

FORTRAN PROGRAM FOR COMPUTING COORDINATES OF CIRCULAR ARC SINGLE AND TANDEM TURBOMACHINERY blade sections ON A PLANE

by William D. McNally and James E. Crouse
Lewis Research Center
Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • NOVEMBER 1970

17. Key Words (Suggested by Author(s))

Türbomachinery blade sections; Blade design; Circular arc blades; Single blade sections; Tandem blade sections
18. Distribution Statement

Unclassified - unlimited

CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
SYMBOLS 3
GENERAL DESCRIPTION OF PROGRAM 3
Characteristics of the Program 3
Limitations of the Program 6
Use of Program 6
NUMERICAL EXAMPLES 7
INPUT 7
Input Variables 9
Typical Values and Limits of Input Variables 10
Example of Adjustment of Inputs in Design Process 12
OUTPUT 15
Output Variables 17
Output Blade Plots 25
Error Conditions 27
COMPLETE PROGRAM LISTING 29
REFERENCES 46

FORTRAN PROGRAM FOR COMPUTING COORDINATES OF CIRCULAR ARC SINGLE AND TANDEM TURBOMACHINERY BLADE SECTIONS ON A PLANE

by William D. McNally and James E. Crouse
Lewis Research Center

SUMMARY

A FORTRAN IV computer program is presented which computes and plots coordinates for circular arc blade sections on a plane. Either single blade sections or tandem blades sections with up to 5 segments per blade section can be designed. Surfaces of blade segments consist of single circular arcs. The arrangement of blade segments with respect to each other (for tandem blades) depends on the input parameters that specify gap, overlap, and convergence between the segments.

Input is brief and can be altered rapidly. Input parameters describing the overall blade section include chord, camber, solidity, and inlet blade angle. Input to describe individual segments of the blade section include chord, camber, gap between adjacent segment and local segment, overlap of segments, maximum segment thickness, and radii of segment leading- and trailing-edge circles. Output consists of three main parts: (1) coordinates of individual segments suitable for making machine drawings, (2) geometrical input for companion blade-to-blade ideal flow programs, and (3) a Calcomp plot of the computed blade section in cascade at the input blade angle. All parts of the program except the plot routines are in general FORTRAN IV code and could be easily transferred to other IBM equipment. The plot routines, a short but important part of the output procedures, use a NASA Lewis code and would require recoding for use on other equipment.

This report includes a listing of the FORTRAN IV computer program, with an explanation of the input required and the output generated. Numerical examples are also included. Running times are about $1 / 4$ minute per data set on IBM 7094 equipment. The report does not include derivation or explanation of the equations on which the program is based.

INTRODUCTION

Specialized airfoil shapes are needed for todays highly loaded, high-speed compressors and turbines to avoid choking and premature separation. Shapes under study include single segment airfoils, airfoils with slots, and multiple segment airfoils in a tandem arrangement.

Many of the single and tandem blade designs being studied have airfoil surfaces consisting of single circular arcs. The computation of geometry for such airfoils, particularly when placed in a tandem arrangement with controlled slot parameters, is complicated by the geometric calculations.

This report describes a computer program for generating coordinates for circular arc airfoil shapes. One blade section is designed for each set of input data. A blade section consists of one cut through a blade at a given radius from the axis of rotation. The blade section may be composed of just one segment, or it may be a tandem section with two to five segments. The arrangement of blade segments with respect to each other (for tandem blades) depends on input parameters that specify gap, overlap, and convergence between the segments. The program does not provide radial stacking of blade sections, since only one section is designed for each set of data.

Input is brief and can be prepared quickly. It consists entirely of geometric parameters describing the overall blade section and the individual blade segments. Output consists principally of blade coordinates usable in other programs for the study of ideal flow and boundary layer. Output also includes coordinates usable for drafting or machining, as well as a view of the blade in cascade in the form of a Calcomp plot.

One of the principal uses of such a program is in conjunction with other computer programs for the analytical study of the performance and flow through turbomachine blading. This program permits the user to quickly generate and visualize circular arc blade shapes. The procedures of references 1 to 4 are then used to calculate velocities and streamlines on blade-to-blade stream surfaces of selected designs. The program of reference 5 calculates boundary-layer parameters from known flow velocity distributions, and finally a program based on reference 6 calculates turbomachine losses from boundary-layer parameters at the blade trailing edge. These programs give the engineer the ability to investigate blade shapes by testing them analytically in a computer experiment.

This report includes a listing of the program and a description of its input and output. The development of equations for the program is lengthy and will not be included. Internal program variables are not defined unless they are part of the input or output. Numerical examples are included to illustrate typical input values and the form in which output is given.

SYMBOLS

C blade segment chord (fig. 3), ft; m
F ratio of gap at inlet of channel between blade segments to gap at outlet of channel (figs. 3 and 12)

G gap between blade segments (figs. 3 and 12), ft; m
L overlap between blade segments (figs. 3 and 12), ft; m
$\mathrm{R} \quad$ radial coordinate direction (fig. 2)
$R_{b} \quad$ radius from axis of rotation to plane of blades (fig. 2), ft; m leading-edge radius of blade segment (fig. 3), ft; m

RO trailing-edge radius of blade segment (fig. 3), ft; m blade-to-blade spacing on the cylindrical surface (figs. 1 and 2), ft; m total chord of overall blade section (fig. 1), ft; m maximum thickness of blade segment (fig. 3), ft; m axial coordinate direction (figs. 2 and 3) overall blade section camber (fig. 3), deg inlet blade angle with respect to Z axis (fig. 3), deg tangential coordinate direction (fig. 2)
solidity (fig. 1), TC/S
camber of individual blade segment (fig. 3), deg

GENERAL DESCRIPTION OF PROGRAM

Characteristics of the Program

From given inputs, the program calculates and plots coordinates of either a single blade section (see fig. 1(a)) or a tandem blade section (fig. 1(b)) with up to five segments per blade. (The plane of fig. 1 is the unwrapped cylindrical surface of fig. 2.)

All surfaces of the generated blade segments are single circular arcs tangent to leading- and trailing-edge circles. The radii of these arcs are a function of blade segment cambers, chords, and thicknesses, which in turn are functions of given input parameters. The position of the blade segments with respect to each other is also a function of the inputs.

Figure 1. - Computed blade sections.

Figure 2. - Cylindrical surface of blade section.

Figure 3. - Input variables.

The input parameters (fig. 3) describe both the overall blade section and the individual blade segments. The overall blade section is specified by a chord TC, camber $\Delta \kappa$, solidity $\sigma=\mathrm{TC} / \mathrm{S}$ (see fig. 1), inlet blade angle κ_{in}, and radius from axis of rotation to cylindrical surface R_{b} (see fig. 2). Individual blade segments are described by ratios of segment chord to the chord of the first blade segment $C / C(1)$, ratios of segment camber to first blade segment camber $\varphi / \varphi(1)$, and ratios of maximum thickness and leading-edge and trailing-edge radii of the segment to local segment chord $\mathrm{TM} / \mathrm{C}, \mathrm{RI} / \mathrm{C}$, and RO / C. Segments are related to each other by the gap between them (in the form of ratio to total chord, G / TC), their overlap (also a ratio, L / TC), and the convergence in the channel between them F. (The chord, camber, gap, overlap, and convergence inputs for the blade segments are not used when the blade section consists of only one segment.)

For a tandem blade (more than one segment), the program follows an iterative procedure in order to properly size the segments in relation to each other. From total camber $\Delta \kappa$ and total chord TC and the segment camber ratios $\varphi / \varphi(1)$ and chord ratios $C / C(1)$, initial estimates of segment cambers φ and chords C are calculated. Circular arc centerlines are fitted to these chords and cambers. The surfaces are also circular arcs that are tangent to leading- and trailing-edge circles, and meet the maximum thickness requirement. Finally, the segments are located with respect to each
other. At this point the total camber formed from all estimated parameters is computed and checked against input total camber $\Delta \kappa$. Adjustments are made, and the entire procedure repeated until convergence is reached on total camber. After convergence, blade section coordinates and other output parameters are computed, and a plot of the blade section is made.

Output from the program consists of printed computer listings and a Calcomp plot. The computer listings are divided into two main parts: (1) surface coordinates of individual blade segments suitable for making machine drawings and (2) geometrical input for blade-to-blade ideal flow programs (refs. 1 to 4) or a boundary layer program (ref. 5). The Calcomp plot shows the generated blade row at the input blade angle. Two overall blades are plotted with the proper solidity in order to identify the flow passage.

The program is run at NASA Lewis on the IBM 7094-7044 direct coupled system with a 32767 word core $\left(77777_{(8)}\right)$. The total program storage requirement is 65403 (8) of which $31717{ }_{(8)}$ is used in the storage of variables. The program runs in about $1 / 4 \mathrm{~min}-$ ute per data set on IBM 7094 equipment.

Limitations of the Program

The following are the principal limitations of the program:
(1) Blade sections are generated on a plane surface, rather than a conical or meridional flow surface which would be more closely alined with the streamline flow when there is significant streamline slope.
(2) Blade segment surfaces are single circular arcs. Multiple circular arcs or other types of variable geometry are not calculated by the program.
(3) Each set of input data generates only one blade section. The program does not provide radial stacking of blade sections after several sections have been run.
(4) The plotting portions of the program use routines that were developed at Lewis and would not be available or would need modification before they could be used on other machines. All other parts of the program, however, are in FORTRAN IV code, and could be easily transferred to other IBM equipment.

Use of Program

At Lewis, the program is being used to define blade sections for analytical parametric studies using the programs of references 1 to 6 . The Calcomp plots allow preliminary screening of cascades formed by applying the input variables over a wide range.

Selected configurations are then examined analytically for ideal flow, boundary-layer development, and losses. Some of these sections are later selected for experimental study.

For applications in two-dimensional cascades or where radius does not change much across blade sections, output can be used for fabrication purposes.

NUMERICAL EXAMPLES

Two numerical examples are given which illustrate the use of the program. The first is a two-segment tandem blade section, and the second is a three-segment blade section with the front section acting as a slat. Both blade sections are designed for the same overall parameters which are listed in table I. The input for these two examples

TABLE I. - OVERALL DESIGN PARAMETERS
FOR TWO- AND THREE-SEGMENT
TANDEM BLADE SECTIONS
$\left[\begin{array}{ll|r|} & \\ \text { Total chord, TC, ft } & & 0.18583 \\ \text { Solidity, } \sigma & & 1.235 \\ \text { Overall camber, } \Delta \kappa \text {, deg } & & 72.24 \\ \text { Inlet blade angle, } \kappa_{\text {in }} \text {, deg } & & 56.53 \\ \text { Radius from axis or rotation, } \mathrm{R}_{\mathrm{b}} \text {, } \mathrm{ft} & 0.77080 \\ \hline\end{array}\right.$
and the generated plots of blade shapes appear in figures 4 and 5 . These examples illustrate typical values of input parameters for two- and three-segment blade sections. Sample output for the first example is discussed under OUTPUT.

INPUT

Figure 6 shows the placement of input variables on data cards. The first input card is for a title which identifies the data set and is printed on the output. The user may type whatever information he wishes in any of the first 72 columns of this card. The remaining cards are for input data. The input variables are defined in the next section. Further explanation of the proper preparation of input is contained in the section Typical Values and Limits of Input Variables.

Figure 4. - Input and generated plot of two-section tandem blade example.

Figure 5. - Input and generated plot of three-section tandem blade example.

Figure 6. - Input data form.

Input Variables

Schematic representations of these variables appear in figures 1 to 3. After the title card, the following input variables are given:
$\mathrm{N} \quad$ integer number (1 to 5) of blade segments comprising the blade section; equals 1 when designing a single, circular-arc blade section; must occupy column 10 of the data card (fig. 6)

TCHORD total chord of the overall N -segment tandem blade section TC , ft; m SOLID solidity of the blade row, σ, that is, total chord divided by blade spacing TC / S. (Solidity is only used in the plotting part of the program to produce a duplicate blade on the plot.)

DELK total camber of the overall blade sections, $\Delta \kappa$, deg
KAPIN blade inlet angle or angle between tangent to mean camber line at leading edge of first blade segment and the Z axis, $\kappa_{i n}$, deg
RADIUS radius from axis of rotation to cylindrical blade plane R_{b}, ft ; m (RADIUS is only used to convert tangential coordinates, $R \theta$, in feet or meters, to radians for input to the ideal flow programs, refs. 1 to 4.)

Each of the following arrays has $\mathrm{N}-1$ entries. If $\mathrm{N}=1$, a blank card should be given for each of these 5 arrays.

COC1 array of ratios of chords of blade segments 2 to N to the chord of the first segment, $\mathrm{C} / \mathrm{C}(1)$

PHOPH1 array of ratios of cambers of blade segments 2 to N to the camber of the first segment, $\varphi / \varphi(1)$

GOTC array of ratios of gaps between blade segments to the total chord of the overall blade section, G/TC

LOTC array of ratios of overlap between blade segments to the total chord of the overall blade section, L/TC

F
array of channel convergences between blade segments, F (F is the ratio of the gap at the channel inlet to the gap at the channel outlet.)
Each of the arrays below has N entries, one for each of the blade segments:
TMOC array of ratios of maximum blade segment thickness to chord of the individual blade segments, TM/C

RIOC array of ratios of leading-edge radius to chord of the individual blade segments, RI/C

ROOC array of ratios of trailing-edge radius to chord of the individual blade segments, RO/C

Typical Values and Limits of Input Variables

Ranges of typical values are given in this section for the input variables. Limits are also given beyond which unreasonable blade sections (and hence errors in the program) will occur.

N , the number of blade sections, can be any integer from 1 to 5 . For typical tandem blades, N is usually 2 or 3 . To design a single blade section, N is set equal to 1 , and blank cards are used for the COC1, PHOPH1, GOTC, LOTC, and F arrays (Fig. 7 is the input and the corresponding output plot of a single blade section.) Since N is an integer, it must be right shifted on the data card; that is, it must occupy column 10 (see fig. 5).

TCHORD can be any positive value.
SOLID can also be any positive value; the range from 0.5 to 2.0 is typical.

Figure 7. - Input and generated plot of blade section with single segment.

DELK, the overall chamber, must be a positive number or zero. Values as high as the 180° will run, but the range from 5° to 120° is typical. If DELK has a small value (from 0° to 10°) the program will not converge to an answer if other parameters such as segment camber, gap, overlap, and convergence are not physically compatible with DELK.

KAPIN, the blade inlet angle, can be positive, negative, or zero. Values between the limits of -90° to 90° are allowable, but the range from -30° to 70° is typical.

RADIUS can be any positive value.
TCHORD and RADIUS are the only inputs with units of length; units should be the same on these two variables. Generally either feet or meters are used so that output can be used with the ideal flow programs (refs. 1 to 4). This is not required, however, and any units of length are acceptable. Units on all output coordinates will always correspond to what was used on these two input quantities.

