msenthe 65398

THE GODDARD VERSION OF THE SCHUBART-STUMPFF N-BODY PROGRAM

P. A. COMELLA

B. E. LOWREY

DECEMBER 1970

U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE
SPRINGFIELD, VA 22161

THE GODDARD VERSION OF THE SCHUBART-STUMPFF N-BODY PROGRAM
P. A. Comella
B. E. Lowrey
Page
Abstract iv
I. Method of Schubart-Stumpff Program 1
II. The Initial Conditions 2
III. GSFC Version of the Schubart-Stumpff N-Body Program 4
A. Modifications 4
B. Subprograms of the Program 5

1. MAIN 5
2. Subroutine CONTIRL 5
3. Subroutine KOEFFZZ 5
4. Subroutine ANFITN 5
5. Subroutine WW 6
6. Subroutine SCHRIT 6
7. Subroutine DRUCKE 6
8. Subroutine ELEMNT 6
9. Subroutine ORBIT 6
C. Input Parameters 6
D. Internal Conversion of Input 13
E. Program Notes 14
10. Output Parameters 14
11. Machine Time 14
IV. Sample Case-Orbit of Lost City Meteorite 15
Appendix I: Listing of N -Body Program 19
Appendix II: Figures 34
Bibliography 36

THE GODDARD VERSION OF THE SCHUBART-STUMPFF N-BODY PROGRAM
P. A. Comella
B. E. Lowrey

Abstract

The Schubart-Stumpff N-Body Program computes solar system orbits of the planets and of bodies of zero mass. It can also be used to solve more general problems in mechanics. A Fortran IV adaptation of the Yale version of the program is available to users from the GSFC documentation center. Primary modifications to the Yale program include simplification of program input and the addition of an option to compute the osculating orbital elements. The present document briefly summarizes the major features of the program and the development of the Schubart-Stumpff initial values, discusses the new input requirements and modifications, and presents a sample case for clarification.

PRECEDNG PACE EAMTS WR GE:

I. Method of Schubart-Stumpff Program

Schubart and Stumpff (1966) have chosen to regard the orbital computation problem as one of finding the solution to a system of simultaneous differential equations. Basic to this approach is the decision to treat all bodies alike rather than to use the special perturbation approach which distinguishes perturbed from perturbing bodies. Hence only initial values and an appropriately chosen stepsize are needed to achieve solution. The method of integration used is that of Adams-Störmer: a difference method with constant step-size for the numerical integration.

By avoiding the special perturbation method it is unnecessary to input coordinates of perturbing bodies at other than the starting epoch, thus avoiding much of the data manipulation associated with reading in tables of perturbing bodies, which of itself can be a formidable problem, both logically and logistically.

The method of numerically integrating the massive bodies rather than using tabular input is not uncompetitive in machine time, depending upon the problem. If it is desired to compute the orbits of many massless bodies for the same period of time, the machine time required to compute the planetary orbits becomes a small fraction of the total time. But the N-Body Program also has the ability to study the orbits of the planets themselves, as for example, Lieske's (1967) preparation of JPL's Development Ephemeris Number 28. In another application, Marsden (1969) used the program (with some modifications for
differential corrections) to determine the influence of non-gravitational forces on the orbits of short period comets.

It is important to note that there are no provisions made for the problems that arise in extremely close passages. The planets are taken as mass points. Also the experimenter must know at what epoch a close approach will occur since there is no automatic control of step-length. Then he may interrupt the computation, input a smaller step-size with which to compute for the duration of the approach, and then again interrupt after approach to input a larger step-size. Schubart and Stumpff chose this seemingly clumsy method of step-length control because in their own theoretical work they could predict the epoch of a close approach very easily. The authors of the present note have retained this method in the GSFC version of the program. They plan, however, to implement a Nordsieck-type of predictor-corrector method in order to permit dynamic internal calculation of optimum intervalsize for each integration step.
II. The Initial Conditions

The Schubart-Stumpff \mathbb{N}-Body Program together with the proper initial conditions for the planets calculates to a high degree of accuracy orbits of bodies of (essentially) zero mass and simultaneously the orbits of the planets.

For solar system orbits Schubart and Stumpff have derived a set of starting conditions of the planets for epoch JD $=2430000.5$. These derivations are discussed in great detail in their paper. The
following paragraphs summarize their work.
With their initial values and a step-size of 2 days, the program reproduces to 10 decimal places the ephemerides of the planets of the solar system under the following conditions:
(1) Relativistic effects are ignored;
(2) The perturbing effects of Mercury are only approximated: Mercury's mass is added to that of the sun, thus introducing an error of 10^{-7} A.U. in the location of the origin of a heliocentric system;
(3) The mass of the moon is added to that of the earth but the perturbations in the earth-moon orbit caused by the moon are not considered.
(4) Perturbations caused by Pluto are ignored, a decision motivated not only by economics but also by the fact that Pluto's mass is not known with sufficient accuracy.

The Eckert, Brouwer, Clemence ephemeris (1951) of the five outer planets (Jupiter to Pluto); Herget's computations from Newcomb's tables (1953, 1955) of the ephemeris for Venus and the center of mass of the earth-moon system; and the R. L. Duncombe-G. M. Clemence ephemeris (1960, 1964) for Mars were the standards used in the development of the initial conditions and in the comparison of the final results.

To facilitate conversions and comparisons llth differences of the acceleration were used which correspond to the value of 5 for M in the Fortran code. The initial epoch, J.D. $=2430000.5$, was chosen because
for periods of 400 days on either side of that date, the Eckert, Brouwer, Clemence observations of the 5 outer planets were especially good, a factor vital to deriving the starting velocities.

For any solar system problem the Schubart-Stumpff initial values can always be used. If the epoch for which the experimenter wishes to enter coordinates of zero mass bodies differs from their epoch, a negative step-size may be used to integrate back to an earlier epoch, a positive step-size to integrate forward to a later epoch. The calculations then proceed with the additional bodies.
III. GSFC Version of the Schubart-Stumpff N-Body Program
A. Modifications

The original Schubart-Stumpff \mathbb{N}-Body Program was written in the mid-1960's in the Fortran II language for use on a smallish computer at the University of Heidelberg. Subsequently, Schubart and M. Cooke (1965) rewrote the program in the Fortran IV language for use on an IBM 7094 at Yale. It is the Yale version that the authors have modified for use on Goddard Space Flight Center's IBM S/360 computers.

These modifications are simplifications in the authors' opinion: the Yale version still reflected the idiocyncrasies of the Fortran II language in coping with double word computations and complicated data input. These peculiarities made it clumsy to input data to the program. The authors adopted the NAMELIST convention of the Fortran IV language to input all data, except for one initialization card. The NAMEIIST option, by allowing selective initialization of data
without destruction of data in locations not specifically named on a given READ, enables the programmer to eliminate much coding of trigger recognition parameters and statements. Thus although the input is still flexible, only one read statement is required for the entire program to initialize all (but two) of the input parameters.

A second modification was the addition of an option to print the osculating elements. A parameter triggers a call to a subroutine written by Blanchard and Wolf (1967) which converts the position and velocity vectors at a given time into the orbital elements by means of the two-body formulas.

Finally, the addition of 3 parameters permits the positional coordinates, the velocity coordinates and the mass parameters to be input with incompatible dimensional systems, by converting all to a compatible system following input. Hopefully this will eliminate the tedious hand computations which might be required for some problems.
B. Subprograms of the Program

1. MAIN - determines size of the A, B, and $D[$ large] arrays, which initial conditions are to be used, and calls CONIRL.
2. SUBROUTINE CONTRL - drives the program by processing input, calling integration routines and requesting output.
3. SUBROUTINE KOEFFZ - calculates the K-coefficients, (CAI), used in the starting iteration.
4. SUBROUTINE ANFITN - performs the starting iteration and converts, if necessary, positional and velocity beginning co-ordinates
from a system originating in body \#1, to a barycentric system, used in the integration.
5. SUBROUTINE WW - computes the backward differences of the accelerations, (BESCHL).
6. SUBROUTINE SCHRTT - calculates from BESCHL, the backward differences of the co-ordinates (XNABLA) and the co-ordinates (X), thus integrating from time T to time $T+$ DELIIAT.
7. SUBROUTINE DRUCKE - controls output at constant time intervals.
8. SUBROUTINE ELEMNT - controls output at arbitrary time intervals.
9. SUBROUITINE ORBIT - converts position and velocity coordinates (for output purposes only) into osculating elements at time intervals specified by DRUCKE or ELAMNT.
C. Input Parameters

Immediately following the IBM S/360 JCL card, //Gめ.DATA5 DD* there is one card required. Then the NAMELIST data set(s) with parameters initialized (in arbitrary order) follows.

1. Card No. 1: This first card sets values of 2 parameters: NSIZE, occupying columns l-5 of the card, right-adjusted, and INIT, occupying colums 6-10, right-adjusted.

NSIZE determines the sizes of 3 large arrays--A,B,D-- these sizes being dependent upon the number of bodies in a run of the program: $50 \geq$ NSIZE $\geq \mathrm{N}$. By setting this parameter himself, the programmer is able to reduce the memory requirements of the program, which may mean
a higher priority in an MVT environment, hence a faster turn-around time.

INIT. The program initializes the coordinates and mass parameters for the Sun-Mercury system and the planets Venus to Pluto to those values that Schubart and Stumpff derived for J.D. $=2430000.5$. It also sets the integration parameters to the values that Schubart and Stumpff considered optimum.

By setting INIT $=0$, the programmer can use these initials conditions. The NAMELIST data set is then used to initialize print-punch parameters, enter coordinates of massless bodies and alter any preinitialized parameters (if he wishes).

