entire process may still be negative,
 

and the entire process is essentially passive.
 

Biological ion transport is a nonequilibrium phenomenon that
 

cannot be explained in classical equilibrium terminology. A better
 

approach to this problem may be found in the realm of nonecuilibrium
 

thermodynamics.
 



8
 

The groundwork for the theoretical approach to the thermodynamics
 

of irreversible processes or nonequilibrium thermodynamics was laid
 

by Onsager (28) in 1931, for which he received the Nobel Prize in
 

Chemistry in 1968. Onsager employed Lord Rayleigh's original treatise
 

on the theory of sound which presented a set of equations expressing
 

the linear dependence of mechanical flows on mechanical forces. Onsager
 

extended these equations to include thermodynamic flows and forces. 

The resulting equations are known as phenomenological equations: 

Jl = ll + " "
 

J2 = + . . . .22X2
1 X2 


3) 

= x + 2 " +n n .. • 

or 

n 

k=l 

Ji are specific flows or processes and Xk are forces. Lti are the
 

"straight" coefficients relating the flows to their conjugate forces:
 

Examples of the relationship of flows to conjugate forces include
 

the flow of heat as a result of a temperature gradient, the flow of
 

electric current as a result of an electrical potential gradient, and 

the diffusion of an ion as a result of its own chemical potential
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gradient (17). Lik (k / i) are the "cross" coefficients. These
 

relate flows to nonconjugated forces. Examples of this relationship
 

include flow of current as a result of a temperature gradient and
 

the flow of volume as a result of an electrical potential gradient
 

(17). The cross coefficients also relate the flow of an ion to the 

nonconjugated force consisting of a pressure gradient or a chemical 

potential gradient of a different ion species. The phenomenological ­

equations in the application to multicomponent systems become an
 

extension of Fick's first law.
 

The thermodynamics of irreversible processes based on 0nsager's 

original,work has since been developed more fully by Meixner, de Groot, 

Casimir, and Prigogine, and summarized in texts by Denbigh (6), 

de Groot (14), de Groot and Mazur (15), Fitts (9), Prigogine (31), 

Van Rysselberghe (4o), and Haase (16). Katchalsky and Curran:(19) 

combined the various approaches to make the theory mdre amenable t,
 

biological preblems.
 

The concept basic to the theory of nonequilibrim thermodynamicE 

is that of entropy. According to the second law of thermodyiiamics, the 

change in entropy for a quasi-static, reversible process is equal to
 

the change in heat divided by the absolute temperature: 

5) as = dQ 
T 

This relationship does not hold for irreversible processes where
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> aQ
6) as 

For example, in a reversible adiabatic process where the heat exchanged,
 

dQ, iszero, the entropy remains constant (ds = a). However, in an
 

irreversible, adiabatic process, the entropy of the system increases.
 

This makes the entropy ideal for a qualitative differentiation between
 

reversible and irreversible processes. Equation 6 does not give any 

information other than the direction in which a process will go. 
The
 

approach to quantitative formulation of the nonequilibrium thermodynamics 

is to replace the inequality in equation 6 with an equality in order
 

to be able to precisely specify what the entropy change actually is.
 

The assumption is made that the entropy of a system at any point of
 

the irreversible process is,only a function of the parameters that
 

totally characterize the system at that point regardless of how that
 

point was reached.. If this is so, then the entropy at a specific point
 

in the irreversible process would be equal to the entropy of the system
 

if the nonequilibrium distribution of internal parameters were maintained
 

at equilibrium by an external reversible process. Since the entropy 

of the resulting equilibrium system and of the external reversible 

processes can now be defined by equilibrium thermodynamics, the total 

entropy of the corresponding nonequilibrium system may be determined. 

The next important step in the development of nonequilibrium
 

thermodynamic theory is the postulation that the total entropy change 

in an irreversible process is equal to the sum of the entropy exchanged
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by the system with its surroundings, or external entropy, and the 

entropy created within the system, or internal entropy: 

7) dS = dSex + aSintt 


The internal entropy production is greater than zero for all irreversible
 

processes and 6qual to zero for all reversible processes. Now, the
 

internal entropy dSint,is related to the local entropy production, (,
 

as follows:
 

dSint PdV 
dt SV 

Thus, the local entropy production is the entropy produced in a unit
 

volume per unit time. The local entropy production is a highly
 

sophisticated concept that relates all flows and their conjugate forces:
 

n 

9) = Jixi
 

Derived from and very often used instead of the local entropy 

production is the dissipation function, 0: 

n 

10) 0 = T = T) Jixi
 
i=l
 

The dissipation function always relates the flows and forces such
 

that it is equal to the rate of conversion of free energy into thermal
 

energy.
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Both the local entropy production and the dissipation function
 

define a set of phenomenblogicalequations:'
 

11) Ji Lj k 

k=l
 

Lik, the phenomenological coefficients, are generalized mobilities or
 

conductances. The phenomenological equations may also be written in
 

terms of generalized frictions or resistances, Rik.
 

n 

k=1
 

Onsager (28) in his original work demonstrated that if the flows 

and forces are so related as to define the local entropy production, 

a, or the dissipation function, 0, then the following relationship 

for the cross-coefficients,hold: 

i (i k)
i = 
13) 


Rik = Rki (i k)
 

These relationships are known as the Onsager law of reciprocal 

relations. This law is very important in terms of practical applica­

tion of the phenomenological equations since it reduces' significantly 

the number of unknown coefficients. The law has been proven experi­

mentally for multicomponent diffusion by Dunlop and Gosting (7). 
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Based on his earlier work, Onsager (29) applied nonequilibrium
 

thermodynamics to the problem of diffusion. First, he developed a
 

generalization of Fick's law for multicomponent systems:
 

n 

14) Ji DikVCk
 

k=l
 

Ji is the diffusion flow of component ij Dik is the diffusion coefficient
 

relating the ith flow to the kth concentration gradient, VCk. Then,
 

utilizing the dissipation function for multicomponent diffusion,
 

Onsager related the diffusion flows, Jk, to the thermodynamic properties
 

of the solution:
 

15) -Vpi RikJk
 

k=l
 

-where 74i is the chemical potential gradient of component i, and Rik 

is the resistance coefficient relating the ith force to the kth flow. 

Hearon (18) applied Onsager's theoretical work to the problem of 

cellular diffusion. He related the distributions. of metabolic solute 

andinert solutes-, V it ( t is the concentration of thek 


component inside the cell) to the rates of production and/or
 

consumption of the various metabolic solutes, qi, within the cell:
 

16) .2int " :­
i
 



Rki is the resistance coefficient relating the ith flow, qi, to the 

kth force. Solutions to equation 16 demonstrate that metabolic soluteE
 

may flow continually against their concentration gradients and inert 

solutes may establish nonequilibrium, stationary concentration gradient 

across the membrane. As a consequence of this frictional coupling, or 

coupling with diffusion, the rates of production or consumption of one 

metabolic solute may influence the metabolism of another metabolically 

unrelated substrate. Furthermore, a change in the metabolic rates may 

result in the flow of metabolically inert solute from a region of low 

concentration to a region of high concentration.
 

Stavermann (37) applied nonequilibrium thermodynamic theory
 

directly to membrane processes.- Specifically, he related molecular 

transport, hi, across a membrane to three forces: electrical potentia 

difference across the membrane, LM , pressure difference, 6P, and 

4 
•chemical potential difference, ik: 

+
17) ni =XLik(-I4E+ vki Ak)
 

k
 

is the charge and k-is the-partial molar volume of the kth ion.zk 

He also related the phenomenological -coefficients, Lik, which cannot 

be measured directly, to experimentally measurable quantities. 

Kedem and Katchalsky (21) modified'and extended Staverman's work 

to the permeability of biological mmbranes. They demonstrated the 

unacceptability of the conventional equations for osmotic and pressure 
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induced flows across the membrane. The conventional equations involve
 

two coefficients: the permeability coefficient of the solute and the
 

permeability coefficient of the solvent. However, in order to totally
 

describe the membrane transport process, three coefficients are
 

required: the diffusion coefficient of the solute relative to the 

solvent, a coefficient related to the friction between membrane and 

solvent, and a coefficient related,to the friction between solute and 

membrane. The equations for volume flow, JV, and diffusion flow, JD, 

in terms of these three coefficients are: 

18) 

qD LjjPdP + LDRT n~ 

LF is the mechanical filtration~cbefficient related to the friction 

between membrane and solvent, LD is' the diffusion coefficient related 

to the friction between solvent and solute, end LDp(= LPD) is the 

coefficient, related to the friction between solute and membrane. 

Equations 18 not only describe bulk-flow and diffusion flow, but as 

-a result of the cross-coupling coefficieits, Lp. , describe osmosis 

(the flow of 'solvent resulting from a concentration differential) and 

ultrafiltration (the flow of solute resulting from a pressure differ­

ential). Kedem and Katchalsky developed mathematical criteria 

for quantifying the selectivity of membranes, and derived equations 

analogous to equations 18, for a multicomponent system with 
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a single permeable solute as a~function of reflection coefficients, a,
 

and solute permeabilities, s.
 

Manning (24), to characterize the membrane more precisely, extended 

Kedem and Katchalsky's equations by assuming that the diffusion and 

bulk flow occurred through specific potential energy profiles within 

an idealized membrane. He derived expressions for reflection. coeffi­

cients and solute permeabilities as functions of-the potential energy 

profiles.
 

Spiegler (36), Nims (25), and Kedem and Katchalsky (22) have 

developed mechanical approaches to describe irreversible ion transport
 

and membrane processes. The approach is based on the law of friction 

which relates the frictional force between two objedts linearly to the 

relative velocity of their motion. A multicomponent system is 

characterized by the relative velocities and the friction coefficients
 

between the various components and between the components and the
 

membrane. The resulting equations demonstrate the following relation­

ships between the mechanical friction coefficients, fki, and the
 

thermodynamic coefficients, Rki ? and k: 

fkiPx
 
Rki CiA
 

19)
 

DI RT 

!x is the thickness and A is the area of the membrane, R is the
 

universal gas constant, and T's'the absolute temperature.
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'Nims (25) showed that the nonequilibrium stationary distribution 

of Na+, K, and C- ions produced by a constant water flux across a 

porous membrane is defined by the diffusion coefficients of the ions 

relative to water: 

CNa'CCI-FNa+7CI­

20) CNa+CCl-7Na+7C1- D(KCI)w 1.2 

Zn .MC+ 'N~al­0 1,-,7
C 

oMand 3 are the two compartments on either side of the membrane, and 7 

is the activity coefficient of the specific ion in the respective
 

compartment. 

The premise-that a stationary nonequilibrium distribution of ions 

across the membrane may be maintained by a flow of other components
 

has been tested by 'a number of experiments. Nims and Thurber (26) 

used a two compartment plastic.apparatus with a Millipore filter 

membrane separating the compartments to determine the distribution of 

Li+, Na+, K+, and C1- ion6 across the membrane
i
. A constant flow of 

water was added t6 one- compartment', and ,removed by evaporation from 

,the second compartment. After the system had reached a stationary 

state, Na+, K, and + concentrations were determined. The distributions 

according to equation 20 were calculated at various flows of water. 

Experimental values ,compared well with the theoretical value of 1.2. 

Salminen (33) devised an experiment to test theoretical data 

developed by Ekman, Rastas, and' SalmInen (8),. The theoretical system, 



based on nonequil±brium thermodynamics, involved two compartments 

connected by a capillary pore. Stationary nonequilibrium ion distri­

butions within the capillary were calculated as a function of a flow 

of hydrochloric acid and water. The experimental apparatus was very 

similar to that of Nims and Thurber (26). A constant flow of water 

and hydrochloric acid was maintained across the membrane. Hydrochloric 

acid, added to one compartment, reacted in the other compartment with 

sodium hydroxide. The experimental and theoretical results demonstrated 

that Na+ and et may be transported in opposite directions across a 

membrane against their concentration gradients by utilizing constant 

flows of acid and water. 