COC1 can be any positive value. The range from 0.1 to 10.0 is typical.

PHOPH1 can be any positive or negative value, or zero. Values from 0 to 3.0 are most common. To obtain a very straight front segment, PHOPH1 should contain very large values. To obtain a very straight aft segment, PHOPH1 should be near or equal to zero for that segment.

GOTC can be any positive value from zero to about 0.5 depending on other inputs such as segment cambers, overlaps, and convergences. The range from 0.01 to 0.04 is typical.

LOTC can have positive or negative values, or be zero. Typical values are contained in the range from 0.1 to -0.05 . Values above 0.4 or below -0.2 will generally cause errors and prevent the program from running.

F can have positive values from zero to about 10.0. The range from 0.9 (diverging passage) to 1.5 (converging passage) is most typical. When $F=1.0$, the capture area of the passage between blade segments is equal to the exit area of the passage. TMOC is allowed positive values from zero to about 0.8 . Values in the range from 0.1 to 0.2 are most typical. Elements of TMOC must be at all times at least twice as large as the corresponding elements of RIOC and ROOC in order for the program to run. (If TMOC equals zero, RIOC and ROOC must also be zero for that blade segment.)

RIOC and ROOC may have positive values from zero to about 0.4. Most values are in the range 0.01 to 0.1 . Corresponding elements of RIOC and ROOC do not have to equal each other. (RIOC may only equal zero if the corresponding element of ROOC also equals zero. ROOC, on the other hand, may equal zero at any time, regardless of the values in RIOC.)

Example of Adjustment of Inputs in Design Process

The program is used here to design a two-segment tandem blade section. Given the overall blade section parameters, an initial selection is made for the other input variables. These variables are subsequently changed (twice in this example) until a final blade section is accepted.

Changes are made after inspection of the machine plots which accompany the computer output. They are made to obtain a blade section which appears to have a good flow path while satisfying the overall blade parameters. These iterations on input variables also illustrate the effect of the different input parameters on the final blade shape.

The blade section to be designed has the overall blade parameters listed in table II. In order to obtain an initial picture of a blade section meeting these specifications, gen-

TABLE II. - OVERALL DESIGN
PARAMETERS FOR TWO-
SEGMENT TANDEM
BLADE SECTION

Total chord, TC, ft	0.192
Solidity, σ	1.3
Overall camber, $\Delta \kappa$, deg	50.0
Inlet blade angle, κ_{in}, deg	45.0
Radius of rotation, $\mathrm{R}_{\mathrm{b}}, \mathrm{ft}$	0.625

TABLE II. - VARIABLE INPUT PARAMETERS FOR TWO-SEGMENT TANDEM BLADE SECTION

Run	Ratio of segment chord to chord of first blade segment, C/C(1)	Ratio of segment chamber to first blade segment chamber, $\varphi / \varphi(1)$	Ratio of gap to total chord, G/TC	Ratio of overlap to total chord, L/TC	Ratio of gap at channel inlet to gap at channel outlet, F	Ratio of maximum thickness to local segment chord, TM/C	Ratio of leadingedge radius to local segment chord, RI/C	Ratio of trailingedge radius to local segment chord, RO/C
1	1.0	1.0	0.05	0.10	1. 5	$\begin{array}{r} 0.15 \\ .15 \end{array}$	$\begin{array}{r} 0.02 \\ .02 \end{array}$	$\begin{array}{r} 0.01 \\ .01 \end{array}$
2	1.3	1.6	0.03	----	1. 1	$\begin{array}{r} 0.13 \\ .13 \end{array}$	----	$\begin{array}{r} 0.007 \\ .007 \end{array}$
3	---	---	----	--	1.2	$\begin{array}{r} 0.11 \\ .12 \end{array}$	------	

eral initial values of the other input parameters were chosen and run. These values are listed in table III (run 1). The resulting blade section is shown in figure 8(a).

Changes made after an initial run on the program are entirely based on the user's experience and his concept of the final desired blade shape. For this example we wanted more chord and camber to be concentrated in the rear blade segment; so, in run 2, $\mathrm{C} / \mathrm{C}(1)$ was increased from 1.0 to 1.3 , and $\varphi / \varphi(1)$ from 1.0 to 1.6 . The channel gap was also decreased ($G / T C=0.05$ to 0.03), as well as the channel convergence between blade segments ($F=1.5$ to 1.1) in order to bring the segments closer together. Finally the blade thicknesses $T M / C$ and the outlet radii RO / C were reduced. The blade section resulting from run 2 (table III) is pictured in figure 8 (b). From experience it appeared that this blade section was still thicker than desired and that its channel needed more convergence. Appropriate changes were made for run 3 (table III), and the final blade section is shown in figure 8(c). This section was accepted for further analysis by the ideal flow programs (refs. 1 to 4).

OUTPUT

Output from the program consists of two principal parts: a computer listing with printed tables of output variables and a Calcomp plot that pictures schematically the generated blade.

A sample computer listing for the two-section tandem blade example is given in table IV. In this table some sections of the output have been abbreviated because they were too long. In all cases output labels agree with program variable names which are defined in the next section.

TABLE IV. - SAMPLE OUTPUT FOR TWO-SECTION TANDEM BLADE EXAMPLE

TABLE IV. - Continued. SAMPLE OUTPUT FOR TWO-SECTION TANDEM BLADE EXAMPLE

0.0160	c. cosec	0. 00131
0.1180	0.00961	0.00145
c. 02000	c. 01018	0.00158
c. C 2200	c.01071	0.06170
c. 02400	c. 011	
0.02600	C. 01	
c.c28		
C. 03000	0.012	0.60210
c.03200	c. 0126	0.00217
c. 03440	c. 01293	0.00224
c.03600	c. 01315	0.00230
0.03808	c.c13	0.00234
c. 04000	c. 01347	238
c.44200	0.013	0.0
c.04400	c. 013	0.00
c.0460C	c. 11364	0.00244
c. 64800	c. 013	0.00
c.05cco	0.01354	0.00243
c.c5zC0	C.01343	0.00241
c.05400	c. 01328	0. C 2238
c. 05600	0.01309	0.00234
	c. 12	
6000	c.cl	0.00224
c.cbico	0.01226	0.06217
0.06400	c.c11	0.00210
c.c6tod	c.cl1	0.00201
	c. 011	c. 00192
c.cicco	0.010	0.00182
c.c7200	c.c10c2	0.00171
c.c7400	0.00943	0.0
Eco	c. ${ }^{\text {cos }}$	0.0
	c. ccel2	
c.cacco	c. 01739	0.001
c.c8z00	0.00662	0.00100
c.c8400	c.0c579	0.00083
c.e8fec	c. 0 c49 ${ }^{\text {c }}$	0.00c65
00	c. ${ }^{\text {co}}$	0.0
	. 001	

blace segment no. 2

$\begin{gathered} \text { CHORD } \\ C .116 \in 7 \end{gathered}$	$\begin{gathered} \mathrm{R1} \\ \mathrm{C} .0 \mathrm{OC233} \end{gathered}$	$\stackrel{R E}{\mathrm{RC}} \mathrm{O}$	$\begin{aligned} & \text { THETA } \\ & 0.76547 \end{aligned}$			
$\stackrel{\mathrm{xf}}{0.00233}$	$\stackrel{\mathrm{Yi}}{\mathrm{c} . \mathrm{c}_{\mathrm{c} 233}}$	$\begin{gathered} x C \\ 0.11586 \end{gathered}$	$\begin{gathered} \mathrm{YC} \\ 0.00082 \end{gathered}$	$\begin{gathered} \mathrm{xCM} \\ 0.05386 \end{gathered}$	$\begin{gathered} Y C M \\ 0.01522 \end{gathered}$	
$\begin{gathered} x_{1} \\ c^{c} 7 c 86 \end{gathered}$	$\begin{gathered} \mathrm{Yl} \\ \mathrm{c} . \mathrm{Cog} 25 \end{gathered}$	$\begin{gathered} \times 2 \\ \text { C. } 17448 \end{gathered}$	$\begin{gathered} Y 2 \\ 0.06189 \end{gathered}$	$\begin{aligned} & \text { GAM } \\ & 27.36919 \end{aligned}$	$\begin{gathered} \text { GAMR } \\ 27.36919 \end{gathered}$	
$\begin{gathered} \text { PHITs } \\ 76.04290 \end{gathered}$	$\xrightarrow[\text { R. } 10049]{ }$	$\begin{gathered} \mathrm{HS} \\ \mathrm{O} . \mathrm{C5669} \end{gathered}$	$\underset{0.07939}{8 .}$	$\underset{33.62912}{\text { KIS }}$	$\begin{gathered} \text { KOS } \\ 36.41378 \end{gathered}$	
$\begin{gathered} \text { PHIC } \\ 54.2322 \mathrm{C} \end{gathered}$	$\begin{gathered} \text { RC } \\ \text { C. } 12454 \end{gathered}$	$\begin{gathered} \mathrm{HC} \\ 0.05761 \end{gathered}$	$\begin{gathered} \text { BC } \\ 0.10927 \end{gathered}$	${\underset{\sim 1}{\text { KIC }}}_{26.35063}$	$\begin{gathered} \mathrm{KOC} \\ 27.88157 \end{gathered}$	
$\begin{gathered} \text { FHIP } \\ 37 . \varepsilon \in \subseteq 16 \end{gathered}$	$\begin{gathered} \mathrm{RP} \\ 0.17337 \end{gathered}$	$\begin{gathered} H P \\ 0 . \\ \hline 5922 \end{gathered}$	$\begin{gathered} \text { 日p } \\ 0.16391 \end{gathered}$	$\begin{gathered} \text { KIP } \\ 18.89127 \end{gathered}$	${ }_{18.97399}^{\text {KOP }}$	
$\stackrel{G}{C .00465}$	$\stackrel{\text { GA }}{\text { C. }} 00463$	$\begin{aligned} & \text { GAOC } \\ & 0.04960 \end{aligned}$	0.01858	$\stackrel{F}{1.40000}$	$\begin{gathered} F A \\ 1.40619 \end{gathered}$	$\begin{gathered} \text { SINC } \\ -9.55789 \end{gathered}$
c. ${ }^{\text {x }}$ ($\mathrm{YSS}_{\text {c. }}^{\text {Y }}$ (0357	$\stackrel{Y P}{-c .00096}$	noEl $=24$			
C .00500	c. 60678	C. cocr 7				
c. 01000	C. 60559	c. C0233				
c.015co	c. 01204	0.10373				
C. 62000	c. 01416	0.00497				
C.C2EC0	0.01597	0.00605				
C.C3C00	c. 01748	0.00698				
0,03500	c. 01872	0.00776				

Complted input for ideal flow programs

$\begin{gathered} \text { BLADE } \\ \frac{1}{2} \end{gathered}$	MCHORD 0.07284 $0: 11442$	$\begin{gathered} \text { STGR } \\ 0 . \text { C7474 } \\ 0.02924 \end{gathered}$	$\begin{gathered} \text { RSTGR } \\ 0.05761 \\ 0.02254 \end{gathered}$	$\begin{gathered} \text { RI } \\ 0.00140 \\ 0.00233 \end{gathered}$	$\begin{gathered} R 0 \\ 0.00075 \\ 0.00082 \end{gathered}$	$\begin{aligned} & \text { MLE } \\ & 0.0654 \\ & 0.06054 \end{aligned}$	$\begin{aligned} & \text { THLE } \\ & 0.00000 \\ & 0.05137 \end{aligned}$	$\begin{aligned} & \text { RTHLE } \\ & 0.00000 \\ & 0.03960 \end{aligned}$	$\begin{gathered} \text { MTE } \\ 0.07284 \\ 0.17496 \end{gathered}$	$\begin{gathered} \text { THTE } \\ 0.07474 \\ 0.08062 \end{gathered}$	$\begin{gathered} \text { RTHTF } \\ 0.05761 \\ 0.06214 \end{gathered}$
blade	BEIIS	betos	Betip	日ETCP		MCL	thCL	RTHCL	MC T	thet	RTHCT
1	67.07586	10.55239	45.70413	33.46359		0.00140	0.00000	C. 00000	0.07209	0.07474	0.05761
2	45.84613	-24.19677	31.10818	-6.75698		0.06287	0.05137	0.03960	0.17415	0.08062	0.06214