By setting INIT $=1$, the Schubart-Stumpff conditions are overridden. Hence all pertinent initializations must be made in the NAMELIST data set.
2. NAMELIST parameters: The first card of the NAMELIST DATA SET must contain \& INPUT, with the \& in column 2. Subsequent cards start in column 2; \& END terminates the data set. Those users unfamiliar with the NAMELIST convention of the FORTRAN IV language are referred to the IBM manual on the FORTRAN IV language.
number of bodies being integrated. As new bodies are added during a computation at an epoch different from the starting epoch, \mathbb{N} must be increased accordingly.

$1 \leq \mathbb{N}$ NSSIZE

$E M(I)$ mass of the ith body in units of m. If a relative system is used, the origin must be EM(1):
$K Q \quad=k^{2}=G^{*} E M(I)$ where G is the universal gravitational constant in units of $L^{\prime 3} / S^{\prime 2} m$, where L^{\prime} is the unit of length, S^{\prime} is the unit of time, $E M(1)$ is the mass of body \#l in units of m.

W is the conversion factor such that $W^{*} W$ expresses $K Q$ in units of $L^{3} / S^{2} m$, where L \& S are the units of integration.
$\operatorname{XP}(1, I)$ The x, y, z components of the position of ith body in units of, $L^{\prime \prime}$, $\mathrm{XP}(2, I)$ in the appropriate coordinate system (barycentric or relative to body \#1).

DIST is the conversion factor necessary to express $X P$ in units of L. DIST. $=\mathrm{L} / \mathrm{L}^{\prime \prime}$
$\operatorname{XDOT}(1, I)$ the u, v, w components of the velocity of the ith body in units of XDOT($2, I$) $\operatorname{XDOT}(3, I)$ L''/ $S^{\prime \prime \prime}$, in the appropriate coordinate system.

VEL is the conversion factor necessary to express XDOT in units of $\mathrm{L} / \mathrm{S} . \operatorname{VEL}=\mathrm{L} / \mathrm{S} / \mathrm{L}^{\prime \prime \prime} / \mathrm{S}^{\prime \prime \prime}$.

H
T
is the integration step length in units of time S.
is the starting epoch for the problem in arbitrary time units. This is the time that appears in the output.

DELTAT is the integration step-length in the same units as T. If converted to units of S, DETTAT is equal to H. At the start of each integration step T is incremented by DETTAT.

M order of the integration (ME5) in the initial iteration. This corresponds to $2^{*} M$ differences; in the extrapolation components to $2^{*} M+1 . \quad M=5$ is the value used by Schubart and Stumpff in their. calculations.

IEG=1 Input coordinate system has its origin in body \# 1 .
$I E G=0 \quad$ Input coordinate system is barycentric, the coordinate system used in the integration. Whenever $I E G=1$, the position and velocity components are converted from a relative to a barycentric system.

IEXP $\quad 10^{* *}(-$ IEXP $)$ is the limit of accuracy for the initial iteration. Note: The Schubart-Stumpff initial conditions for solar system orbital computations are coded into the program. These involve the initialization of the following parameters:
$\operatorname{EM}(1), \operatorname{EM}(2), \ldots, \operatorname{EM}(9)$,
$\mathrm{XP}(\mathrm{K}, 1), \ldots, \mathrm{XP}(\mathrm{K}, 9), \mathrm{K}=1,2,3$
$\operatorname{XDOT}(K, 1), \ldots . . ., \operatorname{XDOT}(K, 9) K=1,2,3$,
the parameters for the Sun-Mercury System, Venus, Earth-Moon System, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto, respectively; as well as the parameters
$N, W, K Q, D I S T, V E T, H, M$, IEG, IEXP , T, DELTAT
IORB activates calls to SUBROUIINE ORBIT, which computes osculating orbital elements, from subroutines CONTRL,ELEMNT,DRUCKE and prints them as specified by values of IORBIT.

IORB=0 do not compute any orbital elements, i.e. do not call Orbit.
IORB $=1$ compute orbital elementsfor selected bodies. If IORB $=1$, then it is necessary to specify $\operatorname{IORBIT}(J), J=1, \ldots, \mathbb{N}$.
$\operatorname{IORBIT}(J)=0$ Do not compute or print osculating orbital elements for body \#J.
$\operatorname{IORBIT}(J)=1$ Compute for body \#J, and print the values.
N7 determines whether or not SUBROUTINE CONTROL initiates calls to SUBROUTINE ELEMNT, a print-punch control routine. SUBROUTINE ELEMNT is used when output at arbitrary integration intervals is desired.

N7 $=0 \quad$ No calls to SUBROUTINE ELEMNT
N7 $=\mathrm{k} \quad \mathrm{k}$ calls to SUBROUTINE ELEMNT
ILEM(I), I=l,...,N7 Associated with each integration step is a step number. the ILEM array specifies in increasing order at which step numbers calls to SUBROUTINE ELEMMNT are to be made.

Note: ILFM $(1) \geq \mathrm{M}$, else SUBROUTINE ELEMNT is never called even though NT>0.

KD is a parameter which is utilized in SUBROUTINE ELEMNT to determine which coordinate system to use in the output and the number of significant figures to print. For each body in the problem the coordinates are printed. Error bound information is also supplied as well as time, T.
$\mathrm{KD}=1 \quad$ Coordinate system relative to body \#l. Single precision.

KD=2 Coordinate system: barycentric. Single precision.
$\mathrm{KD}=3 \quad$ Coordinate system relative to body \#1. Double precision.
$K D=4 \quad$ Barycentric system Double precision.

IED A control parameter used in SUBROUTINE EIEMNT to specify type of output.

IED $=K D \quad$ Print output form using ELEMNP in form determined by value of $K D$. IED $=K D+4$ Punch or write-on tape, as well as print. The Job Control Language (JCL) Statements will direct whether to use the punch or tape.

IZA, IDELTZ,IZN initiate calls from SUBROUIINE CONTRL to SUBROUTINE DRUCKE.
IZA first step number at which DRUCKE called.
IDELTZ Every IDELTZ step after IZA SUBROUTINE DRUCKE is called until step IZN reached.

IZN SUBROUTINE DRUCKE called. This is the last iteration step as well: the program, depending upon the value of IGф, does one of the following: terminates the run, begins a new case, or continues the case by adding bodies of zero mass or changing the integration step-size.

IPUNCH(J) controls information written concerning jth body in SUBROUIINE DRUCKE. This information is as follows: step number, time, coordinates as well as error growth information. DRUCKE allows selection of bodies for which to print/punch whereas ELEMNT prints/punch for all bodies.
$\operatorname{IPUNCH}(J)=1$ Barycentric system, Double Precision Print.
$=2$ Barycentric system, D.P., Punch
$=3$ Barycentric system, D.P., Print and Punch

```
    =4 Barycentric System, S.P., Print
    =5 Barycentric, S.P., Punch
    =6 Barycentrs.a, S.P., Print and Punch
    =7 Relative, D.P., Print
    =8 Relative D.P., Punch
    =9 Relative D.P. Print and Punch
=10 Relative S.P., Print
=ll Relative S.P., Punch
=12 Relative S.P., Print and Punch
=13 No output for Body #J.
```

When $\operatorname{IPUNCH}(J) \geq 14$ it signals to the CONIRL Program that Body \#J is of zero mass and has been added to the program at an epoch different from the starting epoch.

The output options for Body \#J then are such that $14 \leq \operatorname{IPUNCH}(J) \leq 26$ and such that $\operatorname{IPUNCH}(J)-13$ gives the correct option.

IGO is a SUBROUIINE CONIROL parameter which tells the program what to do when Step IZN is reached ($I G O=1$ or $I G O=2$) or what tests to make for incorrect data on a continuation case (IGO=3).

IGO=1 when IZ=IZN go to 2 and continue case by
(1) adding new bodies of zero mass and incrementing N accordingly and/or
(2) decreasing H and DELTAT for a close approach and modifying IZA,IZN and IDELTZ if necessary or
(3) increasing H and DELTAT when close approach calculations completed and modifying IZA,IZN and IDEUTZ if necessary.

IGO=2 when IZ=IZN, go to 100: Initialize the NAMEITST DATA SET and begin new case.
$I G O=3 \quad$ is used in a continuation case, where if new bodies are added, they are checked to see that they are of zero mass with proper coordinates, relative to body \#l.
D. Internal Conversion of Input

1. Units

The position and/or velocity components may be converted internally to the units required for computation using the DIST and/or VEL parameters, respectively. W may be used to convert the force, $K Q$.

If $K Q=k^{2}$, where k is the Gaussian constant for solar system bodies, $k=.017202098950$, then the units are distance in a.u., time in years, mass of $\operatorname{sun}=1$. Schubart and Stumpff have used a unit system where velocities are in a.u. $/ 40$ ephemeris days; hence they set $K Q=40^{2} \mathrm{k}^{2}=$ $.474345961216687, \mathrm{EM}(1)=1$. (The starting values for $\operatorname{INIT}=0$ reflect this). If dimensionless mass units are not desired, the force unit, KQ, may be adjusted instead. Whenever it is not necessary to convert distance units, set DIST=1; velocity units, set VEL=1; mass units, set $W=1$.

2. Coordinate System

If $I E G=1$, the program assumes that the origin of the relative coordinate system used to input the positional and velocity components is body \#l. It then converts to a barycentric system which is used for computation. The position and velocity coordinates of body \#l must be set equal to zero if the relative system is used.
E. Program Notes

1. Output Parameters

Associated with each integration step, which is of length, H, are two parameters, T and $I Z . T$ is the time in arbitrary units and is initialized in the NAMELIST DATA SET to the starting epoch. It is incremented by DELTAT, also initialized in the NAMELIST set. DELTAT, if converted to units of time, S, used in the integration, is equal to H. T is the parameter which is printed/punched in the output whenever time is specified. IZ is the step-number. It is initialized internally and is incremented by 1 at the start of each integration step. The ILEM array is compared to IZ and whenever an element of IJEM equals IZ, a call to SUBROUTINE EIEMNT is made for printed or punched output according to the values of $K D$ and IED for all N bodies. This comparison enables output at arbitrary step numbers. The IZA, IDEITZ, and IZN parameters are used to get output at regular step intervals using SUBROUTINE DRUCKE. In this subroutine the IPUNCH array specifies the type of output desired for each individual body.

