NASA TECHNICAL NOTE

NASA IN D-7032

LOAN COPY: RETI
AFWL DOGI Kiktland afb,

ALLMAT: A TSS/360 FORTRAN IV SUBROUTINE FOR EIGENVALUES AND EIGENVECTORS OF A GENERAL COMPLEX MATRIX

by Gale Fair
Lewis Research Center
Cleveland, Ohio 44135
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1971

17. Key Words (Suggested by Author (s))

Matrix algebra; Computer program, FORTRAN; Eigenvalue; Eigenvector; Hermitian matrix; QR Transformation; Inverst iteration, Wielandt
19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

29
22. Price*
$\$ 3.00$

ALLMAT: A TSS/360 FORTRAN IV SUBROUTINE FOR EIGENVALUES AND EIGENVECTORS OF A GENERAL COMPLEX MATRIX

by Gale Fair
Lewis Research Center

SUMMARY

A subroutine is described and listed that computes the eigenvalues and eigenvectors of a general (non-Hermitian) complex matrix. The program, ALLMAT, uses the complex QR algorithm to compute eigenvalues and inverse iteration to compute eigenvectors. The user has the option of computing only the eigenvalues, if desired. An entry point EVDATA is available to provide the user with timing and accuracy information, as well as the number of iterations necessary for each eigenvalue and eigenvector.

INTRODUCTION

Many areas of physics, mathematics, statistics, and engineering require the eigenvalues and eigenvectors of square matrices. This area of numerical analysis, sometimes called the algebraic eigenvalue problem, holds a place that is as important as the more familiar areas such as numerical integration, curve fitting, and numerical integration of differential equations. A general library of subroutines for a computer installation is commonly limited to one such program, and quite often this one subroutine is of only limited applicability.

The ideal subroutine for the algebraic eigenvalue problem should have many features: it should be fast and accurate; it should give a matrix of eigenvectors that are linearly independent; it should be capable of computing only eigenvalues at a corresponding increase in speed; it should have minimal storage requirements; and it must be able to treat all matrices, real or complex, symmetric or nonsymmetric, regardless of the condition of the matrix. Unfortunately, probably no such procedure exists. The usefulness of any subroutine may be judged on the basis of how many of these criteria are fulfilled, as balanced against the needs of the individual user.

There are many different techniques for diagonalizing a square matrix. The treatise by Wilkinson (ref. 1) is evidence for this. Reference 1 describes the state-of-the-art for the algebraic eigenvalue problem as of 1965. Typically, one chooses a particular method because he believes that his matrix has some feature that requires special handling, because a subroutine is conveniently at hand, or because he knows only that one method. Two of the most commonly used procedures are the power method and the Jacobi transformation.

The power method is a special-purpose procedure that computes the largest eigenvalue of a matrix by the formation of a sequence of powers of the matrix acting upon an arbitrary vector. This procedure is useful for the computation of a few eigenvalues (the largest in magnitude) and their eigenvectors. The computation of a full set of eigenvalues and eigenvectors is both time consuming and inaccurate.

The Jacobi transformation, as it applies to a complex Hermitian matrix, consists of a sequence of unitary transformations that diagonalize 2×2 submatrices of the full matrix. This procedure generates the eigenvectors along with the eigenvalues and is particularly useful when the eigenvectors are required to be orthogonal to a high degree of accuracy. The limitations of the Jacobi transformation are that the accuracy of the eigenvectors is usually limited, and as yet no extension to nonsymmetric or nonHermitian matrices has been made. The most common computer library subroutine for the algebraic eigenvalue problem is a real-symmetric version of the Jacobi method (ref. 2).

For a general (i.e., nonsymmetric or non-Hermitian) matrix, two procedures have been derived to compute the eigenvalues and eigenvectors, respectively. The input matrix is reduced to a Hessenberg form (ref. 1), and the QR transformation of Francis (refs. 3 and 4) is used to compute the eigenvalues. With a knowledge of the eigenvalues, the Wielandt inverse iteration method (ref. 1) generates the eigenvectors. The QR transformation and inverse iteration appear to be the best currently available for their respective tasks (ref. 1) in terms of accuracy and speed. This combined procedure has been coded at the Oak Ridge National Laboratory (ref. 5) for an IBM $360 / 50$ using the H-level FORTRAN compiler and COMPLEX*16 arithmetic. This program was used as the basis for the subroutine to be described in this report.

In order to make the subroutine as general as possible, some modifications and additions we re made to the ORNL program, as follows. The fact that for some matrices the Hessenberg form may be decomposed into disjoint submatrices is incorporated in both the QR transformation and the inverse iteration to reduce computational time. A perturbation method is used to obtain linearly independent eigenvectors when eigenvalues are either degenerate or very nearly the same value (meaning that the matrix itself may be ill-conditioned (ref. 1)). An auxiliary entry point is provided to give the user in-
formation about the number of iterations required, timing data (measured as central processor or CPU time elapsed in the computation), and error data for the resulting eigenvalues and eigenvectors. Finally, a flag has been provided to allow the user to compute only the eigenvalues, with the use of the QR transformation. The relative contribution made by the present work is seen from the observation that approximately 60 percent of the coding of the current form of the subroutine ALLMAT is the ORNL coding while the remaining 40 percent is new.

The end result of the work described here is a subroutine for the IBM/ 360 to compute the eigenvalues and eigenvectors of a square matrix. Certainly, this is not meant to be the final work in such procedures, the algebraic eigenvalue problem is an area of extensive research in numerical analysis. On the other hand, this subroutine does satisfy most of the criteria mentioned earlier for the ideal subroutine, at least to some degree. The criterion that is least satisfied is minimal storage. Because ALLMAT is written with COMPLEX*16 arithmetic and has some large scratch-pad arrays, the subroutine uses a large amount of storage. On a TSS/360 system this storage requirement is not a basic limitation on the subroutine, but it does imply that the CPU time is affected.

This brief mention of storage requirements is an opportunity to interpose a slight warning to the prospective user of ALLMAT. If only a small number of the (largest) eigenvalues of a matrix are desired, the power method is more efficient than ALLMAT. For a real, symmetric matrix, a problem that requires eigenvectors along with the eigenvalues would be better suited to a real Jacobi subroutine. On the other hand, for the computation of eigenvalues alone, or for the eigenvalues and eigenvectors of a real, nonsymmetric matrix or for a complex matrix, ALLMAT seems to be the best choice, at this time.

The next section of this report describes schematically the construction of the subroutine ALLMAT. This includes the information necessary for a programmer to use ALLMAT. Also included are brief descriptions of the mathematical procedures used in ALLMAT. The following section discusses the special features that have been incorporated in ALLMAT, including a description of the subsidiary ENTRY EVDATA that provides timing and accuracy information for the user. Finally, a number of test matrices are used as examples for ALLMAT. These examples give an indication of running times and accuracy obtainable with the program, even with some ill-conditioned input matrices. A FORTRAN listing of ALLMAT is given in the appendix.

This report is intended to be used as a user's manual for the subroutine ALLMAT, and as such it described the call vector for the subroutine and the rules for usage. In addition, enough information is provided the prospective user to allow an intelligent application of this program to his particular problem. The prospective user should not
apply this program to his problem without some understanding of the numerical methods involved and of the construction of the subroutine.

GENERAL CONSTRUCTION

Usage

The information to be discussed in this section is aimed at explaining the program as a FORTRAN subroutine, along with a description of the ENTRY EVDATA.

