NASA TECHNICAL MEMORANDUM

NASA TM X-2172

$$
\begin{aligned}
& \text { CASE FILE } \\
& \text { COPY }
\end{aligned}
$$

FORTRAN PROGRAM FOR COMPUTATION OF GROUP TABLE-ALPHANUMERIC DISPLAY

 by Gabriel Allen and David D. Evans

Lewis Research Center

Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - FEBRUARY 1971

For sale by the Netional Technical Information Service, Springfield, Virginia 22151

FORTRAN PROGRAM FOR COMPUTATION OF GROUP

TABLES - ALPHANUMERIC DISPLAY

by Gabriel Allen and David D. Evans

Lewis Research Center

SUMMARY

An existing FORTRAN program for machine computation of finite groups has been modified to allow the output to be displayed as symbols rather than as numerical cycles. The program is written for second generation machines. As written, the program makes use of, but does not depend on, the fact that every finite group G of order n is isomorphic to some subgroup T_{j} of the symmetric group S_{n}. The program can print a table of any possible combination of subsets of group elements of G. The procedure for using the program is as follows: After finding the T_{j}, those elements of T_{j} which correspond to the subsets of G whose table is desired are read in as input data in cycle notation. The symbol for each element of G as it is to appear in the table is also read in. The group multiplication table for the subsets of G is computed and printed using these symbols. Examples are shown of complete group tables, tables of the group multiplication of subsets and a change in symbol notation.

INTRODUCTION

Since its first timid beginnings sixty years ago, group theory has become a standard branch of applied mathematics. Reference 1, which was published in 1959, has a list of 213 references of applications of group theory. This list (which is not exhaustive) includes applications to crystallography, chemistry, atomic and molecular spectroscopy, elementary particles, and relativity. However, the computational effort involved in dealing with large finite groups can be prohibitive. As a result, computing machines have been applied to the task of proving theorems and algorithms about finite groups whose group tables were entered into the program as input (ref. 2).

Recently, a FORTRAN program was written for the machine computation of the group table itself, using only the elements of the group as input data (ref. 3). This program was also made available for use on second generation machines (ref. 4). The method made use of the fact that every finite group of order n is isomorphic to some subgroup of the symmetric group $\mathbb{S}_{\mathrm{n}}(\mathrm{ref}, 1, \mathrm{p} .260)$. Therefore, in using this program, the input data were entered in the form of cycles, the elements of \mathbb{S}_{n}. The output was also printed in the form of cycles and the isomorphism between the elements of G and S_{n} was then used to construct the desired table for G. This last step had to be performed manually.

This program saved the bulk of the effort required to construct a group table. Nevertheless, the fact that the entries in the printed output appeared in the form of cycles meant that a decoding process (the isomorphism between G and the appropriate subgroup of S_{n}) had to be used to write the final table for G. This decoding process could still be time consuming. The modified program (which is written for second generation machines) performs this decoding process and prints the group table in easily recognized alphanumeric symbols rather than numerical cycles.

The major new function of the program is contained in a subroutine with two entry points. This subroutine identifies a given element of T_{j} and substitutes for it the symbol for the appropriate element of G in the output format.

With the use of this program, a desired group multiplication table can be obtained in the following manner:
(1) A set of convenient alphanumeric symbols for the elements of G is selected.
(2) An isomorphism between G and some subgroup T_{j} of S_{j} is found. Here S_{j} is the smallest symmetric group which can serve this purpose.
(3) The elements of T_{j} which correspond to the elements in the subsets of G whose multiplication table is desired are entered as input in the form of cycles.
(4) The symbols chosen in step 1 are entered as input.
(5) The group multiplication table is computed and the output printed using the symbols chosen in step 1.

An example of the group multiplication table of two subsets of a group is presented in the output.

SYMBOLS

$A_{n} \quad$ alternating subgroup of symmetric group, S_{n}
$\mathrm{C}_{\mathrm{k}, 1}$ element in $\mathrm{k}^{\text {th }}$ row and $1^{\text {th }}$ column of matrix C
$D_{3} \quad$ dihedral group
G finite group of order n

Sn symmetric group of order n-factorial
T_{j} some subgroup of S_{n} which is isomorphic to O
twofold rotation axes

DEFINITIONS, CONVENTIONS AND PREPROGRAM PREPARATIONS

The symbol S_{n} designates the permutation group of n objects and is of order n factorial. The even permutation group of n objects A_{n} is a proper subgroup of S_{n}. The numbers between commas in a cycle will be called units. The convention adopted herein for describing the effect of a cycle is that in which the units denote objects and each unit is moved to the location currently occupied by the unit to its left.

Before using the program, some suitable alphanumeric symbols for the elements of G are selected. These symbols would preferably be as close to the symbols in the literature for that group as the printer is capable of printing. Next, an isomorphism is found between G and T_{j}, the subgroup of some symmetric group S_{j}, which is as small as can be thought of for the purpose. Finally, the particular sequence of units in a cycle for a given element of S_{j} must be decided upon, for the main program must store the cycles in this exact form in the doubly dimensioned array representing the group table. See appendix A for an example of how this can be done for S_{4}.

The user normally has the freedom to choose any sequence of units for an element of S_{j} which forms a cycle equivalent to the one used herein (see ref. 3). However, in this program the smallest integer in the entire cycle must always be the left-most one.

It should also be noted that the largest group which this program will handle is S_{4}. Once the principles of the particular decoding process used in this report are understood by the user, the extension to larger groups should be straightforward. However, such an extension will require that subroutine READ be rewritten.

PROGRAM DESCRIPTION

General Description

After the group multiplication has been performed, the results are stored in the doubly dimensioned array C. An entry in this array $C_{k l}$ corresponds to the element in the $k^{\text {th }}$ row and the $1^{\text {th }}$ column of the table. However, in this array, the element
is stored as a cycle chain. The program identifies $C_{k l}$ as a specific member of S_{n} and prints in its place that alphanumeric symbol chosen to represent the element of G corresponding to the identified element of S_{n}. This process will be clarified subsequently by an example.

The program as presented in this report makes use of the symmetric group to obtain a group table for T_{j} which remains internal to the machine. The decoding subroutine can be applied to the translation of any list of cycles as input to any list of desired symbols. All that is necessary is a correspondence between the desired symbols and the cycles. As a matter of fact, some of the complications of the program in reference 4 were needed merely to simplify the output format. In this report, those parts of the program have been eliminated, resulting in a simplification.

