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A METHOD OF DESCRIBING THE SPONTANEOUS ACTIVITY OF NERVE UNITS
THAT EXHIBIT A STOCHASTIC DEAD TIME
Michio Aoyagi

Ames Research Center
SUMMARY

A method is presented for describing the statistical characteristics of
the spontaneous electrical activity of nerve units that have stochastic dead
times following an impulse. The method is based on the determination of the
possible functional forms of the marginal cumulative distribution of the inter-
spike times that result from a concept of the nerve unit behavior suggested by
the work of Harris and Flock. For the purpose of illustration, the method is
applied in the appendix to an observed series of electrical impulses originat-
ing spontaneously from an isolated vestibular nerve unit of the frog.

INTRODUCTION

This paper presents a method of empirically modeling the statistical
structure of a time-dependent series of electrical impulses spontaneously
emitted by nerve units that have a stochastic dead time following each impulse.
Examples of such nerve units are the Xenopus laevis lateral line units studied
by Harris and Flock (ref. 1), who showed that a pronounced dead time or refrac-
tory period following the occurrence of an electrical impulse is characteris-
tic of the observed interspike times. The approach is developed within the
framework of a stationary stochastic point process and is based on the pos-
sible functional representations of the marginal distribution function which
defines the probability that an interspike time is less than or equal to a
given length of time.

Moore, Perkel, and Segundo (ref. 2) pointed out that neuronal spike
trains (series of electrical impulses) may be analyzed within the context of
stochastic point processes. Characteristically, these processes are time
dependent and the events of interest are discrete, for example, particle
emissions of a radioactive source where the observed event is a particle
emission at some point in time (ref. 3). One common method of representing
the characteristics of such a series of impulses is to define the ordered
sequence of interval times 1y, T, T3, . . ., where 1. denotes the interval
between the (i - 1l)st and ith impulse. A typical interval time process
associated with a given series of impulses is shown in figure 1. In the
particular case of electrical neuronal activity, the observed event would be
the electrical impulse or action potential measured at a point in time.
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Figure 1.- Series of events and its associated interval time process.
The variation t; indicates the time between the (i-1)st and

the 1ith event where the hash marks indicate the events.

In a neuronal unit a pronounced dead time following an impulse will most
certainly be reflected in the interspike (interval time) process. Hence, any
method used to describe the activity of nerve units that exhibit a dead time
should take this characteristic into account. Therefore the approach used in
this paper includes a stochastic dead time in the conceptualization of a given
interspike time which in turn provides a means of examining how such a dead
time can affect the marginal distribution function of the interspike times.
This function determines many of the statistical characteristics of the inter-
val time process exhibited by neuronal units, such as discussed above, and
under certain conditions it completely defines the process. Moreover, the
method presented here utilizes the explicit forms of the marginal distribution
function that result from the conceptualization of a given interval time as
possible empirical models that may be useful in characterizing the spontaneous
electrical activity of neuronal units heretofore discussed.

The factors considered in the conceptualization are discussed, and for
illustrative purposes, the method developed here is applied in the appendix
to the observed spontaneous activity of an isolated vestibular nerve unit of
the frog.

APPROACH

Factors Considered in the Conceptualization
of the Interspike Time

In order to simplify the problem of statistically describing the spon-
taneous electrical activity of neuronal units that exhibit a dead time, the
general factors considered here are essentially those suggested by the work of
Harris and Flock. The problem can then be idealized in the following manner.

The unit is considered to be comprised of several interacting sensory
cells, and the observed spike (action potential) is regarded as originating
from one of the cells. Harris and Flock regarded the unit as capable of gen-
erating a spike by spontaneous depolarization of a cell membrane defined here
as event 1, or by the random excitation of the sensory receptors of the cell
defined as event 2. Although they concluded that spontaneous depolarization
is the more likely, both hypotheses are considered here for the purpose of
developlng methods of characterizing the general situation.
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Moreover, if an observed spike is due to the spontaneous membrane
depolarization (event 1), the unit enters a prolonged dead period resulting
from some form of inhibitory interaction and is defined to be in condition 1.
1f, however, the spike results from the random excitation of the sensory
receptors of the cell (event 2), the unit enters a dead period whose duration
is a function of the refractory period of the nerve fiber, and the unit is
then defined to be in condition 2.