MSPS	IHSPS	RTHSFS	MSPP	TrSPP	RT＋SPP
－C．ccce 2	－C．00031	－C．CCC24	0.00132	－0．00272	－0．co2ic
c．lccis	0.0 C 237	C． CCl^{3}	0.00272	－0．00085	－0．ccots
C．CC15E	C．CC5CC	$0 . C C 3 B 6$	c．00413	0.00101	0.00078
C．0C254	c．CC759	$0 . \operatorname{cc5B4}$	0.00554	0.00286	0.00221
C．OC 253	C．01c1c	C．CC778	0.00696	0.00471	0.00363
C．CC455	C． 01256	C．CCsbe	0.00839	0.00654	0.005 Ca
c．0csel	C． 0145 E	C．C1155	0.00983	0.00836	$0 . \cot 44$
c．cce6s	0.01735	C．$C 1337$	0.01126	0.01017	0.00784
（．1） 781	C．C196E	C．C1516	0.01271	0.01198	$0 . \operatorname{cogez}$
c．cces6	C．02193	0.01691	0.01416	0.01377	－． 0.10 ¢ \bar{C}
C．01014	C．C2416	0.01862	0.01562	0.01556	0.01155
c．01134	C．C2634	c．（203C	0.01708	0.01733	$0 . c 1336$
C．01254	C． 02847	C． 62194	0.01855	0.01920	0.01472
C．01384	C．C3056	C．$C 2355$	0.02003	0.02086	$0 . c t \in C E$
c．01514	C．C3260	$0 . \mathrm{C} 2513$	0.02151	0.02260	$0 . C 1742$
c．0ltat	$0 . C 346 \mathrm{C}$	C． 02667	0.02300	0.02434	0.61876
c．01180	C．C3656	$0 . \mathrm{C} 2818$	0.02449	0.02607	0.6201 C
c．01s1E	C．C3848	$0 . \mathrm{C} 2566$	0.02599	0.02779	0.02142
C．03C58	C．C4C3b	C． C 311 C	0.02749	0.02950	0.02274
6.0 ¢くしC	C．C4219	$0 . C 3252$	0.02901	0.03120	0.024 C
c．0cz46	0.64392	C．c335c	0.03052	0.03289	0.02535
C． $0<454$	C． 64573	C．03525	0.03205	0.03457	$0.026 E 5$
C．0̇ect	C． 64744	c．0．0356	J．03358	$0 . C 3625$	0.027 C
¢．02798	C．C491C	c． 03785	0.03511	0.03791	$0 . \mathrm{C} 25 \mathrm{Cz}$
C．0＇c5 ${ }^{\text {c }}$	C．C5073	C． 1391 C	0.03665	0.03956	$0 . \mathrm{cze} 45$
C．0ミ112	C．05232	C． 64033	0.03820	0.04121	0.03176
¢．0こご	C．C5386	O． 64152	0.03975	0.04284	$0.03 ? \mathrm{C} 2$
（．1）$=417$	C．C5536	0.04208	0.04131	0.04447	0.03427
C．0： 003	$0 . C 5683$	0.6438 C	0.04288	0.04608	C．035E2
C．$C 5712$	C．C5825	C． 14490	0.04445	0.04769	0.03676
C．0こ544	C． 55902	C． 64596	0.04803	0.04925	0.03759
6.04118	C．C6096	U．C4695	0.04761	0.05087	0.63921
C．04245	C． $\operatorname{cos225}$	C．$¢ 4798$	0.04920	0.05245	c．04C42
C． 34475	C． $\cos 5 \mathrm{C}$	C． 44895	0.05019	0.05402	0.04164
	C． $\operatorname{Co4} 71$	0.04987	0.05239	0.05558	$0.042 \varepsilon 4$
C．O＜E43	C．CESE 7	C． 05077	0.05400	0.05713	$0.044 \mathrm{C4}$
6．U¢C32	C． 66058	0． 65163	0.05561	0.05867	0.04522
C．C5＜＜	C．C68C5	C． 05245	0.05723	0.06020	0．c4e4C
6.05416	c．C6sc 7	$0 . \operatorname{c5324}$	0.05886	0.06173	0.04758
C．U） 515	c．c7ccs	C． 65395	0.06049	0.06124	0.64874
	c．C7C97	C． 05471	0.06213	0.06414	0.04556
c． $\operatorname{cec} 15$	C．C7185	C． $\operatorname{C553E}$	0.06377	0.06623	n． 6.51 C
く．心くでくt	2．c7267	C． 65602	0.06542	0.06772	$0 . \operatorname{cs2}$ 二 C
C．Ct＜2 7	C．C7344	C． 05661	0.06707	0.06915	0.05223
C．C $\in \in=0$	C．C 7416	0.65716	0.06874	0.07066	$0.0544 \hat{}$
c．Ctebe	C． 67482	c． C 5767	0.07040	0.07211	0.0555
6.67685	C． 67542	$0 . C 5814$	0.07208	0.07356	0.65670
ELALE StGNEAI No．Z					
H3ts	IHSPS	HJHSPS	NSPP	THSPP	RTHPPP
－（．lccil	c．cccss	$0 . \mathrm{CCC72}$	0.00075	－0．00482	－0．00372
c．264JC	C．0C637	$0.6 C 491$	0.00527	－0．00125	－c．occs 7
C．ve8＜9	C．C113C	C．Ccall	0.00983	0.00210	$0 . \operatorname{ccie2}$
（．01ctet	C．Clっ78	C．C121t	0.01442	0.00525	0.004 c 4
C．01710	C． 11584	c． 11525	0.01904	0.00819	0.00431
（．Calec	c．C2151	0.61812	0.02370	0.01094	$0 . \operatorname{ccs} 43$
C．J： 617	C．C20 81	0.62066	0.02839	0．01349	O．csc4C

Output Variables

The first page of output contains a copy of the input to the program．These variables are defined in the Input Variables section on page 9.

The next page of output lists some overall blade section parameters，some of which are repetitions from the input list．The others are defined as follows：

PITCH blade－to－blade spacing S in the θ direction or ratio of total chord to solidity TC／σ（fig．1），ft；m

GAMB angle between chord line of first blade segment and chord line of overall blade section（fig．9），deg

Figure 9. - Output variables for overall blade section.

THETB angle between chord line of overall blade section and a line joining leadingedge circle center of first blade segment and trailing-edge circle center of final blade segment (see fig. 9); positive if $\mathrm{RI}(1)>\mathrm{RO}(\mathrm{N})$ and negative if $\mathrm{RI}(1)<\mathrm{RO}(\mathrm{N})$, deg
$\mathrm{XOB}(\mathrm{YOB})$ distance from first segment leading-edge line (first segment chord line) to circle center at trailing edge of final blade segment (fig. 9), ft; m

Following the overall blade parameters are lists of parameters for each of the individual blade segments:

CHORD chord length of blade segment, that is, distance from leading-edge point to trailing-edge point (fig. 10), ft; m

RI(RO)
THETA
$\mathrm{XI}(\mathrm{YI})$
leading- (trailing-) edge radius of blade segment (fig. 10), ft; m
angle between chord line of blade segment and a line joining leadingand trailing-edge circle centers (fig. 10); positive if $\mathrm{RI}>\mathrm{RO}$, and negative if $\mathrm{RI}<\mathrm{RO}$, deg
distance between leading-edge line (chord line) of blade segment and center of leading-edge circle (fig. 10), ft; m

Figure 10. - Output variables for individual blade segment.
$\mathrm{XO}(\mathrm{YO}) \quad$ distance between leading-edge line (chord line) of blade segment and center of trailing-edge circle (see fig. 10), ft; m

XCM(YCM)
$\mathrm{X} 1(\mathrm{Y} 1)$

X2(Y2)

GAM

GAMR

PHIC(PHIS, PHIP)

RC(RS, RP)
$\mathrm{HC}(\mathrm{HS}, \mathrm{HP})$
$B C(B S, B P)$
distance between leading-edge line (chord line) of blade segment and point on mean camber line at which slopes of both blade surfaces are equal to slope of mean camber line (fig. 10), ft ; m
distance between leading-edge line (chord line) of first segment and leading-edge point of local segment (fig. 9), ft; m
distance between leading-edge line (chord line) of first segment and trailing-edge point of local segment (fig. 9), ft; m
angle between chord line of local blade segment and chord line of previous blade segment (fig. 9), deg
angle between chord line of local blade segment and chord line of first blade segment (fig. 9), deg
overall camber of local blade segment mean camber line (suction surface, pressure surface) from a line through leading-edge circle center to a line through trailing-edge circle center (fig. 11(a)), deg
radius of curvature of local blade segment mean camber line (suction surface, pressure surface) (fig. 11(a)), ft; m
distance from leading-edge line of blade segment to center of curvature of mean camber line (suction surface, pressure surface) of blade segment (fig. 11(a)), ft; m
distance from chord line of blade segment to center of curvature of mean camber line (suction surface, pressure surface) of blade segment (fig. 11(a)); negative when PHIC(PHIS, PHIP) is negative

(a) Entire blade segment.

(b) Enlarged leading edge.

Figure 11. - Continuation of output variables for individual blade segment.

When PHOPH1, and thus PHIC, of a segment equals $0, \mathrm{RC}$ and BC are set to 999. 99999.

KIC(KOC) angle between chord line of blade segment and tangent to mean camber line at the center of leading-edge (trailing-edge) circle (see fig. 11), deg

KIS(KOS) angle between chord line of blade segment and tangent to suction surface at leading-edge (trailing-edge) transition point (see fig. 11), deg
KIP(KOP) angle between chord line of blade segment and tangent to pressure surface at leading-edge (trailing-edge) transition point (see fig. 11), deg

KIC(KIS, KIP) and KOC(KOS, KOP) are defined positive as shown in figure 11 for a centerline or surface which has positive camber. They will be negative for a surface with negative camber.

G gap between trailing edge of previous blade segment and suction surface of local blade segment (fig. 12); measured perpendicular to the chord line of previous blade segment along line passing through trailing-edge circle center of the previous blade segment, ft ; m

GA actual gap between trailing edge of previous blade segment and suction surface of local blade segment (fig. 12); measured perpendicular to suction surface of local blade segment along line passing through trailing-edge circle center of previous blade segment, ft ; m

GAOC ratio of GA to CHORD of previous blade segment (fig. 12)

L

F

FA
distance between gap G at trailing edge of previous blade segment and gap ($F \times G$) at leading edge of local blade segment (fig. 12), ft; m
ratio of gap $F \times G$ at leading edge of local blade segment to gap G at trailing edge of previous blade segment (fig. 12) $\mathrm{F} \times \mathrm{G}$ is measured perpendicular to chord line of previous blade segment along a line passing through leading edge circle center of local blade segment
ratio of actual gap $F A \times G A$ at leading edge of local blade segment to actual gap GA at trailing edge of previous blade segment (fig. 12) (Actual gap FA $\times G A$ is measured perpendicular to a line (A-A in fig. 12) which bisects the tangents to the suction surface of the local blade segment and the pressure surface of the previous blade segment where the line $F A \times G A$ meets these surfaces. The line containing $F A \times G A$ passes through the leading-edge circle center of the local blade segment.)

Figure 12. - Input and output variables in overlap region.

SINC angle between tangents to mean camber lines of local blade segment and previous blade segment at points of intersection with line containing $F \times G$ (see fig. 12), deg (SINC is a measure of the incidence of the average blade-toblade flow on the leading edge of the local blade segment. SINC is negative as shown in figure 12 since the mean flow would have negative incidence in this blade orientation.)

XX array of distances (parallel to blade segment chord line) between leading-edge line of blade segment and points at which blade surface coordinates (YS and YP) are given (fig. 10), ft; m

YS(YP) array of perpendicular distances from chord line of blade segment to points on suction (pressure) surface of the segment (fig. 10), ft; m

NDEL number of blade coordinate points (XX and YS, XX and YP) along suction or pressure surfaces of local blade segment.

For blades with normal levels of positive camber, some values of YP at inlet and outlet may be negative. These are points on the pressure or suction surface circular arcs that occur prior to the leading-edge radius or after the trailing-edge radius (fig. 13).

Figure 13. - Blade surface coordinate points.

For a blade with small positive camber, or with negative camber, many values of YP (and sometimes YS) can be negative (fig. 14).

Following the blade coordinates for each of the blade segments are output parameters that serve as inputs for the ideal flow programs. These programs are reported in references 1 to 4 . They compute ideal flow on an axisymmetric blade-to-blade surface of a single or tandem bladed turbomachine in either subsonic or mildly transonic flow.

To obtain input to be used in the ideal flow programs, the flat plane in which the blade section lies is assumed to be wrapped about a cylinder of radius equal to the input parameter, (RADIUS, R_{b}, in fig. 2). This cylinder serves as the axisymmetric blade-to-blade surface required for the input of geometry to the ideal flow programs.

(a) Small positive or negative camber.

(b) Negative camber.

Figure 14. - Example blade sections with negative surface coordinate points.

Specific output quantities which are required as geometric input parameters in the ideal flow programs are defined in the following:

MCHORD chord lengths of blade segments in Z direction (figs. 15 and 16), ft; m
STGR angular θ coordinates of trailing edges of blade segments with respect to leading edges of blade segments (figs. 15 and 16), rad

RSTGR

RI (NO)

MLE(MTE)

THLE(THTE)

RTHLE(RTHTE)

BETIS(BETOS) angular distances of trailing edges of blade segments from leading edges of blade segments (figs. 15 and 16), ft; m
leading-edge (trailing-edge) radii of the blade segments (figs. 10 and 16), ft; m
distances in Z-direction from leading edge of first blade segment to leading (trailing) edges of other blade segments (fig. 15), ft; m angular θ coordinates of leading (trailing) edges of blade segments with respect to leading edge of first blade segment (fig. 15), rad angular distances of leading (trailing) edges of blade segments with respect to leading edge of first blade segment (fig. 15), ft; m angles with respect to Z -direction at tangent points of leading(trailing) edge radii with suction surfaces of blade segments (fig. 16), deg

Figure 15. - Blade section output variables used for plots and ideal flow programs (refs. 1 to 4).

Figure 16. - Blade segment output variables used for plots and ideal flow programs (refs. 1 to 4).

BETIP(BETOP)

MCL(MCT)

THCL(THCT) angular θ coordinates of centers of leading-edge (trailing-edge) circles with respect to leading edge of first blade segment (fig. 15), rad

RTHCL(RTHCT) angular distances of centers of leading-edge (trailing-edge) circles with respect to leading edge of first blade segment (fig. 15), ft; m

The preceding variables are followed by the coordinates of suction and pressure surfaces of the individual blade segments. These coordinates are given with respect to axes in the Z -direction passing through the leading-edge circle centers of each of the segments.

MSPS(MSPP) array of distances in Z-direction between leading edges of individual blade segments and points on the suction (pressure) surface at which blade coordinates (THSPS and THSPP) are given as output (fig. 16), ft; m

THSPS(THSPP) array of angular θ coordinates from a line in the Z direction through the leading edge circle center of each segment, to points on the suction (pressure) surface of the segment (fig. 16), rad

RTHSPS(RTHSPP) array of distances (RADIUS \times THSPS(THSPP)) corresponding to THSPS(THSPP) (fig. 16), ft; m

Output Blade Plots

The Calcomp plot portion of the output shows the blade as it would appear in cascade at a given solidity and inlet blade angle. The plot is very helpful in evaluating the blade visually; the user can see immediately whether the shape resulting from the program agrees with his concept.

The complete Calcomp plot for the two-section tandem blade example is shown in figure 17. All plots have the same format as this one. To the left of the plot are printed the complete input and some selected output variables. The input variables on the Calcomp plot and in the program are related as follows: $\mathrm{C} / \mathrm{C}(1)=\mathrm{COC} 1, \mathrm{PHI} / \mathrm{PHI}(1)=$ PHOPH1, etc. For the output, PHI are the blade segment cambers, PHIC. The blades

Figure 17. - Full Calcomp plot for two-section tandem blade example.
are drawn in a position corresponding to the blade angle, KAPIN. The Z-axis is normal to the sides of the Calcomp page. The blade is not positioned at $(0,0)$ and its origin has no set position in relation the plotted axis. So the plot is only useful for visual examination of the blade.

The portion of the program which generates the Calcomp plot is coded specifically for the NASA Lewis system and would not work elsewhere. However, the program is written with the plotting code at the end. A programmer at another installation could easily substitute a code to obtain a plot based on the requirements of his own system.

The coordinates for plotting are calculated and arranged in the PLOTT subroutine. (See COMPLETE PROGRAM LISTING.) Down to statement 310 of this routine the blade coordinates have been stored into two arrays: XDOWN and YACROS. The number of points on each blade segment have been stored into the array, NPNTS. After statement 310, the section of code labelled PREPARE KKK AND P AND CALL CALPLT prepares special variables for a call on the CALPLT routine which is internal to the Lewis system. The subroutine CALTIT, which writes the input and output to the left of the plot, also uses special Lewis routines. Finally, the statement DECK CALPLT calls in the CALPLT routine which does the plotting. So from statement 310 of the PLOTT routine to the end of the coding, changes would have to be made by a programmer to get plotting on another system.

