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EFFECT OF RANDOM FLUCTUATIONS IN PRESSURE
GRADIENT ON CHANNEL FLOW
by Morris Perlmutter
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
ABSTRACT

A randomly fluctuating preééure gradient of a stationary Gaussian Markovian
form will cause a randomly fluctuating velocity to be superimposed on ﬁhe steady
incompressible flow in a channel. Correlations, spectra, and frequency re-
éponse functions for the random functions are given. Random pressure signalé
were generated using Fourler series expansion with coefficients randomly
éicked from distributions whose'paraméters were obtained from the spectra of
rressure signal. The random velocity signals were ther obtained from the
pressure signal by use of the frequency response function calculated from the’
equation of motion. The increased power loss due to the fluctuations is
given and the random pressure and velocity signals are compared for amplitude,
frequency, and time lag.

INTRODUCTION

In many practical situations, flows in channels will have random pressure
gradient fluctuations. It is of interest to understand the effect of the raﬁ-'
domly fluctuating pressure gradient on the characteristics of the flow. The
analysis is restricted to channel regions sufficiently downstream from the
channel entrance so that entrance effects can be neglected. The analysis
gives the mean square value of the velocity fluctuatign across the channel
as well as the increased power loss in pumping the fluid due to the fluctu-

ations in the velocity.
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A random sampling or Monte Carlo approach is also used, to generate a
specific pressure gradient signél having a given power spectrum and a
Gaussisn distribution of amplitudes. This calculation can be rapidly carried
out by use of fast Fourier tranéforms. The randomly varying pressure gra-
dient signal generated is then used to find the corresponding fluctuating
velocity signal at various positions across the channel. These numerical
signal: results can be useful, fbr instance, in numerical convective heat-
transfer calculations in which numerical values for the randomly fluctuating

velocity are required as input to calculate wall heat transfer.

SYMBOL

an, bn complex coefficients;

d spacing between parallél plates

£, frequency increment, i/Tp

fp maximum frequency

H frequency response function

IHI gain factor

h weighting function or impulse response function
K kn
N number of samples

P pressure gradient

Xy correlation {x,y)

5 mean square power spectral density
T time

T period of record



t dimensionless time, vT/d2

A\ time between sample

U fluid velocity

Ug steady dimensionless velocity, -vaS/dZPS

v transient dimensionless velocity, -vpU/d®P,

Y coordinate across channel

Yy 4 sin Ky/K

y dimensionless coordinate across channel, Y/d

T dimensionless pressure gradient, Pt/Ps

A measure of rate of fluctﬁation of pressure signal
A dimensionless meassure of rate of fluctuation of pressure signal, Adz/p
v kinematic viscosity

o density

05 variance measure of pressure fluctuations

T dimensionless time difference, tz -t

o® phase factor

» angular freguency, 2uf

( ensemble average

* complex conjugate

Subscripts:

F fundamental frequency or lowest frequency, l/Tp
H related to frequency response function

I imaginary

k finite spatial sine transformed variable



R real

8 steady component

t fluctuating component

Y related to pressure signal

w Fourier time transformed variable

ANALYSIS
For viscous incompressible flow between parallel plates with constant
properties in the fully developed flow region (see Ffig. 1) the momentum equa-~

tion can be written as (ref. 1)
QT = - 1/p B(T) + v 3°U/3Y (1)
We can let the veloclty and the pressure gradient consist of a steady part

and a nonsteady part

Us=U +Ugj; P=P, +P,

Normalizing the variables as follows

N vaS/dZP v = - vat/dZP y=7Y4d t= vT/d2 T = Py /P,
(2)

we obtain for equation (1)
2. 4.2 = o = 2 ~2 2 . \_
d“u fdy" =1 or u =y -y /2; Ov/ot = v + 3°v/dy (Basb)
Taking Fourier transforms of equation (6) we obtain