In, experiments similar to those of Nims and Thurber (26), Rapoport 

(32) demonstrated nonequilibrium stationary distribution of K, Li+;
 

and C1- across a porous membrane using a constant flow of water.
 

Nims and Butera (27) demonstrated a nonequilibrium stationary
 

distribution of ions across a membrane resulting from a constant flux
 

of urea, samonium, and carbon dioxide. Urea was added at a constant, 

rate to one compartment 'and hydrolyzed by urease im the- second
 

compartment. The ions moved both against their concentration and 

electrochemical gradients. 

Thurber and Thompson (38) experimentally tested the prediction 

based on nonequilibrium.thermodynamics:that the stationary ion 

distributions across,'a membrane are expdnentiallj related to the steady­

state metabolic flows hcross the membrane. The investigators utilized
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human erythrocytes under anaerobic conditions. In this case the total 

flow'.of metabolites was approximated by the lactic acid production, *,
 

and the ion distribution was expressed as
 

Zn pn c
acK T 

where p and c refer'to, the plasm and' cell compartments, .M is a 

summation of membrane parameters 'and fridtiona coefficients, and T 

is the absolute temperature. The, erythrdcytes were incubated at 

various temperatures. Stationary state lactic acid production and 

+

cellular and plasma concentrations of Na+ and X were determined. The 

experimental data correlated with equation 21 within experimental 

error, and the investigators concluded that the equation was a valid 

description of nonequilibrium ion distribution in the human erythrocyte. 

The thermodynamic and mechanical treatment of transport across
 

membranes as reviewed above generally describe macroscopic phenomena.
 

In a biological membrane, however, the pores and associated transport
 

phenomena are on the microscopic level, i.e., of the order of magnitude
 

of the molecular components. Thurber and Thompson's work (38) is
 

particularly significant in that it demonstrates the validity of the
 

macroscopic equations as applied to a biological system,
 

The objective of my investigation was to extend the above described 

work-to a two-membrane, three-compartment system, which is open to all 

components, and to determine whether a flow of'one of the components
 

-can maintain a nonequilibrium stationary distribution of ions, and 

http:flow'.of


20 

whethei such a flow can sustain steady-state transport of ions against
 

their concentration gradients.
 

The two-membrane, three-compartment system is a simple model of 

cell layers, such as exist in the kidney tubule, the intestinal mucosa, 

and the capillary endothelium. The cell layer, compartment p, separate 

two other compartments: the lumen, compartment a; and the interstitial 

space, compartment 7. There are two membranes separating the compart­

"meats. Metabolic substrates are consumed or produced within the cell 

compartment, producing material flows across the membranes. These
 

flows may be different across each membrane if the physical properties 

of the membranes are different or if the chemical potential of the 

substrates are different in the external compartments. The flows are 

a source of free energy-, and may, by frictional cross-coupling-, produce 

flows of metabolically inert components.
 

This model despite the simplifying assumptions, can throw light 

on the question of how a cell layer can maintain nonequilibrium 

distributions of ions to which it is permeable, and how it can sustain 

steady-state transport of these ions against their concentration 

gradients.
 

A mathematical model of this system was developed from non­

equilibrium thermodynamic theory for ispthermal conditions and
 

continuous phases. It was assumed that-no gradients existed within
 

the compartments. 0omponents consisted of NaC and KCl in aqueous
 

-solution. The "metabolic" productioh of water within the cellular 

compartmdnt; , 'was, the only metabolic' substrate or product flow 
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considered in this model. The water flow distributed itself between 

the external compartments, a and y, according to the pressure 

differentials across the membranes and the mechanical filtration 

properties of the membranes. The membranes localized the chemical 

potential or concentration gradients between the solutions in the
 

compartments. The membranes were assumed not to differentiate 

between ion components. Consequently, no flow of current through and
 

no separation of charge across the membrane were considered. The 

membranes were assumed to be homogeneous at every elemental thickness 

and the effedtive-pore area was assumed constant throughout the 

membrane. Although these assumptions are severe, they portray a
 

limiting case, and any observed phenomena may differ from the real 

case. only in magnitude. 

Initially, the system. as in Figure 1 was studied under conditions 

where the system is open only to a unidirectional flow of water from 

the 'cellular' compartment, P, to the "interstitia-f compartment, 7. The 

concentrations of ions in y were held constant by virtue of the 

relatively large size of that compartment. The intent was to observe 

the direction of transient ion transport as a function of the water 

flow. In the limiting case, where time approaches infinity, this 

system becomes a stationary two-compartment system of the first order, 

and ion distributions may be calculated according to Nims (25). 

Next, the system shown in Figure 2 was studied under conditions
 

where the system was open to NaC1 and KC1, as well as to a unidirectional 

flow of water from the "cellularcompartment, P, to the Interstitial 
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Figure 1.- Nonsteady-State System
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compartment, 7. The ion concentrations in compartment y and in the 

"lumen" compartment, a,, were held constant. The latter was achieved 

by a constant flpw of fixed concentration solution into and out of
 

compartment'm. The rate of this Ldw,,end the differences in ion 

concentrations going into and out of that compartment were a measure 

of the steady-tate ion transport. across the membranes for a given 

unidiredtional flow of water from compartments P to 7. Since ion
 

condentrations in compaments o and y7,where experimentally controlled, 

determination of- ion concentrationsbin the cellular compartment, f, 

completely defined the nonequilibrium ion distribution for a given
 

flow of water.
 

This system was also studied under conditions where the flow of
 

water from compartment ' could distribute itself into both compartments 

7 and m. 
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ANALYTICAL MODEL 

The nonequilibrium approaches to ion transport through membranes 

include thermodynamic as well as mechanical treatments. The former 

offers the greatest generality, while the latter offers a clearer 

physical picture of the processes taking place. However, in the case 

where the membrane is essentially nonselective with regard to the
 

components, one approach has little advantage over the other.
 

In this investigation, a thermodynamic approach is used. It is 

an adaptation of 3atchalsky and Curran's (19) derivations to include 

both pressure and concentration gradient forces across a membrane in, 

a multiple solute system. The dissipation function is first written 

to relate the flows of components and the local chemical potential 

gradients within the membrane ef a two-compartment system. The 

gradients are thei related to the pressures 'and concentrations within 

each compartment. Finally, the equations are applied to a two-membrane, 

three-compatment, system.
 

Consider the two compartment system diagramed in Figure 3 in which 

the compartments, o and P, are separated by a physical barrier con­

sisting of a membrane of unit area and of thickness Lx. Each 

compartment contains n solutes and a solvent for a total of n + I 

components. At the observation plane, 0, a volume element of unit area 

and of thickness, dx, can be isolated. We can homogeneity andassume 

may apply the dissipation function for isothermal diffusion in a 

continuous phase with n + 1 components: 
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n+l 

22) = Ji grad (-ti)
 

i=l 

is the dissipation per unit area at plane 0, Ji is the flow per unit 

area of component i at plane 0, and i is the chemical potential of 

component i at plane 0. 

As derived in Appendix D, equation 22 may be written in terms of 

the volume flow, JV, the pressure gradient, grad (-P),,the diffusion 

flow of component i relative to the solvent flow. Jd and the concen­

tration dependent chemical potential gradients, grad (-ki). 

n
 
nJ 
grad ­

23) ' grad (-p) + Jg 
ix). 

In deriving equation 23, vector notations are dropped since the
 

one-dimensional case is considered, i.e., the flows and forces are only 

a function of x.
 

In a stationary state, the flows in equation 23 are constant, and 

the equation may be integrated across the membrane. The pressure and 

the chemical potentialgradients across the membrane are linear. 

However, the phenomenological equations'defined by the resulting
 

dissipation- function involve the phenomenological coefficients, Lk. 

These coefficients re strong-functions of concentration and generally 

are not Aailable which makeean actual numerical analysis of the 

theoretical model difficult.
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An alternate approach is to write the local phenomenological
 

equations at plane 0 as defined by the dissipation function in
 

equation 23.
 

n 
= -

JV i grad P -tX LPD, grad Lk 

k=l 

24) 

n 
a 
Ji= - grad P 

7 
- Lik grad gk 

k=l 

LpDk and LDp, are related to the friction between the membrane and the 

solutes; that is, they are cross coefficients coupling hydrodynamic 

flow with diffusional forces and diffusion flows with hydrodynamic 

forces. They are functions of the permeability and reflection of the 

membrane to a specific solute. For a very porous membrane, these terms 

may be neglected; that is,
 

= 25) D LP - 0 

Equations 24 now become the equations for volume flow and dif­

fusional flow, respectively, at plane 0 in an isothermal continuous;
 

system:
 

JV = - grad P 

26) n
 
d =- _ LX.kgrad C 

k=l
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is the mechanical filtration coefficient for the membrane element
 

and Lik is the coefficient that relates the frictional forces of
 

cemponent i to those of component k at the observational plane, 0.
 

In the case of a stationary state the volume flow, JV is constant 

and equation 26 may be integrated across the membrane: 

27). JV "Lp ZAP
 

where
 

28) F P- PP 

p is an average filtration coefficient for the membrane.
 

Equation 26 may be written in terms of diffusion coefficients
 

and concentration gradients:
 

n 
29) i D grad Ck
 

k=l 

Equation 29 is similar to the equation for isothermal diffusion 

in a continuous system derived by Onsager (29).
 

The diffusional flow., Jd may be written'as: 

d Ci
30) J. = i. -_­

where Cw is the c- +i n- ,,a.e Rt., -niane 0 and T..is the flow 

of water. 
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The volume flow, JV, may be written, in terms of the solute -flows, 
the water flows, and the partial, molar volumes,' 7i and Vw: 

0, ­n 

31) J Y Virf + VI. 
i=l
 

Derivations of equations 29, 30, and 31 are given in Appendix D.
 

The solutions may be made sufficiently dilute to make the volume 

contribution of the solvent, nwVw, to.the total volume of the solution, 

V, overwhelmingly larger than that of the other components such that 

32) w 

Substituting equations 30, 31, and 32 into equations 29 and 27, 

and multiplying the flows by the total area of the membrane, A, the 

equations for the flow of component i and the flow of water relative 

to the membrane at the observational plane are: 

n 
= 

Ji 
=i 'A Dik- dCw Jw 
 D dwk
 

k=l 
33) 

Jw CwA-rAP-Z 
n 

C,,VkJk 
k=! 

Equation 33 states that the flow of solvent is equal to the difference
 

between total flow and solute flow. In the case of bulk flow, the
 

solute flows are negligible relative to the total volume flows. Hence, 

we may consider the solvent flows being approximately equal to the 

total volume flow: 
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34) J, - - CwAe AP 

C6mbining equations -33 and 34 gives the general equation for the 

flow of a specific solute as a function of the pressure differential
 

across the membrane, the local concentration gradientp and the
 

concentrations of components:
 

AZ, ik dx. 
k=l 

The first term in the equation is the flow of solute i due to the
 

frictional drag effect of the solvent. This phenomenon is sometimes
 

referred to as the frictional cross-coupling effect or solvent drag.
 