The possible unit conditions following the Mth and (M+1)st spike and
the associated events that must be accounted for in the statistical character-
ization of the interval time process are shown in figure 2.

Event 1 T3} Event 1
Unit in condition 1 Unit in condition 1
after the Mth spike. . after the (M+1)st spike.

‘o
<1

Event 2 Tag Event 2
Unit in condition 2 Unit in condition 2
after the Mth spike. after the (M+1)st spike.

gJ TIME
r,

i
T
ik
Figure 2.- Possible unit conditions following the Mth and (M+1)st spike.
The variable 1., denotes the inter-spike time if the Mth spike is

due to event k**where i and k = 1 or 2, while r; denotes the dead
time if the unit following the Mth spike is in condition i where
i=1or 2.

In this figure a given interval of time is defined by one of four pos-
sible intervals denoted by the variables 7133, Tj2, T21, and Tpo. A given
interval, say T,,, is defined by two adjacent spikes, denoted by subscripts,
in this case 12. The first subscript denotes that the first spike is due to
spontaneous depolarization and the second indicates that the second spike is

'due to the random excitation. Thus the original interval time
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process, denoted by the ordered sequence of interval times 7T3,T2,T3, - - .,
may be redefined in terms of the four possible interval types. For example,
the interval time process may be given by 711,7T21,Ti2,T22s - . .. Consecutive
intervals are restricted because only interval type 13, or Tj; can follow 1y
or To3, while only 133 or Ty, can follow 7133 or t1o. Also, the interval
types denoted by +t3;; and 13, contain the dead time associated with the spon-
taneous depolarization hypothesis, whereas 15; and 1,5, exhibit the dead time
" associated with the random excitation hypothesis. v

Thus, it is evident that the marginal distribution function of the inter-
val times, a function of particular use in describing the statistical charac-
teristics of the interval time process, and defined as F_(t) = Prob (t < t)
where <1 denotes a given interval time or, equivalently,Tthe probability
density function f_(t) = dF¢(t)/dt is dependent on the statistical character-
istics of the four ﬁossible types of interval times and the manner in which
they are related in the interval time process. It should be noted that
although conceptualizations such as used here are generally not unique, they
are important as an economical means of studying the possible forms of the
various statistical functions that may have use in empirically modeling the
observed behavior of the process under investigation. To this end, the mar-
ginal distribution function (henceforth referred to as the distribution func-
tion) that results from the characterization of the interval time process shown
in figure 2 is outlined in the following section.

Derivation of Distribution Function and Statistical Description
of the Interspike Times

In general, the statistical characteristics of any stochastic point
process cannot be adequately described by simple functions, such as the dis-
tribution function, unless the process is stationary; that is, the joint dis-
tribution of the number of events in k fixed time intervals is invariant
under time translations. This implies that the number of events occurring in a
period of time is proportional to the time length of the period, and, moreover,
that the distribution of the interval times is identical for all the interval
times contained in the process if the origin is defined by an arbitrarily
chosen spike. For these reasons stationarity will be assumed and the origin
of the interval time process is taken to be an arbitrary spike. Within this
framework, the distribution function (F;(t), or, equivalently, the probability
density function f£¢(t), of the interval time process may be derived as
follows.