The user's access is through the statement (see the appendix for the complete FORTRAN listing of the subroutine):

CALL ALLMAT (AA, LAMBDA, M, MM, EVECT, NCAL)
where
AA input COMPLEX*16 matrix, of dimension $M \leq M M$. Upon return from ALLMAT, $i^{\text {th }}$ column of AA is $i^{\text {th }}$ eigenvector, corresponding to $i^{\text {th }}$ eigenvalue.

LAMBDA COMPLEX*16 vector of length M that contains eigenvalues upon return from ALLMAT.

M actual dimension of input matrix AA.
MM dimension of AA as it appears in a dimension statement in the calling program. MM is the upper bound for the size of matrices used. As ALLMAT is currently written, MM must be no greater than 50 .

EVECT a logical switch. If EVECT = .TRUE., the eigenvectors of AA are calculated, and returned in the matrix AA. If EVECT = .FALSE., no eigenvectors are calculated and AA contains no useful information upon return from ALLMAT.

NCAL number of eigenvalues successfully computed by ALLMAT. If NCAL $<M$ some attempts of the QR transformation did not converge within 10 iterations. The value of the element of LAMBDA that corresponds to this eigenvalue has been set to zero by ALLMAT.

In addition to the primary entry point, a secondary ENTRY EVDATA is available to give the user information on the CPU time taken for the eigenvalue and eigenvector procedures. Also available are the number of $Q R$ iterations required for each eigen-
value, the number of inverse iterations required for each eigenvector, and the Euclidean norms of the residual vectors. A more complete description of these quantities is given later. The usage for this optional entry point is

CALL EVDATA (ITS, KTS, NCO, MCO, RNORM)
where
ITS elapsed time for QR transformation for eigenvalues, including time to reduce to upper Hessenberg form. ITS is an integer, in microminutes.

KTS elapsed time for inverse iteration for eigenvectors. Does not include time represented by ITS. Also an integer in microminutes.

NCO

MCO

RNORM an integer vector of dimension MM that has as its $i^{\text {th }}$ element the number of QR iterations for the $i^{\text {th }}$ eigenvalue. $\mathrm{NCO}(\mathrm{i}) \leq 10$. If $\mathrm{NCO}(\mathrm{i})=0$, this eigenvalue was obtained along with another, no separate $Q R$ iteration was required. If NCO (i) <0, no convergence was obtained for this eigenvalue within ten QR iterations.
integer vector of dimension MM that has as its $i^{\text {th }}$ element the number of inverse iterations necessary to obtain the $i^{\text {th }}$ eigenvector. MCO (i) ≤ 10.

REAL*8 vector of the norms of the residual vectors of AA. See section SPECIAL FEATURES OF ALLMAT for a more complete description. RNORM also has a dimension MM.

As an example of the usage of ALLMAT, consider a 6×6 complex matrix AA that is to be diagonalized. Let us assume that the TYPE statement in the calling program that specifies the dimensions of AA and LAMBDA has the form

$$
\text { COMPLEX*16 AA }(10,10), \text { LAMBDA(10) }
$$

The arrays have been overdimensioned for more generality. Let us further assume that eigenvectors are desired from ALLMAT, so that EVECT has been assigned a value .TRUE. . Then the call to ALLMAT is

CALL ALLMAT (AA, LAMBDA, 6, 10, EVECT, NCAL)

Upon return from ALLMAT the integer variable NCAL contains the number of eigenvalues that have been successfully computed by ALLMAT. The $i^{\text {th }}$ column of AA (I.E.

AA $(1,1)$ to $A A(6,1))$ contains the $i^{\text {th }}$ eigenvector, corresponding to the eigenvalue LAMBDA (1).

If the timing and error information provided by EVDATA are desired by the user, then the statement

CALL EVDATA (ITS, KTS, NCO, MCO, RNORM)

is used, where NCO, MCO, and RNORM have been dimensioned at least six in the calling program. The conversion from ITS or KTS (in microminutes) to milliseconds is obtained by multiplying either integer by 0.06 and assigning the result to a floating-point variable.

QR TRANSFORMATION

The basis of the QR transformation is a theorem by Francis that states any nonsingular matrix A has a unique decomposition into the product of a unitary matrix Q and an upper triangular matrix R (ref. 3), or

$$
\mathrm{A}=\mathrm{QR}
$$

The $Q R$ algorithm consists of forming a sequence of matrices similar to $A\left(=A_{(1)}\right)$ such that

$$
A_{(K)}=Q_{(K)} R_{(K)}
$$

and then

$$
A_{(K+1)}=R_{(K)} Q_{(K)}
$$

where $A_{(K)}$ is the form of the matrix after the $K^{\text {th }}$ decomposition. Francis (ref. 3) shows that this sequence of matrices has as its limit an upper triangular matrix, the diagonal elements of which are the eigenvalues of the original matrix A. Furthermore, even if the original matrix is singular, the algorithm still gives convergence to a unique triangular matrix, even though some of the intermediate Q and R may not be unique.

A full description of the QR transformation is certainly not relevant to this report. A detailed discussion of the convergence properties and the error analysis of the QR algorithm is given in references 1,3 , and 4. It is sufficient to note for our purpose
that the $Q R$ algorithm is an extremely stable, rapidly converging procedure to calculate the eigenvalues of a general matrix (ref. 1). The version of the QR transformation that is part of ALLMAT, one that includes origin shifts to accelerate convergence, is powerful enough to satisfy nearly all of the needs of the average user.

There is one unusual feature of the standard way in which the QR algorithm is employed that the prospective user should be aware of. A preliminary step in any implementation of the QR transformation is the reduction of the input matrix to Hessenberg form. An upper Hessenberg form (i.e., $\mathrm{A}_{\mathrm{ij}}=0$ if $\mathrm{i}>\mathrm{j}+1$) is used in ALLMAT. The reduction is accomplished by a sequence of elementary transformations (ref. 1). The elements of these elementary transformations are stored in the unused portion of A (the lower subtriangle of A) and in the integer vector JNT. This information is used at the end of the inverse iteration to recover the eigenvectors of the original matrix from the eigenvectors of the Hessenberg matrix. The point of caution for the user is that the working matrix for the subroutine is the Hessenberg form, which in general bears no simple relation to the input matrix. Thus, if the user attempts to debug this subroutine at an intermediate stage, the relation between the Hessenberg form and the original form must ge kept in mind.

The advantage of using the Hessenberg form is apparent in the time needed to complete the computation of the eigenvalues. Most methods that operate on the entire input matrix, such as the Jacobi method, require a number of operations that is approximately $30 \mathrm{~N}^{3}$ (ref. 2), where N is the order of the matrix. The reduction to Hessenberg form is a one-pass operation and requires $\alpha \mathrm{N}^{3}$ operations, where α is of order unity. The QR algorithm applied to the Hessenberg form only requires something of the order of N^{2} operations. One interesting result of this is the observation (ref. 5) that under many conditions the QR transform produces eigenvalues in less time than the Jacobi transformation.