It is essentially analogous to the thermal convection phenomenon and
 

may suitably be-referred to as the flow of solute due to chemical
 

convection. The last term is the flow of solute i due to diffusional
 

forces. It includes the straight diffusion as described by Fick's
 

law as well as diffusion due to frictional cross-coupling between
 

different solute components. The former flows are related to the
 

forces dCk/dx by the straight coefficients, Dik (i = k), and the latter­

flows are related to the forces dCk/dx by the cross-coupling diffusion
 

coefficients, Dik (i / k). These coefficients are only weak functions
 

of concentration at low concentrations and, therefore, are useful in
 

the practical application of equation 35. Values for the coefficients
 

have been given by Dunlop and Gosting (7) by Fujita and Gosting (10)
 

for a ternary system of NaC1 - KCl - H20. These are liste in Table 1.
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As can be seen, the Onsager reciprocal relation for the phenomenological
 

= Lki, does not apply to the diffusion coefficients,coefficients, Lik 


TABLE 1.- DYIMFUSION COEFFICIENTS AT 25' C FOR VARIOUS 

CONCENTRATIONS OF A NaCl - KC1 - H20 SYSTEM (7) 

NaC1 - 1, KC1 = 2 

Cl (M) 0.25 0.5 0.25 0.5 1.5, 

(M) 0.25 O.25 0.50 0.5 1.5C2 

Dl X 105 1.380 1.433 1.364: 1.403 1.464 

D12 X 105 0.011 0.021 0.015 0.026 0199 

105 0.150 0.099- 0.207 0.173 0.387D21 x 

22X 05 1. 836_- 1.831 l.863 1.859 1.901, 

In order to apply equation 35 it:is necessary to define the local
 

concentrations and concentration gradients for all cbmponents at the
 

observational plane in 'terms of the concentrations in the compartments 

on either side of the membraie.', This is difficult'to do 'since both the 

concentration and concentration-gradient atnypoint in'time vary as 

a function of pore size, pore distribution, and solution agitation.
 

The concentrations within the membrane are diTficult to measure. It 

is necessary to assume a gradient, calculate the resulting concentrations 

within the compartments and compare this to experimental data. This 

has been done by Ekman, Rastas, and Salminen (8, 33) on a system of 

NaC1 - KC1 - HC1 - 1120 for two compartments connected by a capillary
 

pore.
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A concentration gradient term may be developed from equation 35, 

if we assume the gradient results from two conditions: first, no 

pressure gradients exist throughout the system, i.e., - ALp 6P = Fw = 0; 

second, the system is in a stationary state of the first order where
 

only the flow of water exists, i.e., Ji = 0, F J 0. The concentrations 

of components at the surface of the membrane are assumed equal to the 

concentrations within the compartments bordering that membrane surface, 

w 


i.e., 0i(x O) c C (x = x) = Cc. For the stationary state we 

may integrate equation 35 for the listed conditions: 

Ci(Fw = 0) =c'+(~-c)~~ 

36) ,. 

Ci(Ji" )-'~)o.Fw(2C - LeC/AJii 

The asterisked diffusion codfficients denote that an average value was,
 

taken over the concentration range integrated. Cross-coupling terms
 

have been neglected for deriving equation 36. The validity of dropping
 

the cross-coefficients is demonstrated in Appendix D.
 

Combining equations 36 gives a generalized equation for the con­

centration of component i as a function of distance x within the
 

membrane: 
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37))~ F /A i+ .(X - DX) x) 

dci(x) Fcpw F (x-A(x)C/P - In'..)e\ 
Li) 

Let 

b ADjk
bk -=
 38) 

When x = -2x/2, the equations for concentration and concentration
 

gradients become:
 

C -Fw/bi] 

i~xCM
 

Equations 35 and39 may-be applied to the two-membrane, three­

compartment system shown in Figure 1. The:,coiponents are defined 

as follows: NaCl = 1, Kul a 2, 12o = w. A pressure differential, AP, 

between compartment P and 7 'is establishedby the constant addition 

of water to compartment P and the constant removal,of water from 

compartment y at a rate Fw = - (ALp AP)P'. 



The specific volumes of the compartments remain approximately 

constant. Compartment m is essentially closed to volume flow. The 

volumes of compartments P and 7 likewise remain constant in that the 

amount of solvent entering is equal to the amount leaving. Consequently, 

the changes in concentrations of components within the compartments is
 

due only to solute flow leaving and entering. For compartment m, a
 

positive rate of change in the amount of component i is equal to the 

flow of i into a, or 

dt dt i 

Ji is constant throughout the membrane. 

For compartment 7, a positive rate of change in the amount of 

component i is.equal to the flow of i into y, or in the negative x
 

direction:
 

ll)i d t­dt 7 CI41) 


For compartment f3 a -positive rate of change in the amount of
 

component i is equal to the aifference of the flowof i out of 7 and
 

out of M:
 

dn=? dCt " dCt dti
 
42), -,
 

dt at 1 1dt dt 



36 

Combining equations 35; 39, 4o 41, and 42, and taking into con­

sideration that Fwca- (ALp = 0 for the nonsteady-state model,-P)P 


we obtain a system of differential ,equations defining the concentration
 

of.each component in each compartment at every point in time.
 

V.dC1 b7p M M M R 3p 
-t - lbl - b1 202 + bll0 + b12C2 

Va a&2 1bC, - buP a + bmPCP + bcGPC 

dt
 
.. .2-i+ - += 0 1 b 

1Vc dC" dC& V, C _
 

V dt dt VP dt
 

' 

VcGdCa + dC v dC2 = 
VP dt -t T dt 0
 

43) 
del _ 0+ y 7 Pb-7, (F-b?)eF b C7 

+ b - [F+bPbC Cw+bbl
 

dt 
1 

122 2 111
 

+ b_ ~ 3 
12 /'~ FJ2b
 

b -0Z : 3-P-7 F. w" 
+ 7,A22 7
VydC _byC + ( +wb "d ( 7Yi e 2bl 

\ 11 

7t21 + b2) ;pe 

The above equations are a system of linear, first-order equations.
 

Solutions of these equations are of'the type (35):
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4 
e
 

K + kot + K..ci ° 


j=l
 

Time histories of the concentrations using specific coefficients and 

initial conditions in equations 43 .have been produced by computer 

program and are presented under Results. The program also produced 

the specific eigenvalues, ?i, and eigenvectors, Kijj.for equation 44. 

The concentrations in all three compartments change with time 

until a stationary condition is reached. This occurs when co = co 

at which point the system effectively becomes a two-compartment system. 

In order to investigate a steady-state in a three-compartment system, 

it is-necessary to hold constant the concentration of components in
 

two of the three compartments.
 

The concentrations of components in compartment a are now held
 

constant by a constant flow qf solution with fixed component concen­

tration into and out of compartment a. The poncentrations of components
 

in compartment 7 are maintained approximately constant by making the
 

compartment volume extremely large compared to compartments a and p. 

This system is shown in Figure 2.
 

In this system, the concentrations of components in compartment m 

will reach steady-state 4alues different,from those in compartment p. 

At steady-state, the rate of change ofcomponent i in cbmpartment a
 

is zero, or from equation '40
 



at- ' - i 

c= iout 41joinL Ji =J. -J 

61,Jtis the steady-state transport of component i into and out of 

compartment cc 

In the steady-state oase, the rate of change of components in e ch 

compartment is zero and, consequently, all flows are constant througlout 

the system:
 

37 j43 
,46) Ji =i =ATi 

Substituting equation (46) into equation (351, and utilizing the 

concentration gradient from equation s 3 w; can develop the equations'4e 

defining the steady state transport of components 1 and 2 between 

compartments m and 7: 

p - we Cm 
ohj + - +
2b 


22 

+LTblj I+ Lbl 2jC2 

=- b~l _-Fw/2bll + b-~ C.,Y [F -- e 2l~ 1 22 F 
2 

+ ,1 '2
221 
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Ull7 ; F 'b1 7l 

wbP2F,7 7F IdFT1b 1073F'w222 2 7 
+ 2e + 2L 22J 

C2 

'Yb1f ' / 137 , 

L 1Y] 


37F /~ 7 ' e~ 2
 

'2 2 'lp b 22J2 + 7 _ 

+ b le CI +t2 + b22e 02j"1 

The above four simultaneous equations have four unknowns: the transport 

of NaCl and of KCl, and the concentrations of NaC1 and of KC1 in
 

compartment P. Solutions obtained by computer program for specific 

conditions and coefficients are given under Results.
 



APPARATUS 

The, basic experimental apparatus used consisted of three liquid 

compartments separated by porous membranes as shown in Figure 4. The 

compartments were formed by clamping two hollow Lucite blocks to a 

large Lucite box with four threaded rods. The blocks were 2 in. 

by 2 in. by 2.25 in., and were bored with a center hole of 3/4 in. 

diameter. The small compartments, m and f3 were cylindrical. 

Compartment ]3 had a porous, membrane on either end and compartment a
 

had a porous membrane only on one end. The volumes of compartments M 

and 3.were 14 cc each. The Lucite box, compartment Y, was 7 in. by 

7 in. by 6 -in. Its volume was approximately 4 litera. On one side., 

the box had a 3/4 in. diameter hole and an adapter for clamping 

compartments aend P. On two other sides; the box had 5 in. diameter 

openings and bolt holes for clamping membranes and. attaching salt 

compartments for the osmotic temoval of water from compartment y as 

shown in Figure 5. A more detailed description of the apparatus may 

be found in Appendix A. 

The entire apparatus was submerged in a Lucite water bath. All 

tubes from the apparatus extended through the surface of the water 

bath. Two sampling ports to compartments a and [ extended through 

the front of the water bath. The temperature of the water bath was 

maintained at 25
° C by a constant temperature circulating system 

(Precision Instrument Co., model 666oo).
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Figure. 4.- Experimental Apparatus. 
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The solutions were agitated ata constant rate by two magnetic
 

stirrers (Thomas Co., model 15). One stirrer agitated compartments M
 

and 3by means of two 1/2 in. diameter Teflon-coated stirring balls.
 

The other stirrer agitated compartment y by means of a 1-1/2 in. Teflor 

coated stirring bar. 

Pressures within compartments o and 3 were determined by capillar3? 

manometer tubes extending from the rear of the compartments. 

Hydrostatic pressure within compartment y Mas determined by the liquid 

level within a fill tube extending from the top of the compartment. 

Water feed into compartment P and NaC1 - KC1 solution feed into 

compartment o was accomplished by hydrostatic feed from reservoirs.
 

The hydrostatic heads of the reservoirs were held constant by
 

permitting makeup air at atmospheric pressure to bleed into the
 

reservoirs through tubes at the bottoms of'the reservoirs. The air
 

bleed tubes consisted of glass tubes-with hypodermic needles bent
 

horizontally to maintain an even, small-bubble flow of air into the
 

reservoir. The heights of the reservoirs were adjustable. The liquid
 

flowed through rotameter-type flowmeters (Manostat, model 36-541-05)
 

into the top -sides of compartments m and 3 (Figure 4). 

The constant outflow of solution from compartment a in the steady 

state experiments was accomplished by means of a hypodermic needle
 

pierced through a rubber septum on the-front side of the compartment.
 

Polyethylene capillary tubing connected the hypodermic needle to a
 

rotameter. Flow \was controlled by adjusting -the total head from 



reservoir air-bleed level to collecting point and by the back pressure
 

sustained by a hypodermic needle at the solution collecting point.
 

Flow of water into compartment f and across the 37 membrane was
 

controlled by the difference in pressure between the total hydrostatic
 

head to the membrane and the liquid level in compartment 7. The latter
 

was controlled by the rate of osmotic outflow of water from that
 

compartment. Thus the water flow proceeded at the demand rate
 

dictated by the osmotic water outflow from compartment 7. The osmotic
 

water outflow was accomplished by nonwettable.vinyl fluoride membranes
 

(Gelman, VF type) separating compartments yfrom adjacent compartments 

filled with saturated salt solutions (Figure 5). 'Water removal rates
 

were varied by changing the, total membrane area and by employing 

different salts in the saturated salt compartments. NaCl, CaC12 and
 

,LiCl produced water flows ib respectively increasing magnitudes for
 

the same membrane area. The saturated salt solutions were permitted
 

to overflow into a collecting container. Saturation was maintained
 

by keeping an abundance of' undissolved salt within the osmotic chambers. 