Whenever IORB $=1$, SUBROUTINE EIEMNT and SUBROUTINE DRUCKE call SUBROUIINE ORBIT to compute and print the osculating elements for bodies as specified in the IORBIT array.
2. Machine Time: The running time is proportional to the number of distances which must computed at every integration step. There are $n_{1}\left(n_{1}-1\right) / 2+n_{1} \cdot n_{0} \quad$ such distances where n_{1} is the number of bodies with mass and no is the number of bodies of zero mass. Thus, when one computation has been obtained for a particular computer, the machine time can be predicted for other computations on that computer.
IV. Sample Case - Orbit of Lost City Meteorite

The Lost City Meteorite struck the earth on January 3, 1970. The Prairie Network observed its entry into the earth 's atmosphere and provided the data which were used in the \mathbb{N}-Body program to compute its (probable) heliocentric orbits.

The computations were done in two parts. Using the Schubart-Stumpff initial conditions for Julian Day 2430000.5 , the integration was first carried forward ($H>0$ and DELTAT >0) to Julian Day 2440590, (January 3, 1970), in order to provide the planetary coordinates at the time the meteor was observed. These coordinates plus the observed coordinates of the meteor then provided the initial conditions for an integration backward ($\mathrm{H}<0$ and DELTAT <0) through time for 300 years.

The input data for the first part are shown in Figure 1. The first line sets the dimensions (20) of the A, B, and D matrices to $A(20,3,12), B(20,3,12), D(20,20)$, respectively, in the subroutines in which they appear corresponding to their initializations to the same sizes in the RFAI*8 statement of the MAIN program.

The second number (I) instructs CONIRL to override the programmed initializations.

The following discussion will use the left most numbers (line numbers) in referencing parameters.
A. Line 100:

1. IEG = 1: The Schubart-Stumpff planetary coordinates are relative to Body 形, (Sun-Mercury system).
B. Line 200:
2. $K D=3$: when in SUBROUTINE ELEMVI print coordinates
in relative system in double precision.
3. IED $=3=\mathrm{KD}$: suppresses punching of the coordinates when
they are printed.
C. Lines 300-2000:

These lines contain the Schubart-Stumpff planetary coordinates for J.D. 2430000.5 with $\mathrm{XP}(1, K), \mathrm{XP}(2, \mathrm{~K}), \mathrm{XP}(3, \mathrm{~K}), \mathrm{K}=1,2, \ldots \ldots \ldots .9$, the positional coordinates relative to body \#I of the $K^{\text {th }}$ body in a.u. and $\operatorname{XDOT}(1, K), \operatorname{XDOT}(2, K), \operatorname{XDOT}(3, K), K=1,2, \ldots \ldots \ldots 9$, the velocity coordinates relative to body \#l of the $K^{\text {th }}$ body in a.u. $/ 40$ ephemeris days.
$K=1$ Sun-Mercury system
$K=2$ Venus
K = 3 Earth-Moon system
$K=4$ Mars
K = 5 Jupiter
$K=6$ Saturn
$\mathrm{K}=7$ Uranus
$K=8$ Neptune
$K=9$ Pluto
D. Lines 2100-2200:

Mass parameters, normalized to the sun of bodies, $K=1,2 \ldots9$.
E. Lines 2300-2800:

1. $\mathbb{N}=9$ the number of bodies integrated in this first part.
2. $K Q=.47345961216687$, reflecting the fact that the
velocity units are a.u./40 days.
3. $W=1$ because the computation of $K Q$ was done externally; had it been done internally, one could have used $\mathrm{KQ}=.017202098950$ and $W=40$ to the same end.
4. Because the input units for the coordinates and the integration units were compatible, the program initialized values of DIST and VEL did not have to be changed.
5. T is set arbitrarily to zero although is could have been initialized to a (more) meaningful value, e.g., $T=2430000.5$.
6. Since the unit of time is 40 ephemeris days, the integration step-size, H, of 2 days is set to .05 (of 40 days) while the printing parameter, DELTAT, is correspondingly set to 2 days.
7. $M=5$ determines the orders of the predictor-corrector method.
8. $N 7=5$ determines that CONTRL will CALL ELEMNT for output five times during the run at steps numbers given by the ILFM array: the $10^{\text {th }}, 30^{\text {th }}, 500^{\text {th }}, 1000^{\text {th }}$, and $1059^{\text {th }}$ steps. ILEM(1) must always by greater than or equal to M .
9. IZA, IDELTZ, IZN signal CONTRL to call the output subroutine, DRUCKF, starting at step number 1059, every $1059^{\text {th }}$ step thereafter, ending at step number 5295, which is also the last
integration step. At this time $I G O=1$ tells CONIRL to return to statement number 2 for additional information to continue the case.
10. $\operatorname{IORB}=1$ instructs ELEMNT and DRUCKE to CALL ORBIT at each output step with orbital elements being printed for bodies 2 through $9, \operatorname{IORBIT}(K)=1, K=2,3,4, \ldots \ldots \ldots, 9$ but not for body \#1, $\operatorname{IORBIT}(1)=0$.
11. IPUNCH $=9^{*} 7,41^{*} 13$ instructs DRUCKE to print in double precision the planetary coordinates relative to body \#1 of bodies 1 through 9.
F. Note that the namelist begins at line 100 with \&INPUT, starting in column 2 or greater and concludes at line 2800 with \&END.
G. The second part (Figure 2) of the run begins with the input of the position and velocity coordinates of the Lost City Meteorite $[\operatorname{XP}(j, 10), j=1,3$ and $\operatorname{XDOT}(j, 10), j=1,3$, respectively], and the corresponding change of N to 10. To integrate backward, H becomes -0.5 and DELTAT,-2 . For printing T is re-initialized to 2440590. In order to be consistent with the astronomical convention of standard days, IZA, IDELTZ, and IZN are re-set so that printing (in DRUCKE) occurs in multiples of 400 days, starting at $T=2430000.5$, with IZN such that the computations continue back through 300 years. IORBIT(1) $=1$ and $\operatorname{IPUNCH}(10)=7$, enable output of the coordinates (DRUCKE) and orbital elements (ORBIT) of the Lost City Meteorite. IGO $=3$ indicates that the ensuing computations are a continuation of the run and not the start of a new case.
```
MAIN PROGRAM SFTS NIMFNSIMN SIZFS ON A, R. ANO D MATRICFS.
    NSIZE....SFTS MAXIMIIM NUMMRFR \capF RINIFS FOR A RUNN.
    INIT.....INDICATES WHETHFR ISER WILL INPUT HIS OWN INITIAL
                CONOITIONS FOR THF MAJIR PL\triangleNETS OR IISF THF SCHII-
                        RART-STIMMPFF CONDITINS FOR THF SOLAR SYSTEM AT
                EPOCH J.O. =2430\capOO.5.
    INIT=O....lISF STUMPFF-SCHIJRART INITIAL CONIITIONS.
    INIT=1....IISFR SURMITS OWN IMITIAI CONDITIONS
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 A(20,3,12),R(20,3,12), D(20,20)
    COMMON /INOUT/ IN,IOHT
    IN=5
    IOUT=6
    RFAD(IN,1) NSIZF,INIT
    FORMAT(2I5)
    CALL CONTRL(A,R,N,NSIZE,JNIT)
    RETIJRN
    END
        SURROUTINE CONTRL(A,R,O,NSIZE,INIT)
    IMPLICIT RFAL*R ( }\triangle-H,\cap-7
    ** HEIDFLRFRG N-R\cap\capY PROGR\triangleM ***
                            RY J.SCHIJRART ANO P.STIJMPFF
    *** IRM S/360 FORTRAN 4 VERSION ***
            RY P. COMFLLA & R. LOWREY
                GODDARN SPACE FLIGHT CFNTER
                GREENBELT,MARYLANO 20771
    ADAPTED FRNM
    *** YALE FORTRAN 4 VFRSIINN ***
                            BY M. CO\capKF \triangleNO J. SCHIIRART
    EXPLANATI\capN OF INPIIT
    M MRDER \capF THE INTEGRATION (M.LF.5).IN THF INITIAL
        ITERATION THIS CORRESPONINS TO }2*M OIFFFRENCES, IN
        THF FXTRAPOLATION COMPONENTS TO 2*M+1 DIFFFRFNCFS.
        IFXP 1O**(-IFXP) LIMIT OF ACCURACY FOR THF INITIAL ITERATION
        N NHMBER IF RODIES N.LE.50
KO =G*EM(1), WHERF G IS THF UNIVERSAL GRAVITATIONAL CTNSTANT
        IN INNITS OF L'**3/((S'**)*M)
    EM(I) =MASS IF THE ITH RODY IN UNITS OF M.
        NOTE: IF A RARYCENTRIC SYSTEM IS NIT USFO FOR INPIIT,
                THF RFLATIVE SYSTFM MUST ORIGINATE IN RONY #1.
XP(K,I) =SPATIAL COMPMNFNTS OF THE ITH RODY IN IINITS OF LENGTH,L':,
        (IN THF \trianglePPROPRIATE CO-ORDINATF SYSTEM).
    XD\capT(K,I)
    =VEL\capCITY COMPONENTS OF. THF ITH RODY IN IINITS NF LIII/S',
            WHFRF S IS THF INIIT OF TIMF.
W =THF CONVFRSION FACT IR NECFSSARY TH FXPRFSS KO IN HNITS
        OF (L**3/S**2)**.5
    OIST = THE CONVFRSIOA FACTOR NECFSSARY TO FXPRFSS XP IN
        IINITS OF L
    VFL =THF CONVERSION FACTOR NFCESSARY TO EXPRESS XDOT IN
            UNITS OF L/S.
    H =THF INTFGRATION STEP-LFNGTH IN IINITS OF S
    T =THF STARTING FP\capCH IN ARRITRARY TIMF IINITS.
    DFLTAT =THF INTFGRATIINN STFP-LFNGTH IN THE SAMF TIMF IINITS AS T.
```