Inverse Iteration

The basis of the inverse iteration procedure is the observation that, if λ is an eigenvalue of the matrix A, the quantity ($A-\lambda I$), where I is the unit matrix, will be singular. Thus, if λ is a good approximation to an eigenvalue of A, the matrix $(A-\lambda I)^{-1}$ may be iterated to obtain an approximation Y to the eigenvector X. The iteration process is carried out until after the $K^{\text {th }}$ iteration the norm of the iterated vector, $(A-\lambda I)^{-1} Y_{K}$ is greater than some preselected value (see the appendix). This procedure is equivalent to the power method, but in inverse powers of the matrix (A - $\lambda \mathrm{I}$). The speed with which this iteration produces an eigenvector depends on the accuracy of the estimate for the eigenvalue, but rarely does this procedure, combined
with the QR algorithm, require more than 2 iterations to produce eigenvectors to at least six or seven place accuracy. Again, the interested user is referred to Wilkinson (ref. 1) for a complete description of the method and the error analysis.

SPECLAL FEATURES OF ALLMAT

As mentioned in the introduction, the basic elements of ALLMAT, the reduction to Hessenberg form, the QR transformation, and the inverse iteration, are taken from an ORNL subroutine (ref. 5). There are several features that have been added to this basic program to either add effectiveness to the program or provide timing and accuracy information to the user. These special features will be discussed in this section, more or less in the order that they appear in the program.

Decomposed Hessenberg Form

The reduction of the original matrix to Hessenberg form is a procedure that decreases the number of operations necessary for the QR algorithm. In a large number of cases the nature of the Hessenberg form allows further simplifications. To illustrate this, sketch (a) shows an upper Hessenberg matrix, of order N. The X's in the sketch

(a)
indicate matrix elements, generally nonzero, whose values are unimportant. Now let one of the subdiagonal elements vanish, for example $A(R, R-1)=0$. Then the Hessenberg matrix may be decomposed into four submatrices as shown in sketch (b).

(b)

The submatrices B and D are upper Hessenberg matrices of order $R-1$ and $N-R+1$, respectively. Submatrix C is a nonzero matrix with $N-R+1$ columns and $R-1$ rows. The remaining submatrix of this partition of A is entirely filled with zeroes.

The result of this decomposition is that the problem of finding the eigenvalues of B and D becomes entire disjoint; that is, the eigenvalues of B and D, collectively, are the eigenvalues of A. The submatrix C plays no part in the eigenvalue problem. Thus, instead of the solution of a single matrix of order N, the problem has been reduced to the solution of two matrices, of order $N-R+1$ and $R-1$. Since $\mathrm{N}^{2}>(\mathrm{N}-\mathrm{R}+1)^{2}+(\mathrm{R}-1)^{2}$ for $\mathrm{N} \geq 3$ and R that is not trivial, this decomposition implies a significant reduction in the total number of operations in the $Q R$ transforma-
tion. For many input matrices, particularly those matrices that are sparse, a number of such decompositions may be performed and the gain in machine time is important.

This decomposition is not as important for the calculation of the eigenvectors, although some improvement is made. The eigenvectors corresponding to eigenvalues of D (see sketch (b)) depend upon the submatrices B and C, so that the entire matrix must be used in the inverse iteration procedure. The eigenvectors corresponding to the eigenvalues of B, on the other hand, do not require matrices C or D, so that only B is used in the inverse iteration. Thus, some advantage is gained from the decomposition for the calculation of the eigenvectors. On the whole, though, the main advantage of the decomposition enters in the QR transformation.

Perturbation of Close Eigenvalues

One difficulty with the inverse iteration method arises when two or more eigenvalues are very nearly the same. Since every calculated eigenvalue differs from the "true" eigenvalue by an amount that depends on many factors, these eigenvalues may not produce linearly independent eigenvectors. The way chosen to resolve this accidental degeneracy was to perturb each successive close eigenvalue by an amount small enough to not disturb the convergence of the iterative procedure, but large enough to resolve the eigenvectors into linearly independent vectors (ref. 1). The choice of the perturbation, EPSIL, is arbitrary and a better choice could be made for particular types of matrices.

Since the existence of close but distinct eigenvalues implies that the matrix may be ill-conditioned (ref. 1), the accuracy of the calculated eigenvectors will be in doubt. In this sense, the use of a perturbation to separate the eigenvalues is an attempt to recover some useful information from a badly posed problem. Thus, for most matrices encountered, the existence of close but distinct eigenvalues should be rare. The occurrence of multiple eigenvalues is more common.

Multiple Eigenvalues

The existence of a set of multiple eigenvalue is a not uncommon occurrence in physical problems. The existence of such a set implies that there is a subspace of eigenvectors that one desires the basis vectors of. In this situation the perturbation is of some help. If, by the process of perturbing the degenerate eigenvalues within the inverse iteration process, one can obtain a set of distinct eigenvectors, even iif they are not linearly independent, then there is a standard solution to the problem of determini:g
the basis vectors. For this purpose ALLMAT takes the set of distinct eigenvectors produced by the perturbation technique just discussed and uses a Gram-Schmidt (ref. 1) orthogonalization procedure to give a set of linearly independent eigenvectors. Since the Gram-Schmidt process involves taking the differences of nearly equal numbers in many cases, the accuracy of such a procedure is less than the accuracy of an inverse iteration vector for a distinct eigenvalue. Again, however, this represents an attempt to salvage as much information as one can from an undesirable situation. In practice, as shall be seen in the section TESTS, the results of this perturbation and orthogonalization procedure are good.

ENTRY EVDATA

The remaining special feature of ALLMAT is represented by the secondary entry point, EVDATA, as discussed in general construction. A typical user of an installationsupplied mathematical subroutine is usually blissfully unaware of any error considerations for his problem. Since the accuracy of any matrix eigenvalue evaluation strongly depends upon the properties of the input matrix, ignoring error information is equivalent to shutting one's eyes to avoid an oncoming truck. Additionally, since some eigenvalues and eigenvectors may in fact be absent due to nonconvergence either in QR or inverse iteration, the information provided by EVDATA is-important to a user. The use of the TSS/FORTRAN multiple-data set capability means that this information is readily available to the user, without so much as the disturbance of an artistic output format.

The information available in EVDATA includes the number of iterations, the CPU time elapsed for the eigenvalue and the eigenvector computations, and an error estimate for each eigenvalue-eigenvector pair. The timing and counting variable provided in EVDATA were discussed sufficiently under usage, but the error information requires some further comment.

If λ and X are an exact eigenvalue and an exact eigenvector of the matrix A, then the vector $A X-\lambda X$ will be identically zero. Since neither λ nor X can ever be computed exactly, this vector ($A X-\lambda X$), called the residual vector, will be nonzero. The magnitude of this vector is then a measure of the error in λ and X. The length of a vector, as used in ALLMAT, is the Euclidean norm, $\|x\|=\left(\sum|x(i)|^{2}\right)^{1 / 2}$. The vector RNORM of EVDATA contains the norm of the residual vector for each eigenvalueeigenvector pair, scaled to the Euclidean norm of the input matrix.

The data entry point EVDATA may be used even if no eigenvectors are computed (i.e., if EVECT = . FALSE.) In this case only ITS and NCO contain meaningful values.

TESTS

Seven matrices were chosen as examples for ALLMAT. The dimensions of these matrices vary from four to 19. All but two matrices are real but not symmetric, one of the remaining matrices is Hermitian, and the final example matrix is complex, but not Hermitian. Some of these matrices were chosen to illustrate ill-conditioning of one type or another. Since the numerical values of the eigenvectors are not of general use, they are not displayed.