Those parts of the program needed for understanding its use are described next. For more detailed information, reference may be made to the listing in appendix B and to the flow chart of subroutine READ in figure 1. The examples are contained in a separate section following this main section.

Main Program

Block 1 - Set up constants. - The constants used in the program are given literal names and are declared either INTEGER or LOGICAL in TYPE statements. All the subscripted variables are dimensioned and alloted storage locations by the use of DIMENSION statements. The names of the variables of the group elements of S_{4} are equivalenced to members of the dimensioned variable INPT. A DATA statement is used to give literal names to the following variables:

Variable	Literal name	Identification
(LP	Left parenthesis
)	RP	Right parenthesis
,	CM	Comma
-	PER	Period
	BLK	Blank
E	IDNT	Identity element of group

Block 2 - Read in data. - The data describing the group, the group elements, and the decoding process are read into the program. The group itself is defined by the variable IDENT. The assignment of labels to the objects and to the locations are read in from the list for IDENT which is limited to one card. No shifting or 'SQUEZ'ing is required, thus simplifying the programming compared to reference 4. The input cards are read in the following order:

Second card: DENT, one card with FORMAT (80A1)
The input for IDENT must be long enough to include the maximum number of objects to be moved in any group operation. Thus, the list for DENT must be of the form $\left(A_{1}\right.$, A_{2}, \ldots, A_{j}) where j is the subscript of S_{j} and A_{i} is any alphanumeric symbol.

Several error checks are run on DENT. These include checking the maximum number of nonblank units (which is six in this version), the presence of blank spaces on the card, and the illegal use of parentheses.

The set of group elements whose multiplication table is desired (this may be a subset of the entire group) is read in the next two sets of cards. These two sets are identified in the program as INPUT(J,K). The first of these sets contains the ACROSS (column) operations and consists of the INPUT cards for which $K=1$. There can be as many as four cards with FORMAT(80A1), and each operation is followed by a period.

A blank card follows the preceding set. It is needed to signal the end of the ACROSS input.
The next set contains the DOWN (row) operations and consists of INPUT cards for which $K=2$. There can be as many as four cards with FORMAT(80A1), and again, each operation is followed by a period.

A blank card follows the preceding set, signaling the end of the DOWN input.
The input for both ACROSS and DOWN operations is in cycle notation with the smallest integer consistently to the left. No blanks are allowed between the first left parenthesis and the final right parenthesis in any cycle chain. If integers are not used as the units in the cycle, subroutine READ will have to be rewritten to identify the units which are used. The complete set of column operations is read first. Then the complete set of row operations is read. Each of these sets is limited to four cards and is followed by a blank card.

The FORMAT for the input list is A6. All entries must be left-adjusted in order that the output be in line. The example of input which follows is a class product block from S_{4} (see ref. 5). It is the product of the class R1, R2, R3 (see appendix A) times the class containing the rotations about all the threefold axes.

Card

Card 3 contains the ACROSS (column) operations, card 5 contains the DOWN (row) operations, and cards 7 and 8 contain the List of "values" for NPT. Note that the entire group is listed even though only two classes are multiplied. This is done because classes are not closed with respect to group multiplication and elements of \mathbb{S}_{4} which are not in either of the classes used as input can appear in the product.

See reference 4 for a description of the rest of the main program.
The data for the decoding process are read from the list for the variable INPT. The list for INPT consists of the actual names desired for the group elements in the output. The list, of course, assigns "values" to the dimensioned variable INPT. The "variable" names are listed in an equivalence statement in block 1. In this program, the alphanumeric data in the list for INPT (the values) are the same as the symbols in the equivalence statement (the variables). For example, the $11^{\text {th }}$ value on the list for INPT is SR1S; and in block 1, INPT(11) is equivalenced to the variable SR1S.

This procedure makes it convenient to use any other choice of variables which are isomorphic to the group in place of the ones used here. If the symbol $Q 5$ were desired in place of SR1S, assigning the value Q5 to the variable SR1S would cause Q5 to be printed everywhere that SR1S appears now. The important point is that no change in the body of the program itself is required. The single change in the input list takes care of the entire new decoding process.

An example of such a substitution is shown in the output for S_{3}. In the example, the well-known isomorphism between S_{3} and the dihedral group D_{3} is used to provide symbols for the elements of S_{3} which are more covenient than the ones which arise when S_{3} is regarded as a subgroup of S_{4}. The common symbols for the elements of D_{3} are used. These are a threefold rotation axis R and three twofold rotation axes ρ_{1}, ρ_{2}, and ρ_{3}. This new output was obtained by simply changing cards 7 and 8 to read as follows:

PRHDI	12	13	RH03	15	RHDE	SR1	R	sR3	SR4	SRIS	RS
FR3S	FR4S	R1	RE	RS	R1s	RES	R3s	R15	R2C	836	

Subroutine READ

This is the part of the program which decodes the cycles stored in INPUT and OUT (see listing) into the desired symbols for the elements of G. A process of elimination is used to identify the cycle, character by character. Advantage is taken of the fact that all equivalent cycles are stored in the same unique form (see ref. 3). Each integer in a given cycle is identified in succession beginning with the left-most one. The identification of an integer is a simple comparison process between the values assigned to the variables "ONE," "TWO," "THREE" and the unit of the cycle. When needed, left
and right parentheses are identified by comparing them against the values of the variables LP and RP, respectively. After a given character has been identified, control is shifted to another set of comparison tests to be made on the next character in the cycle. As each character of the cycle is identified, the number of possible group elements to which the cycle could correspond decreases. The identification is complete when there is only one group element which could correspond to the given cycle.

To keep the program as short as possible, it is assumed that certain errors will not be made. For example, if 4 is the largest integer to appear in a cycle, tests are made only up to and including the integer 3. If the number in the cycle fails all of the tests, it is assumed that it is a 4 in the identifying process.