(IPIMCH(I),
$(I P I N C, H(I)$,
$I=1, N)$
IPUMCH $(J)=1$ RARY, N.P., PRINT
$\begin{array}{ll}=2 & \text { RARY, П.P. PINCH } \\ =3 & \text { RARY, } \mathrm{O} \text {. P., PRINT ANT PINCH }\end{array}$
$\begin{array}{ll}=3 & \text { RARY, } \\ =4 & \text { RARY,S.P.,PRINT }\end{array}$
$=5 \quad$ RARY,S.P., PINCH
$\begin{array}{ll}=5 & \text { RARY,S.P.,PMCH } \\ =6 & \text { RARY,S.P.,PRINT } \\ =5 & \text { PID PINCH }\end{array}$
$=7$ RELA, П.P.,PRINT
$=8 \quad$ RELA, П. P., PIINCH
$\begin{array}{ll}=8 & \text { RFLA, } \\ =9 & \text { R.P.,PRINT AND PUNCH }\end{array}$
$\begin{array}{ll}=9 & \text { RFLA, } \because \text {.P., PRINT } \\ =10 & \text { RFLA,S.P.,PRINT }\end{array}$
$=11 \quad$ RFLA,S.P.PPINCH
$=12$ RELA,S.P.,PRINT ANIT PIINCH
$=13$
-GE. 14
IFG=O
IFG.NF. 0
$K n=0 \quad \cap R \quad K n=2$
$\begin{array}{llll}K n=1 & \cap R & K n=3\end{array}$
IF $D=k n$
MA PRINT OUT
NFW RONY RFING ADDFD
NFW RONY RFING ANDFN
INPIT IN RARYCFNTRIC SYSTFM. THIS SYSTFM IISFN FRR INTFGRATINN

PRINT COMR GIVFN RY ILEM(I), I=N7,N7-1,..... 1
$\triangle S$ GIVFN RY IIEM(I), $I=N 7, N$
PIINCH THIS RIITPIIT AS WFLL.
PIINCH THIS DIITPIIT AS WFLL.
IF $+4 \quad$ STEM (I), $I=1$, NT \quad STEP NO. AT WIHICH TO PRINT/PUNCH USING FLFMNT.

N7
INTFGRATION
INTFGRATION
FIRST STEP AT WHICH TO PRINT OIIT STFP NIMMRFR,T,
-1 * H*H*MAX(LAST HSFO DIFF)
IZA
-1*H*H*MAXILAST IISFN CALE DRUCKF TO PRINT/PIBMCH
IDFLTZ FVFRY IDEITZ-TH STFP CALL DRUCKF TH PRINFS OF IPINCH
COMRDINATFS OF RONIFS $\triangle C C O R N I N G ~ T O ~$
IAST STFP AT WHICH TO PRINT THIS.
IZN
IAST STFP AT WHICH TO PRIN
WHFN STFP IZM IS COMPIFTFN,

IF PRFSENT CALCILATIONS ARF TO RF CONTINUFD AFTFR NFW ROMY IS A ONF
THE FOLLOWING MIIST RE DONE (AT THE MINIMUM)
THE FOLLOIING MIST RE ORNE MASS. FM J SI =O, FOR EACH NFW ROCY
A.
SFT MASS, EM(J)=O, FOR EACH NFW RחNY
IF IMPIIT COMRDINATES ANID VEI OCITIFS RFLATIVF,
R.
R. IF IAPIT GNWRDINA
FחR FACH NFW ROחY
SFT IPIINCH(J)=X+13, WHFRE 1. LE. X. IF. 13.

$\begin{array}{ll}I G O=1 & \text { WHFN IZ }=I Z N G O T O \\ & \text { AND CONTINHE CASF. }\end{array}$
$I G \cap=2 \quad$ WHFN IZ $=$ IZN GO TO $100:$ INITIALIZF MASS PARAMETFRS
$\begin{array}{ll}I G \cap=2 & \text { WHFN } I Z=I Z N G \cap T \Pi ~ 1 O O: I N I T I A L I Z F ~ \\ & \text { ANO CO-OROTNATES FOR START OF NFW CASF. }\end{array}$
IGO=3 CONTIMUATION CASF. CHFCK THAT ALL NFW RONIFS OF
ZFRO MASS $\triangle N \cap$ IAPUT THFIR
IORR $=0$ OU MOT COMPITF ORRITAL FLEMENTS
$=1$ COMPUTF ORRITAL FLEMFNTS
$\operatorname{InRRIT}(J), J=1, N$
=O ON NतT COMPIITF FLEMFNTS FOR RONY J
$=1$ CIMPITF THEM
1011 FORMAT(34HO CORRNINATFS RR MASSFS INCNMPLFTF)

1020
RARY, I. P., PRINT
$\begin{aligned} \operatorname{IPINCH}(J) & =1 \\ & =2\end{aligned}$
$=10 \quad$ RFLA,S.P.,PRINCH
RFLA,S.P..PRINT ANI PUNCH
IFD $=K n+4$
ILEM(I), $I=1, N 17$
AND PUNCH
$\stackrel{c}{c}$

RARY,S.P., PRINT
-GE. 14
のロ

C
C

C
c
C
C
C
c
C
C
C
C
C
C
C
$=3$


```
    2 IPIJNCH,IGO
    RFAL*& KO
C
C
    PI= DA TAN2 (0.DO,-1.ПO)
    M=5
    IEG=1
    IEXP=1.4
    T=2430000.5
    OELTAT=2.DO
    UNIT \capF INTFGRATINN STEP.....40 FPHFMFRIS DAYS
    H=.02500
    w=1.D0
    VFL=1.00
    DIST=1.DO
    KO=.4734596171668700
    \capFG=180.DO/PI
    COFFFICIENTS
C
C
    \cap\cap(1)=0.0\capO
    nn(2)=0.83333333333333333n-1
    DD(3) =0.83333333333333333n-1
```



```
    DD(5)=0.75n-1
    n\cap(6)=0.71345R99470899471n-1
    \PiП(7)=0.682043650793650790-1
    On(R)=0.65495756172839506n-1
    DN(9)=0.63140432098765432n-1
    DO(10)=.61072649861712362n-1
    OD(11) =.59240564123376623n-1
    GG(1)=0.166R&GGAGGKGRG667
```



```
    GG(3)=0.22222 22.2222222222n-1
    GG(4)=0.145833333333333330-1
    GG(5)=0.10615079365079365n-1
    GG(6)=0.82258597883597884D-2.
    GG(7)=0.66479276895943563D-2
    GG(8)=0.553772993827160.490-2
    GG(9)=0.4718067747581.63650-2
    GG(10)=.4091970674001924nn-2
    GG(11)=.35997549720267974n-2
    IF(INIT.EO.O) GO TO 2
100 तח 1 I=1,NSIZF
    FM(I)=SEVFNS
    OO1 J=1,3
    XP(J,I)=SFVFNS
    X\cap\capT(J,I)=SEVFNS
    RFAO(5. INPIHT,FNO=10OO)
    WRITF(IOUT,IO20) M.IEXP,I\capRR, (J,I\capRRIT(J),J=1,N)
    WRITE(IOUT,1021) IZA,IDFLTZ,IZN,(J,IPUNCH(J),J=1,N)
    WRITE(I\capUT,1022) IFN,KN,N7
    IF(N7.LE.O) GO TN 439
    WRITF(IOUT,IO17) (ILFM(N),J=1,N7)
    N71=1
439 WRITE(IOUT, 1O23) H,T,OFLTAT,K\cap,m, \capIST,VFL,N,IFG,
    1. (IFGMSGl,I,IFG+I),J=1,20),(J,FM(J), (XP(I,J),X\cap\capT(I,J),
    2 I=1,3),J=J,NI
    MPM=M+M
    M1 =MPM+1
```

```
        M2 =MPM+2
        MP1=M+1
        H0=H*H
        HO1=.100%HO
    HD=1. ПO/H
    H10=.100%H
    H1On=.0100*H
    DO 4 I=1,N
    IF(EM(I).EO.SEVENS) GO TO 39
    IF(IPIJNCH(I).LT.14.AND.IGO.GT.2I GO TO 4
    DO 3 J=1,3
            IF(XP(J,I).FO.SEVFNS.OR.XDNT(J,I).FO.SEVENS) GO Tח 39
    X(I,J)=XP(J,I) क\capIST
    XPUNKT(I,J)=XOחT(J,I) *VEL
    CONTINUE
    IF(IGO.GT. 2) IGO=IGO-2
    WK=K@%W%W
    IF(IZA.LT.M) IZA=M
    ICHECK=0
    00405 I=2,N
    IF(EM(1).NE.WK) EM(I)=WK*FM(I)/EM(1)
400 IF(IPUNCH(I).LT.14) GO TO 405
4 0 1 ~ I F ( E M ( I ) . N E . O . ) ~ G N ~ T N ~ 4 0 6 ~
    IPUNCH(I)=I PUNCH(I)-13
    IC HECK=1
4 0 3 ~ D O ~ 4 0 4 ~ K = 1 , 3
    X(I,K)=x(1,K)+X(I,K)
    404 XPUNKT(I,K)=XP(INKKT(1,K)+XPUNKT(I,K)
405 CONTINUE
    IF(ICHECK.EO.1) IFG=0
    EM(1)=WK
    GO Tn 40
    4 0 6 ~ W R I T E ( 6 , 1 4 0 7 ) ~ ( \% )
1407 FORMATI44H ADOITION OF NFW RONY FORRIDOEN IN THIS CASE/
        1 2OHO RFADY END
            RETURN
        39 WRITE(6,1011)
            GO TH 100
            WRITE(IOUT,1024) (I,FM(I),(X(I,J),XPUNKT(I,J),J=1,3),I=1,N)
            IF(IORR.EO.1) CALL ORRIT
            DO 440 J=2,N
            DIFMAX(J)=0.0nO
            DIFJUL(J)=0.0n0
            KnODIZ(J)=0
            DISMIN(J)=1.0n+35
            DISJルL(J)=0.0 00
    440 KPDIS(J)=0
            DO 441 J=1,N
            DO 441 L=1,N
    441 D(J,L)=1.0035
            CALL KOEFFZ
            IZ=M
                    CALL ANFITN(A,R,O,NSIZF)
            0045 I=1,M
        45T=T+DELTAT
            Gח TO 47
    CALL SCHRTT(A,R,D,NSIZF)
    T=T+DELTAT
    IZ=1Z+1
    - DN 466 J=2,N
```