The utilization of the nonwettable membranes for creating osmotic flows
 

of water is discussed in Appendix A.
 

Sampling of solutions from compartments m and P was accomplished
 

by using 100 pL syringes to withdraw samples through a rubber septum 

fitted into the front side of each of these compartments (Figure 6).
 

Sampling from compartment 7 was done through a 1/2 in. diameter filling
 

tube extending from the top of that compartment.
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The porous membranes used in this investigation were commercially
 

available membrane filters. They consisted of Millipore types GS and
 

VC, and Gelman type GA-9. The manufacturers' specifications for these
 

membranes are given in Table 2. The filters were cut to a diameter of
 

2
1-1/8 in. The actual area exposed to the liquid phases was 4.57 cm .
 





TABLE'2.- SPECIFICATIONS FOR YMRANE FILTERS (2, 42)
 

Water flow rate at
 

Type Compositi6n Pore size Thickness Porosity 6iP= 700 mm of Hg
 

Gelman Cellulose 
GA-9 triacetate 0l0 i, •127 - 1521 85 percent 4(ml/min)/cm

2 

Millipore Mixed esters 
2
 

VC of cellulose- 0.10 ±"0008 130 ± 10 74 percent 2(ml/min)/cm


Millipore Mixed esters 2 
GS - of cellulose 0.22'± 002L 135 ± 104 75 percent 21 ± 3 (ml/min)/cm 
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PROCEDURES
 

Nonsteady-State Experiments
 

Either Millipore GS or Gelman GA-9 type membranes were used in the
 

3mposition. Gelman GA-9 type membranes were usbd in the up position. 

The latter membranes have & low mechanical.filtration-coefficient
 

which reduced the amount of solution mixing between the a and P 

compartments during filling. This, maintained the initial compartment
 

a ion concentrationsclose t6 the ultimate steady state values and 

reduced the time to reach stationary state sdnditions.
 

Compartment y was filled with-NeCl - KC1 'solution ranging from 

98 to 160 mM. Compartment a was filled with NaC1 - KC1 solutions 

ranging from 5 to 8 mM. The initial solution in compartment p
 

consisted of solution from compartment y flowing -throughthe pf memba 

during filling plus an addition of distilled water to fill the
 

*compartment. No attempt was made to control the initial concentrations
 

in compartment [. 

The apparatus was "brought to life" by filling the osmotic chambers ­

with saturated salt solution and opening a valve in the reservoir-to­

compartment 'Pwater line. The water flow rate adjusted itself auto­

matically as the water inflow and osmotic outflow equilibrated. Various
 

flow rates, ranging from 0.07 to 0.300 ml/min, were established by a
 

combination of one or two osmotic chambers, and saturated NaCl,. CaC12,
 

or LiCl solutions.
 



The water bath temperature was adjusted to 250 C and maintained 

within ±0.50 C. Constant stirring was maintained. A 100 pL sample 

was taken out of each compartment immediately. Samples were then 

taken hourly for the first few hours and then every 2 to 3 hours for
 

the remainder of the experiment., No samples were taken for a period
 

of 6 to 8 hours during each night 'of the experiment.. Each experiment 

required 2 to 3 days to reach stationary state. 'Flow rates and 

temperature readings were taken at each sampling,
 

Samples were diluted to a range of 0.025 to 0.2 mM. This was 

the linear range of Na 
+ 

and K concentrations as a function of' optical 

density for the Bckman Atomic Absorption system employed. 01 

activity was first measured with 'an*Ag/AgCl electrode and a Beckman 

research pH meter: .Na 
+ 

and It concentrations were determined by atomic 

absorption speectrophotometry and standardization curves. These curves 

were obtained periodically from a 'series ofgraimetrically derived
 

NaC1an KCl standard solutions.
 

Steady-State Experiments
 

The membrane in the Py position consisted of the Millipore GS type 

membrane. In the initial experiments water flow into compartment 3 

was permitted ,only across the Jy membrane into compartment 7. This was 

accomplished by using the Millipore VC type membrane which has a low 

mechanical filtration coefficient and maintaining a near zero pressure
 

differential across the' membrane. The water bath was maintained at
 

25.0 ± 0.10 C. 
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In later experiments, Millipore GS type membranes were used in 

both the up and 07 positions. In these experiments the flow of water 

into compartment P partially distributed into the a compartment depending 

on the magnitude of the pressure differential across the up membrane 

The apparatus was filled as in the nonsteady-state experiments.
 

'The NaCI and KCI concentrations of the filling solutions for 

compartment 7 were maintained at approximately 100 mM throughout 

these experiments. A set of experiments was run over a range of water 

flows into P from 0 to 0.7 ml/min for each of the following NaCl - KCI 

concentrations of solution flowing into a: 100 anM,50 aM, 25 mM, 

and 5 mM. Each solution brought about an increasing concentration 

gradient in compartment a relative to compartment j3. 

In initial experiments water flows into pand'out of 7,wereJ 


controlled as in the nonsteady-state experiments, that is, by hydro­

static feed into f and osmotic removal from 7. In later experiments
 

total water flow into compartment 0 also depended on the pressure
 

differential across the up membrane.
 

Solution flow rate through compartment m was controlled by the
 

hydrostatic head and back pressure from the collecting needle. This
 

flow war so controlled as to maintain a constant measurable con­

centration differential between the in and outflow for a solution o
 

given concentration flowing into m. The intent was to maintain a
 

constant concentration gradient from a to 7 for a given solution 

flowing into a over the entire water flow range into the p compartment. 



This then permitted a plot of ion transport against a constant
 

concentration gradient versus water flow.
 

The system reached a steady-state by running overnight. Timed
 

samples of compartment a outflow were collected in 10 ml volumetric 

flasks and 100 L seamples were taken from bath P and 7. Flows m..,
 

cout 'Pin, and the temperature were recorded. Samples were taken 

until three consecutive samples had the same ion concentrations which
 

indicated, that the system had reached a steady-state.
 

Sampling, dilutions and analyses were performed as in the nonsteady­

state experiments. In addition, gravimetric determinations of total
 

salt content in the min and %out samples were made. The ion transport 

rates were calculated as,given in Appendix C. 
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RESULTS AND DISCUSSION
 

Initial comparisons of theoretical and experimental results made it
 

immediately apparent that correlation of the data with the theoretical
 

predictions depended highly on the assumed values of the effective mem­

brane pore areas and gradient boundary thickness. There are a number of
 

reasons for this. First, in the theoretical derivations, phenomena
 

related to the actual existence of pores within the membranes and to thd
 

tortuosity would have the effect of decreasing the effective pore area
 

and increasing the boundary thickness. Seccnd,. solution stirring has a
 

significant effect on boundary thickness. Because of the apparatus
 

design, the stirring for these experiments was only moderately controlled.
 

.The geometry of the apparatus and the use of'a water bath for temperature
 

control necessitated the use of magnetic stirrers and relatively small
 

stirring bars or balls) which proved to be only a.-moderately'effective
 

method of solution agitation. Also, the apparatus design was such.that
 

there existed a poorly stirred region on the 7 compartment side of the
 

P7 membrane. All this had the effect of increasing the boundary thick­

ness. Finally, each experiment'was conducted over a period of days during
 

which time the membranes became partially clogged. Although the hydro­

static head was increased to maintain constant water flow, the effect of
 

the clogging was- to decrease effective membrane pore area. Similar
 

membrane clogging was observed by Nims and Thurber (26). The problem of
 

not being able to precisely specify the membrane effective pore areas
 

and boundary thicknesses, necessitated the introduction of an empirical
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parameter, 71, correlating theoretical values to the mahufacturer's
 

membrane specifications:
 

theoretical
48)t 


(a)manufacturers' specs
 

A comparison of the experimental data for the time rate ef change of Na+
 

and K concentrations in compartments a and f, shown in Figure 10 and
 

Table 4, with the theoretical results, shown in Figure 9, for the same
 

water flow rate across the P7 membrane indicates that the ratios of mem­

brane area to boundary thickness were less than the membrane manufac­

turer's values.
 

An additional -problemin correlating experimental data to theoret­

ical calculations was the difficulty of specifying the velocity of water
 

molecules within the membrane. The analytical model neglected viscous
 

effects near the pore walls and assumed a constant water velocity equal
 

to the water flow across the membrane per unit pore area. The assumptio
 

of a velocity was difficult because of the difficulty in specifying the
 

pore area. A decrease in pore area has the effect of increasing the
 

water velocity. Furthermore, in the case of viscous flow through a
 

cylindrical pore, the flow is of the Hagen-Poiseuille type (1) in which
 

relatively static layer of fluid; existing along the pore wall, decrease
 

the effective pore area and therefore increases the average water
 

velocity. Pore tortuosity increases this effect still further. This
 

difficulty made it necessary to introduce another empirical parameter,
 

9, correlating the theoretical average water velocity within the
 



54
 

membrane to the experimental water flux:
 

49) e =( theoretical 

(F)experimental
 

T and e are functions of the membrane pore area. l1 is a function of the 

area through which diffusion occurs and e is a functien of the area 

through which bulk flow occurs. These areas need not necessarily be
 

,the same.
 

Three nonsteady-state cases of ion concentration variation with
 

time in compartments oand 0 are given below.. In each case the initial
 

concentration of each ion in compartment 3 is greater than that in
 

compartment m. In the first case a low water flow rate, F is utilised.
 

+

The concentrations of both Na+ and K in compartment m increase with
 

time until a stationary state is reached. This increase is due to the
 

transient transport of the ions down,concentration gradients from
 

compartment 7 to compartment m. The theoretical and experimental results
 

are given in Figure 7 and Table 3. In the second case, a higher water
 

flow rate, FY3 was used. The concentration of K in compartment m again
 

increases with time. However, the Na concentration in compartment a
 

behaves differently. After a time equal to t +, when the Na+
 

concentrations in compartments a and P are equal, the Na+ concentration 

in compartment a decreases until a stationary state is reached. Since
 

the Na+ concentration in compartment P is decreasing simultaneously,, the
 

Na+ leaving compartment a enters compartment 7, which has aNa+ concen­

tration an order of magnitude greater than that of a. The net effect is
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TABLE 3.- NONSTEADY-STATE EXPERIMENT (NO.10); c and py 

MEMBRANES - GELMAN GA-9, 

C =a+123 mM, C0+=99mM, C 1-222mM 

Time F
7 

w Temp. Ca
Na+ 

+ 
Na+ 

Ca 
es 

bp
K+ 

Cc,
C1 

C­
01­

hr ml/min °C mM mM mM mM mM mM 

0 -0.068 22.0 2.50 22.3 2.80 14.9 5.30 37.2 

1 -0.072 25.3 4.70 17.5 5.7e 16.8 ,o.4 34.3 

2 -0.075 25.6 6.70 14.2 7.70 16.5 14.4 50.7' 

4 -0.075 26.6 8.30 13.1 !0.6 17.,0 18.9 30.1 

6 -0.075 28.1 -- 13.4 -- 18.1 31.5 

8 -0.076 28.0 10.2 14.0 15.0 18.6 25.2, 32.6 

11 -0.075 28.0 11.8 14.3 17.2 19.7 29.0 34.0 

14 -0.075 -28.0, 12.8 14.9 18.4 20.6 31.2 35.5 

17 -0.075 28.0 13.8 15.0 19.2 19.9 35.0 34.9 

23 -0.075 28.0 15.2 17.0 21.0 21.6 36.2 38.6 

26 -0.075 28.0 15.3 16.5 21.0 21.6 36.3 39.1 

29 -0.075 28.0 15.8 16.6 21.2 22.0 37.0 38.6 

52 -0.075 28.0 16.8 17.7 21.6 21.6 38.4 59.5 

48 -0.080 28.,0 18.1 15.9 23.5 23.4 41.4 59.3 

50 -0.077 28.0 16.8 16.9 21.6 22.9 38.4 39.8 

54 -0.080 28.0 17.6 17.4 23.0 22.9 40.6 4o.3 
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a transient transport of K+ down a concentration gradient and a simul-'
 

+
taneofis transient movement of Na in the opposite direction against a
 

much greater concentration gradient. Attempts to demonstrate this case
 

experimentally were unsuccessful because the necessary water flow rates,
 

and initial concentrations were in a difficult to control narrow range.
 

