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A NOVEL, AXISYMMETRIC, ELECTROSTATIC COLLECTOR 

FOR LINEAR BEAM MICROWAVE TUBES 

by Henry G. Kosmahl 

Lewis Research Center 

SUMMARY 

An analytical model of a novel, axisymmetric, electrostatic depressed collector for  
linear beam microwave tubes is introduced. The model features  schemes for  independ- 
ently effecting the sorting of low- and high-energy electron classes ,  prevention of back- 
streaming secondaries and pr imaries ,  and a geometry that makes the s ize  of the beam 
unimportant for  the shape of trajectories.  

harmonics. 
space-charge effects. The magnetic boundary -value problem is solved for  an ideal 
shield with an aperture for  the exit of the spent beam. The charge conservation is 
treated for  two assumed velocity distributions across  the beam: a nearly parallel multi- 
velocity beam of constant current density and a diverging multivelocity beam. Examples 
of digitally computed electron t ra jector ies  a r e  shown. The performance of the collector 
and the problem of optimizing the overall tube-collector efficiency is discussed. 

The boundary-value problem is solved by developing a Green's function in elliptical 
The trajectories a r e  derived from Lagrangian equations including accurate 

INTRODUCTION 

The residual energy in spent electron beams emerging from the exits of microwave 
tubes represents not only a loss  in efficiency but also an unnecessary heat dissipation 
burden. The advent of space communication systems with their demands for  highest 
realizable overall efficiencies and, if possible, for  the elimination of the cooling problem 
makes the recovery of this energy mandatory. Since we deal here  with kinetic energies 
of electrons, an obvious approach is to  slow down the electrons and collect them on su r -  
faces at the lowest possible potentials. The name "depressed collector" appropriately 
describes devices fulfilling this purpose. 

Depressed collectors have been subject to numerous experimental investigations and 



a few simplified and quite superficial analytical treatments since the late fifties. 
Wolkstein (ref. 1) and Sterzer  (ref. 2)  pioneered in  successfully applying a one- or two- 
segment depressed collector, respectively, to  low-efficiency traveling wave tubes. 
Their collectors consisted essentially of one or two segments of cylindrical tubings 
insulated from each other and shielded from the focusing magnetic field. Since in low- 
power, low-efficiency tubes both the radial and axial velocity spreads are small ,  a 
significant improvement factor in  efficiency in comparison to  ?'undepressed' I operations 
was achieved. The degree of depression, while being far less than a theoretical maxi- 
mum, was determined by the onset of backstreaming electrons, either reflected pr i -  
mar ies  or secondaries. Moreover, since the metallic boundaries of the segments did 
__ not coincide with natural equipotential surfaces,  strong fringing fields ("lens effects") 
were formed. It is obvious that the presence of such fringing, strongly curving fields 
will, in general, prevent the collection of electrons at lowest possible potentials and will  
a l so  cause the backstreaming of many electrons, not necessarily due to  a lack of energy 
but ra ther  because of unfavorable deflections. 

Attempts to improve the overall tube efficiency by collector depression in high- 
power tubes with large velocity spreads were many, but not much success was achieved 
with conventional techniques. With a few exceptions, the resu l t s  were published only in 
internal reports.  

New approaches which eliminate some of the deficiencies of the ear l ie r  works were 
introduced by Sauseng (refs .  3 and 4) and Branch and Mihran (ref.  5) and Neugebauer. An 
effective method to suppress secondaries and their  backstreaming was introduced at  
Bell Telephone Laboratories, and la ter  at Hughes by Sauseng, by collecting electrons in 
negative electric fields. To enhance the velocity sorting, Sauseng (ref. 4) employed an 
asymmetric magnetic deflection. This method, although it is very effective in sorting 
off -axis as weiI a s  on-axis electrons, seems to have a basic deficiency due to unequal 
action of the magnetic field on electrons parallel and perpendicular to it. 

t rons deflected by a long symmetric negative spike to "focus" a t  one point after coming 
down from the apex of the trajectory.  

The approach pursued in the present investigation takes a basic configuration of a 
sphere with a central cone and a short  protruding spike as a flexible geometry to  perform 
three functions effectively at the same time: that is, (1) to velocity-sort the electrons, 
(2) to  slow them down to minimum realizable velocity at collection, and (3) to prevent 
the backstreaming of secondaries and reflected pr imaries  into the interaction region of 
the tube. 

Branch and Mihran (ref. 5) and Neugebauer found the interesting property of elec- 
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METHODS O F  SOLUTION 

The solution of the potential problem is derived in appendix A with the powerful and 

A s  shown in figure 1, the cone, the spike, and a par t  of the spherical surface are 
elegant tool of Green's function. 

assumed to be at the potential -1.5 Vo, the surface adjacent to the injection hole at V = 0 
and a continuous distribution from V = 0 to -1.5 Vo over the r e s t  of the surface. 
symbols a r e  defined in appendix F. ) Here, the cathode is at a potential -1. 0 Vo, the 
tube output at V = 0. In the tube considered for  future applications, only very few elec- 
t rons will have energies la rger  than 1 .  5 i T o .  Thus, there will be little interception 
on the spike and cone. The distribution of the potential between hole and cone on the 
boundary of the sphere is a variable to be chosen such that sufficient sorting is obtained 
with the highest possible energy recovery. It is obvious that a purely electrostatic de- 
flection requires some small  par t  of axial energy to be converted into radial components 
which produce the sorting. 

their failure to perform effectively the first and third required functions limited their  
usefulness in applications to more efficient tubes. 
inspection of the equipotential lines and collecting electrodes, as well as of the apertures  
for the electron passage, shows the effectiveness of the present design to fulfill all re- 
quirements. Since the equipotential l ines slope upward, the direction of force on elec- 
trons is away from the axis of symmetry. Also, the sharp spike produces an indentation 
in the equipotential l ines in the immediate vicinity of the axis. Thus, slight perturba- 
tions such as noise, small  plasma fluctuations, or residual signals will cause even elec- 
t rons going straight up to be quickly deflected away from the axis, where they become 
subject to sorting and collection. These processes  a r e  discussed in the section Analyti- 
cal Results. 

(All 

It is apparent from reviewing previous efforts with "conventional" collectors that 

In contrast to this deficiency, an 

Initial Beam Conditions 

Any exact calculation of electron trajectories in the collector region, which is 
treated in appendix B, presupposes a knowledge of the electron vector velocity distribu- 
tion in the entrance plane as a function of time, that is, for  all phases of the full radio- 
frequency cycle, I€ azimuthal symmetry is assumed, the problem is reduced to  the 
knowledge of a distribution function fi(", z, 4, z ,  $, t) in a six-dimensional phase space, 
the subscript i designating the initial injection plane. Since presently available non- 
linear (large signal) computer programs a r e  one-dimensional, f i  is not yet known. How- 
ever,  from fairly accurate nonlinear three-dimensional calculations (unpublished current 
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work of this author), it is evident that most electrons enter the collector at angles cui 
between 0' and 15' at radiofrequency voltage levels f rom zero  to  Vo, the degree of de- 
flections being determined almost entirely by the distance from the axis rather  than by 
phase or  radiofrequency voltage. Since these calculations were carr ied out for ,  among 
others,  a confined flow through a magnetic field of magnitude two to three t imes the 
Brillouin field BB, terminated by an ideal shield, it is obvious that the magnetic deflec- 
tion largely dominates the problem. Thus, in absence of exact data, a deflection angle 
proportional to the radial  position of the electron may be assumed. Aside from the 
direction, the magnitude of the velocity is of interest .  Especially at high frequencies 
(e.g., larger  than X-band), the beam diameter is so small  compared to collector dimen- 
sions that the electrons may be considered as coming from a point source, but with an 
equivalent distribution ranging from about zero to 2 Vo, depending on radiofrequency 
phase, Another important feature of the beam is its degree of laminarity. The problem 
is complicated by the number of possible cases ,  including klystrons and traveling wave 
tubes (TWT) and solenoid and ppm focusing. In a well-focused, confined-flow klystron 
beam through a solenoid, good laminarity may be assumed everywhere, except in the 
output cavity during decelerating fields. In a solenoid-focused, coupled-cavity TWT, the 
onset of nonlaminarities may begin two o r  three cavities prior to the output. In ppm- 
focused tubes, nonlaminar behavior may prevail over the end of the tube due to strong 
scalloping. 
that efforts toward providing it should be critically evaluated with regard to its impor- 
tance. 