The following variables describe the statistical characteristics of the
Mth interval time (interval time between the (M-1)st and Mth spike). If it is
assumed that the (M-1)st spike is due to event 1 (spontaneous depolarization)
and, hence, the unit is in condition 1 (dead time associated spontaneous
depolarization), then
T the time length of the Mth interval if the Mth spike is due to

1k event k where k = 1,2
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T the dead period following the (M-1)st spike

Sy Tk T, the waiting time, measured from the end of the dead period,

to the Mth spike which may be due to event k; k = 1 or 2

Similarly, assume that the (M-1)st spike is due to event 2 (random excitation)
and the unit is now in condition 2 (dead time associated with random excita-
tion), and define

T the time length of the Mth interval if the Mth spike is due to

2k event k where k = 1,2
Ty the dead period following the (M-1)st spike
Sy T, = T2s the waiting time, measured from the end of the dead period,

to the Mth spike which is due to event k, k = 1 or 2

Further, define the conditional transition probabilities associated with the
two possible events (1 or 2) and the resulting four types of possible interval
times Til1s T12s T21s T22 by

B11 probability that the Mth spike is due to event 1 given that the
(M-1)st spike was due to event 1 (The associated interval time is
denoted by 1t;.) '

B2 (1 - B;;) probability that the Mth spike is due to event 2 given that
the (M-1)st spike was due to event 1 (The corresponding interval time
is given by 115.)

Bo1 probability that the Mth spike is due to event 1 given that the
(M-1)st spike was due to event 2 (The corresponding interval time is
given by T2;.)

Boo (1 - Byy) probability that the Mth spike is due to event 2 given that
the (M-1)st spike was due to event 2 (The corresponding interval
time is given by 155.)

The probability density function of the interval times may now be derived in
terms of the transition probabilities B8y;, By2, Bo1, Boo and the probability
density functions fr,,(t), lez(t)’ szl(t)’ szz(t) of each interval type from
the possible relationships of interval types between the (M-1)st interval and
the Mth interval as schematically shown in figure 3.
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P1

P2

P3

(M-1)st interval Mth interval

Transition probability of 8

e
Bpy
™, Transition probability of 8,
= 2 1
12
Transition probability of B8,,
p ‘ =121
Ty, e |
“™S\_ Transition probability of 8,, -
) 22
Transition probability of B8,, -
, T11
Ta1 ™ -
™~ Transition probability of B8;, -
~ 12
Transition probability of B8,, .
: ~8=121
122‘”””$'°>n
"\ Transition probability of 8,,
~ &= T22

Figure 3.- Possible interval types at adjacent intervals.

Quantities Bij denote the transition probability that

the second interval will be of a specified type.

probability that the next interval to occur in the interval time process

is defined by the variable 11,
probability that the next interval to occur is defined by
probability that the next interval to occur is defined by

probability that the next interval to occur is defined by

T12

T21

T22
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where p, + p, + p; + p, = 1, the probability density function of the interval
time process is

fT(t) ’-'-'plf-[ll(t) +p2fT12(t) '*‘p3f-[21('t) +p‘+f122(t), t>min(T11,7T12,T215T22)

(1a)
or, equivalently, the distribution function is
t t t
min(tyy) min(ty,) min(ty;)
t
+_/P p,fr,,(t)dt (1b)
min(‘fzz)

The probabilities p,;, p,, P3, and p, can be expressed in terms of the transi-
tion probabilities B,,, By,, By;, and B,,, using the relations shown in fig-
ure 3, as follows:

P, = BMPI + B11P3

Py = ByoP3 * B12P1
= B + B

a=
w
\

21P2 21Py

Py = BooPy * BooPy

These relationships show that

P, = a- 622)311/(2 - By - 622)
Po = (1 - B11) (1 - B22)/(2 - By1 - B22)

P3 = Py

1]

Py = (1 - B11)B22/(2 - B11 - B22)

Thus, the density function, given by equation (la), can be expressed in
terms of the transition probabilities as
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fT(t) = (1 - B2}/ (2 - By1 - 822)[811f111(t) + (1 - 811)f112(t)]

+ (1 - 811)/(2 - By - Bp2)[(1 - Bzz)fT21(t) + BzszZZ(t)] s

t>min (1)),7T)55T,,5Tp)) (1c)