The theoretical results are shown in Figure 8. In the third case (Figs.
 

9, 10, and Table 4) even larger water flow rates, F7w were used. The­

concentrations of Na and K in compartment a decrease after time equal 

°'. + 
to ti Both Na and K now demonstrate a transient movement from
 

compartment a to compartment Y against a concentration gradient.
 

Additional experimental data demonstrating th& third case are givdn,
 

Appendix B.
 

Results of the nonsteady-state experiments demonstrated the tendency 

for the concentration of K+ to be higher than that of Na in compartment 

J, the "dellular" compartment. Values of the Nims' distribution function 

are shown in Table 5. Values calculated from the experimental conditions 

at stationary state compare reasonably well with the expected value 

of 1.2. Values of the function calculated from the theoretical data 

were almost in all cases precisely 1.2. 

Results of the steady-state experiments in which the water flow 

rate across the c43membrane was zero are given in Table 6,and in Fig­

ures 11-16. Each pair of figures represents data for transport against 

consecutively increasing concentration gradients from compartment M to 

compartment 7: Ci/C i = 1.11 to 1.17, C7/Ct = 2.11 to 2.41, and 

Ci/C i = 4.00 to 5.15. 
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TABLE 4. - NONSTEADY-STATE EXPERIENT (NO. 7); a4 MEMBRANE - GELMAN GA-9; 

P7 MEMBRANE =-MILLIPORE GS, 

Ck+ = 150 mM, C+ = 120 mM, Cl 250 mM 

Time F7 Temp. &&a+Na d doKe Cm C)1 

hr cc/min °C m M M, - mM mM mM mM 

0. 0 23.7 7.00 45.3 7.00 45.o 14.0 90.5 

0.75 -0.187 24.8 9.40 17.5 9.60 19.5 19.0- 37.0 

1.75 -0,.187 25.4 9.80 8.70 9.90 16.3 19.7 25.0 

3.25 -0.187 25.1 -- 4.90 -- 8.20 -- '13.1 

4.75 -0.192 24.9 9.00 5.50 10.0 7.50 19.0 13-0 

6.75 -0.195 25.0 7.30 3.70 '8.80 7.20 16.1 10.9 

9.25 -0.199 25.0 6.20 3.40 9.40 8.1o 15.6 11.5 

12.25 -0.199 25.0 '4.8O 3.10 8.80 8.90 13.6 12.0. 

15.25 -0.192 25.0 4.50 2.80 7.20 6.80 11.7 9.60 

22.75 -0.185 25.0 4.00 5.70 7.00 7.70 11.0- 1.4 

23.75 -0.187 25.0 3.80 3.80 6.90 7.10 10.7 10.9 

25.25 -0.187 25.0 3.90 3.70 7.00 7.50 10.9 11.2 

27.25 -0.187 25.0 3.90 3.80 7.50 7.80 11.4 11.6 

29.25 -0.187 25.1 -- 3.70 -- 7.30 -- 11.0 

30.25 -0.187 25.0 5.60 3.70 7.70 8.50 11.3 12.2 

31.25 -0.187 25.0 3.6o 3.60 8.00 8.1o 11.6 11.7 

47.50 -0.183 25.0 3.70 3.8o 8.20 8.6o 11.9 12.4 

49.25 -0.183 25.0 3.80 4.20 8.40 9.20 12.2 15.4 

54.25 -0.183 25.0 3.80 3.80 8.20 8.10 12.0 11.9 
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TABLE 5.- VALUES OF DISTRIBUTION FUNCTION 

in CNaCcl-

Na+ Cl 
Case F?,ml/min 

Theoretical -0.050 1.20 

Theoretical -0.100 1.20 
(Fig. 7) 

Experiment 10 -0.075 1.17 
(Table 3) 

Theoretical -0.159 1.21 

Theoretical -0.167 1.20, 
(Fig. 8) 

Experiment 7 -0.190 1.15 
(Fig. 10) 

Theoretical -0.198 1.20 
(Fig. 9) 

Experiment 9 -0.230 1.19 
(Appendix B) 



TABLE 6.- STEADY-STATE EXPERIMENTS; Fw = - (ALp 6P)p = 0; 4 MEMBRANE a MILLIPORE VC;, 

37 MEMBRANE = MILLIPORE GS; TEMP. a 25.00 C 

F
7 

cc/min 
Cinw 
mM 

C
2
a+NaNa 

mM 
Ca+/Cia+ Ca NaJN/K++ K 

mM/ m 
Cai+ CIC

2' 
K Ca+7 

mM 
J 

mM/HR 

1 0 85.0 102 1.17 92.3 +0.024 85.0 100 1.15 92.0 +0.028 
2 -0.073 100 101 1.12 47.4 -0.107 100 100 .111 54.8 -0.107 
3 -0.164 100 101 1.11 25.0 -0.163 100 99.0 1.11 32.0 -0.215 
4 -0.263 100 101 1.12 12.1 -0.225 100 100 1.15 17.8 -0.279 
5 -0.620 100 103 1.14 6.30 -0.225 100 100 1.14 7.70 -0.290 
6 -0.660 10o 103 1.14 5.50 -0.225 100 100 1.14 6.60 -0.288 
7 -0.670 100 101 1.12 3.40 -0.222 100 100 1.15 6.50 -0.284 
8 -0.690 100 101 1.12 5.40 -0.222 100 100 1.15 6.60 -0.284 

9 0 40.0 102 2.24 76.7 +0.078 40.0 100 2.11 77.4 +0.108 
10 -0.073 49.0 1o 2.23 27.5 -0.031 50.8 102 2.18 37.5 -0.034 
11 -o.164 50.0 102 2.23 15.4 -0.073 50.7 102 2.27 21.0 -0.095 
12 -0.263 50.0 102 2.32 7.04 -0.090 50.5 101 2.41 11.4 -0.120 
13 -0.464 50.0 99.3 2.23 3.66 -0.115 50.0 98.0 2.27 4.90 -0.143 
14 -0.560 50.0 100 2.23 3.20 -0.106 50.0 100 2.30 4.00 -0.142 
15 -0.570 50.0 100 2.23 3.20 -0.103 50.0 100 2.32 4.00 -0.142 
16 -0.578 50.0 100 2.23 3.20 -0.102 50.0 100 2-33 4.00 -0.142 

17 0 14.5 98.5 4.38 68.3 +0.127 13.8 99.0 4.08 68.8 +0.165 
18 -0.118 25.0 99-0 4.23 15.5 -0.015 25.0 98.0 4.00 22.4 -0.005 
19 -0.263 25.0 101 5.03 4.80 -0.041 25.0 101 5.15 8.00 -0.045 
20 -0.390 25.0 100 4.71 2.10 -0.037 25.0 100 4.92 2.80 -0.046 
21 -0.410 25.0 100 4.65 2.10 -0.035 25.0 100 4.85 2.80 -0.045 

22 -0.720 10.0 99.0 12.5 0.60 -0.020 10.0 99.0 13.7 0.70 -0.026 
23 -0.600 4.95 99.0 24.8 0.56 -0.009 5.00 99.0 25.7 0.61 -0.011 
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The gradients are given as ranges rather than as specific values because
 

to have experimentally set them to specific values would have required
 

a priori knowledge of the data to be determined. The concentrations of
 

ions in compartment 7 were between 98.0 and 102 mM. The membranes
 

consisted of the Mfllipore VC type at the 4 position and the Millipore
 

GS type at the 47 position. The dashed lines in the figures represent
 

analogous theoretical data. Calculations were performed for Values of
 

the empirical parameters n4 = 0.217, TIP'= 0.585, and e = 1.6. These
 

values were obtained by matching two specific theoretical points to the
 

corresponding experimental points in Figures 11 and 12. These points
 

were GJa at = -0.7 and CN at F7 = -0.3. Both the steady state 

analytical and experimental results in Figures 11, 13, and 15 produced 

similar plots of ion transport versus water flow across the 37 membrane
 

in all cases. Since in all cases studied the concentrations in compart­

ment 7 were higher than those in compartment a, ions diffused from
 

compartment 7 to compartment a at zero water flow rate, i.e., Ji 'was
 

positive. Since the concentrations in a and y were maintained constant,
 

diffusion proceeded at a steady-state rate, with Ke diffusing at a
 

greater rate than Na
+ 
. The effect of a low water flow across the 37
 

membrane, that is, opposing the direction of diffusion, has the effect.
 

of decreasing the rate of diffusion. At a higher F$, the diffusion is'
 

blocked, i.e. Wj becomes equal to zero. Na+ diffusion; since it
 

proceeds at a lower rate for the same gradient, 'is blocked t a lower
 

water flow rate than is le diffusion. At water flows greater'than those
 

causing diffusion blockage of an ion the transport direction of that ion
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reverses, i.e., iitbecomes negative, and proceeds against its concen­

tration gradient. In the region iFj(W.Na+ = 0)I< IF,7<ItI( 4,+ = 0), 
+


Na -andK move in opposite directions even though the concentration
 

gradient for each is of the same magnitude and sign. At water flow
 

rates greater than those causing K+ diffusion blockage, the transport of
 

both Na+ and K occurs against their respective concentration gradients.,
 

This transport increases with increasing water flow. This-increase in,
 

transport with water flow, however, is at a decreasing rate 'until at 

very high water flow rates the ionic transport is essentially constant.
 

This constant value is greater for K+ than for Na+ because the trnsport 

is proportional to the rate of diffusion across the a membrane. Since
 

K
+ 

diffusion is greater than that of Nat for the same gradient, the
 

+ 

transport of K is greater. The steady state plots shown in Figures 12,
 

14, and 16 relate the ion concentrations in compartment f to the water
 

flow rates. These figures show the continuously decreasing values of
 

+
ion concentration with increasing water flow. The concentration of i

+
is higher than that-of Na , again demonstrating the tendency for K to 

remain high within the "cellular"-compartment. The results given in
 

Figures 11-16 also show that as the gradient, CT/Ci, is increased, the
 

transport down this gradient increases and the transport against this
 

gradient decreases for the same water flow rate, F,. The ion concentra­

tions in compartment also decrease with an increase in this gradient.
 