 \cap\cap 461 K=1.3
 ARR=ПARS(R:K,M2))
 IF(ARR.LE.\capIFMAX(J)) GO TO 4Kl
 460 ПIFMAX(J)=ARR
 DIFJ|L(J)=T
 K\cap\capח\Z(J)=K
 461 CONTINMF
 IF=,J-1
 D\cap 463 L=1,1F
 IF(N(J,L).GE.NISMIN(J)) GON TO 4&3
 46? DISMIN(J)=D(.J,L)
 BISJHL (J)=T
 KPDIS}(J)=10\cap*L+,
 463 CONTINIJE
 IF(J.GF.N) GO T\cap 47
 4K4 L\Delta=J+1
 D\cap 46B L=LA,N
 IF (D(L,J).GE.OISMIN(J)) GOT TO 4G6
 465 DISMIN(J)=D(L,J)
 DISJUL (J)=T
 KPDIS(J)=100*L+J
 466 CONTINIIE
 47 IF(IZ-IZA)51,50,48
 48 IF(IS-IDELTZ)49,50,50
 49 I S=IS +1
 G\cap T\cap 51
 50 I S=1
 CALL ORUICKF(A,R,NSIZE)
 51 IF(IZ.EO.IZN) GO TO 53
 IF(N7.LE.O.OR.N71.GT.N7) GO TO 4G
 IF(IZ.NE.ILFM(N71)) Gח TO 46
 5 3 ~ C A L L ~ F L E M N T ~ (R , N S I Z F) ~
WRITF(6,1530) (חIFMAX(J), DIFJUL(J),KOODIZ(J),DISMIN(J),DISJIL(.l),
1 KPOIC(J),J=2,N)
1530 FORMAT(21HO DIFMAX AND DISMIN/
1 (1H,1PF15.R,1X,OPF1O.1,1X,I1,5X,1PF15.8,1X,0PF10.1,1X,I4))
N71=N71+1
ก\cap 531 J=2.N
\capIFMAX (J)=0.OnO
DIFJル(J)=0.0DO
K\cap\cap\capIZ (J)=0
DISMIM(J)=1.0n+35
DISJHL}(J)=0.0חO
5.31 kP\capIS(J)=0
54 IF(IZ.LT.IZN) fח TO 46
G\cap T\cap (2,100,1000),IGח
1OOO RETURN
FNO
SUAROIJTINF KRFFFZ
IMPLICIT RFAL*R (A-H, (A-Z)
REAL*R CAI(5,11),C(10,5),R(11,11),S1,S,T,T1

```


```

 2 1.n\cap, -1.n0,1,nO,-1.nO,1.no,-1.no,1.no/
 COMMON /RL\capCK1/ CAI
 1. /IN\capFX/ N,M,Ml,M%
 S=1.00
 O\cap & L = 1,M
 L1=?*L
 L?=L-1
    ```
        S1=5**2
        DC 7 K=1,L1
        C(K,L)=0.00
        K2=K-2
        IF(K2) 4,4,3
    3 C(K,L)=C(K,L)+C(K),L2)
    4 IF(K+1-L1) 5,G,7
    5 C(K,L)=C(K,L)-S)*C(K,L2)
        GOTח 7
    G C(K,L)=C(K,L)-S )
    7 CONTIMME
    8 S=S+1.00
C. Ll=2*M+1
    L1=M1
    L2=1.1-1
    S=1.no-5
    On 10 L=l,Ll
    R(LI,L)=1.00
    OC 9 K=1,L?
        K2=1 1-K
    9 R(K2.L)=C(K2.M)+S*R(K2+1,L)
    10 S=S+1.00
        S=1.n0
        חO 13 I=1,M
        nก 12 L=1,L1
        L 2=M2-L
        Sl=S**2
        T=1.00
        CAI(I,L)=0.00
        OM 11 K=1,L1
        Tl=R(K,L)*S1/T
        T=T+1.no
        CAI(I,L)=CAI(I,l)+T1/T
    11 S 1= \ 1*S
    12 CAI(I,L)=CAI(I,L)*SIG(I.2)/(FAC(I)*FAC(L?))
    13S=S+1.n0
        RETIIRN
        END
        SIJRROIITINF ANFITM(A,R,D,NISIZF)
C
C. ANFANGSITERATIIN - STARTING ITFRATINN
            IMPLICIT RFAL*R (\Delta-H,n-7)
            DIMFNSION FMS(50)
            DMIIRLE PRFCISINN A(NSIZF, 3,12),R(NSTZF,3,1つ), O(NSITF,NSTZF)
            DOIJRLE PRFCISINN CAI,FM,X,XPINNKT,XNARLA,BFSCHI,H,HO,FF,FI,FMMA,
            l CAID,H1,H2,OIIMMY
            COMMAN /RLOCK1/ CAI(5,11),FM(50),X(50,3), XPIINKT(50,3),RFSC.HI.(50,3)
            1. XNARLA(5n,3)
            COMMNN /INDFX/ N.M.M2,M3,M4,M1,IZ.IFG,IFD,IFXP,IP|ANS.H
            CПMMпN/TIMF/ ПUMMY,H,HO
c. IFG = 0, RARYCFNTRIC IMPIIT *** ELSF INPIIT RFLATIVF
C
    IF(IEG.EO.O) GO TO 105
    10O EMMA=0.0DO
    n\cap 101 J=1,N
    101 EMMA =FMMA+EM(J)
    D\cap 104 K=1.3
    X(1,K)=0.0no
    XPIJNKT(1,K)=0.Onn
    O\cap 102 J=2,N
```

 X(1,K)=X(1,K)+FN(J)*X(J,K)
 1\cap) XPI|NKT(1,K)=XPIINKT(1,K)+FM(,l)*XP|INKT(,l,K)
 X(1,K) =-X(1,K)/EMMA
 XPUNKT T 1,K)=-XPIINKKT(1,K)/FMMA
 \cap\cap 103 d=7,N
 X(J,K)=X(J,K)+X(],K)
 103 XPIINKT T J,K)=XPIINKK}T(I,K)+XPIINKT T 1,K
 1O4 CONTTNIE
 05 CONTINIIF
CALL WH(O,NSIZF)
\capก]. I=1,3
\cap\cap] J=2,N
A(J,I,12)=X(, I,I)
1 A(J,I,M1)=RFSCHI (J,I)
\capFI.TA=10.nO**(-IFXP)
\#\cap 3T=?,N
FMS(I)=\capELTA*(\capARS(RFSCHL(I,1))+\capARS(RFSCHL(I,)))+\capARS(RFSCHL(I, 3)
*))
IF(FMS(I).GF.1.\capn-2R) fO T\cap 3
?FMS(I)=1.0n->Q
3 CINTINIIE
MHI=O
M% =M+M1
M3=1+M?
M4 =M+M
FF=0.0\capO
\cap\cap a1 MM=1.M
3) FF=FF-1.0\cap\cap
4 FT=FF
IT=0
O\cap \supsetO I=1.Mつ
I I=I-M\
I > = I I.
IF(T1) 5,20,6
5 I1=-I1
f HI=FI*H
IF(MII.GT.OI fin Tत R
7 H7 = 0. 5nO*Hl*H1
\& กก 13 |=?,N
กп }13\textrm{k}=1,
IF(MAl.F\cap.O) G\cap T\cap 1?
9 X(J,K)=0.nn
กח 11 L=1,M2
L I =1
IF(TO.GT.O) ra TO ll
I\cap L}=M3-L1
11 X(, I,K)=X(.I,K)+C.\DeltaI(Il,L1)*R(,I,K,L)
X(J.K)=H\cap*X(, , K)
आก Tत 13
12 X(J.K)=H2*A(J,K,M1)
13 X(J,K)=A(J,K, 1?)+H1*XPIINKT(J,K)+X(J,K)
CALL L,H-I(D,NSI7F)
IF(MH.FO.O) fon TM 1.8
14 nn 17 J=?.N
IF(IT.GT.O) Gח TM 1R
15 ПFL=П^RS(RFSCHL. (J,1)-R(J,1,I))+\cap\DeltaRS(RFSCHI.(, 1, 2.)-R(J,2,I))+\cap\DeltaRS
* (RESC.HL(J, 2)-R(, , 3.I))
IF(\capFI.LE.FMS(J)) r\cap T\cap 17
16 IT=1
17 CONTTNMF