Equation (lc) can be somewhat simplified if the prbbability density function of
‘the random variable X, 1is defined as

g (t) = BllfT11(t) + (1 -8, ) (8], X, > min (7,,,7,,)

T12 1 12

and the probability density function of the random variable X, as

g,(t) = (1 - By, )Fry, (8) + Byyfryp(t), X, 2 min (1,,,7,,)
Letting
a = (1 - 822)/(2 - 811 = 822)

we can write the density function of the interval time t as
£:(t) = ag (£) + (1 - a)g,(t),  t>min (X,X,)

which is seen to be the form of the density function derived from a two-state
semi-Markov process model (ref. 4).

The average interval time length, the variance, and the serial correla-
tion function are descriptive characteristics of the process that can be
derived immediately from the probability density function as given by equa-
tion (la) or (lc). The average interval time length of the process is given

by
E(1) = aE(Xy) + (1 - a)E(X,) (id)
. and.the variance by

Var(t) = aVar(X;) + (1 - a)Var(Xy) + a(l - o) [E(X]) - E(X)]2 (1e)

where

E(X)) = 8 £, ()dt + (1 - B11) tf. . (t)dt
: lldi;ncrll) T Y ’é;n(le) f12
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E(X,) = (1 -8 )f tf, (t)dt + B f tf.  (t)dt
2 22 min(ty4) f21 “ min(ty,) f22
Var(X;) = suf [t - E(X))]12€, (t)dt(l - Byy)
min(t,;) 1
x [t - E(X))]2f_ . (t)dt
min(le) ' 12
C Var(Xp) = (1 - Byp) [t - E(Xp)I2E,  (t)dt
min(t,,) 21

oo

+ 622/ \[t - E(XZ)]ZfTZZ(t)dt
min(’l'zz)

Finally, the serial correlation function of lag k, which measures the linear
dependence between every kth interval time contained in the process, is shown
by Cox and Lewis (ref. 4) to be

[E(X1) - E(X2)1%a(1 - o) (B1y + Bap - X
Py = (1£)
avar(Xy) + (1 - a)Var(Xp) + a(l - @) [E(X;) - E(X)]?

It is seen that equation (la) or (lc) expresses the probability density
of the interval time in terms of the density functions of the four intervals
Ty1s> Tips T21s, Tpo, While equation (1b) establishes the same type of relation-
ship for the distribution function. Also, equations (1d), (le), and (1f) show
how the descriptive characteristics as given by the mean, variance, and serial
correlation function, depend on the characteristics of the four interval types.
Hence, these relationships provide a basis for examining how the characteristics
of the four interval types are reflected in a given interval of time. In order
to obtain explicit functional forms that define the statistical characteristics
of a given interval of time for these equations, plausible forms of the dis-
tribution functions of Tt;;, 712, Ty;, and Ty, or, equivalently, r;, Tr5, Si,
and s, must be postulated. Since the spontaneous electrical activity exhi-
bited by neuronal units is generally considered to be a random and steady-state
type phenomenon, it seems reasonable to assume the null-type hypothesis that
the variables 1), s;, and s, are random and are defined by events that occur
according to the Poisson criterion of randomness (ref. 5) or approximately so.
In such case, the density functions of these variables are expressed by

P \ '>‘r1 (t-dy) 4
t) = 5 t
rl( ) r,© > di
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where d)

£5, (1)

fs, (t)

As

1

e

Ag €

2

'Asl(t)

‘lsz(t)

H

3

t

t

>

>

0

0

can be considered the absolute minimum dead time of the unit if the

last impulse is due to the spontaneous depolarization of the cell membrane

(event 1).
to be
(where 6( )

frz(t) = §(t - dy) >

t>0

However, the density function of the random variable r,

is taken

is the Dirac delta function) since r, denotes the dead time of

the unit if the last spike is due to the random excitation hypothesis which

assumes no inhibitory interaction among the cells of the unit.

Consequently,

the dead time in this case should be directly related to the refractory period

of the nerve fiber, denoted here by d,.