Yyl = Ty + Bzvm/ayz (4)
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‘Taking the finite sine transform of equation (4) gives

vy = 47,/K - KZVQK;" k =-1,3,5. . . (5)
where K = kxn. By solving for Vwk and taking the inverse finite Fourier
transform, we obtain
where

00
H = Y/P + )= Bn o+ 1H, = [Hle CE (7)
- Ji<? + 10} = Hp + 1Hy = JHle
k=1,3,5

where YK = 4 sin Ky/K. The H is sometimes called the frequency response

function, |H[ the gain factor, and Py the phase factor, where

The gain factor is plotted in figures 2 and 3; the phase factor is
plotted in figure 2 and 1s discussed more fully later where used. We can
solve equation (6) for v by taking the inverse transform. .Using the con-
volution theorem gives’

+o0 +00
v =f eithwH af = f h(a,y)v(t - 9)de (10)
- -0

where h 1s the weighting function given by

5 ~
7e ¥ e 60
oo k=1,3,5
n(e) = 16 J >
8) = He af = (11)
0 for € >0
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The h and H are a Fourier transform pair. Since the process is station-

ary, we can write the cross correlation equation as

(r()v(ty + 1)) = Ryp(r) - f " 10, y)Ryy (7 - 0)d6 (12)
0

where tZ - tl = T. Since the cross spectrum is the Fourier transform of the
cross correlation, by using the convolution theorem as before, we can write.

Srvéw) = H(w)SYf(w) (13)
We can find the velocity autocorrelation as
o0
Ry T) =f h(e,y)RYv(T + 0)de (14)
0 .

We can then write the velocity power spectrum as

5v(0) = |H0)] %8 () (15)

This shows the velocity spectrum is'equal to the pressure spectrum

times the square of the gain factor.
Pressure Gradient Correlations and Power Spectrum

A common form of random fluctuations encountered in physical systems
is called a stationary Gaussian Markoff random process, Markoff processes
are random processes whose relation to the past does not extend beyond the
immediately preceding observation. As is shown in reference 2, page 215,
the autocorrelation function for this random process is given by

Ry = CzeﬁAlT' = G?e-%lT'

2 2
= Oy where 0oy = RYT(O) = (r7) (16)

The rate of fluctuation A and the time span T have been nondimensionalized

to be

A=Adfy; 1= Tv/af
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The Fourier transform of RTY gives the power spectrum of the pressure

fluctuations as a simple Lorenzian form:

Sy = 2A0 /7\ + o) (17)

The 0$

tuations (Tz). The larger the value of G%, the larger the amplitude of the

is a dimensionless measure of the amplitude of the random fluc-

pressure fluctuations. The A 1s a dimensionless measure of the average
number of fluctuations per unit time. It can also be considered a%;the in-
verse of the dimensionless characteristic decay time of the autocor&elation.
The larger ﬁhe value of A, the greater the fluctuation rate of the signal.
The power of the pressure signal is given by the integral of the power spec-~
trum over all frequencies. This can be written as

h 2 .2
Ryp(0) =f Sy AF = 0yl = {¥°) (18)
% -

o
The normalized power spectrum for the pressure gradient fluctuations
SYY/(Y2> is plotted in figure 3 for different values of the rate of fluctu-
ation parameter A. It can be seen that for smaller values of A much more
of the spectral power is located in the lower frequencies since the freguency
band for A of 0.1 is much narrower than in the case for A = 100.
Fluctuating Velocity Mean, Correlations, and Power Spectrums
The pressure-veloclity cross correlation for the present case can be

written using equations (11), (12), and (16) as

i E{K/(K J[ 2>\/(7\ + KEJ K1 ]for T3>0

k=1,3,5 >

~

oZ z 'XKeKT/(JKZ + ) for T <O

(19)
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Also the cross spectrum cen be written using equations (7), (13), and (17) as