Table 7 gives experimental transport data for a range of water flows
 

across both the a5 and the P7 membranes. The results are difficult to
 

interpret. The experimental errors for these experiments were quite
 

http:iFj(W.Na


TABLE 7.- STEADY-STATE EXPERIn TS, cp and P7 MEMRANES -= MILLIPORE GS; 

TEERATURE = 25.00 C' 

Ex. No F 
cc/min 

Fc, -
c/min 

C 

m 
a C7eC-L 

Na-

0/a 
p -a 

m 

J' 
&TN., _ 

M/HR 

C + 
Kl. 

iM 

c ± 7 
-

mM 
K -K*cOK+/ 

mM mM/HR 

24 -0.135 0 100 100 1.12 52.8 -o.145 1oo 100 1.15 40.1 -0.157 

25 -0.252 0 100 100 1.13 18.5 -0.185 lo0 100 1.18 22.8 -0.231 

26 0 +0.091 120 100 1.04 42.5 +0.156 120 100 1.03 51.0 +0.175 

27 -0.155 +0.100 140 100 1.10 14.6 .o.o4o -14o i00 1.10 23.3 -o.04o 

28 -0.252 +0.103 140 100 ' 1.08 8.05 -0.049 140 100 1.10 9.90 -0.084 

29 -0.437 +0.150 140 100 :-l .09 .. 1.41 -O.013 140 100 1.10 2.64 -0.058 
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large due to difficulties in controlling and measuring three different
 
m in
 

flows simultaneously: F, F and However, the data do
Fwl saline • 

indicate that the ion.transport in the positive direction increases and
 

ion transport in the negative direction decreases with increasing water
 

flow across the c43membrane, i.e., when Fm > 0. This was also demon­
w 

strated with theoretical data as shown in Figure 18. These data also
 

demonstrate that the relative values of Ti and Tj are very useful in 

determining the degree to which the transport is increased or decreased. 

As shown in Figure 18, for a ratio of 17/q equal to 2.7, transport in 

the negative direction is almost totally blocked for all values of water 

flow across the 37 membrane by a flow across. the c43 membrane equal to 

+.l ml/min. Furthermore, in comparing Figures 12 and 17 it may b seen 

that for the same total water flow into the system, IFwI+ the ior 

concentrations in compartment P are lower if part of the water flow
 

occurs across the c43 membrane. An increase in water flow; FO, tacrogs 
w 

the c4 membrane causes an increased differentiation between Na+ and I& 

transport over most of the water flow range, F7. These theoretical data 

are shown in Table 8. 

In view of the significance of the membrane parameters c4 and It' 

on the theoretical results, an analysis was performed to determine the 

effects of variation of these parameters for the 4 and 47membranes on 

transport rates and on the ion concentrations in compartment P. At zero 

water flow across the cr4membrane, the transport proceeds at the rate of 

diffusion across that membrane. A decrease in fcl, which means a 

decrease in diffusion area or decrease in gradient, produces a decrease 
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I00 -	 SYMBOLS 
0- 0 Na+ 

80-
- \ ,NK+
 

--- THEORY 

40­

30,
 

20 ­

10 	 \ . 
8 	 \ \ 

6 	 .
 

4	 ~"S37 \
 

2 7	 •" "S 

0.1 	 0.2 0.3 0.4 0.5 0.6 

IFyl + IFa1(mmin) 

+

Figure 17.- Variation of Na+ and X concentrations in compartment 

with water flow across membranes mp and Py,; F = 0.091 to, 

0.150 ml/min; 0/c = 1.03 to 1.10; temperature =25.00 C. 

Theoretical: q = 0.217, : 0.585, e = 1.6, 0T/o,= i. 
2 4, 

Fw = 0.1 mi/min. Note that the ion concentrations in compartment, P
 
are much lower than those for the same ratib CO/OC and -sametotal
 
water flow in Figure 14. This is due to diffusion blockage by the
 
water flow across the' m3 membrane.
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Fw 
 0-0 

AJ a+(mM/hr) 0 ­

0.1­

0.2 

0. -0.1' -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

FY(mllmin) 

Figure 18.- Theoretical variation of Na+ transport with water flow
 
across Pr membrane and water flow across mo membrane.
 
CYa+/C + = 1.14, lc' = 0.217, tj = 0.585. Note that for the 
Na Na 

values of n employed transport against the concentration 
gradient, negative t3i, is almost totally blocked for all values
 
of FP by a water flow across the mp membrane equal to
0'l Ml/min. 



+
TABLE 8.- THEORETICAL VARIATION OF RATIO OF e TO Na 
+ 

TRANSPORT WITH TOTAL WATER 

FLOW FOR THREE RATES OF FLOW ACROSS THE a4 MEMBRANE 

FTot F 7 
m / m + Fm 

7 
M m/JM+ F + 

wJw Na w FW FWJK F + / + 

o 0 0 1.05 0.10 - . . 0.20 .. .. 

0.05 0 -0.05 i.o4 0.10 .. .. 0.20 .. .. 

0.10 0 -0.10 1.11 0.10 0 1.16 0.20 .. .. 

0.15 0 -0.15 1.16 0.10 -0.05 1.25 0.20 .. .. 

0.20 0 -0.20 1.22 0.10 -0.10 -i.35 0.20 0 1.24 

0.25 0 -0.25 1.25 0.10 -0.-5 1.49 0.20 -0.05 1.35 

0.30 0 -0.30 1.29 0.10 -0.20 1.62 0.20 -0.10 1.47 

0.35 0 -0-35 -- 0.10 -0.25 1.92 0.20 -0.15 1.60 

0.40 0 -0.40 1.35 0.10* -0.30 0.938 0.20 -0.20 1.76 

0.45 0 -0.45 -- 0.10 -0.35 -- 0.20 -0.25 1.95 

0.50 0 -0.50 i.38 0.10 -o.4o 1.76 0.20 -0.30 2.12 

0.60 0 -0.60 1.41 0.10 -0.50 1.92 0.20 -0.40 2.52 

0.70 0 -0.70- 1.44 0.10 -0.60 2.04 0.20 -0.50 3.21 

o.8 0 -o.8o -- 0.10 -0.70 2.13 0.20 -0.60 2.55 

0.90 0 -0.90 -- 0.10 -o.8o -- 0.20 -0.70 3.25 
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in transport for all values of water flow across the-47 membrane. This
 

is shown in Figures 19 and 20. Decreasing q ., and thereby decreasing 

diffusion into compartment 0, has the effect of decreasing ion concen­

trations in f for the same water flow. This is shown in Figure 21. A 

decrease in 17, or, in effect, a decrease in effective pore area or in 

gradient for the P7 membrane, results in an increase in ion transport in 

the direction of water flow. This occurs because of an increase in water
 

flux, a reduced gradient against which transport takes place and decreased
 

back diffusion. This case is shown in Figures 22 ahd 23. As shown in
 

Figure 24, a decrease in qT reduces ion concentrations in compartment p.
 

Again, this occurs because of a reduced back diffusion across the 04 

membrane.
 

The actual biological problem is much more complex than the model
 

presented in this study. However, the basic features of the model
 

consisting of multiple compartments separated by phase boundaries with
 

material flows across them exist in all biological systems. The
 

phenomena which occur in such a model must also occur in a biological
 

system since both are governed by the same physical laws. Although the
 

flows of material across a cell membrane may be small, the transport
 

phenomena, as presented here, area function of the velocities of the
 

components. These velocities may be extremely large due to the small
 

pore areas thought to exist in the living,membrane. The flow of water
 

considered in this study is only one of many metabolic component flows
 

which traverse the living cell membrane'. Components other than water
 

may be more efficient in transporting ions. Flows of glucose, lactic
 



-0.9 
010
 

-0.7 

AJ +(mMlhr)Na 

-0.1 

0 -0.1 -0.2 -0.3 -0.4 -0.5 '-0.6 -0.7 

Fy(mllmin)w 

Figure 19.- Theoretical variation of Na transport w:L-r water now 
across the py membrane and TIO 0a+/0'a+, = "'14- 1 o= 1. 0 
Note increase in negative transport with increase in drea or 
decrease in thickness of the mo membrane. 
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-0.9 

, = 1.0 

-0.7 

-0.5 - a 8 

AJ+ (mMlhr) 

-0.3 -

II: .217 

-0.1 

+ 0 -0.1 -0.2 -033 1'64 -0.5 -0.6 -0.7 

Y(rhuiMn) 

+Figure 20.- Theoretical variation of K transport with water flow 
across Py- membrane and ,4. CK /C = 1.14, AT = 1.0. 
Note increase in negative transport with increase in area or 
decrease in'thickness of the aP membrane. 
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Figure 21.- Theoretical variation of Na+ and e concentrationsrin 
compartment P. with water flow across the Py membrane and Ti(lf. 

1.14, 0= Note increase in Na and.. K 

concentrations in compartment 0 with increase in area or decrease 
in thickness of the mp membrane. 



-0.4­

-0.3 1 n=.585 

AJ ,+(mMIhr) -0.2 =.217 

0 

I I I I I I 

0 -0.1 -0.2 -0.3 -0.4 -05 -0.6 -0.7 

F (Wmin). 

Na+Figure 22.- Theoretical variation of transport with water flow
 
4 


across the pt membrane and -Tqp.Oa+/Cma+ = 1.14, lm' = 0..217. 

Note increase in transport rates with decrease in area or increase 
in thickness of the or miembrane. 
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.-0.4 

-0.3­

-0.2 ­ n . 

AJuflmMIhr) 

-0.1 

1 U'I!
+0.1 

-0.1 	 -0.2 -0.3 -0.4'- -0;5 -0.6 -0.7 

Fy (mllmin) 

K+Figure 23.- Theoretical variation 6f transport with water flow 
across fy membrane and 10. qj/ 0 + = 1.14, T,G = 0.217. 

Note increase in 	 transport rates with decrease in area or 
increase in thickness. of the ,By membrane.
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K+ 
Figure 24.- Theoretical variation of Na+ and concentrations in 
compartment 0 with flow of water across loy membrane and TIo. 

07/0 = 1.14, j = 0.217. Note deecrease in Na+ and K" 

concentrations in compartment 0 with decrease in area or 
increase of -the py membrane. 
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acid, urea, ammonia, and carbon dioxide have been shown to be able to
 

transport ions (27,38).
 

The membranes utilized in this study are simple relative to the
 

biological membranes. Pore sizes in cell membranes, of the order of
 

magnitude of hydrated ions,, would have the effect of increasing the
 

tendency to differentiate between ions. The ions having greater
 

permeability would tend to move in an opposite direction to the transport
 

of tons of lesser permeability in order to maintain electroneutrality
 

across the cell membrane.
 

An analogy may be made between the modelofthis study and a three­

compartment biological system such as the kidney '(13, 23.,30, 34). In
 

general, Na+ ions are thought to !ove from the.kidney tubule lumen into
 

the tubule cell down a concentration gradient existing across the lumenal
 

membrane. The Na+ is then transported out of'the cll compartment into,
 

the interstitial fluid compartment against a concentration gradient
 

existing across the basal membrane. This is consistent with the model
 

if it is assumed that the fluxes of components essential to .tlietrans­

port mechanism are greater between the-cell: and the interstitial com­

partment than between the cell and the lumencompartment. An indication
 

that this indeed may be so in the proximal tubule is the fact that the
 

mitochondria in the proximal tubule cells are primarily located within
 

the invaginations of the basal membrane. The model situation in which
 

no water flow exists across the c4 membrane is analogous to the ascending
 

+

loop of Henle where it is proposed that Na is transported against a
 

gradient from the lumen to the interstitial fluid while no water moves
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between these compartments. The water 'flow probably is blocked'by the
 

lumenal membrane. Other sections of the kidney tubule are variably
 

permeable to water and thus a water flow may exist across both membranes..
 

As demonstrated by the model, the distribution of flows across the two
 

membranes is dependent on the properties of these two membranes. The
 

brush border on the lumenal side of the proximal tubule cells, for
 

example, could function to greatly increase the pore area of the lumenal
 

membrane relative to the basal membrane and thereby control the magnitude,
 

direction, and differentiation of transport of different ions. This is
 

supported by the data in Figures 19 and 22, which show that in order to
 

maximize Na+ reabsorption the lumenal membrane should be as large as
 

possible relative to the basal membrane.
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CONCLUSIQNS
 

In a two-membrane, three-compartment system in which the concen­

trations of Na+ and K+ in the "interstitial" compartment are held 

constant, a transient transport of Na 
+ 

and K from the "lumen" 

compartment to the "interstitial" compartment against a concentration
 

gradient may be maintained by a flow of water from the "cell"
 

compartment to the "interstitial fluid" compartment. This transport 

+ +

will proceed at a steady-state rate if the Na and K concentrations 

in the "lumen" compartment are also held constant. 