Error Conditions

Several error messages are given by the program under certain conditions. This section lists the error messages and explains what to do if they are encountered.
(1) MAX THICKNESS OF SOME SEGMENT IS LESS THAN LEADING OR TRAILING EDGE THICKNESS OF THAT SEGMENT

This message is printed if either of the following conditions is found on any of the blade segments

$$
\begin{aligned}
& \mathrm{TMOC}<2.0 \times \mathrm{RIOC} \\
& \mathrm{TMOC}<2.0 \times \mathrm{ROOC}
\end{aligned}
$$

The blade segments must be at least as thick as their leading- or trailing-edge thicknesses.
(2) THE SUM OF ONE PLUS THE VALUES IN THE PHOPH1 ARRAY MUST BE GREATER THAN 0.1

This message is only printed when negative input values are used in PHOPH1 and the sum of these input values is less than -0.9. When excessive negative cambers are used, the program cannot converge on its iterations to calculate individual blade segment cambers. (A negative input to PHOPH1 implies that the first blade segment will have positive camber, and the segment corresponding to the negative PHOPH1 will have negative camber. This situation is permitted in the program, but is physically unrealistic. So the error message eliminates long iterations on bad data.)
(3) PROCEDURE FOR SIZING OF BLADE CAMBERS HAS NOT CONVERGED IN 25 ITERATIONS

The program initially calculates blade segment cambers and then corrects these cambers in an iteration process until an overall blade camber of DELK is obtained. Usually four or five iterations are required to reach a specified tolerance. The error message is given if convergence is not obtained in 25 iterations. This error is generally due to the fact that specified inputs are not geometrically compatible. This condition is most likely to occur when DELK is small $\left(0^{\circ}\right.$ to $\left.10^{\circ}\right)$.

In addition to the programmed error messages, computer errors (such as square root of negative number) are likely to occur if input values are beyond recommended limits. Limits within which computer errors are not likely are summarized.

$$
\begin{gathered}
1 \leq \mathrm{N} \leq 5 \\
\mathrm{TCHORD}>0 . \\
\text { SOLID }>0 . \\
0 . \leq \text { DELK } \leq 180 . \\
-90 . \leq \mathrm{KAPIN} \leq 90 . \\
\text { RADIUS }>0 . \\
\mathrm{COC} 1>0 . \\
-1000 . \leq \text { PHOPH } 1 \leq 1000 . \\
0 . \leq \text { GOTC } \leq 0.5
\end{gathered}
$$

$$
-0.2 \leq \mathrm{LOTC} \leq 0.4
$$

$$
0 . . \leq F \leq 10 \text {. }
$$

$0 . \leq \mathrm{TMOC} \leq 0.8$
$0 . \leq \mathrm{RIOC} \leq 0.4$
$0 . \leq \operatorname{ROOC} \leq 0.4$

COMPLETE PROGRAM LISTING

\$IEJOE
SIEFTC CATBP
COMMON, INPUT/N, TCHORO, SOLID, DELK,KAFIN,RADIUS, CCCI(5), PROPH1(5), 1
IGOTC(5),LOTC(5),F(5), TMOC (5), RICC(5), ROCC (5), TITLE(12) 2
COMMCN,CUTPUT/CHORO (5), GAN(5),GANR(5),FHIC(5), PITCH 2
COMMON/CLPLUT/XPEN, YPEN,NX,NY,IPEN, XLAEEL(10), YLABEL(10) 4
COMMON/COM1/RI(5), RO(5), THETA(5), XI(5),YI(5),XC(5), YC(5), 5
$1 \times C M(5), Y C M(5), X 1(5), Y 1(5), X 2(5), Y 2(5), S L S(5), S L P(5), X S M(5), Y S M(5)$, 6
1XPM(5),YPM(5),KCM(5),G(5),GA(5),GAOC(5),L(5),FA(5),SINC(5), 7
1RC(5), HC($51, B C(5), K I C(5), K O C(5), R S(5), H S(5), \operatorname{BS}(5), K I S(5), K C S(5)$, ε
1PHIS(5),RP(5),HP(5),BP(5),KIP(5),KOP(5),PHIP(5),TM(5),XR(5),YR(5), c
1XG(5),YG(5),NDEL(5),XX(5,1CC),YS(5,100),YP(5,100) 1 C
COMMON/CUNZ/GANS, MCHORD(5), RSTGR(5), STGR(5), MLE(5), RTHLE(5), 11
1THLE(5),MTE(5), RTHTE (5), THTE (5), MCL(5), RTHCL(5), THCL(5), MCT (5), 12
IRTHCT(5), IHCT(5), BETIS(5), BETCS(5), BETIP(5), BETCP(5), MSPS(5, 100), 13
1RTHSPS(5,1C0), THSPS(5,100),NSFP(5,100),RTHSPP(5,100), THSPP(5,100) 14
REAL L,LOTC,NELC,KIC,KOC,KIS,KCS,KIF,KCP,KCM, 15
1KGSI,KES2,KGPl,KGP2,KGSI,KAPIN 16
REAL NLE,MTE,MCL,MCT,MCHCRD,NSPS,MSPP 17
1C CALL BLDCRD 18
CALL IFJNPT 19
CALL PLCTT ? C
GO IO 10 21
END 22
SIEFTC BLECR
SLBROUTINE BLDCRD 1
COMMON,INPLT/N, TCHORD, SOLID,DELK, KAPIN,RACIUS, COC1 (5), PHOPHI(5), 2
IGOTC(5), LOTC(5),F(5), TMOC (5), RICC(5), RCOC(5), TITLE(12) 3
COMMON/OUTPUT/CHORD(5),GAM(5), GAMR(5),FHIC(5),PITCH 4
COMMON/COM1/RI(E),RO(5), THETA (5), XI (5), YI (5), XC(5), YO(5), 5
$1 \times C M(5), Y C M(5), X 1(5), Y 1(5), X 2(5), Y 2(5), S L S(5), S L P(5), X S M(5), Y S M(5)$, ϵ
1XPM(5),YPM(5),KCM(5),G(5),GA(5),GAOC(5),L(5),FA(5),SINC(5), 7
$\operatorname{IRC}(5), H C(5), B C(5), K I C(5), K C C(5), R S(5), H S(5), B S(5), K I S(5), K O S(5)$, ε
lPHIS(5),RP(5), HP(5), BP(5), KIP(5), KCP(5), PHIP(5), TM(5), XR(5),YR(5), ξ
1XG(5), YG(5), NDEL(5),XX(5,10C),YS(5,100),YP(5,100) 10
REAL L,LOIC,NEWC,KIC,KCC,KIS,KCS,KIP,KCP,KCM,LC, 11
IKGS1,KES2,KGP1,KGP2,KGSI,KAPIA 12
C13
READ AND PRIAT INPUT C 5C
1C WRITE 6,1000$)$ 16
REAC (5,125C) (IITLE(I), I=1,12) 17
WRITE(6,12EC) (IITLE(I), I =1,12) 18
REAC (5,1020) N,TCHORD,SULID,DELK,KAFIN,RADIUS $1 c$
WRITE (6,1030) N,TCHORD,SOLID,DELK,KAFIN,RADIUS 20
REAC (5,1010) (COC1(J),J=2,N) 21
WRITE $(6,1040)$ (COC1(J), J=2,N) 22
REAC (5,1010) (PHOPHL(J), J=2,N) 23
WRIJE (6,1050) (PHOPHI(J), J=2,N) 24
REAC (S,101C) (GOIC(J),J=2,N) 25
WRITE ($6,10 \in 0)$ (GOTC (J), J=2,N) 26
$\operatorname{REAC}(5,1010)(\operatorname{LOTC}(J), J=2, N)$ 27
WRITE (6,1070) (LOTC(J), J=2,N) 2ε
$\operatorname{REAC}(5,101 \mathrm{C})(F(J), J=2, N)$ 29
WRITE ($6,10 \varepsilon 0$) ($F(J), J=2, N$) 30
REAC (5,1010) (TMOC(J), $J=1, N)$ 31
WRITE ($0,105 C$) (IMOC(J), J=1,N) 32
REAC $(5,1010)$ (RIOC (J), J=1,N) 33
WRITE $(6,1100)$ (RIOC(J), $J=1, N)$ 34
$\operatorname{REAC}(5,1010)(\operatorname{ROOC}(J), J=1, N)$ 25
WRITE (6,1110$)(\operatorname{RUOC}(J), J=1, N)$ 36
C 37
IN ItIal values of canber and cherd
IN ItIal values of canber and cherd C 38
DELK $=$ DELK/57.255779 39
PITCH = ICHORD/SOLID 4 C 4 C
SUMC $=0$.41
SUML $=0$. 43
SLMPHI $=0$. 44
PHOPH1(1) = 1.0 45
IF (N.EQ. 1) GO TO 30 46
CO $20 \quad J=2, N$ 47
SUML $=$ SUML +LOTC(J) 48
SUMC = SUMC+COC1(J) 49
2C SUMPHI = SUMPHI +PHOPHI(J) 5 C
3C FACTOR = 1./(1.-DELK**2/24.) 51
SUML $=F A C T O R+S L M L$ 52
SUMC $=1 .+$ SUMC 53
SUMPHI = 1.+SUNPHI 54
IF (SUMPHI.GT...1) GO TO 4 C 55
WRITE (6, 1< 7 C) 56
GO TO IC 57
4C CFORD(1)= TCHORD*SUML/SLMC 5ε
PHIC(I) = DELK/SUMPHI 59
IF (N.EQ. 11 GC 1060 $\in C$
DO $50 \mathrm{~J}=2, \mathrm{~N}$ 61
PHIC(J) = PHIC(1)*PHUPH1(J) 62
5C CHORD(J)= CHORD(1)*COC1(J) 63C SIZING UF CTHER blade segnent dimensicns$\epsilon 4$C66
EC ITER = 1 67
If (N.EQ.1) GO TU 8.C 68
DO $70 \mathrm{j}=2, \mathrm{~N}$ ϵ
L(J) = LOTC(J)*ICHORD 70
7C G(J)= GOTC(J)*TCHORD 71
8C DO ¢O J=1,N 72
$\operatorname{TM}(J)=\operatorname{TMOC}(J) * C H O R D(J)$ 73
$\operatorname{RI}(J)=\operatorname{RICC}(J) * C H C R D(J)$ 74
RO(J) $=$ ROOC(J)*CHORD (J) 75
IF (2.*RI(J).LE.TM(J).AND.2.*RO(J).LE.IM(J)) GC TO 90 7ϵ
WRITE (6,1120) 77
GO $10 \quad 10$ 78
GC CONTINLE 75
C
CSEGMENT CEATER LINE CALCULATICNS8 C
C82
CO $100 \mathrm{~J}=1, \mathrm{~N}$ 82
XI(J) $=$ RI(J) 84
YI(J) $=$ RI(J) 85
XO(J) $=$ CHORD (J)-RC(J) 86
$Y O(J)=R O(J)$ 87
$A R G=(Y 1(J)-Y O(J)) /(X I(J)-X C(J))$ $\varepsilon \varepsilon$
ICC THETA(J) = -ATAN(ARG) 8 s
$11 \mathrm{C} D \mathrm{DO} 120 \mathrm{~J}=1, \mathrm{~N}$ 90
KIC(J) $=$ PHIC(J)/2.-THETA(J) 91
KOC(J) $=-\mathrm{PHIC}(J) / 2 .-\operatorname{THETA}(J)$ 52
IF (ABS(PHIC(J)).LT..OOCL) GC TO 120 93
$B C(J)=(X I(J) * * 2+Y I(J) * * 2-X O(J) * * 2-Y O(J) * * 2-2 . *(X I(J)-X O(J)) *(X I$ 94
l(J) +YI(J)*TAN(KIC(J))))/2./(YO(J)-YI(J)+(XI(J)-XO(J))*TAN(KIC(J))) 95
HC(J) $=-X I(J)-(Y I(J)+8 C(J)) * T A N(K I C(J))$ 96
$R C(J)=\operatorname{SQRT}((X I(J)+H C(J)) * * 2+(Y I(J)+E C(J)) \neq * 2)$ 97
GO TO 120 G 8
12C BC(J) = 999.55999 $\varsigma \varsigma$
IF (PriC(J).LT.C.) BC(J) $=-B C(J)$ 1 CC
HC(J) $=-$ CHORD (J)/2. 101
RC(J) = 999.ヶЯ૬¢9 102
13C CONTINLE 103
c
C SEGMENT SLRFACE CALCLLATIONS104C
DO $27 \mathrm{C} \quad \mathrm{J}=1, \mathrm{~N}$105106
$K 1=0$ $K 1=0$107
ITIR $=0$ 1 CS
CEL $=0.1 * C H O R D(J)$ 11 C
IF (RI(J).EQ.O.) GO TO 140 111
RURI $=$ RO(J)/RI(J)-1. 112
GO 10150112
14 C ROR I = 0 114
15 C ROMRI = RD(J)-RI(J) 115
CRO $=\operatorname{CHORD}(J)-2 . * R O(J)$ 116
$C V=(T M(J)-2 . * R I(J)) / C H O R D(J)$ 117
XCM(J) $=$ CHORD(J)/2. 118
XCMMI $=X C M(J)$119
$L C=\operatorname{SGRT}(\mathcal{C H O R D}(J)-R I(J)-R C(J)) * * 2+(R I(J)-R C(J)) * * 2) / 2.0$ 120
PC= PHIC(J)/2.0 121
HCM = LC*TAN(PC/2.0) 122
$X C=R I(J)+L C * C G S(T H E T A(J))+H C N * S I N(T H E T A(J))$ 123
$1 \in C \operatorname{YCM}(J)=R O(J)+(R I(J)-R O(J)) *(C H C R D(J)-X C M(J)-R Q(J)) /(C H C R D(J)$ 124
1-RI(J)-RO(J)) 125
IF (AES(PHIC(J)).LT..OCO1) GC TO 170126
ALPH= IHETA(J)+ASIN((XC-XCM(J))/IC*SIN(PC)-SIN(THETA(J))) 127
YCM(J) $=\operatorname{YCM}(J)+\operatorname{LC} / C O S(T H E T A(J)) *(S I N(P C) /(1 .+C O S(P C))-S I N(A L P H) * * 2$ 128
1/(1. $1 .+\operatorname{COS}(A L P H)) * \leq I N(P C)))$ 129
17C ARG=-((XCM(J)-RI(J))*SIN(PC)-LC*SIA(KIC(J)))/((YCM(J)-RI(J))* 13 C
1SIN(PC)+LC*COS(KIC(J))) 131
$\operatorname{KCM}(J)=\operatorname{ATAN}(A R G)$ 132
C SUCTION SURFACE 133
$\operatorname{XSM}(J)=\operatorname{XCM}(J)-\operatorname{TM}(J) / 2 * \operatorname{SIN}(\operatorname{KCN}(J))$ 134
YSM(J) $=$ YCM(J)+TN(J)/2.*COS(KCN(J)) 135
DS $=X S M(J) \& R O R I+C R D$ 136
$X M R I=X S M(J)-R I(J)$ 137
$X M R I \hat{L}=X \subseteq M(J)-2 . * R I(J)$ 138
YMRI $=Y S M(J)-R I(J)$ 139
YMRI2 $=Y$ SM(J)-2.+RI(J) 14 C
XMYM $=X$ SM (J)**え $2+Y$ SM (J) $* * 2$ 141
AAS = XSM(J)*XNRI2*YSM(J)**2*RORI**2-2.*XMRI*YMRI*YSM(J)*RORI*DS 142
1+YSM(J)*YMRI2*CS**2 143
BBS $=(X M Y M * Y M R I+R I(J) * * 3-3 . * R I(J) * 2 * Y S N(J)) * D S * * 2-(X M Y M * X M R I$ 144
1+RI(J)**3-3.*RI(J)**2*XSM(J))*YSM(J)*RORI*DS+(XSM(J)*XMRI2*YSM(J) 145
2*RURI-XMRI*YMRI*DS)*(XMYM*ROFI+CHORD(J)*CRO+RO(J)*REMRI) $14 t$
CCS $=(X M Y M * * 2+R I(J) * * 4-6 . * R I(J) * * 2 * X M Y M) * D S * * 2+X S M(J) * X M R I 2$ 147
$1 *(X N Y M * R O R I+C H O R D(J) * C R O+R O(J) * R C M R I) * * 2-2 . *(X M Y M * X N R I+R I(J) * * 3$ 148
2-3.*RI(J) **2*XSN(J))*(XMYM*RORI+CHORC(J)*CRO+RO(J)*ROMRI)*DS 145
IF (RI(J).EQ.C.) GO TO 180 150
$B S(J)=(-E B S+S Q R T(B B S * * 2-A A S * C C S)) /(2 . * A A S)$ 151
GO 10190 152
$18 \mathrm{CBS}(J)=-B B \leq /(\Sigma . * A A S)$
$19 \mathrm{CHS}(\mathrm{J})=-(X M Y M * R C R I+C H C R D(J) * C R O+R O(J) * R C M R I+2 . * Y S M(J) * R O R I * B S(J))$ 153 154
1/(2.* (×SM(J)*RCRI +CRO))
SLS(J) $=-(X S N(J)+H S(J)) /(Y S M(J)+B S(J))$
SLS(J) $=-(X S N(J)+H S(J)) /(Y S M(J)+B S(J))$
C PRESSURE SURFACE 156 157
XPM(J) $=\operatorname{XCM}(J)+T M(J) / 2 . * S I N(K C N(J))$ 15ε
YPM(J) $=Y C M(J)-T M(J) / 2 . * \operatorname{COS}(K C M(J))$
155$O P=X P M(v) \neq R O R I+C R D$
$X M R I=\operatorname{XPN}(J)-K I(J)$$16 C$
$X M R 12=X P N(J)-2 \cdot \# R I(J)$ $1 \in 2$161
YMRI = YPM(J)-RI(J) 163
YMKI2 $=$ YPM(J)-2.*RI(J) 164
$X M Y M=X P M(J) * * 2+Y P M(J) * * 2$ $1 \in 5$
$A A P=X P M(J) * X N R I 2 * Y P M(J) * * 2 * R C R I * * 2-2 . * X M R I * Y M R I * Y P M(J) * R C R I * D P$
$1+Y P M(J) * Y$ FRI 2 * $\mathrm{CP*}$ * 2 167
BRP = (XMYM*YMRI +RI(J)**3-3.*RI(J)**2*YPM(J)) \#DF**2-(XMYM*XMRI $1 \in \varepsilon$
$1+R I(J) * * 3-3 . * R I(J) * * 2 * X P M(J)) * Y P N(J) * R O R I * O P+(X F M(J) * X M R I 2$ *YPM(J) 169
2*RORI-XMRI*YMRI*OP)*(XMYM*RCRI+CHCRD(J)*CROHRO(J)*RCMRI) 17C
 171
1* (XMYM*RORI+CHCRD (J)*CRO+RG(J)*RCNRI)**2-2.*(XMYM*XMRI+RI(J)**3 172
2-3.*RI(J)**2*XPM(J))*(XMYN*RCRI+CHCRC(J)*CRG+RC(J)*RCMRI)*CP 173
IF (RI(J).EQ.C.) GO TO 200 174
$B P(J)=(-B B P-S Q R T(B B P * * 2-A A P * C C F)) /(2 . * A \Delta P)$ 175
GO TO 210176
$2 C C B P(J)=-B E P /(2 . * A A P)$ 177
z10 10 P(J) $=-(X M Y N * R U R I+C H O R O(J) * C R O+R O(J) * R O N R I+2 . * Y P M(J) * R O R I * E P(J))$ 17ε
1/(2.* (XPM (J)*RORI + CRO))175
$\operatorname{SLP}(J)=-(X P M(J)+H P(J)) /(Y P M(J)+B P(J))$ 18C
C C+ECK FOR MAX THICKNESS POINT C[AvEFGENCE 181
CSL $=$ SLS (J)-SLP(J) 182
IF ICV.EQ.C.) GO TO 260 183
If (ABS(USL).LE..COOI\#CV) GC IC 260 184
IF (ITIR.EQ.O) GO TO 22C 185
IF (DSL/DSLM1.LT..O) Kl=1 18ϵ
$\angle 2 C$ ITIR = ITIR + 1 187
If (K1.EQ.C) GC TO 23C 18ε
GO 10240 185
$23 C \times C M(J)=X C M(J)+D S L / A B S(D S L) * D E L$ 15 C
GO 10250 151
24 C XCM(J) $=$ XCMM1+(XCMM2-XCMM1)/(1.-CSLM1/DSL) 192
25 C CSLMI $=\mathrm{DSL}$ 193

```
        XCMM2 = XCMM1 194
        XCMM1 = XCM(J)
        GO 10 160 196
C FINAL CALCULATIONS AFTER CONVERGENCE
157
    Z6C RS(J)= SQRT((XSM(J)+HS(J))**2+(YSM(J)+BS(J))**2) 198
        RP(J)= SQRT({XPM(J)+HP(J))**2+(YPM(J)+BP(J))**2) 1GG
        ARG = -(RI(J)+HS(J))/(RI(J)+BS(J))
        KIS(J)=ATAN(ARG) 201
        ARG = -(RI(J)+FP(J))/(RI(J)+BF(J)) 2C2
        KIP(J)=ATAN(ARG) 2C3
        ARG = -(CHORD(J)+HS(J)-RO(J))/(RO(J)+ES(J)) 204
        KOS(J) = ATAN(ARG)
        ARG=-(CHORD(J)+HP(J)-RO(J))/(RO(J)+BP(J))}\quad\mathrm{ <CE
        KOP(J)=ATAN(ARG) 2C7
        PHIS(J)=KIS(J)-KOS(J) 2C8
    27C PHIP(J)=KIP(J)-KOP(J) 2CS
C
C LCCATION CF ELADE SEGMENTS hith resfect tC caE ANCther
C
    GAM(1)=0.
        GAMR(1)=0.
        IF (N.EQ.J) GG TO 33C
        DO 210 J=2,N
        XR(J)= CHORD(J-1)-RO(J-l)-L(J)
        216
        IF (BP(J-1).LT..O) GO TO 280
        0)
        YR(J)=SQRT(RP(J-1)**2-(XR(J)+HP(J-1))**2)-BP(J-1)-F(J)*G(J)-RI(J)
        215
        GO TO < <OO
        22C
    Z&C YR(J)=-SQRT(RP(J-1)**2-(XR(J)+HP(J-1))**2)-BP(J-1)-F(J)*G(J)-RI(J)}22
    290 XG(J)= CHORD(J-1)-RO(J-1) 222
    YG(J)=-G(J)
    AA=2.*((XG(J)-XR(J))*(RI(J)+HS(J))+(YG(J)-YR(J))*(FI(J)+BS(J)))
    BB=2.*((XG(J)-XR(J))*(RI(J)+BS(J))-(YG(J)-YR(J))*(RI(J)+HS(J)))}22
    CC=RI(J)*(2.O*RS(J)-RI(J))-(XG(J)-XR(J))**2-(YG(J)-YR(J))**2,}22
    IF (L(J).LT.O.) GO TO 300
227
    SINGAM = (BB*CC-AA*SQRT(AA**2*BB**2-CC**2))/(AA**2+ER**2) <<<
        GO TO 310 22S
    ZOC SINEAM=(BB*CC+AA*SQRT(AA**2+BE**2-CC**2))/(AA**2+RE**2) 2ZC
    ミlC GAM(J)= ARSIN(SINGAM) 231
C
C Check cN overall elade rurning and fesizing canbers cf blade segments 233
C
    CO 320 J=2,N
    22C GAMR(J)= GAMR(J-1)+GAM(J)
    Z3C DELKT= KIC(1)+GAMR(N)-KCC(N) 237
    CIFF= DELK-DELKT
        238
        IF (ABSIDIFF).LT..OO1) GO TC 360 239
        ITER=ITER +1 24C
        IENC= C 241
        IF (IIER.GT.25) GO TO 350 242
        DO }340\textrm{J}=1,
    34C PHIC(J)= PHIC(J)+DIFF*PHOPH1(J)/SLMPHI 244
    GO TO 370 245
    3EC WRITE(6,1130) 24t
    GO TO 10
247
```

