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1	 I. Intr-.duction

Controllability, observability, state feedback, state estimation, and the

notion of transfer matrix realization are all basically time domain concepts

which have played aii important role in the evolution of " modern control theory

'	 ; i.e. the analysis and design of dynamical systems via. state space techniques. .

'	 The primary purpose of this paper will be to present frequency domain ar.ologies

of these concepts in order to provide additional insight into the structure of

'	 linear systems, as well as offer alternative procedures for the analysis and design

of linear multivoriable systems. The reader should be aware at the outset that

'	 the results which will be presented here represent a natural extension of those

presented in ill. Consequently, a clear understanding of the main ideas pre-

'	 rented in Ill would prove most helpful in reading this paper.

The manipulation of polynomial matrices will also play a key role in the

'	 development employed. Therefore, several definitions and preliminary results

regarding this class of matrices are given in section 2. In section 3, a basic

result involving a frequency domain characterization of linear systems is proved.

This result, which we will call a representation theorem for a rational transfer

'	 matrix employs polynomial matrices and is analogous to the time domain concept

of a realization for a rational transfer matrix. The utility of this 'result, from

'	 the point of view of obtaining realizations, is then demonstrated in section 4.

A practical application of transfer matrix representations is made in section

' 5, which deals with the frequency domain analog of state feedback and estima-

tion. Two examples are presented in order to clarify the various results presen-

ted throughout the paper, and some concluding remarks are then mode in section 6.

'	 2. Definitions and Preliminary Results

A pol tnorriial matrix, P(s), is any matrix whose elements ore polynomials

( in this case in the Laplace variable s ). The degree of P(s) is defined as the

degree of the polynomial or polynomials of highest degree comprising P(s). We

'	 will consid!r only finite degree polynomial matrices in this paper.

0	 -1-
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0The following three elementary operations on P(s) may be defined:

I) Interchange of rows ( columns ) i and i

ii) Multiplication of row ( column ) i by a nonzero scalar

iii) Replacement of row ( column ) i by itself plus any polynomial p(s) times
any other row ( column ) j

An elementary matrix, E(s), will be defined as any matrix which can be ob-

tained from the identity matrix, L by a finite number of elementary operations

on 1. Note that the determinant of any elementary matrix is therefore a non-

zero scalar. Later we will show that any polynomial matrix whose determinant

is a nonzero scalar is an elementary matrix ( see Proposition 1 ).

A polynomial matrix, P(s), will be called equivalent to another polynomial

matrix, M(s), if and only if P(s) can be " reduced " to M(s) by a finite number

of elementary operations on P(s); i.e. if and only if there are two elementary

matrices, E I (s) and E2 (s), such that E I (s)P(s)E2 (s) = M(s). Equivalence will be

represented by the symbol ; i.e. P(s)--Mb).

The rank of a polynomial matrix is defined as in the case of constant mat-

rices; namely, the rank of P(s) is equal to the dimension of the largest minor of

P(s) with nonzero determinant. A square polynomial matrix will be called non-

singular if and only if its determinant is nonzero. The determinant of P(s) will

be written as IP(s)I. The inverse of a nonsingular polynomial matrix will be

written as P(s) -i or as P(s)+/IP(s)I, where P(s) + represents the adjoint of P(s).

Note that the only polynomial matrices, whose inverses are polynomial mat-

rices, are elementary matrices. Furthermore, the adjoint of a polynomial mat-

rix is a polynomial matrix.

` We now introduce the concepts of column proper ( and row proper ) poly-

nomial matrices. In particular, let d denote the degree of the i-th column

( an m x 1 matrix ) of the m x m matrix P(s).x P(s). Then P(s) is of the form,

1

1 -.
I

-2-
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sdcm +
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I

I P	 sdcm + . .mm

Ii
where the + ... denotes lower degree terms in s. Let r be the constant m x m

matrix [ pi[ ^, and ding[ sdc ' I the diagonal matrix with entries s dc '. If Pc(s)
is now defined as rdiog( sdci ), it can be verified by induction that IP(s)I =

IFIS ID + lower degree terms in s, where p = d c i . It is obvious that IPc (s)I =
ysp, where Y = III.

P(s) will be called column proper if and only if the scalar) , / 0. Note
that the " dual " concept of a row proper polynomial matrix can be defined in

an analogous manner; i.e.  P(s) is row proper if and on ly if its transpose, PT (s),

is column proper.

' Proposition 1 :	 Any ( m x m ) nonsingular polynomial matrix, P(s), can be re -

duced to a column ( row) proper matrix, P(s), by a finite number of element

' column ( row ) operations. 
t

perations .t

Proof:	 If IPc (s)I ¢0, P(s) would, by definition, be column proper and we would

' be done.	 On the other hand, suppose IPc (s)I = 0; i.e.Y = 0.	 This would imply

that the m column vectors comprising P c (s) were linearly dependent over the
monomials in s; i.e. if	 Pi(s) represents the i-th column of Pc (s), then IPc (s)I =
0 would imply that m

pi (s) PC(s) = 0	 (1 )

IC

1

for two or more nonzero monomials p i (s), i = 1,2 . .... m. 	 At least one of these
monomials cnn hP nite-rPwl to unit/ by dividing	 1	 by a nonzero monomial of

' lowest degree, pk (s); i.e.
m	 m

[pi (s)/Pk (s)1 P^ (s) _	 pi (s) P^ (s) = 0	 ( 2 ).	 -

t Note that we need only establish this proposition for the case of column pro-
' per reduction - the proof for row proper reduction follows directly by duality.

-3-
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6

where' k (s) = 1 . The replacement of colum,i k of P c (s) by (2) is analogous to
postmultiplying P c (s) by the elementary matrix E 1 (s), where E 1 (s) is the identity
matrix with an altered k-th column; i.e.

1 0 . . . p 1 (s) 0 .	 0
0 1 .. . P2 (s) 0 .	 0

U 1	 •
•E 1(s) _	 1	

(3)

Pk+ 1 s .