Illustrative example 1 - Identification of the cycle ($1,3,4,2$) as the group element $\mathrm{R}_{3}{ }^{\circ}$ - The cycle ($1,3,4,2$) enters the subroutine as the value of the variable INPU'T in the calling vector. The identification proceeds by examining individual characters in the array in sequence. This array has four integers, three commas, a left parenthesis, and a right parenthesis, for a total of nine characters. The first character to be examined is the left-most one. Since it is a left parenthesis, it fails all the comparison tests and the next character is examined. This one passes the comparison test on the integer 1 and control is thereby shifted to statement 1100. The comparison test in this series of statements takes into account the fact that some unit has been identified before transfer to statement 1100. Since the first integer in any cycle is always followed by a comma, the subroutine skips the next entry and goes to entry I +2 for the next comparison test. Since this entry is the integer 3, control is shifted to statement 1130.

The $(I+3)^{\text {rd }}$ entry in the array is examined next. It is not a right parenthesis, so control is shifted to statement 1140. The $(I+4)^{\text {th }}$ and $(I+5)^{\text {th }}$ entries both fail their comparison tests and the array is thus uniquely identified as the group element R_{3}.

Illustrative example 2 - Identification of the cycle chain $(1,3)(2,4)$ as the element R1S. - This particular array has a total of 10 characters divided amongst four integers, and two each of commas, and left and right parentheses. The first entry in the array (the $K^{\text {th }}$ one) is again a left parenthesis. After it has been identified, the $(K+2)^{\text {nd }}$ entry $(K+2)$ is examined. Since it is a 1 , control is shifted to statement 1100. As in the previous example, the next entry to be examined is the $(K+2)^{\text {nd }}$ one. Since it is a 3 , control is shifted to statement 1130. After the comparison tests in this series are completed, control is shifted to statement 1131, where the identification R1S is made.

EXAMPLES OF OUTPUT

Full Group

$\$ 4$

01,2,3,4)
$(1,4),(3,4),(1,4),(2,3),(2,4),(1,3),(2,4,3),(1,2,3),(1,4,2),(1,3,4)$.
$(2(3,4),(1,3,2),(1,2,4),(1,4,3),(1,2,3,4),(1,4,2,3),(1,3,4,2),(1,3)(2,4)$. $(1,2)(3,4),(1,4)(2,3)=(1,4,3,2),(1,3,2,4),(1,2,4,3)$.
$(1,2),(3,4),(1,4),(2,3),(2,4),(1,3),(2,4,3),(1,2,3),(1,4,2),(1,3,4)$,
$(2(3,4) .(1,3,2),(162,4)(11,4,3) \circ(1,2,3,4) .(1,4,2,3) .(1,3,4,2),(1,3)(2,4)$. $(1,42)(2,4),(1,4)(2,3) .(1,463,2),(1,3,2,4),(1,2,4,3)$.

54

	11	12	13	14	15	16	SR 1	SR 2	SR3	SR 4	SRIS	SR2S	SR3S	SR4S	R1	R2	R3	R15	R2S	R3S
[1	E	R25	SR3	SR2	SR3S	SR2S	R3C	14	13	R3	R1	16	15	R16	SRIS	R3S	SR4	R2C	12	R2
12	R2S	E	SR4	SR1	SRIS	SR4S	14	R3C	R3	13	15	R1C	R1	16	SR3S	R1S	SR3	R2	11	R2C
13	SR3S	SR4S	E	R3S	SR3	SR4	R1C	R1	15	16	R2	R2C	11	12	SR2	SRIS	R1S	२ 3	R30	14
14	SR2S	SR1S	R35	E	SR1	SR2	15	16	R1C	R1	12	11	R25	R2	SR4	SR4S	R25	836	R3	13
15	\$R3	SR1	SR3S	SR1S	E	R1S	12	R 2	11	R2C	14	R3	13	R3C	835	SR2	SR2S	16	R12	R1
16	SR2	SR4	SR4S	SR2S	R1S	E	R2C	11	R2	12	R3	14	R3C	13	R2S	SR3	SR15	15	R1	816
SR. 1	R1C	15	R2C	12	14	R3C	SRIS	SR4S	SR2S	SR3S	E	R2S	R3S	R1S	13	16	11.	SR2	SR3	S24
SR2	46	R1	R2	11	R3C	14	SR3S	SR2S	5845	SR1S	R2S	E	R1S	R3S	R3	RIC	12	SR1	SR4	SR3
SR3	45	R10	11	R2	13	R3	SR4S	SR1S	SR3S	SR2S	R35	R1S	E	R2S	14	R1	R2C	SR4	SRI	SR2
SRG	R1	16	12	R2C	R3	13	SR2S	SR3S	SR1S	SR4S	RIS	R3S	R2S	E	R3C	15	R2	SR3	SR2	S21
SR15	R3	14	R1	15	12	R2	E	R1S	R2S	R3S	SR1	SR3	SR4	SR2	R2C	R3C	R1C	SR4S	SR2S	S23S
SRES	14	R3	R1C	16	R2C	11	R1S	E	R35	R2S	SR4	SR2	SR 1	SR3	12	13	R1	SR3S	SRIS	S845
SR3S	13	R 30	15	R1	11	R2C	R2S	R3S	E	R1S	SR2	SR4	SR3	SRI	R2	14	16	SR2S	SR4S	S2IS
SR4S	R3C	13	16	R1C	R2	12	R35	R2S	R1S	E	SR 3	SR 1	SR2	SR4	11	R3	15	SR1S	SR3S	5225
R1	SR4	SR2	SR1S	SR35	R2S	R35	11	R2C	12	R2	R3C	13	R3	14	R1S	SRI	SR4S	R16	16	15
R2	R1S	R35	SR2	SR3	SR4S	SRIS	13	R3	R3C	14	R1C	15	16	R. 1	SR2S	R2S	SR1	12	R2S	11
R3	GRIS	SR2S	R2S	R15	SR4	SR 3	16	15	R1	R1C	R2C	R2	12	11	SR1	SR3S	R35	13	14	R35
R1S	R2	R2C	R3C	R3	16	15	SR4	SR3	SR2	SRI	SR2S	SR1S	SR4S	SR3S	R1C	11	14	E	R3S	R2S
R25	12	11	R3	R3C	R1	R1C	SR2	SR1	SR 4	SR 3	SR3S	SR4S	SRIS	SR2S	15	R2C	13	R3S	E	R1S
R3S	R2C	R2	14	13	R1C	R1	SR3	SR4	SR1	SR2	SR4S	SR3S	SR2S	SR1S	16	12	R3C	R2S	R15	E
R1C	SRI	SR3	SR2S	SR4S	R3S	R2S	R2	12	R2C	11	13	R3C	14	R3	E	SR4	SR35	R1	15	15
R2C	R3S	R15	SR1	SR4	SR2S	SR3S	R3	13	14	R3C	16	R1	R1C	15	SR4S	E	SR2	11	R2	12
R36	SR4S	SR3S	R1S	R2S	SR2	SR1	R1	R16	16	15	11	12	R2	R2C	SR3	SR2S	E	14	13	R3