```
```

 18 DO 19 J=2,N
 00 19 K=1,3
 19 A(J,K,I)=RESCHL(J,K)
 20 FI=FI+1.0n0
 IF(IT.EO.0) GO TM 23
 21 DO 22 J=2,N
 DO 22 K=1,3
 DO 22 L=1,M?
 22 B(J,K,L)=A(J,K,L)
 M(I=MII+1
 Gח Tח 4
 23 IF(MU.EO.O) Gח TO 21
 24 WRITE(6,25) MU
 25 FORMAT(40HISTARTIMG ITERATION. NO. NF ITERATIINNS =,I3)
 12=M-1
 Oก 30 J=2,N
 DO 30 K=1,3
 XNARLA(J,K)=0.ODO
 DO 27 L=1,M2
 CAID=CAI(M,L)
 IF(I2.EQ.0) GN TO 27
 CAIn=CAID-CAI(I2,L)
 XNARLA (J,K)= XNARLA(J,K) +CAID*A(J,K,L)
 XNARLA(J,K)=H*(XPIINKT(J,K) +H*XNARLA(J,K))
 nO 28 I=1,M4
 L1=M2-I
 DO 28 L=1,L1
 A(J,K,L)=A(J,K,L+1)-\Delta(J,K,L)
 DO 29 L=1,M2
 L1=M3-L
 R(J,K,L)=A(J,K,L1)
 B(J,K,M3)=0. no
 RETURN
 END
 SURRDIITINE SCHRTT(A,R,D,NSIZF)
 C
C EXTRAPOLATIONSSCHRITT,ORONIING=2*M+1 - STEP OF INTEGRATION
IMPLICIT RFAL*\& (}\triangle-H,\cap-7
DOURLE PRECISION A(NSIZE,3,12),R(NSIZE,3,12),D(NSIZE,NSIZF)
DOURLE PRECISINN CAI,EM,X, XPUNKT,RESCHL,XNARLA, DUMMMY,H,HO,S,ON,GF,
COMMON /BL\capCK1/ CAI(5,11),EM(50),X(50,3),XPIINKT(50,3),RFSCHL(50,3)
1, XNARLA(50,3)
COMMIN /INDFX/ N,M,Ml,MP
COMMON/TIMF/ ПUMMY,H,HO
COMMON /CONRLE/ GG(l1),DO(11)
On 2 J=2,N
DO 2 K=1,3
S=0.000
Dח 1 L=2,M1
1 S=S+D\cap(L)*R(J,K,L+1)
XNARLA(J,K)=XNARLA(J,K)+HO*(R(J,K,1)+S)
2 X(J,K)=X(J,K)+XNARLA(J,K)
CALL WWा(D,NSIZF)
DO 4 J=2,N
DO 4 K=1,3
A(J,K,1)=RESCHLI J,K)
DO 3 L=1,M1
3 A(J,K,L+1)=A(J,K,L)-R(J,K,L)
DO 4 I =1,M2

* 4 B(J,K,I)=A(J,K,I)

```
    RETIIRN
    FNO
    SURROIITINF WH( }O,NSIZE
    IMPLICIT RFAL*R (A-H,N-Z.)
    REAL*R D(NSIZF,NSIZF),DX(3)
    COMMON /BLOCK1/ CAI(5,11),FM(50),X(50,3),XPIJNKT(50,3),RESCHL(50,3)
        1. XNARLA(50,3)
            C\capMM\capN /IN\capFX/ N
    C\capMMON/TIMF/ DIIMMY,H
    \cap\cap }\geqslant\textrm{k}=1,
    x(1,k)=0.no
    DO ]. J=2,N
    ]. X(1,K)=X(1,K)+FM(J)*X(J,K)
    ? X(1,K)=-X(1,K)/FM(1)
    D\cap 14 J=1,N
    \cap\cap }3\textrm{K}=1,
3 RFSCHL (J,K)=0. no
    Dก 14 I=1.N
    IF(I-J)4,14,7
        4 IF(FM(I))5,14,5
        5 A=FM(I)/D(I,J)
        \cap\cap & K=1,3
        6 RESCHI (J,K)=RESCHL (J,K)+A*(X(I,K)-X(J,K))
        GO T\cap 14
        7 IF(FM(I))9,8,9
        R IF(FM(J))9,14,9
        O D 1 10 K=1,3
        1\cap \capX(K)=X(I,K)-X(J,K)
        A=DX(1)*DX(1)+DX(2)*DX(2)+DX(3)*DX(3)
        D(I,J)=DSORT(\Delta)
        D(J,I)=A*D(I,J)
        IF(J-1)11,14,11
    11. IF(FM(I))12,14,12
    12 A=EM(I)/D(J,I)
        กก 13 K=1,3
    13 RESCHL(J,K)=RFSCHL}(J,K)+\Delta*\capX(K
    14 CONTINIIE
        RFTURA
        FND
            SIIRROUTINF FLFMNT (R,NSIZF)
            IMPLICIT REAL*R (A-H,N-Z)
C
C. COORDINATES AND VEL\capCITY, IED=KD PRINT ONLY. IEN=KD+4 WITH PIINCH
C
999 FORMATI//51H CONRDINATES AND VELOCITIFS FOR STEP NLIMBER
    1 I6/9H0 T = 1PN17.9)
10\cap3 FORMAT(3(A4,I1,\Delta4,I2,\Delta4,1P\cap22.15,A4/),
    1 3(2A4,I1,A4,I?,A4,1PD22.15,A4/))
    1004 FORMAT(32HOO.OJ%H*MAX(LAST IISEO OIFF.) = .1PF10.? )
    1005 FORMAT(14HO RONY NUMRER ,I2.6H EM=.,1PO23.15)
    1006 FORMAT(9H CONRN. = ,1PD23.15.6X.9HVEL\capCITY=,1PO23.15)
    10n7 FORMAT(9H CONRD. = , 1P3016.7.11H VELOCITY= ,1P3O16.7)
1008 FORM\triangleT(A4,1PO22.15,A4)
    D\capURLE PRFCISINN R(NSIZF,3.12)
    DOIIRLF PRECISITN CAI,FM,X,XPIINKT,BESCHL,XNARLA,GG;DN,V(G),S,T,
    1 H,HO,HO,H1O,H1OO
        RFAL*& MU
        REAL*4 ALPHA(7)
        COMMNN /BLOCK1/ CAI(5,11), FM(50),X(50,3), XPIINKT(50,3), RFSCHL(50,3)
    1. XNARLA(50,3)
```

```
    C\capMM\capN /INOEX/ N,M,M1,M2,MPM,MP1,IZ,IEG,IFD,IEXP,IPIINCH(50)
    C\capMM\capN/ TIMF/ T,H,HO,HO,H1O,H1OO
    CПMMON /CONRLO/GG(11),DO(11)
    C\capMM\capN / \capRR/ PI,MH,R\triangle\cap,I\capRR,I\capRRIT(50)
    \capATA ALPHA/' XPI, )= XD\capTl T=, 1/
    IF(IFD.GF.4)WRITF(7,1008) ALPHA(6),T,ALPHA(7)
    D\cap 3 K=1,3
    XPIINKT T 1,K)=0.OnO
    \cap\cap? J=2,N
    S=0.0חO
    \cap\cap 1 L=].M1
    ]. }S=S+GG(L)*R(J,K,L+1
    XPIINKT(J,K)=H\cap*XNARLA(J,K)+H*(R(J,K,1)*0.5n0-S)
    ? XPIINKT(1,K)=XPIINKT(I, K)+FM(J)*XPIJNKT (J,K)
    3 XPIINKT(1,K)=-XPIINKT(1,K)/FM(1)
    WRITF(6,999) IZ,T
    IF(M\cap\cap(IED,?),FO.0) Gח Tत 2OO
    D\cap 10\cap J=?, (1
    WRITE(6,10\cap5) ,.,FM(.J)
    D\cap 50 K=1.3
    k3=k+3
    V(K)=X(J,K)-X(1,K)
    V(KZ)=XPINNKT(J,K)-XPIINKKT(1,K)
    IF(IFN.GE.4) HRT TF(7.1003) (AIPPHA(1),K, \triangleLPHA(2),J,\DeltaIPHA(3),V(K),
    l ALPHA(7),K=1,3),(\triangleLPHA(4), ALPHA(5),K,ALPHA(2),J,ALPHA(3),
    7 V(K+3),\DeltaLPHA(7),K=1,3)
        IF(K\cap.F\cap.I) rn TO 75
        WRITF(6,10O6) V(1),V(4),V(2),V(5),V(3),V(6)
        GO TO 100
        NRITF(6,1007) v
        CMNTINUF
        Gח TП 500
        O\cap 30\cap J=1,N
        mRITF(6,1005) d,FM(J)
        IF(FKO.EO.1) G\cap TN 275
        IF(IFH.GF.4) MRITF(7,1ON3) (ALPHA(I),K,ALPHA(2),J,ALPHA(2),X(J,K),
    1 \triangleLPHA(7),K=1,3),(\triangleLPHA(4),ALPHA(5),K,ALPHA(2),J,ALPHA(3),
    2XPIINKT(J,K), \triangleLPHA(7),K=1,3)
    WRITF(6,10OK) (X(J,K),XPINNKT(J,K),K=1,3)
    G\cap T\cap 300
    WRITF(K,1\capO7) (X(J,K),K=1,3),(XPIINKT(J,K),K=1,3)
    CONTINUF.
    RM=O.
    \capO 6O\cap J=2,N
    \cap\cap GO\cap }K=1.
    RN=\capARS(R (J,K,M2))
GOO RM=\capMAXI(RM,RN)
        RM = RM*H100
        WRITF(6.10n4) RM
        IF (I\capRR.EO.1) CAILL MRRIT
        RF TIIRN
        FNIN
        SURROI!TINE NRRIT
        FOUIATINS FOIIND IN NASA OOCIIMFNT NO. X-643-67-198
                        RY RIRFRT RLANCHART
        IMPLICIT RFAL*& (A-H,O-7)
        REAL*R MU,P(4). INCI.
        C\capMM\capN /RL\capCK1// C(105), X(50,3), X\capOT(50,3)
        COMMON /INOUT/ IN.I\capIT
        COMMON /INDFX/ M
```

 COMMON /ORR/ PI,MII,RAD,INRR,INRRIT(50)
 WRITE(IOUT,1)
 DO 1000 J=1,N
 IF(IORRIT(J).EO.OIGO TO 1000
 PFRION=0.DO
 RA=0.D0
 Pl= X(J,1)-X(1,])
 P2= X(J,2)-x(1,2)
 P3 = X(J,3)-X(1,3)
 P40=P1*P1+P2*P?+P3*P3
 P4=DSORT(P4O)
 V1= X\cap\capT(J,1)-X\cap\capT(1,1)
 V2= x\capחT (J,2)-x\cap\capT(1,2)
 V3= X\cap\capT (J,3)-X\cap\capT(1,3)
 V40=V1*V1+V2*V2+V3*V3
 V4= DSORT(V4O)
 SORTMII=DSORT(MII)
 nZ= P1*V1+P2*V2+P3*VZ
 DZMII= DZ/SORTMUI
 AINV=2. DO/P4-V/4O/MII
 ARAINV=DARS(\triangleINV)
 IF (ABAINV.LF.1.n-20) Gn TN 1500
 50 SOAINV=DSORT(\triangleRAINV)
CZ=1.DO-AINV*P4
SZ=OZMUJ*SOAINV
C
C SEMI-MAJOR \triangleXIS-A
C
A=1./\triangleINV
SZ2=DZMU|\#\#ZMI%*AINV
C ECCENTRICITY -EC.C
C
ECC= DSART(SZ?+CZ*CZ)
C
C ANGILLAR MIMENTIIM/IINIT MASS
C
H1= P2*V3-P3*V2
H2= V1*P3-Pl*V/3
H3=P1*V2-P2*V1
H4= DSORT(H1*H1+H2*H2+H3*H3)
TERMA = (1.0N/P4-AINV)/ECC
TERMR=ПZ/(FCC*MIO)
P(1)=TFRMA*P1-TFRMR*V1
P(2)= TERMA*P2-TFRMB*V2
P(3)= TERMA*P3-TFRMR*V3
C
C INCLINATION
COSI=H3/H4
SINI = NSORT(1.OO-COSI*COSI)
IF(COSI.NE.O.DO) Gח Tח 75
INCL=90. ก0
GO TO 100
75 INCL=NATAN(SINI/COSI)
C
C RIGHT ASCFNSION OF ASCENOING NODF
C
100 IF (SINI.FO.O.DO)GO TO 150
DUM = H4*SINI

