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ABSTRACT 

A randomly f luc tua t ing  pressure gradient of a s ta t ionary  Gaussian Markovian 

form w i l l  cause a randomly f luc tua t ing  ve loc i ty  t o  be superimposed on the  steady 

incompressible flow i n  a channel. Correlations, spectra, and frequency r e -  

sponse functions f o r  the  random functions are given. Random pressure s ignals  

were generated using Fourier s e r i e s  expansion with coef f ic ien ts  randomly 

picked from d i s t r ibu t ions  whose parameters were obtained from the spec t ra  of 

pressure signal.  

pressure s igna l  by use of the  frequency response function calculated from the  

equation of motion. The increased power l o s s  due t o  the  f luc tua t ions  is  

given and t h e  random pressure and ve loc i ty  s ignals  a re  compared f o r  amplitude, 

frequency, and t i m e  lag.  

The random veloc i ty  s igna ls  were ther- obtained from t h e  

INTRDDUCT I O N  

In  many p rac t i ca l  s i tua t ions ,  flows i n  channels w i l l  have random pressure 

gradient f luctuat ions.  It i s  of i n t e r e s t  t o  understand the  e f f ec t  of the ran- 

domly f luc tua t ing  pressure gradient on the  cha rac t e r i s t i c s  of the  flow. The 

analysis i s  r e s t r i c t ed  t o  channel regions s u f f i c i e n t l y  downstream from the  

channel entrance s o  t h a t  entrance e f f e c t s  can be neglected. The analysis 

gives the  mean square value of t he  ve loc i ty  f luc tua t ion  across the channel 

as well  as the  increased power l o s s  i n  pumping the  f l u i d  due t o  t h e  f luc tu-  

a t ions i n  the  velocity.  
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A random sampling or Monte C w l o  approach i s  a l so  used, t o  generate a 

spec i f ic  pressure gradient s ignal  having a given power spectrum and a 

Gaussian d i s t r ibu t ion  of amplitudes. This calculat ion can be rap id ly  cakried 

out by use of fas t  Fourier transforms. 

d ien t  s igna l  generated i s  then used t o  f ind the  corresponding f luc tua t ing  

ve loc i ty  s igna l  a t  various posi t ions across t h e  channel. These numerical 

The randomly varying pressure gra- 

s ignal  r e s u l t s  can be useful, f o r  instance, i n  numerical convective heat- 

t r ans fe r  calculat ions i n  which numerical values f o r  the  randomly f luc tua t ing  

veloci ty  are required as input t o  ca lcu la te  wall heat  t ransfer .  

SYMBOL 

an, bn complex coef f ic ien ts ,  

d spacing between p a r a l l e l  p la tes  

f0  frequency increment, 1/'pP 

fP 

PI 

maximum frequency 

H frequency response function 

gain f ac to r  

h weighting function or impulse response function 

K kfi 

N number of samples 

P pressure gradient 

correlat ion (x, y) 
*XY 

s mean square power spec t ra l  dens i ty  

T time 

period of record 
TP 
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t 

At 

U 

US 

v 

Y 

yK 

Y 

Y 

14 

h 

v 

P 

dimensionless time , v9/d2 
time between sample 

fluid velocity 

steady dimensionless velocity, -v pus /d2Ps 

transient dimensionles s velocity, -v pUt/d2 Ps 

coordinate across channel 

4 sin KY/K 

dimensionless coordinate across channel, Y/d 

dimens i onle s s pr e s sure gradient , Pt /Ps 
measure of rate of fluctuation of pressure signal 

dimensionless meassure of rate of fluctuation of pressure signal, Ad2/, 

kinematic viscosity 

density 

variance measure of pressure fluctuations 

dimensionless time difference, t2 - tl 
Y 

7 

cp phase factor 

w angular frequency, 2af 

0 ensemble average 

sc complex conjugate 

Subscripts: 

F 

H 

I imaginary 

k finite spatial sine transformed variable 

fundamental frequency o r  lowest frequency, l/Tp 

related to frequency response function 
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R r e a l  