SYV(,(D) = z YK/(K2 + iw) .zxcfr/(xz + o) (20)
k=1,3,5

In a similar manner we can calculate the velocity autocorrelation from

%
equations (11), \’(14), and (19) as

¥

Rye(7) = 0F i i E(KYL J? - )\)] {-;-.7\:: fo + &) (2 ‘ﬁzj)e'LZT K2 + Lgﬂ

Ck=1,3 1=1,3 ‘
; _ (21)

— e

Similarly, we can write the velocity fluctuation power spectrum using equa-
tions (8), (15), and (17):
Syvl(@) = |B(®)|Z8p(e) = (8] + BE)s,y (22)
From equation (10) we can see that the ensemble average of the fluctu-
ating velocity (v) at any given y is zero since the ensemble average ofﬂthe
fluctuating pressurevgradient {(r) is zZero.
The mean square velocity (v2) can be obtained from eqﬁétion (21) since

Ryy(0,¥) = (v2). These results are shown in figure 4. DNotice that the mean

square velocity is equal to the total power of the velocity spectrum

N

(el 00

+oo +o o
R {(0,7) =f 5, 4f =j E(OIRE(OLE; _(23)
' The spectral power or the mean square velocity is given by the product -of the
square of the gain factor times the pressure spectrum integrated overall fre-
quency. From figure 2 we can see that the magnitude of the gain factor is

smaller near the wall (y = 0.1) compared to the centerline (y = 0.5), so

that the mean sguare velocity is smaller near the wall as compared to the
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centerline. The mean square velocity goes to zero at the wall in figure 4,
as would be expected from the zero wall velocity boundary condition. The
gain factor in figure 2 is greatest at the lower frequency and has é high-
frequency cutoff. Since the spectrum for the pressure gradient (fig. 3), is
also greater at the lower frequencies for low values of A as compared to
the high A case, the mean square velocity will be larger for the lower
values of A, as can be seen in figure 4.

The fluctuating velocity power spectrum given by equation (22) normal-
ized by the total power of the spectrum at a given position in the channel
Syv(¥,£) /Ryv(y,0) is also shown in figure 3. These curves are discussed
more fully later.

Power Dissipation Due to Velocity Fluctuations

It is desirable to know how much additional power must be supplied to
the flow system to maintain the same average flow rate for the fluctuating
flow as compared to the steady flow case. As shown in ref.:. (1), the
external rate of work done by the pressure force L is equal to the sum of
the rate of increase in kinetic energy Ke and the rate of dissipationvof
energy due to internal friction W If we then take the ensemble average,
the rate of change of the kinetic energy term will be zero because the
" process is stationary. We then have the external rate of work done by the

pressure force w, equal to the rate of dissipation of energy due to ex-

e

ternal friction Weo

_ 1
-(UP) = uf ((8U/8Y)2>dy (24)
0

To find the rate of dissipation of energy due to internal friction we

can then write

v = -(UP) = -UgPg - (UgPy) = wp o - (UpPy) (25)
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If we let LE be the rate of dissipation due to steady flow, the ratio of
increased dissipation due to the unsteady flow over the steady flow dissipa-

tion can be written as

(e - ve glfie s & (ToPy) /TaPs = 12(¥r) = 12Ry(0) (26)

Integrating equation (19) over y and substituting into equation (26) give

00
, 2 2,2
(ve - wf,s)/wf’s = 960, E /(K + ) (27)
k=1,3,5

A plot of equation (27) is given in figure 5 as a function of the fluc-
tuating rate parameter A. As A Dbecomes very large, that is, fluctuations
of the pressure gradient become very rapid, the frictional power loss re-
duces to the steady power loss. The frietional power loss increases with
smaller values of A or slower fluctuations of the préssure gradient.

Generation of Random Signal by Model Sampling

It would be helpful in certain cases to be able to generate a random
signal enalytically on the computer consistent with the power spectrum of the
signal. This would be useful, for instance, in obtaining numerical solutions
or various other statistical characteristics of linear or nonlinear equations
of random systems that may be difficult to obtain by more usual analytical
procedures. A method for generating random signals is given in reference 57
A somewhat different approach is used in the present analysis.