```
```

 SOMG=H1/DUM
 COMG=-H2/DUM
 OMEGA= DATAN2(SOMG,COMG)
 C
C ARGIMENT OF PERIGEF
C
ARGPER=DATAN2(P(3)/SINI,P(1)*CHMG+P(2)*SOMG)
C
C MEAN MOTION
C
150 X.MOT= SQRTMU*ABAINV*SOAINV
C MEAN AND ECCFNTRIC ANOMOLY
C 200 IF(A.LT.O.DO)GO TO 225
EZ= TATAN2(SZ,CZ)
GO TO 250
225 EZ=DLOG((CZ+SZ)/ECC)
250 XMA=EZ-SZ
IF(A.LT.O.DO)XMA =-XMA
C
C TRUF ANAMMLY
300 E2=.500*EZ
EZ=FZ*RAD
DUM=(1.DO+ECC)/(1.nO-ECC)
IF(A.LT.O.DO)GO TO }32
XP=DCOS(E2)
Y=OSORT(DUM)*DSIN(E2)
GO Tח 350
325 EX1=DEXP(E2)
EX2=1.D0/EX1
Y=DSORT(-DUMM)*.5DO*(EX1-FX2)
XP=.5*(EX1+EX2)
350 TA = DATAN2(Y,XP) *2.DO
C TIME FROM PERIGEE
C
375 TPER =-XMA/XMNT
C BYPASS PERIOD AND APOFOCUS CALC IF HYPERBOLIC
C
IF (A.LT.O.DO) GO TO 900
C
C PERIOD
C
PERIOD= PI *A** 1.5/SOR TMU
C
C APOFOCUS
C
RA=A*(1.DO+ECC)
900 INCL= INCL*RAN
OMEGA= OMFGA*RAD
ARGPER= ARGPER*RAD
XMA = XMA*RAD
EZ= EZ*RAD
TA= TA*RAD
WRITEIIOUT,2I J,A,ECC,INCL,OMEGA,TA,ARGPPER,TPER
1000
CONTINUE
RETIIRN

```
```

1500 WRITF(IOIIT.3) ., AINV
GO TH lOOO
FORMATI'OROחY NO.',T13,'SFMI-MAJIRR \triangleXIS',T33,'FCCFNTRICITY',
1T53.'INCLINATINN',T73,'R.A. NF ASCFNOINF NONF',
? T9R.'TRUF ANAMOIY',TII3,'ARG. NF PFRIGFF')
F\capRMAT(IR,2X,GП20.12/T113.'TIMF FROM PFRIGFF'/110X, П20.12)
F\capRMAT('OSFMI-M\triangleJ\capR \triangleXIS OF RODY NO.',I 3,' IS TO\cap LARGF. 1./\Delta=',
1070.17)
FND
SIIRROIITINF NRIICKF(A,R,NSIZF)
IMPLICIT REAL*R (A-H,\cap-Z)
RFAL*R MIJ
RFAL*4 ALPHA(7)
\capOURLF PRECISION A(NSIZF,3,12),R(NSIZF,3,17)
OOURLF PRECISIOA CAI,EM,X,XPUNKT,S(K),T,H,HN,H1O,H1OO,HO1 ,HO
1,GG,Dח
1.RFSCHL, XN\triangleRLA
C\capMMON /RL\capCK1// CAI (5,11),FM(50),X(50,3), XPIINKT(50,3)
1 ,RFSCHL (50,3), XAARLA(50.3)
CHMMINN/IANFX/ M,M,M2,MI,MPM,MP1,IZ,IFG,IFD,IEXP,IPINNCH(50)
COMMON /TIMF/ T,H,HO,HD,H1O.H1OO,HOI
C\capMM\capN /CONRL\cap/ GG(11),DN(11)
C\capMM\capN /\capRR/ PI,M|,RAD,I\capRR,I\capRRIT(50)
1000 FORMAT(1HO/14HO STFP NUMRER,IG,9H T = ,1PN17.9)
1\cap\cap? F\capRM\triangleT(14H\cap Rח\capY NIMMRFR .I 2)
1003 FORMAT(14HO RONY NHMMFR ,I2/9H COחRD. = ,1P3O28.15/
1 9H VFL.= ,1P3O28.15)
1004 FORMAT(14HO RONY NIMMRER ,I2/9H CO\capRO. = ,1P3N20.7/
1. 9H VFL.= .1P3N20.7)
10\cap5 F\capRMAT(2(A4,I1,A4,I2,A4,1PП15.7,\Delta4)/\Delta4,I1,A4,I2,44,1PD15.7,A4,2A4,
1. I1,\Delta4,12,44,1P\cap15,7,\Delta4/2(2\Delta4,I1,\Delta4,I2,\Delta4,1P\cap15,7,\Delta4))
jONG FORMAT(3(44,I1,\Delta4,I2,A4,1PD22.15,A4/).
1 3(7\Delta4,11,,\Delta4,17,\Delta4,1P\cap22.15,\Delta4/))
1007 FORMAT(34HO 0.1%H*H*MAX(LAST IISFO DIFF.) = .1PF10.?)
1008 FORMAT(A4.1PN22.15.A4)
DAT\Delta ALPHA/' XP(,)= X\cap\capT(T=, 1/
D\cap 3 K=1,3
XP(INKT(1,K)=0.DO
D\cap 2 J=2,N
n=0.00
O\cap 1 L=1,M?
n=n+GG(L)*R(J,K,L+1)
XPIINKT(J,K)=HD*XNARLA(J,K)+H*(R(J,K,1)*0.500-n)
2 XP|AKKT(1,K)=XPI|NKT(1,K)+FM(J)*XP(INKT(J,K)
3 XPIINKT(1,K)=-XPIIAKKT(1,K)/FM(1)
IP=0
Oก 99% J=1,N
I=IPUNCH(J)
IF(I.FA.13) Gח TM 999
IF(I.GF.7) Gn TO 350
IP=IP+1
Gn TO (50,100, 150,200,250,300), I
IF(IP.FO.1) wRITF(G,1000) IZ,T
WRITF(6,1003) J,(X(J,K),K=1,3),(XPIINKT(J,K),K=1,3)
Gn TO 999
150 IF(IP.FO.1) WRITF(K,1000) IZ,T
WRITE (6,1003) J* (X (N,K),K=1,3),(XP|NKT(J,K),K=1,3)
IF(IP.EO. 1)WRITE(7,100R) ALPHA(6),T,ALPHA(7)
WRITE(7,1\capOG) (ALPHA(1),K,ALPH\Delta(2),J,ALPHA(3),X(J,K),ALPHA(7),
1 K=1,3),(ALPHA(4),ALPHA(5),K,ALPHA(2'),J,AI,PHA(3), XPIINKT(J,K).,