S steady component 

t f luc tua t ing  component 

Y r e l a t ed  t o  pressure s igna l  

cu Fourier t i m e  transformed vmiable 

ANALYSIS 

For viscous incompressible flow between p a r a l l e l  p la tes  with constant 

propert ies  i n  the f u l l y  developed flow region (see f ig .  1) the  momentum equa- 

t i o n  can be wr i t ten  as t r e f .  l) 

We can l e t  the ve loc i ty  and the  pressure gradient consis t  of a steady pa r t  

and a nonsteady pa r t  

u = u  + U t j P = P  + P  
S s t  

Normalizing the  var iables  as follows 

w e  obtain f o r  equation (1) 

Taking Fourier transforms of  equation (6 )  we obtain 
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'Taking the  f i n i t e  s ine transform of equation (4 )  gives 

where K = kfi. By solving f o r  v and taking the inverse f i n i t e  Fourier 

transform, we obtain 
ujk 

vu = r& (6)  

where 

(7 )  
-iTH H =  Y d ( K 2  + icu)  = €IR + iHI '  = 1 Hi e 

k=l, 3,5 

where YK = 4 s i n  Ky/K. The H i s  sometimes ca l led  the  frequency response 

function, 1 HI the  gain fac tor ,  and % t he  phase fac tor ,  where 

The gain f ac to r  i s  plot ted i n  f igures  2 and 3; t h e  phase f ac to r  i s  

plot ted i n  f igure  2 and i s  discussed more f u l l y  l a t e r  where used. We can 

solve equation (6)  f o r  v by taking t h e  inverse transform. Using the  con- 

volution theorem gives '  

eiU% H df = h(d ,y ) r [ t  - €')de 

where h i s  the  weighting function given by 

J -O0 

=l, e 3,5 

-K2 ( e) 
YK" fo r  

fo r  e > o  -1 
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The h and H a re  a Fourier transform pair .  Since the  process i s  s ta t ion-  

ary, we can write the  cross correlat ion equation as 

where 

cross correlat ion,  by using the  convolution theorem as before, we can write.  

t2 - tl = T. Since the  cross spectrum i s  the Fourier transform of the  

We can f ind  the  ve loc i ty  autocorrelation as 

We can then wri te  the ve loc i ty  power spectrum as 

This shows the  ve loc i ty  spectrum i s  equal t o  t he  pressure spectrum 

times the  square of  the gain factor .  

Pressure Gradient Correlations and Power Spectrum 

A common form of random f luc tua t ions  encountered i n  physical systems 

i s  cal led a s ta t ionary  Gaussian Markoff random process, Markoff processes 

are random processes whose r e l a t i o n  t o  the  pas t  does not extend beyond the 

immediately preceding observation. A s  i s  shown i n  reference 2, page 215, 

the  autocorrelation function f o r  t h i s  random process i s  given by 

The r a t e  of f luc tua t ion  A and the  t i m e  span T have been nondimensionalized 

t o  be 
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The Fourier transform of Ryy 

f luc tua t ions  as a simple Lorenzian form: 

gives the  power spectrum of the pressure 

(17) 
s* = 2A+/'(A2 4- Lu 2 ) 

2 
0;r The 

tuat ions (T2). 

pressure f luctuat ions.  The A i s  a dimensionless measure of the average 

number of f luc tua t ions  per u n i t  time. It can a l so  be considered as the  in-  

verse of t he  dimensionless cha rac t e r i s t i c  decay t i m e  of t h e  autocorbelation. 

The l a rge r  the  value of  

i s  a dimensionless measure of t he  amplitude of the  random f luc-  

The l a rge r  t he  value of O:, t he  l a rge r  t he  amplitude of t he  

\ 

A, t he  grea te r  the  f luc tua t ion  r a t e  of t h e  signal.  

The power of t he  pressure s igna l  i s  

trum over a l l  frequencies. This can 

given by the  in t eg ra l  of the power spec- 

be wr i t ten  as 

= (r2) 

The normalized power spectrum f o r  t he  pressure gradient f luc tua t ions  

SW/(rZ) i s  plot ted i n  f igure  3 f o r  d i f f e ren t  values of t h e  rate of f luc tu-  

a t ion  parameter A. It can be seen t h a t  for smaller values of A much more 

of the  spec t r a l  power i s  located i n  t h e  lower frequencies since the  frequency 

band f o r  A of 0.1 i s  much narrower than i n  the  case f o r  A = 100. 