11
Ti2
121

T22

ry + 5,
r1+52
ry + 5;

Ty + Sp

Since

it follows that the density function of the variables

is given by

10

si'ty [ -Xrl(t-dl)
- A - ¢
Si ry o
spry [ -Arl(t—dl)
X - A - ¢
S2 LS
A (t-dy)
S1
Asle s t > dy
-Ag (t-dy)
Ase 2 3 t>d2
5 >

'Asl(t-dl)_

T11s T12s T21, and tyy
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Further, if dz < d;, the probability density of an interval of time,
from equation (la) or (lb), is explicitly given by

-Ag (t-dj) -xs (t-d5) N
£(6) = (1 - )| - Bp)dg e 7} + Bahg e 2 > dp2tcdy
A A
sy -Xy, (t-d1) ~Ag, (t-d1)
£.(8) = off1y y——— |e - e
s )
A A )
s2 T -Ar, (t-dy) -Asz(t’dl)
* (- Bn) (e - €
S2 r)
")\Sl(t'dz) 'Aszct—dZ)
+ (1 - 1 - Ao € + A 5 t>d
( a) | ( B22) s, B22 5,° 1
(2a)
vhere
a=(1-831)/(2 - B11 - B22)
The corresponding distribution function is
-Ag (t-dy) -As (t-d5)
Fo(t) = (1 - a)fl - (1 - Byple ! - Baoe 2 ,  dpst < dy
(2b)
A A - t-d - t-d
si'n [ 51( 1) . rl( 1)
F—t(t)=a1-811)\ Y 3 - 3
51 T] S1 S|
XA -Ag (t-d -Ap (t-d
s,'T) . 52( 1) . rl( l)
- (1 - Bll) by - 2 by - A
A (t-dp) A, (t-dp)
+ (1 - a) {1 - (1 - 822)6 S1 - 8223 S2 > t _?_dl
The average interval time length, from equation (1d), is expressed by
E(1) = aE(X;) + (1 - a)E(Xy) (2¢)
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where

A + A A + A
] S1 Ty S2
EXp) =B\~ ——+dj+ Q-8 —5——+d
Ty S3 Ty So
and
1 1
E(Xp) = (1 - Ba2){7— +d2f + Bap|5—+ 42
51 S2

From equation (le), the variance is found to be

Var(t) = aVar(X;) + (1 - a)Var(X,) + a(l - o) [E(X;) - E(Xz)]2 (2d)

where Var(X;), Var(X,) are now explicitly written as

A2+ a2 22 a2
T S ry So
Var(Xl) = Bll + (1 - 311)
}\2 )\2 )\2 2
r) s3 r) S2
and
1 1
Var(Xp) = (1 - Bap) |5+ B2z | 5~
A A
S1 S2

Similarly, the explicit form of the serial correlation function, obtained by
substituting the above expressions for E(X;), E(X;), Var(X;), and Var(X,),
into equation (1f), is then given by

[E(X)) - E(X)]1%a(l - @) (B1y + 820 - 1X
P, = 5 (2e)
aVar(Xy) + (1 - o)Var(Xp) + a(l - @) [E(X1) - E(X2)]

~ Thus, under the null-type hypothesis, the functional form of the distribu-
tion function as given by equation (2b), or equivalently, the probability den-
sity function given by equation (2c), is seen to be the weighted sum of, at
most, three exponential terms and the explicit forms of the descriptive charac-
teristics of a given interval of time expressed by equations (2c), (2d), and
(2e). Moreover, special cases of the distribution function, given by equa-
tion (2b), may be derived by making various assumptions about the transition
probabilities Bj;, Bop. These special cases represent different types of
interval time processes with respect to their statistical characteristics, and
three such processes of special interest are discussed in the following:
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1. If 831 =1 - Bz, equation (2b) then represents the probability
density function of a renewal process. A renewal process is a stationary
process whose interval times are independently and identically distributed.
This implies that the interval time process, or1g1na11y ‘denoted as the ordered
sequence of interval times Ty, T2s T35 + o o is not dependent on order. Its
serial correlation function, given by equation (2e), is thus equal to zero for
lags of all orders.