0..	 P (s) 0.	 1m

where at least one of the Pi (s), i / k, is nonzero. Postmultiplying Pc (s) by
E 1 (s) results in a zero k-th column of the product; i.e. if

ell (s) = Pc (s)E l (s),	 (4)

then Pc I (s) is equal to Pc (s) except for a zero k-th column. Now let

P 1 (s) = P(s) E 1 (s)	 (5)

P 1 (s), thus defined, is equal to P(s) with on altered k-th column. In particular,

the degree of the k-th column of P 1 (s) is strictly less than d ck , the degree of

the k-th column of P(s). Consequently, P 1 (s) is a new candidate for a column
proper matrix; i.e. IP^(s)I =Y1 spl + lower degree terms in s, where P1 is strictly
less than p. It should now be obvious that if Y1 = 0, this procedure can be re-

peated as many times as .necessary to produce ( for some j) a nonzero X. Then
P(s) = P(s)IT E i (s) = P(s)E(s), where E(s) = n E i (s), thus establishing the proposition.

_	 Earlier in this section, we stated that any polynomial matrix whose determin-
ant is a nonzero scalar is an elementary matrix. This fact can now be easily
established using Proposition 1.7 In particular, note that if IP(s)I were a nonzero

ti	 N	 /V

scalar, then P(s) = P(s)E(s), where P(s) would, by the above arguments, be a

constant matrix P. Therefore, P(s) = Pf 1 (s), and since any constant nonsingular

matrix is on elementary matrix by definition, P(s), the product of two elemen-

tary matrices, is itself an elementary matrix.

-4-
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'	 We now make use of the Smith canonical forni for polynomial matrices.

Employing a definition due to Rosenbrock, 21 we will call two polynomial mat-

rices, P I (s) and P2 (s), of dimensions p x m and m x m respectively, relatively

ELL=, if and only if the Smith canonical form of the composite ( p + m ) x m

rp2)
	

m
matrix	

I(s) 
is	 i.e. if and only if there exist two elementary matrices,

E I (s) and E2 (s), of dimensions p + m and m respectively, such that:1
E (s)	 P (s) E (s) = I	 (6)I	 p12(s) 2	

do

A fundamental result pertaining to relatively prime polynomial matrices can now

'	 be established, namely:

'	 Proposition 2 : Let P I (t) and P2 (s) be relatively prime polynomial matrices of

dimensions p x m and m x m respectively. Given any arbitrary m x m polynomial

'	 matrix M(s), there exist polynomial matrices, M I (s) and M2 (s), of dimensions

m x p and m x m respectively, such that

M I (s)P 1 (s, + M2 (s)P2 (s) - M(s)	
(7) .

Proof: We make direct use of the definition of relatively prime polynomial mat-

rices; i.e. partition E I (s) of (6) into four submatrices, namely

'	 E (s) E
E 1(s) =	

11	 12(s)	
(8)

E21 (s) E22(s)

'

	

	 where EI I (s) is m x m, E 12 (s) is m x p, E 21 (s) is p x m, and E22 (s) is p x p .

Equations (8) and (6) then imply that ( E II (s)P2 (s)+ E 12 (s)P I (s) IE 2 (s) = m.

IC	 Since E2 (s) is an elementary matrix, we can postmultiply the above by the in-

verse of E2 (s) and premultiply by E2 (s) to obtain:	 - -

'	 E2 (s) E II	 2	 2(s) P (s) + E (s) E 12	 1	 m(s) P (s) = I	 (9)

'

	

	 Premultiplying the above by M(s) establishes the desired result; i.e. equation

(7), where

-5-
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M(s)E2(s)E12(s) = M 1 (s )	 (10)

and

M(s)E2(s)EI 
l
(s) = M2 (s)	 (11)

3. Realizations and Representations

The definitions and preliminary results on polynomial matrices established

in the previous section will now be used to provide a rather natural analogy

between time domain and frequency domain " factorizations " of linear systems.

In particular, consider the following time domain ( state space) description

of a linear system:

x=Ax+Bu; Y=Cx	 (12) ' 3

where x is an n-vector, called the state, u is an m-vector, called the input,

y is a p-vector, called the output, and A, B, and C are constant matrices of

the appropriate dimensions.	 The triple I A, B,C I will be used as an alternate

characterization of the system (12) . 	 If we take the Laplace transform of (12),

and solve for y(s) in terms of u(s), assuming zero initial conditions on the state

x, we readily obtain an expression for the transfer matrix 	 T(s), of the system

in terms of the triple I A, B, C	 ; i.e.

y(s) = T(s)u(s), 	 (13)

where	 .

T(s) = C(sl - A) -1 B	 (14)

/	
Note that T(s) is a p x m matrix of " proper " transfer functions; i.e. a rP oper

t	 transfer matrix. The term proper implies that each of the ( pm ) transfer func-

tions comprising T(s) satisfies the condition that the degree of any numerator

polynomial is strictly less than that of the correspmding denominator polynom-

ial. If the degree of the numerator polynomial were allowed to be less than

or. equal to that of the denominator polynomial, the term realizable would be

	

i	
L

tWe will assume throughout this paper that all possible pole-zero cancellations
	 1

have been made when speaking of transfer matrices. 	 3

-6-
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used rather than proper. We Will soy more o, ,00t rtul;zab le transfer matrice s

in section 5.

Clearly, every system triple,;A,B,C J,yields a unique transfer matrix via.

(14). However, the converse is not true; i.e. given any proper transfer matrix,

TO), one can readily characterize an entire class'of triples which yield T(s)

via. (14)^ 1J Any such triple will be called a realization of T(s) of dimension

n, where n is the dimension of the A matrix. A realization of T(s) of lowest
A A A

possible dimension n, denoted IA,B,C } , will be called a minimal realization.

The question of obtaining minimal realizations of proper transfer matrices

has been the subject of numerous investigations^ l1[3J[4]j51and it is well known

that:

i) Anx r^oper transfer matrix, T(s), does have a minimal realization,
A,B,C of dimension n.

	

n n A	 A A
ii) If A, B, C is a minimal realization of T(s) then the pair A, B I is

completely controllable, and the pair ; A,^J is completely observable.
The purpose of this section is to introduce a frequency domain concept

which is analogous to the time domain concept of realizations of transfer mat-
rices. In subsequent sections we will discuss and illustrate the utility of this
concept. In particular, we define a controllable representation t of a p x m
transfer matrix, T(s), as any pair, I P I (s),

 P2 
(s)J,of polynomial matrices which

satisfies the relationship:

TO) = P 1 (S) P2 I (s)
	

(15)

Clearly, P I (s) and P2 (s) have dimensions p x m and m x m respectively. The
order of a controllable representation will be defined as the degr,-e of IP2(s)l.