Matrix 1

$$
A_{1}=\left(\begin{array}{rrrr}
0.1 & -0.7 & -0.4 & -0.5 \\
-0.5 & 0.2 & -0.1 & -0.2 \\
0.4 & 0.5 & 0.5 & 0.7 \\
0.1 & 0.2 & 0.5 & 0.4
\end{array}\right)
$$

This real, but unsymmetric, matrix of order four has the exact eigenvalues $0.9,0.6$, -0.3 , and 0 . In addition, the computed eigenvalue corresponding to 0 . is $0.14 \mathrm{E}-16$. The information available from EVDATA on this test includes:

Eigenvalue	Number of QR iterations	Number of inverse iterations	RNOR \bar{M}
-0.3	8	3	$0.65 \mathrm{E}-16$
$.14 \mathrm{E}-16$	1	3	$.43 \mathrm{E}-16$
.6	1	3	$.16 \mathrm{E}-16$
.9	1	3	$.91 \mathrm{E}-16$

The total time for the QR transformation, including the initial reduction to Hessenberg form was 0.053 second, and the time for the inverse iteration was 0.046 second.

Matrix 2

$$
A_{2}=\left(\begin{array}{cccc}
0.25000025 & -1.0 & -0.49999975 & -0.99999975 \\
-0.50000050 & 0.5 & 0.24999950 & 0.25000025 \\
1.00000025 & 1.25 & 1.00000025 & 1.25000025 \\
-0.4999975 & -0.25 & 0.25000025 & 0.50000025
\end{array}\right)
$$

This matrix has eigenvectors identical to those of matrix 1, but has a different set of eigenvalues. The exact eigenvalues of A_{2} are given in the following table:

Eigenvalue	Number of QR iterations	Number of inverse iterations	RNORM
1.5	2	3	$0.68 \mathrm{E}-16$
.75000075	4	3	$.10 \mathrm{E}-15$
.75	0	3	$.46 \mathrm{E}-14$
-.75	1	3	$.64 \mathrm{E}-15$

The closeness of the second and third eigenvalues hint at some error problems with the eigenvectors. The time for QR transformation was 0.020 second, and the time for the inverse iteration was 0.090 second. The difficulties anticipated from the closeness of the eigenvalues are evidenced in the degradation of the third value of RNORM in the table.

Matrix 3

$$
A_{3}=\left(\begin{array}{llll}
0.009 & 5.00101 & -8.999 & 3.999 \\
-0.001 & 5.01101 & -8.999 & 3.999 \\
-0.001 & 4.91101 & -8.899 & 3.999 \\
-0.001 & 4.96101 & -8.999 & 4.049
\end{array}\right)
$$

This matrix A_{3} is an example of an ill conditioned matrix, in contrast with the previous example. Here, A_{2} had two nearly alike eigenvalues even though the matrix is not mathematically ill conditioned (ref. 1).

Eigenvalue	Number of $\overline{\mathbf{Q R}}$ iterations	Number of inverse iterations	RNORM
0.01	3	3	$-25 \mathrm{E}-16$
.01001	3	3	$.14 \mathrm{E}-16$
.1	3	3	$.18 \mathrm{E}-16$
.05	1	3	$.23 \mathrm{E}-16$

The time for QR transformation was 0.038 second; that for inverse iteration was 0.025 second. Apparently, the ill conditioning did not effect the inverse iterations, as all values of RNORM are satisfactory.

Matrix 4

$$
A_{4}=\left(\begin{array}{rrrrrl}
6 . & \cdots & 5 . & 4 . & 3 . & 2 . \\
1 . & -2 . & 1 . & 6 . & 3 . & 2 . \\
2 . & 3 . & 2 . & -2 . & 4 . & 3 . \\
3 . & 1 . & -3 . & -1 . & 5 . & 5 . \\
4 . & -4 . & 2 . & 0 . & 1 . & 4 . \\
5 . & 0 . & 1 . & 3 . & 6 . & 6 .
\end{array}\right)
$$

Unlike the first three test matrices, A_{4} has a pair of complex eigenvalues.

Eigenvalue	Number of QR iterations	Number of inverse iterations	RNORM
3.0929	6	3	$0.78 \mathrm{E}-16$
$.1772+.95 \mathrm{E}-16 \mathrm{i}$	6	3	$.24 \mathrm{E}-15$
$.42295+4.3954 \mathrm{i}$	5	3	$.11 \mathrm{E}-15$
$.42295-4.3954 \mathrm{i}$	4	3	$.17 \mathrm{E}-15$
$15.247+.11 \mathrm{E}-14 \mathrm{i}$	1	3	$.56 \mathrm{E}-15$
-7.3630	1	3	$.47 \mathrm{E}-15$

The time for QR transformation was 0.142 second; that for inverse iteration was 0.314 second. The imaginary part of the sum of the eigenvalues (which should be 0 .) is $0.355 \mathrm{E}-14$.

Matrix 5

This test matrix is a 19 by 19 real, unsymmetric matrix given by Francis (ref. 4) to demonstrate the QR transformation. The matrix is too complicated to list here, but the error information is informative. The time to produce the eigenvalues was 2 seconds, and the time to calculate the 19 eigenvectors was 22 seconds. Although this time is large when compared with the previous examples, it is quite reasonable when compared with other methods (ref. 5). Even with a matrix of this order, the residual vectors all had norms less than 1.E-16.

Matrix 6

This matrix has several features that make it useful as an example. Each nonzero element of A_{6} is a purely imaginary number and, in addition, A_{6} is Hermitian. Thus, the eigenvalues of A_{6} are real and, since the trace of A_{6} vanishes, the eigenvalues occur in positive-negative pairs. There is a pair of degenerate eigenvalues with the value 0 , so that the orthogonalization procedure must be used to obtain the eigenvectors. Finally, A_{6} is sufficiently sparse that the decomposition of the Hessenberg form is effective in reducing the time required for the computations.

Eigenvalue	Number of QR iterations	Number of inverse iterations	RNORM
-0.91376103	3	3	0.26E-16
. 91376103	3	3	. $16 \mathrm{E}-16$
-1.03872417	7	3	. $31 \mathrm{E}-15$
-. 38452612	6	3	. $96 \mathrm{E}-16$
. 38452612	5	3	. $555 \mathrm{E}-15$
1.03872417	4	3	. $74 \mathrm{E}-15$
-1.53711192	1	3	. 15E-14
1.53711192	1	3	. 21E-14
0	3	3	0
0	1.	3	0

The time for $Q R$ transformation was 1.07 second; that for inverse iteration was 1.50 second. The eigenvalues appear in this table in the order in which they are calculated by the QR algorithm. Since the reduction to Hessenberg form and the use of the decomposed Hessenberg form rearrange the matrix, the eigenvalues are not computed in pairs, necessarily. This same effect caused the QR routine to take three iterations to compute a zero eigenvalue. The degenerate eigenvalues caused no loss of accuracy in the computation of the eigenvectors. Furthermore, the sum of the eigenvalues is purely imaginary, and has the magnitude $0.4 \mathrm{E}-14$, reflecting the zero trace of A_{6}.