```
```

 \ ALPHA(7),K=1.3)
 &n Tm 999
 jnn IF(IP.FO.I) URITF(G,100n) IZ,T

```

```

 FOT TOl 999
 2O\cap JF(IP.FO.1) WRTTF(G,TOON) IZ,T
WRITF(h,1OO\&) , (. (x (, , K), K=1,3),(XPINNKT(J,K),K=1, 2)
250 JF(TP.FO_1)URTTF(7.1\capO8)\DeltaLPHA(6),T,\DeltaIOHA(?)
WRITF(7,1\capO5) (ALPHA(1),K,ALPHA(2),J,ALPHA(7),X(J,K),ALPHA(7),
] K=1, 3),(ALPHA(4),ALPHA(5),K,ALPHA(?),J,AI_PHA(3), XPIINKT(J,K),
A1.PHA(7),K=1, 2)
Gn Tn 990
350 D\cap 40n }k=1.
S(K+3)=XP(|NK T(J,K)-XP||NKT(1,K)
S(K)=X(J,K)-X(J,K)
IP=IP+1
Gn Tn(999.909.909.090.990.909,450,500,550.G00.f50,700), I
IF(IP.FO.1) wRITF(6,1000) J7,T
WRITF(6.1003) ,.S
GO TO 999
550 IF(IP.FO.1) WRITF(K,1OOO) IZ,T
HRITF(6,J\capก2) . l.S
5n\cap TF(IP.FO.l)WRITF(7,IOOR)NLPHA(G),T,ALPHA(ح)
HRITF(7,I\capOA) (AIPHA(1),K,ALPHA(?),.|,AI.PHA(3),S(K), ALPHA(7),
l K=1, 2),(ALPH\Delta(4), \triangleLPHA(5),K,\DeltaIPHA(?), , , \LPHA(3),S(K+3),
? \triangleIPH^(7),K=3,3)
F\cap T\cap 999
IF(IP.FO.1) HEITF(K,10OO) IZ,T
WIR J TF(6,10\cap4) .1,S
GO TO 999
IF(IP.F\cap.1) wRITF(K,Innn) I7.T
HRITF(6,1\cap\cap4) .l.S
650 IF(IP.FO.1)WRITF(7.I\capOR)\triangleLPHA(G),T,ALPHA(7)
WRITF(7,10\cap5) (ALPHA(1),K,ALPHA(7),I,AI.PHA(3),S(K), ALPHA(7),
l K=3,3),(\triangleLPHA(4), ALPHA(5),K,ALPHA(7),J,\DeltaI,PHA(3),S(K+3),
OLPHA(7),K=1,3)
990 CNNTINIIF
IF (IP.FO.O) GO TO 1200
RM=0.nO
\cap\cap 11\capn d=2,N
\cap\cap 11\cap\cap K=1.3
11On RM= \capM\triangleX1(RM, OARS(R(,1,K,M1)))
RM=HO1%RM
WRITF(6,10O7) RM
12Oח IF (I\capRR .FO.J) C.ALI ORRTT
RFTIIQ:
FNO

```

LITE
\(20 \quad 1\)
\(\operatorname{XDOT}(1,1)=0.0, \operatorname{XDחT}(2,1)=0.0, \operatorname{X\cap \cap T}(3,1)=0 .\),
\(\operatorname{XP}(1,2)=-0.5113942959, X P(2,2)=-.4780976854, X P(3,2)=-0.1820874810\), \(\mathrm{XDOT}(1,2)=+0.5663768182, \mathrm{XDOT}(7,2)=-0.5120871589, \mathrm{XDOT}(3,2)=-.7664978745\), \(\operatorname{XP}(1,3)=-0.2614989917, \operatorname{XP}(2,3)=+0.8696237687, X P(3,3)=+0.2771657157\), \(\operatorname{XD\cap T}(1,3)=-0.6746573183, \operatorname{XD\cap T}(2,3)=-.1700948008, \operatorname{X\cap \cap T}(3,3)=-0.0737743197\), \(\operatorname{XP}(1,4)=-1.295477589, X P(2,4)=-0.8414136141, X P(3,4)=-0.3513513446\), \(\operatorname{XDOT}(1,4)=+0.3440042605, \operatorname{XOOT}(2,4)=-0.3696674843, \operatorname{XDOT}(3,4)=-0.1789373952\), \(X P(1,5)=+3.429472643, X P(2,5)=3.353869719, X P(3,5)=+1.354948917\), \(\operatorname{XD\cap T}(1,5)=-0.2228647739, \operatorname{X\cap OT}(2,5)=+0.2022768826, \operatorname{X\cap \cap T}(3,5)=+0.0927305178\), \(X P(1,6)=+6.641453441, X P(2,6)=+5.971569844, X P(3,6)=+2.182315015\), \(\operatorname{XD\cap T}(1,6)=-0.1662288590, X D \cap T(2,6)=+0.1462712350, X \cap \cap T(3,6)=+0.0676562647\), \(X P(1,7)=+11.26304125, X P(2,7)=+14.69525888, X P(3,7)=+6.279605833\), \(\operatorname{XDOT}(1,7)=-0.1301308165, \operatorname{XOOT}(2,7)=+0.07588051779, \operatorname{Xn\cap T}(3,7)=+0.03508967797\), \(X P(1,8)=-30.15522934, X P(2,8)=+1.657000860, X P(3, R)=+1.437858110\),
 \(\operatorname{XP}(1,9)=-21.12383780, \operatorname{XP}(2,9)=+28.44651101, X P(3,9)=+15.38826655\), \(K O=.47345961216687, T=0 ., D E L T A T=2 ., H=.05, M=5, N 7=5, W=1 .\),
\(\operatorname{ILEM}(1)=10, \operatorname{ILEM}(2)=50, \operatorname{ILEM}(3)=500, \operatorname{ILEM}(4)=1000, \operatorname{ILFM}(5)=1059\), \(I O R B=1, I \cap R B I T(3)=1, I Z A=1059, I D E L T Z=1059, I Z N=5295, N=9, I F X P=10\),
\(\operatorname{I\cap RBIT}(1)=0, \operatorname{I\cap RRIT}(2)=1, \operatorname{IORBIT}(4)=1, \operatorname{I\cap RRIT}(5)=1, \operatorname{I\cap RRIT}(6)=1, \operatorname{InRRIT}(7)=1\), \(\operatorname{IORRIT}(8)=1, \operatorname{IORBIT}(9)=1, \operatorname{IGO}=1\),

2800
\(\operatorname{XDOT}(1,9)=-0.07074485007, X \cap \cap T(2,9)=-0.0865592722, X D \cap T(3.9)=-0.0 \cap 5946850713\), \(F M(1)=1 ., E M(2)=2.451 E-06, F M(3)=3.03591 E-06, F M(4)=3.7326 F-07, F M(5)=9.5478 G E-04\), \(E M(6)=2.8558 E-04, F M(7)=4.3727 E-05, E M(8)=5.17759 F-05, F M(9)=2.78 F-06\),

IPUNCH=9*7,41*13, \&FNA IIPUT DATA - ORBIT OF LOST CIIT METEORITIE - PART I FIGURE 1

EINPUT IGN=3, T=2440590., NFITAT=-2., \(H=-.05, \quad N=10\),
\(\operatorname{NT}=5, \quad \operatorname{ILFM}(1)=10, \quad \operatorname{ILFM}(2)=20, \quad \operatorname{ILFM}(3)=30, \quad \operatorname{ILFM}(4)=50, \quad \operatorname{ILFM}(5)=100\), \(I Z A=5295, \quad I D E L T Z=400, \quad I Z N=54750\), \(E M(10)=0 ., X P(1.10)=+.51198278, \operatorname{XP}(2,10)=-2.0732007 . X P(3.10)=-.87761397\). \(\operatorname{x\cap \cap T}(1,10)=+.32109876, \operatorname{xDnT}(2,10)=+.11411804, \quad \mathrm{XnOT}(3,10)=+.13 \cap 02863\).

IPIINCH \((10)=20\), \&FNT IITPYI DATA - ORBIT OF LOST CIIY MITEORTIE, PART 2 FIGURE 2

\section*{References}
1. R.C. Blanchard and H. Wolf, "A Method of Calculating Interplanetary Trajectories", GSFC X-643-67-198, May 1967.
2. R.L. Duncombe and G.M. Clemence, "Provisional Ephemeris of Mars 1950-2000", U. S. Naval Obs. Circ. No. 90, 1960.
3. R.L. Duncombe, "Provisional Ephemeris of Mars 1800-1950", U. S. Naval Obs Circ. No. 95, 1964.
4. W.J. Eckert, D. Brouwer, G.M. Clemence, "Coordinates of the Five Outer Planets 1653-2060", Astr. Papers Wash. Vol. XII, 1951.
5. P. Herget, "Solar Coordinates 1800-2000", Astr. Papers Wash. Vol. XIV, 1953.
6. P. Herget, "Coordinates of Venus 1800-2000", Astr. Papers Wash. Vol. XV, Part III, 1955.
7. J.H. Lieske, "Newtonian Planetary Ephemerides 1800-2000, Development Ephemeris Number 28", JPL Tech. Rep. 32-1206, 1967.
8. B.G. Marsden, "Comets and Nongravitational Forces", Astron. J., Vol. 73, p. 367, 1968.
9. J. Schubart and P. Stumpff, "On an N-Body Program of High Accuracy for the Computation of Ephemerides of Minor Planets and Comets", Veröff Astron. Rechen-Inst., Heidelberg No. 18, Verlag. G. Braun, Karlsruhe, 1966.
10. J. Schubart and M. Cooke, "Yale Fortran IV Version of SchubartStumpff N-Body Program", Yale University Observatory, 1965.```