Discrete Fourier transforms. - When a waveform is to be analyzed on a

digital computer, it is the discrete Fourier transform that must be used.
This can be derived from the usual Fourier transform as shown in reference 2,

page 56, as follows.
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If v(t) is periodic in Tp, we can write the Fourier expansion

% in2nt /T
D
Y(t) = 25: a,e (28)
o =
where
T /2
4 -i2mnt /T
ay = 1/T, T(t)e P at (29)
T,/2
We can see from equation (28) that
Tlig(Tpan) = 1% (30)
1Y
Similarly, if T is periodic in fp, we can write
00
-i2xnf /f
Ty = 2 de p (31)
Tz =00
where
f./2
y/h o/ iZﬂf/fp
dy, =(1/fp) e/ Tyl af (32)
We can see that, sim;larly,
flgg(fpdn) = 7(%) (33)

Y

If we take the time between sample values of 7T, as Ab, we can take

Then, assuming that At = l/fp we can’

N samples so that N At = Tp.

write equation (28) as

- N/2 o
a=-N/2
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We can also write equation (31), assuming that N Af = £, a8

N/2
o =(/N) ) rertEmm/N (55)
k=-N/2

Since &, can be related to the Fourier transform 7Y, by equation (30),
equations (34) and (38) form a discrete Fourier transform pair that is an
approximation of the Fourier integral transform paif.

A numerical method for evaluating either equation (34) or (35) in a .
very efficient manner on digital computers has been developed called the fast
Fourier transform (ref. 4). One implementation of the fast Fourier trans-
form is available as an IBM-scientific subroutine package called HARM/DHARM.
Many others are also available.

Gaussian random process. - Since Tk is a real function a, R must be
J

an even function and an . T must be an odd function around n = 0. Then we
s .
can write
N/2

Ty = ;{} ay'R cos(gynkyﬁ)- aﬁ;i sin(2nnk/N) (56)

n=-N/2 i e
We can assume a Gaussian random procesé for Vi This process is commonly
used as an idealization of many natural phenomena associated with the super-
position of a large number of many small effects. It is shown in refer-~
ence 5, page 160, that for a Gaussian random process the following condi-
tions are true: a is a random variable with a Gaussian distribution also
(ai) k=n

(8, %%, R) = (8 18, 1) = s (agbk) = 0 (37;38)
0 kifn

Then, spectrum of . v(t) can be shown to be related to (a%) by
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SWI = 2Tp<an) when n# o (39a)
w=n2 /T
b
= 2 : - ,
SW,m:O‘ - Tp<ao) when n=0 (39b)
Model sampling to generate signal. - To generate a random signal v(t)

we can use equation (34) and the fast Fourier transform program. The terms

&n,R and an,I are random variables randomly picked from the joint Gassian

distribution

. 2 2 2
(e 1) /2(5E)

¥(an,Ren, 1) —.(,l/zﬂ(an‘))e R - (40)
Following the method given in reference 6, page 39, we can randomly choose

values of an,R and an, I that.will satisfy the distribution of equa-

tion (40) by using the following equations:
P
(2(%)) (-ln' Rr)l/ % cos 2R, (41a)

(2 (a;ﬁ))}l/z(-ln R-l,)l‘/2 sin 2nR, (41b)

where Ry and Ry are two different random numbers randomly picked from a

@n,R

oy, 1

uniform distribution bet%een 0 and 1. The values of R can readily be gen-
erated by the computer. The valuef of (ag) can be obtained from equa-

tion (39) using the appropriate power spectrum Sy. Recalling that &y, R
is an even function and an, I is an odd function, in the particular fast
Fourier program available (HARM/DHARM), we only need find ap g 8nd &y 7
from n =0 to N/2. Then a(N/2)+l,R = a(N/Z)-l,R’ ete. Similarly, for
&n, I values were only needed for n = 0 to n = N/2; since a(N/2)+l,I

equaled ‘a(N/Z)-l 1, ete., a, 1 was equal to zero.
J J
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Pressure Gradient Signal Results

The normalized fluctuating pressure gradient Y/(Y2>l/2 is shown in
figure 6 for different values of A. The pressure gradient power spéctrum
used in obtaining these results was assumed to be a stationary Gaussian
Markoff process and is given by equation (17) and plotted in figure 3. The
results were calculated for values of N of 128 and %Tp taken as 100.