c 248
C RESIZING ChORES OF blade segnents 245
C
$3 \in C$ IEND $=1$

```250251
```

37C $X O B=X O(N)$ 252
$Y O B=Y O(N)$ 253
IF (N.EQ.1) GC TO 3SC 254
DO 380 K=2,N 255

```
            J=N-K+2 256
            SING= SIN(GAM(J)) 257
            COSE= COS(GAM(J)) 25&
```



```
            YOBB=YR(J)+YCB*COSG-XCB*SING+RI(J)*(SING-CCSG) ZEC
            XOB = XOBE
                                    2\epsilon1
ミ8C YOB = YCBE
<<2
\XigC IF (IENC.EQ.I) GO TO 4lC
NEWC=SQRI{(XOB-XI(I))**2+(YGB-YI(I))**2)+RI(I)+RC(N)
2&3
CRATIO= TCHORD/NELC
2t5
CO 4CC J=1,N
z\int
```

4CC ChORD（J）＝CHORD（J）＊CRATIO zも 7
GO 10 \＆O 2te
c

```C cuerall elade theta and ganma
C
    41C ARG= (RI(1)-RE(N))/(TCHCRD-RI(1)-RO(N))
27C
    41C ARG= (RI(1)-RD(N)1/(TCHCRD-RI|11-ROINI) 271
    THETB = ATAN(ARG) 273
272
            ARG=(YI(1)-YOB)/(XOB-XI(1))
274
            GAMBTE= ATAN(ARG)
            GAME= (AMBTB-THETB
                    275
                            27\epsilon
            IF (N.EQ.I) GO TO 430 277
C 278
C PSEUCO-IACIDENCE ANGLES CN AFT ELADES 27S
C 28C
            DO 42C J=え,N <&1
            ARG=(CHORD(J-1)+HC(J-1)-RC(J-1))/RC(J-1) <&2
            RHOI= fRSIN(ARG) 283
            ARG=((HORU(J-1)+HC(J-1)-RC(J-1)-L(J))/RC(J-1) <<4
            RHO<= ARSIN(ARG)
            RHO= RHOI-RHO2
                2&\epsilon
    42C SINC(J)= - (KIC(J)-GAM(J)-KCC(J-I)-RHC) 2&7
c
C Ela[e secijon cocrcinates at delx increnents
C
    43C DO 49C J=1,N <!]
        290
            TEM = CHORD(J)/2C./1000C. 2&2
            NEXP = O
                293
    44CNEXP = NEXP+1 254
            TEM = 10.*TEM
            1F (TEM-I..LT.C.) GO TO 440 29E
                            295
            M=TEM 2S7
            IF (M.GE.2) GO TO 45C 2SE
            M=1 2SG
            GO 10 470 2CC
    45C IF (M.GE.5) GO TO 46C 3C1
            M=2 302
            GO 470 粶
    4ECM=5 2C4
    47C DELX= FLOAT(N)*IC.**(4-NEXP)
        NDEL(J)=CHORD(J)/OELX+1.
        3C5
        306
        XX\J,1}=0. 3C7
        NDELJ = NCEL(J)
        3C8
        CO 4GC K=1,NDELJ
        3Cc
        YS(J,K)=SQRT(RS(J)***2-(XX(J,K)+HS(J))**2)-ES(J)
            IF (BP(J).LT..OI GO TU 4&C 311
            YP(J,K)= SGRT(KP(J)**2-(XX(J,K)+HF(J))*&2)-PP(J)
            GO TO 490 313
    48C YP(J,K)=-\QKT(RP(J)**2-(XX(J,K)+HP(J))*&2)-BP(J)
    49C XX(J,K+1)=XX(J,K)+DELX 315
C
C RELATION CF SEGMENT DRIGINS TC PRINCIPAL CRIGIN 3IT
```