Matrix 7

The final example matrix was generated from matrix A_{4} by taking each element of this 6 by 6 real, nonsymmetric matrix and multiplying by the imaginary unit i. The result, A_{7}, is a complex non-Hermitian matrix whose eigenvalues are the eigenvalues

Eigenvalue	Number of QR iterations	Number of inverse iterations	RNORM
3.0929 i	6	3	$0.77 \mathrm{E}-16$
$.95 \mathrm{E}-16+.1772 \mathrm{i}$	6	3	$.28 \mathrm{E}-15$
$4.3954+.42295 \mathrm{i}$	5	3	$.10 \mathrm{E}-15$
$-4.3954+.42295 \mathrm{i}$	4	3	$.16 \mathrm{E}-15$
$.44 \mathrm{E}-15-7.3630 \mathrm{i}$	1	3	$.48 \mathrm{E}-15$
15.247 i	1	3	$.52 \mathrm{E}-15$

of A_{4} multiplied by i. The Qr transformation time was 0.140 second, and the inverse iteration time was 0.319 second.

A comparison of the results indicated in the preceding table with the results for example A_{4} shows that ALLMAT handles the non-Hermitian form with comparable speed, at no loss of accuracy in the eigenvalues and eigenvectors. The sum of the eigenvalues is $0.31 \mathrm{E}-14+12$. .

These seven examples were chosen to be representative of the application of ALLMAT. Some matrices (A_{1}, A_{4}, A_{5}, and A_{7}) pose no particular problems, while the remaining (A_{2}, A_{3}, and A_{6}) were included to demonstrate one of more special characteristics of the program. It is seen from the results given above that ALLMAT had no difficulty with any of these test matrices. The norm of the residual vectors is typically less than $1 . E-15$, and all computed eigenvalues that were also known exactly were in agreement to at least 14 places. At no point did either the $Q R$ algorithm or the inverse iteration fail to give convergence within the allotted limit of 10 iterations. In fact, only once did the inverse iteration procedure require more than three iterations to satisfy the convergence criterion.

CONCLUDING REMARKS

This report is intended to be a user's guide for the prospective user of ALLMAT. The information presented here about the construction of ALLMAT should be considered a minimum for the use of this matrix eigenvector program. No program of the complexity of ALLMAT should be used without some understanding of the basic algorithms involved. Certainly, though, most users will apply ALLMAT without consideration of even the simplified discussion presented here. For these users the entry point EVDATA should be required usage as an indicator when ALLMAT does fail on a matrix.

Experience has shown that two inverse iterations are usually enough to give an eigenvector correct to sufficient accuracy. The current version of ALLMAT, however, iterates until the norm of the iterated vector, $(A-\lambda I)^{-1} X$, is greater than 1. E 40 . If computing time is at a premium, this criterion can be easily changed to a test on the number of iterations. The current limitation on ALLMAT is to matrices of dimension no larger than 50. This restriction may also be changed easily.

ALLMAT was designed to be a general purpose matrix eigenvalue and eigenvector subroutine. Almost any matrix, including the most general case of a complex, nonHermitian matrix, is amenable to diagonalization by ALLMAT. Furthermore, timing
test (ref. 5) indicate that the QR transform may be preferred to the Jacobi method for the eigenvalues of real and symmetric matrices.

Lewis Research Center,

 National Aeronautics and Space Administration, Cleveland, Ohio, September 16, 1970, 129-02.
APPENDIX - FORTRAN LISTING

0000100 0000200 0000300 0000400 C 0000500 C 0000600 C 0000700 C 0000800 C 0000900 0001000 0001100 0001200 0001300 0001400 0001500 0001600 0001700 0001800 0001900 0002000 0002100 0002200 C 0002300 C 0002400 C 0002500 C 0002600 C 0002700 0002800 C 0002900 C 0003000 C 0003100 C 0003200 C 0003300 C 0003400 0003500 0003600 0003700 0003800 0003900 0004000 0004100 0004200 0004300

SUBROUTINE ALLMAT (AA, LAMBDA, M, MM, EVECT, NCAL)
-IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)

- COMPLEX* 16 AA(MM,MM)

IF THE USER REQUIRES, DIMENSION LARGER THAN 50, THE
DIMENSIONS IN THE 2 LINES FOLLOWING THIS COMMENT YUST
BE CHANGED FROM 50 TO A SIZE TO SUIT THE USER.

- COMPLEX* 16 A(50,50), $\mathrm{H}(50,50), \operatorname{HL}(50,50), \operatorname{LAMB\cap A}(M M)$

COMPLEX* 16 VECT (50), MULT (50), SHIFT(3), TEMP, SINT, COST, TEMP1, TEMP2
COMPLEX* 16 EIF, CONJI
LOGICAL EVECT, INTH(50)
DIMENSION NCOUNT (50), MCOUNT (50)
INTEGER JNT (50), R,RP1,RP2
DO $1000 \quad J=1, M$
DO $1000 \quad 1=1, M$
$1000 \mathrm{~A}(1, J)=A A(1, J)$
CALL CPUTIM(IT|M)
1 TSUM $=0$
KTSUM $=0$
CONJI $=(0 .,-1$.
THE CONSTANT EPSIL DETERMINES THE CONVEPGENCE OF THE QR ALGORITHIN, AND ALSO IS THE PERTURBATION PARAMETER FOR THE INVERSE ITERATION.

EPSIL $=1.0 \mathrm{D}-12$
THE CONSTANT EPSMAX DETERMINES THE CONVEPGENCE OF THE INVERSE ITERATION. THIS NUMBER IS THE LOGARITHM OF NORM OF THE ITERATED EIGENVECTOR THAT IS SUFFICIENT FOR CONVEPGENCE.
$E P S M A X=40$.
NSTOP $=M$
$N=N S T O P$
NSTART = 1
MN1 $=1$
NCAL $=0$
IF (N.NE.1) GOTO 1
$\operatorname{LAMBDA}(1)=A(1,1)$
$A(1,1)=1.0$
GO TO 92
000.4400 0004500 0004600 0004700 0004800 0004900 0005000 0005100 0005200 0005300 0005400 0005500 0005600 0005700 0005800 0005900 0006000 0006100 0006200 0006300 0006400 0006500 0006600 0006700 0006800 C 00069000 00070000 0007100 0007200 0007300 0007400 0007500 0007600 0007700 0007800 0007900 0008000 0008100 0008200 0008300 0008400 0008500 0008600 0008700 0008800 0008900 0009000 0009100 0009200 0009300 0009400 0009500 0009600 0009700 0009800 0009900
$1 \mid$ COUNT $=1$ SHIFT(1) $=0$. IF (N.NE.2) GOTO 4
2 NSP1 $=$ NSTART + 1
TEMP $=(A(N S T A R T, N S T A R T)+A(N S P 1, N S P I)+C D S Q R T-$
1((A (NSTART, NSTART) +A(NSP1, NSP1))**2-4.*(A(NSP1, -'
1NSP1)*A(NSTART, NSTART)-A(NSP1,NSTART)*A(NSTART, -•
1NSP1))))/2.
RELTEM $=$ TEMP
AMGTEM $=$ CONJI*TEMP
IF (RELTEM.NE.O..OR.AMGTEM.NE.O.) GOTO 3
LAMBDA (NSTOP) = SHIFT(1)
LAMBDA (MN1) $=A(N S T A R T, N S T A R T)+A(N S P 1, N S P 1)+$ SHIFT(1)
NCOUNT (NSTOP) $=1$ COUNT
NCOUNT(MN1) $=1$ COUNT
GO TO 37
3 LAMBDA (NSTOP) $=$ TEMP + SHIFT(1)
$\operatorname{LAMBDA}(M N 1)=(A(N S T A R T, N S T A R T) * A(N S P 1, N S P 1)-\quad$ -
IA(NSP1,NSTART)*A(NSTART,NSP1))/(LAMBDA(NSTOP) -
2-SHIFT(1))+SHIFT(1)
NCOUNT (NSTOP) $=1$ COUNT
NCOUNT (MN1) $=$ ICOUNT
1 COUNT $=1$
GO TO 37
REDUCE MATRIX A TO HESSENBERG FORM.
4 NM2 $=\mathrm{N}-2$
DO $15 \mathrm{R}=1, N \mathrm{M} 2$
$R P I=R+1$
$R P 2=R+2$
$\mathrm{ABIG}=0$.
$J N T(R)=R P I$
DO $51=R P 1, N$
RELAIR $=A(1, R)$
$A M G A I R=C O N J I * A(I, R)$
ABSSQ = RELAIR**2 + AMGAIR**2
IF (ABSSO.LE.ABIG) GOTO 5
$J N T(R)=1$
$A B / G=A B S S Q$
5 CONTINUE
INTEP = JNT(R)
IF (ABIG.EQ.O.) GOTO 15
IF (INTER.EQ.RP1) GOTO 8
DO $6 \quad 1=R, N$
TEMP $=A(R P 1,1)$
$A(R P I, I)=A(\mid N T E R, I)$
6 A (INTER,I) $=$ TEMP
DO 7 l=1, N
TEMP $=A(1, R P 1)$
$A(I, R P 1)=A(I, I N T E R)$
7 A(I,INTER) = TEMP
8 DO 9 l=RP2,N
$\operatorname{MULT}(1)=A(1, R) / A(R P 1, R)$
$9 \mathrm{~A}(1, R)=\operatorname{MULT}(1)$
DO 11 I=1,RP1