If the water flow is decreased, the system will reach a point 

where the water flow no longer sustains K
+ 

transport against its 

+ 
concentration gradient, and the transport of the Na+ and K will proceed
 

+

in opposite directions, K moving down the gradient and Nat moving
 

against an equal or larger gradient. A similar steady-state phenomenon
 

is observed when concentrations in both the "lumen" and "interstitial 

fluid" compartments are held constant. 

For the same water flow across the membrane separating the 

"cellular" and "interstitial" compartments, the steady-state Na+ 
and K+ 

transport against the concentration gradient decreases with increase 

of the gradient.
 

For equal concentrations of Na and K
+ 

in the "lumen" and "inter­

stitial" compartments, the concentration of K is greater than that 

of Na+ in the "cellular" compartment for all except extremely low 
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values of water flow from the "cellular" compartment to the 

"interstitial" compartment.
 

Both- the analytical model and the experiments, should be expanded 

to include membranes which have specific permeabilities for the ions
 

under consideration. They should also be expanded .tb include nonionic 

components such as glucose and urea.
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APPENDIX A 

Experimental Apparatus Details
 

Drawings showing the details of'the experimental apparatus are
 

given in Figures 25-31. Dimensions are given in inches. Descriptions
 

of the part numbers in the drawings are given in Table 9. The apparatus,
 

except where indicated otherwise, was made of Lucite.
 

Because of instability the specific ion electrodes, part No. 46,
 

-were not-used as shown. Instead samples were taken and analyzed by
 

a Beckman atomic absorption system.
 

The use of a nonwettable membrane for creating an osmotic water
 

flow is an innovation resulting from this study. This type of membrane
 

is normally used for filtering organic solyents or passing a gas into
 

aqueous solutions.- Since the membrane' will pass water vapor but.not
 

aqueous solution at normal pressures, water may be tratsferred across
 

the membrane as a result of a water partial pressure gradient. This
 

gradient may be established by a difference in the colligative 

properties of the solutihs on either side of the membrane or a temper­

ature differential. The transfer rate is lindependent of the pressure
 

differential across the membrane over a large pressure rapge. 'If air
 

saturation of the membrane is maintained, the water trasdsfer against 

a pressure differential is limited only by the burst ressure of the
 

membrane. Transfer of water against a pressure differential of 20 psi
 

have been observed.
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Some breakthrough of the more viscous saturated LiC1 and CaC12
 

was observed at membrane supp6rt points. This resulted in a decrease
 

in water transfer rate over a period of days. -This breakthrough was
 

not observed for the saturated NaCl solutions.
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Figure 26.- Cross section through compartment a; or 1 showing sampling port 
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Figur'e 27.- Cross section of'compartment y and osmotic compartment 
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Figure 29.- Oompartment 0 detail. 



98 

U35 

-1.875-
SECTION A-A 

Figrue 30.- Compartment m detail.
 



CEMENT 
CEMENT 

,- .516 _.,.1 

.fi7K-. '0li 

15.B 2.0 4 O]~0 -~-3.000 

/ -- - .813 5 

A 15A-A SCALE 

to. 800.D. FOR1094, 

.50 DEEP- A-A 

HELICOILINSERT 

Figure 32..- Water bath detail. 
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WABLE'9.- DEPERfvETAL APPARATUS PARTS DESCRIPTION 

Part No. Description 

2 Water bath lid 
3 Compartment y 
4 Stainless steel nut 
5 Stainless steel washer 
6 Stainless steel threaded rod 

7 Monel screen membrane support 
8 Rubber O-ring 
9 Compartment P: 
10 Compartment m 
11 Millipore membranej VC or GS 
12, 13 Osmotic compartments 
14 Nonwettablemembrane retaining ring 
15, 16, 18, 19 Spacer disc 
20 Stainless steel washer 
21 Stainless steel screw 
22 Rubber O-ring 
23 Rubber gasket 
24, 25 Gelman VF-6 membrane 
26 Stainless steel screw 
27 Stainless steel heliceil inserts 
28, 29, 30 Monel screen membrane support 
31, 32 Rubber gasket 
33 Stainless steel screw 
36 Sampling port 

37 Stainless steel retaining plate 
38 Rubber septum 

39 Stainless steel retaining plate 
40 Rubber O-ring 
41 Stainless steel bolt 
42 Stainless steel retaining plate 
43 Rubber O-ring 
44 Stainless steel bolt 
45 Swagelok fitting 
46 Specific ion electrode 
47 Stainless steel washer 
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APPENDIX B
 

Additional Data and Calculated Values,
 

Tables 10 and 12 show the results of nonsteady-state experiments 

at two additional water flow rates, F7. The results are similar to 

those presented in Table i. 

Table 12 shows the concentrations of solution flowing into and 

out of compartment a, and the time for collecting a 10 ml sample out 

of compartment a, from which the ion transport rates for the steady­

state experiments were calculated. 
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TABLE 10. - NONSTEADY-STATE EXPERIMENT (NO. 9); m MEMBRANE =- GNMA GA-9, 

P7 MEMBRANE MILLIPORE GS 

Ca+ = 144 mm , + = 1
6
0 mn I, l- = 304 mm 

t Fw, Temp. CHa+ ca+ 1+ 1+ Ccl- C8l-

Hours ml/min 0C mm mM mM U3M aM mM 

0 0 -- 4.40 29.9 4.90 32.8 9.3 62.7 

1 -0.245 24.9 6.20 9.40 7.70 12.1 13.9 21.5 

2 -0.258 25.2 5.80 3.60 7.70 6.6o 13.5 10.2 

3 -0.210 25.5 5.6o 3.30 7.40 7.20 13.0 10.5 

5 -0.215 25.5 5.20 2.20 7.00 5.80 12.2 8.00 

7 -0.232 25.5 4.00 2.40 6.60 6.20 10.6 8.6o 

10 -0.247 25.5 4.20 1.60 7.60 4.70 11.8 6.30 

13 -0.247 25.5 3.20 2.70 5.90 6.40 9.1o 9.1o 

15 -0.215 25.5 2.70 2.50 5.80 6.60 8.50 9.10 

23 -0.237 25.5 3.00 4.OO 6.30 7.00 9.30 11.0 

26 -0.218 25.5 2.30 1.00 5.50 2.70 7.80 3.70 

29 -0.248 25.4 1.90 1.90 4.90 5.50 6.80 7.4o 

31 -0.240 25.5 1.80 1.80 4.90 5.50 6.70 7.30 
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TABLE 11.- NONSTEADY-STATE EXERIMENT (NO. 11);ca MEMBRANE - GELMAN
 

GA-9, P7 IVTMBRANE =- GELMAN GA-9, Ca+ = 141, C+ = 153,
 

CC1- =294
 

t F Temp. CNa+ CNa+ CK+ CK+ CC1- CC,­w 


Hours ml/min 'C mM mM mM mM mM mM 

0.25 -0.201 -- 5.00 57.8 7.2o 62.4 12.2 120 

3 -0.165 28.0 12.1 9.50 15.9 15.6 28.0 25.1 

4 -o.168 28.o ii.o 7.40 15.7 13.5 26,.7 20.9 

6 -0.172 28.0 9.60 5.20 14.2 11.3 23.8 16.5 

8 -0.183 28.0 8.10 4.20 12.7 9.90 20.8 14.1 

10 -0.183 28.0 7.30 3.70 11.4 9.60 18.7 13.3 

13 -0.183 28.0 6.40 3.30 10.1 8.80 16.5 12.1 

16 -0.184 28.0 '5.50 5.70 10.9 15.9 16.4 21.6 

25 -0.184 28.0 8.00 6.50 14.8 17.4 22.8 23.9 

28 -o.184 28.0 6.20 7,20 14.1 15.7 20.3 22.9 

131 0.184 28.0 6.30 6.8o 14.4 15.3 20.7 22.1 

33 0.184 28.0 6.3o 6.30 14.6 16.2 20.9 22.5 

48 o.184 [27.8 6.5o 6.90 15.8 15.5 22.3 22.4 
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TABLE 12. - LIST OF EXPERMENTAL CONCENTRATION AND TIME VALUES FROM 

WHICH STEADY-STATE TRANSPORT RATES WERE CALCULATED 

in Cout aCin Ci~ut Ime spe 

Exp. No. Ca+ NaK 10 ml sample 

mM mM mM mM minutes 

1 85.0 87.0 85.o 87.3 51.3 
2 100 90.4 100 90.4 53.8 
3 100 91.0 100 88.0 33.4 
4 100 89.9 lo 87.5 26.8 

5 100 90.3 100 87.5 25.9 
6 100 90.2 100 87.5 26.o 
7 100 90.0 100 87.2 27.0 
8 100 90.0 100 87.2 27.3 
9 4o.0 45.4 4o.o 47.5 41.5 

10 49.o 45.3 5o.8 46.8 71.1 
11 50.0 45.6 50.7 45.0 36.2 
12 50.0 44.o 50.5 42.0 40.1 
13 50.0 44.5 5.0 43.2 28.5 
14 50.0 45.0 50.0 43.3 28.3 
15 50.0 45.0 50.0 43.1 29.1 
16 50.0 45.0 50.0 43.0 29.5 
17 14.5 22.5 13.8 24.2 37.8 
18 25.0 23.4 25.0 24.5 62.7 
19 25.0 20.1 25.0 19.6 71.7 
20 25.0 21.2 25.0 20.3 59.3
 
21 25.0 21.5 25.0 20.6 60.1
 
22 10.0 7.95 10.0 7.25 63.0
 
23 4.95 4.oo 5.00 3.85 64.o 
24 100 87.7 100 86.8 50.5 
25 100 88.0 lob 85.0 39.1 
26 120 '96.0 120 96.9 28.9 
27 140 91.O 140 91.0 33.6 
28 liO 92.8 140 91.0 31.0 
29 140 92.2 140 91.2 22.5, 
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tAPPENDIX C
 

Calculations
 

All theoretical calculations were performed by computer analysis,
 

and the datawere plotted directly from the computer printouts.
 

Calculations of transport rates were calculated from experimental
 

data presented in Table 12 as follows:
 

aM out 01n 

50) "ocut in 
(CiFsaline) - (CiFsaline) 

For the experiments in which FS the water flow across the ap
 

membrane, is zero, the flow of solution into a was equal to flow of
 

solution out of a. This flow was determined by timing a 10 ml sample.
 

Thus
 

1 a cout an 0.01 L 
51) 1iJ t hours 

where 1000 is the dilution factor. 

A sample calculation of transport rate (steady-state experiment 

No. 5).is given below: 

aoat
 
1000 C 

ut 
=90.3 mM
Na 1h'
 

t =25.9 min x - =0.432 hr 
amin
 

1000 CNa+ = 100 mM
 

0.01 -

W = (90:3 -. 100) X - 0 
Na 0.452
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For the experiments in which F was not zero, the saline solution
 
w 

flow into and out of m were different. The saline flow out of M was
 

again determined by timing a 10 ml sample while the saline flow into
 

a was read directly from a flow meter. The transport is now calculated
 

as follows:
 

52) i [(cUt 0,1) - (CiFsa.line) inllO00 

A sample calculation of transport rate for P = 0.15 ml/min, 

Fw -0.437 ml/min (steady-state experiment No. 29) is given below: 

cot1 hrs 035h 

1000 Caout =92.2 t =22.5 min X I-=0.375 hr
 
Na+ 6­

lO0Cia+ =1i -40 sainesaline 0.294ml/min x 6o X 0.001 

= 0.0177 L/hr 

LJNa+ 9 2. x 0.-Ol 140x 0.017Io .375 

S- o,.o3'mM/hr 
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APPENDIX D 

Analytical Manipulations 

)erivation of equation 23 from 22 (19).
 