2, If the random excitation hypothesis of spike generation is not sig-
nificant, then the variables 7r,, s, have no effect; thus,.B;; = 1, Byp = 0.
Since these values of B;;, By, satisfy the relationship B8;; = 1 - B35, the
process is renewal and the distribution function given by equation (2b) reduces

to
A A
—_— A s1 1) -)\sl(t—dl) -}\rl (t-dy)
F(t)—l—'x—-——:——x——e - e R tidl, }\517‘)\1‘1
S1 n
(3a)
which is seen to be the distribution function of the simplest generalization
of an integral-order Erlang process. When AS = Xr = )\, the distribution
function then becomes 1 1
-A(t-d)
F (t) =1-e 1+t -4dp], t>d) (3b)

which is seen to be the Gamma distribution function of order 2 (chi-square,
Pearson type III).

3. Finally, if the spontaneous depolarization hypothesis of spike genera-
tion is not significant, then the variables r;, s; have no effect; thus
B11 = 0, and Byy = 1. Again, since these values of B8;,, Boy, satisfy the
relationship B;; = 1 - Byo, the process is renewal and the distribution func-
tion given by equation (2b) reduces to

s, (t-d2)
FT(t) =1-e °2 » t > dp (3¢)
which is the negative exponential distribution function characteristic of a
Poisson process.

These results immediately suggest the possible functional forms of the
distribution function that may be useful in empirically modeling the sponta-
neous spike train activity of neuronal units exhibiting a dead time following
each electrical impulse. Specifically, the examination of the null-type situa-
tion suggests that the distribution function of the interval time process
exhibited by such neuronal units could be possibly described by:

1. The negative exponential as given by equation (3c),
or

A-3818 13



2. The generalized Erlang as expressed by equation (3a) or its special
case, the gamma of order 2 given by equation (3b), if the process is renewal,
and

3. A weighted sum of a mixture of two generalized Erlangs and a mixture
of two negative exponential distributions as shown in equation (2b), if the
process is renewal or nonrenewal.

The plausibility of these results is somewhat substantiated from the
standpoint that the negative exponential, the distribution function of a
Poisson process, has been used to fit the observed distribution characteristics
of neuronal spike trains by such authors as Rodieck, Kiang, and Gerstein
(ref. 6) while a form of the gamma distribution was employed by Kuffler,
Fitzhugh, and Barlow (ref. 7).

Therefore, the results of this paper suggest the following procedure for
empirically modeling the observed distribution of interval times and thereby
describing the statistical characteristics of the spontaneous electrical
activity of nerve units exhibiting a dead time:

1, Test the stationarity and renewal characteristics of the interval
time process. (For a discussion of actual tests that can be used to examine
these hypotheses see refs. 4 and 8.)

2. After determining the stationarity and renewal characteristics,
empirically model the observed distribution of interval times in the following
manner:

If the process is found to be stationary but not renewal, then the
appropriate form of the distribution function to use in empirically
modeling or fitting the cbserved distribution is given by a weighted
sum of exponentials of the form

-At =)Aot
1 - Aje - Aje s tp <t<t

F(t)

“Ast At “Apt (42)
1 - A3e - (Al - Aq)e - (Az - A5)'e s t > tl

it

F_(t)
where Ay, Ay, A3, Ay, Ag, X3, Ao, and A3 are parameters subject to the
restrictions that

-A1tg Aoty
Aje + Aje =1

and '
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If, however, the process is found to be renewal, then in addition to the
weighted sum of exponmentials shown above, the functional forms of the distribu-
tion that may be used to empirically model the observed distribution are given
by the negative exponential,