C 318
$x 1(1)=0$ ． 315
$Y 1(1)=0$ ． 32 C
x ze（1）$=$ CHORD（1） 321
$Y 2(1)=0$ ． 222
IF（N．EG．J）GO TO 5عC 323
DO ECC J＝ZiN 324
TEMA $=X R(J)-R I(J) *(C O S(G A M(J))+S I N(G A N(J)))$ 325
TEMB $=Y R(J)+R I(J) *(S I N(G A M(J))-C C S(G A N(J)))$ ミスヒ
TEMC $=$ TENB／COS（GAMR（J－1）） 327
TEMC＝TEMC＊SIA（GAMR（J－1）） 228
TEME＝IEMA＋TEMD 329
TEMF＝1EME＊SIN（GAMR（J－1）） 2 2 C
DX $=$ TEME＊COS（GAMR（J－1）） 231
CY $=$ TEMF－TEMC $32 \overline{2}$
$X 1(J)=X 1(J-1)+D X$ 333
Y1（J）$=Y 1(J-1)-D Y$ 234
$X 2(J)=X 1(J)+\operatorname{CHORO}(J) * \operatorname{COS}(G A M R(J))$ 335
ᄃCC Y2（J）＝Yl（J）－CHORD（J）＊SIN（GANR（J）） 23ϵ
C 337
C CCMPLTATICA CF ACTLAL GAPS 238
DO E7C J＝ $\bar{c}+\mathrm{N}$ 34 C335
OO STし JごN
C REAR PCRIICN OF GAP 341
$K G S 1=100$. 242
EICARG＝－（（XG（J）－XR（J））＊CCS（GAM（J））－（YG（J）－YR（J））＊SINIGAN（J）） 343
$1+R I(J)+H S(J)) /((X G(J)-X R(J)) * S I N(G A M(J))+(Y G(J)-Y R(J)) * C U S(G A M(J))$ 344
2＋RI（J）＋ $\mathrm{BS}(J)$ ）345
KGSe＝ATAN（AKG）$24 t$
IF（AE $(K \in \leq 2-K G \leq 1) . L E . . O L)$ GC TC 520 347
$B E T A=K G \leq 2-G A M(J)$ 348
$C A=(X O(J-1)+Y C(J-1) * T A N(B E T A)-X R(J)) * C C S(G A M(J))+$ 345
IYR（J）＊SIN（GAM（J））＋RI（J）＋HS（J） 350
$C B=-(\operatorname{TAN}(B E T A) * \operatorname{COS}(G A M(J))+\leq I N(G A M(J)))$ 351
$C C=(X O(J-1)+Y C(J-1) \neq T A N(B E T A)-X R(J)) * S I N(G A M(J))-$ 352
$\operatorname{IYR(J)*\operatorname {CCS}(GAM(J))+RI(J)+BS(J)}$ 253
$C D=\operatorname{COS}(G A M(J))-T A N(B E T A) * S I N(G A N(J))$ 354
$C E=C B * * 2+C D \neq 2$
355$C F=2 . *(C A * C B+C C * C D)$
256
$C G=C A * * \bar{\Sigma}+C C * * 2-R S(J) * * 2$ 357
$Y G(J)=(-C F+S G R T(C F * * 2-4 * * C E * C G)) /(2 . * C E)$ 25
$X G(J)=X O(J-1)-(Y G(J)-Y O(J-1)) \neq T A N(B E T A)$ 359
KGSI $=K G \subseteq \bar{Z}$ $3 \in C$
GO $10 \quad 510$ $3 \in 1$
£2C GA（J）＝SGRT（（XG（J）－XO（J－1））＊＊2＋（YG（ニ）－YC（J－1））＊＊2）－RC（J－1） 3 $\overline{2}$
GAOC（J）＝GA（J）／CHORD（J－l） $3 \in 3$
C FCRWARC PCRTION OF GAP $3 \in 4$
$K G P 1=100$. 265
$X G P=X R(J)$ $3 \in 6$
$Y G P=\operatorname{SQR} 1(R P(J-1) * * 2-(X G P+H P(J-1)) * * 2)-E P(J-1)$ 367
53C ARG $=-\{X G P+H P(J-1) \mid /(Y G P+B P(J-1))$ 368
$K G P 2=A T A N(A R G)$3 65
IF（ABS（KCP2－KGP1）．LE．．OI）GC TC 560 27C
$A R G=(-H S(J)-R I(J)) /(B S(J)+R I(J))$ 371
KGSI $=\operatorname{ATAN}(A R G)-G A M(J)$ 372
$B E T A=(K G P 2+K G S I) / 2$ ． 273
$C L=1 . *(T A N(B E T A)) * * 2$ 374
$C M=2 . *(B P(J-1)-(X R(J)+Y R(J) * T A N(B E T A)+H P(J-1)) * T A N(B E T A))$ 375
$C N=(X R(J)+Y R(J) * T A N(B E T A)+H P(J-i)) * * 2+B P(J-i) * * 2-R P(J-1) * * 2$ 376
IF（BP（J－1）．LT．．O）GO TO 540 377
$Y G P=(-C M+S Q R T(C M * * 2-4 . * C L * C N) / /(2 . * C L)$ 278
GO TO 5 － 0 279
－4C 2 $\& \subset$

```
        550 XGP=XR(J)-(YGP-YR(J))*TAN(BETA) 381
            KGP1 = KGP2
            GO TO 5E0
    E\inC FGG=SORT((XR(J)-XGP)**2+(YR(J)-YGP)**2)
            BETA = BETA+GAN(J)
                                385
            CL = 1.+1 TAN(BETA ) )**2
            CM = 2.*(BS(J)-(XI(J)+YI(J)*TAN(BETA) +HS(J))*TAN(BETA))
                3&\epsilon
                3&7
            CN=(XI(J)+YI(J)*TAN(BETA)+HS(J))**2+BS(J)**2-RS(J)**2 ב&E
            YGS = (-CN+SQRT(CM**2-4.*CL*CN))/(2.*CL) 3&S
            XGS = XI(J)-(YGS-YI(J))*TAN(BETA) ISC
            FG2 = SQRT((XGS-XI(J))**2+(YGS-YI(J))**2) 3S1
            FG = FGGFC2 3S2
    E7C FAIJ)=FG/GA(J). 3C3
C
C PLT OLTPUT aNELES IN DEGREES
C
    E&C CELK = CELK*57.255779
            GAMB = GAMB*57. <55779 - 39%
            THETB = THETB*57.255779 3¢c
            DO ESO J=1,N 4CC
            GAM(J)=GAM(J)*57.255779 4C1
            GAMR(J)= GAMR(J)*57.295779 4C2
            THETA(J) = THETA(J)*57.295779 4C3
            SINC(J)= SINC(J)*57.2G5779 404
            PHIC(J) = PHIC(J)*57.295779 405
            PHIS(J)= PHIS(J)*57.2S577S 4C6
            PHIP(J)=PHIP(J)*57.2S5779 407
            KIC(J)=KIC(J)*57.255779 4C8
            KIS(J) =KIS(J)*57.2S5779 4C5
            KIP(J)=KIP(J)*57.2S5779 41C
            KOC(J)=KOC(J)*57.295779 411
            KOS(J)=KGS(J)*57.295779 412
    5SCKOP(J)=KOP(J)*57.295779 413
C
C Crange sicN CF SElected oltplis
414
CHANGE SICN CF SELECTED OLTPLIS 415
C
        DO GCO J=1,N 417
    416
        HS(J)=-HS(J) 418
        HC(J)=-HC(J) 41S
        HP(J)=-HP(J) 42C
        KOS(J)= - KOS(J) 421
        KOC(J)= - KOC(J) 422
        KOP(J)= -KOP(J) 423
        Yl(J)= -Yl(J) 424
    \epsilonC(Y2(J)=-Y2(J) 425
    YOB=-YOB 42t
C
    PRINT OUTPLT 42&
C
WRITE(E,l(CCO)
42S
WRITE(t,II4C) N,TCHORD,PITCH,SCLID,DELK,KAFIN,GAMB,THETE,XCE,YOB
421
DO 62C J=1,N
432
WRITE(t,11EC) J
WRITE(t,Il\inC) CHURD(J),RI(J),RC(a),THETA(J)}422
WRITE(t,IITC) XI(J),YI(J),XC(J),YC(J),XCN(J),YCM(J) 42E
WRITE(\epsilon,II\varepsilonO) XI(J),YI(J),X2(J),Y2(J),GAN(J),GANR(J)}43
WRITE(\epsilon,llG0) PHIS(J),RS(J),HS(J),BS(J),KIS(J),KCS(J)}43
WRITE(t,l200) FHIC(J),RC(J),HC(J),BC(J),KIC(J),KCC(J) 43E
WRITE(\epsilon,1210) PHIP(J),RP(J),HP(J),BF(J),KIP(J),KCP(J)
IF (J.EQ.I) GO TO 6lC 44C
WRITE(\epsilon,l\Sigma20) G(J),GA(J),GACC(J),L(J),F(J),FA(J),SINC(J)}44
```

```
    E1C WRITE&t,123C) NDEL(J) 442
        NDELJ = NCEL(J)
    E2C WRITE(t,l24C)(XX(J,K),YS(J,K),YF(J,K), K=1,NDELJ)}44
        RETURN
C
    C FORMAT SIATEMENTS
        ICCC FORMAT(1H1///)
        1C1C FORMAI(&\vdashIC.5)
    1C2C FORMAI(IIC,5F1C.5)
    IC3C FORMAT///EX,IFN,GX,6HTCHORD,6X,5HSCLID,6X,4HDELK,6X,5HKAPIN,5X, 452
        1GHRAUILS/EX,I2,5X,F8.5,3X,F8.4,3X,F7.3,4X,F7.3,3X,F8.5) 452
    IC4C FORMAT(/6X,12HC/C(1) ARRAY/(19X,5(F9.5,1X)))) 454
    1CSC FORMAT(/6X,16HPFI/PHI(1) ARRAY/(19X,5(F9.5,1XI)) 455
    ICEC FORMAT(,EX,LOHG/TC ARRAY/(1SX,5(FG.5,1X))) 456
    IC70 FURMAT(/EX,ICFL/TC ARRAY/(ISX,5(FG.5,1X)))}45
    1C8C FORMAI(/6X,7HF ARRAY/(19X,5(FG.5,1X))) 458
    LC9C FURMAT(/6X,1OHTM/C ARRAY/(9X,5(F9.5,1X))) 455
    110C FORMAT(/GX,1CHRI/C ARRAY/(9X,5(FG.5,1X))) &GC
    111C FORMAT(/6X,1OHRO/C ARRAY/(GX,5(FG.5,1X))) 4E1
    112C FORMAT////////10X,93HMAX THICKNESS CF SONE SEGNENT IS LESS THAN LE 4, &
        IACING CR TRAILING EDGE THICKNESS (F THAT SEGMENT) 4E?
    113C FORMAI////////lCX,72HPROCEQURE FER SIZING CF ELACE CAMEERS FAS NUT. 4E4
    l CONVERGEC IN 2S I TERATIONSI
    114C FURMAI\IOX,24HCVERALL BLADE PARANETEFS/14X,1HN, EX, GFTCFCRD,7X,
        15HPITCF,6X,5HSCLID, 7X,4HDELK,7X,5HKAPIN,7X,4HGANG,6X,5HTHETE,7X,
```



```
        33x,FS.4,3x,F7.4,2x,F5.5,2X,FS.5)
    115C FORMAT(///ICX,1\varepsilonHbLAUE SEGNENT NC. ,I2)
    116C FURMAT(/12X,5HCHORD,6X,2HRI,8),2HRC,7X,5HTHETA/10X,4(F9.5,1X))
    117C FOKMAI(/14X,2HXI,8X,2HYI, 8X, 2HXC,8X,2HYC,8X,3HXCM,7X,3HYCM/
        llCX,G(FC.E,1X))
        11EC FORMAI(/14X,2HX1,8X,2HY1,8X,2HXL,8X,2HYL, 7X,3HGAM,7X,4HGAMR/
        110X,G(FC.5,1X))
    115C FORMAT(/IEX,4HPHIS,7X,2HRS,EX,2HHS,8X,2HBS,7X,3HKIS,7X, , HKCS/
        110X,G{FS.E,1X})
    1ZCC FORNAT(/1EX, 4HPHIC,7X,2HRC, &X,2HFC,8X,2HEC,7X,3HKIC,7X, 3HKCC/
        11CX,G(FG.E,1X))
```



```
        l1CX,(|FS.E,lX))
    1二20 FORMAIT/L4X,1HG,5X,2HGA,7X,4HGACC,7X,1HL,9X,1HF,9X,2HFA,7X,4HSINC/
        110X,7(F5.5,1X))
    1\angle2C FORMAT(/14X,2HXX,8X,2HYS,8X,2HYF,5X,7HNDEL=,I\angle)
    1<4C FORMAT((1CX,3(FC.5,1X)))
    1二5C FORMAT(12AE)
    LEEC FORMAT(1X,12AEI
    127C FORMat(///////lox,75Hthe slN cF caE fluS the valuES in the phuphi
    lARRAY MLST bE GREATER THAN C.II
        END
        445
C
```