Fortunately, all indications show that the majority of the electrons will be contained 
within a small  angle in a l l  cases except electrostatically focused tubes. Thus, their 
radial velocities can be reduced, though not eliminated, sufficiently to permit a substan- 
tial energy recovery in the collector. Another argument to be accepted is the fact that 
even i f  the exact electron distribution were known, no single o r  simple enough refocusing 
method would eliminate the radial spread for all electrons at all phases. 

Thus, an exact analysis of ppm-focused traveling wave tubes is so complex 

- - 

Space-Charge Effects 

It is appropriate a t  this time to evaluate qualitatively the effects of skace charge on 
the operation and performance of the collector. Whereas at low frequencies (f 5 2 GHz) 
the current density at  the entrance into the collector is of the order of 1/2 to 3 amperes  
per square centimeter, this number increases  to approximately 40 to 100 amperes  per  
square centimeter at 1 2  gigahertz, depending on perveance. An examination of the 
trajectories and equipotential lines obtained for  the two frequencies and presented in 
figures 1, 2, 4, and 3, respectively, demonstrates clearly the highly undesirable effects 
of high space charge on the trajectories and performance. In the low-frequency design 
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Figure 1. -Trajectories and equipotentiais lor  a collector with a 0.2 R long spike. Magnetic field intensity, 0; current density, 
0.5 ampere per square centimeter; radius of sphere, 16 centimeters. 
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Figure 2. - Trajectories and  equipotentials for  a collector w i th  a 0.1 R long spike. Magnetic f ield intensity, 0; c u r r e n t  
dsnsity, 0.5 ampere per square centimeter; in ject ion dngles, 0", 5". 10". 
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Figure 3. - Trajectories and equipotentials for  a collector wi thout a spike. Magnetic f ield intensity, 0; electron in ject ion 
angles between 1" and 16"; i n jec t i on  radius, 0.1 centimeter. 
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Electrode 
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90" 
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Figure 4. - Trsjectories and equipotenZials for  a magnetically conf ined flow beam and  B r i l l o u i n  flow. Frequency, 
2 gigihert?;  c u r r e n t  density, 0.5 ampere per square centimeter. 

(small space charge) shown in figures 1, 2, and 4, the Poisson solution hardly differs 
from the Laplace solution; that is, the external fields dominate the potential shape and 
electron flow. On the other hand, in the high-frequency case (fig. 3), not only are the 
space-charge fields much stronger (in the vicinity of the injection hole) than the space- 
charge-free fields produced by external potentials, but there is an acute danger of space 
charge blocking the flow of electrons and a buildup of a virtual cathode. The deformation 
and depression of equipotential lines causes an excessive deflection of electrons radially 
outward, thus decreasing the degree of energy recovery. In addition, the direction of 
the flow is clearly space-charge dominated, making a planned velocity-sorting very dif- 
ficult and very sensitive to space -charge fluctuations and possible instabilities. In addi- 
tion, a refocusing of such high-density beams is not practical. We must, therefore, 
conclude that a substantial dilution of high current densities down to  l-ampere-per- 
square-centimeter levels is required if collectors designed for high-frequency tubes are 

8 



rl.ens 

Radiofrequency g a k z  

ERF A 

Output cavity 

'\ 

produces 

- c  22. v; 
2 l l Z  

\ 

\ 
Collector entrance i, 

__ 
; 

Paral le l  beam :, 
i f  u r  = - ur l  I I 

I 

/ 
I 

I 
/ B = O  , 

Figure 5. - Refocusing of spent beams w i th  electrostatic lens. Requirement for  parallel beams: u = (v/ZVi)(r/uz) = C ( r / u z ) ,  

to be made feasible and approximately as efficient as low-frequency designs. A possible 
arrangement to  accomplish this task is shown in figure 5 and is discussed in the section 
Analytical Results. For the case of the highly desirable small  space charge in the col- 
lector region, even large e r r o r s  in computing p, will not change the trajectories sig- 
nificantly. This, in turn, permits  the application of simplified methods for obtaining an 
expression for pe. 
ing the velocity vector distribution across  the beam. This approach is treated in 
appendix C in connection with the continuity equation. 

The leakage of the magnetic focusing field into the collector region through the 
aperture  in the shield is solved in appendix D. An existing axisymmetric expansion of 
the vector potential is used within the diameter of the solenoid, using the field along the 
axis. In addition, a solution valid everywhere is derived by transforming the scalar 
potential, resulting from solving the magnetic -boundary -value problem on the shield and 
in the aperture from spheroidal oblate coordinates into spherical coordinates. 

are discussed in the section Analytical Results. 

For this reason, a semi-quantitative approximation is made regard-  

The relations relating tube efficiency, collector efficiency, and overall efficiency 

The international system of units is used throughout. 

L 

9 



DISCUSSION OF COLLECTOR OPERATION 

General Considerations 

Consider the computed electron t ra jector ies  in figures 1 to  4. They represent the 
motion of a spent electron beam which, while being axisymmetric, has a wide distribu- 
tion in energy, radial and axial velocities, and radial  distance from the axis at the t ime 
of entry into the collector. It is clear ,  therefore, that the task to collect all electrons 
which started within a given range of initial kinetic energy at close to zero  final energy 
on the same electrode regardless of angle, radial position, and radial velocity is an 
impossible proposition for  a static arrangement of electrodes. This difficulty can, how- 
ever,  be somewhat mitigated by making the beam radius at entry small  compared to the 
distance the electrons have to travel from injection point to collection point. In this case 
the electrons appear to be coming from a point source,  thus rendering the distribution in 
radius unimportant. For  the range of remaining variables (i. e. , the distribution in 
energy and direction), a compromise must be made such that the impact kinetic energy 
is a minimum. 

sorting into energy (velocity) classes.  Some axisymmetric collectors (ref. 5) use  a 
long, protruding spike as the only sorting (deflecting) element. In the present configura- 
tion the sorting is effected separately by a relatively short  spike, which ac ts  mainly on 
the more energetic electrons, and by the potential distribution on the sphere and the cone, 
which determines mainly the slope of the equipotentials in the vicinity of the entrance. 
The advantage of this flexibility becomes apparent if particular velocity c lasses  a r e  in- 
jected in a preferential direction which requires  a different degree of sorting (deflecting 
force)  for different energy classes .  For  high collector efficiency, only as little radial 
deflection should be applied a s  is necessary for steering the electrons of a given energy 
class to an electrode, where they can be collected with a minimum of total kinetic energy, 
that is, axial and radial components. 

Still another important requirement concerns the prevention of backstreaming of 
pr imaries  and secondaries. As mentioned ear l ier ,  streaming of secondaries may be 
eliminated entirely if they a r e  generated on the ' 'upper ' side of the electrodes facing 
negative electric fields. 
great  majority of trajectories a r e  collected on t i e  upper side of the plates (except on the 
cone and the spike). However, a small  fraction of electrons will s t r ike the edge of the 
underside causing the generated secondaries to s t ream to the next higher potential elec- 
trode. In order  to keep the area of the struck edge as small  as possible, the electrodes 
should slope ffupwardf away from the axis. 

