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REALIZATION THEORY OF RATIONAL TRANSFER MATRICES

by

'	 W. M. Wonham
Office of Control Theory and Application

NASA Electronics Research Center
Cambridge, Massachusetts

1. INTRODUCTION

In this memorandum we discuss the algebraic connection between a

rational transfer matrix H(a) and its realization by a time-invariant

'	 dynamic system, or triple of constant matrices (C,A,B). It is shown

that both H(X) and its matrix realizations can be represented by a

1	 suitable morphism of modules over the ring of polynomials in X. Mor-
phisms of this type are the fundamental algebraic objects in the theory

of finite, constant linear systems.

The discussion to follow was stimulated by results of Kalman,

Gilbert and Youla (documented in Section.8) and makes no important

claim to originality. However, our development differs in some res-

pects from that of the authors cited and is presented as a basis for

research on certain problems of multivariable system synthesis (e.g.,

'	 decoupling) which have not so far been treated from a module-theoretic

point of view.

As algebraic prerequisite we draw only on the elementary theory

of modules as given, for example, by MacLane and Birkhoff [11].

2. NOTATION

Rn is real n-dimensional vector space; R=R 1 ; R[a] is the ring of

Polynomials ever R in a single transcendental element a; Rn [XI is the

9	 -1-



free R[A)-module generated by Rn . All modules which arise have R[A)

as associated ring. Dual modules are denoted by a prime, e.g.,(Rn[AI)'.

In general, script light-face will denote vector spaces over R= script

bold-face, modules over R[A]. Morphisms of R-vector spaces will be

called maps and denoted by A,B,... Morphisms of modules are printed in

bold-face S O T,... A map B:Rm•+Rn has a natural extension to a morphism

of free modules B:R_m[a]- ►Rn[A] as follows: If {u i ,iem_I is a basis for

Rm then the ui also serve as a basis (set of independent free generators)'

for RNA], and we define Bu i=Bui , iem_, regarding Rn as a subset of
O(A]. Finally, if a,eeR[A], [e]a is the residue class of e(mod a) in

the quotient ring R[AI/a(A)R[A). r j
3. TRANSFER MATRICES AND MORPHISMS

A transfer matrix (TX) is any (finite) rational matrix of the form

H(A) = a(A) -1 H(A)	 (3.1)

where a(A)ER[A] and H(A) is a polynomial matrix with deg H< deg a. H(A)

is reduced if the GCD of a(A) and the elements-of H(A) is 1. Every
p xm TX determines a morphism of modules as follows. Let {u j ,jem) be a	 1
basis for Rm and {yi ,iep) a basis for RP. The elements

yi (A) = Yi + a ( A )RP [AI, iep

II

form an independent set of generators for the torsion module RP[A]/
a(A)RP [A). Define

`-

	

	 11:1PIAI + RP [AI/a(A)RP [A]	 (3.2)

by the rule

P
8uj	HiJOL)Yi(A), jem	 (3.3)

_
ti

where Hij (A) is the (i,j)th element of a(A)H(A). A morphism of R[A]-

modules of type (3.2) will be called a transfer morphism (TM).
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Every TM determines a TX as follows.	 With generators u.,	 y.(a)
1

chosen as before, the evaluations (3.3)	 of	 the Hu. determine polynomials'

Hij
(a)	 uniquely, mod a(a).	 In particular let H..(a)	 be ^ the unique mem-

ber of its residue class with deg Hij	 < deg a, and	 let H(1) be the matrix

of H	 M. Then HM = aM -1 HM is the TX determined by H.

I Let H be a TM as in (3.2). Clearly

1	 Ker H D a(a)Rm[a]

1	 Let 1 be the subset of polynomials SER[a] such that
Ker H D S(a)Rm[a]

Clearly I is an ideal of R[a], so that 1 = a0 (a)R[a] for a polynomial

'	 a0ER[X]. In general a o 1a. Taking a and a  to be monic, we say that

the TM H is reduced if a  = a. It is easily seen that H is a reduced

'	 TM if and only if the TX determined by H is reduced. Obviously, each

TX is equal (as a rational matrix) to a unique reduced TX with monic

t denominator polynomial. To avoid ambiguity we regarO a p xm TX as a

pair (a(X),H(X)) with a M monic; then the corresponding TM is uniquely

determined after choice of bases in R P and Rm.