0010000 0010100 0010200 0010300 0010400 0010500 0010600 0010700 0010800 0010900 0011000 0011100 0011200 0011300 C 0011400 C 0011500 C 0011600 0011700 0011800 0011900 0012000 0012100 0012200 0012300 0012400 0012500 0012600 0012700 0012800 C 0012900 C 0013000 C 0013100 0013200 0013300 0013400 0013500 0013600 0013700 C 0013800 C 0013900 C 0014000 C 0014100 C 0014200 0014300 0014400 0014500 0014600 0014700 0014800 0014900 0015000 0015100 C 0015200 C 0015300 C 0015400 C 0015500

```
    TEMP = 0.
    DO 10 J=RP2,N
    10 TEMP = TEMP + A(I,J)*MULT(J)
    11 A(I,RP1) = A(I,RP1) + TEMP
    DO 13 I=PP2,N
    TEMP = 0.
    DO 12 J=RP2,N
12 TEMP = TEMP + A (I,J)*MULT (J)
13 A(I,RP1)=A(I,RP1)+TEMP-MUI_T(I)*A(RP1,RP1)
    DO 14 I=RP2,N
    DO 14 J=RP2,N
    14 A(I,J)=A(I,J) - MUI_T(I)*A(RP1,J)
    15 CONTINUE
        CALCULATE EPSILON.
    EPS = 0.
    DO 16 I=1,N
16 EPS = EPS + CDABS (A(1,1))
    DO 18 I=2,N
    SUM = 0.
    IM1 = I - 1
    DO 17 J=IM1,N
17 SUM = SUM + CDABS(A(I,J))
18 IF(SUM.GT.EPS) EPS=SUH
    EPS = DSQRT(QFLOAT (N))*EPS*1.D-20
    IF (EPS.EQ.0.) EPS=1.D-20
    EPSIL = DMAX1(EPS,EPSIL)
    SAVE THE HESSENBFRG FORM IN THE ARRAY H.
20 DO 19 I=1,N
    DO 19 J=1,N
19 H(1,J) = A(1,J)
    NSM1 = NSTOP - I
    IF (NSM1.NE.O) GOTO 1DO
    R=1
    START SCANNING FOR ZEROES IN THE SUB-DIAGONAL. THIS
    DEFINES THE SUB-BLOCKS OF THE DECOMPOSEN HESSENBFPG
    FORM.
    GO TO 102
100 DO 101 I=1,NSM1
    R=NSTOP - 1 + 1
    RELAM1 = A(R,R-1)
    AMGAM1 = CONJ!*A(R,R-1)
    IF ((QABS(RELAM1) +QABS(AMGAM1)).LE.EPSIL) GOTO 102
101 CONTINUE
    R = 1
102 NSTART = R
    NSTART AND NSTOP ARE THE INDICES OF THE BEGINNING AND
    END OF A DFCOMPOSED HESSENBERG BLOCK.
    NS = NSTOP - NSTAPT + 1
```

```
0015600
0015700
0015800
0015900
0016000
0016100
0016200
0016300
0016400
0016500
0016600
0016700
0016800
0016900
0017000
0017100
0017200
0017300
0017400
0017500
0017600
0017700
0017800
0017900C
0018000C
0018100C
0018200
0018300
0018400
0018500
0018600
018700
0018800
0018900
0019000
0019100
0019200
0010300
0019400
0019500
0019600
019700
0019800
0019900
0020000
0020100
0020200
0020300
0020400
0020500
0020600
0020700
0020800
0020900C
0021.000C
00211000
```

0021200 0021300 0021400 0021500 0021600 0021700 0021800 0021900 0022000 0022100 0022200 0022300 0022400 0022500 0022600 0022700 0022800 0022900 0023000 0023100 0023200 0023300 0023400 0023500 0023600 0023700 0023800 0023900 0024000 0024100 0024200 0024300 0024400 0024500 0024600 0024700 0024800 C 0024900 C 0025000 C 0025100 0025200 0025300 0025400 0025500 0025600 0025700 0025800 0025900 0026000 0026100 0026200 0026300 0026400 0026500 0026600 0026700

```
    IF (ICOUNT.LE.10) GOTO 32
    NCOUNT(MN1) = -ICOUNT
    NC = NC - NS
    GO TO 37
32 NMI = N - I
    TEMP1 = A(NSTART,NSTART)
    TEMP2 = A(NSTART+1,NSTART)
    DO 36 R=NSTART,NMI
    NN = R
    RP1 = R + I
    RELTM1 = TEMP1
    AMGTM1 = CONJI*TEMPI
    RELTM2 = TEMP2
    AMGTM2 = CONJI*TEMP2
    RHO =*DSQRT(RELTM1**2+AMGTM1**2+RELTM2**2*AMGTM2**2)
    IF (RHO.EQ.O.) GOTO 36
    COST = TEMPI/RHO.
    SINT = TEMP2/RHO
    INDEX = MAXO(NN-1,NSTART)
    DO 33 I=1NDEX,N
    TEMP = DCONJG(COST)*A(NN,1)+QCONJG(SINT)*A(RP1,1)
    A(RP1,I) = -SINT*A(NN,1)+COST*A(RP1,I.)
33 A(NN,I) = TEMP
    TEMP1 = A(RP1,RP1)
    TEMP2 = A(NN+2,R+1)
    DO 34 I=NSTART,R
    TEMP=COST*A(I,NN)+SINT*A(I,RP1)
    A(I,RPI) = -DCONJG(SINT)*A(I,NN)+DCONJG(COST)*A(1,RP1)
34 A(1,NN) = TEMP
    INDEX = MINO(NN+2,N)
    DO 35 I=RP1,INDEX
    A(1,NN) = SiNT*A(1,RP1)
35 A(1,RP1)=DCONJG(COST)*A(1,RP1)
3 6 ~ C O N T I N U E
    ICOUNT = ICOUNT + I
    GO TO 22
        CALCULATE VECTORS.
37 IF (.NOT.EVECT) GOTO 64
    CALL CPUTIM(JTIM)
    ITSUM = ITSUM + (JTIM - ITIM)
    IF (NC.EQ.0) GOTO 64
    NPNCAL = NSTART + NC - 1
    N = NSTOP
    NS = NSTOP - NSTART + 1
    NM1 = N - 1
    IF (N.NE.2) GO TO 38
    EPS = QMAX1(CDABS(LAMBDA(1)),CBABS(LAMBDA(2)))*1.D-16
    IF (EPS.EQ.0.) EPS=EPSIL
    H(1,1) = A(1,1)
    H(2,1) = A(2,1)
    H(1,2) = A(1,2)
    H(2,2) = A(2,2)
38 DO 63 L=NSTART,NPNCAL
    ABIG=0.
```