Fluctuating Velocity Mean, Correlations, and Power Spectrums 

The pressure-velocity cross cor re la t ion  f o r  the present case can be 

wri t ten using equations (ll), ( 1 2 ) ,  and (16)  as 

w 

EK/[K2 - q[e-" 
k=l, 3,5 

f o r  T < O  
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@so the  cross spectrum can be wr i t ten  using equations.  (7), (13), and (17)  as 

L-k=l, 3,5 / 

In  a similar manner we  can ca lcu la te  t he  ve loc i ty  autocorrelation from 

equations (ll),~ '9 (14), and (19) as 

R w ( T )  = 0; 1 C[....ii.2 - AjjC,-'-'/(A + K 2 ) 2 [ 2 A / ~  +- < z l ) e - ~  '/(K2 + .J 
v 

co 00 
2 

k=1,3 2=1,3 
I ( 21) 

-= c 

Similarly, we can wri te  t he  ve loc i ty  f luc tua t ion  power spectrum using equa- 

t ions  ( 8 ) ,  (15), and ( 1 7 ) :  

From equation (10) w e  can see t h a t  the  ensemble average of t h e  f luc tu-  

a t ing  ve loc i ty  (v) a t  any given 

f luc tua t ing  pressure gradient (Y) i s  zero. 

y i s  zero s ince the  ensemble average of the  

The mean square ve loc i ty  (vz) can be obtained from equation (21)  s ince 

Rw(o,y) = (v2).  

square ve loc i ty  i s  equal t o  the  t o t a l  power of t he  ve loc i ty  spectrum 

These r e s u l t s  are  shown i n  f igure  4. Notice t h a t  the  mean 

The spec t r a l  power o r  the mean square ve loc i ty  i s  given by the  product;of the 

square of t he  gain f ac to r  t i m e s  the  pressure spectrum integrated overa l l  f r e -  

quency. From f igure  2 we can see that the  magnitude of the gain f ac to r  i s  

smaller near t he  w a l l  ( y  = 0.1) compared t o  the  center l ine  ( y  = 0 .5 ) ,  so  

that the  mean squaxe ve loc i ty  i s  smaller near t h e  w a l l  as compared t o  the  
a_. 
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center l ine.  The mean square ve loc i ty  goes t o  zero at  the  w a l l  i n  f igure  4, 

as would be expected from the zero w a l l  ve loc i ty  boundary condition. The 

gain f ac to r  i n  f igure 2 i s  grea tes t  at  the  lower frequency and has a high- 

frequency cutoff.  Since the spectrum f o r  t h e  pressure gradient ( f i g .  31, i s  

also greater  at t h e  lower frequencies f o r  low values of A as compared t o  

the high A case, the  mean square ve loc i ty  w i l l  be l a rge r  fo r  t he  lower 

values of A, as can be seen i n  f igure  4. 

The f luctuat ing ve loc i ty  power spectrum given by equation ( 2 2 )  normal- 

ized by the  t o t a l  pawer of the  spectrum a t  a given posit ion i n  the  channel 

S,(y,f)/R,(y,o) i s  a l so  shown i n  f igure  3. 

more f u l l y  l a t e r .  

These curves are discussed 

Power Dissipation Due t o  Velocity Fluctuations 

It i s  desirable  t o  know how much addi t ional  power must be supplied t o  

the flow system t o  maintain the same average flow r a t e  f o r  the  f luc tua t ing  

flow as compared t o  the steady flow case. A s  shown i n  ref. ( l ) , t h e  I 

external  r a t e  of work done by the  pressure force 

the r a t e  o f  increase i n  k ine t i c  energy 

energy due t o  in t e rna l  f r i c t i o n  

the r a t e  of change of t he  k ine t i c  energy term w i l l  be zero because the  

process i s  s ta t ionary.  We then have the  external  r a t e  of work done by the 

we i s  equal t o  the  sum of 

and the  r a t e  o f  d i ss ipa t ion  of  Ke 

wf.  If we then take the  ensemble average, 

pressure force 

t e r n a l  f r i c t i o n  

-(VP) 