	-asb	- 1	
11	SR4S	R1S	SR1
12	SR2S	R35	SR2
13	SR1	SR2S	R2S
14	SR3	SR3S	R1S
15	R2S	SR4	SR4S
16	R3S	SR1	SR3S
SR1	R3	R 1	R2
SR2	13	15	R2C
SR3	R 3C	16	12
SR4	14	R1C	11
SR15	11	13	16
SR25	f2	R3C	15
SR36	12	R3	R1C
SR4S	R2C	14	R1
R1	E	SR 3	SR2S
R.2	SR3S	E	SR4
R3	8 R2	SR4S	E
R1S	R1	12	13
R25	16	R2	14
R36	15	11	R3
R1C	A1S	SR2	SR1S
R2C	SRIS	R28	SR3
236	${ }_{8} 8$	5 R 2 S	S

```
54
\(\left(244_{0}(3) \cdot(1+2,34,(144,2) \cdot(143,4) \cdot(2,3,4) \cdot(1,3,2) \cdot(1,2,4) \cdot(1,4,3)=\right.\)
\((1,3)(2,4),(1,2)(3,4)=(1,4)(2,3)\).
```

	SR1	SR2	SR3	SR4	SR1S	SR2S	SR3S	SR4S	
1.	R1S	SR4	SR3	SR2	SR1	SR2S	SR1S	SR4S	SR3S
R2S	SR2	SR1	SR4	SR3	SR3S	SR4S	SR1S	SR2S	
R36	SR3	SR4	SR1	SR2	SR4S	SR3S	SR2S	SR1S	

S_{3} as a Subgroup of S_{4}
(142,31
$(162) .(1,3)(263) .(1,2,3) .(1,3,2)$
$(142),(1,3),(2,3), 41,2,3),(1,3 ; 2)$.
$\$ 3$

	11	16	14	SR2	SR2S
11	E	SR2S	SR2	14	16
10	SR2	E	SR2S	11	14
14	\$R2S	SR2	E	16	11
SR2	16	14	11	SR2S	E
SR2S	14	11	16	E	SR2

S_{3} Regarded as Isomorphic to D_{3}

```
41.2.33
(1,6),(1,3).(2, 3).{1,2,3).,(1,3,2).
(1(2).(1,3).(2, 3).41,2,3).(1,3,2).
```

	RHO1	RHO2	RHO3	R	RS
RHO1	E	RS	R	RHO3	RHO2
RHB2	R	E	RS	RHO1	RHO3
RHI93	RS	R	E	RHO2	RHO1
R	RHO2	RHO3	RHOL	RS	E
RS	RHO3	RHO1	RHO2	E	R

[^0]A FORTRAN program for machine computation of finite groups has been writen which allows the output to be displayed in alphanumeric symbols rather than in mumerical cycies. The program is written for second generation machines. As written, it makes use of the fact that every finite group G of order n is isomorphic to some subgroup T_{j} of the symmetric group S_{n}. However, the method is not dependent on this fact. The program can print a group multiplication table of the product of any two subsets of G.

The main new feature of the program is an efficient decoding process from cycles to any chosen alphanumeric symbols. This decoding process is not limited to elements of groups. It can be applied to the translation of any list of cycles as input to any desired symbols as output.

The procedure for using the program is as follows:

1. A set of desired alphanumeric symbols for the elements of G is selected.
2. An isomorphism between G and some subgroup T_{n} of S_{n} is found.
3. The elements in the subsets of G whose group multiplication table is desired are entered as input in the form of cycles.
4. The symbols chosen in step 1 are entered as input.
5. The group multiplication table is computed and the output printed using the symbols chosen in step 1.

The program is complete for groups up to those which are isomorphic to S_{4} or any of its subgroups. A straightforward modification can extend it to larger groups if desired.

A change in choice of symbols for elements of G is very easy (see step 4 in the procedure) and an example of such a change is shown. Examples of both a complete group table and a group multiplication table of two subsets of a group are also shown.

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, October 7, 1970, 129-03.

APPENDIX A

FORTRAN NOTATION FOR GROUP O FOR CODING
OF ISOMORPHISM WITH S_{4}
In the output examples in this report, the following notation is used: The group O , the cubic group, is isomorphic to the symmetric group S_{4}. The former group has four threefold axes, three fourfold axes and six twofold axes. Since FORTRAN IV does not have lower-case letters, the following alphanumeric symbols will be used to represent the group elements of O.

The symbol R denotes a rotation about one of the fourfold axes, $S R$ (for small R) represents a rotation about one of the threefold axes, and I represents a rotation about a twofold axis. The particular axis in a given case is identified by a number. The letter S following the axis identification means squared and signifies that the rotation has been repeated about the given axis. The letter C following the axis identification means cubed and signifies that the rotation about the given axis has taken place three times. Thus, R2C is the group element of O signifying that a rotation has taken place three times about fourfold axis number 2 ; whereas SR1S means that a rotation has occurred twice about threefold rotation axis number 1. (See ref. 5, p. 27, for a convenient table of group O using this notation.)