0026800 0026900 0027000 0027100 0027200 0027300 0027400 0027500 0027600 0027700 0027800 0027900 0028000 0028100 0028200 0028300 0028400 0028500 0028600 0028700 0028800 0028900 0029000 0029100 0029200 0029300 0029400 0029500 0029600 0029700 0029800 0029900 0030000 0030100 0030200 0030300 0030400 0030500 0030600 0030700 0030800 0030900 0031000 0031100 0031200 0031300 0031400 0031500 0031600 0031700 0031800 0031900 0032000 0032100 0032200 0032300

```
    ElG = LAMBDA(L)
    IF (L.EQ.NSTART) GOTO 40
    LMI = L - I
    RELEIG= EIG
    AMGEIG = CONJI*EIG
    DO 39 I=NSTART, LM1
    RELAMI = LAMBDA(I)
    AMGAMI = CONJI*LAMBDA(I)
    IF (DABS(RELEIG-RELAMI).GT.EPSIL) GOTO 39
    IF (DABS(AMGE|G-AMGAMI).GT.EPSIL) GOTO }3
    EIG=EIG + CONJI*EPSIL
    39 CONTINUE
    40 DO 42 I=1,N
    DO 41 J=1,N
    41HL(J,I)=H(J,I)
    42HL(I,I)=HL(I,I)-EIG
    DO 45 I=1,NM1
    MULT(1) = 0.
    INTH(I) = .FALSE.
    IP1 = | + 1
    IF (CDABS(HL(I+1,l)).LE.CDABS(HL(I,I))) GO TO 44
    INTH(I) = .TRUE.
    DO 43 J=1,N
    TEMP = HL(I+1,J)
    HL(I+1,J)=HL(I,J)
43 HL (I,J) = TEMP
44 RELH!! = HL(I, 1)
    AMGHII = CONJI*HL(1,1)
    IF (RELHII.EQ.O..AND.AMGHII.EQ.O.) GOTO 46
    MULT(I) = -HL(I+1,I)/HL(I,I)
    DO 45 J=IP1,N
    45HL(I+1,J)=HL(I+1,J) + MULT(I)*HL(I,J)
    46 CONTINUE
    DO 48 I=1,N
48 VECT(I) = 1.
    IF (NSTOP.EQ.M) GOTO 110
    NSTP1 = NSTOP + 1
    DO 47 I=NSTP1,M
    47 VECT(I) = 0.
110 I COUNT = 1
49 RELHNN = HL (N,N)
    AMGHNN = CONJI*HL(N,N)
    IF (RELHNN.EQ.0..AND.AMGHNN.EQ.O.) HL(N,N)=EPS
    VECT(N) = VECT (N)/HL(N,N)
    DO 51 I=1,NM1
    K=N-1
    DO 50 J=K,NM1
50 VECT (K) = VECT(K) - HL(K,J+1)*VECT (J+1)
    RELHKK = HL(K,K)
    AMGHKK = CONJI*HL(K,K)
    IF (RELHKK,EQ.O..AND.AMGHKK.EQ.0.) HL(K,K)=EPS
51 VECT(K) = VECT(K)/HL(K,K)
    BIG=0.
    DO 52 I=1,N
    RELVEC = VECT(I)
    AMGVEC = CONJI*VECT(I)
```

0032400 0032500 0032600 0032700 0032800 0032900 0033000 0033100 0033200 0033300 0033400 0033500 0033600 0033700 0033800 0033900 0034000 0034100 0034200 0034300 0034400 0034500 0034600 0034700 0034800 0034900 0035000 0035100 0035200 0035300 0035400 0035500 0035600 0035700 0035800 0035900 0036000 0036100 0036200 0036300 0036400 0036500 0036600 0036700 0036800 0036900 0037000 0037100 0037200 0037300 0037400 0037500 0037600 0037700 0037800 0037900

```
    SUM = DABS(RELVEC)+DABS(AMGVEC)
    IF (SUM.LE.BIG) GOTO 52
    BIG = SUM
    |l = I
    RELV = RELVEC
    AMGV = AMGVEC
5 2 ~ C O N T I N U E ~
    IF (BIG.EQ.O.) GOTO 155
    IF (AMGV.EQ.0.) GOTO }13
    IF (DABS(AMGV).GT.DABS(RELV)) GOTO 125
    RAT = AMGV/RELV
    DEN = RELV + RAT*AMGV
    DO 120 I=1,N
    IF (I.EQ.11) GOTO 120
    RELVEC = VECT(1)
* AMGVEC = CONJI*VECT(I)
    RELVC = (RELVEC + RAT*AMIGVEC)/DEN
    AMGVC = (AMGVEC - RAT*RELVEC)/DEN
    VECT(1) = DCMPLX(RELVC,AMGVC)
120 CONTINUE
    VECT(II) = 1.
    GO TO 150
125 RAT = RELV/AMGV
    DEN = AMGV + RAT*RELV
    DO 130 I=1,N
    IF (I.EQ.lI) GOTO 13n
    RELVEC = VECT(I)
    AMGVEC = CONJI*VECT(1)
    RELVC = (AMGVEC + RAT*RELVEC)/DEN
    AMGVC = (RAT*AMGVEC - RELVEC)/DEN
    VECT(I) = DCMPLX(RELVC,AMGVC)
130 CONTINUE
    VECT(II) = 1.
    GO TO 150
135 DO 53 I=1,N
    53 VECT(I) = VECT(I)/BIG
150 ABIG = ABIG + DLOG10(BIG)
    IF (ABIG.GT.EPSMAX) GOTO 55
155 IF(ICOUNT.GE.10) GOTO 55
    DO 54 I=1,NMI
    IF (.NOT.INTH(I)) GOTO 54
    TEMP = VECT(1)
    VECT(1) = VECT(1+1)
    VECT}(1+1)= TEMP
54 VECT(1+1) = VECT(1+1)+MULT(1)*VECT(1)
    ICOUNT = ICOUNT + 1
    GO TO 49
55 IF (M.LE.2) GOTO 69
    MCOUNT(L) = ICOUNT
    MM2 = M-2
    DO 57 I=1,M^2
    M1I = M-1-1
    MII = M-1+1
    DO 56 J=M11,M
56 VECT(J)=H(J,M1I)*VECT(M11+1)+VECT(J)
    INDEX = JNT(M1I)
```