A	 14%
The pair,I P I (s), P2 (s) { ,will be called a minimal controllable representation of

	

TO) if and only if:	 •

0 The pair, ( P I (s),
 P2 

(s)) ,satisfies (15), and

ii) % controllable representation of TO) of order lower than that of
(P I (s), P2 (s) ) does not exist.

In a dual fashion, we define on observable representation of a p x m transfer

t In the next section, we will demonstrate how to obtain a controllable realization

from a controllobl,- representation.

1
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A^
B^

I

matrix, T(s), as any pair , f Q  (s),Q 2 (s) ).of polynomial matrices which satisfies

the relationship:

T(s) = Q^ 1 (s)Q2 (s)	 (16)

Clearly, Q 1 (s) and 0 2 (s) have dimensions p x p and p x m respectively. The

order of an observable representation wil( be defined as the degree of IQ1($)I.

The pair , {Q 1 (s), Q2 (s) ),will  be called a minimal observable representation of

TO) if and only if:

I) The pair, {QI(s),Q2(s) ),satisfies (16), and
ii) onAobserv

^
able representation of T(s) of order lower than that of

{QI(s),Q2(s)) does not exist.

One additional definition is required prior to the establishment of a basic
result of this paper. In particular, we recall that any proper p x m transfer

A A	 q	 A
matrix, T(s), has a minimal realization ; (A, B,C ),of dimension n. If B is of

full rank m, and C of full rank p, the transfer matrix, T(s), will be called

full rank proper. The majority of physical systems with proper transfer mat-

rices do satisfy this full rank condition, and most of our attention will focus

on such systems.

We will now establish a theorem basic to the structure of linear multivari-

able systems and analogous to known results pertaining to time domain realiza

Lions of transfer matrices.

Theorem 1 : Any p x m full rank proper transfer matrix, T(s), has a minimal

controllable (observable ) representation, {P1(s),P2(s)) ( (Q I (s), Q2(S)

Furthermore, any such minimal representation satisfies the conditions:
CA A A	 A

I) If {A,B,C ) is a minimal realization of T(s), then IP2(s)l ( IQ 1 (s)I )
A

divides and is divided by IsZ- AI.

A
( 	 A

Ii) P I (s) and P2 (s) ( Q 1 (s) and Q2 (s) ) are relatively prime polynomial

matrices.
t

Proof: The proof of this theorem involves a combination of results. The first

tAs in the case of Proposition 1, we need only establish this theorem for the

case of controllable representations. Duality can then be employed.

-8-
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of these, the structure rheorem I I I has been established elsewhere, and is repeated
here for convenience os the first lemma; i.e.
Lemma 1 : Any p x m full rank proper transfer matrix, T(s), can be written as:

T(s) = CS(s)( 
A-]	 -1

)-I	 (17)

^	 ^-1
where CS(s) and 8 S(s) are p x m and m x m polynomial matrices respectively.

Furthermore, if (A,B,C) is a minimal realization of T(s), then IB-IS(s)I = IsT-AI.
^	 A m

The proof of this lemma and the definitions of C, S(s), S(s), and 8 m are given in
11], and will not be repeated here. Furthermore, for convenience, we will let
P I (s) = CS(s), and P2 (s) = 6mI6(s); i.e.  by (17) then, we can write T(s) = P1(s)

times P2 1 (s) .	 V

The second result we will employ is, itself, a useful result, namely:
'

	

	 Lemma 2: If {P I (s), P2 (s) ) is an n-th order controllable representation of T(s),

there- exists an n-th order controllable realization {A,B,C ) &f T(s).
'	 A constructive proof of this result will be postponed until section 4, which deals

witi , techniques for obtaining realizations from representations.
We note here that Lemmas 1 and 2 can be employed to establish most of

Theorem i . In particular, Lemma 1 establishes the fact that every full rank
I.r

proper transfer matrix does have a controllable representation, namely{ P 1 (s), P2(s)),
A ^

and therefore a ,- a nimal controllable representation { P I (s), P2
 (s). We will, in

I fact, now establish that {
H
P1(s), 

N
P2 (s) ) is a minimal controllable representation.

To do this, note that ( P I (s), P2 (s)) is of order n, since IP2 (s)I = IsT - Al, whereI	 A
A determines a minimal realization of T(s) of order n. By Lemma 2, a controll-

able representation of T(s) of order less than n can not exist, since this would
i	 imply the existence of a corresponding realization of T(s) of order less than n,

q, N
'

	

	 which is impossible. Therefore, the pair ( P I (s),P2 (s)I is a minimal controllable
representation of T(s).
Lemma 3 : Consider the minimal controllable representation, ( P (s), P2 (s)) , of

T(s) introduced in Lemma 1. The Smith canonical form of P2^^ is i ^n]: i.e.
1	 ^-

-9-
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e
P I (s) and P2 (s) ore relatively pri me.

^Proof : By Lemma 1, IP2 (s)I = IsT - Al ,, where A is a member of a minimal real-

ization of T(s). Using this fact, one need only repeat the .arguments of Rosen-

brock 16] to establish Lemma 3.

Lemmas 1, 2, and 3 establish the fact that given any p x m full rank proper

transfer matrix, TO), one can find a minimal controllable representation of T(s),
N IrI	 ^

namely ( PI(s),P2(5)) , which satisfies the two conditions of Theorem 1. All

that remains to be shown is that any minimal controllable representation of T(s)

also satisfies these two conditions. We do this by establishing an equivalence

relationship between minimal representations, namely:

Lemma 4: If (P 1 (s), P2 (s)]is a controllable representation of the p x m full

rank proper transfer matrix, T(s), and ( P I (s), P2 (s)} , a minimal controllable

representation of T(s), then there exists a nonsingular polynomial matrix, R(s),

such that P (s) = P (s)R (s), and P (s) = P (s)R (s); i .e.1	 1	 — 2	 2

T(s) = P I (s) P2 1 (s) = P I (s) R (s)l P2 (s) R (s ) ] -1 = P I (s) P2 1 (s)	 (18)

	

Furthermore, IR(s)I divides IP 2 (s)I, and if f P I (s), P2 (s)} t is a minimal controll-	 A

'able representation of T(s), R(s) is on elementary matrix.
1

Proof: Write T(s) as the product P I 	 2(s)P (s) as given by Lemma 1 . By Lemma 3,

P I (s) and P2 (s) are relatively prime. Hence,

-1	 -1
TO) = P I (s)P2 (s) = P I (s)P2 (s),	 (19)

or	 _	 r

P,
PI (s) 2(s)P2(s)

(20).	 (s). = 
IP2(s)I

Since PI (s) is a polynomial matrix, IP2 (s)I must divide the product PI(s)P2(s)P2(s).