Another important design feature is the degree of flexibility in accomplishing the 

The analysis and visual inspection of trajectories shows that a 

As far as the backstreaming of reflected pr imaries  is concerned, the best  wa-y of 
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keeping this effect to  a minimum is by designing the diameter of the apertures  in the 
electrodes as small  as possible. The limit on the s ize  is dictated by the onset of pr i -  
mar ies  impinging on the undersides, which prevents energetic electrons from being col- 
lected at yet lower potentials. Theoretically speaking, there  is, in the axisymmetric 
configuration discussed herein, no possibility of preventing backstreaming of pr imaries  
and secondaries which move down exactly along the axis since there is no radial (de- 
flecting) force along it. However, the number of electrons within a given radius is pro-  
portional to r2, where r is the distance from the axis. Thus, the percentage of elec- 
t rons traveling close to  and parallel to the axis is small. In addition, space-charge 
effects, radiofrequency instabilities, and random motions will tend to deflect electrons 
from the axis. Nevertheless, the axis of symmetry is the "weakest" spot and the only 
known deficiency of the electrostatic, axisymmetric collector and should be given proper 
attention. 

Analytical Results 

Figures 1 to 3 show electron trajectories for  various beam parameters  and collector 
configurations in the absence of magnetic focusing fields (i. e . ,  B = 0). Figure 4(a) shows 
trajectories for  magnetically focused beams which enter the collector after passing 
through a hole in an ideal magnetic shield (Bsat = m, 1-1 = m).  A l l  confined-flow focused 
beams experience a deflection during the transition from B = Bt into B = 0 ,  which is 
due to the flux a t  the cathode. 
focused (QC = 0) and electrostatically focused beams. Although the rotational (magnetic) 

2 energy (m/2)+ (s in2  ,9)(p2 at the apex is always small  compared to the initial injection 
energy ci, (m/2)+2i2 is large (e. g., ?1/3 ei) and the collector efficiency, particularly 
for the low -velocity c lasses ,  is relatively small  for  the equipotential configuration shown 
in figure 4(a). This deficiency can be much reduced, as shown in figure 4(b), by making 
the equipotentials more  perpendicular to the trajectories at the apex. 

It is important to  shield the collector region (as perfectly as feasible) f rom the main 
focusing field for two reasons: First, the amount of rotational energy which cannot be  
recovered at impact is reduced. And second, "back focusing'' of reflected pr imar ies  and 
generated secondaries into the interaction region of the tube along magnetic f lux  l ines can 
be prevented. 

In figures 1, 2, and 4 the space-charge density is small  and affects the trajectories,  
compared to  space-charge-free cases ,  only very little. In figure 3, computed for injec- 
tion current densities of 30 and 90 amperes  per  square centimeter, the space-charge 
forces  dominate the t ra jector ies  in the vicinity of the injection hole. Notice the heavy 
depression of equipotentials in  the injection region. The spike has been removed en- 

This "magnetic" deflection is absent for  Brillouin- 
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t irely in  order  not to  obscure the space-charge effects. It may be seen that space charge 
provides too high a degree of sorting for low-energy classes because approximately one- 
half of the axial energy is transferred into radial energy, with a subsequent severe loss  
in collector efficiency. Notice further in figures 3(a) and (b) that the apex of the t ra jec-  
tory for energy class 0.2 is only slightly above the -0.1 equipotential line, yielding a 
collection efficiency for  this class of approximately only 50 percent. In contrast to  this 
case, the low-space-charge cases in figures 1, 2, and  4 show the energy at the apexes to  
approach 80 to  95 percent of their  respective injection energy, thus permitting in princi- 
ple a high collector efficiency. In addition, it is very difficult to  make a planned 
velocity-sorting efficient in cases  of space-charge-dominated flow. There is a danger of 
virtual cathode buildup and subsequent space -charge blocking and possible breakout of 
oscillations due to instabilities and fluctuations in high-space -charge densities. We must,  
therefore,  conclude that a substantial dilution of high current densities down to a level of 
a few amperes  pe r  square centimeter or  less at the injection hole is required i f  collector 
designs for higher-frequency tubes are to become feasible. 

A possible arrangement to accomplish this task is shown in figure 5: the beam is 
permitted to expand in diameter by a factor of 5 or more,  that is, the current density 
is decreased by a factor of 25 or more to the 1-ampere-per-square-centimeter level. A 
simple electrostatic lens compensates the outward radial  electron velocity +us by pro- 
ducing an inward component -ur on an electron located at radius r in the plane of the 
lens. Had - all electrons exactly an outward radial velocity ur which is strictly propor- 
tional to r, then an exact compensation of radial velocities would be possible and a 
close-to-parallel flow would enter the collector. Unfortunately, in a real  spent electron 
s t ream, many electrons have radial velocities which are not strictly proportional to r 
and also the t ra jector ies  have positive and negative slopes near  the lens due to a wide 
spread in  velocities. Therefore, it will be possible, at best ,  to  reduce, on the average, 
only a fraction of the radial spread, with a resulting substantial improvement in collector 
efficiency compared to  entirely uncompensated cases.  A magnetic lens permitting an 
oscillation-free adiabatic expansion to  a larger  Brillouin radius could be used for  this 
purpose, as well as a combination of electric and magnetic fields. 
tailed discussion requires a precise knowledge of three-dimensional trajectories.  

However, a more de- 

Relations Between Tube Efficiency, Collector Efficiency, 

and Overall Efficiency 

A number of efficiency definitions are possible and needed by the tube designer and 
system engineer using the tube. Consider figure 6 on which the overall efficiency qov 
is plotted against the collector efficiency qc with tube efficiency % as parameter.  In 
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Figure 6. - Relation between overal l  tube eff iciency and 
col lector efficiency. vov = q/[vtvc + (1 - vcg. 

this plot, circuit losses  and interception losses  prior to the collector are neglected. If 
Po is the beam power IoVo, then 

73t 

P~~ -out nb= 
'L 

A more  accurate formula is given in equation (4) 

where vet, ne, and Pint designate the circuit efficiency, electronic power conversion 
efficiency, and the power intercepted prior to entering the collector, respectively; 
Pint is difficult to  determine but it can be written as ( E )  Iint /Io, where ( E )  is the 
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normalized average volt energy of the intercepted electrons and Iint is the intercepted 
current. A t  saturation ( E )  is usually between 0. 1 and 0.8,  depending on particular 
circumstances 

In equation (3) the summation is over n collector electrodes, each collecting a 
current Ik at a potential Vk below the potential zero  of the output section of the tube. 
Thus, Ik . v k  is the kinetic power in the spent beam recovered by the collector and 
(1 - q,)Po is the kinetic beam power entering the collector. Note that 
the electronic efficiency of the tube 

How does one optimize qov, the only efficiency of interest  to the system designer 7 

Although a quantitative answer is not yet available, a quantitative estimate can be easily 
produced. The electronic tube efficiency qe is proportional to the square of the total 
beam coupling coefficient k2 t imes  the time average of the product i l( t)vl(t)  cos cp(t), 
where il(t) and vl(t)  are the time-dependent amplitudes of the radiofrequency convec- 
tion current and radiofrequency voltage, respectively. and q(t) is the phase between 
them. Thus, 

is less than 

qe. 

2 - k il(t)vl(t) cos q(t) qe 

The theoretical maximum of il is 2 Io. In well-designed klystrons il approaches 
values of 1 .6  to 1 .8  Io, and in traveling wave tubes 1 . 2  to 1. 4 Io. The maximum of the 
radiofrequency output voltage v1 must be smaller than that which causes the reflection 
of the slowest electron in the output gap (i. e . ,  v1 5 1.1 Vo). Although the adjustment of 
the output voltage to such a high value may produce an optimum of qe. it certainly will 
not yield the highest possible qov. It is clear that the spent beam w i l l  contain many elec- 
trons with energies close to zero whose residual kinetic energy can not be recovered and 
which only cause high interception at undepressed potentials. In addition, such a s t ream 
will have a very high degree of axial and radial velocity spread, which makes effective 
sorting l e s s  efficient. We have to conclude, therefore,  that an optimum qov in klystrons 
will probably occur at output radiofrequency voltages slightly less  than those producing a 
maximum in qe. A quantitative discussion would require the knowledge of exact three-  
dimensional trajectories ~ 

Because the TWT circuit imped- In traveling wave tubes the situation is different. 
ance Z is smaller than in klystrons, the radiofrequency voltages v1 a r e  almost always 
well below Vo (e .g .  lvliZ $ Vo), and the slowest electrons in the s t ream have still a 
signjficant kinetic energy. It appears,  therefore, that depressed collectors should have 
a. better potential of improving TWT efficiency than that of klystrons. 
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Collector Losses  

It is appropriate at the conclusion of this discussion to  review basic limitations and 
losses  of this collector. Were exact velocity vectors known, it would then be possible 
to  give an accurate account. In absence of such knowledge, only a useful estimate can 
be given. 

amount, to  accomplish velocity-sorting. The amount of this  energy which represents  a 
basic lo s s  of efficiency can be measured directly as the difference between the volt 
energy at the apex and the initial volt energy at the start. F o r  small  angular spread 
this difference can be made small ,  perhaps 5 to  10 percent. 

large number of plates the electrons will be losing roughly one-half of the potential dif- 
ference between two adjacent stages.  
imately 10 percent loss  in efficiency, fo r  a 20-stage collector only 2. 5 percent loss.  An 
additional loss  results if there are electrons with energies la rger  than -eVCath, where 
Vcath <. 0 and no collector plates a r e  below cathode potential. This loss  is very signifi- 
cant in klystrons and less impDrtant in I W T ' s  and may range between 5 and 25 percent. 
Still other losses  may occur due to secondaries and ions, i f  present.  

All the aforementioned deficiencies can be reduced to a tolerable minimum with 
careful design and effort. There is, however, still present a different source of defi- 
ciency which is much more  difficult to  control and eliminate than the aforementioned 
sources.  
angular spreads and can be only partially eliminated with refocusing. In figure l(b), 

10 . for  example, the electron of energy class  0 .2  and start ing with G- will easily land on 2 
plate V = -0.15 Vo. The same electron in figure l (c)  starting at  3' will just mi s s  the 
-0.15 Vo plate. Similar considerations apply to other trajectories.  It is estimated that 
velocity-sorting losses  can be reduced to 5 percent with refocusing. 

a refocused beam, and having 10 o r  more stages may approach 80 to 90 percent recovery 
efficiency from a spent beam. This  would represent a drast ic  improvement over older 
designs. 

Figure 7 shows an artist's concept of the collector exposing the apertures  and elec- 
tron trajectories.  
klystron amplifier. The individual electrodes are mounted in a rack and held separated 
by insulators. 

An electrostatic collector requires  a certain energy, fortunately only a small  

Another source of losses  s tems from the finite number of collector plates. Fo r  a 

For  a five-stage collector, this amounts to approx- 

This deficiency is related to  inadequate velocity -sorting caused by large 

It therefore appears  feasible that a carefully designed collector with low space charge, 

Figure 8 shows the actual collector mounted on top of an S-band 

1 5  
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Figure 7. - Drawing of col lector w i th  exposed apertures and trajectories. (V, = Vcathode , 
wi th  respect to ground.)  



-. . . . . . . - . . 

Figure 8. - A c t u a l  collector mounted on electron tube. 
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CONCLUSIONS 

A model of an  axisymmetric, electrostatic depressed collector for linear-beam- 
type microwave tubes is given. The model eliminates to a high degree the deficiencies 
of "older" depressed collectors and shows promise to work effectively even when applied 
to a spent beam with a large radial and axial velocity spread. 

It is concluded that the geometry of the beam and the collector must be chosen such 
as to  render space-charge effects relatively unimportant on trajectories and collector 
efficiency. In confined-flow focused beams, all e l ec t rms  experience a deflection which 
resu l t s  in a substantial loss  in collector recovery efficiency for low-energy electrons 
and a small  loss  for higher energies. It is concluded that as small  a ratio of the focus- 
ing field to the Brillouin field B/BB as feasible should be used to enhance the collector 
efficiency. Such losses do not occur in focusing schemes where the magnetic field at  the 
cathode is zero  o r  small  o r  when the beam has been refocused. A qualitative argument 
is derived for achieving an overall optimum efficiency for  the tube-collector combin- 
ation. A significant improvement in the state-of-art of tube-collector efficiency is be- 
lieved t o  result  with the optimization of the designs, with collector efficiencies approach- 
ing 90 percent for a less-than-10-electrode configuration. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 16, 1970, 
164-21. 
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APPENDIX A 

SOLUTION OF THE BOUNDARY -VALUE PROBLEM 

WITH GREEN'S FUNCTION 

Common electrical boundaries, such as a spark gap or a spike. can be well approxi- 
mated by an axisymmetric conductor of the shape of a prolate ellipsoid of rotation. In 
the case of a spike approaching the shape of a sharp needle, the smaller semi-axis b 
of the prolate spheroid (e. g. , an axisymmetric ellipsoid) may be shrunk to the limit zero  
or to any other fraction b /c  < 1, where c is the larger  semi-axis. 

We solve the boundary-value problem with the method of Green's function. After the 
Green's function appropriate to the selected geometry has been found, the determination 
of the potential is reduced to a quadrature by means of the equation 

Here G(P,  Po) is the Green's function of reference points P and source points Po, 
pe is the space-charge density inside the volume % bounded by the surface S along 
which the potential is Vs. 

half-angle .9, a spike at its apex represented by the two semi-axes c and b and su r -  
rounded by a sphere of radius R (see fig. 9), we use  the coordinate system q, <, and cp 
of spheroids of rotation. The coordinates q and < a r e  related with the coordinates z 
and r in the cylindrical coordinate system by the equations (ref.  6, ch. 5.28): 

To derive the Green's function for  our basic configuration of a cone with an included 

where 

c2  = (e2 - b2)1/2 = Linear eccentricity (A41 

The third coordinate is, of course, the polar angle cp. Now, the equation of a cone is 

= Constant Z cos r9 = 
2 2 1 /2  

(z + r )  
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I 
Figure 9. - Derivat ion of Green's func t i on  in spheroidal (ell iptical) harmonics.  

Substituting equations (A3) and (A4) into equation (A5) yields 

o r  I cos 8 = 75 

d m  

5 = c o s  .( 2"2 - ; )'" 
7 - cos 9 

Putting cos 8 = Constant = 1.1, into equation (A5) we obtain on the surface of the cone 
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2 2 2  
11  - ELc 3 (1 - Pc) “pc 1 --- - + .  . )  ( 2 7 7 2 - 1  (772 - 1)2 

+ -  

The difference between 5, and p, is largest  fo r  5, = 1 and diminishes to zero as 
77 becomes large. Thus deviations between 5, and pc occur only at the joint of the 
spike and the cone, where no trajectories are present. A hyperboloid 

2 
= 1  r 2 

Z - - +  

could be used exactly in place of the cone to preset  the inclination of the equipotentials 
(see fig. 9), the only reservation being that a curved surface is more difficult to produce 
than a cone. To obtain the expression for the Green’s function, write the general solu- 
tion of Laplace’s equation in coordinates of a prolate spheroid: 

with 

+m = c cos mcp + D sin mcp (A8c) 

Since we seek a solution which is finite everywhere, including the origin and infinity, we 
must reject  a:(<) inside because l im Q(5) = 00, and P(7) outside since lim P(7) = 00. 

The range of the independent variables 77 and 5 appearing in the formulation of equa- 
tion (7) is l < 77 < 00; -1 s 5 I + l. Because in the presence of the spike the line 7) = l 
is excluded, Q(q) must be  admitted. Since our problem involves conical boundaries, the 

5-1 w* 

2 1  
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solution (eqs. (7) and (8)) must be expanded in t e rms  of harmonics with noninteger val- 
ues  n so chosen that the PE(t) are zero  on the cones. That is, e(Ec) = 0, thus 
satisfying the equipotential requirement on the surface of the cone, cos 9 = pc = 5, = 
Constant. Since for noninteger values n Pn(E) has  a logarithmic singularity at 5 = +1, 
we must use the function Pn(-E), which is regular in the region 9 > 0, where Green's 
function is derived. 

located at qo, Eo, and qo facing an earthed cone (p, = Constant) alone (i. e.,  at first, 
without a spike and sphere) would be 

To solve this problem, proceed as follows: The potential of a point charge q 

m 

f o r  v L r] It may be verified, by inspection of equations (A9) and (AlO), that Vic = 

Voc at = r] and that both solutions a r e  finite everywhere and symmetric about the 0' 
charge point to, vo, 50,. Also, Vic = Voc = 0 on the cone because of our choice of 

Suppose now that the charge q is placed between an earthed sphere of radius R 

0' 
1 

PF(tc) = 0. 

and the cone with an ellipsoidal spike attached at the cone's apex (fig. (9)). The contour 
of the spike is given by r] = vs = Constant. We must now superimpose on the potential 
of the cone another potential that will be zero on the cone and will give a resultant zero 
potential when 7 = qs on the spike and 7 = % on the sphere R. For  the spheroid 
with the semi-axes c and b, 

and, from equations (A2) and (A3), 

& =  R2 + L E 2 =  R2 + 1  
c2 - b2 c2 - b2 

to a high degree independent of 5 ,  because 4; < 1 and R/c >> 1. Notice that, since a 
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spheroidal coordinate system is used, the spheroidal surface r ]  = % can be expressed 
by a single value vS fo r  the entire range of the other coordinates, 5 and q. But two 
coordinates, r ]  and 5 are needed (eq. (A12)) to describe exactly a spherical surface 
(R = Constant). Since now in figure 6, both r ]  = 1 and r ]  = w are excluded, the super- 
imposed potential Vsi must have the linear combination BmnPF(r])+ CmnQr(r]). Thus, 

When equation (A13) is added to equation (A9) taken at TJ = qS, the result  is zero: 

When equations (A14) and (A15) a r e  solved for Bmn and Cmn, 

Adding this new potential Vsi to Vic yields the complete potential Vi, when qs < r ]  < 
70 

And similarly, when q0 < r] < % 
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To determine the constant Am,, a new variable q' = q - qo is introduced and an ex- 
pression for the flux density originating in  the surface q = q of the charge is written. 
This expression is evaluated by invoking Gauss' theorem applied to a box fitting closely 
an element of the spheroid 
number), 

0 

qo. Using E fo r  a "normal" (while n denotes the harmonic 

(A20) n 
77= To 

Here, hl, h2, and hg are the metr ic  coefficients (distance factors)  appropriate to the 
orthogonal curvilinear coordinates of our spheroids. Specifically, 

1 7 -  

(A2 la) 

(A2 lb)  

h - r = c 2 d ( 1  - t2)(? - 1) 3 -  (A2 IC) 

Returning now to equation (A20), the indicated differentiation may be completed with the 
help of equations (A2 lb) ,  (A18), and (A19): 

where the prime on P and Q indicates differentiation a/aq.  Since our charge q at 
to, vo, and q0 is a point charge, the function e(-() 
constant value 

assumes in the limit the 5= 5, 
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Multiplying the left side of equation (A22) by P i  (-5) cos pq'- hl -h3  x d5 dq '  and in- 
tegrating over the surface of the spheroid within the cone at q = qo gives 

X (1 - 5 2 2  ) ( q  - 1)1'2 

Now 

dq '  dt; 

rl= rlo 

0 is continuous across  the spheroid except over the infinitesimal a r e a  zo at q = q 
or cp' = 0 (cos pq' = l), where the charge is located. Thus aVi/az = aVo/an  except 
over dSo, and the integral vanishes elsewhere. 

- 
Therefore, by Gauss' f lux theorem 

Now multiplying the right side of equation (A22) by the same factor as before yields 

because the integral over dcp' is zero unless p = m and the integral over d[ is also 
zero  for  s # n. But a fundamental relation of spherical harmonics gives (ref. 6, 
ch. 5.212) 
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where for  noninteger values of n 

00 

(n + m)! = 1 t("'") eAt dt 
0 

and 

Thus, from equations (A24) to (A26), and (A28) 

(n - m)! (2n + 1) 
(2 - 6;)(-l)m 

27M0c2(1 - E, )  
- 9 - P,m(-C0) 
2 (n + m)! 

We a r e  now prepared to write the expression fo r  Green's function G(P, Po), P and P 
having the coordinates 5, q, 'p and to, qo, 'p, of the reference point and source point, 
respectively. Putting q = 1 (unit charge) into equation (A29), we get from equations 
(A18) and (A19) 

0 

for qs 5 q I qo, and 
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For a given space-charge density distribution pe(Po) inside the sphere R and a 
given potential distribution V = Vs on the surface of the sphere, the exact expression 
for the potential V(P) at any point P located inside the space bounded by the sphere, 
cones, and spike is given by equation (Al): 

In the volume integral the integration needs to be extended only over regions where 
pe # 0, that is, where trajectories exist. 
the normal derivative of Go at the spherical surface. 

The second integral requires the knowledge of 
In analogy to equation (A20). 

Substituting equation (A29) for  A,,, and equations (A16) and (A17) for  Bmn and Cmn, 
respectively, and carrying out the indicated differentiations in  equation (A32) yields 
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(A331 1 x 

Sometimes it is advantageous not to have the spike, i f ,  for  example, the potential 
depression and velocity-sorting due to  a large space charge itself a r e  stronger than de- 
sired.  In this case,  there  is no need to use expansions in elliptical harmonics, but 
ra ther  spherical functions are appropriate. We still use  noninteger orders  n of P:(-p) 
such that, on the cone, PF(-pc) = 0. We forego the now much simpler derivation of the 
Green's function fo r  a cone 9, surrounded by a sphere of radius R and write the ex- 
pressions for Gi , Go, and (aGE/a+),=R (the superscript  o denoting the absence of 
the spike). 

0 0  

n m=O 

n m=O 
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APPENDIX B 

TRAJECTORY EQUATIONS FROM LAGRANGIAN FORMULATION 

The basic geometrical configuration of the tube-collector arrangement is shown in 
figure 10. After leaving the last interaction gap, the spent electron s t ream passes  
through the fringes of the focusing magnetic field, if any, which leaks through the 
2a opening in an ideal (magnetic) shield into the collector region. Although sperical  
(or spheroidal) coordinates are most suitable for  the trajectories inside, cylindrical 
coordinates lend themselves best  for  the transition region, which consists of a cylindri- 
cal tube terminated by the shielding plane which merges into the collector region. We 

Figure 10. -Transi t ion t h r o u g h  magnetic shield. 

30 



shall develop first the trajectory equations in spherical Coordinates 4,  3 ,  and in; 9 and L? 

being the polar angle and the azimuth, respectively. The magnetic field is axisymnietric 
and derivable from the only components A ( r ,  z )  of the vector potential A, o r  a cor- 
responding scalar potential Vm. The expression for the generalized Lagrangian L* of 
a particle with a charge q is 

u? 

and for an electron with a charge q = -e 

* L = T + e V - e < . A  

Hereinafter e shall indicate the amount of the electronic charge e = +l.  6x10- 19 

coulombs, the sign having been taken care  of. In our case of spherical coordinates, 

In equation (Bl) ,  A'"(,&, 9 )  is assumed to have been transformed from A<,?(r,z) by means 
of the relations shown in figure 10: 

z = R  - O B  = R  + -&COS 9 033) 

Here,  r ,  cp, z a r e  the cylindrical coordinates, and s ,  9, cp the spherical coordinates 
The momentum equations are obtained from b 

d * * 
dt 
- (VqL ) - VqL = 0 

where q and q a r e  the coordinates and the rate of change of coordinates with time, 
respectively. To evaluate equation (B5) we need to know the expression A = dA/dt, 
which appears in some components of equation (B5). Since A 5 A (3, 9) has only one 
component A and ?A /?q = 0, 

cp 
cp (D 
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The application of the Lagrangian routine to equation (B 1) yields the following components 
for  the equations of motion: 

as 
Y Y  2" 2 - 2  2(e,*9 + Q 3 - & sin S(cos 9 ) q  - r],? [g - %(cos S ) ( P A q  - r(sin Y)(P 

In place of equation ( B ~ c ) ,  we shall use Busch's theorem for determining (p. From 

Busch's theorem for axisymmetric magnetic fields, 

- 

q ( r , z )  = 27r Jrzr Bz(F, z ) r  d r  = I)(*, 9) 

and qo(ro,  z ) represents the initial magnetic flux of the electron at ro, zo at the time 
of its start from the cathode surface. 
fo r  (p and the fluxes I) in agreement with our previous scheme. The expressions for 

0 
In equation (B8) cylindrical coordinates were used 
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A 
tog,ether with the exact solution for  an axisymmetric magnetic field bounded by an ideal 
shield with an opening hole. 

eliminate the t ime dependence, the expression for the velocity u(+, 9, cp) is used in  the 
collector region, assuming, as before, steady -state case: 

and B = curl  A = -grad Vm in both coordinate systems a r e  given in appendix D, 
cp 

The use of equation (B8) permits  the elimination of (p from equations (B7). To 

and 

because a4/&p = 0. Substitution of equation (B13) into equation (B10) yields 

u 2 (a,  9, cp) = + + ( *  sin 9 $)2 = &2b2 [1 + (*r,i] + *2 sin 2 9 @ - 2  

Now, for an electron entering the opening hole at  a position r = R and 9 = 9. 1 with a 
velocity ui(Si), i t s  velocity u (4, 3 ,  c p )  will  be (writing & = PFi, T j  = .OiR): 2 

2 [ * (P.  9 )  - *.I2 2 u2(i7; 9, cp)  = R2$i2 [1 + cy] + - - - - __ . - - - ui (si) + 2qeV(p, 9) (B13) 
2 2  2 471 a sin 9 

I 2 Equation (B13) may be normalized in t e rms  of the dc electron energy u o  = 2qV0. 
ing both sides of equation (B13) by uz = 2qV0 yields 

Divid- 

I 

or 
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R p 9  2-2.2 [ L + -  (;)'I 
0315) _.  - - E . ( 9 . )  +A V(P 9) - ____ 

1 1  
Ve'o '0 (4r2)(2qeVO)(R2$ sin2 9 )  

- 2  Solving equation (B15) for  9 yields 

It is possible now to eliminate the t ime f rom equation (B7a) such as to  yield a time-free 
trajectory p = P(8, 9., E., j5 i); and ,5i(9i) being the initial values at the beginning 
of integration for  a given initial energy class  The validity of the "time-freel' tra- 
jectories has  been discussed in the section Initial Beam Conditions. Here,  we wish to  
repeat that this assumption holds exactly only at a given phase of entry (time) of the 
radiofrequency field into the collector and represents  a good approximation at the mean 
phase of entry of the decelerated electron bunch. Since, in well-designed tubes, the elec- 
tron bunch accounts for  about 80 percent of all electrons during a full radiofrequency cycle, 
our assumption describes a good average. With this understanding in mind we write 

obtain 

1 

1 1  

ci. 

.. . L. 1 1  ' 2  
= 419; .it = 4 9 + 4'9; 3.' = a @ /  88 and substitute this into equations (B7a) and (B7b) to  

After substituting 19 from equation (B18) and i2 from equation (B16) into equation (B17), 
the latter can be solved for  ir = P(9) providing that Pi(Si) and P;(Si) a r e  known for each 
single electron. 
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APPENDIX C 

DERIVATION OF CONTINUITY EQUATION 

We derive now an expression for the charge density in the collector. To make the 
problem amenable to numerical treatments, which we wish to  limit to a reasonable effort, 
we invoke the following assumptions made ear l ier  in this report  (see section Initial Beam 
Conditions ) . 

during the interval of one radiofrequency cycle are thought of as entering at the same 
time (steady-state solution). 

(1) The time dependence is dropped; that is, all electrons entering the collector 

(2) The current density ac ross  the beam is constant. 
(3) The axial velocity (energy) distribution is given quantitatively by large signal 

computer resul ts  o r  other accurate methods. 
(4) The angles of injection ai a r e  zero on the axis and proportional to the radius of 

injection away from the axis. 
(5) Compared to the s ize  of the collector, the entrance a r e a  in the injection plane is 

very small  (but not zero);  that is, it can be regarded as approaching a point source. 
The last  assumption is very important for  achieving a numerical solution com- 

patible with present knowledge and an acceptable computer volume. It is that after a 
distance large compared to hole radius a but small  compared to collector radius 
R >> a, the electron t ra jector ies  a r e ,  in essence,  independent of their initial radial 
position (point source) and, therefore, a r e  determined only by the magnitude and direc- 
tion of the initial velocity vector. 
at the edge of the hole and the faster  ones more toward the center as long as their popu- 
lation and direction a r e  kept in accord with the actual distribution function. 

To solve the continuity equation we can use either its differential, steady-state form 

Thus. it is permissible to locate the slowest electrons 

I v - (Pe . u)  L' 0 

or  its integral (valid generally also for nonstationary flows) 

where 
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is the Jacobian of the spaces d(x) and d(a) occupied by the compressible electron fluid 
at the t imes t and t = 0, respectively. To be valid in the general case of motion of the 
electron fluid, including overtaking and crossovers  (nonlaminarity), the integration 
should be performed I1at large" in the Lagrangian fashion by tracking - all electrons from 
their  startup volume element d(a) at the t ime t = 0 to  their  respective position d(x) 
at t = t. We shall solve the problem for  two different cases. In the first case we as- 
sume either that the  beam has been refocused or  that its radial  velocities are so small ,  
even without refocusing, that it may be considered essentially parallel, say of l e s s  than 
5' angular spread. 

AB2 = [dp2 + p2 dSqR2 
DC = DB . s i n  (DBA) 
t a n  (DBA)  = AD = & 

Beam Almost Parallel 

L 

Consider now figure l l (a )  showing a tube of electron fluid injected at the hole be-  
tween S1 and S2, at distances ri and ri + dri, respectively, away from the 
axis 0 - 0'. Since the total  dc current into the collector is continuous and the current 

* 
n 

0' 

2 m i  cos ai dr i  

(a) Near ly parallel beam. (b) Diverging beam 

Figure 11. - Derivation of c o n t i n u i t y  equation. 
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density Jo is constant ac ross  the beam, the current element dIo crossing between 
SI and S2 is 

(C 4) dIo = 2nJori dri  

To compute the trajectories of the electrons which started between SI and S2 at 
t = 0, we need to know their  initial velocity vector Zi and also the injection radius as a 
function of energy. Suppose now that the axial energy distribution function is given by 
N(E): 

because N(emax) = 0. In equation (C5), N(E) determines the fraction of electrons with 
energies la rger  than E.  Since the distribution is non-Maxwellian, 

are grouped around E =: 0.3 to 0.7. 
We return now to equation (C4). In light of what w a s  said before regarding the dis-  

tribution of velocities, let  the area dA(Ei) in the injection plane occupied by electrons 
in the energy interval between ei + dei be 

emax is finite and, 
is slightly larger  than zero; and most of the electrons 'm in in most cases ,  5 2; 

dA(Ei) = 2xri(  ci) dri(  ci) (C6) 

On the other hand, the number of electrons per second (current)  in this energy group is 
dI(Ei). This gives a current density 

dI( E i )  
= Jo = Constant 

27rri(ci) dri( ei) 

Equation (C7) permits the calculation of r i ( E i )  
1 

After a flight time t,  the infinitesimal volume element dAi x dh has moved along the 
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trajectory to  CD in figure ll(a). Let the particle velocity at CD in the direction 
normal to CD be uL, 
From figure ll(aj it can be  found that 

then the height of the volume element at AD is dh - uL/ui. 

Thus the initial volume element dAi x dh has changed into 

2 p d P  sin 9 dh - uI 2 nR 

From equation (C2) we get, since the volume element as it moves along the trajectory 
contains an unchanging number of electrons: 

2- 27rR p dp sin 9 dz u ~ p  

[-2 9 + (PI)  21 1/2 
dAi dhpi = e 

ui 

r.(E.) ?r .  
1 1  1 

Jo - 
- 

- + (a2 - p ap dp2  -- + ri ( ei) dri( ei) &2 
Pe(P. 9) = (PiUi) . 

sin 9 u ~ ( p 7 9 )  R2p d p  sin 9 R2u.,(F,9) 

From equation (514)  w e  have 

t- 1 

C 9  

Sowever, from equation (B15) the velocity component uL normal to  CD is 

because the rotation in the cp-direction does not contribute to the outflow of the electrons. 
It is obvious that the Jacobian (eq. (C3)) of our problem has been derived from geo- 

metrical  considerations, ra ther  than formally from the Jacobian determinant. As dis-  
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cussed earlier, for  the solution (eq. (C11)) to be valid generally for  nonlaminar flows and 
non-steady-state conditions, the trajectory integration must be carr ied out for a Suf - 
ficient number of initial t imes and all trajectories must be computed continuously. If 
crossovers  and overtaking occur; that is, i f  s treamline tubes which s t a r t  from different 
initial segments of the injection plane or streamlines which take off f rom the same  ini- 
tial segment but at a different t ime to are found at the same  time t in the same volume 
element, all particles at crossover points must be added to  account for  proper space- 
charge density pe. From this fact, the numerical complexity of integrating nonlaminar 
flow is apparent. 
s t reams.  

With this remark  we proceed now to discuss  rlonparallel, niultivelvcity 

Diverging. Multivelocity Beam 

To treat  this more complicated case,  we need a two-dimensional distribution func- 
tion which relates energy and direction. 
appendix). which is quite accurate for  confined-flow beams emerging through an aperture 
in a magnetic shield, we have for  the angle ai(oi 5 15’) 

From assumption 4 (at the beginning of this 

U 
- cri tan ai = cui = -- - 

r 

uz 

The constant c is determined from 

- - e:-. tan a i ,max  1 ,  1-ila.x 

‘i, max 
P 

Consider now a small  element of the injection area (see fi;. l l (b ) )  

dA. 1 = 2i7r. i i  d r  (C 14) 

The current injected through this area dI(ri) contains electrons covering the entire 
but of the same angular direction tan ai = cri .  energy spectrum emin 5 ci ‘max 

Thus 
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d(ri) = Jo . dAi 

The fraction of electrons per second entering between ri and ri + dri and with an 
energy between ei and ei + dci i s ,  therefore 

dN dN dI(r-1 = - dei = J0(2mi)- (cos a )  dr .  i i  d6 
dei d ~i 

The initial volume element containing a certain amount of fluid (electrons) of a given 
velocity c lass  u. .  is 

11 

27rri dri  cos ai  dh 

The charge density p.. associated with the velocity c lass  u. .  t imes the volume element 
(eq. (C17)) gives a charge 

11 1J 

27rri(cos a i )P . .  1.l dh dr i  (C 18) 

A s  this charge moves along the trajectory,  the volume element occupied by it will be 

and the charge density in i t  is p . . @, -9). Thus, f rom conservation of charge we have e11 

This is the space-charge density a t  the location p, 3 due to electrons injected at  r = ri 
wi th  an angle cy and within an energy class E 

may be contributions to peij(P-, 9) stemming from electrons which have started at dif- 
ference initial locations ri and with different energies E 

Eecause the motion is nonlaminar, there  
i j .  

Fo r  a steady-state motion 
j .  
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the crossovers  will  occur at certain time-independent locations. 
pe(jS; 9) is obtained, whenever crossovers  occur, from the summation 

Thus, the total 

In equation (C20) the product cos  ai(pljuij) represents the component J.. of the current 
density due to the velocity c lass  j .  Integration over all velocity classes results in the 
current density Joi = Jo, which i s ,  by assumption, independent of location ri and, 
therefore, constant over the injection hole. 

feasible. Also, due to the interdependence of trajectories and space-charge densities, 
a relaxation-type solution is required. The reduction of space-charge density, which is 
desirable for  reasons described earlier (in the section Space-Charge Effects), substan- 
tially speeds up the convergence. 

4 

Because trajectories are not known in advance, a closed-form solution is not 
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APPENDIX D 

SOLUTION OF THE MAGNETIC -BOUNDARY -VALUE PROBLEM 

Expression for Component Acn(r, z) of Magnetic Vector Potential 

in Cylindrical, Axisymmetric Coordinates (ref. 6) 

(2n+l) 
- . . - .. - 

< c n!(n+l)! (7z 211 
A ( T , z )  = 

n=O 

7 
(D1) 

r 5 
= ~ ( 0 , ~ )  r - - -- 1 B (2) ( o , Z )  - r 3 1  + - -  B ( ~ ) ( o , ~ )  - r - __ ' B(6)(0,z) - - + . . . 

2 1!2! 23 2131 25  31 4! z7  

Expression for Leakage of Magnetic Induction Density Through a Circular 

Aperture in a Shielding, Infinite Plane Sheet 

Let the location of the plane in a r, z coordinate system be  at  z = 0, the plane 
Let the sheet be  made of a extending to infinity in every direction normal to the z-axis. 

magnetic material  with a y = 

left of z = 0, that is, at negative values of z,  approach a constant value Bo such that 
B(0, - e) = B 
B(0, + m )  = 0. 
can be derived as B = -grad VIn is (ref.  6, ch. 5.272): 

and a B at saturation Bsat = a;. Let the B to the 

To the right of the shielding plane. E(0,z)  decays to zero  such that 
0'  

The scalar magnetic potential V, from which the required leakage field 

7; 'I -1 g cot (-<) + - 

In equation (D2), 5 and 5 are the coordinates of oblate spheroids. The third coordinate 
is. of course,  the angle a, same as in cylindrical coordinates. 

through the relations 
The coordinates 6 and r are related to circular cylindrical coordinates r and z 

z = a t 5  
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The range of 5 and is 0 I 5 1  +1 and --co < < < +a; also, sign = sign z .  On the 
sheet, 5 = 0; inside the hole in the plane, 5 = 0; at the edge of the hole r = a. z = 0. 
both < and < are zero.  Equations (D3) can be solved for 5 and 5 :  

- .___ Z 
.- 5 =  , 

Notice that inside the hole in the plane z = 0. [ # 0. The values C in the hole D.ay be 
obtained from equation (D3b) by setting 5 = 0 and r = a(l - [2)1/2. At r = z = 0 ,  it 
follows 5 = 1 from either equation (D3b) o r  equation (D5) as the limit of ( for  
z - 0 (r = 0). The transformation f rom cylindrical coordinates r ,  z into spherical 
coordinates 4 ,  -9 may be accomplished with the use of equations (B2) and (B3): 

z = R  + *COS 3 033) 

Substituting f i r s t  equations (B2) and (B3) fo r  r and z into equations (D4) and (D5) and 
then the values 5 = <(a, .9) and 5 = ((4, 9)  into equation (D2), an expression 
Vm = Vm(+, 9) is obtained, f rom which we get 

. 

This procedure is straightforward. Although the resulting equations can be obtained in 
closed analytical expressions, they are very cumbersome and are  more  easily produced 
through numerical analysis. 
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Equation (D2) and the field components (eqs. (D6) and 07)) are valid everywhere. 
Inside the hole r i a, a series solution fo r  A (r, z) may be obtained from equations (Dl) 
and (D2). Now on the axis r = 0, 5 = 1 and z = a[. Thus, equation (D2) simplifies to  

cp 

Vm(O, z) = aBo {(- :) + I [z cot- 1 2  (- ;)] + :} 
r a  

and 

1 Notice that BZ(O, 0) = - Bo, which is the same as the field of a long homogeneously wound 
r) L solenoid at  its end. 

Since B E curl  A,  we get 

After BZ(O, z )  (eq. (D9)) has  been substituted into equation (Dl), expressions for  
Bz( r7  z) and Br(r ,  z )  are obtained from equations @ l o )  and (D11). The first six deriva- 
tives of Bz(O, z )  are listed below. Using 3 as an abbreviation for  z/a. 

2 8Bo 1 - 5 2  B (3) ( 0 , ~ )  = +- 
,a3 (1 +g2)4 

- 
Z 
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From equations (D12) to (D17) and (Dl), 

3 - 5 p 2  5r7 3 - 1432 . . - . . + . 774 - - + - .  . . (D18) 
- - 7 3  87ra (1 + 72)5 48ra ---: (1 + 8 2 )  7 

____  - r 

For  the equations of motion in appendix B this expression for Aq,,(r,z) must be  t rans-  
formed into spherical  coordinates P and 3 as before. Notice that z = 0. r = 0 (center 
of the aperture in fig. 10) does not coincide with 1 = Rp = 0 (center of the sphere and 
origin of the spherical coordinate system). 

From equations (D18), (B2), and (B3), we get fo r  A(,, = A ( p :  9): 
i" 

, f l - .  . 
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APPENDIX E 

COMPUTATION OF RESULTS 

The electron trajectories and equations associated with their  derivations were com - 
puted on a high-speed digital computer. The details of the computations are not given 
here ,  but will be dealt with in a separate publication. Here we state the chosen approach 
only. 

The solution of the boundary-value problem w a s  accomplished in par t  with the 
Green's function series on the sphere and in par t  with the finite difference method along 
the spike since working with elliptical harmonics proved more  involved than a direct  
w a y  of forcing the boundary value along the spike. 
boundaries, noninteger -order v Legendre polynomials Pm(- cos 9) were needed which 
a r e  zero along the cone (cos 9 = Constant) o r  hyperboloid (5, = Constant) tangential to 
the cone. Since the polynomials P"(z) may be expressed by hypergeometric functions 
which contain the orders  v and m as parameters,  the latter may be computed from 
suitable hypergeometric se r ies  F (m - v, m + v + 1, m + 1, sin 9/2). See, for example, 
references 7 to 9, from which PF(cos  9) is obtained as 

For  the solution concerning conical 

V 

V 

2 

Here the unknown is the order  v which, for a given value of m and for cos 9 = Constant, 
makes Pm(cos 9)  = 0. 

Poisson equation for current densities approaching 100 amperes  per square centimeter 
at the injection hole. A s  many as six iterations were necessary for achieving a con- 
vergent solution. Since with every single iteration the resul ts  tend to "swing out" to 
far off, the application of the predictor-corrector method proved necessary and suffi- 
cient for speeding up and obtaining convergence. Variable-size mesh w a s  used because 
of the congestion of trajectories in the vicinity of the injection hole. The computational 
step in computing the "high-space-charge'' cases  of trajectories w a s  0. OOlR and O.O0lo 
in 9 as minimum and 0.01R and 0.1' 9 as maximum. 

V 
A particularly difficult computation problem is posed by the requirement to solve the 
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APPENDIX F 

SYMBOLS 

e 

G 

h 

J 

k 

. 

L" 

m 

me 
N 

- 
vector potential n 

expansion coefficients 

radius of hole 

magnetic field density, 
P 

Wb/m2 p:( 1 

Q?()  

minor and major  axis of 
spheroids of revolution 

electron charge, Asec 

Green's function q 

height R 

met r ic  coefficients r 

current r , Q , z  

normalized radiofre- *, $ 9  (D 

S 

t 

quency current 

Jacobian determinant 

current density, A/cm 2 
U 

0 Y 
coupling factor; summa- 

V tion number 

generalized Lagrangian 

upper order  of Legendre 
v1 

3 
polynomials 

electron m a s s  

normalized distribution 
a i 

6 0  function m 

lower order  of Legendre E 

€0 
polynomials 

normal direction point- 
ing out of integration 
area 

power, W 

Legendre functions of 
f i rs t  kind 

Legendre functions of 
second kind 

electr ic  charge, A -  s e c  

radius of sphere 

distance from axis 

cylindrical coordinates 

spherical  coordinates 

surface boundary 

t ime, s e c  

velocity, m i s e c  

volume enclosed by 
surface S 

voltage 

normalized radiofre- 
quency voltage 

normalized length, z /a  

injection angle 

Kronecker delta 

normalized energy 

dielectric constant, 
8. 86x10-l1 C2/N/m2 
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H(u), E ( E ) ,  +(Q) factors  in product so-  
lution of Laplace equa- 
tions in prolate sphe- 
roidal coordinates 

- 
P 

'e 

+ 
Subscripts : 

B 

C 

cone angle 

cos .9 

oblate spheroidal coordi- 
nates 

prolate spheroidal coordi- 
nates 

normalized radius,  r /R  

volume charge density, 
3 Asec/m 

efficiency 

electron charge to  mass  
ratio 

surface -charge density, 
Ase c/m 

magnetic flux, Wb 

Brillouin 

collect o r  

ct 

e 

i 

I 

m 

0 

ov 

R F  

r 

sa t  

si 

t 

Superscripts 

I 

circuit 

electron, electronic 

initial injection plane 

lens 

magnetic 

source or  dc  

over all 

radiof requency 

radial  

saturation 

superimposed 

tube 

total derivative with 
respect t o  t ime, d/dt 

partial  derivative with 
respect t o  space,  a / a s  
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