The curves were computer plotted by joining the output points by dotted
lines. Since the spectrum for the higher fluctuating rate parameter A = 100
is greater at the higher frequencies, as can be seen in figure 3, the re-
sulting pressure signal for large A has many more fluctuations and cross-~
ing of the O value line per unit time than is the case for the lower values
of A.

Generating Velocity Signal From Pressure Signal

The method of calculating the velocity signal from the pressure signal

is as follows. We can write, similar to egquation (38),

o0
Vi = j{t (bn,R cos Zﬂnk/N + by 7 sin 2nnk /) (42)

= vl
where bn r 1is an even function and b, 7 is an odd function. From equa-
2 2

tions (6) and (30) we can write

Voo = bpTp = (H’w=n2ﬂ/Tp><anTp>
or
by = Hpay (43)

Thus, by finding the values of a, for a given signal Yy, as discussed
previously, we can use equation (43) to obtain the new wvalues b, which can
be used in equation (42) to obtain the the veélocity signal - v using'the fast -

Fourier transform program.
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We can see from equation (43) that the mean values of by R and by 1
are zero. Also, since an,R and ap,I are normally distributed, bn,R and
b, 1 are also normally distributed. The variance of b, can be seen to be
J
2 - [2 - [ a2\ [n2 2 _ 42 2
(v8,5) = (¥8,1) = (=B)(#E,m + B& 1) = (oF )|l (44)

except at n =0

2
b =0
< PR Py

v (45)
2 2 \..2

(bo,R> = (ao,R\)Ho,R

The spectrum in this case would be given as in equation (39) by
2 2 2 12

Sy(n) = sz(bn)v‘: TP2<an)]H| = Sw(n)iﬁn| (46)
except at n = 0 when

Syv(0) = Tp(b§> = SW(O)lHO,Z (47)

This shows that by r and by 1 cannot only be found from ap but
can be picked directly from a normal distribution with a varisance of bﬁ
given by egquation (46) as in the case of an Vvalues.

In figure 6 the normalized fluctuasting veloecity at the centerline of
the channel VY=O-§/(<V2>1/2)y=O.5 is plotted as solid lines. These results
were calculated from equation (42) using the fast Fourier transform routine.
The coefficients by were found from equation (43), which gives the values in
terms of ap vwhich are the coefficients of the random pressure fluctuations.
These were randomly chosen by equation (41). Thus, the velocity shown by
the solid line on each graph is caused by the pressure fluctuation shown as
the dotted line on the same graph. Notice that all the curves have been

normalized by their own root mean square values.
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For low values of A, the shapes of the curves are very similar but
there is a small time lag in the velocity curve compared to the pressure
curve. This time lag can be explained by postulating a distortionless fre-
quency response function H' with a distortionless gain factor ]H(w)l = |H|'
and a distortionless phase factor @' = -wt,.
Then equation (6) can be written as

7, = [H] e 0y, (48)
Taking the inverse transform and using the time shifting theorem gives

v(t) = [H]'r(t + to) (49)
This shows, for the distortionless response function, the velocity signal
lags the pressure signal by a time increment t,, while the amplitude is
changed by an amount IH[‘.