Now, by Proposition 2, we can find a pair of polynomial matrices, fMI(s),

M2 (s) } , such that:

MI (s)P I (s) + M2 (s)P2 (s) = m ,	 (21)	 t

t
This final lemma is also important in that it establishes the relationship between

any controllable representation of a transfer matrix, and one of minimal order.

-10-
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or,

M I (s)P I (s)P2(s)P2 (s) + M2 (s)P2 (s)P2 (s)P2 (s) = P2(s)P2 (s)	 (22)

Since 
P2 

(s)2(s) = IP2 (s)IIm , and since IP2 (s)I divides the product PI(s)P2(s)P2(s),

it follows that IP2 (s)IIn can be factored from the left side of (22); thus IP2(s)I

must also divide the right side of (22), namely P2(s)P,)(s). Consequently, the
.%0+ ^^

quotient j P2 (s)P2 (s)/IP2 (s)I ) is a polynomial matrix which we will call R(s), or

P2 1
(s) P2 (s) = R (s)	 (23)

Therefore,

P2(s) = P2 (s)R(s)	 (24)

and from (20),
PI (s) = P I (s)R (s)	 (25)

.v
It now follows from (24) that IP2 (s,I = IP2 (s)IXIR(s)I, or that IR(s)I does divide

IP2 (s)I . Furthermore, note that if ( P 1 (s), P2 (s)) were a minimal controllable

representation of T(s), then IP2 (s)I would be a polynomial of degree n, as would

IP2 (s)I. Since we have just established the fact that IP2 (s)I = IP2(s)IXIR(s)1,

this implies that IR(s)I must be a polynomial of degree zero; i.e. a scalar.

Consequently, if { P I (s), P2 (s) } is a minimal controllable representation of

T(s), R(s) must be an elementary matrix. Lemma 4 is thus established.
N N

Therefore, since { P ($),P (s) ) satisfies the two conditions of Theorem 1, any
_	 1	 2

{ P I (s), P2 (s) } _ { P 1 (s)E(s), P2 (s)E(s) } also satisfies these conditions by direct

arguments. Theorem 1 is thus established.

To summarize thus far, we have introduced a new concept pertaining to

the transfer matrix characterization of linear systems. This frequency domain

concept, called a representation, is analogous to the time domain concept

of' realization. More specifically, we have shown that any full rank proper

transfer matrix, T(s), can be factored in three different " minimal " ways; i.e.

T(s) = C(sI - A)-1 B = P I (s ) P2 I (s) = Q 1 1 (s )Q2 (s )	 (26)

	

All of these " factorizations " share certain common properties. In particular, 	 I

-11-
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f

^	 A	 ^	 A

IsI - Al, IP2 (s)I, and IQ I (s)l are all n-th degree polynomials differing by, at

most, a scalar multiplier.	 The word " minimal " associated with these three 0
1factorizations implies ( as for as the quantity CK - A) 	 B is concerned) that

^ .A	
A Athe pair {A, B ) is controllable, and the pair { A,C) is observable. 	 An anal-

ogous interpretation regarding the pairs f P I (s), P2 (s ) ) and ( Q	 (s), Q 2 (s) ) willI

be the subject of the next section, which deals with the derivation of realiza-

tions from representations.

4.	 The Derivation of Realizations from Representations

The results which have been presented thus for are primarily of academic

interest; i.e. if one could obtain a controllable or observable representation

of some transfer matrix, T(s), it is not at all clear how such a representation
could then be used for the purpose of analysis or design. 	 The remainder of

this paper will focus on such practical considerations. 	 Before presenting any

direct utilization of representations however, it will be of interest to consider
the relationship between realizations and representations.

For reasons which will become more obvious as we progress, we will first
consider the question of converting from a representation 

t
to o realization.

In particular, we will demonstrate constructively how one can always obtain
on n-th order realization from an n-th order representation, thus establishing

Lemma 2 of the previous section.
Consider the n-th order representation, { P I (s), P2 (s)) , of the full rank

proper transfer matrix T(s); i.e. IP2 (s)I is a polynomial of degree n. By Prop-

osition I ( section 2 ), P2 (s)can be reduced to column proper form via. some
elementary matrix E*(s). Call the resulting column proper matrix P (s); i.e.

P2(s^ = P2 (s)E*(s)	 (27)

Let P*_ (s) = P I (s)E* (s), and note that

T(s) = P* (s)P2 I (s)	 (28)

tAgain, we will deal primarily with controllable representations--by duality,
analogous results hold for the case of observable representations.

-12-	 . O
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{ P l*(s), P^(s) I is also a controllable r,!pres( station of T(s) of order n.

Define G* as the constant m x m mutrix consisting of the coefficients of

the highest degree s term or terms in each column of P*(s) ( G* is analogous

to the matrix ('defined in section 2). G* is nonsingular since IP2 c (s)l is a

nonzero monomial. If P2(s) is premultiplied by G *, l the resulting polynomial

matrix, which we will call D(s), is characterized by the fact that the highest

degree s term in each ( i-th ) column of D(s) appears in the corresponding ( i-

th) row with unity coefficient; i.e.

	

D(s) = G* -1 P2(s)	 (29)

where D(s) can also be written as:

D(s) = D c (s) - Am S(s),	 (30)

where D c (s) is a diagonal matrix with entries s 01i
	 i = 1, 2, ... m. The cri

have a special interpretation which is more thoroughly discussed in M. A
m

is an m x n constant matrix whose elements are directly determined by (29)

and (30), and S(s) is an n x m matrix of monic monomials in s. In particular,

1 0	 0	 ...	 0

s 0	 0

svl- 1 	 1	 ...	 0

S(s) =	
0	 s	 (31)

0

LO	 0	 ...	 s Qm-1 I

We can write T(s) as the product:

T(s) = P^(s)( G*G*-1P*(s) J-1 = P*(s)D-1(s)G*-1
	

(32)

This expression for T(s) admits a direct time domain realization (A,B,C )by

-13-
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virtue of the results given in 11 1. In particular, P^ (s) is analogous to CS(S)I^

D(s) to6(s)^1 and G* -1 to BmlJ.