IXPM(5),YPN(j),KCM(5),G(5),GA(5),GACC(5),L(5),FA(5),SINC(5), 7
IRC(E), HC(E), BC(E),KIC(5),KCC(5), FS(5),HS(5), HS(5),KIS(5),KCS(5), ε
IPHIS(5),RP(5),HP(5), OP(5),KIP(5),KOP(5),FHIP(5),TM(5),XR(5),YR(5), ¢
1XG(5),YG(5), NDEL(5),XX(5,100),YS(5,100),YP(5,103) 1 C
CCMMUN/CUMZ/GANS,MCHORU(5),RSTGR(5), STGR(5), MLE(5), RTHLE(5), 11
1THLE(E), MTE(5), RTHTE(5), THTE(5), NCL(5), RTHCL(5), THCL(5), MCT(5), 12
1RTHCT(E), THCT(5), BETIS(5),BETCS(5), BETIP(5), BETCP(5), MSPS(5, 100), 13
1RTHSPS(5,1C0), 1HSPS(5,10C), MSPP(5,100),RTHSPP(5,100),THSPP(5,100) 14
REAL L, LOTC,NEKC,KIC,KCC,KIS,KCS,KIP,KCP,KCM, 15IKGS1,KES2,KGPI,KGP2,KGSI,KAPIA
REAL NLE, NTE,MCL,NCT,MCHORD, ASPS,NSPP1ϵ
CC
CCMPUTATICN OF GECMETRICAL INPLT FCR TANDEM BLADE, IOEAL FLCW PROGRAM 1521
change sicn cf selelted paranetefs
CFANGE SICN CF SELECTED PARANETERS 22
$\operatorname{Co~1C~}=1, N$2
$\operatorname{KOS}(J)=-\operatorname{KOS}(J)$ 25
$\operatorname{KOC}(J)=-\operatorname{KOC}(J)$ 2ϵ
$\operatorname{KOP}(\mathrm{J})=-\operatorname{KOP}(\mathrm{J})$ 27
Yll J) $=-Y(1(J)$ 28
1(Y己(J) $=-Y \overline{\text { (}}$ (J) < 5
$Y O B=-Y O B$ $\underset{2}{2}$
LCCATICN CF CENTERS CF LEADING ECGE CIRCLES 21
GAMS $=(K A P I N-K I C(1)) / 57.2 \subseteq 5775$ 2332LU $<0 \quad J=1$ iN
34$\operatorname{GAMR}(J)=\operatorname{GAMK}(J) / 57.255775$35
GAMJ = GANS-GANR(J) 3
T M1 $=(x 1$ (J)-R(1)
TEM1 = (X1(J)-RI(1))*COS(GANS)-(Yl(J)-RI(l))*SIA(GAMS)+RI(1) 27
TEM2 $=(X 1(J)-R I(1)) * S I N(G A N S)+(Y 1(J)-R I(1)) * C C S(G A M S)$ 38
MCL(J) $=$ IEMI-RI(J)*SIN(GAMJ)+RI(J)*CCS(GANJ) 35
KTHCL(2) = TEMz+RI(J)*CCS(GANJ)+RI(J)*SIN(GAMJ) 4 C
$2 C$ THCL(J) $=$ RTHCL(J)/RADIUS 41
CC
C
lccaticn cf centers of trailing edge circles 4342
DC $3 C J=1, N$ 4544
GAHJ $=$ GANS-GANR (J)
TEM1 $=(x \bar{z}(J)-R I(1)) * \operatorname{COS}(G A N S)-(Y 2(J)-R I(1)) * S I A(G A N S)+R I(1)$ 47$4 t$
TEM2 $=(X$ ($(J)-R I(1)) * S I N(G A N S)+(Y 2(J)-R I(1)) * C C S(G A N S)$ 48
MCT(J) $=\operatorname{IEMI-RC(J)*SIN(GANJ)-RC(J)*CCS(GANJ)~}$ 45
RTHCT(J) $=\operatorname{TEMZ}+R O(J) * C C S(L A N J)-R C(J) * S I N(G A M J)$ 5 C
ミC THCTIJ) = RTHCI(J)/RAUILS ᄃ1
c
LCCATICN CF LEADING tDGES $5 ?$
$0040 \mathrm{~J}=1, \mathrm{~N}$RTHLE(J) $=$ RTHCL(J)54
56
$4 C$ THLE(J) $=$ THCL(J) 5ε
C${ }_{c}$59
lCGATICN ©f trailing edges $\in C$
Co $50 \mathrm{~J}=1, \mathrm{n}$61
MTE(J) = MCT(J)+RC(J) 63
RTHTE(.) = KTHCT(J) $\epsilon 4$
5C THTE(J) = THCT(J) 65
c
CO $\in C=1, N$ Ec
MCHORD(J) = MTE (J)-MLE(J) 7 C
RSTGR(J) = RTHTE(J)-RTHLE(J) 71
6C STGR(J) $=$ THTË(J)-THLE(J) 72
c73
C LCCATiON CF spline clrve angles 74
C 75
CO TC $J=1, N$ 76
GAMJ = GANS-GANR(J) 77
BETIS(J) $=$ KIS(J) +GAMJ*57.255779 7ε
BETOS(J) $=\operatorname{KOS}(J)+$ GAMJ*57.295779 75
BETIP(J) $=K I P(J)+G A M J * 57.255779$ 8 C
7C BETOP(.) $=\operatorname{KUP}(J)+G A M J * 57.255775$ 81
c82
C LCCATiON [F spline points cn blaces ε ミ
C 84
$00 \varepsilon C J=1, N$
GAMJ $=$ GANS-GANR(J) $\varepsilon 5$
TEMI = (X](J)-RI(1))*COS(GANS)-(Yl(J)-RI(1))*SIN(GANS)+FI(1) 8786
TEM2 $=(X 1(J)-R 1(1)) \neq S I N(G A M S)+(Y I(J)-R I(1)) * C O S(G A N S)$ \& 8
NUELJ = NDEL(J)
CO $80 \mathrm{k}=\mathrm{l}$, NOELJ ccMSPS(J, K)ع
E(J) ¢ 1
$\operatorname{MSPP}(J, K)=\operatorname{TENI}+X X(J, K) * C C S(G A N J)-Y P(J, K) * S I N(G A M J)-M L E(J)$ ¢ 2
RTHSPS $(J, K)=T E M 2+X x(J, K) * S I \cap(G A M J)+Y S(J, K) * C C S(G A N J)-R T H L E(J)$ 53
$K T H S P P(J, K)=T E M 2+X X(J, K) \neq S I A(G A N J)+Y P(J, K) * C C S(G A M J)-R T H L E(J)$ © 4
THSPS $(J, K)=R T H S P S(J, K) / R A D I L S$ 55$\varepsilon(\operatorname{THSPP}(J, K)=R T H S P P(J, K) / R A D I L S$
C
s?¢ ϵ
C PRINT CLIFLT
C Gs
hRITEIG,ICCC) 100
RRI
RRI WRITE (E,ICIC) 10.1
WRITE(t,ICEC) (J, MCHURD(J),STGR(~), RSTGR(J),RI(J), RC(J), 102
IMLE(J), THLE(J), RTHLE(J), MTE (J), TMTE (J), RTHTE(J), J=1, N) 103
wRITE (t, IC a O) 104
WRITE($\mathcal{W}, 1 C 4 C)(J, B E T I S(J), B E T[\subseteq(J), B E T I P(J), B E T C P(J)$, 1 C 5
$\operatorname{MMCL}(J), \operatorname{THCL}(J), R T H C L(J), \operatorname{MCT}(J), \operatorname{THCT}(J), K T H C T(J), J=1, N)$ 106
DO CC $J=1, N$
WRITE (6,1050) J
WRITE $(\epsilon, 10 \in 0)$1 C 7
NCLLJ = NCEL(J)10ε
GC WRITE (6,1CTC) (MSPS(J,K), IHSP © (J,K), RTHSFS(J,K),1 CS
111IMSPF(J,K), THSPP (J,K),RTHSPP(J,K),K=1, NDELJ)
RETLKN 112
112C fCRNAT siatements1 COO FORMAT (1HI/////10X,38HCCMPLTED IAFUT FCR ICEAL FLGW PRCGRAMS////)114
16115IOIO FGRMAI ($14 x, 5$ HELADE, 5 X, GHMCHCRD, $4 \mathrm{X}, 4 \mathrm{HSTGR}, 6 \mathrm{X}, 5 \mathrm{HRSTGR}, 6 \mathrm{X}, 2 \mathrm{HR} \mathrm{I}, \mathrm{BX}$,
12HKO, εX, ZHMLE, $\in X, 4 H$ THLE, $O X, 5 H R T H L E, 6 X, 3 H N T E, 6 X, 4 H T H T E, 6 X, 5 H R T H T E)$ 118
1020 FUKMAI (15x,12, 2x.11F1C.5) 115
1030 FGRMAT (/////14x, 5hBLAUE,5X,5HBETIS,5X,5HBETCS,5X,5HBETIP,5X,5HBETOP 120 121

1040 FURMA1 (15x, [2, 3x,4F10.5,10x,6F10.5) 122 122
1050 FOKMAI(///1CX,1EHBLADE SEGMENT NO. , I2) 123 123
$10 \in 0$ FLRMAT $/ / 14 X, 4 H M S P S, 6 X, 5 H T H S P S, 4 X, 6 H R T H S P S, 15 X, 4 H M S P P, 6 X$, 124 124 125
15FTHSPF, $4 \times$, GHR THSPP)
1070 FURMAI((1CX,3F1C.5,1CX,3F1C.5)) 12ϵ 12ϵ
ENU 12 E

\$IEFIC PLT

slbrol tine plctt 1
CCMMCN/INPLT/N,TCHORO, SOLID, CELK,KAPIN,RADIUS,CCCL(5), PFOPHI(5), 2
1GOTC(5),LOTC(5),F(5), TMCC(5),RICC(5),RCCC(5),TITLE(12) 3
COMMON ICUIPLT/CHORD (5),GAM(5),GANR(5), FHIC (5), PITCH 4
CCMMON /CLPLUT/XPEN, YPEN,NX,NY,IPEN, XLAEEL(LO), YLABEL(10) 5
COMNCN/COMI/RI(5),RO(5), THETA(5), X(5), YI (5), XC(5), YC(5), 6
1XCM(5),YCM(5),X1(5),Y1(5),X2(5),Y2(5),SLS(5),SLP(5),XSM(5),YSM(5), 7
IXPM(5),YPM(5),KCM(5),G(5),GA(5),GAOC(5),L(5),FA(5),SINC(5), 8
1RC(5), +C(5), BC(5),KIC(5),KCC(5),FS(5),HS(5), BS(5),KIS(5),KCS(5), ε
IPHIS($51, R P(5), H P(5), B P(5), K I P(5), K C P(5), P H I P(5), \mathrm{YM}(5), X R(5), Y 2(5)$, 10
1XC(5), YG(5), NDEL(5),XX(5,1CC),YS(5,100),YP(5,100) 11
COMMJN/COM2/GANS,MCHORD(5),RSTGR(5),STGR(5), MLE(5), RTHLE(5), 12
1THLE(E), MTE(5), RTHIE(5), THTE (5), MCL(5), RTHCL(5), THCL(5), MCT(5), 12
IRTHCT(E), THCT(5), BETIS(5), BETCS(5), BETIP(5), BETCP(5), MSPS(5, 100), 14
IRTHSP S(5,1C0), THSPS(5,100), MSFP(5,100),RTHSPP(5,100),THSPP(5,100) 15
DIMENSION X1S(5),Y1S(5),X1P(5),Y1F(5),X2S(5),Y2S(5),X2P(5),Y2P(5), 16
INDELS (5), NDELP(5),N1(5),N2(5),NPNTS(5), XCRX(5), YCRY(5), XIX(5), 17
IYIY(5), XOX(5),YCY(5),XS(5,1CC),XF(5,100),XSX(5,100),YSY(5,100), 18
$\operatorname{IXPX}(5, \operatorname{ICC}), Y P Y(5,100), X I X C(5,10 C), Y[Y C(5,100), X C X C(5,100)$, 19
IYOYC(5,10C), XUChN(2000), YACRCS(2COC), XTENP(LOOJ), YTENP(1000), $2 C$
1KKK(25).P(25) 21
EQUIVALENCE (XS(1,1),MSPS(1,1)),(XP(1,1),RTHSPS(1,1)), 22
1(XSX(1,l), THSPS(1,1)),(YSY(1,1), MSPP(1,l)), 23
$1(X P \times(1,1), R(H S P P(1,1)),(Y P Y(1,1), T H S F F(1,1))$ 24
REAL L,LOIC,NEHC,KIC,KCC,KIS,KCS,KIF,KCP,KCM, 25
LKGS1,KG؟2,KGP1,KGP2,KGSI,KAPIA $2 t$
REAL NLE,NTE,NCL,MCT, MCHCRD, NSFS,MSPF 2728

```
calculaticn cf inplt for calcenp plettef
< 5
```CCC3 C
```

plt ancles in racians

```22
```

$P I=3.14155265$

```\(-\)
```

$2 \epsilon$ ..... 35
DO $10 \mathrm{~J}=1, \mathrm{~N}$ ..... 36
KIS(J) $=$ KIS(J)/57.2S5779 ..... 37
$K \operatorname{KIP}(J)=K[P(J) / 57.255779$ ..... 38
$\operatorname{KOS}(J)=\operatorname{KCS}(J) / 57.255779$ ..... 35
$1 \mathrm{CKOP}(J)=K C P(J) / 57.255775$ ..... 4041

```
CVERALL BLADE SIZE 42
YMAX \(=\) RS(1)-BS(1) 43 44
YMIN = YOE-RO(A) 45
\(X M A X=X O B+R O(N)\)
\(X M I N=0\). \(4 \epsilon\)
\(D X=X M A X-X M I N\) 48
\(D Y=Y M A X-Y M I N\) 45
```LCCATION CF GVERALL BLADE URIGIA WIIH RESPECT TC fLCT CRIGIN
    XT = EX/18.
    YT = YMAX+0X/9.lecation of points where leacing anc trailing edge radil meetblace surfaces
    OO <C J=1,N53
xlS(J)=xI(J)-RI(J)*SIN(KIS(J))
```

YIS(J) $=Y I(J)+R I(J) * C C S(K I S(J))$ 61
$X 1 P(J)=X I(J)+R I(J) * S I N(K I P(J))$ ϵ
Y1P(J) $=$ YI(J)-RI(J)*CCS(KIP(J)) $\epsilon 3$
X2S(J) $=\operatorname{CHORD}(J)-R C(J) *(1 .+S I A(K C S(J)))$ E4
Y2S(J) $=Y O(J)+R C(J) * C C S(K C S(J))$ 65
$X 2 P(J)=C H O R D(J)-R O(J) *(1 .-S I N(K C P(J)))$ $\epsilon \epsilon$
$2 C Y 2 P(J)=Y O(J)-R C(J) * C O S(K G P(J))$ E7
c
ElIminaticn of $x X, y S$, anc yp pCIAts nct ca the blace surfaces $\in \varepsilon$
C ϵC 70CO 11C J=1,NNDELJ = NDEL(J)
72
C SLCTIUN SLRFACE 73
$M=1$ 74
CO $20 \mathrm{~K}=1$, NUELJ 75
IF (Xx(J,K).GT.xIS(J)) GC TC 40 76
3 C CONTINLE 77
$4 \mathrm{C} \times \mathrm{S}(\mathrm{J}, 1)=\times 15(\mathrm{~J})$ 78
$\forall S(J, 1)=Y 1 S(J)$ 75
$K K=K$ $8 C$
DO 50 K=KK, NDELJ $\varepsilon 1$
IF (XX(J,K).GT.X2S(J)) GO TC 60 $\varepsilon 2$
$M=M+1$ 82
$X S(J, N)=X X(J, K)$ 84
$5 C Y S(J, M)=Y S(J, K)$ 85
6C $M=M+$) $\varepsilon 6$
$X S(J, M)=X 2 S(J)$ $\varepsilon 7$
$Y S(J, N)=Y 2 S(J)$ $\varepsilon \varepsilon$
NDELS(J) $=M$ ES
C PRESSURE SLRFACE 90
$M=1$ 91
CO $7 \mathrm{C} \quad \mathrm{K}=1$, NDELJ ¢ 2
IF (XX(J,K).GT.XIP(J)) GC TC 80 S.
7 C CONTINLE 54
E(XP(J, $\mathbf{X})=X \perp P(J)$ 95
$Y P(J, 1)=Y \mathcal{P}(J)$ 56
$K K=K$ S7
OO ૬O K=KK,NDELJ CE
IF (XX(J,K).GT.X2P(J)) GO TC 100 55
$M=M+1$ 100
$X P(J, N)=X X(J, K)$ 1 C 1
$G C Y P(J, M)=Y P(J, K)$ 102
1CC $M=M+1$ 1 C ?
$X P(J, M)=X 2 P(J)$ 1 C 4
$Y P(J, M)=Y 2 P(J)$ 105
11C NDELP(J) $=M$ $10 t$
C LCGATICN CF local blade crigins hith respect tc plet crigin $1 C 7$ 109 1C8 1C8C
$\mathrm{CO} 12 \mathrm{C} J=1, \mathrm{~N}$
Co 11 C
XORX(J) $=\times 1(J)+X T$
12C YORY(J) $=Y T-Y 1(J)$ 112
C 113
C lecation cf elade surface cGerdinates hith respect tc flct origin 114
C
CO $15 \mathrm{C} J=1, N$115116
SING SIMM SING = SIN(GANR(J)) 117
COSE = COS(GAMR(J)) 118
NCELJ = NDELS(J) 115
DO 13C $k=1$,NDELJ 12 C
$x \leq x(J, k)=\operatorname{XORX}(J)+X S(J, K) * C C \leq G+Y S(J, K) * S I N G$ 121

```
    I3C YSY(J,K)= YORY(J)+XS(J,K)*SING-YS(J,K)*COSG 122
        NDELJ = NEELP(J)122
```