In comparing the distortionless frequency response function to the
present response function we can see from figure 2 that for small angular
frequencies the response function appranhes the distortionless case. We
can calculate the time lag t, for small angular frequencies by solving for
¢ as o - 0. This gives, from equation (9), @, = -(0.0781). Thus, the
time lag between the velocity and pressure signals for small o 1is given by
ty, = 0.0781. Thus, in figure 6 for A = 1 we see the velocity signal is
close to the pressure signal with a small time lag between them. This is
because the response function is close to distortionless for small o and
the pressure signal for small N is concentrated in the small w region
(see fig. 3).

For the higher values of A we can see that the velocity signal does

not contain many of the higher frequency fluctuations that are present in the
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velocity signal. This is because the gain factor (see fig. 3) has a high-
frequency cutoff which caused the velocity spectrum to have a similar high-
frequency cutoff. Since at high % much of the pressure spectrum ié in the
higherafrequencies, these higher frequencies are not transmitted to the ve-
locity signal.

In figure 7, the velocity signal at a given position y in the channel,
normalized by its root mean square value at the same y value, is plotteq at
two different values of y for the same pressure signal. For low values of
A the curves near the center of the channel (y = 0.5) are very similar to
that nearer the wall (y = 0.0l). This happens because the transfer function
for small o is close to distortionless. The velocity signals near the wall,
although of a smaller amplitude than the velocity signal near the center of
the channel (see normalizing factor in fig. 4), both have almost identical
shapes. At the higher values of A we see that the centerline signal fluc-
tuates much?less than the velocity signal near the wall. This is due to the
fact that t%e gain factors for y close to the wall are flatter and do not
ha&e as strzng a high-frequency cutoff as the gain factors near the center.
This causes the velocity spectrum near the wall (y = 0.1) given in figure 3
to be flatter and extend to higher frequencies than theé velocity spectrum
near the center of the channel.

At the higher values of A, we can also notice a time lag between the
signals. This effect is due to the phase factor shown in figure 2. It can
be seen that the phase factor curves for the signals closer to the wall have
smaller slopes and so have a smaller delay time than the velocity near the

center of the channel.



18
RESULTS AND CONCLUSIONS

The effect of superimposing a randomly fluctuating pressure gradient of
a stationary Gaussian Markovian form with a zero mean value upon a éteady
pressure gradient will cause a randomly fluctuating velocity component to be
superimposed over the steady flow in a channel. The mean value of the ve-
locity fluctuation is zero. The mean square value of the velpcity fluctu-
ations which is a measure of the amplitude of the fluctuations will be high-
est in the center of the channel and reduce to zero at the wall. Also, the
slower the rate of the pressure fluctuations, the greater the amplitude of
the velocity fluctuations.

The frictional power loss in pumping the fluid is increased by the pres-
sure fluctuations, the slower pressure fluctuations giving larger power losses.

The normalized velocity signal values were very similar to the normalized
pressure signal but with a dimensionless time lag t, of about 0.0781 for low
Pressure flﬁctuation rates. At the higher pressure fluctuation rates the
higher frequencies of the pressure signal did not appear in the velocity sig-
nal.

Comparison of the velocity signals across the channel normalized by its
local root mean square value showed that for low fluctuation rates in the
pressure signal the values of the normalized velocity near the wall were
almost identical to the normalized velocities near the center of the channel.
However, at the higher pressure fluctuation rates the higher frequency fluctu-
ations present in the velocities near the wall do not appear in the velocities
near the center of the channel, and the velocities near the center of the
channel lag the velocities near the wall.

The random pressure signal function was generated by a Fourier series

expansion where the coefficients were randomly chosen by model sampling from
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a freguency distribution whose parameters are given by the power spectrum of
the signal. By use of the fast Fourier transform method of computation the
function can be rapidly evaluated from its Fourier coefficients. The Fourier
expansion of the fluctuating pressure signal can then be used to calculate the
randomly varying velocity at various positions from the wall. These velocity
results can be useful. when .the details :of a randomly fluctuating velocity
distribution in a chennel are needed, ag for instance in convective heat-
transfer problems. »
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