The following code is used for the isomorphism between cycles (the elements of S_{4}) and the elements of O :
$\mathrm{I} \longrightarrow(1,2) ; \mathrm{I} 2 \rightarrow(3,4) ; \mathrm{I} 3 \longrightarrow(1,4) ; \mathrm{I} 4 \longrightarrow(2,3) ; 15 \longrightarrow(2,4) ; 16 \longrightarrow(1,3)$
$\operatorname{SR} 1 \rightarrow(2,4,3) ; \operatorname{SR} 2 \longrightarrow(1,2,3) ; \operatorname{SR} 3 \longrightarrow(1,4,2) ; \operatorname{SR} 4 \longrightarrow(1,3,4)$
$\mathrm{SR} 1 \mathrm{~S} \rightarrow(2,3,4) ; \mathrm{SR} 2 \mathrm{~S} \rightarrow(1,3,2) ; \operatorname{SR} 3 \mathrm{~S} \longrightarrow(1,2,4) ;$ SR4S $\rightarrow(1,4,3)$
$\mathrm{R} 1 \mathrm{~S}=(1,3)(2,4) ; \mathrm{R} 2 \mathrm{~S}-(1,2)(3,4) ; \mathrm{R} 3 \mathrm{~S}=(1,4)(2,3)$
$\mathrm{R} 1 \rightarrow(1,2,3,4) ; \mathrm{R} 2 \rightarrow(1,4,2,3) ; \mathrm{R} 3 \rightarrow(1,3,4,2)$
$\mathrm{R} 1 \mathrm{C} \rightarrow(1,4,3,2) ; \mathrm{R} 2 \mathrm{C} \longrightarrow(1,3,2,4) ; \mathrm{R} 3 \mathrm{C} \longrightarrow(1,2,4,3)$

PROGRAM LISTING

BLOCK(1) SETS UP CONSTANTS
DIMENSION ITOP(120), $\operatorname{HSID} 11201$ IDOT(221,LINPUT(15), INPT(24) DINENSION INPUT $(400,2)$, INITAL $(6), \operatorname{IDENT}(80), \operatorname{NPAIR}(24,2)$, IL (HE (576), NIN $(24,2)$, NOPA1 2$), K N(6)$, NINPUT(2)
INTEGER RP,CM,TEMP,BLK,CHAR,PER,PAIRS $118,24,2)$, ANS $(6,24,24)$, OUT (15
1,24.24), TITLE(80), OUTPUT:21)
TNTEGER GR1,SR2,SR3,SR4,SR1S,SR2S,SR3S,SR4S,R1,R2,R3,R1S,R2S,R3S,
-R1C.R2C,R3C
DATA [DIT/6Hd......!
DATA\&LDOT(I) $[=1,21) / 21 * 6 H \ldots \ldots /$
DATA LP,RP,CM,BLK,PER/1Hf,1HI,1H, 1H, 1H./
LOGICAL COMMA,ONE
CEMNEN/IKYMAX/IKY,MAX,NCHK
CONMEN/NUMOP $\$ / J O$ KO, NOUT $(24,24)$
COMMCN/LITRAL/II1,II2,I3,I4,15,I6,SR1,SR2,SR3,SR4,SR1S,SR2S,SR3S,
-SR4S,R1,R2,R3,R1S,R2S,R3S,R1C,R2C,R3C
EQUIVALEACE (INPTIIISIII)

BLCCK(2) READS IN DATA
READ (5, 66) ITLE
READ (5,66) DENT
WRITE(6,80) TITLE
WRITE(6,21) DENT
LP $P=C$
R $\mathrm{RP}=\mathrm{C}$
$\mathrm{N}=\mathrm{C}$
CHAR $=B L K$
DO $5 \quad I=1 / 80$
TENP = IDENTIII
(FF (TEMP.EG.BLK) GO 105
昔 F (TEMP:EQ.LP) GO TC 2
IF (TTEMP.EQ.RP) GO TO 3
IF (TEMP.EG.CM) GO TO 4
OHAR = TEMP
GO TE 5
$\angle P=\angle L P+1$
60 YC 5
$R R P=R P+1$
$N=N+1$
IF (N.GT.6) GO TO 61
IF (CHARIEG.BLK) GO TO 62
NITALINI=CHAR
$C H A R=E L K$
CONTINUE
IF (ILP.NE.LOR.IRP.NE. 11 GO 7063
$40=8 \mathrm{C}$
$008 k=162$
007 1=145
$J S=11-11+80+1$

```
    JE=1%80
    READ (5,C6) INPUY(J,K),J=JS,JE)
    WRITE(6,90) [NPUT(JGK),J=JS,NE)
    DO 6 J=JS,JE
    IF IENPUTIJ.KI.NE.BLKI GO 1O 7
6 CONTINUE
    NRNPUTIKB=JS
    g0 T0 8
    CONTPNUE
    CONTINUE
    JE=JE-80
    REAC(5,5678) INPT
    5678 RORMAT(12A6)
C
    BLCCK(3) STORES EACH OPERATION IN PAIRS ARRAY AS A PRODUCT OF
C
                                    TRANSPOSITIONS
DO 19 K=1,2
NPAIR(1,K)=0
NOP=1
PRN=C
CHAR=BLK
H=0
ONE=.TRUE.
COMMA=.FALSE;
HE=NINPUT(K)
DO 16 I=1,IE
TEMP=INPCT(I{K)
IF (TEMP.EQ.BLK) GO TO 16
&F (TEMP.EQ.LP) GO TC 9
IF (TEMP:EQ.RP) GO TO 10
IF (TEMP,EG.CM) GO TO 11
|F (TEMP.EG。RER) GO TO 14
CHAR = TEMP
GO 10 15
9 IPRN=IPRA+1
ONE=.TRUE.
IF IIPRN.LT.O.OR.IPRN.GT.1) GO TO 57
GO TC 15
10 IPRN= LPRN-1
喑 (.NOT:COMMA) GO TO 58
CCNNA=.FALSEd
GNE=.TRUE.
IF (IPRN.LT.O.OR.IPRN.GT.I) GO TO 57
GO TC 12
1% CONMA=.TRUE.
12 NPAIR(NOP,K) #NPAIR(NOP,K)+1
LF (NPAIR(NOP,K).GT.17) GO TO 59
IF (CHAR,EQ.BLK) GO TO 56
(J=NRAIR(NOP(K)
PAIRS(IJGNOP(K)=CHAR
&F (ONE) GC TO 13
NPAIR(NOP;K) #NPA1R(NCP,K)+1
(J=NPAIR(NOP(K)
PAIRS(IJGNOP{K)=CHAR
CHOR=BLK
ONE=FALSE.
GO 1C 15
```