More specifically, an n-th order realization, r A,B,C) , of T(s) can be

obtained as follows; An appropriate p x n matrix C can be found directly by

inspection, since P^(s) can be written as CS(s) 	 where S(s) is given by (31).
k

Now define d  = Lai as in (1 J. Note that dm = n. Replace the ( m ) dk-th
1

rows of an n dimensional companion matrix by the ordered ( m ) rows of Am,

where Am is given directly by (30) in much the some way as C was obtained.

The resulting matrix is on A corresponding to the above choice for C11 ^. Sim-

ilarly, replace the ( m ) d k- th rows of on n x m null matrix by the ordered

( m ) rows of the m x m nonsingular matrix G*
-1 . The resulting matrix is a B

corresponding to the A and C already selected. The triple { A, B,C ) , thus

obtained, is a controllable realization of T(s) obtained from the controllable

representation, ( P 1 (s), P2 (s)) , of T(s). Herein lies the motivation for associat-
ing the word " controllable " with a representation which factors as P1(s)P21(s).

By duality, one could obtain on observable realization of T(s), given an ob-

servable representation, (Q1(s),Q2(s) ) , of T(s). A simple algorithm to use

is the one.outlined above, only applied to the transpose of T(s), and later

transposed again; i.e. T T (s) = Q2(s)Q 1 T (s) would yield an observable triple

T( realization ), ( A, 
C T BT ) .

The algorithm which we have just outlined for obtaining realizations from

representations is just that, an algorithm. The reader should really be com-

pletely familiar with the results given in 111 in order to interpret it as a con-

structive proof of lemma 4.

So far, we have discussed certain implications associated with certain

representations of T(s). However, we have not discussed a more fundamental

question, namely how to obtain representations; i.e. factorizations of T(s)

as either the product P 1 (s)P2 1 (s) or Q 1 1 (s)Q2 (s). Also, we have not presented

any methods for determining whether or not a particular representation is min-

3

1 ^_

1

i

i-i
-14-
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imal.	 Some discussion of these questions appears to be in order.

First, we remark that in general, the problem of finding a representation

f of T(s) is analogous to that of firding a realization of T(s). 	 In fact, the al-

gorithm just outlined allows one to rather easily obtain an n-th order realiza-

tion from an n-th order representation of T(s). 	 The converse is also straight-

forward and is one of the results presented in jl].	 We might also remark that

' it is relatively easy to obtain either a realization or a representation of a given

transfer matrix provided minimality is not important. 	 Unfortunately, in most

a; applications, minimality is a key concept, since it is tied to controllability

and observability of the system under consideration. 	 In the case of realizations,

1 " reducing " any n-th order realization to an n-th ( minimal ) order one in-

valves some rather intricate computations , An analogous condition holds in

the case of representations as one might expect; i.e. as previously . shown -

see Lemma 4 - if a controllable representation ( P I (s), P2 (s) I is not minimal,

there exists a nonsingular polynomial matrix, R(s), which can be postmultiplied

( factcred ) out of both P 1 (s) and P2 (s) to produce a minimal controllable rep-

resentaticn.

' The development of algorithms for determining when two polynomial mat-

rices are relatively prime, finding postfactors such as R(s), and factoring poly-

nomial matrices has and will continue to be the subject of further investiga-

tions.	 Some interesting results have already been obtained. 12][61171

5. Feedback Compensation

In this section, we will present an application of the methodology develop-

ed in the previous sections.	 In particular, we will outline a ( frequency domain )

feedback compensation technique for linear systems in order to achieve some

desired closed loop transfer matrix. 	 An analogy between this technique and

( time domain ) state estimation and feedback will then be made and demon-

strated by example.

0

ti

-15-



W (s) ± y (s)
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To begin, consider any controllable r^Niesentatio , i, ^ P i (s), P2 (s)) , of

T(s), where P2 (s) is ossumed ( for convenience ) to be column proper and equal

to G*D(s) ( see eqs. (29) and (30) ). Suppose we desire the " closed loop

transfer matrix . T F (s), where

TF (s) = Pl (s)P2F(s),	 (33)

and

P2F(s) = P2 (s) - FS(s),	 (34)

S(s) is given by (31), and F is an m x n constant matrix. We will call the

pair { P 1 (s), P2F (s) } , a closed loop controllable representation of the transfer

matrix•

Let us now consider a design procedure which will produce this desired

closed loop transfer matrix under the appropriate conditions. In particular,

consider the following block diagram, which represents feedback compensation

for the system whose open loop transfer matrix T(s) = P I (s)P2 1 (s); i .e.

Figure 1

Frequency Domain Estimation

_

	

	 We define a frequency domain estimator of FS(s) = P2 (s)- P2F (s), as a

triple,{Q 1 (s),Q 2 (s),Q 3 (s) } , of polynomial matrices of dimensions m x p,

M x m, and m x m respectively, which satisfies the following three conditions:
ti

•The motivation for this terminology will become more apporont when we later

relate F to closed loop " state " feedback in the time domain.

-16-
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(i)	 Q 3 (s) is nonsingulor, and IQ 3 (01	 is Hunwitz; i.e.	 'he roots of IQ3(s;l

lie in the half-plane	 Ke s < 0.

t(ii) Q 3 1 (s)( Q 2 (s),Q I (s) I is a realizable ( section 3 )	 m x ( m+p j transfer

matrix; relating the Laplace transform of the output, v(s), of the es-

' timator, to the Laplace transform of the input 
IYU

(s
 (s)

' (iii)	 The following relationship holds:

Q3(s)FS(s) =	 Q 	 (s ) P I (s) +	 Q 2 (s) P2 (s)	 (35)
The following important fact can now be established:

' Theorem 2 : The above three conditions which define a frequency domain es -

timator are sufficient to insure that the closed loop transfer matrix, T F (s), de -

picted in Figure l; i.e. y(s) = T F (s)w(s), is equal to P I (s)P2 F(s) as defined by

eqs . (33) a2rrLd (34) .