Ft)=1-e 5y (4b)
the generalized Erlang,
A1Ap N N
Fot) = 1 -y [e 8D LoD e g (40)
X1 - Ao =

or its special case, the gamma of order 2,

F)=1-eEDpaae-a), t24d (4d)

It should be noted that in the case of a renewal process, the distribution
function or, equivalently, the probability density function of the interval
times completely specifies the statistical characteristics of the interval
time process. ‘

CONCLUDING REMARKS

The conceptualization of the spontaneous spike trains originating from
neuronal units exhibiting a pronounced dead time as depicted in figure 2,
albeit a naive representation of a complex process, enables one to study the
possible forms of the marginal distribution function of the interspike times
contained in such process. The resultant examination of the null-type case
has use in establishing a reference point to determine any deviations from
randomness that may be exhibited by an observed interspike (interval time)
process. Moreover, the explicit forms of the distribution functions that have
been determined in this paper may have use in empirically modeling the observed
distribution of the intervals contained in the process. Specifically, if the
process is found to be renewal, then the negative exponential (eq. (4b)), the
gamma of order 2 (eq. (4d)), the generalized Erlang (eq. (4c)), or the weighted
sum of exponentials (eq. (4d)) are the possible functional forms. If the
process is nonrenewal but stationary, then the weighted sum of exponentials
(eq. (42)) is the most appropriate form of the distribution function.

The determination of the most appropriate empiric model is important since
the distribution function describes many of the statistical characteristics of
the spontaneous electrical activity of neuronal units heretofore discussed.
Moreover, the functional form of the distribution may be used as a basis for
demonstrating how evoked activity differs from spontaneous activity.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, November 20, 1970
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APPENDIX

ILLUSTRATIVE EXAMPLE

The method of empirically modeling the distribution function of the
interval times shown on pages 13-15 is applied to the observed interval time
process resulting from the spontaneous electrical activity of an isolated ves-
tibular neuronal unit of a frog.! The electrical impulses originating from
this unit were measured over time and the resulting interval time process con-
sisted of 997 spikes or 996 interval times where the initial spike defined the
origin of the process.

STATIONARY AND RENEWAL CHARACTERISTICS

The hypotheses of stationarity and renewal were examined and it was
determined by nominal 5 percent level tests that the interval time process
could be characterized as being stationary and renewal. The tests used to
examine these hypotheses are those suggested by Lewis (ref. 8) on pages 207-
208 and 212-213. The stationarity hypothesis was essentially tested by exam-
ining whether the mean rate of spike occurrence remained constant over time
and is based upon the necessary condition that no trends over time exists in
the mean rate of spike occurrence if the process is stationary. Similarly,
the test used to examine the renewal hypothesis is based upon the necessary
condition of a renewal process that the serial correlation function is zero
for all lags.

Empirically Modeling the Cumulative Distribution
of Interval Times

The empiric distribution is calculated by first ranking all the interval
times in order of magnitude to obtain the ranked series t;, t,, t3,
The observed cumulative distribution function may then be computed by
Fr(t) = i/N , 1<i<N
where N 1is the total number of intervals contained in the observed process.
The resultant empiric distribution, shown in 2 ms increments, and the descrip-

tive statistics .of the observed interspike times are shown in the following
table.

1The data were collected by R. S. Carpenter, Ames Research Center, 1969.
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TABLE 1.- OBSERVED DISTRIBUTION OF THE INTERSPIKE TIMES

BASED ON A SAMPLE OF 996

Time, Distribution Time, Distribution|| "1™®> | Distribution
ms ms ms
10 0.0110 44 0.7701 78 0.9649
12 .0291 46 . 7972 80 .9679
14 .0733 48 - .8213 82 .9689
16 .1044 . 50 . 8353 84 .9729
18 .1556 52 .8524 86 .9789
20 .2209 54 . 8655 88 .9799
22 . 2821 1l 56 . 8785 90 .9829
24 . 3444 58 . 8966 92 .9859
26 .4167 60 .9046 94 .9880

— 28 .4789 62 .9127 96 .9910

30 .5281 64 .9197 98 .9920
32 .5643 66 .9297 100 .9940
34 .6104 68 .9378 102 .9950
36 .6486 70 . 9468 104 .9950
38 .6787 72 .9518 106 .9950
40 .7189 74 .9568 108 .9980
42 .7470 76 .9598

Minimum interval time = 8.1 m

Maximum interval time = 129.0

Average interval length = 34. 057 ms; variance = 341.957 ms?