4. DYNAMIC SYSTEMS

'	 For our purposes a dynamic system (DS) -.s a triple of maps (C,A,B),

C:Rn , RP , A:Rn -► Rn , B:Rm 	R 	 (4.1)

which can be thought of as coming from the equations x = Ax + Bu, y =

Cx. Every DS determines a TX by the rule

e
	

H(a) = C(^-A) -1 B
	

(4.2)

0	 where we have chosen bases for Rm ,Rn ,Rp and used the same symbols for

o	 -3-
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the corresponding matrices.

Let T:Rn -+ Rn be an automorphism of Rn .	 Relative to fixed bases

in Rm ,Rn ,Rp the DS	 (CT,T-1AT,T-1B) determines the same TX as 	 (C,A,B).

DS which are related in this way will be called equivalent	 (-).

With C,A,B as in	 (4.1),	 let C,A,B be their natural extensions to

morphisms of free modules

C:Rn [,]	 ,	 Rp [a],	 A:Rn [,]	 -	 Rn [a] ► 	 B:Rm [X]	 ,	 Rn[,]

If	 is divisible by the 	 A, the morphisma(a)cR[a]	 minimal polynomial of

a(a) (X-A)-1:Rn[X]	 -.	 Rn[a]

is defined in the natural way. 	 Let Pa be the canonical projection

P :Rp[X]	 - RP[a]/a(X)RP[X]

We say that	 (C,A,B)	 realizes the TM H if a(a)	 is divisible by the mini-

mal polynomial of A, and

H = PPaCa(a) (a-A) -1 B	 (4.3)

It is clear that	 (C,A,B)	 realizes H if and only if the TX of H satisfies

(4.2); and that equivalent DS realize the same TM. 	 There is defined in

his way a function from the quotient class {DS}/- to the class of TM.

5.	 CONSTRUCTION OF A CANONICAL REALIZATION Q

Write

U = Rm [al,	 V =	 RP[a]/a(a)RP[a]

and let H: U- Y be a TM. 	 Let

-4-



M = U/Ker H
	

(5.1)

Lemma 4. 1

There is a unique integer n, and a map A:Rn - ► Rn , such that

Rn [ X ]/( a -A)Rn [^l5 M
	

(5.•2)

Proof

Let u(a) = u(a)+Ker H E M. Since a(a)Rm [a] C Ker H,

a(X)u(a) = a(a)u(X) + Ker H = Ker H = 0;

so that M is a torsion module of finite type over the principal ideal

domain R[a]. By known structure theorems ([11],Ch. 10, Ths. 5,6) there

exist unique monic polynomials a ll ... ,ak such that a l ga, a 2 1a l , ... I

ak l ak_ l' deg cc  >_ 1, and

k
M	 ® R[X]/ai(a)R[X]	 (5.3)

i=1

Let

k

n =	 deg a 

i=1

By the rational canonical structure theorem ([11], Ch. 10, Th. 8) there

is a map A:Rn ; Rn , unique up to similarity equivalence, such that

k

Rn [ a ]/( X -A)Rn [al, ® R[al /a i (a)R[a];	 (5.4)

i=1

the a  M are the invariant polynomials of A. By (5.3) and (5.4) the

result follows.

-5-
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1
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1
1
1
1
1
1
1

e

a
e

We shall say tnat a realization (C,A,B) of H is canonical if

(5.2) holds.

It is convenient in the following to define M concretely as an

-isomorphic copy of the module on the right side'of (5.4), namely

k

M = ® S i (^)R[aJ /a(a)Rfa]	 (5.5)
i=1

where S = Vail iek. H can now be exhibited as a product

H = -0HI ,	 (5.6)

where H I is the canonical projection of U on M and H o is the induced

monomorphism from M to Y, as in the diagrams below.

H I	 M	
H^	

'

(D1)
U	 V

H

HI

U— M —0	 (D2)

H

0	 M	 V	 (D3)

The subscripts I,O refer to "input" and "output". D2 and D3 are exact

sequences, i.e., HI is an epimorphism and % is a monomorphism. It

will be seen in Section 6 that "epic" and "monic" have the system —

theoretic meaning of "controllable" and "observable".