' Proof:	 implicit in	 1; i.e.Consider the equations	 Figure

U (s) = w(s) + Q 3 1 (s)Q2 (s)u (s ) + Q 3 1 (s)Q 1 WAS )	 (36)

Also,

! y(s) = P 1 (s) P2 1 (s)u (s )	 (37)

' Substituting (37) for y(s) in (36) and collecting terms, we obtain:

( I - Q3-1 (s) I Q` (s ) - Q 1(s) P 1 (s ) P- I (s) J 1 u (s )	 =	 w (s),	 (38)
' or

Q3 1 (s) I Q 3 (s)P2 (s) — Q 2 (s)P2 (s) — Q 1 (s)P 1 (s) I P2 1 (s)u (s)	 =	 w (s )	 (39)

If (35) is now used in (39), we obtain:

I P2 (s)-	 FS(s) I P2 1 (s)u(s) = w(s),	 (40)

' or employing (33),

P2F(s)P21(s)u(s) 	 = w(s)	 (41)

Since P2F (s) is nonsingular !11
U (s) =	 P (s) P2 F (s)w (s),	 (42)2

-17-.
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Figure 2

Closed Loop State Space System

n

0

and using (37), we obtain the desired result; i.e.

Y(s) - P 1 (s)P2F (s)w(s)	 (43)

which establishes the theorem.

To summarize, we have now shown how . one can design a feedback compen-

sation system ( a frequency domain estimator ) which produces a desired closed

loop transfer matrix. Note that no specific reference to the " state " of the

system has been made, nor has it been necessary. However, it is perhaps app-

ropriote to now employ this concept in order to relate our results to known time

domain results. In particular, there is a rather natural analog between the com-

pensation scheme just presented and the time domain concepts of state estimation

and feedback, as we wi I I now show.

To begin, let us employ the algorithm given in section 4 to obtain a contro-

llable realization f A, B, C ) , of T(s) corresponding to f P I (s), P2 (s)) ; i.e.

T(s) = P I (s)P2 1 (s) = C(s I - A) -1 B	 (44)

Recalling the interpretation of the realization f A, B,C ) in the time domain

via. the differential equation (12), we will define state-feedback ( in the time

domain ) as the control law,

u = Fx+w, (45)

where F is the m x n constant matrix given by (34), and w is an m-vector rep-

resenting the external input to the system as indicated in Figure 2; i.e.

t

r
r

o^
-18-
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I
' Substituting (45) for u in (12) results in the closed loop system,

' x = (A i BF)x {	 Bw ;	 y = CX	 (46)

as represented by Figure 2.

'

The closed loop transfer matrix associated with' this system is readily deter-

mined; i.e.

'
A

y(s) = T F (s )u (s),	 (47)
where

^i
TF(s) = C(s 1 — A — BF) -1 B	 (48)

Equation (48) clearly contains a rather simple alteration of the original expres-

sion for the open loop transfer matrix as given by (14), namely the replacement

of A by A + BF.	 The analogous interpretation of " state feedback " from the

' point of view of the controllable representation, { P 1 (s), P2 (s) I , of T(s) has

already been made, namely the replacement of P
2
 (s)by P2F (s) as given by (34).

In short, from our analysis thus for and some rather elementary arguments given

in 111, 	 i t follows that:

' T (s) = T (s) = C (s I - A - BF) 	 = P (s) P;, (s)	 (49)
F	 F	 1	 F

' State feedback in the time domain can therefore be directly related to a closed

loop controllable representation of the transfer matrix.

1 State estimation in the time domain can similarly be related to frequency

domain estimation. 	 Due to spatial limitations however, we will not present

' a time domain characterization of state estimation here since we would only

be repeating well known results (81(91 We should emphasize however, that in

order to achieve a state feedback design ( as depicted in Figure 2 ) when only

the output y of the system is measurable, it is necessary to employ a technique

' such as state estimation or frequency domain estimation.

Note that we have thus for avoided any reference to the term " minimal

when discussing either realizations or representations of the systems under con-

sideration in this section.	 It is, nevertheless, on important concept for the

1

a

i

a	 -19-
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following reason.	 In the case of time domain state estimation, it is well known

that in order to construct a total state estimator, system observability is requir-
(81.ed;	 i.e. the controllable realization f A, B, C ) we have been discussing, must

also be observable, and hence minimal ! 3J141 Similarly, from the point of view

of frequency domain estimation, a solution to (35) is guaranteed, regardless

of the choice of Q 3 (s), provided the representation I P I (s), 
P2 

(s)) is minimal;

i.e. Theorem 1 then guarantees that P I (s) and P2 (s) ure relatively prime and

hence that Proposition 2 holds. .

t	 A number of unresolved questions associated with this frequency domain

approach to design remain which will require additional investigations.	 For

example, nothing has been said regarding the increase in system order required

to implement the frequency domain estimator. 	 It might be desirable to keep

the degree of IQ 3 (s)I ( the order of the Estimator ) as low as possible. 	 The prob-

lem of finding a triple JQ I (s),Q2 (s), Q
3 (S)}which produces the desired closed t

loop transfer matrix is not a trivial task in the case of multivariable systems

the existence of such a triple depends on known time domain results 
181191

Unfortunately,. we cannot answer all questions related to the implementation

of frequency domain estimator feedback at this time. 	 Under certain conditions,

however, the construction and feedback utilization of frequency domain estim-
A

ators is relatively simple and straightforward, and we will focus our attention r

on two such cases in this paper.	 In particular,

Case 1)	 Consider the case when:

a)	 P I (s) is square and nonsingular

b)	 IP I (s)I is a Hurwitz polynomial

c)	 FS(s)P I I (s) is a realizable transfer matrix -_

If in (36), Q 2 (s) is set equal to zero and

FS(s)P 1  I (s) = Q3 1 (s)Q I (s).	 (50)

then substituting FS(s)P I	(s) for Q3 (s)Q I (s) in (36) and employing (37) directly

yields the relationship:

'-20-



or

I I - FS(s)P2 1 (s) lu(s)	 w(s),	 (52)

from which equations (40) through (43) follow directly, thereby producing the

desired closed loop transfer matrix T F (s)	 PI(s)P2F(s).