The procedure outlined on pages 13-15 of this paper shows that if the
process is renewal, then the possible forms of the distribution are given by
those of the negative exponential (eq. (4b)), the generalized Erlang
(eq. (4c)), its special case the gamma of order 2 (eq. (4d)), or the weighted
sum of exponentials (eq. (4a)). The method employed here to establish an
empiric model of the distribution function was to use sequentially the above
forms of the distribution until an adequate fit of the observed distribution
was obtained. A nominal 5 percent Kolmolgorov-Smirnoff goodness of fit test
(ref. 9) was used to judge the adequacy of the fit and this test is based upon
the statistic

KS = max |(i/N) - F.(tj)
1<i<N

where F_(t) is the hypothesized distribution. The 5—percent two-sided crit-
ical value of this statistic is given by 1.358/ /N which in our case is equal
to 0.043 since N = 996.

Hence, the negative exponential distribution function given from equa-
tion (4b) by

Fo(t) =1 - e 2 (04),
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was initially used to fit the observed distribution. The method of moments
was used to estimate the rate parameter A and the minimum dead time d.
This method involves equating the theoretical moments to the corresponding
observed moments; and for the present case, the resulting equations are

H

E(t) = 1/x + d = 34,057

and

Var(t) = (1/A)2 = 341.957

The theoretical form of E(t), and Var(t) can be obtained from equations (2c)
and (2b) by setting B;1; = 0, B22 = 1 while the observed moments are shown in
table 1. The estimates of the parameters are then seen to be A = 0.05408
spikes/ms and d = 15.56. The observed value of the KS statistics was found
to be 0.098 which is seen to be greater than the 5-percent critical value of
0.043, thus indicating a significant lack of fit. Hence, the generalized
Erlang distribution function, given from equation (4c) by

Ay A

172 [e—)\l(t—d) _e-AZ (t'd)], t>d

(O =1 -5y

was then used in the attempt to find an adequate empiric model. Again, the
method of moments was employed to obtain estimates of the parameters Xj;, A,
d, where the equations involving the first two moments are expressed by

ARy

E(T) = -A__j[)\?.’- d = 34.057

t

2 2
Al + Az

1)

Var (1) = 341.957

x12xp2

or

_ (34.057 - d) */2(341.957) - (34.057 - d)2
(34.057 - d) - 341.957

A1sh2

The first and second moments, E(t) and Var(r), may be obtained from equa-
tions (2c) and (2d) by substituting the values 1 and 0 for B8;; and Bso. For
a real solution to exist, d must satisfy the inequality d < 34.057 - /683.914
or d <7.905. Also, since d > min(t; . . . tggg), where the minimum time
from table 1 is seen to be 8.12, it follows that 7.905 < d < 8.125. These
bounds define well the possible values of d, and the midpoint of the interval
was taken to be the estimate of d. Thus d = 8.01, and when this value of (
is substituted into the above relationships, it is seen that X = 0.070459
and X, = 0.084357. The observed value of the KS statistic was computed to
be 0.028, and since this value is less than the 5-percent critical value, it
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was concluded that the generalized Erlang function given explicitly by

Fo(t) = 1+ 0.42767(11.85438¢ 0+ 024357 (t-8-01) _ 1419265670+ 070459 (£-8.01) |

t > 8.01

was an adequate empiric model of the observed distribution. For purposes of
visual comparisons, the fit given by the negative exponential and the
generalized Erlang distribution functions are shown in figure 4.
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Figure 4.- Interval time distributien.
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