we equal t o  the  r a t e  of d i ss ipa t ion  of energy due t o  ex- 

Wf 

To f ind  the  r a t e  of d i ss ipa t ion  of 

can then write 
- - 

Wf = -(UP) = -UsPs - (UtPt) = 

( 24) 

energy due t o  in t e rna l  f r i c t i o n  we 

- f ,s  W 
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If we l e t  wf,S be the r a t e  of d i ss ipa t ion  due t o  steady flow, the  r a t i o  of  

increased d iss ipa t ion  due t o  the  unsteady flow over the  steady flow diss ipa-  

t i on  can be w i t t e n  as 

.- - 
Integrat ing equation (19) over y and subs t i tu t ing  in to  equation (26)  give 

2 2  
(Wf - Wf,s )/W f ,s  = 9602 Y 2 1/K (K + A) 

k=l, 3,5 

A p l o t  of equation (27)  is  given i n  f igure  5 as a function of the  f luc-  

tua t ing  rate parameter A. A s  A becomes very large,  t h a t  is, f luc tua t ions  

of  t he  pressure gradient become very rapid, t he  f r i c t i o n a l  power l o s s  re- 

duces t o  the steady power loss.  The f r i c t i o n a l  power l o s s  increases with 

smaller values of A or slower f luc tua t ions  of t he  pressure gradient. 

Generation of Random Signal by Model Smpling 

It would be helpful  i n  ce r t a in  cases t o  be able t o  generate a random 

s igna l  ana ly t i ca l ly  on the  computer consis tent  with the  power spectrum of the  

signal,  T h i s  would be useful, f o r  instance, i n  obtaining numerical solut ions 

o r  vmious other s t a t i s t i c a l  cha rac t e r i s t i c s  of l i n e a r  o r  nonlinear equations 

of random systems t h a t  may be d i f f i c u l t  t o  obtain by more usual ana ly t ica l  

procedures. A method f o r  generating random signals  i s  given i n  reference 3. 

A somewhat d i f f e ren t  approach i s  used i n  the  present analysis.  

Discrete Fourier transforms. - When a waveform i s  t o  be analyzed on a 

d i g i t a l  computer, it i s  the  d i sc re t e  Fourier transform t h a t  must be used. 

This can be derived from the  usual Fourier transform as shown i n  reference 2, 

page 56, as follows. 
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we can write the  Fourier expansion 
TP' 

If y ( t )  i s  periodic i n  

U n=-m 

where 

We can see from equation ( 2 8 )  t h q t  

l im(Tpan) = r~ 
TP"" 

we can wri te  
fP.' Similarly, if is periodic i n  

where 

We can see tha t ,  s i n p a r l y ,  

l i m (  f pdn) ' = T( t) 
fP- 

( 3 3 )  

If w e  take the  t i m e  between sample values of r, as At,  we can take 

N samples so t h a t  N A t  = Tp. Then, assuming t h a t  A t  = l / fp  w e  can' 

wri te  equation (28)  as 

Tk[k A t )  = %ei2nkn/N i 34) 
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W e  can also write  equation (31), assuming t h a t  N Af = f as P) 

Since % can be re la ted  t o  the  Fourier transform T, by equation ( 3 0 ) ,  

equations (34) and (38) form a d i sc re t e  Fourier transform pa i r  that i s  an 

approximation of the  Fourier i n t eg ra l  transform pa i r .  

A numerical method f o r  evaluating e i t h e r  equation (34) or (35) i n  a 

very e f f i c i e n t  manner on digi ta l .  computers has been developed ca l led  the  f a s t  

Fourier transform (ref. 4). 

form i s  avai lable  as an ZBM-scientific subroutine package cal led HARM/DHARM. 

One implementation of t he  fast Fourier t rans-  

Many others  are a l s o  available.  

Gaussian random process. - Since r, i s  a real function a must be 
n,R 

an even function and % I must be an odd function around n = 0. Then w e  

can w r i t e  

? 

N)2 
cos( 2rrnk7N) - a s in (  2rmnk/N) 

n, 1 
c-' 

.- .- 
an$ yk = 

n=-N/ 2 

i 3 6 )  

We can assume a Gaussian random process f o r  

used as an idea l iza t ion  of many na tura l  phenomena associated with the  super- 

posit ion of a la rge  number of many s m a l l  e f fec ts .  

ence 5, page 160, t h a t  f o r  a Gaussian random process the  following condi- 

t ions  are true: a i s  a random variable  w i t h  a Gaussian d i s t r ibu t ion  a l so  

rk.  This process i s  commonly 

It i s  shown i n  re fer -  

(a;) by Then, spectrum of , Y ( t )  can be shown t o  be re la ted  t o  
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S = Tp(ag) when n = O  f 39b 1 

Model sampling t o  generate s ignal .  - To generate a random s igna l  y ( t )  

The terms we can use equation (34) and the fast Fourier transform program. 

%,R and %,I are  random variables  randomly picked from the j o i n t  Gassian 

d i s t r ibu t ion  

Following the  method given i n  reference 6, page 39, we can randomly choose 

and %,I t h a t  w i l l  s a t i s f y  the  d i s t r ibu t ion  of equa- n,R values of a 

t i o n  (40) by using the  following equations: 

where Re and Rr are two d i f f e ren t  random numbers randomly picked from a 

uniform d i s t r ibu t ion  between 0 and 1. The values of R can r ead i ly  be gen- 

erated by the  computer. The values of can be obtained from equa- 

t i o n  (39) using the  appropriake power spectrum Sn. Recalling t h a t  

i s  an even function and 

Fourier program avai lable  (HARM/DHARM), w e  only need f ind  and a 

from n = 0 t o  N/2. Then afN/2)+1,R = a(N/2)-1,R, e t c .  Similarly, f o r  

i ( 

an,l  i s  an odd function, i n  the  par t icu lar  fast 

n, 1 , 

values were only needed f o r  n = 0 t o  n = N/2; s ince a(N/2)+1,1 an, 1 
w a s  equal t o  zero. 

0 , I  
'"( N/2) -1,I.' e tc . ,  a 
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Pressure Gradient Signal Resul t s  

The normalized f luc tua t ing  pressure gradient y/ ( y 2)1/2 i s  shown i n  

f igure 6 f o r  d i f f e ren t  values of A. The pressure gradient power spectrum 

used i n  obtaining these r e s u l t s  w a s  assumed t o  be a s ta t ionary  Gaussian 

Markoff process and i s  given by equation 117) and plot ted i n  f igure  3. 

r e s u l t s  w e r e  calculated f o r  values of N of 128 and AT t&en as 100. 

The 

P 
The curves were computer plot ted by joining the  output points  by dotted 

l i nes .  Since the  spectrum f o r  t he  higher f luc tua t ing  r a t e  parameter A = 100 

i s  grea te r  at the  higher frequencies, as can be seen i n  f igure  3, the  re- 

su l t ing  pressure s igna l  f o r  la rge  A has many more f luctuat ions and cross- 

ing of the 0 value l i n e  per u n i t  t i m e  than i s  the  case f o r  the lower values 

of A. 

Generating Velocity Signal From Pressure Signal 

The method of calculat ing the  ve loc i ty  s igna l  from the pressure s igna l  

i s  as follows. We can write, s i m i l a r  t o  equation ( 3 6 ) ,  

vk = 2 (bn,R cos 2nnk/N 4- bn,I s i n  2nnk/N) (42) 
n= -w 

where b n , ~  i s  an even function and i s  an odd function. From equa- 

t ions  (6)  and (30) w e  can w r i t e  

o r  

Thus, by finding the  values of f o r  a given s igna l  Tt, as discussed 

previously, we can use equation (43) t o  obtain the  new v a h e s  

be used i n  equation (42) t o  obtain the  the  ve loc i ty  s igna l  

Fourier transform program. 

bn which can 

v using' . the faSt 
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We can see from equation (43) that the  m e a n  values Of bn,R and b n , ~  

are zero. 

bn, I are 

except a t  

Also,  s ince %,R and %,I are  normally dis t r ibuted,  bn,R and 

a lso  normally d is t r ibu ted .  The variance of bn can be seen t o  be 

n = O  

The spectrum i n  t h i s  case would be given as i n  equation (39) by 

except a t  n = 0 when 

S,(o) = Tp(bg) = 

This shows t h a t  bn,R 

can be picked d i r e c t l y  from 

and %,I cannot only be found from but  

a normal d i s t r ibu t i an  with a variance of  bg 

given by equation (46) as i n  the  case of an values. 

I n  f igure  6 the normalized f luc tua t ing  ve loc i ty  at the  cwrberline of 

the  channel vy=o.5 /((v2)1/2)y=o. 5 i s  plot ted as so l id  l i nes .  These r e s u l t s  

were calculated from equation (42) using the  fast  Fourier transform routine.  

The coef f ic ien ts  

terms of an which are the  coeffZcients of t h e  random pressure f luctuat ions.  

These were randomly chosen by equation (41). 

the  so l id  l i n e  on each graph i s  caused by the  pressure f luc tua t ion  shown as 

the  dotted l i n e  on the same graph. Notice t h a t  a l l  the  curves have been 

normalized by t h e i r  own root  m e a n  square values. 

bn were found from equation (43)) which gives %he values i n  

Thus, the  ve loc i ty  shown by 
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For low values of A, the shapes of the curves are very similar but 

there is a small time lag in the velocity curve compared to the pressure 

curve. 

quency response function H' 

and a distortionless phase factor 

This time lag can be explained by postulating a distortionless fre- 

with a distortionless gain factor 1 H(w) 1 = 1 HI ' 

cp' = ato. 

Then equation (6) can be written as 

Taking the inverse transform and using the time shifting theorem gives 

V(t) = IHi 'T(t + to) (49) 

This shows, for the distortionless response function, the velocity signal 

lags the pressure signal by a time increment 

changed by an amount I HI I .  

to, while the amplitude is 

In comparing the distortionless frequency response function to the 

present response function we can see from figure 2 that for small angular 

frequencies the response function approaches the distortionless case. We 

can calculate the time lag 

cp as w 4 0. This gives, from equation (9), cpM = +(O.  0781). Thus, the 

time lag between the velocity and pressure signals for small w is given by 

to = 0.0781. Thus, in figure 6 for A = 1 we see the velocity signal is 

close to the pressure signal with a small time l a g  between them. This is 

because the response function is close to distortionless for small u) and 

the pressure signal for small A is concentrated in the small o region 

(see fig. 3). 

to for small angular frequencies by solving for 

For the higher values of A we can see that the velocity signal does 

not contain many of the higher frequency fluctuations that are present in the 
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veloci ty  signal.  This i s  because the  gain f ac to r  (see f i g .  3) has a high- 

frequency cutoff which caused the  ve loc i ty  spectrum t o  have a s i m i l a r  high- 

frequency cutoff.  Since at  high A much of t he  pressure spectrum i s  i n  the  

higher frequencies, these higher frequencies are not transmitted t o  the  ve- 

l o c i t y  signal.  

In  f igure 7, the  ve loc i ty  s igna l  at  a given posi t ion y i n  t h e  channel, 

normalized by i t s  root  mean square value a t  the  same y value, i s  plot ted a t  

two d i f f e ren t  values of y f o r  t h e  sane pressure signal.  For low values of 

A t he  curves near the  center of t he  channel ( y  = 0.5) are very similar t o  

t h a t  nearer the w a l l  ( y  = 0.01). 

f o r  small w i s  close t o  d is tor t ion less .  The ve loc i ty  s ignals  near the w a l l ,  

althQugh of a smaller amplitude than the  ve loc i ty  s igna l  near t h e  center of 

the  channel (see normalizing f ac to r  i n  f i g .  4),  both have almost i den t i ca l  

shapes. A t  the  higher values of A w e  see t h a t  t h e  center l ine s igna l  f luc-  

This happens because the  t r ans fe r  function 

tua t e s  much l e s s  than t h e  ve loc i ty  s igna l  near t he  w a l l .  

f a c t  t h a t  t h e  gain f ac to r s  f o r  y c lose t o  the  w a l l  are f la t ter  and do not 

have as strong a high-frequency cutoff as the gain f ac to r s  near the center.  

This i s  due t o  t he  
v 

P 

This causes the  ve loc i ty  spectrum near t he  w a l l  ( y  = 0.1) given i n  f igure  3 

t o  be f la t te r  and extend t o  higher frequencies than the  veloci ty  spectrum 

near the  center of t he  channel. 

A t  t h e  higher values of A, w e  can a l so  not ice  a t i m e  l a g  between the  

signals.  T h i s  e f f e c t  i s  due t o  the  phase f ac to r  shown i n  f igure 2. It can 

be seen t h a t  the phase f ac to r  curves f o r  the s ignals  c loser  t o  the w a l l  have 

smaller slopes and so have a smaller delay time than the  ve loc i ty  near t he  

center of  t he  channel. 
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RESULTS AND CONCLUSIONS 

The e f f e c t  of superimposing a randomly f luc tua t ing  pressure gradient of  

a s ta t ionary  Gaussian Markovian form with a zero mean value upon a steady 

pressure gradient w i l l  cause a randomly f luc tua t ing  ve loc i ty  component t o  be 

superimposed over t h e  steady flow i n  a channel. 

l o c i t y  f luc tua t ion  i s  zero. 

a t ions  which i s  a measure of t h e  amplitude of t h e  f luctuat ions w i l l  be high- 

The mean value of t he  ve- 

The mean square value of t he  ve lpc i ty  f luc tu-  

est  i n  t h e  center of the  channel and reduce t o  zero a t  t h e  w a l l .  Also, t h e  

slower t h e  r a t e  of t h e  pressure f luctuat ions,  t he  grea te r  the  amplitude of 

the  ve loc i ty  f luctuat ions.  

The f r i c t i o n a l  power l o s s  i n  pumping t h e  f l u i d  i s  increased by t h e  pres- 

sure f luctuat ions,  t he  slower pressure f luc tua t ions  giving l a rge r  power losses. 

The normalized ve loc i ty  s igna l  values were very similar t o  the  normalized 

of about 0.0781 f o r  low pressure s igna l  but  with a dimensionless t i m e  l a g  

pressure f luc tua t ion  r a t e s .  A t  t he  higher pressure f luc tua t ion  r a t e s  the 

higher frequencies of t he  pressure s igna l  did not  appear i n  the  ve loc i ty  s ig-  

nal .  

to 

Comparison of the  ve loc i ty  s igna ls  across the  channel normalized by  i t s  

l o c a l  roo t  mean square value showed t h a t  f o r  low f luc tua t ion  r a t e s  i n  the  

pressure s igna l  the  values of the  normalized ve loc i ty  near t he  w a l l  were 

almost i den t i ca l  t o  t h e  normalized ve loc i t i e s  near t he  center of the  channel. 

However, a t  the  higher pressure f luc tua t ion  rates the  higher frequency f luc tu-  

a t ions  present i n  t h e  ve loc i t i e s  near the  w a l l  do not appear i n  the  ve loc i t i e s  

near the  center of  t he  channel, and the  ve loc i t i e s  near t h e  center of t h e  

channel l a g  the  ve loc i t i e s  near the  w a l l .  

The random pressure s igna l  function was generated by a Fourier s e r i e s  

expansion where the  coef f ic ien ts  were randomly chosen by model sampling from 
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a frequency d i s t r ibu t ion  whose parameters a re  gPven by t h e  power spectrum of 

the  signal.  By use of t he  fast Fourier transform method of computation the  

function can be rap id ly  evaluated from i t s  Fourier coeff ic ients .  

expansion of t he  f luc tua t ing  pressure s igna l  can then be used t o  ca lcu la te  t h e  

randomly varying ve loc i ty  at  various posi t ions from the  w a l l .  

r e s u l t s  can be useful when the  de t a i1s :o f  a randomly f luc tua t ing  ve loc i ty  

d i s t r ibu t ion  i n  a channel are  needed, a$ f o r  instance i n  convective heat-  

The Fourier 

These ve loc i ty  

t r ans fe r  problems. 
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Figure 1. - Parallel plate channel flow model. 
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Figure 2. -Frequency response function of system. 
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Figure 3. - Normalized spectrums. 
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