CO $14 \mathrm{C} \quad \mathrm{K}=1$, NOELJ 124
$X P X(J, K)=X O R X(J)+X P(J, K) * C E S G+Y P(J, K) * S I N G$ 125
$140 \operatorname{YPY}(J, K)=Y G R Y(J)+X P(J, K) * S I M G-Y P(J, K) * C O S G$ 126
15C CONTINLE 127
C 128
C LCCATION CF LEADIAG AND TRAILING EDGE CIRCLE CENTERS WITH RESPECT TO 129
C PLCT ORIGIN 130
C 131
DO $16 \mathrm{C} \quad \mathrm{J}=1, \mathrm{~N}$ 132
SING ■ SIN(GAMR(J)) 133
$\operatorname{COSG}=\operatorname{COS}(\operatorname{GAMR}(J))$ 134
XIX(J) $=\times \operatorname{ORX}(J)+R I(J) *(S I A G+C O S G)$ 135
YIY(J) $=$ YCRY(J)+RI(J)*(SING-CCSE) 136
$\operatorname{XOX}(J)=\operatorname{XORX}(J)+\operatorname{CHORD}(J) * C[S G+R C(J) *(S I A G-C O S G)$ 137
$1 \in C \operatorname{YUY}(J)=Y O R Y(J)+C \operatorname{HORD}(J) * S I \Lambda G-R C(J) *(S I A G+C C S G)$ 128
${ }^{C}$

```C
```

CO 17C J=1,N

```139
```

lccation cf elade slrface poinis arclac leading ecge 14 C

```
```

$A N G I=P I-K I S(J)+K I P(J)$

```142
```

$\mathrm{N} 1(\mathrm{~J})=\mathrm{ANGI} / .1$ 144

```143
```

ANG1 = PI/E-CA ANEI = PI/E.-GAMR(J)+KIS(J)

```\(\mathrm{NlJ}=\mathrm{N} 1(\mathrm{~J})\)
```

146

```CC 17C \(k=1, N 1 J\)
```

147
$A N G 1=\Delta N G l+1$
ANGI = ANEI+. 148
$X I X C(J, K)=X I X(J)+R I(J) \neq C C \subseteq(A N G I)$ 145
17C YIYC(J,K) $=$ YIY(J)-RI (J)*SIN(ANGI) 150
C 151
C lccation cf blade surface pciats arclad tratling ecge
c 152

```CO 18c J=1,N
```

C 153

```ANE2 \(=P I+K G S(J)-K U P(J)\)154
```

NálJ) = ANG2/. 156

```155
```

ANGE = PI/E.-GAMR(J)+KCP(J)

```\(\mathrm{N} \hat{2} \mathrm{~J}=\mathrm{N}=(\mathrm{J})\)157
```

DO $18 \mathrm{C} \quad \mathrm{K}=1, \mathrm{~N} 2 \mathrm{~J}$
ANG2 $=A N G 2+. \bar{Z}$ 15 c

```\(15 \varepsilon\)
```

ANOXC(J,K) $=x C \times$ $16 C$
18C YOYC(J,K) $=\operatorname{YOY}(J)+R C(J) * S I N(A N G 2)$

```\(1 \in 1\)
```

C $1 \in 3$
C StGRE ELA[E SLRFACE pCINTS intc yOChn anc yacres 164
165

```\(M=C\)
```

let

```\(D C \quad Z \geq 0 J=1, N\)
```

NPNTS(~) = NDELS(J)+NDELP(J)+M1(J)+N2(J) -ー
PFESSURE SLRFACE 165
NDELJ = NEELP(J) 17 C
DO $19 \mathrm{C}=1$, NDELJ 171
$M=M+1$ 172
XDOLN(N) \quad YPY(J,K) 172
1SC YACROS(M) $=X P \times(J, K)$ 174
C Irailing ecge 175
N2J = Nट(J) $17 t$
DC $2 C C \quad K=1, N \angle J$ 177
$M=M+1$ 178
XOOLN(N) $=\operatorname{YOYC}(J, K)$ 175
$\therefore C C$ YACROS $(N)=X C X C(J, K)$ 18 C
C SLCTION SLRFACE 181
NCELJ = NDELS(J) 182
CO Z1C K=1,NDELJ 182
MM $=$ NEELJ $-K+1$ 184
$M=M+]$ 185
$X \operatorname{COnN}(N)=Y S Y(J, M M)$ 186
EIC YACROS $(M)=X S X(J, M M)$ 187
C LEACINGEEGE $1 \in \varepsilon$
$\mathrm{N} 1 \mathrm{~J}=\mathrm{N}(\mathrm{J})$ 185
CO ¿̈C K＝1，NIJ 15 C
$M=M+1$ 151
$\operatorname{XDUWN}(N)=Y I Y C(J, K)$ 152
$\overline{2} 2 C$ YACRUS（M）$=X I X C(J, K)$ 193
ここC CCNTINLE 154
C 155
C RCTATE ELADES TO NORNAL CASCADE SETTING 156
C 157DO $24 \mathrm{C} \quad \mathrm{I}=1, \mathrm{M}$
$X T E M P(1)=(\operatorname{YACROS}(I)-X I X(I)) \neq C(S(G A N S)+(X D C W A(I)-Y I Y(1))$ $1 \varsigma \varsigma$159
1＊SIN（GAMS） 200
¿4C YTEMP（I）＝－（YACRLS（I）－XIX（1））＊SIN（GANS）＋（XDChN（I）－YIY（1）） 2 Cl
1＊COS（GAMS） 202
C 2C
C FINE MAXINLM ANU NINIMLN LIMITS CF FLCT，ANE SHIFT ELACES 204
C
XMIN $=$ C．
2 CtCU $25 \mathrm{C} \quad \mathrm{I}=1, \mathrm{M}$
ZEC XMIN＝ANIAI（XNIA，XIEMP（I）） 2CE$X M A X=C$.2 C 7
CC $<\in C \quad I=1, \mathrm{M}$ 210209
ZGC XMAX＝AMAXI（XNAX，XTENP（I））
$Y M 1 N=C$. 212
CO＜$\quad 7 \mathrm{C} \quad \mathrm{I}=1, \mathrm{M}$ 212
¿7（ YMIN＝AMINI（YNIN，YTENP（I）） 214
YMAX $=C$ ． 215
DO $2 \& C \quad I=1, M$ 216
$\bar{Z} 8 C Y M A X=\triangle M A X L(Y N A X, Y T E N P(I))$ 217
$D X=X M D X-X M I N$ 218
OY $=Y M A X-Y M I N$ 214
$X T=-X N I N+C X / I E$. 220
$Y \mathbf{T}=-Y N I N+C X / S$ ． 221
CO $2 G C \quad I=1, M$ 222
X CUWN（1）$=Y \operatorname{HNP}(I)+Y T$ こころ
¿9C YACROS（I）＝XTEMP（I）＋XT 224
C 225
C CLPLICATE BLADES FOR CASCADE EFFECT 226
$M M=N$ 227
$\mathrm{CO} \quad \exists C C K=1, M M$$2 \geq 8$
$M=M N+K$ 225
$X D C h N(N)=X D C h N(K)+P I T C H$ 230
ミCC YACROS $(M)=Y A C R O S(K)$ 232231
$00 \equiv 1 \mathrm{C} J=1, N$233
$21 \mathrm{GAMR}(J)=\operatorname{GAMR}(J) * 57.25577 \mathrm{~S}$ 234
C 235

C PFEPARE KKK AND P AND CALL CALPLT

C PFEPARE KKK AND P AND CALL CALPLT 236 236
$K K K(1)=4$ 239237
$K K K(\overline{2})=C$
235$K K K(こ)=2 \# N$
$K K K(4)=1$ 24 C
CO シえC $\quad \mathrm{J}=1, \mathrm{~N}$ 241 242
KKK（J）5），N
KKK（J）5），N
E2C KKK（J＋5）＝NPNTS（J） 243
DO $\exists 2 \mathrm{Z} \quad J=1, N$ 244
$K=J+5+N$ 645
33(KKK(K) $=$ NPNTS(J) 246
$P(1)=E . C$ 247
$P(2)=5 . /[X *(D Y+P I T C H)+\angle$. 24ε
$P(2)=C \cdot C$ 249
$P(4)=D Y+P I T C H+Z . / 9 . * D X$ 25C
$P(5)=10 . C$ 251
$P(\epsilon)=C \cdot C$ 252
$P(7)=10.19 . * D X$ 252
$P(g)=10 . \mathrm{C}$ 254
$P(S)=0$. 255
$P(1 C)=C$. 256
$P(11)=0$. 257
$P(l \bar{c})=0$. 258
$P(12)=C$. 255
$P(14)=90$. $2 \in C$
$N X=-1$ z $\in 1$
$N Y=+1$ ze2
DATA XLABEL(1)/1H/ こも?
CATA YLABEL(1)/1H/ 2€4
CALL CALPLT(XDChN,YACROS,KKK,F) 265
RETLRN $2 \epsilon \epsilon$
ENC 2t7
SIEFIC CTITLE
Slerclidne caltit 1
CLMNON INFLI/N,TCHURD, SCLIO,DELK,KAPIN,RADIUS, CCCI(5), PFOPHI(5), 2
1GOTC(E),LUTC(5),F(5), TMCC (5), RICC(5), RCOC (5), TITLE(12) 3
COMNON IOLTPLT/CHORD (5),GAN(5),GANR(5),FHIC(5),FITCF 4
CCMMUN/CLPLOT/XPEA, YPEN,NX,NY,IPEN,XLABEL(10), YLABEL(10) 5
CATAITITLI(1),I=1,3)/EHTOTAL 6 H TC.3HTAL/ 7
CATA(TITLé(I), $1=1,5) / 6 H C H C R D, 6 H$ $\begin{array}{lll}C A, 6 H N R E R & , 6 H & \text { SCL,5HICITY } \\ K A, 6 H P I A ~ & , 6 H & \text { RAC,3HIUSI }\end{array}$ 8
CATA(T)TLE(I),I=1,5)/EHPITCH,6H
PHI, $6 \mathrm{H} / \mathrm{FHI}(1,6 \mathrm{H}) \quad \mathrm{G} /$, 1C
1GRTC L,EH/TC ,2H FI
$\mathrm{R}, 6 \mathrm{HI} / \mathrm{C}$,6H RC,2H/C/ 12
DATA(TlLLE(I),I=1,7)/6H C ,6H F,GHHI , 6 H GA, 12
CALL SYMBCL(-E.C, ᄃ. S,C.CB,TITLE,C.O.72) 15
CALL SYMSCLI-6. $C, 8.75, \mathrm{C} .25, \mathrm{TITLI}, 0.0,151$ 16
CALL SYMBCL(-E.C. $8.5, C .15$, TITL2,C.C. 291 17
CALL SYMBCL(-E.C,7.4,C.15,TITL3,C.0,27) 18
CALL SYMELLI-E.C, E. 3, 0.15,TITL4, C.0.38) 19
CALL SYMBCL(-E.C,4.6,C.15,TITL5,C.0,26 21
CALL NUMBER(-E.C,, . $3, C, 12$, TCHCRO, $0.0,5)$ 22
CALL NUMJER(-4. $1,8.3, \mathrm{C} .12$, OELK, C. 0.4) 23
CALL NUNBER(-E.1,8.2,C.12,SCLID, C.0,4) 24
CALL NUMBER(-E.C,7.2,C.12,PITCH,C.0,5) 25
CALL NUM3ER(- $.1,7.2, C .12$, KADILS,0.0,5) 27
IF (N.EG.1) GO 1U 2 C 28
$Y Y Y=t \cdot \Sigma$ 29
CO IC $\sim 2, N$ 31
CALL NUMBEK(-E.C.YYY,C. 12, CCC1(j),0.0.4) 32
CALL NUMBER(-4.6, YYY,C.12,PHCPH1(J),0.0,4) 33
CALL NUMOER(-E.2,YYY,C. $12, G C T C(J), 0.0,4)$ 34
CALL NUMBER(-z. 彐., YYY,C.12, LCTC(J),0.0,4) 35
1(CALL NUMDER(-1.5, YYY,C.12,F(J),0.0,4) 26
EC $Y Y Y=4.6$ 37
CO ミC J=I,N 38
YYY = YYY-C. 2 ac
CALL NUMBER(-6.C,YYY,0.12,INCC(J),0.0.4) 4 C
CALL NUMUER(-4.E,YYY,C.12,RICC(J), $0.0,4$) 41
3C CALL NUMBER(-2.2.YYY,C.12,RCCC(J).C.0.4) 42
$Y Y Y=2.7$ 43
CO 4C J=1,N 44
YYY = YYY-C.2 45
CALL NUMBER(-E. C, YYY,C. 12, CHCRD (J), 0.0.5) 4ϵ
CALL NUMBER(-4.7,YYY,C.12,PHIC(J),0.0,4) 47
CALL NUMBER(-Z. 2,YYY,C.12,GAN(J),0.0.4) 48
4C CALL NUMBER(-1. ©, YYY,O.12,GANR(J),0.0.4) 45
RETLRN 50
END 51
Lewis Research Center,
National Aeronautics and Space Administration,Cleveland, Ohio, June 22, 1970126-15.

REFERENCES

1. Katsanis, Theodore; and McNally, William D.: Revised FORTRAN Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TM X-1764, 1969.
2. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Tandem Blade Turbomachine. NASA TN D-5044, 1969.
3. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities in a Magnified Region on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5091, 1969.
4. Katsanis, Theodore: FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, 1969.
5. McNally, William D.: FORTRAN Program for Calculating Compressible Laminar and Turbulent Boundary Layers in Arbitrary Pressure Gradients. NASA TN D-5681, 1970.
6. Stewart, Warner L.: Analysis of Two-Dimensional Compressible-Flow Loss Characteristics Downstream of Turbomachine Blade Rows in Terms of Boundary-Layer Characteristics. NACA TN 3515, 1955.

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

```
02U 001 26 51 3DS 70286 00903
AIR FORCE WEAPONS LABORATORY /WLOL/
KIRTLAND AFB, NEW MEXICO 87117
```

ATT E. LOU BOWMAN, CHIEF,TECH. LIBRARY

Abstract

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . to the expansion of buman knowl. edge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of informatioti concerning its actinities and the results thereof."

\because - National Aeronautics and Space act of 1958

NASA SCIENTMEIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS:Scientific and technical information considered important, complete, and a lasting conitribution to existing knowledge. 3
TECHNICAL NOTES:: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