0038000
0038100
0038200 0038300 C 0038400 C 0038500 C 0038600 0038700 0038800 0038900 0039000 0039100 0039200 0039300 0039400 0039500 0039600 0039700 0039800 0039900 0040000 0040100 0040200 0040300 0040400 0040500 0040600 0040700 0040800 0040900 0041000 0041100 0041200 0041300 0041400 0041500 0041600 0041700 0041800 0041900 0042000 0042100 0042200 0042300 0042400 0042500 0042600 0042700 0042800 0042900 0043000 0043100 0043200 0043300 0043400 0043500
TEMP = VECT(MII+1)
$\operatorname{VECT}(M 1 I+1)=\operatorname{VECT}(I N D E X)$
57 VECT (INDEX) $=$ TEMP
NORMALIZE EIGENVECTOR.
69 SUM $=0$.
DO $58 \quad \mathrm{I}=1, \mathrm{M}$
RELVEC = VECT(1)
AMGVEC $=$ CONJI*VECT(I)
58 SUM = SUM + RELVEC*RELVEC + AMGVEC*AMGVEC
SUM $=$ DSQRT (SUM)
IF (SUM.EQ.O.) GO TO 60
D0 $59 \quad 1=1, M$
$59 \operatorname{VECT}(1)=\operatorname{VECT}(1) / S U M$
60 CONTINUE
DO $61 \quad I=1, M$
$61 \mathrm{~A}(1, L)=\operatorname{VECT}(1)$
CALL CPUTIM (KTIM)
KTSUM $=$ KTSUM $+(K T I M-J T I M)$
63 CONTINUE
NCAL $=$ NCAL $+N C$
64 IF (NSTART.EQ. 1) GOTO 70
SHIFT(1) $=0$.
NSTOP $=$ NSTART - 1
$N=$ NSTOP
GO TO 20
70 DO $80 \quad L=2, M$
DO $79 \quad \mathrm{I}=1, \mathrm{M}$
$79 \mathrm{JNT}(1)=0$
RELAML $=\operatorname{LAMBDA}(L)$
AMGAMM $=$ CONJI*LAMBDA(L)
LMI $=\mathrm{L}-1$
$\mathrm{R}=0$
DO $71 \quad \mathrm{I}=1$, LM1
RELAMI $=$ LAMBDA(I)
AMGAMI $=$ CONJI $* \operatorname{LAMBDA(I)~}$
IF (DABS (RELAML-RELAMI).GT.EPS) GOT0 71
IF (DABS (AMGAML-AIGGAMI). GT.EPS) GOTO 71
$J N T(I)=L$
$R=R+1$
71 CONTINUE
IF (R.EQ.O) GOTO 80
DO $72 \quad \mathrm{I}=1, \mathrm{M}$
$72 \operatorname{VECT}(1)=0$.
DO $75 \quad \mathrm{I}=1$, LM1
IF (JNT (I).NE.L) GOTO 75
TEMP $=0$.
DO $73 \mathrm{~J}=1, \mathrm{M}$
73 TEMP $=\operatorname{TEMP}+\operatorname{DCONJG}(A(J, L)) * A(J, I)$
DO $74 \mathrm{~J}=1, \mathrm{M}$
$74 \operatorname{VECT}(J)=\operatorname{VECT}(J)+\operatorname{TEMP*A}(J, 1)$
IF (R.EQ.I) GOTO 76
$R=R-1$
75 CONTINUE
76 SUM $=0$.

0043600 0043700 0043800 0043900 0044000 0044100 0044200 0044300 0044400 0044500 0044600 0044700 0044800 0044900 0045000 0045100 0045200 0045300 0045400 0045500 0045600 0045700 0045800 0045900 0046000 0046100 0046200 0046300 0046400 0046500 0046600 0046700 0046800 0046900 0047000 0047100 0047200 0047300 0047400 0047500

DO $77 \quad 1=1, M$
$A(I, L)=A(I, L)-\operatorname{VECT}(I)$
77 SUM $=\operatorname{SUM}+A(1, L) * D C O N J G(A(1, L))$
IF (SUM.EQ.O.) GOTO 80
SUM = DSQRT (SUM $)$
DO $78 \quad \mathrm{I}=1, \mathrm{M}$
$78 \mathrm{~A}(\mathrm{I}, \mathrm{L})=\mathrm{A}(\mathrm{I}, \mathrm{L}) /$ SUM
80 CONTINUE
92 DO $95 \mathrm{~J}=1, M$
DO $95 \quad \mathrm{I}=1, \mathrm{M}$
TEMP $=A(1, J)$
$A(1, J)=A A(1, J)$
$95 \mathrm{AA}(\mathrm{I}, \mathrm{J})=\operatorname{TEMP}$
RETURN
ENTRY EVDATA (ITS, KTS, NCO, MCO, RNORM) DIMENSION MCO(1), NCO(1), RNORM (1) DO $83 \mathrm{I}=1, \mathrm{M}$
83 NCO(I) $=$ NCOUNT (I)
ITS = ITSUM
IF (.NOT.EVECT) RETURN
DO $84 \quad I=1, M$
$84 \operatorname{MCO}(I)=\operatorname{MCOUNT}(1)$
ANORM $=0$.
DO $85 \quad \mathrm{I}=1, \mathrm{M}$
DO $85 \mathrm{~J}=1, \mathrm{M}$
85 ANORM $=$ ANORM $+A(J, I) * \operatorname{DCONJG}(A(J, I))$
ANORM $=$ DSQRT (ANORM)
IF (ANORM.EQ.0.) ANORM=1.
KTS $=$ KTSUM
DO $90 \mathrm{~L}=1, \mathrm{M}$
VNORM $=0$.
DO $89 \quad \mathrm{I}=1, \mathrm{M}$
TEMP $=0$.
DO $82 \mathrm{~J}=1, \mathrm{M}$
82 TEMP $=$ TEMP + A $(I, J) * A A(J, L)$
TEMP $=$ TEMP $-\operatorname{LAMBDA}(L) * A A(1, L)$
89 VNORM $=$ VNORM $+($ CDABS $($ TEMP $)) * * 2$
90 RNORM(L) $=\operatorname{DSCRT}(V N O R M) / A N O R M$
RETURN
END

REFERENCES

1. Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.
2. Greenstadt, John: The Determination of the Characteristic Roots of a Matrix by the Jacobi Method. Mathematical Methods for Digital Computers. Anthony Ralston and Herbert S. Wilf, eds., John Wiley \& Sons, Inc., 1960, pp. 84-91.
3. Francis, J. G. F.: The QR Transformation: A Unitary Analogue to the LR Transformation. I. Computer J., vol. 4, Oct. 1961, pp. 265-271.
4. Francis, J. G. F.: The QR Transformation. II. Computer J., vol. 4, 1962, pp. 332- 345.
5. Funderlic, R. E., ed.: The Programmer's Handbook: A Compendium of Numerical Analysis Utility Programs. Rep. K-1729, Union Carbide Nuclear Co., Feb. 9, 1968.

POSTAGE AND FEES PAID NATIONAL AERONAUTICS ANI SPACE ADMINISTRATION

```
02U 001 33 51 30S 71012 00903
AIP FORCE WEAPCNS LAECRATORY /WLCL./
KIRTLAND AFE, NEW NEXICC 87117
ATT E. LUI, BCWNAN, CHIEF,TECH. LIBRARY
```

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phènomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- National Aéronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.
崖
CÓNTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIÓNS': Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