C BLOCK(4) SETS UP ANS ARRAY IN STANDARD FORM OR CONFIGURATION
NOP $1=N O P A(1)$
NOP $2=$ NOPA 21
DO 2C $11=1, N O P 1$
OO 20 I 2 ± 1,NOP2
$0020 \quad I=1, N$
ANS (1. I1612) =INITAL(1)
C BLCCK(5) PERFORMS THE PRODUCT OPERATIONS
$0027 \quad 11=1$, NOP 1
$k I=N P A I R I I 1,11$
DO 27 [2 $=1$, NOP2
$K 2=$ NPAIR(12,2)
DO $23 \quad I=1, K 1 / 2$
$j=K 1-I+1$
$\mathrm{J}=0$
$\mathrm{J} 2=0$
DO $22 L=1, N$
IF (ANS (L.11.[2). NE.PAIRS(J,I1,1)) GO TO 21 $J 1=L$
NOP $=N C P \& 1$
IF (NOP. 6T.24) 60 T0 60
NPAIR (NOP:K) $=0$
$4=1$ H 4
(NPUT (IIGK)=哥EMP
6 CONTPNUE
NMPETIKI-1It1
IF (INPUY(IIGK):NE,PER) GOTO 17
NOP $=N O P-1$
GOTE 18
NPUT(IIAI,K)=PER

NOPA(K)=NOP
continue
(F (ANS (L, [1/ [2). NE.PAIRS(J-1, 11,1$))$ GO TO 22
$J 2=1$
CONTINUE
HF (JL.EG.O.OR.J2.EQ:O) GO TO 55
ITNP=ANS (J1,11,I2)
ANS (J1, 11, $121=\operatorname{ANS}(52,11,12)$
ANS $(12,11,121=1$ TMP
CONTINUE
DO $26 I=1, K 2,2$
$J=K 2-I+1$
j1 $=0$
$J 2=0$
DO $25 \mathrm{~L}=1$. N
IF (ANS (L.ILIL2).NE.PAIRSIJ,I2,2)! GO TO 24
$\mathrm{J}=\mathrm{L}$
IF (ANS (L. 11 (12). NE.PAIRS(J-1.12.21) GO TO 25
$12=1$
CONTINUE
PF (JL.EG.O.OR.J2.EQ.0) 60 TO 55
ITMP=ANS $111, \frac{11.22)}{}$
ANS $101,11,121=A N S(12,11.121$
ANS $1,12,11,121=1 T M P$

```
26 CONT噰E
27 CONTMNUE
C BLOCK(G) LDENTIFIES THE SINGLE GROUP ELEMENT WHICH HAS THE SAME
C EFFECY AS BLOCKI5)
```

```
    MAX=0
```