Example of Case 1 :

Suppose that
s3 — 3s2 — IOs ' 3, s3 

+3s

	

TO) _ — 3s3 — s2 + 3s — 17, 2s2 + 6	 (E 1)

s4 1 s3 - 5s2 + 3s

The reader can verify that a minimal controllable representation, ( P I (s), P2 (s)1 ,
of TO) is the pair,

s+3s
P I (s)	 -3s - 7, 2	 (E2)

where	 A
1PI(s)I _ 3s2 f 9s + 6 - 3(s + 1)(s + 2),	 (E3)

( note that conditions a and b defining Case 1 are thus satisfied )

and
s2+3,•	 0

P2(s)	 [4s + 5 , s2 - 2s + 1	 (E4)
where

IP2(s)I = s4 + s3 -5s2 + 3s = :;s + 3)4 - 1)	 (E5)

A	 ^►

Remark: In this example, P I (s) and P2 (s) con be obtained using the algorithm

of Menahem 171 to factor the numerator of TO).

Note that this open loop system is clearly unstable. Suppose we now wished an

asymptotically stable " decoupled " closed loop system. Employing the results
A

given in 111 and (101, we conclude that in this case, a P 2F 0) and G exist such

that: .

•

(;,1)

-21-



0

r

Y

0•

It

e

i

e

-	 I	
0

p  (S)p2F ts)G	 s , 4
	

—3	 (E6)0	
s +5

after all possible pole—zero cancellations have been made. We directly deter—

mine thutiiOJ(i11

	

G =	 - l1	 (E7)

A	 A	 s+4, 0

Since P l (s) and G are now known, we can solve (E6) for P2F (s) = G	 s + 5

^	 0times P l (s), and for this example, 	 —3

A	 s2 + 22/3s + 35/3,	 —2/3s— 10/3

P2F (s)	 —1/3s+ 1/3	 s2 + 14/3s + 10/3	
(ES)

FS(s) is now given by (34); i.e.

A	 ^	 —22/3s — 26/3, 2/3s+ 10/3
FS(s) = P2 (s) — P2F (s) 	 (E9)

13/3s + 14/3, —20/3s — 7/3

n

Solving for FS(s)P 1 1 (s) using (E2) and (E9), we obtain:

2s2 + 6	 8s2 + 14s + 10

FS(s)P I l (s) = —20s2 —45s —7, —1ls2 —27s —7	 (E10)

3(s+l)(s+2)

A
Clearly, FS(s)P I 1

(s) is a realizable transfer matrix( condition c of Case 1 is

Phus satisfied ), which , when substituted into the feedback path as indicated

below in Figure El, yields the desired closed loop transfer matrix as given by

(E6) .

^_
G	 I u s	 P  (s) P2`1

Y(s)

	

v(s)	 FS(s)P11(s)

Figure El

Case 1 Closed Loop System

—22—



The overall system represented by f iyure r ► i, i,_rk ,...4e. ;;;!f fcu: po!c-zero

cancellations at s - -1,-1,-2, and - 2 1. i1 An olp-rilhm for constructing a time
^-1domain realization of FS(s)P I (s) car , easily be determined using the results

presented b y re ( section 4) and in reference (11. In particular, if

z = Hz + Jy

v = K  + Ly	
(E11)

where

H	 -2i3 -2,i3	 J	 I	
1%3I' 

k	 -1 5	 L	 -20/3 -11 , /3 '

then:	 1	 ^- 1

	

K(sI - H) J + L = FS(s)F I (s)	 (E12)

as given by (E10).

Case 2) Consider the case when m = p = 1; i.e. the case of scalar ( single in-

put, single output ) systems. In this case, our results can be tied to th, c:: ,-kal

resultant and eliminant . matrix of Sylvester• In particular, we will write lire open

loop transfer funct ion TO) as:
n-1

T(s) _ P
I (s) _ p IO + p i I s + ....	 .. + Pl,n-ls	

-	 (53)
n

P2 (s)	 P20 + P21 s + ...
	 + P2ns

The eliminant associated with this transfer -function (or the pair of polynomials

{ PI (s), P2 (s)) is the ( 2n - 1 ) x ( 2n - 1 ) matrix E defined below; i.e.
1

E =

0 . • .	 0 P20 P21 ' ' '	 • . P2n
0 ... p20 P21 ...
	 .. P2n 0

P20 P21 •• • •	
P2n 0 ...	 0

0 ...	 0 PIO PH "'	 Pl,n-I
0 ...	 P10* P 11	 Pl,n-I 0

P10 PII ...	 P 1 n-1 0 ...	 0

(n- I j i ows

(M)

n rows

to discussion of Sylvester's resultant and eliminarrt matrix can be found in a

number of earlier texts dealing witlr linear equations; e.g. 1121.
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Note that the entries of E, the eliminant, arc simply the coefficients of the

polynomials P i (s) and P2 (s). Sylvester first defined the eliminant matrix Gild

its determinant, the resultant R, and established the fact that the resultant

R = IEI is nonzero if and only if P I (s) and P2 (s) are relatively prime. The sig-

nificance of thi, fact, from the point of view of frequency domain estimation,

is most important as we will now show.

In the scalar case, a frequency domain estimator is a triple, f QI(s),Q2(s),

Q 3 (s) ) , of polynomials which satisfies the three conditions discussed earlier

in this section. In particular, Q 3 (s) is a polynomial whose roots are the "poles"

of the estimator. It is well known that in the scalar case, complete observa-

bility of a system is sufficient to insure that a ( tine domain ) estimator with

arbitrary poles of order n-1 can be constructed I s)191 Furthermore, this estima-

tor is characterized by the fact that its state and the system output y "exponen-

tially approach " the state, x, of the open loop system with time. An analogous

result holds in the frequency domain. In particular, let Q 3 (s) be any arbitrary

Hurwitz polynomial of degree n-1 . Recall that FS(s) , the difference between

P2 (s) and P2F (s) is a polynomial of degreeL n-1 . Therefore, the product Q3(s)

times FS(s) , as given by (35), is a polynomial of degree L 2n-2. This product

will be written as:

2n -2Q3 (s)FS(s) = m 0 + m I s + ...	 .. + 
m2n-2s 	(55)

The right side of (35) must also be a polynomial of degree L 2n-2, and since

P I (s) and P2 (s) are polynomials of degree L n-1 and n respectively, it follows

that Q I (s) and Q2 (s) must be of degree no greater than n- 1 and n-2 respect-

ively; i.e.
Q	 s 

+	
_

I (s) = q 10 + qI I	 ...	 :.. + ql	
n

	

,n-ls, 
l	 (56)

and
Q2(s)	 q20 + q 2 l s
	

n-2
+ ...	 .. + q2, n-2s	 (57)

Note that this also insures that Q
-1

(s) ( Q2(s),Q I (s) J is a realizable transfer

function. The reader can verify that the right side of (35), namely QI(s)PI(s)

+ Q2 (s)P2 (s) is given by:

-24-
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q2,n-2' 9 2,n-3' 	 "20' a I,n - 1'	 910 )E Is
q*

Ls2n-2

s*

i.e.