Write

X = Rn fa) /(n-A)nn[a)
	

(5.7)

-6-
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and A =	 (X-A)Rn[a).	 It is easy to check that elements xEX have the

representation

x = x + A, (5.8)

where xERn is uniquely determined by x. 	 Furthermore,	 if x(X)	 = x +

' (a-A)x* (1)	 for xERn ,	 x * (a) ERn M,	 then

ax(X)	 =	 (A+(a-A))x(X)	 E	 Ax+(a-A)Rn[a),

' so that

' ax = Ax + A (5.9)

Next,	 since X ,„ M_,	 '5.3) 	 implies

k
XzGX i (5.10)

' i=1

where X i is a cyclic module with generator

' gi = g i + A (5.11)

' and g i has minimal annihilating polynomial ai(a).

' We can now exhirit explicitly an isomorphism T:A1-X. Write

M i	=	 6i(a)R[a]/a(X)R[a) ► 	 iEk

and let e 	 be the generator of M i ,	 i.e.,	 e 	 =	 [B i )a.	 Define

O
Ti	

M 
	 - X i ;	 eiF--gi	 ick (5.12)

and finally

-7-



I

k

T ® T-i
i=1

The situation is now summarized by the diagram:

HI	 N

U-+M 1 O+	 +O M k 	 y

T1 I	 ^

XI 1 Q+	 . p+ Xk

The remainder of the realization procedure amounts simply to

filling in the diagonals so that D4 commutes:

H I	 H^

U	 M	 Y

T	 ^^f
J	 i K

X^

Define J:U -i X as the morphism

J = T HI	 (5.13)

•

(D4)

(D5)

Let {ui ,iEm) be a basis for Rm , hence of U. Then

Ju i = T(HIui)

b + A
i -

for uniquely determined vectors b i ERn . Thus J determines a unique map

B:Rm ► Rn by the rule

Bu  = bi t icm
	

(5.14)

-8-
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The morphism K:X	 V is defined by KT = HH0 , or

K - 
HOT-

1

= Ho (11 1 (D	 .O+ Tk l )	 (5.15)

Observe that 
T71 maps each element x(a)EX i into its corresponding re-

sidue class in A( i ; i.e., if x = E(A)g i +A E X i , then

Ti lx = G(a)l a 	 (5.16)

To determine an explicit expression for the T_i we make a digres-

sion on cyclic maps. Let G:Rn^ R  be cyclic, with minimal polynomial

Y( a ) and generator gERn . Introduce the element h'E(R n )' conjugate to

g, defined by

h'g =	
= h'Gn-:!g = 0; h,Gn-lg = 1 	 {5.17)

Let

Y(a) = ^ n - (c1+c2a+...+cnXn-1)

for real numbers c i ; and define polynomials

Y 	 M =  n-i - (ci+l+ci+2X+...+cnan-i-i), ion 	 (5.18)

so that Y (i) (X) 
= XY(i+l)(a) - ci+1' icn-1, and Y (n) (A') = 1. For the

natural eAtension G:Rn (X] - Rn [,) it is easy to verify

n

Y M = (a-G)	 Y (i) 
(X)Gi -1

i=1

and we define

-9-



n

Y(^) (a-G)
-1 =	 Y(i) (X)Gi -1 	 {5.19)

i=1

•

'With h' the natural insertion of h' in (R n [A])', define the functional

F:Rn M - R[X] by

F = h'Y M (a-G)
-1
	(5.20)

Lemma 5.2

For every ^ER[a]

MG)g = FM mod y(X)	 (5.21)

If Fc(Rn [a])' has the property (5.21) then F -F = y M F for some

F c (Rn[a])'

Proof

To verify (5.21) note from (5.17), (5.19) and (5.20),

n

Fg = ^Y (1) (a)h' G i-lg 
= Y (r ' ;a) = 1;

i=1

FA
l+lg = F[XGi-(a-G)GiIg

= XFGlg - a. (a) h'Glg

= XFG lg mod Y (1) ;

and (5.21) follows by induction on i. The uniqueness (mod Y) of the

functional determined by (5.21) is implied by the Fact that {Gl-lg,ien}

is a basis for Rn[a].1

Now let X i C R  be the subspace

-10-
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t

t

t
a
s

Xi = {x:xERn ,x+A E Xi}

Then X i is A-cyclic with minimal polynomial a  M and (by (5.11)) genera-

tor gi . Let X i [XI be the free module generated by X i : Then the mor-

phism

ai(a) (X-A)-1 : Xi[.a] - Rn[X]

is well-defined. Next, write n i=dim X i (=deg a i ) and define h!c(Xi[X])'

by

n.-2	 n.-1
hig i =	 = WA 1 g i = 0,	 WA 1 g i = 1

Finally,  let F i :X i [XI	 R M be the functional given by

FixM = h!cx. M (a-A)-lx(a),	 x(a)EXi[a]	 (5.22)

Lemma 5.3

The morphism T i 1 :X i -► ta i is given by

T i l (x) = H i (a) Fix] a	 (5.23)

for x = x + A E X..
— —1

Proof

Since xEX iC X i [a], (5.23) makes sense. Now apply Lemma 5.2, with

X i in place of R n , the restriction of A to X i in place of G, and y(.^)=

a i (a) .

It remains to compute K from (5.15) and (5.23). Let {y i ,iEpl be

a basis for RP , so that

y i (a) = y i + a(a)Rp [a], iEp

-11-



is an independent set of generators for the torsion module Y. Applying

Ho to the generators e j =[s j ] a of M, there results

P
Eoej = rnij ( a )y i (a), jek (5.24)

for unique	 (mod a) polynomials nij .	 It will be shown that S j ^r*Oj ij .	 In

fact with a j =a/B j , we have a j e j =0 a M i , so that

1

0 = % (ajej)

= a j H0 ( e j )

P

= aj (a) 
L^ nij 

My  (a)

iu=1

Since the yi M are independent generators, a M'n'j i .
7
 (a) =	 0	 (mod a(a)),

]
i.e.,

a  (a)r^i ij (a) E a(X)R[X]

or 
n-- 
M	 e s j (a)R[a], and the assertion follows; so

P

HHoej = S j (1)	 ni j (a)y i (a) ,	 jek (5.25)

'i=1

for suitable n ij ER[a].	 Also t by	 (5.21),

h^n ij (A)a j (a) (a-A) -lg j 	=	 n ij (a),	 mod a j ,	 iEp, jEk	 (5.26)

k
Now let x+AEX, so that x = 	 E	 x j with x j eX j ,	 jek, uniquely deter-

j=1
mined by x.	 Let (yi,iEe} be the basis dual to (y i ,iEp} in	 (RP )';	 define

-12-
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the map C:Rn - Rp by the rule

k'
yiCx =	 h^nij(A)xj,	 iEp,	 xERn ; (5.27)

j=1

and let y!c(RP[a])',	 C:Rn[a]	 -► RP [a]	 be the corresponding natural ex-

tensions.	 Then

K (x+A)	 = H
	

( T -1 (x+A) )'

k

'	
= HO	

[h!aj (X) (a-A) -1xJ le
i=1

k	
P 

[h! cc 	 (a) (a-A) -lx]]8j 
(a)I:n ij MyiM

'	 j=1	 i=1

(by (5.25))

p	 k

^[hjnij (A)S j (a)a j (a) (a-A) -1xjlyiM
'	 i=1 j=1

(by (5.26).)
p	 k

= r[yi 
E 

Ca(X) (a-A)-1xj]yiM
it=l	 j=1

(by (5.27))

'	 P
= E[y!Cct(X) (a-A)-lx]yi(X)

i=1

= PaCa(a)(a-A) -1x (5.28)

for all x+A E X.

To complete the discussion let u.ERm be a free generator of U.
i

Then

-13-



6

Hui = K Jui

= K (Bui+A)

= P Ca (X) (X-A) -1 Bul	 (by	 (5.28) )

= PaCa (a) (a-A) 
-1 

Bu i ,	 iem;

so that

,ai.e.,	 (C,A,B)	 is a realization of H._

We have shown that a canonical realization of a TM always exists.

It will now be shown to have important special properties.

6.	 PROPERTIES OF CANONICAL REALIZATIONS

Let	 (C,A,B)	 be a DS.	 The pair	 (A,B)	 is controllable if

n

Range	 (Ai-1 B)	 = Rn ;	 (6.1)

and	 (C,A)	 is observable if

n

nKer	 (CA1-1 ) = 0	 (6.2)

i=l

I

These well known concepts, due to Kalman, are fundamental. 	 The DS

(C,A,B)	 will be called complete if 	 (A,B)	 is controllable and 	 (C,A)	 is

Observable.	 It is easily checked that completeness is a class pro-

perty relative to equivalence

1
From a practical viewpoint it is of interest to realize a TM in

such a way that the state space R 	 is of minimal dimension.	 A

1 -14-
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I
realization with this property is minimal.

n 	 The central result of realization theory 1:;

'	 Thoorom_ b.1

'	 Let they DS ((',A,11) be_ a realization of the TM 11. The I cal lowing
^rc^^^ort ies of (C,A,11) arc_ e1uivalont: 	 (i)	 (C,A,11) i . c,lnunical; (i i )

(h, A, 11) is '(^pli^10t0	 (i l l)	 (C,A, B) i	 Illlnllll•II	 Fut't.hormore, there? is

.r, hi loct ion betwe-en t ho c lass of  reduced TM ,Ind _ the y_ 1uotiont cl:i: s of

complete DS modulo equiv:ele•nceI
T 	 tlle fo11owino, the y 110t.lt i011 0t' SOCtioi1 1) w  11 be u:.ed freely.

ILe^nUll:l h . 1

Lot S: \	 be a uuorphism and def i no tht , t unction S:I? R by the

rule: S (x+A) = x + A implies Sx = x. Then S is a majL­!and SA == AS.' if

S is in automorphism, see is S.

Proof

'	 Since x, x c Rn are uniquely determined by the elements x + A, x +

A	 \, the function S is well-defined and is clearly a map. Recalling

S (Ax + A)

	

	 S (\ (x + A) )

= \S(x + A)

= 1(x + A)

a	 = Ax + A

so that S(Ax) = Ax = A(Sx). The second statement of the lemma is

obvious.

Lemma 6.2

If (C,A,B) is a canonical realization, it is complete.

-15-
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Proof

Suppose first that (C,A,B) is constructed as in Section 5, i.e.,

B is given by (5.14) and C by (5.27). As for controllability, since

HI is epic there are polynomials p ij (a) (iek,jEm) such that

M	 m

e  = I E P ij Mu i  = E P ij M H I (u j ) , iek

j=1	 I	 j=1

Therefore

g i + A = Tei

m

E p ij (A) T (H ju j )

j=1

M

_

	

	 [pij (A)b j + A]

j=1

i.e..,

m

gi E p ij (A)b j	iEk

j=1

Since any xERn can be written

k

X	 Ei (A) gi
i=1

for suitable i ER[a], controllability is proved.

For observability, since Ho is monic and T is an isomorphism,

H0T-1 is monic, so that

x= x+ A E X and H0T-1 x= 0 imply x= 0	 (6.3)

By (5.28) and (6.3), H0T -1 x=0 if and only if the polynomials

-16-



i

y'Ca(a) (a-A) - l x = 0,	 mod ccM,	 icp

or

Ca(a)(1 -A)-lx =	 0 (6.4)

in Rp [X].	 By use of	 (5.18)	 and	 (5.19)	 it is seen that	 (6.4) is true'

if and only if.CA l-1 x=0,	 ien;	 that is,

'	 xeRn and CA i-1x=0,	 ien,	 imply x=0,

'	 so that	 (C,A)	 is observable.

Now let	 (C,A,B)	 be any canonical realization,	 i.e.,	 (5.2) holds

for A.	 Define morphisms

J:U-X;	 u h* Bu + A,	 ueRm (6.5)

K:X- y ;	 x +	 A N	 P-aCa (a ) (X -A) -l x,	 x + A	 e	 X (6.6)

Then H=P Ca(a)(a-A)	 B,	 so	 that

1	 -1^

Hu i = P aCa(a) (a-A)	 Bui

= P aCa(a) (a-A)-1Bui

= K(Bui+A)

= KJui	iem

and therefore FI=KJ.

Next determine	 B,C	 according to	 (5.14)	 and	 (5.27), so that

(C,A,B)	 is complete,	 and	 H=KJ,	 where	 J,K	 are giver by (5.13)

and	 (5.15).	 It will be shown that there exists an automorphism

S:XiX	 such that diagram	 D6	 commutes.	 Let	 Kl:X4 X/Ker K be the

-17-



1
0
1
1
f
1
1

1
I ;
1
1
1
1
1

6

1
6

J	 X	 K

U	
S	 y	 (D6)_I

J_	 I	 K
X

canonical projection, so that K = K 2K 1 , where K 2 :X/Ker K	 X is monic.

Since K is also monic (by the construction of Section 5), there exist

.abt."cduies XXo' X/Ker K and Xo Z X such that X X~ HU. Since J:U-*X is

HU = K (JU) it follows that HU = KX, so that ^^ X. As in the

prc^: of :.emma 6.1, an isomorphism Q:X 0 -►X induces a map Q:Xo->X of the

cor ;.^;)r -0tng vector spaces; it is immediately verified that Q is an

isomorphism, so that Xo = X, hence X0 = X, and X--%,X/Ker  K. If C is the
vector subspace

C = {x:xERn , x+A E Ker K)

then, as before, an isomorphism Q:X- ►X/Ker K_ induces an isomorphism of
vector spaces Q:Rn -*RnIC, which implies C=O, and so Ker K_ = 0. Thus K

is monic, so there is an automorphism S of X such that KS ' = K. Then

KJ = H =. K(S-13); K monic implies J= S-1 J; and D6 commutes, as asserted.

By Lemma 5.1, S induces an automorphism S:Rn-*Rn such that SA=AS.

Clearly B=S B; and KS = K implies

P.(,,CSa(a) (X-A) -1 = PaCa(X) (a-A)-1S

_	 Ca (X) (a-A)

By (5-28),

y!CSa(X) (a-A) -lx = y!Ca(a) ( a -A) -lx E R(X)

for iep and xERn . Hence equality holds for x(a)ERn [a); setting	 8
-18-
	 0



•

x(a) = ( X-A)x j (icn) for a basis { y j ,jen) of Rn , there follows y!CS =

yiC, iep, and so CS = C. Thus (C,A,B) = (CS,S -1 AS,S -1 B)	 (C,A,B) and

therefore (C,A,B) is complete.)

Lemma 6.3

Any two canonical realizations of a TM are equivalent.

Proof

If (C l ,A 1 ,B l ) and (C 2 ,A 2 ,B 2 ) are canonical realizations of H:U-V,

'	 there are integers n l ,n 2 such that	 ]

n1	
n[ X ] / ( a -A i ) R

R	
'[X ] x U/Ker H

By the rational canonical structure theorem n 1 =n 2=n, say, and there is

an R-vector space automorphism S of R  such that SA 2=A 1 S. Thus

(C21A2,B2) = (21 S- 1 A 1 S,B 2) 	 (C2 S,A1?S- 
1 B 2

By the method of proof of Lemma 6.2, there are maps B,C such that

CC 2S, A1,S-1B2/ . (C,A,B)

and

(C1,A11B1)M (C,A11B);

S and the assertion follows.)

Lemma 6.4

If (C,A,B) is a complete realization of a TM H, then it is canoni-

cal.

Proof

In the notation of Section 5, it must be shown that

-19-



U/Ker H M X

For this it is enough to exhibit an epimorphism S:U-- ►X such that Ker S
z:vr H. Define S by the rule Sui = Bu  + A, iEm. Since (A,B) is con-

trollable, S_ is epic. Let u(X)E Ker S, so that Bu(X) = (X-A)u * (X) for

some u * (X) ERn [X) . Since (C,A,B) is a realization,

Hu(X) = P aCa(X) (X-A)-1((X-A)u*(X))

Pa_aMU* (X)

= 0

and therefore Ker S C Ker H.

For the reverse inclusion, suppose

PaCa(X) (X-A)-lx(X) = 0

for some x(X)ERn (X). Since x(X)=x+(X-A)x*(X) for some xERn , there

follows

P aCa(X) ( X -A) -1x = 0

and therefore

Ca(X) (X-A) -1x = 0

YFrom this it follows by observability that x =0, i.e., x(X)E(X-A_)Rn [XI -

Thus if u(X)e Ker H then Bu(X) = 0, so that Su(X) = Bu(X) + A = 0 in X.

Hence Ker H C Ker S, which completes the proof. 1

Lemma 6.5

A realization is minimal only if it is complete.

6

-20-



Proof

Let (C,A,B) be a realization of H, with A a map of Rn.

Write

n

E = F Range (Ai-1B);

i=1

define A 1 :E-E, A l = AJE; and B 1 :RniE, us--Bu. Choose ^ C R  arbitrarily

such that EQ+ F - R11; let P:Rn -E be the projection on E along F; and

define C 1 :E-►Rp by the condition C 1 P = CP. We claim that (Cl,A1'B1)

realizes H. If uMce[a] then

a 	 (a-A 1 ) -1 B luM = a 	 ( a -A)
-1 

Bu(a) E E[A]

where E[a] is the free module generated by E. Since PE[a]C E[X],

Cc%M (a -A) Bu(a) = C 1 a M (A-A 1 ) 1 B 1 u M

and the assertion follows.

From this we c nclude that (C,A,B) is a minimal realization only

if E=R n' i.e., (A,B) is controllable. Similarly, by introducing as

new state space the factor space

n

Rn I I Ker (CA i-1)

i=1

it can be shown that (C,A,B) is minimal only if (C,A) is observable.)

Lemma 6.6

•

A canonical realization is minimal.

-21-
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i

Proof

Any canonical realization has state space R 	 determined uniquely

by the module U/Ker H.	 Now a minimal realization always exists	 (be-

cause a realization does); by Lemma 6.5 it is complete; hence by Lemma

6.4, canonical;	 and the result follows.)

Theorem 6.1Proof of

The first assertion follows immediately by Lemmas 6.2-6.6. 	 For

the second,	 if two complete DS realize the same TM then 	 (Lem.-na 6.4)

they are canonical, hence	 (Lemma 6.3)	 equivalent.	 On the other hand

every TM has a canonical, hence complete realization. 	 Finally,	 let

(C,A,B)	 be complete and realize the reduced TM II,	 i.e.,

H = Pmac Ca (X) (a-A) -1B
—	 —	 —	 -- '

It will be shown that a(a)	 is uniquely determined as the minimal poly-

nomial of A.	 Since	 (C,A,B)	 is canonical,	 H = KJ with K, J defined as

in Section 5.	 Let a l be the minimal polynomial of A. 	 If

UM	 =	 a l (X)vP..)	 E	 al(),)Rm[XI

m
with -%, M)	 _	 Gi (a.) u i ,	 then, ^ .

JUM = al (a)JvM

m

=	 a l (X) ei(A)bi +	 A

i=1

m

= a l (A)	 0i(A)	 b 	
+ A

i=1

_	 0;
i

-22-
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therefore al(X)R 
m [a] C Ker H. Since H is reduced, ala l ; and by defini-

tion of a realization, alla.1

'	 7. COMPUTATION OF A CANONICAL REALIZATION

'

	

	 We indicate briefly how the construction of Section S can be per-

formed explicitly. Start with the p xm transfer matrix

H(X) = a(a) -1 H(X)

'	 As a polynomial matrix, H(a) can be factored by elementary row and

column operations, into the form

H(X) = P(X) D(X) 4(a)

e where P(p xp) and Q(m xm) are invertible polynomial matrices (i.e., have

R-valued, nonzero determinant) and D(1) = diag [dl(a),...,dr M ,0,...0]

is a pxm polynomial matrix with the diagonal shown (of length min(p,m)),

and zeros elsewhere. The d i can be chosen such that 61162,...6r -11 6r,
and are then unique up to factors in R. Then

rHM = a(a)
-1

pi(a)di(n)giM

' i=1

p i (a) d i (a)q i M
ai M

i=1

k

% Pi(X)gi(X)
_ 
L +	

E(X)
aiM

i=1

where pi ,g i are respectively the i th column, row of P,Q; a i = a/GCD(bi,a);

6 1	di/GCD(bi,a), p i ,g i are the remainders after division of

p i t h' qi, respectively, by a i ; E is a polynomial matrix; and terms in

1b

a	 -23-



t

the summation have been relabelled to retain only "i 
of positive decgrce

(i.e., k <_ r) .

Suppose deg `i = n i . Let A i be a cyclic ni\ni 
matrix in standard

form

0 1 0 . . . . 0

0 0 1 0... 0

A.	 .	 .	 .	 .	 .	 .	 .	 .
i

0 . . . . . 0 1

	

a il .	 .aini

where the 
aij 

are given by

ni

.t i (\) _ \nl -	 aij\j-1

j=1

From a i (\) compute the polynomials a(j)(\)(jcn1) as in (5.18), and de-

fine n.-vectors
i

n.-1
pi( \).= col1,.\....,.\ 1

(n.)
qiM = row	 M 	 1 (\)

Then it is easilv checked that

a i (\) (\-Ai ) 1 = pi(1)gi(\) + aiMEiM

where E i (\) is a polynomial matrix.

Next compute real matrices B i (n i xm) and C i ( p x n i ) such that

C i pi(\) = p i (\), qi( \)B i = q i (\)	 (iEk);

C  and B i always exist. Finally, let

(7.1)

-24-
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A = diag [A,. ... .Ak]

Bl

B =	 , C = [C1,...,Ckl

Bk

It is a straightforward exercise in matrix algebra to check that the

foregoing construction mimics the abstract procedure of Section 5. In

'	 particular it is helpful to note that we can take g i = col(0,...,0,1)

and hi = row (1,0,...,0) in each n i x ni block.

8. BIBLIOGRAPHICAL NOTE

In [1] Kalman described the canonical structure of a dynamic sys-

tem (relative to controllability and observability) which we exploit

in proving Lemma 6.5. Gilbert gave in [2] a realization procedure for

a transfer matrix having simple poles; the computation, via residue

matrices, is straightforward. Then Kalman [3] observed that, in general,

'	 a minimal realization could be computed by starting with an arbitrary

realization and reducing to a complete realization, as in [1]; the

'	 equivalence of minimality and completeness was announced but not proved.

In [4] Kalman gave the first general prescription for construction of

a minimal realization, identifying the state space dimension as the

(McMillan) degree of the transfer matrix; a realization was computed

from a prime-factor (i.e., Jordan) decomposition of the state space.

aThe first published proof of the equivalence of minimality and complete-

ness, and the fact that minimal realizations are equivalent (—), is due

to Youla [5], who worked directly with the differential equation for

the impulse matrix; the technique is more analytical than algebraic.

The module-theoretic viewpoint appears in Kalman's fundamental paper

[6]; the approach is via an input-output description in the spirit of

automata theory, with the states identified as Nerode equivalence

aclasses. As shown in [6], there immediately result the modular structure

•

a	 -25-
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of the state space, and the crucial factoring of the input-output map,

of which our diagram D1 is a modified version. Suggestive remarks on

the system-theoretic meaning of homology -equences can be found in the

expository paper (7]. In (8) Kalman gave an alternative concrete reali-

zation procedure by way of rational canonical decomposition of the state

space; this method is summarized in our Section 7, where the formula .

(7.1) is the "main lemma" of [8]. We note that in [8] the term "canoni-

cal" is used to mean what we call "complete". The algebraic relation

between non-minimal realizations is discussed in [9]. Finally Ch. 10

f [10] contains a systematic exposition of much of the work just cited,

.ogether with a presentation of the B. L. Ho algorithm for minimal reali-

zation of an impulse response matrix.

In the present memorandum our approach follows [10] in taking as

"input" module the free module Rm [a], but differs in the choice of

"output" module as R P [a]/a(a)RP [X] rather than the free module

of formal power series over R P (see definition (2.1) of [10], Ch. 10).

This set-up seems better matched to the "finiteness" of the transfer

matrix as a purely algebraic object (with no particular interpretation

attached to it as an input-output map), builds torsion in right at the

start, and perhaps results in a more symmetric role for the C matrix.

The formal definition of a transfer morphism is new. As a final detail,

the definition (5.17) of a "conjugate" generator, and the useful formula

(5.21), do not seem to have appeared before explicitly.
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