 MAX=0
 DO 38 I 1:1,NOP1
 DO 38 I 1:1,NOP1
 DO 38 [2E1,NOP2
 DO 38 [2E1,NOP2
 JRP=0
 JRP=0
 J=1
 J=1
 K1=1
 K1=1
 KA=1
 KA=1
 DUT(1,I1GI2)*LP
 DUT(1,I1GI2)*LP
 DO 28 KK=1,N
 DO 28 KK=1,N
 28KN(KK)=KK
28KN(KK)=KK
DO 35 I=1,N
DO 35 I=1,N
DO 29 L=1,N
DO 29 L=1,N
KV=L
KV=L
{F(ANS(KA,IL|L2) EQ: INITAL(KV)) GO TO 30
{F(ANS(KA,IL|L2) EQ: INITAL(KV)) GO TO 30
29 CONTINUE
29 CONTINUE
30 KN(KV)=0
30 KN(KV)=0
IF(KV NE. K1) GO TO 34
IF(KV NE. K1) GO TO 34
OO 32 KK*1,N
OO 32 KK*1,N
KL=KN(KK)
KL=KN(KK)
IFIKL .NE. O| GO TO 33
IFIKL .NE. O| GO TO 33
32 CONTINUE
32 CONTINUE
FF(CUT(J6I1,12) .NE. CMI GO TO 360
FF(CUT(J6I1,12) .NE. CMI GO TO 360
DUT(J,11G12)\&RP
DUT(J,11G12)\&RP
JRP=J
JRP=J
GO TO }3
GO TO }3
33 Kl=KL
33 Kl=KL
KA=KL
KA=KL
G0 IC 35
G0 IC 35
34 F(CET(J,I1,12).EQ. EP) GO TO 335
34 F(CET(J,I1,12).EQ. EP) GO TO 335
J=J+1
J=J+1
OUT(J,I1GL2)\& ANS(KAGI1,I2)
OUT(J,I1GL2)\& ANS(KAGI1,I2)
532 DO 332 KK=1,N
532 DO 332 KK=1,N
KL=KN(KK)
KL=KN(KK)
FFIKL NE. O1 GO TO 333
FFIKL NE. O1 GO TO 333
332 CONTINUE
332 CONTINUE
333 IF(KL .NE.K1) GO TO 334
333 IF(KL .NE.K1) GO TO 334
KN(KL)=0
KN(KL)=0
GO TC 532
GO TC 532
334 fFIKL .EG. Ol GO TO 435
334 fFIKL .EG. Ol GO TO 435
J=J+1
J=J+1
OUT(J.11612) =CM
OUT(J.11612) =CM
KA=KV
KA=KV
GO TE 35
GO TE 35
435 J=J+1
435 J=J+1
OUTIJ,I1GI2)*RP
OUTIJ,I1GI2)*RP
JRP=J
JRP=J
GO TE 36
GO TE 36
355 Jty+1
355 Jty+1
OUP(J,M1,I21*INITAL(K1)
OUP(J,M1,I21*INITAL(K1)
J=J+1

```
    J=J+1
```



```
    jt.jul
```

```
    jt.jul
```



```
        RFIANS&KN,HLI21 EQL INITALIKAI| GOTO 336
        J=j&1
        OU1(S.1 & % 2)*CM
        KA=K\
        GO TC 35
    36 KN(KA)=0
        j= J+1
        OUT(J.I1,12)*RP
    632 DO 432 Kk=1,N
        KL=KN(KK)
        #FIKL.NE. O1 GO TO 433
    432 CONTINUE
```



```
        KN(KL)= C
        GO TC 632
    44 JRP=J
        IFIKL.EG. O1 GO TO 36
        J*J+1
        OUT(J,I1,I2)*LP
        K1=Ki
        KA=KL
    35 CONTINUE
    360 IF(OLT(J,I1,12).NE. LP) GO TO 36
        OUT(J,I1.I2)*BLK
    36 J1= J
        J=JRP
        HF(J.NE.C)GC TO 37
        OUT(JI,I1,I21)=BLK
    37 NOUY(11,12)=3
        IF (G.LE.MAXIGO TD 38
        MAX=J
        CONTRNUE
    C BLOCK(7) DECODES AND WRITES OUTPUT
C
4 2
    DO 42 L=1.576
    LINE(L)=BLK
        KKY=C
        DO 45 L2=1,2
        NCHK=C
        NPER*0
        DO 45 L1:1,400
        &FINPER GE. NOPA(L2)| GO TO 45
        IF(INPUT(LI,L2) EQ. PER) GO TO 445
        NCHK &NCHK +1
        NCHKI=NCEK
        60 TC 45
    445 NL =L 1-NCHK-1
        NPER=NPER+1
        DO 43 I=1,NCHK
        NL=NL+1
        LINPUTIIB=INPUT(NL,L2)
    43 CONTINUE
        LTAG:1
        CALL REAC(LINPUT,LINE,LTAG)
        NCHK=0
    43 COATMNUE
            00 101 I*1.NOP1
```

```
    101 PTOP(1)=[INE番!
    NO=C
    NA= NCP1A1
    NAMAV =NOP1 +NOP2
    DO 102 I=NA.NAMAX
    PND=?ND+1
    102 ESIC(LNDI=LINEIII
    DO 46 L=1,NAMAX
46 LINE(L)=ELK
    IKY=C
    LTAG=C
    NCHK}=1
    OO 52 KOEL,NOP2
    DO 52 JOE1,NOP1
    DO 50 10=1,15
    50 LINPUT(IE)=CUT(IO,JO.KO)
    CALL REAC(LINPUT,LINE,LTAG)
    52 CONTINUE
    WRITE (6668) TITLE
    KSh=0
    LSh=C
    DO 115 IL=1/6
    4LI= LL-1
    MF(KSW.EG.1) GO TO 115
    MAX=20*IL
    IFINCP1 GT. 119) GO TO 111
    IF(NOP1 bGT. MAX) GO TO }10
    MAX= NOPI
    KSh=1
    MFINCP1 LE. 20) MAX* NOPI
204 AN=0
    TEN= 20*ILI+1
    DO 105 IJ=1TEM,MAX
    N=N+1
105 DUTPUT(IN)=ITOP(IJ)
    NN= [N+1
    00 1055 IP= [N1,21
    IG=IP+1
    IDCT&LGI=BLK
I055 OUTPUT(IP)= BLK
IO56 WRITE(6,1104) (OUTPUT(1),I=1,20)
1704 FORMAT(1HO,10X,20A6)
    WRITE(6,1144) (IDOT(A),IE1,21)
1244 FORNAT(1H, 3X.21A6)
    DO 1145 & R=1/21
M45 IDCT|IRI=IDIT
    LB=0
106 DO LC8 LN=1,NOP2
    CG=1
    LANN=LB+LN
    GILANN &GT. 119) GO TO 109
    DUTPUT(1)= ISPD(LANN)
    DO 107 1J=1.MAX
    NMAX=20*!LL+量J
    IFIN#AX GGT. NOP1) GO TO }10
    LG=LG+1
    IFIIE LT. 21 GO T0 1076
    MAR=20* (IL+(N-2)+(NOP 1-20)*(LN-1)+1J
    G0 10 1077
```

```
    1076 MAR=NOPI青(IL +LN-2)4量J
    1077 OUTPUT(LG)=L界E(MAR)
    107 CONTINUE
        LG=LG+1
        IF(LG:GT. 2&) GO TO 1089
        001C88 IQ = LG.21
    LO88 DUTPUTAIGI=BLK
    1089 CONTINUE
    HC8 WRITE(6,1105) (DUTPUT(I):I=1,21)
    1205 FORNAT(IH :4X,A6,20A6)
    109 CONTENUE
        IF(LSW EQ. 1) GO TO 115
        IF(NCP2 &LE. 56) GO TO 115
        IF(NCP2 .GT. 112) GO TO 110
        L.Sk=1
        LB=56
        GO TC 106
    110 IF(NEP2 GT. 120) GO TO 111
        LSh=1
        LB=112
        GO TC 106
    111 HRITE16.11061 NOP1, NOP2
    1306 FORMATIILK,39HTOO MANY ROW OR COLUMN OPERATIONS NOP 1=14,5HNOP2=141
    115 CONTINUE
        GO TC 1
    WRITE (6%71) (IOENT(#),I#1,ID)
    WRITE(6,79) TITLE
    GO TC l
    WRITE (6:72)
    GO TE 1
57 GRITE (6.73)
    GO TC 1
58 WRITE (6.74)
    GO TC 1
59 WRITE (6,75)
    GO TO 1
60 WRITE (6,76)
    GO TE I
61 WRITE (6,77)
    GO TC 65
62 WRITE (6.72)
    G0 TC 65
63 WRITE (6.73)
    G0 TO 65
65 RETURN
66 FORMAT IEOA11
    68 FORMAT(IHK,50X,20A1)
    71 FORMATIIHJ,44HILLEGAL ELEMENT IN GROUP. IDENTITY GROUP IS , 11AGI
    72 FORMATI1HJ,29HBLANK ES NOT A VALID ELEMENT.I
    73 FORMAT(1HJ,5IHILLEGAL USE OF PARENS OR TITLE + IDENT CAROS MIXEOI
    74 FORMAT(1HJ.14HILLEGAL GROUP.)
    75 FORMATI 1HJ,34HTHE PAIRS ARRAY HAS BEEN EXCEEDED.I
    76 FORMATIIHJ.34HTOO MANY OPERATIONS. LIMIT IS 24.1
    77 FORMAT(IHJ.39HMORE THAN 6 ELEMENTS IN IDENTITY GROUP.&
    79 FORMAT(1HJ.27HCHECK INPUT CARDS IN GROUP &OAI)
    80 FORMAI(1H1,80A1)
    81 FORMAT(1HJ,80A1)
    90 FORMAY(1RJ:80A1)
        END
```

SBFPC REAC.