QI(s)PI(s)+ Q 2 (s)P2 (s) = q*Es*	 (58)

Q3 (s)FS(s), as given by (55), can now be written more succinctly as m*s*,

where m* _ ( m0' m l' . • .	 .. m2n-2 1. Using this notation, (35) reduces

to;

m*s* = q*Es*
	

(59)

Clearly, a solution, q*, of (59) exists if E is nonsingular, namely

q* = m*E-1	(60)
t

Equation (60) can be employed whenever P I (s) and P2 (s) are relatively prime.

Remark: Equation (59) has been extended to the multivariable case ( for L-rtain

classes of systems ) by the author. [ 13]

The utilization of equations (59) and (60) for feedback design will now b2 il l-

ustrated ; i.e.

Example of Case 2:

Consider the open loop system whose transfer function T(s) = (s+3)/(s2+s-2); i.e.

(s2 + s -2)y(s) = (s+ 3) u(s). Clearly, 2I (s) = P l0 + p l ls, where p 10 = 3, and

pW • Also, P2 (s) = P20 + P21 s + P22s 
where P

20 = -2 ' P21 ' 1 , and P22

1 . Furthermore, in this case, P I (s) and P2 (s) are relatively prime, as the reader

can readily verify; i.e. P2(s) = (s - 1 )(s+ 2). The open loop system is thus

unstable. Suppose we wish to design a feedback control system which would

yield closed loop poles at s = -1 and s = -4. This would imply that P2F(s)

4+ 5s+ s2; i.e. FS(s) = -6 -4s, and if we arbitrarily choose Q 3(s) = s + 6,

then Q 3(s)FS(s) = -36 -30s -4s 2 , or m* _ ( -36, -30, -4 J and s* =s	 in

accordance with (55), (58), and (59). By (54) and (59), 	 [s2]

tThis condition is equivalent to complete controllability and observability of

the open loop system ( in the time domain )(141

-25-
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( -36,	 30,	 4 J 1 ( q 20 , q 11' q 10 ) -2

02 3	 1	 0J Ls2.,

and by (60),	 s*	 E	
s*

q* = m*E -1 =	 (9/2, -17/2, -9 J	 (E14)

Q (s) and Q (s)) has been determined, the clo y ed loop system con
1	 2

be constructed as indicated by Figure 1 .	 For this example, one can readily 3

verify that the transfer function of the closed loop system depicted below is a
equal to (s + 3)/(s + 1)(s + 4) as desired. 	 The system shown is actually a third

order system with apole-zero cancellation at the pole of the estimator; i.e. 1
_	 (ats--6 8l(91. -

+ws	 ^	 us
s+3 (s)

(s-1) (s+2)

9/2	 *	 -9 -17/2s

v (s)	 1
s+6

t tFigure E2
Closed Loop Scalar S ,stem

One final point is worth noting before we conclude, namely if in (36), we
1 3

let 0 1 (s) = 3 and 03 1 (s)Q2 (s) = FS(s)P2 1 (s), we would then have

u(s) =	 FS(s)P2 I (s)u(s) +	 w(s),	 (61)

or	 -1

[ I -	 FS(s)P2 	 (s) 1 u (s)	 = w(s)	 (62)
'

4

from which equations (40) through (43) follow d'rectly; i.e. the control low rep-

resented by (61) yields the d.!s'red " closed I,»p " transfer matrix TF(s) :: P
I
 (S)

times P2 F( s) without	 'aedbock, shi _-t Q 1 (s) = 0 ( see Figure 1 ). This p

" input feedback " control luw represented by (61) con- also be represented 6y

-26-	 1
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the relation:	 'J (S) --	 P2 (s)P
_ i
1Fks)w;s};	 (63)

i.e. from (62),	 j P2 (s) -	 FS(s) IP2 l (s)u(s) _	 w(s), and ante P2 (s) - FS(s)

followsP2F (s), (63)	 directly.	 Note that (63) simply represents feedforward

compensation. 	 Mot this simply means is that any " state " feedback control

low can be reulized by feedforward compensation. 	 Note however, that the

control law represented by (61) ( or (63) ) imp!ies:

i)	 pole-zero cancellations at the zeros of IP2 (s)I, and
ii)	 an increase in system order equal to n, the order of the given system.

Neither of these two conditions is desirable in most cases for rather obvious
reasons; i.e. if IP2 (s)I were not a Hurwitz polynomial, the feedforward com-
pensated system would be unstable.	 Also, if one employs a feedback design,

t
the increase in system order can always be kept = n-m^81191 There are other
reasons for employing feedback rather than feedforward compensation in most
cases.	 A primary reason is sensitivity reduction, a subject which will not S,

discussed in this paper, but one which is quite important, especially when
' sidered from the point of view of linear optimal control ^I51

6. Concluding Remarks

' We have introduced a new concept and demonstrated its utility in the analysis

and design of linear systems.	 This ( frequency domain ) concept, namely the no-
' tion of representation for proper transfer matrices, was shown to be analogous to

the ( time domain ) concept of realization. 	 An algorithm for obtaining realiza-

tions from representations was presented.	 Frequency domain analogies of other

time domain concepts were also given, notably a frequency domain character-
,^ izotion of ( simultaneous ) state estimation and feedback. 	 For the most part, the

results presented relied heavily on some rather elementary definitions and results

tdealing with polynomial matrices and their manipulation.	 Areas for future work,

tying a closer bond between polynomial matrices and linear system theory, were

pointed out at various times. 	 Additional results employing the techniques dev-

eloped here will also appear soon (13)(15)
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