Ie define the most abundant component as the solvent, w, .andwtite
 

n 

53) iJi - grad (-ij) + Jw : grad (-p.) 

i=l 

The chemical potential, i, is both pressure and -concentration 

dependent: 

54t) grad (-i'i) = Vi grad (-P-) + grad (-s) 

Vi is the partial molar volume of component i, P is the pressure at 

plane 0. and i is the concentration dependent part of the chemical 

potential at plane 0. Similarly, for the solvent: 

55) grad (-s) =w " grad (-P).+ grad (- ) 

Substituting equations 54 and 55 into equation 53 and dropping vector 

notations since we are considering the one-dimensional case, we have: 

n 

6) =1 Ji[ i grad (-P) + grad (9 + grad -(-F)
 

i=l
 

grad ­



lo8 

The forces grad (-c)are not independent but are related by the
 

Gibbs-Duhem equation which requires that
 

n+l 

57) C0 grad (-i) = 0 

is the concentration of component i at plane 0. 

Equation 57 is good for all pressures in the system. Rewriting 

equation 57, so as to differentiate between solvent, w, and solutes, i, 

we have: 

Ci 

n 

58) grad (-_gc) =- -__ Ci grad (-P)
Cw 

Substituting equation 58 into equation 56 

59) =. iJi + 7,Jwgrad (-P) + Ji 

n J] grad (-II 

Now, rewriting equation 59 

i +Vwgw]rad (-P), + ­60) [ + i grad (- ) 

The quantity in the first,bracket in equation 60 is the volume flow 

through the barrier: 



lo9
 

n 

61) rv = vpii + wJw 
i=!~
 

The quantity in the second bracket in equation 60 is the diffusion
 

flow of component i relative to the solvent:
 

Ji= ci(vi ­

62)' ~d o(1w\IJ 

0
Jid = Ji C Tw 

CVi 

is the velocity of -component i at plane 0 relative to a referenceVi 

coordinate fixed at plane 0. Similarly, vw is the velocity of the 

.solvent at plane 0. Equation 60 may now be written in terms of Volume 

,anddiffusion flows: 

n 

63) JV grad (.-P) grad (+14,J 

i=l 

2. Derivation of equation 29 from 26
 

We utilize the chain rule relating the chemical potential gradients
 

to concentration gradients:
 

n
 

64 grad (-4) = X gzad-k,
- grad (-kt)kl 
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k' is siply a new subscript for the n solutes. Substituting 

equation 64 into equation 26, we have
 

n n 

65) _J4 L? grad (-C,) 

k=l k1=i 

where (19)
 

n 

66) LXi k, =Dik'
 

k=l
 

Equation 65 may now be written in terms of diffusion coefficients.
 

Since k and k' have been chosen arbitrarily, they may be used inter­

changeably:
 

n 
D
67) 1 =7 ik grad (-Ck)
 

k=l
 

3. Demonstration of validity of neglecting cross-coupling coefficients 

in equation 36. 

For the condition Ji = 0, equation 35 defines a system of 

differential equations: 

D1dCl 2 dC2 C
1 w
 

68) 
dCl Fw
dC2 


D21 - + D22 x 2 0 



ill
 

Let us assume solutions of the type 

69) = Kijejx
Ci 


Substituting the solution into the system of equations we have the
 

matrix
 

-K 11j D12" 

70) ~ ~ lj 0 

PW- D22?,j K
 

The characteristic equation defined by setting the determinant in the
 

matrix equal to zero is as follows:
 

71) - 2D2%1)X(D11 2 -- DI + D22 )j+ = 0 

D12D21 in equation 71 are negligible relative to DIIDo. The eigenvalues 

now become 

jY, bw 
72) 

'~ll AD22 

Neglecting the cross coefficients makes equations 68 necessarily
 

independent, and solutions are thus 

= KleFwx/ADI1C1
73) 2=KewxA2
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APPENDTX E
 

Error Analysis
 

1. Flow readings
 

The manufacturer of the flow meters employed in this study gave 

the expected error of the flow readings to be 2% of the full scale
 

reading 	of 0.5 ml/min for a sapphire float and 1.0 ml/min for a 

stainless steel float. This was consistent with observations made
 

during 	calibration of the flowmeters. 

2. Determinations of Na+ and K concentrations in compartment P and 7: 

Procedure 	 Error
 

a. 0.1 ml sample by syringe: ±0.001 ml 

b. 	Addition of 5 ml water 
(min. dilution): ±0.04 ml 

c. 	Sample into 100ml volumetric 
flask (max. dilution).: ±0.08 ml 

d. 	Concentration determination by atomic
 
absorption spectrophotometry: ±0.001 mM
 

e. Estimated maximum error: -5% 

3." 	Determinations of Na
+ 

and K+ 
transport,, 63i' F = 0 

'a. Collection of 10 ml sample: ±0.02 mi 

b. Timing of the collection: ±0.-l ain 

c. 	Pipetting of 1.0 ml from the
 
10 ml sample: ±0.01 ml
 

'd. 	Dilution of 1.0 ml in 1.0 L
 
volumetric flask: ±0.3 ml
 

e. Concentration determination by atomic
 

absorption spectrophotometry: ±0.001 mM
 

f, Estimated maximum error: ±22%
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APPENDIX F
 

List of Symbols
 

A total membrane pore area
 

A4 total membrane pore area of n4 membrane
 

7

A , total membrane pore area of 17 membrane 

b4 coefficient equal t 

b 7 coefficient equal to P7
 
.ik
 
€i, "concentration of component i 

CCiC7 conoentation of' component i in compartment m, 13.and 7, 

,respectively-

Cw concentration of water in solution 

Dik diffusion coefficient relating the ith flow to the kth 

force 

Dik average diffusion coefficient over integrated values 

+ +
Dll diffusion coefficient relating the flow of Na to the Na


concentration gradient
 

+ +

diffusion coefficient relating the flow of Na to the K


concentration gradient
 

+ +
 

D12 


D21 diffusion coefficient relating-the flow of K to the Na


concentration gradient
 

+ 

D22 diffusion coefficient relating the flow of K to the K+
 

concentration gradient
 

E electrical potential
 



e exponential 

F Faraday constant 

a flow of'water across 4 membrane 

Fw flow of water across the 'Ymembrane 

in  

Fa flow of solution into compartment a

saline
 

Faut flow of solution out of compartment m
sline
 

fik frictional coefficient between-components i and k'
 

Ji flow of component i
 

J0i flowofcomponent i across the 4 membrane
 

3

J4 flow of component i across the P7 membrane
 

jcGin flow of component i into compartment a
 
i
 

,cout flow of component i out of compartment a
 

Jl flow of component i relative to the flow of solvent
 

JD .diffusion flow
 

JV volume flow,
 

Jw flow'of water 

koko,kij eigenvector
 

Lik phenomenological coefficient relating the ith flow to the
 

kth force
 

Lp mechanical,filtration coefficient for membrane
 

LO mechanical filtration coefficient for differential thickness
 
p 

of membrane'
 

LPDk phenomenological coefficient relating volume flow to the
 

chemical potential gradient of the kth component
 



LDP. phenomenological coefficient -relating diffusion flow of 

component i to pressure gradient 

Ml,2,, 1 unidirectional material fluxes from one side of membrane to 

the other 

M summation of membrane parameters and frictional coefficients 

n total number of solutes 

nIn, ni total moles of component i in dompartments &, P, and 7 

Ai transport rate 

AL lactic acid production 

0 reference plane within membrane 

P pressure 

Q heat -

qj production or consumption rate of component i 

R universal gas constant 

Rik resistance coefficient relating the ith force to the kth flow 

S entropy 

T absolute temperature 

t time 

V volume 

vlVV 
7 

volumes of compartments m, f, and 7 

Vk partial molar volume of component k 

vi velocity of component i 

vw velocity of water 

w water 



ith force
 

x direction
 

Ax boundary thickness 

dx differential boundary thickness 

z ion valence 

a compartment analogous to the kidney tubule lumen 

compartment analogous to tubule cell volume 

p compartment analogous to interstitial fluid compartment 

Xi 


activity coefficient of component k
7k 


4$,P7 empirical parameter representing apparent ratio of membrane
 

pore area to boundary thickness to the ratio of membrane
 

pore area to membrane thickness as given by the membrane
 

1


manufacturer for the cs eind 0y membranes 

Q empirical parameter representing ratio of ,apparent water 

velocities to experiment water flux 

?\j eigenvector 

* chemical potential of component i
 

Mc 	 concentration dependent part of chemical potential of
 

component i
 

o local entropy production
 

o reflection coefficient
 

dissipation function 

W mobility 
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A physical analog of steady-state sodium and potassium transport
 

in a two-membrane, three-compartment system was studied utilizing the
 

principles of nonequilibrium thermodynamics. This physical system is
 

analogous to physiological systems where one compartment consisting ef
 

a cell monolayer separates two other compartments, such as the inter­

stitial fluid and the renal tubule lumen in the kidney. The-membranes
 

in the model system serve only to lodalize the chemical potential
 

gradients between compartments. The pheomenalogical equations relating
 

the flows through the membranes to the chemical potential gradients
 

were developed from the equation for 'energy dissipati6n within each,
 

membrane. The flows defined both the nensteady-state rates of change
 
It 

of concentrations within each compartment and the steady-state transport
 

across each membrane.
 

Ion transport due to chemical convection was studied by adding'
 

water to the "cell" compartment and removing it from the "interstitial"
 

compartment. The "lumen" compartment was left as a strictly passive
 

compartment. The Na+, K. and C1- concebtrations were measured
 

periodically until a steady-sate was reached.
 



P 

In further experiments the concentrations of components in the
 

"lumen" compartment were held constant by a constant flow of
 

NaCl-KC1-H20 solution through the compartment. The constant flow
 

of water into,the "cell" compartment distributed itself among both the
 

"lumen" and "interstitial" compartments according to the mechanical
 

filtration properties of each membrane. In initial experiments, the
 

flows were unidirectional into the "interstitial" compartment. In later
 

experiments the flow was distributed to both the "interstitial" and
 

"lumen" compartment. After the system had xeached'a steady-state; the
 

concentration of components, the flows in and out of the "lumen" 

2
 
compartment and the flow of water into the cell" compartment we're
 

measured. The magnitudes and directions of the steady-state,transport
 

of components were determined.
 

The nonsteady-state experiments demonstrated a transient transport
 

+
 
of Na , K1, and Cl- ions from the "lumen" compartment to -the
 

At low
"interstitial" compartment against a concentration gradient. 


solvent fluxes the ion transport occurs with the conbentration gradient.
 

At intermediate solvent fluxes, et and Na+ are transported in opposite
 

directions; K is transported down a concentration gradient while Na
 

is transported against an equal or larger gradient.
 

+ 

and K from the "lumen" compartment
Steady-state transport of Na


to the "interstitial" compartment may be maintained by a solvent flux
 

in the direction of transport. The magnitude of this transport is
 

greatest when the concentrations of components in the two compartments
 



are equal, and decreases as the concentration iatio of components in 

the "intestitial" compartment to those in the "lumen" incireases. For 

the combinations of solvent fluxes and component concentrations 

investigated, the transport of It was usually greater than the transport 

of -Na+. 