C THIS SUBROUTPNE CAN ACCOMODATE BOTH $\$ 3$ AND $S 4$
SUBROUTINE READITNPUT, LINE, TAG:
DLMENSIOR INPUT(15), IINE 1576). IGROUP(6)
INTEGER SRI, SR2,SR3,SR4,SRIS,SR2S,SR3S,SR4S,R1,R2,R3,RIS,R2S,R3S,
-RICOR2C,R3C
INTEGER CNE TWO, THREE LP R RP
DATA IDNT,LP\&RP/LHE,1H(,1H)/
DATA(IGRCUP(I), I=1,31/1H1,1H2.1H3/
CONMEN/IKYMAX/IKY,MAX,NCHK
CONMEN/NUMOP $\$ / J O, K O, N O U T 124,241$
COMMON/LITRAL/II1,1I2,I3,14,15,16,SR1,SR2,SR3,SR4,SR1S,SR2S,SR3S,
-SR4SGR1,R2,R3,R1S,R2S,R3S,R1C,R2C,R3C
ONE = IGROUP\{11
TWCFIGROUP(2)
THREE =I GROUP 31
IFILTAG EGG ll GO TE l
EF(NCLT (JO,KO) NE. O) GO TO 1
$K K=[K Y+1$
LINEIIKYI=IDNT
GO TE 1960
1 DO 18CO =1,NCHK
IF(INPUTII) EQ. LP) GO TO 1800
IF(INPUTII) EQ. ONE) GO TO 1100
IF(IAPUTII) EQQ THO) GOTO 1010
HF(INPUTII) ©NE THREE GO TO 1800
in $K=[K Y+1$
LINE!IKYI=II2
GO TC 19CO
1010 FF(INPUTHI+2) -EQ. THREE) GO TO 1020
IF(INPUTII+31 EQ, RP) GO TO 1011
R $K Y=[K Y+1$
LINE (LKY)=SRI
60 TE 1980
YO11 $K Y=K K Y+1$
LINEIIKYI=15
GO TC 1960
1020 IF(INPUTII+31 *EQ. RP) GOTO 1021
K $K=[K Y+1$
LINE \mid IKY =SRIS
GO TC 1960
1021 KY=5KY+1
LINE ($[K Y)=14$
GO TC 19 CO
1200 EFILNPUTII+21 EQ. TWO) GO TO 1200
IFIINPUTII+21 EEQ. THREE) GO TO 1130
IFIINPUTII+3 -NE. RPI GO TO 1110
IFIIAPUTII*4 .EQ. LP) GO TO 1101
面 $K Y=1 K Y+1$
LINE ILKYI=13
60 T0 1900
$1101 \quad K Y=1 K Y+1$
LINETKYY = R3S
60 TC 19 CO
MIO IFIINPUTHP4 .EQ. TWO GO TO 1120
EFINPUTII+5: EEQ RP) GOTO III

```
    IKY=苃KY+夏
    LINEIIKYI=RIC
    00 10 19C0
```



```
    HNEI|KY|=$R4S
    GO 10 19CO
1120 IFIINPUPII+51 *EQ= RPI GO TO 1121
LKY=LKY+1
LINE|IKY|=R2
GO TO 19CO
1121 KY=1KY+1
LINE[IKY|=SR3
GO TC 196O
1130 FF(INPUTII+31 .NE. RP) GO TO 1140
IF(INPUT(I+41 .EQ. LP) GO TO 1131
IKY=1KY+1
LINE([KY)=16
GO TC 1900
1231 [KY=1KY+1
UINE\IKY\=RIS
GO TC 19CO
1X40 FF(INPUT(I+4) .EQ. TWO) GO TO 1150
IF(INPUTII+5I .EQ. RP) GO TO 1141
LKY={KY+1
LINE([LKY)=R3
GO TO 19C0
1141 K KY=1KY+1
LINE(IKY)=SR4
GO TE 19CO
1250 IF(INPUTII*5) .EQ. RP) GO TO 1151
KKY=|KY+1
LINE\IKY)=R2C
GO TO 19CO
1251 IKY=IKY+1
LINE{IKY年 SR2S
G0 TC 19CO
IZ00 看(INPUTII+31 *NE, RP) GO TO 1210
IF(INPUTII+4) .EQ. LP) GO TO 1201
KKY=LKY+1
LINE[IKY)=11
LINE[IKY]=[II
GO TC 19CO
1201 K KY=[KY+1
LINE(LKY)=R2S
GO TO 19CO
1210 [F(INPUTII*41 .EQ. THREE) GO TO 1220
F(INPUT(I+5) .EQ. RP) GO TO 1211
IKY=&KY+1
LINE(IKY)=R3C
GO TC 19CO
1211 IKY=&KY&1
    LINE(IKY)=SR3S
    GO TE 19CO
1220 IF(INPUTII+51 *EQ. RP) GO TO 1221
    HKY=䓓KY+1
    IINE|IKY|=RI
    GO TC 19C0
```



```
    &MNE(MKY)= SR2
```

$60 \quad 101960$
TQOO CONTINUE
1900 RETURN
END

APPENDIX C

FLOW CHART OF SUBROUTINE READ

REFERENCES

1. Lomont, John S.: Applications of Finite Groups. Academic Press, 1959.
2. Cannon, John J_{0} : Computers in Group Theory: A Survey. Comm. ACM, vol. 12, no. 1, Jan. 1969, pp. 3-12.
3. Allen, Gabriel; Evans, David D.; and Swigert, Paul: FORTRAN Program for Machine Computation of Group Tables of Finite Groups. NAST TN D-5402, 1969.
4. Evans, David D.; and Allen, Gabriel: FORTRAN IV Program for Computation of Group Tables of Finite Groups - Program for Second Generation Machines. NASA TM X-2015, 1970.
5. Allen, Gabriel: An Efficient Method for Computation of Character Tables of Finite Groups. NASA TN D-4763, 1968. Note that there is an error on p. 27. In the i_{4} row, the entries in the r_{1}^{2} and r_{2}^{2} columns should be interchanged. That is, group operation $i_{4} \times r_{1}^{2}$ should result in i_{2}, whereas $i_{4} \times r_{2}^{2}$ should be i_{1}.

The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomend in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the avallability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

> NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

[^0]:

