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FOREWORD

This volume presents a subsystems analysis of
the Prephase A Study for an Analysis of a Reusable
Space Tug. This study was conducted by the Space
Division of North American Rockwell Corporation,
Seal Beach, California, for the National Aeronautics
and Space Administration, Manned Spacecraft Center,
Houston, Texas. The effort was performed under
Contract NAS9-10925. The six volumes comprising
this final report include:

Volume 1. Management Summary	 SD 71-292-1

Volume 2. Technical Summary	 SD 71-292-2

Volume 3. Mission and Operations	 SD 71-292-3
Analysis

Volume 4. Spacecraft Concepts and SD 71-292-4
Systems Design

Volume 5. Subsystems Analysis	 SD 71-292-5

Volume 6. Planning Documents 	 SD 71-292-6

A
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y	 ABSTRACT

Subsystem trade studies were conducted to select
feasible approaches and to define operational and perfor-
mance requirements for the reusable space tug. The study
areas included environmental control and life support,
active thermal control, guidance and navigation, communi-
cations and data management, electrical power, and
auxiliary control propulsion. In most areas, equipment
selections were drawn from descriptioxis of similar equip-
ment used in Apollo, Skylab, Earth Orbital Space Station,
or Earth Orbital Shuttle. In many cases, to more optimally
fit specific tug requirements, modifications to the selected
equipment were described.

Of primary emphasis was the feasibility of the con-
cepts of reusability, multimission capability, space-basing,
and autonomy from excessive external support. Implemen-
tation approaches to these concepts included functional
modularity, common propellant tankage, and integrated
electronics; each of which also required a feasibility analysis.

A baseline se of subsystems was established at the
study midterm, including the description of selected equip-
ment for inclusion in intelligence, propulsion, and crew
modules. When dividing equipment between modules,
consideration was given to mission functional requirements,
modular interface complexity, and cost in terms of
development economy and minimum inert weight.

The intelligence module contains astrionics (guidance,
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To minimize inert weight, manned and unmanned,
space-operated and lunar landing versions of the tug differ
significantly. Each version, however, utilizes a nucleus
of basic equipment to which is added internal packages and
external kits to afford mission capability. The added
equipment not only increases the number and capacity of
functions but in many cases also enhances mission success
and crew safety by increasing component redundancy.

Another cross-sectional analysis of subsystems led
to the definition of autonomy levels and the differences
between space and ground basing.



ABBREVIATIONS

The following abbreviations are used in this document:

ACS	 Auxiliary control subsystem

ACPS	 Auxiliary control propulsion subsystem

APCU	 Auxiliary propulsion conditioning unit

AT C	 Active thermal control subs ys tenr

CAM	 Cargo module

CIS	 Chemical interorbital shuttle

CM	 Crew module

COMM Communications

C/O	 Checkout

CSM	 Apollo Command and service module

EC/LSS Environmental control and life support system

EO	 Earth orbit

EOS	 Earth-orbital shuttle (two-stage reusable)_

EOSS	 Earth-orbital space station
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IPP	 NASA integrated program plan

IOC;	 Initial operational capability (date)

IMU	 Inertial measurement

IRU	 Inertial reference unit

LEO	 Low earth orbit

LG	 Landing gear kit

LM	 Lunar module

LSB	 Lunar surface base

ME P	 Master executive program

MK	 Manipulator kit

OLS	 Orbiting lunar station

OMS	 Orbital maneuvering system

OPD	 Orbital propellant depot

PM	 Propulsion module

RNS	 Reusable nuclear shuttle

RST	 Reusable space tug

TDRSS	 Tracking and data relay satellite system`

TS	 Tank set
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1.0 INTRODUCTION

1. 1 OBJECTIVES

The tug subsystems perform functions which are generally the same
as those accomplished by existing upper stages and are critical to successful
and safe operation. The primary objective of the subsystems analysis task
was to define candidate subsystems, perform the basic tradeoffs, and select
and further define the characteristics of the best subsystems for the tug.
These characteristics include relevant weight, volume, and power effects on
vehicle sizing; operating details to the extent of mission influence; and
redundancy, reliability, and replacement requirements which affect cost.
The criteria for selecting subsystems are identical with those of the entire
tug: a low-cost, flexible, long-lived, highly reliable space system with a
high degree of reusability and commonality with other Integrated Program
Plan elements. Parametric data, where applicable, were generated to
determine trends and regions of requirement compliance. Design point data
were developed for use in vehicle performance studies. Key issues explored
during the subsystems study include:

1. The feasibility of multipurpose reusable subsystems

2. The feasibility of modular vehicle design from the standpoint of
subsystems

3. The feasibility of autonomous operation

4. Potential problems in the use of common cryogenic tankage for
main propulsion, auxiliary propulsion, electrical power, and
crew oxygen

5. Potential problems associated with docking: unrestricted lighting
conditions, compatibility with the requirements of other vehicles,
and cargo handling

6. Mission resupply requirements

7. The feasibility of onboard active ref rige ration /reliquifaction
cycling of cryogenics

1-1
SD 71-292-5
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B. Potential problems associated with lunar landing: unrestricted
lighting conditions and unmanned landing

9. Subsystem requirements for rescue operations

In pursuing these objectives, five reasons dictated more than cursory
studies of the subsystems:

1. In several areas, particularly guidance, navigation, and commu-
nication, the choice of components affected the vehicle operational
sequence and criticality.

2. Component choice is moderately influenced by exterior envelope
constraints. Since the tug must fit within the earth orbital shuttle
cargo bay, auxiliary control jets, antennae, navigation instruments,
and outgassing requirements are affected. Solar cell arrays (if
they should be chosen), landing gear, manipulators, and other
exterior structures must have erectable features.

3. Subsystem costing data may be more confidently prepared if the
approximate technology period, the complexity, and typical pre-
vious program use of equipment are established.

4. Small variations in component weight and power produce propor-
tional variations in the structure, cooling system, power reactants,
and propellants. The result is a compounding effect which
significantly influences vehxc_]e gross weight.

5. It is necessary to assess the cost of space-based over ground-
based vehicles, manned over unmanned vehicles, and reusable
over expendable vehicles in order to fully justify these aspects.
In the subsystems area, these costs are closely related to the
weight and technology level; their accurate assessment is there-
fora influenced by decisions made at the component level.

The influence of operational sequence, criticality (redundancy), and
envelope considerations form the major requirement sources and receive
most of the attention in this section. Discussions of costs are treated in a
separate section.

As a rougi estimate of the magnitude of vehicle gross-weight sensi-
tivity to component-weight variations, an increase of 1 pound (0. 5 kilograms)
in subsystems equipment causes an increase of approximately 8. 5 pounds
(3. 8 kilograms) in vehicle gross weight for a geosynchronous mission. For
the selected equipment, including redundancy effects, an average power
increase of one watt during a 7-day mission causes an increase of:

1-2
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0.410 pounds (0. 185 kilograms) of electrical power equipment

0.225 pounds (0. 102 kilograms) of active thermal control equipment

0. 176 pounds (0.080 kilograms) of reactants

0.608 pounds (0.275 kilograms) of vehicle structure

6.080 pounds (2.750 kilograms) of propellant for main propulsion

Adding these increments, it is found that the one watt average increase over
a 7-day mission costs approximately 7.5 pounds (3.4 kilograms). The power
sensitivity is therefore 88 percent of the weight sensitivity in a user sub-
system. In the usual case, an increase in component weight will cause an
increase in power demand, which causes the two sensitivities to be additive.
It should also be noted that although the subsystem weights estimated for the
tug may, for example, be only 5 percent in error from final design figures,
they could, at the same time, easily represent a gross weight uncertainty of
2000 pounds (900 kilograms) if the errors are in power-consuming
components.

On this basis, the somewhat detailed attention paid to subsystems
during the Reusable Space Tug study is justified.

1.2 SUBSYSTEM REQUIREMENTS

The preliminary subsystems requirements were derived from mission
requirements and interface groundrules. These are listed in Table 1-1 and
are cross-referenced with specific RFP statements (Reference 1-1). These
requirements assume a ten-mission, space-based vehicle with primary
automatic: operation and backup manual operation. Common oxygen/hydrogen
storage for main propulsion, auxiliary propulsion, electrical power (since
fuel cells are recommended), and crew oxygen are of principal interest.
Guidelines for equipment reliability and space maintenance were undefined.

The first item in the table, which deals with launch vehicle options,
was reduced in scope shortly after the contract effort began, to include only
internal earth orbital shuttle launches. The resulting intelligence module
(IM) contains no compromises to permit use as an alternative to the Saturn-V
instrument unit (IU). Although this subject was not pursued in depth, it
appears that the IM contains excess capability over that of the IU. The IM
could be used effectively as an IU during launch and, with ground support,
could be reprogrammed in orbit for subsequent space-based missions.

The fifth item in the table specifies reliability considerations. The
original interpretation was a fixed redundancy in all equipment areas. A



Subsystem

Environmental Guidance, Communications Auxiliary Control
Subsystems Control and Navigation, and Data and Auxiliary

Requirements/Driver Interpretation Life Support and Control Management Electrical Power Propellant

1. Launch - The space tue may be Launched by EOS, S-V, No interfaces. No interfaces; alter- External antenna No interfaces; ACS jet propulsion
launched from earth on the Saturn, S-V derivatives, and native is to use IM a- size constraints, alternative. constraint, propel-

Saturn derivatives, and possibly smaller vehicles.	 IM Ill. radio link interface lant venting con-
smaller vehicles such as Titan with may be used as an compatibility with straint during launch.
or without use of the tug's propul- alternate to the S-V launch vehicles and Alternative is to use
sion, or as an internal or external IU. ground. Alternative IM as IU.
payload on the earth orbital shuttle is to use IM as IU.

(EOS).	 Limited consideration shall
be given to using the intelligence
module (IM) to replace the functions
of the Saturn-V. (S-V) instrument
unit (IU) when the space tug is flown
as an S-V fourth stage. 	 (3. lb,
(3. lb. 4. 1. 1)*

2. wee based capability - Many Space based, active or Cabin atmosphere com- Automatic docking Voice and data link Supports payload ACS acceleration
earth orbit missions will begin at passive docking capa- patible with other IPP capability with man- compatible with requirements. resolution for
and return to the space base bility at any time with elements. ual override. Remote payload, other IPP docking.
(270 nmi al, 550 inclin). Other all IPP elements. pilot docking capa- elements, MSFN,
inclinations and altitudes will be Space and ground corn- bility. DSN, and CSS.
considered, such as 28 1/20 and munications interface No sun angle con- Television link
ZOO ami alt. The space tug will be compatibility. Mini- straints on docking. required. Sensor
refuelable in earth or lunar orbit. mize interfaces with Docking visual aids measurements of

All communication systems are ground. payloads, and required. attitude, range
to be compatible with the Manned other vehicles. and rates Command
spaceflight network, deep space receiver system.
network and available communi-
cation satellite systems and all
hardware elements of the IPP. The
space tug will incorporate neuter
docking devices compatible with
all IPP hardware elements. Min-
imum interfaces shall be required
between the payload, and the space-
craft to reduce complexity and
increase the flexibility of the kinds
of payloads to be transported; how-
ever. consideration should be given
to how the space tug communications
and power subsystems could support
the payload. (3.Ic, d. v, x, y)*

34 Operation - The space tug shall Manned or automated Automatic onboard Automatic onboard Automatic onboard Automatic onboard Automatic onboard
he capable of manned or automated flight, autonomous or monitoring and monitoring and monitoring and monitoring and monitoring and
eIgUL Remote control from the semi-autonomous checkout, checkout. Guidance checkout. Systems checkout, checkout.
earth, earth-orbiting and lunar- operation. sequencer- status data trans-
orbiting stations/bases shall be con- programmer with mission.
sidered. The space tug design shall backup remote and Data processing
minimize the necessity for ground keyboard entry. equipment.
support during flight. Autonomy is
the design objective. (3.Ig, h)*'

*1111eguest for Proposal MSC-JC42I-Mfi8-O-IO9P Pre-Phase A Study for an Analysis of a Reusable Space Tug" March 7, 1970, NASA-MSC
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Subsystem

Environmental Guidance, Communications Auxiliary Control
Subsystems Control and Navigation, and Data and Auxiliary

Requirements / Driver Interpretation Life Support and Control Management Electrical Power Propellant

4. Reusability and operating life - The Reusable at least 10 times Space refurbishment. Space maintenance or Space maintenance or Space maintenance or Space maintenance
design shall be capable of maintaining over a 3-yr period with Space expendable adequate equipment adequate equipment adequate equipment or adequate equip-
a quiescent status for long periods quiescent periods up to resupply. life, life. life. ment life.
(180 days) in earth and lunar orbit, 180 days in space or Space maintenance or Rechargeable fuel Rechargeable
docked to other vehicles and free 30 days on lunar surface. adequate equipment tanks. propellant tanks.
flying. Quiescent periods up to 30 days Space replacement of life.
or more may be required on the lunar components or subsys-
surface. Quiescent capability shall tems an alternative to
exist before use, between uses, and ten-mission reliability.
after use.	 The space tug shall be
capable of going from this quiescent
status to a fully operational mode
within approximately 2 hours.
Refrigeration or other techniques
may be considered to achieve quies-
cent requirements.	 The space tug
shall be reusable at least ten times
by refueling, replacement of con-
sumables, and a minimum of
refurbishment. Return to earth for
major refurbishment should be
considered. Replacement of compo-
nents or subsystems in space should
also be considered. The space tug
shall have a reusable lifetime goal
of 3 years or longer: i, e. , the space
tug shall be reusable by replacing
consumables for a `period of 3 years
or longer after earth launch.
(3. 1i, j, k)s

5. Reliability - It shall be a design Multiple redundancy as Critical equipment redun- Unmanned reliability Links capable of Fail-safe mode Attitude-hold mode
objective to maximize crew safety required. dant, spare parts stocked equivalent to man- remote tug opera- required for emer- required for emer-
and the probability of fulfilling all onboard for crew- rating for docking and tion as backup gency rescue period. gency rescue period.
space tug functions and objectives. maintained non-critical separation. mode.
Subsystems identified as necessary equipment. Margins for
for crewsurvival will be designed emergency expendables
such that no single failure or cred- and consumables also
ible combination of failures will stocked onboard.
result is a loss of life. Functions
identified as necessary for safe con-
tinuation of planned space operations
shall be designed for long life with
minimum replacement, with single
failure points prevented or
controlled.	 ( 3.11)*

="Request for Proposal M.SC-JC421 -M63-0-109P Fro-Phase A Study for an Analysis of a Reusable Space Tug" March 7, 1970, NASA-MSC
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Subsystem

Environmental Guidance, Communications Auxiliary Control
Subsystems Control and Navigation, and Data and Auxiliary

Requirements/Driver Interpretation Life Support and Control Management Electrical Power Propellant

b. Manned provisions - The space tug Crew module serves as 2 to 6 man crew. None. None. None. None.
crew Compartment will contain a flight control station, crew Periods of occupancy
station for control of all flight maneu- transport, and lunar from a few hours to long
vers. The crew compartment will surface base. duration orbital missions,
serve as the primary crew living or 14 to 28 days on lunar
quarters and a base of operations for surface plus 14 days con-
the lunar surface missions. It will also tingency plus additional
serve as a crew transport system flight time.
when used with the nuclear shuttle.
The crew compartment will contain an
airlock for crew EVA. (3. Is. t, u)#

I

7. Intelligence module provisions -
The feasibility of a separate IM con-

Common basic sub-
systems for all

None. Guidance and control
equipment in IM, with

CkDlv1 equipment in
IM with input /output

Basic power source
with add-on

Constraints on number
of jets vs location.

taining electrical power generation, applications, input/output to crew to crew module. capability. Gaseous O2/H2
all astrionics, and an attitude control module. temporary storage.
system shall be investigated. This
IM might be used for all phases of the
space tug operations and for astrionics
guidance and attitude functions on
other hardware elements such as the
orbiting lunar station (OLS), nuclear
shuttle, and large payloads oper-
ating remotely in earth or lunar orbit.
(4•3)s

8. Lunar surface erovisions - The Lunar landing capa- Minimum atmosphere Automatic landing Landing sensor Electrical power Conditioning unit
space tug will conduct lunar surface bility from any orbital leakage losses. capability w/manual measurements of system supplies sur- charges accumala-
missions beginning at and returning altitude, inclination, or Maximum crew require- override, attitude, range, and face operation needs. tors on surface.
to a near polar OLS at 60 n mi alti- lighting conditions, with ments are 28 plus Remote pilot landing rates.
tude. Some missions may be con- 0 to 6 crewmen. Landing 14 day crew provisions, capability. Selenographic land-
ducted from other orbits with the capability at any latitude plus additional in-flight No sun angle con- ing point location
nuclear shuttle and without the OLS. and longitude. Surface provisions. straints on landing. equipment.
Lunar surface mission crew size stays will be 28 days Obstacle avoidance
is between 3 and 6 crewmen. The duration plus 14 days equipment.
space tug will be flyable normally contingency, landing
by one crewman but capable of auto- and returning a
mated operations. Space tug oper- 10.000 lb payload plus
ations shall not be constrained by crew or 14 days dur-
lunar lighting conditions. The nom- ation plus 14 days
inal 28 day manned lunar landing contingency.
mission vehicle consists of apro-
pulsion module; a separate or
integral intelligence module, a
crew compartment, an estimated
SOOO lb of mobility aids and an
estimated 50001b of scientific equip-
ment all of which must be returned
to lunar orbit incase of abort at
touchdown. Mobility aids may
include lunar flyers, ground effect
matchines 'and wheeled rovers. The
scientific equipment and mobility

s"Request for Proposal MSC-JC421 -M68-0 -109P Pre -Phase A Study for an Analysis of a Reusable Space Tug" March 7. 1970, NASA-MSC
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Table 1-1. Preliminary Subsystems Requirements (Cont)

r

t3

t	
En

i Hy

V

Subsystem

Environmental Guidance Communications Auxiliary Control
Subsystems Control and Navigation, and Data and Auxiliary

Requirements / Driver Interpretation Life Support and Control Manageraent Electrical P'•.wer Propellant

8. Lunar surface provisions -
(Cont)

aids are described in the attached
data package.	 Landings will occur
at all lunar latitudes and longitudes
with appropriate time phasing. Lunar
landing mission duration is 28 days
plus 14 days contingency capability
or 14 days plus 14 days contingency.
Both cases are to be investigated in
this study. ( 3.Im, n, o, p, q, r)*

9. Attitude reference capability - Three-axis rotation and None. 3-axis rotation and None. None. 3-axis rotation and
The space tug attitude reference translation auxiliary translation. translation auxiliary
system shall be capable of extensive propulsion. Three -axis 3 -axis attitude ref- propulsion.

maneuvering on any axis without loss attitude reference sys- erence system with
of attitude reference. ( 3. lw)* tem with complete unlimited rotational

freedom. freedom.

10. Common LOX/LH? - The pri- Common LOX / LH2 tank- Oxygen for crew use Autopilot design None. LOX/LH2 fuel stored ACS jets use LOX/
mary propulsion system will be
LOX/LH2. While existing or planned

age for main propulsion,
ACS, EPS, and crew

stored in main tanks, includes effects of
90 to 110-millisecond

in main tanks. LH2 propellants.
Cryogenic LOX/LH2

engines may be considered, it is atmosphere is a primary minimum jet pulse heated, pressurized.

intended that the space tug require- study item. duration. and converted to gas

ments design the engine within the by conditioning

constraints of existing and projected unit.

technology.	 No constraints are to
be placed on the space tug design
because of existing or planned engine
designs. Anew LOX/LH2 engine
will be acceptable as part of the pre
preliminary design.	 The advan-
tages and disadvantages of appro-
priate propellants other than LOX/
LH2 will be documented and sum-
marized for comparison purposes.
Auxiliary propulsion systems will
emphasize LOX/LH2; however,
consideration and study of other
propellants will be included. Feas-
ibility of using common LOX/LH2
tanks for both the primary propulsion
system, auxiliary propulsion system,
and for electrical power generating	 -
and life support functions shall be
determined by conducting a tradeoff
analysis between the common tankage
arrangement and a more conventional,
separate-tanks arrangement. The
advantages of using the LOX/LH2 for
long-term-survival in case of a con-
tingency situation shall be determined.
(3. Iz. 4. 3)*

e"Request for Proposal MSC-JC421 -M68-0- 109P Pre-Phase A Study for an Analysis of a Reusable Space Tug" March 7. 1970, NASA-MSC
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.

later interpretation made use of knowledge of the relative criticality of
equipment and also past reliability of similar components. The resulting
selective redundancy is shown in equipment lists to be discussed later.

In each following section devoted to a subsystem, more specific
requirements are listed. Additionally, groundrules and assumed require-
ments are discussed. Where applicable, each of the sections displays
parametric and design-point data as another type of requirement.

t
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2.0 ENVIRONMENTAL CONTROL AND LIFE SUPPORT SUBSYSTEM

2.1 REQUIREMENTS

Studies in the EC /LSS area encompassed all of the requirements for
habitation that significantly affected tug design. Most of these items are
described in Table 2-1. In addition, related criteria for CM volume,
atmospheric purity, furniture, and crew functions were investigated. All
of the requirements having general application were drawn from EOSS
documentation. Since the tug requirements differed significantly from those
of EOSS, the resulting equipment selections do not directly correspond.

Each item in the requirements list was drawn from a current source.
Crew size and mission duration are determined from operations analyses
and mission planning. The workspace volume data has been surveyed in
Reference 2-1 and is summarized in Figure 2-1. Requirements 4 through
11 and 14 through 21 enjoy industry-wide agreement, but are tailored to be
somewhat austere for tug usage. Requirements 12 and 13 indicate leakage
rates below those of . 11pollo, and predict advanced technology.

It was assumed that all solid biological waste, and internally used
expendables and consumables, are returned to the tug base; however,
future studies may show appreciable payload increase by periodic space
dumping during the mission. It was also assumed that, in minor cases,
space maintenance could be conducted within the confines of the pressurized
CM. This ground-rule leads to the storage of spare equipment aboard
the tug.

Only two sets of EVA life support systems (suit, PLSS, and OPS) are
stored for space missions, and four for landing missions. The practice of
not supplying full crew EVA capability has precedence in nearly all previous
space flights, current EOSS philosophy, and is similar to the case of
parachutes for airline passengers.

A more detailed list of requirements is given in the EC/LSS stud-
report, Appendix A. The appendix also includes a complete list of the

j	 contaminants allowable for the tug atmosphere and a breakdown of
4 consumption rates.



Requirement Area
Space

Missions
Lunar Landing

Missions
Rescue

Missions

1.	 Crew size, men 2-6 2-4 s12
2.	 Mission duration, days 7 45 1
3.	 Workspace volume, ft3 /man (m3 /man) 70-13e, (1.98-3.69) 190-430 (5.38-12 . 2) 50 (1.42)
4.	 Atmospheric temperature, o f (O K) 65-75 (291-296) - 65-75 (291-296) 65-75 (291-296)
5.	 Atmospheric ventilation rate, ft /min (cm/sec) 15-100 (7.6-50 . 8) 15-100 (7.6-50 . 8) 15-100 (7.6-50.8)
6.	 Oxygen atmospheric pressure, PSIA (n/cm2 ) 3.5 (2.41) 3 . 5 (2.41) 3.5 (2.41)
7,	 Nitrogen atmospheric pressure -

docked, PSIA (n/cm2 ) 11 .2 (7.70) 11.2 (7.70) 11.2 (7.70)
undocked, PSIA (n/cm2 ) :.5 (1.0) 1.5 (1.0) 1.5 (1.0)

8.	 Carbon dioxide concentration, mm hg (n/m2 ) 5-7. 6 (700-1010) 5-7.6 (700- 1010) 5-7. 6 (700-1010)
9.	 Food supply rate, lb/man-day (kg/man-day) 1. 68 (0 . 76) 1.68 (0.76) 0-1 . 68 (0-0.76)

10.	 Oxygen consumption rate, lb/man-day
(kg/man-day) 1.134 (0.84) 1.84 (0.84) 1.84 (0.84)

11.	 EVA oxygen consumption rate, lb/man-hr
(kg/man-hr) 0.4 (0.18) 0 . 4 (0.18) 0.4 (0.18)

12.	 Oxygen leakage rate, lb/day (kg/day) 0.362 (0.164) 0.362 (0.164) 0. 362 ( 0.164)
13.	 Nitrogen leakage rate, lb/day (kg/day) 0.316 (0.143) 0.316 (0.143) 0.316 (0.143)
14.	 Water metabolic consumption rate, lb/man-day

(kg/man-day) 6.13 (2.78) 6.13 (2 . 78` 6.13 (2.78)
15.	 Wash water consumption rate, lb/man-day

(kg/man-day) 4 . 0 (1.8) 4.0 (1.8) 0-4 . 0 (0-1.8)
16.	 EVA water consumption rate, lb/man-hr

(lb/man-hr) 1.4 (0.63) 1,4(0.63) 1.4 (0.63)
17.	 Water leakage rate, lb/day (kg /day) 0 . 3(0.14) 0.3 (0.14) 0.3 (0.14)

-18.	 Metabolic heat production, BTU/man-hr (w/man) 430-496 (126-145) 430-496 (126-145) 430-496 ( 126-145)
19.	 Carbon dioxide production, lb/man-day

(kg/man-day) 1 . 98-3.0 (0.90-1.4) 1.98-3.0 (0.90- 1.4) 1.98-3 . 0 (0.90-1.4)
20.	 Urine production, 1b/man-day (kg/man -day) 2 . 67-4.61 ( 1.21-2 . 09) 2.67-4.61 (1.21 -2.09) 2. 67-4.61 ( 1.21-2.09)
21.	 Feces production, lb/man-day (kg/man-day) 0 . 38 (0.17) 0.38 (0.17) 0.38 (0.17)
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2.2 CANDIDATE EQUIPMENT

The principal consideration in selecting subsystem components is
commonality with other IPP elements, especially the EOS and EOSS. Both
EOS and EOSS requirements are somewhat in opposition to those of tug,
however. The EOS is a ground-based vehicle of short mission duration
which must operate in space and atmosphere. The EOSS is a non-
accelerating vehicle of exceedingly long mission duration and has a larger
crew. Moreover, from a crew standpoint, the EOS is somewhat akin to an
airline in its functions, EOSS caters to scientific endeavors, and the tug
may be likened to a safari vehicle. All of the EC/LSS configuration drivers
for tug, however, are more nearly like Apoll	 Thus, an economical tug
EC / LSS would intuitively use Apollo components to a large extent, although
a minimum weight tug EC /LSS might result from scaled-down EOS and
EOSS equipment to take advantage of advanced technology. There is,
therefore, a strong incentive to draw from Apollo equipment at the cost of
IPP element commonality.

The scope of the EC /LSS study included the areas of interest shown
in Figure 2-2. All of the lower five areas in the figure involved principal
trade studie s.

Widespread use of regenerative (closed) systems for the IPP elements
proved to be another factor influencing commonality. The results of the
trade studies indicate that nonregenerative (open) systems, of the type used
in Apollo and Skylab, are lighter and require less electrical power.
Figure 2-3 summarizes a comparatively extensive analysis of principal
trades and illustrates the weight trend. If the weight penalty of electrical
power is included, the crossover points move further to the right, indicat-
ing even longer missions are necessary to justify closed systems.

2.3 RECOMMENDATIONS

After considering the relative merits of equipment commonality,
advanced technology, minimum weight and power, and all of the detailed
requirements, the equipment was selected. These selections are shown
in Table 2-2. A detailed discussion of the equipment is given in Appendix A.

The schematic diagram of the atmospheric purification system using
the catalytic oxidation/ sorption process appears in Figure 2-4.	 This
system uses electrical power to provide heat for catalytic action.	 Future
studies may find that heat from the thermal loop or a radioisotope source
may be less costly.	 Two other schematic diagrams involve EC/LSS systems:
the thermal loop and the oxygen supply system, both of which are discussed
in later sections
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Table 2-2. EC LSS Equipment Selections

Function
Method and

Source Fixed Equipment Spare Equipment
Consumables and

Expendables

Housekeeping (EOSS extrap) None None Cleaners, trash
bags, charcoal
filters

Furniture (EOSS extrap) Bunks, control seats, cabinets, None None
Dri John, exper station, food
prep station

Food Space: Drink gun, trays, chiller oven, Drink nozzle, Dehydrated,
management Dehydrated and freezer, controls brackets, controls, freeze -dried, or

freeze-dried, plumbing support frozen food,

Lander:
utensils,	 soap

Dehydrated and
frozen (Skylab)

Water Potable accum Potable tank, chiller, heater, Purif ampules, Water from fuel
management (Skylab) PLSS recharge, purif ampules, quick disc hoses cells

fire ext, controls, plumbing

Waste Solid storage, Tank, fecal and urine collector, Storage bags, Chemical and
management liquid dump processor, dump nozzle, quick disc hoses bacterial filters

(Skylab) controls, brackets, plumbing

Temperature Fans, heat Central, personal hyg and Fans, filters, Filters
and humidity exchanger and humidity heat exchangers; and controls
control condenser fans, controls, plumbing

(Apollo/Skylab)

Atmospheric Catalytic Filters, regen unit, char Filters, Particle and
purification Ox/Sorption beds, controls, brackets, controls molecular filters

(Skylab, EOSS plumbing catalytic burner
Extrap) charcoal

Atmosphere (Skylab) Partial and total pressure Controls and None
pressure regulators and controls, valves
control dump valves

Atmosphere Fans, lithium Ducts, outlets, fans, Fans, controls, Filters, lithium
circulation hydroxide controls, brackets, valves filters hydroxide
and (Apollo/Skylab) canisters
COZ removal

Atmosphere Water-glycol Pumps, HX, accums, controls, Pump a; yalves. None
thermal loop (Apollo/Skylab) waterfill, intercool, brackets, controls

plumbing

EVA life PLSS and ops OX accum, PLSS, ops, suits, Quick dis- Oxygen from IM
support (Apollo/Skylab battery charger, hoses, disc, connect hoses,

extrap) cont, plumbing controls

Emergency High pressure IVA station, controls, regs, Quick Oxygen from IM
life support OX (EOS, disc, hoses, plumb, tank, disconnect

Apollo/Skylab) brackets hoses, controls

Nitrogen Crew module Tank, regulator, controls, None Nitrogen
storage tank (Skylab) plumbing

Crew (EOSS extrap) None None Clothing, bedding,
support towels, soap,

m.edik is

Interior (Apollo) Fixtures, bulbs None None
lighting
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Figure 2-4. Catalytic Oxidation/Sorption Atmospheric Purification System

Sufficient data was generated for the subsystem to permit parametric
presentation. Table 2-3 shows the parametric data specific to tug require-
ments. Discrimination is made between fixed equipment, spare equipment
for maintenance tasks during the mission, and expendables and consumables.
It also reflects the difference between space missions and lunar landing
missions. The numerical entries in the table may be used as coefficients
in the general expression

	

A = a + bM + cD + dMD	 (2-1)

where

A = total weight, volume or power

M = number of crew members

D = mission span in days

a, b, c, d = coefficient entries from the appropriate columns of
the table.
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,2-3. Environmental Control and Life Support Subsystem
Parametric Data

Fixed Equipment Spare Equipment Expendables and Consumables

Weight Volume Power Weight Volume Weight Volume

ft3 ft3/M ft 3/D ft ft3/M ft  ft3/M ft3/M-D
lb lb/M lb/D lb lb/M lb lb/M lb/D lb/M-D

Function Mission (kg) (kg/M) (kg/D) (m3 ) (m3 /M)
(m3 /D) w w/M (kg) (kg /M) (m 3 ) (m 3/M ) (kg ) (kg/M ) (kg /D) (kg/M-D ) bn3)

(m3 /M ) (•'n3/M- D)

Furniture Space 277.0 - - 16.32 - - - - - - - - - - - - - - -

(125.6) (0.46)

Lunar landing 465.0 - - 23.78 - - - - - - - - - - - - - -

(210.9) (0.67)

Food management Space 9.0 3.0 - 0.90 .0.30 - - - 5.7 0.90 0.57 0.090 - - - 4.390 - - 0.1990

(4.1) (1.36) (0.03) (0.01) (2.6) (0.41) (0.02) (0.003) (1.991) (0.0056)

Lunar landing 84.0 3.00 - 8.40 0.30 - 80.0 - 5.7 0.90 0.57 0.090 - - - 3.830 - - 0.1740

(38.1) (1.36) (0.24) (0.01) (2.6) (0.41) (0.02) (0.003) (1.737) (0.0049)

Water management All 10 . 0 - - 1.82 - - 50.0 - - - - - - - - 9 . 000* § - -

(4.5) (0.05) (4.082)

Waste management All - 12.10 - - 0.64 - - - - 3.63 - 0.398 2.5 6.14 - 0.016 0.275 0.674 0.0018

(5.49) (0.02) (1.65) (0.011) (1. 1) (2.79) (0.007) (0.008) (0.019) (0.0001)

Temperature and All - 37.20 - - 5.50 - - 41.6 - 11.16 - 0.269 0.5 2.70 - - 0.012 0.065 -
humidity control ( 16.87) (0.16) (5 . 06) (0.008) (0.2) (1.22) (0.000) (0.002)

Atmospheric All 34.0 6.67 - 1.91 0.38 - 15.0 22.2 4.0 - 0.12 0 5.0 - - 0.040 0.150 - 0.0012
purification

(15.4) (3.03) (0.05) (0.01) (1.8) 19.00) (2. 3) (0.016) (0.004) (0.000)

Atmospheric pressure All 31.0 - - 1.57 - - 30.0 - 9.3 - 0.53 - - - - - - - -
coatrol

(14.1) (0.04) (4.2) (0.02)

Atmospheric Space - 15.00 - - 2.24 - - 25.0 - 4.95 - 0.875 - - - 4.500 - - 0.1550
circulation and

(6.80) (0.06) (2.25) (0.025) (2.041) (0.0044)
CO. removal

Lunar landing - 15.00 - - 2.24 - - 25.0 - 4.95 - 0.875 - - - 3.680 - - 0.1265

(6.80) (0.06) (2.25) (0.025) (1.669) (0.0036)

Atmospheric thermal All - 7.70 - - 0.83 - 150.0 25 . 0 - 2.31 - 0.238 - - - - - - -
loop (3.49) (0.02) (1.05) (0.007)
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Table 2-3. Environmental Control and Life Support Subsystem
Parametric Data (Cont)

Fixed Equipment Spare Equipment Expendables and Consumables

Weight Volume Power Weight Volume Weight Volume

ft3 ft /M ft3 /D ft  ft3/M ft  ft3/M ft 3 /M-D
Function Mission

lb
(kg)

lb/M
(kg /M)

lb/D
(kg/D) (m3 ) (m 3/M) (m3/D) w w/M

lb
(kg)

lb/M
(kg /M) (m3) (m3 /M)

lb
(kg)

lb/M
(kg /M)

lb/D
(kg/D)

lb/M-D
(kg/M-D) (m3) (m3 /M) (m3/M-D)

EVA life support Space 360 . 0 - - 14.40 - - ._ - 1 . 17 -
(163.3) (0.41)

129.4
(13.3) (0.03)

Lunar land ing 720.0 - - 28.80 - - - - 59.0 - 2.36 - -
(326.6) (0.82) (26.8) (0.07)

Emergency life All 7.4 10 . 30 - 6.64 0.23 - - - - 3.09 - 0.069 99 . 01 - 0.36-' 1.840 -
support

(3.4) (4.67) (0.10) (0. 01) (i.40) (0.002) (44.9) (0.164) (0.835)

Nitrogen storage Space 6.0 - 0.15 0.13 - 0.0030 - - - 14.8 - 0.380 -

(2.7) (0.07) (0.00) (0.0001) (6.7) (0.172)

Lunar landing 5.0 - 0.13 0.10 - 0.0025 - - - - - - 12.4 - 4 . 316 - -

(Z.3) (0.06) (0.00) (0.0001) (5.6) (0.143)

Crew support
All

0.0416

I

(0.415) (0.0012)

Interior lighting All - 0 . 67 - - 0.30 - - 33.3 - - - - - - - - - - -
(0.30) (0.01)

Total space mission EC/LSS 734. 4 92.64 0 . 15 43.69 10 . 42 0.0030 245.0 147 . 1 48.4 26.04 2.39 1 . 939 22.8 8.84 0.380 9 . 361 0.437 0.739 0.3986

(333.1) (42.02) (0.07) (1.24) (0.30) (0.0001) (22.0) (11.81) (0.07) (0.055) (10.3) (4.01) (0.172) (4.473) (0.012) (0.021) (0.0113)

Total lunar landing mission EC/LSS 1,356.4 92.64 0 . 13 73.02 10.42 0.0025 325.0 147.1 78.0 26.04 3.58 1.939 20.4 8.84 0.316 8.481 0 . 437 0.739 0.3451

(615.2) (42.02) (0.06) (2.07) (0.30) (0.0001) (35.4) (11.81) (0.10) (0.055) (9.3) (4.01) (0.143) (3.847) (0.012) (0.021) (0.0098)

Notes:
eWater requirements for reference only (supplied by IM fuel cells), not included in totals.
SWater, oxygen, and nitrogen volumes accountable to tank fixed equipment.
!Oxygen requirements included under emergency life support.
(Oxygen requirements for reference only (supplied by PM tanks), not included in totals.
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In the case of space missions, assumed to span seven days or less,
contingency expendables and consumables are included in the coefficients
when D is the nominal mission duration. The data for the longer lunar
landing missions does not include contingency expendables and consumables,
hence the variable D must be the sum of nominal and contingency periods
to arrive at the correct value. Including fixed, spare, expendable and

onsumable weights, the totals for space and lunar landing are respectively

806. 6 + 127. 5(M) + 0.530(D) + 9. 861(M-D) Lbs 	 (2-2)

and

1454. 8 + 127. 5(M) + 0. 346(D) + 8.481(M-D) Lbs 	 (2-3)

_ To these weights must be added the oxygen and water requirements as noted
in Table 2 - 3.

The volumetric adequacy of the CM was assessed by testing the para-
metric volume data of Table 2-3 against the living space criteria in
Figure 2-1.	 Fixed equipment, spare equipment, and expendables and
consumables for all subsystems represented in the CM were subtracted from
the inner volume (less the airlock) of the module. 	 All of the LC /LSS
volume was variable with crew size and mission duration. 	 The results of
the analysis are shown in Figure 2-5, where rectangular areas are bounded
horizontally by crew size and vertically by approximate mission duration.
A 15-foot (4.6-meter) diameter crew module appears to be more than

- adequate for space missions with a six-man crew, and as marginal as
Apollo under emergency 12-man crew occupation.	 For a lunar landing
mission, a four-man crew has adequate workspace for the longest anticip-
ated mission.	 Both the 22-foot (6. 7-meter) diameter and the 12-foot
(3.7-meter) diameter, two level, CM's are more than adequate under
normal staffing.

To determine the characteristics of the tug from the parametric data,
the operating point of all fixed equipment for the most constraining case was
found—either a six-man crew for a seven-day mission or a four-man crew
for a 45 -day mission. Once the standard fixed equipment values were
established, they were used for any size crew and any mission. In a few
areas it was found that the accommodation for lunar landing imposed too
much penalty on space missions. In these cases it is recommended `hat
EC/LSS equipment b y added for the landing missions. This equipment
consists of an oven, a freezer, two additional EVA life support units (in the
case of a four-man crew), and a general rearrangement of furniture to
provide more storage space and an experiment control station.

2-11
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Once the fixed equipment is sized, the quantities of spare equipment,
expendables, and consumables are tailored to the specific mission. These
data are shown in Tables 2-4 through 2-7, which represent the recommended
equipment for EC/LSS.

An evaluation of the EC / LSS was made to show the delta penalty to the
baseline requirements if a 12-man, 24-hour rescue mission were adopted.
The candidate subsystems affected were: CO?, management, atmosphere
and water storage, radiator capability to remove the increased metabolic
load, and the capability of the thermal loop to maintain a tolerable cabin
environment. Table 2-8 summarizes the evaluation.

Results indicate that 28 pounds (12.17 kilogramms) of LiOH is required
(assuming a CO2 partial pressure level below a maximum design value of
7.6 mm HG). Spare weight of LiOH for the six-man, seven-day mission
exceeded the required amount and therefore no delta penalty was assessed.
The gas flow rate to be processed for CO2 removal had to be increased,
requiring the use of the secondary circulation loop. Operation of this loop
required a power increase of 150 watts. Oxygen metabolic requirement
doubled. Delta weight of 02 required is 22. 0 pounds (10 kilograms). There
is no water penalty for this mission since the fuel cell generation rate
exceeds drinking requirements of the crew. The radiator system has
built-in redundancy capable of removing the increased metabolic load of
12 men. The active thermal loop pumping rate must be increased to reject
the additional heat load from the cabin. The power penalty to operate addi-
tional pumps is 50 watts. The total delta penalty to the EC / LSS results in
22 pounds (10 kilograms) weight and 300 watts of electrical power.

2.4 CONCLUSIONS

An EC /LSS for tug may be composed almost entirely of Apollo and
Skylab-type open system equipment. The limited use of EOSS-type equip-
ment is recommended; however, the regenerative systemsof EOS and FOSS
are too heavy and require too much electrical power to benefit tug.
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Table 2-4. Environmental Control and Life Support Subsystem Fixed
Equipment

N
t
r

1
N
N.i
Ln

Weight Volume Power (w)

lb (kg) ft3 (m3)
Two
Men

Four
Men

Six
MenDescription Source

Crew Module Space Mission Fixed Equipment

Furniture: bunks, control seats, food prep, cab, Dri John EOSS extrap 277.0 (126.0) 16.32 (0.46) 0 0 0

Food mgt: drink gun, trays, chiller, controls, brackets, Skylab Z7.0 (12.0) 2.70 (0.08) 0 0 0
plumbing
Water mgt: potable tank, chiller, heater, purif ampules, fire Skylab 10.0 (5.0) 1.82 (0 . 05) 50 50 50
ext, cont, plumbing
Waste mgt: tank, collector, processor, dump nozzles, cont, Skylab 73.0 (33.0) 3.84 (0 . 10) 0 0 0
brack, p1nmbing
Temperature and himidity cont: fans, central hx, pers hyg hx, Apollo/Skylab 225 . 0 (102 . 0) 33.40 (0.95) 250 250 250
humid, hx, cont, plumbing
Atmos purif: filters, regen unit, char beds, controls, brackets, EOSS extrap 74.0 (34.0) 4.15 (0 . 12) 59 104 148
ph:mbing
Xtmos press cont: partial and total press regs and controls, Skylab 31.0 (14.0) 1.57 (0 . 04) 30 30 30
dump valves
Atmos circ: ducts, outlets, fans, controls, brackets, valves Apollo/Skylab 91 . 0 (41.0) 13.58 (0.38) 50 100 150

Atmos therm loop: pumps, hx, accums, cont, waterfill, Apollo/Skylab 46.0 (21 . 0) 4.95 (0.14) 200 250 300
brackets, plumbing
EVA life support: Ox accum, PLSS, ops, suits, Batt charger, Apolio/Skylab 360.0 (163.0) 14.40 (0.41) 0 0 0
hoses, disc, cont, plumbing
Emerg life support: IVA station, controls, rags, disc, hoses, Apollo / EOS 69.4 (31.5) 7.98 (0 . 23) 0 0 0
plumbing, tank

Nitrogen store: tank, regulator, controls, plumbing Skylab 6.2 (2.8) 0.31 (0 . 01) 0 0 0

Interior lighting: fixtures, bulbs (1200 watt capability) Estimate 4 . 0 (2.0) 1 . 60 (0.05) 200 200 200

1,293.6 (587.3) 106.62 (3.02) 839 984 1,128Total CM EC /LSS space mission fixed equipment

Crew Module Lunar Landing Additional Fixed Equipment

Furniture: lockers, experiment station EOSS extrap 188 . 0 (85.0) 7.46 (0.21) 0 0 -

Food mgt: oven, freezer Skylab extrap 75 . 0 (34.0) 9.00 (0.25) 80 80 -

EVA life support: PISS, ops, suits Apollo /Skylab 360.0 (163.0) 14.40 (0.41) 0 0 0

623.0 (282.0) 30.86 (0.87) 80 80 0
I-

Total CM EC /LSS lunar landing mission addl fixed equipment --



Space Missions Lunar Landing Missions

2-Man/7-Day 4-Man /7-Day 6-Man/7-Day 4-Man/31 -Day 4-Man/45-Day
Weight Volume Weight Volume Weight Volume Weight Volume Weight Volume

Description Source Ib (kg) ft3 (m 3) lb (kg) ft 3 (m3) lb (kg) ft3 (m3) lb (kg) ft3 (m 3) lb (kg) ft 3 (m3)

Crew Module Expend. and Consumables
Housekeeping: cleaners, trash bags. EOSS 6.6 3.0 0.30 0.0085 13.1 5. 94 0.60 0.017 19.7 8.93 0.90 0.0255 55.0 24 . 95 2.50 0.0708 82.0 37.2 3. 73 0.1056
char filters extrap

Fqod mgt: dehyd/ froz food, utensils. Skylab 61 . 5 27.9 2.79 0. 0790 123.0 55.79 5. 57 0. 1577 184. 0 83.46 8 . 38 0.2373 450. 0 204.11 20. 40 0.5777 664.0 301.2 30.20 0.8552
soap

Waste mgt: chemical and bacterial Skylab 15. 0 6.8 1.65 0.0467 27.5 12 . 47 3. 02 0.0855 40.0 18.14 4.40 0.1246 29. 0 13.15 3.20 0. 0906 30. 0 13.6 3. 30 0.0934
filters

Temp and humid. cont: filters Apollo/ 5.9 2.68 0.14 0.0040 11 . 3 S.12 0.27 0. 0076 16.7 7 . 57 0.40 0.0113 11. 3 5.12 0.27 0.0076 11. 3 5.1 0.27 0.0076
Skylab

Atmos purif: partial and mobile EOSS 5.6 2.54 0.1 1 0.0048 6.1 2.77 0.18 0 . 0051 6.7 3.04 0.20 0.0057 10.0 4. 53 0.30 0.0085 12.2 5. 5 0. 37 0.0105
filters, char extrap

Atmos circ: LiOh Apollo / 63.0 28.58 2. 17 0.0614 126. 0 57.1 4.35 0.1232 189.0 85.73 6.50 0.1841 456.0 206.84 15. 70 0.4446 662.0 300.3 22.80 0.6456
Skylab

Crew support: clothes, bedding, EOSS 12.8 5.81 0.58 0.0164 25.5 11.57 1.14 0.0323 38.3 17.37 1.74 0.0493 108.0 48.99 4.90 0.1388 149.0 72.1 7.20 0.2039
towels, soap, medikits extrap

Nitrogen (volume included in tank) Est. 3.4 1 . 54 -- 3.4 1.54 -- 3.4 1.54 -- 11.0 4. 99 -- 15.4 7.0

173. 8 72.85 7.80 0.2208 335.9 152. 3 15. 13 0.4284 497. 8 225.78 22. 52 0.6378 1. 130. 3 512.68 47 . 27 I. 3385 1,635.9 742.0 67.87 1.9218Total, CM EC /LSS expend. and con. --
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Table 2-5. Environmental Control and Life Support Subsystem
Spare Equipment

Two Men Four Men Six Men

Weight Volume Weight Volume Weight Volume

lb (kg) ft3 (m3) lb (kg) ft3 (m 3) lb (kg) ft3 (m3)Description Source

Crew Module Space Mission Spare Equipment

Food management: drink nozzle, controls, support Skylab 7.5 3.4 0.75 0.0212 9.3 4.2 0.93 0.0263 11 . 1 5.03 1 . 11 0.0314

Water management: storage bags, quick disconnect hoses Skylab 7.3 3. 3 0.80 0. 0226 14. 5 6.6 1 . 59 0.0450 21.8 9.89 2. 39 0.0677

Temperature and humidity controls: fans, filters, controls Apollo/Skylab 22 . 3 10.11 0.50 0.0142 44.6 20. 2 1.08 0.0306 67.0 30.39 1 . 61 0.0456

Atmosphere purifier: filters, controls EOSS extrap 4.0 1.8 0.12 0.0034 4.0 1.8 0.12 0.0034 4.0 1.8 0 . 12 0.0034

Atmosphere press. cont: controls, valves Skylab 9.3 4.2 0.53 0.0150 9.3 4.2 0. 53 0.0150 9.3 4.2 0. 53 0.0150

Atmosphere circ: fans, controls, filters Apollo /Skylab 9.9 4.5 1.75 0.0496 19.8 8.98 3 . 50 0.0991 29.7 13.47 5 . 25 0. 1487

Atmosphere therm loop: pumps, valves, controls Apollo /Skylab 4.6 2.08 0.48 0.0136 9. 2 4.17 0.95 0.0269 13 . 9 6.30 1 . 43 0.0405

EVA life support: quick disconnect hoses, controls Apollo/Skylab 29. 4 13.3 1.17 0.0331 29.4 13 . 34 1.17 0.0331 29.4 13. 33 1.17 0.0331

Emergency life support: quick disconnect hoses, controls Apollo /EOS 6.2 2.8 0.14 0.0040 12. 4 5.62 0.28 0.0079 18 . 5 8.39 0. 41 0.0116

100.5 45.49 6.28 0.1767 152. 5 69.11 10.15 0.2874 204.7 92. 80 14.02 0.3970Total CM EC /LSS space mission spare equipment --

Crew Module Lunar Landing Additional Spare Equipment

EVA life support: quick disconnect hoses, controls Apollo /Skylab 30. 0 1.20 30.0 1.20 30.0 1.20

Table 2-6. Environmental Control and Life Support Expendables
r	 and Consumables
U1



Weight
lb (kg)

Power
Watts

CO2 Management

Requires primary and secondary loop

No delta LiOH required.	 Use spare None ---
expendables for 6-man, 7-day mission.
CO? partial press below 7. 6 mmHg

Power required by secondary fans --- 150

Metabolic requirements for 6 men
at 136 watts /man

Oxygen-12 men 22.0	 (10.0)
at 1. 84 (0. 83 kg) per man day

Water—from fuel cells None

Radiator redundancy capable of removing None ---
increase metabolic load

Active thermal loop power requirement --- 150
inc rease
Tc,tal delta penalty 22. 0	 (10.,0) 300

E
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Table 2-7. Environmental Control and Life Support Subsystem
Oxvaen Wei ght Summary

Function

Mi s sion

6-Man/7-Day 4-Man/45-Day

lb (kg) lb (kg)

Initial pressurization

Normal metabolic (1. 84 M-D)

Leakage (0. 362 D)

Emergency, IVA and EVA

21.6

77.4

2.5

77.0

9.8

35.1

1. 1

34.9

21.6

331. 0

16.3

77.0

9.8

150.0

7.4

34.9

Total crew oxygen 178.5 80.9 445.9 202.1

Table 2-8. 12-Man, 24-Hour Rescue Mission EC / LSS Delta Penalty
to Baseline Requirements
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3.0 GUIDANCE, NAVIGATION, AND CONTROL SUBSYSTEM

3. 1. SYSTEM GUIDELINES

Guidelines in the request for proposal for this study that particularly
affect the GN&C system concept are listed below, paraphrased in some
cases:

1. The tug shall be capable of manned or automated flight. Remote
control from the earth, earth orbiting, and lunar orbiting stations
or bases shall be considered.

2. The space tug design shall minimize the necessity for ground
support during flight. Autonomy is the design objective.

3. No single failure or credible combination of failures will result
in loss of life. It shall be a design objective to maximize crew
safety and probability of mission success.

4. Tugs will conduct lunar surface missions from, and returning to,
a lunar orbiting space station (LOSS) in a 60 n. mi/ 111. 1 km
near polar orbit. Some missions may be conducted from other
orbits with a reusable nuclear shuttle (RNS) and without a LOSS.

5. The tug normally will be flyable by one crewman, but capable of
automated operation for lunar surface missions.

6. Tug operations shall not be constrained by lunar lighting
conditions.

7. The tug crew compartment will contain a flight station for control
of all flight maneuvers.

8. All communication systems will be compatible with the MSFN,
DSN, available Comsat systems, and all hardware elements of
the integrated program plan (IPP).

9. The tug attitude reference shall be capable of large maneuvers
about any axis without loss of attitude reference.

3-1

SD 71-292.-5



01% Space Division
North American Rockwell

Guideline (3.) is interpreted to mean at least fail operational/fail safe
(FO/FS) tolerance. In some instances degraded modes of operation after
failure have been considered.

An additional guideline adopted in selecting system components was
that, where feasible, they should be identical or similar to components of
the space shuttle or earth orbiting space station GN&C systems.

3.2. GN&C REQUIREMENTS

The GN&C functional requirements are briefly described here. The
choice of equipment to perform the various functions was influenced by the
guidelines listed in Section 3. 1, particularly items 1 and 2 (automatic and
autonomous operation) and 3. Performance requirements for the various
functions have not been formally defined since, in many cases, the required
performance is really a tradeoff among system weight, complexity, and cost
versus additional propellant for midcourse corrections and perhaps some
operational restrictions.

3.2. 1 Attitude Reference

The tug must have an attitude reference system that permits unlimited
maneuvering without loss of attitude knowledge (guideline 9). The system
must be capable of automatic initialization (alignment) in earth and lunar
orbit, cislunar space, and on the lunar surface. The attitude reference
must be continuously available, and the accuracy must be compatible with
navigation sensor pointing accuracy requirements and thrust maneuver
control requirements.

3.2.2 Navigation

The tug shall be capable of maintaining a state vector (position and
velocity) estimate with accuracy compatible with mission trajectory require-
ments in earth and lunar orbit and in cislunar space. Autonomous
navigation capability is desired wherever feasible (guideline 2).

3.2.3 Guidance

The tug GN&C system must provide guidance for all tug thrusting
maneuvers. These maneuvers include:

1. Earth and lunar orbit change maneuvers, including rendezvous
transfer orbit insertions and transfer orbit midcourse
corrections.
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2. LEO to geosynchronous Hohmann transfer orbit initiation
(=8000 fps/2438 mps), midcourse corrections, and geosynchron-
ous orbit circularization (=5000 fps/ 1524 mps).

3. Translunar injection (TLI, =10, 000 fps), lunar orbit insertion
and transearth injection (LOI and TEI, =3, 000 fps/ 914 mps each),
and earth orbit insertion (=10, 000 fps/3048 mps).

4. Retrobraking from lunar orbit (=5000 fps/1524 mps) lunar landing
terminal guidance, hovering translation maneuvers, and
touchdown.

5. Ascent from the lunar surface (=6, 000 fps/ 1828 mps).

6. Transplanetary injection (11, 000 - 15, 000 fps/3353-4572 mps).

7. Rendezvous, docking port acquisition (target fly-around), term-
inal approach, and docking.

It is evident from the list that the term guidance encompasses two
types of functions. The first is targeting or the selection and computation
of an orbital velocity change (generally not unique) at a specified time that
will produce desired terminal conditions at some later time (a. g. , rendez-
vous transfer computation). The second function is the computation and
issuance of thrust on, off, direction and throttling commands during the
burn. There are significant qualitative differences in the guidance required
for the several types of maneuvers. Most of the thrust maneuvers listed
will be made with the main propulsion engines operating at full thrust, and
the only guidance objective during the burn is to achieve the desired vector
velocity change in a reasonably efficient manner. However, a few man-
euvers require control of both the final velocity and position, by thrust
direction control and either throttling (lunar landings) or reaction jet puls-
ing (docking approach). Another distinct type of thrust control problem
that has received little attention is control of RNS thrust during the reactor
cool-down cycle. The requirement for the tug intelligence module (IM) to
perform as an instrument unit (IU) for the RNS could well impact the IM
computer requirements.

A

The maneuvers demanding the highest accuracy are the transplanet-
ary, translunar, and transearth insertion maneuvers. The LEO to
geo synchronous transfer orbit insertion is sensitive to velocity magnitude
errors (approximately ten n mi/18. 5 kilometer) increase in apogee.
altitude per foot per second), but is relatively insensitive to small delta-V
direction errors if the transfer is nearly a Hohmann transfer.

3-3

SD 71-292-5



01% Space Division
North American Rockwell

3.2. 4 Lunar Landings

For pinpoint lunar landings to be achieved, sensors are required to
locate and/or track the landing site, provide accurate altitude and ground
velocity data, and detect surface obstacles that must be avoided for landing.
Capability to redesignate the landing site during the terminal phases is
considered necessary. The sensing techniques for landing site locating and
obstacle detection are severely limited by the desire for all-lighting landing
capability (guideline 6). Obstacle detection techniques are limited by the
cloud of surface dust kicked up below 200 to 300 feet (61 to 91 meter) alti-
tude and that obscures the landing site to visible or near-visible spectrum
sensors. After the tug reaches a hover above the landing site, hovering
translation maneuvers must be executed to avoid surface obstacles.

3.2.5 Rendezvous and Docking

Autonomous docking of unmanned tugs will require docking sensors
capable of a few inches position accuracy and a few tenths of a foot per
second velocity accuracy at docking range. Autonomous rendezvous will
require sensors capable of acquiring the rendezvous target at sufficient
range to allow maximum (three sigma) transfer orbit errors to be detected
and corrected in order to achieve gross rendezvous. After gross rendez-
vous (=1000 foot/305 meter separation), the tug may have to execute an
automatic target fly-around maneuver to approach the target docking port.

3.2. 6 Autopilot Functions

The spacecraft autopilot must accept pilot or computer guidance
commands, plus attitude and rate data, process these through a stabiliza-
tion filter, and issue reaction jet firing signals, main engine on-off,
throttling, and engine gimbaling signals.

3.2.7 Controls and Displays

Manual controls and displays must allow the pilot to exercise effective
spacecraft control during all flight phases and maneuvers and provide
spacecraft trajectory information.

3.2.8 Requirements Summary

The GN&C requirements described are briefly summarized in
Table 3-1.

3-4
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Table 3-1. GN &C Requirements

Attitude Reference
All attitude capability
Realignment in space
Continuously available reference
Lunar surface realignment
Accuracy compatible with G&N requirements

Navigation
Earth orbit, lunar orbit, cislunar space
Accuracy compatible with mission requirements
Autonomous navigation desired

Guidance
Thrust maneuver targeting
Thrust direction commands
V's up to 15, 000 fps/4572 mps

Lunar Landings
Landing site locating or tracking
Manual landing site redesignation (on board or remote)
Landing guidance
Surface obstacle detection
Hovering translation maneuvers

Rendezvous and Docking
Target acquisition and tracking
Transfer orbit error correction
Target fly-around maneuvers
Automatic docking

Autopilot Functions
Automatic and manual attitude control
Thrust maneuver control

Controls and Displays
Provide spacecraft trajectory information
Allow manual spacecraft control at any time

All Functions/Mission Phases
Automatic operation

3-5
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3.3 SYSTEM SELECTION CONSIDERATIONS

This section discusses the technical factors and techniques or sensor
types considered in system concept selection.

3.3. 1 Navigation Sensors

Navigation sensors and techniques must be considered separately for
earth orbit, cislunar space, and lunar orbit since each region of operation
presents its own opportunities and limitations on sensing methods. The
desire for autonomous and automatic operation is dominant in considering
navigation techniques.

Earth Orbit Navigation

Earth-orbit-navigation techniques will be divided into two categories:
(1) autonomous methods, in which only passive on-board optical sensors
are used, and (2) semi-autonomous methods that do not depend on ground
tracking of the spacecraft, but that utilize radio signals from ground
sources or navigation satellites.

Autonomous methods that have been suggested fox space navigation and
that were investigated are:

1. Star occultation measurements

2. Automatic known or unknown landmark tracking

3. Horizon tracker measurements of local vertical

4. Manual known landmark tracking

5. Semiautonomous methods

The techniques will be discussed in the eider listed.

Star Occultation Measurements. Measurement of the occultation
times of known stars has several disadvantages: First, relatively little
information is obtained from each occultation measurement; information
obtained about the orbit plane orientation is quite weak. Second, the
accuracy is Limited since occultation is a gradual dim-out as the star,
seen from the spacecraft, sinks into the atmosphere. Third, the require-
ment to acquire a new known star for each measurement is operationally
undesirable. Comparison of star occultation measurements with horizon
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tracking indicates that a horizon tracker can provide more information
more frequently and with probably better accuracy than star occulation
measurements. Consequently, star occultation measurements are unat-
tractive for earth orbit navigation.

Automatic Known Landmark Tracking. Automatic tracking of known
and unknown landmarks has received considerable study since landmark
tracking is potentially capable of providing navigation accuracies of a few
tenths of a mile. Compared with horizon sensing, landmark tracking can
provide much better navigation accuracy for basically two reasons:

1. The angular accuracy of landmark optical line of sight measure-
ments is potentially much better than horizon tracker local
vertical measurements since a horizon tracker must estimate
the horizon from atmospheric luminence, which diminishes
with altitude.

2. The position error corresponding to a given angular measurement
error is much less for landmark tracking since the spacecraft
landmark line-of-sight distance in low earth orbit is only a few
hundred miles, whereas with horizon tracking the position error
for each observation is the local vertical angular error multiplied
by the spacecraft distance from the earth's center.

However, a major problem with earth landmark tracking is the vary-
ing cloud cover over landmarks. Reference 3-1 describes a mechanization
for automatic known landmark tracking that uses an image correlation
technique. Reportedly, tests have indicated the capability of successful

4

image matching and tracking with a 90 percent cloud cover over the land-
mark area. Estimated navigation accuracy, from reference 3-2, with a
landmark tracker and two star trackers is on the order of 0. 1 to 0.2
nautical miles (0. 18 to 0. 36 km) after one orbit with one milliradian
landmark tracker pointing accuracy. However, the reference assumes six
landmarks per orbit at 60 degree intervals, which would place three of
them on the night side of the earth. Limited tracking capability in moonlight
is reported to be possible, but the number and distribution of landmarks
assumed seems clearly optimistic.

The weight, volume, and power of an automatic known landmark
tracker i3 estimated in3 reference 3-2 to be 30 pounds (13.6 kilogram),
0.67 feet (.019 meter )and 40 watts power consumption. If the contention
of successful tracking with 90 percent cloud cover can be substantiated,;.
automatic known-landmark tracking should be reconsidered for the space
tug. It is not recommended now because of the questionable feasibility of
the technic-ne.

3-?
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Automatic Unknown Landmark Tracking. Automatic unknown-
landmark tracking has been extensively investigated by Autonetic s with its
ULTRA (Unknown Landmark tracking) concept in a feasibility study for the
USAF. Less information about the orbit is obtained from an unknown
landmark than a known landmark, but the cloud cover problem is somewhat
alleviated since cloud free areas may be selected. Autonetics studies
indicate that three to five cloud-free landmarks can be tracked on each orbit
on the sunlit side. Navigation accuracy of the system is classified, but is
substantially better than that achievable with a horizon tracker. However,
the ULTRA concept requires attitude references (star trackers) with track-
ing and relative orientation accuracies on the order of 0. 001 degree. To
provide the star trackers adequate fields of view in low earth orbits when
the landmark tracker was looking earthward, and maintain alignment
between the sensors to 0. 001 degree, would require an extremely rigid
temperature-controlled navigation base spanning nearly half of the circurr. -
ference of the IM. Alternately, an inertial measurement unit (IMU) with
zero-g drift rates on the order of 0.001 degree/hour or better would be
required. In addition to these drawbacks, the ULTRA concept has not been
proved in an actual space test, to our knowledge. It is concluded that the
very high sensor accuracy requirements for unknown landmark tracking do
not make this technique a reasonable choice for space tug navigation.

Horizon Tracking. The remaining technique available for automatic
autonomous earth orbit navigation is horizon tracking. The navigation
accuracy is an order of magnitude poorer than potentially achievable with
known landmark tracking, but horizon tracking has one distinct advantage:
it is a proved technique that works.

Several estimates of navigation accuracy with horizon tracking are
available in the literature. Reference 3-2 estimates RMS (one sigma)
errors after one orbit or more of tracking as 1.0 to 1. 7 nautical miles/
1. 8 to 3. 15 kilometer s (6000 to 10, 000 feet / 182 9 to 3048 meter s) and 8 to
12 fps/2. 4 to 3. 7 mps. Reference 3-3 estimates 10, 000 to 20, 000 feet/
3048 to 6096 meters RMS position errors. Reference 3-4 considers both
random errors (0. 6 milli jiadian RMS) and star tracker /horizon tracker
alignment uncertainties (J. 15 milliradian RMS), and error correlation
between sequential measurements due to sensed horizon altitude variations
resulting from large-scale weather patterns, etc. The reference estimates
one-sign.ia position errors after one orbit of tracking of approximately
3300 feet," 1158 meters down range, 800 feet/244 meters in altitude, and
600 feet/ 183 meters cross track. The corresponding velocity errors are
approximately 1.5 fps/. 46 mps along track, 0.7 fps/.2 mps radially, and
0.6 fps/1. 8 mps cross track. The error parameters chosen for the
analysis of Reference 3-y4 are considered optimistic. The navigation errors
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were estimated for a 240-nautical mile /444-kilometer altitude. However, a
sign significant fact shown by the data is that almost all of the position
error in LEO is in the down-range direction.

The crucial question in eva.luating horizon tracking or any other
technique for space tug navigation is not the navigation accuracy PER SE,
since no accuracy specifications have been set, but the penalties arising
from the navigation errors. The principal penalties to consider are:

1. Increased delta-V .requirements
r

2. Increased acquisition range requirements for rendezvous sensor

For these penalties to be evaluated, three types of missions will be
considered: low earth orbit transfers, low earth orbit to geosynchronous
orbit transfer, and transplanetary injection. The one-sigma er = rors of
Reference 3-4 will be multiplied by 3 1/3 to give a total one-sigma positioi
error of approximately 13, 100 feet/3993 meters. The one-sigma errors

^r	 were increased by a factor of 3 1/3 to account for a lower altitude orbit
(100 nautical miles instead of 240 nautical miles), and a lower observation
rate than was assumed in Reference 3-4. Thus, the three-sigma errors
are ten times the one-sigma errors of Reference 3-4.

'
The delta-V penalty

and orbit transfer terminal position errors will then be grossly estimated
for the three missions using three-sigma errors. The error parameters
assumed are 0. 6 milliradian R MS combined random instrument- errors of
the horizon tracker and attitude reference star trackers, one-kilometer
(0. 54 nautical miles) sensed horizon altitude variation; which give a total
RMS error of 1.2 milliradians at 100 nautical miles/ 185 kilometers
altitude and one measurement every three minutes (versus one observation
per minute assumed in the reference). Thus, the assumed three-sigma
navigation errors in LEO are:

6x = 38, 000 feet/ 11582 meter (down range)

6y =

6z =

6x =

y =

6z -

8, 000 feet/2438 meter (altitude)

6, 000 feet/ 1829 meter (cross range)

15.0 fps/4.6 mps

7.0 fps/2. 13 mps

6.0 fps/1.8 mps

3-9
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The magnitude of the delta-V penalties for low earth orbit transfers
caused by these navigation errors can be roughly assessed by considering
a 6000-feet/1829 meter cross-range position error at rendezvous. To
remove this error within 30 degrees of orbital travel (7 1/2 minutes) would
require a 14 fps/4.3 mps cross-range impulse after detection of the posi-
tion error and an opposite impulse at rendezvous. Velocity penalties of
this magnitude are acceptable. The maximum altitude errors at rendez-
vous in LEO dire to the assumed in-plane velocity errors at transfer
initiation are about 8.4 nautical miles/15.5 kilometers due to 6x
(180 degrees transfer) and 1.0 nautical miles/1.8 kilometer due to 6}r
(90 or 270 degrees transfer). The sensor requirements to detect the
rendezvous target with an 8. 4 nautical miles/ 16 kilometer altitude error
are a 33-nautical miles/61-kilometer detection range with a t15 degree
scan field of view. Thus, both the velocity penalties and rendezvous
requirements for low earth orbit transfers are reasonable for the navigation
errors assumed.

The second mission type if LEO to geosynchronous orbit transfers.
The apogee position uncertainties at the transfer midpoint (9600 nautical
miles/ 178 kilometer altitude) were roughly evaluated, assuming the navi-
gation errors listed before at transfer initiation, and nine horizon tracker
observations from 90 degrees beyond perigee to the transfer midpoint,
approximately 136 degrees beyond perigee. The horizon tracker errors
during the transfer were those mentioned before, and the time interval for
the nine observations is about 56 minutes. The estimated three-sigma
apogee position errors obtained from the rather approximate analysis
performed are 40 nautical miles/74 kilometers downrange position,
77 nautical miles/142 kilometers altitude and 5.2 nautical miles/9. 6 kilom-
eters cross track. The downrange and cross-track errors are quite
acceptable, but the 77-nautical miles/142 kilometers altitude error would
require, for example, a detection range of 300 nautical miles/555 kilom-
eters for a rendezvous sensor with a t15 degree field of view. A
recomputation indicates, though, that if the apogee altitude estimate (and
transfer orbit correction) are delayed until near apogee, the three-sigma
uncertainty can be reduced to 20 or 30 nautical miles (37 or 55 kilometer).

The third type of mission evaluated is transplanetary injection from
a nominally circular orbit. It was assumed for simplicity that the orbit
period is perfectly known, so that (using the same notation for the
nnviantinn =rrnrc ac hafnr=1



where

r = circular orbit radius.

It was also assumed that the RMS values of 6z and 6z are related by

j
(i ) = " (z)
	

(3-2)

Also, let

U =	 uV	 (3-3)

	

V'O = , / VZ - 2u	 (3-4)

where

V = velocity after the insertion burn

V^ = asymptotic earth escape velocity

The insertion burn was assumed to be impulsive, coplanar, and in a fixed
inertial direction, with no errors. Finally, we define, an x, y, z coordinate
system with x along the asymptotic velocity direction, y normal to x in the
orbit plane, and z normal to the orbit plane. The asymptotic; velocity
errors are

—	 - u-1	 - 2-u	 - u V u` -2	 - Vm_ 6x	 6 z
6Vao = l x	 r ly 2	 6^ t ly	 2 6y - ly ut 1 r t 1zVC r

d ` 2	 u -1	 u -1
(3-5)

The z term in this expression is the root sum square (RSS) addition
of the out-of-plane velocity errors due to 6z and 61.

Evaluating the above expression for the horizon tracker three-sigma
navigation errors previously given, for Voo's up to 23, 000 fps (7010 mps),
and taking the root sum square of the several terms, gives total velocity
errors of 21 fps (6. 4 mps) or less. Translunar insertions would require
corrections of similar magnitude. The velocity errors are quite acceptable
from the standpoint of delta-V penalty. However, determination of the V-
velocity vector errors to satisfactory accuracy probably would require radio
ground tracking.

1:
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Horizon tracker navigation errors and their effects have been discus-
sed at some length because, at present, horizon tracking appears to be the
only reasonable prospect for fully autonomous, automatic earth orbit
navigation. The delta-V penalties introduced by the navigation errors are
quite reasonable. For LEO to geosynchronous orbit rendezvous transfers
the navigation accuracy is marginal and may require either a long range
rendezvous sensor (radar) on the tug, imposing a substantial weight penalty,
or more accurate semi-autonomous or non-autonomous navigation tech-
niques before or during the orbit transfer. However, estimation of the
critical apogee altitude uncertainty requires a more thorough and exact
analysis than was possible here. Horizon tracker earth orbit navigation
accuracy before translunar or transplanetary insertion is satisfactory,
provided that the resulting velocity errors after insertion can be accurately
determined by other means.

Although automatic landmark tracking techniques offer the
potential of substantially increased navigation accuracy, they have not been
proved in space. Therefore, horizon tracking was selected as the baseline
technique for autonomous earth orbit navigation. Should automatic land-
mark tracking be proved in space, it should be reconsidered for use on the
space tug.

Manual Landmark Tracking. On manned space tugs, manual landmark
tracking has been selected as a second mode of earth orbit navigation for
aeveral reasons: First, it can provide improved position (but not velocity)
accuracy. Second, landmark tracking provides a backup mode of
navigation in the event of horizon tracker failure. Third, a manual tele-
scope, as discussed later, is useful for manned lunar missions.

Landmark tracking navigation accuracy has been estimated in
several reports, including Reference 3-2, in the range of 0. 1 to 0.2 nauti-
cal miles (0. 18 to 0. 36 kilometers), one sigma, assumes one milliradian
RMS sighting errors. Apollo experience with landmark tracking has been
somewhat disappointing. Simulations with the NR mission evaluation
simulator have encountered state vector convergence problems. Thus,
although the technique potentially offers greatly increased navigation
accuracy, experience casts some doubts about its usefulness.

Semiautonomous Methods. These methods use signals from ground
radio sources or navigation satellites. Existing ground radio sources such
as broadcast AM or FM and aircraft navigation aids were initially
considered. Broadcast AM and long-range aircraft navaids such as loran
do not penetrate the ionosphere. Higher-frequency sources such as

3-12
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broadcast FM or V'ORTAC generally have a limited reception range and are
radiated in a horizontal pattern so that little energy goes into space. Thus,
the feasible alternatives seem to be either ground radio beacons or
navigation satellites.

The EOS team has recently completed a tradeoff of navigation
techniques for the EOS and selected a network of ground radio beacons to
provide range and one-way doppler data. This replaces an earlier selection
of manual landmark tracking for EOS navigation. Assuming that the ground
beacon system is actually built, it will also be used by the space tug. The
shuttle beacon network will not be adequate in itself for tug navigation
though, since relatively few beacons are planned and up to three orbits may
elapse between beacon contacts. Thus, either a much more extensive
beacon network would be required for space tug navigation or the EOS
beacon network would be used only to update the on-board navigation
measurements whenever beacons were within range.

Several estimates of LEO navigation accuracy with ground beacons
are available in the literature; for example the navigation survey or
Reference 3-5. This reference estimates, for one-way doppler ground
beacons, and three beacons available per orbit, average RMS position
errors of 1000 feet (305 meters) building up to 1800 feet (549 meters) before
acquisition of the next beacon.

Navigation satellite systems, both existing and proposed, are also
discussed in Reference 3-5. These range in altitude from the Navy
TRANSIT satellites at 600 nautical miles/1111 kilometers altitude, to
proposed geo synchronou s systems such as the NASA TDRSN and the AF
system 621B. Estimated navigation accuracies with these systems are in
the range of a few hundred to a few thousand feet. These navigation
satellite systems would be an alternative to the proposed EOS ground
beacon network for intermittent (updating) or continuous space tug
navigation.

If a ground beacon or navigation satellite system is deployed, the
F,pace tug will utilize it, since none of the possibilities for fully autonomous
avigation is entirely satisfactory with respect to accuracy, crew involve-

ment, or proved feasibility. If the radio link operates at S band, little if
any additional equipment will be required on the tug since it will have
S-band communications equipment for data transfer.

Earth Orbit Navigation Summary. The selected earth orbit navigation tech-
niques for the space tug are horizon tracking and the proposed EOS ground
radio system, with perhaps an expanded beacon network. On manned tugs
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these will be augmented by manual landmark tracking, if required. If a
NA VSA T system is deployed, it will also be utilized. The selected earth
orbit navigation techniques are depicted in Figure 3-1.

3. 3. 1.2 Cislunar Navigation

Cislunar space can be divided into near earth and near moon regions
for purposes of discussion. Navigation techniques for the near earth
region would be applicable not only to lunar missions, but to the earth
escape phase of planetary missions.

Automatic, autonomous methods of near earth navigation are essen-
tially limited to horizon tracking. (Horizon trackers are available that
ope=`ate from low earth orbit to synchronous altitude. ) The accuracy of
current horizon trackers, even at synchronous altitude, is inadequate for
planetary missions and of questionable adequacy for lunar missions. If
currently available horizon trackers were used, a separate earth tracker
would be required for sightings beyond synchronous altitude.

In near moon space, a horizon tracker that determined the geometric
center of the moon from tracking the bright lunar limb appears feasible

NAVSAT SYSTEM
(IF DEPLOYED)

HORIZON
TRACKING
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and would probably provide adequate navigation accuracy, but with some
penalty in midcourse correction delta-V requirements.

A lunar and planetary horizon sensor is now being investigated by
Barnes, Inc.

On manned missions, a manual sextant or telescope to take horizon
sightings can provide adequate navigation accuracy in either near earth or
neai moon space. Sextant sightings taken on Apollo 8 during translunar
flight predicted the perilune altitude within 1.8 nautical miles (3. 3 kilom-
eters) nearly 20 hours before LOI. Sextant sightings of the earth for earth
return will not produce as good perigee accuracy because of the uncertainty
in altitude of the atmospheric horizon read by the navigator. The mean
horizon altitude may vary from one navigator to another on the order of
5.4 nautical miles (10 kilometers) and the ht y rizon fuzziness increases the
random sighting errors. On Apollo 8, the random sighting errors were
about 10, 000 feet (3 kilometers) in horizon altitude. These errors will
still allow a safe return from the moon and insertion into earth orbit, but
may be inadequate for translunar navigation.

The recommended equipment complement for cislunar navigation is,
for the present, an earth horizon tracker and, for manned tugs, a manual
telescope. Both sensors will require star trackers for basic attitude
reference. Unmanned missions will require ground radio tracking by the
DSN or MSFN, and such tracking is desirable for manned missions as it
provide a much more accurate state vector than on-board sightings. While
dependence on ground tracking does not conform to the autonomous
operation guideline, it is felt that, realistically, lunar missions will not be
conducted without use of the most accurate navigation techniques available.

A telescope, rather than a sextant, is recommended for the tug to
save weight. Alignment of the telescope base (in the CM) to the star
trackers (in the IM) can be determined by sighting the telescope on known
stars while the star trackers are locked onto known stars. To reduce
telescope-star tracker alignment errors during sightings, it may be
necessary (as is currently done on Apollo) to hold the spacecraft in the
sighting attitude for 20 minutes or so before the sightings are made to
achieve thermal equilibrium.

Horizon sightings will require the telescope to be equipped with a
rotating optical reticle that can be automatically or manually driven to place
a horizon line in the reticle tangent to the horizon. This defines the point
on the earth or moon limb on which the sighting is taken. If the reticle is
automatically driven, it will allow the G&N computer to choose the point on
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the limb for making the sighting(s) that produces the greatest reduction in
state vector uncertainty. This procedure appears to be operationally
simpler than the current Apollo technique for making star-horizon sextant
sighting s.

Autonomous automatic cislunar navigation capability could be provided
by adding an earth tracker for operation beyond geosynchronous altitude
and a lunar limb tracker. The penalties would be increased IM weight (on
the order of 50 pounds /23 kilograms), development cost, and midcourse
correction delta V. The cislunar navigation accuracy and delta-V penal-
ties from using such sensors have not been determined.

Lunar Orbit Navigation

Initial lunar orbit navigation will occur in a nominally 60-nautical
miles (111-kilometers) orbit prior to descent orbit initiation (DOI). Lunar
orbit navigation could be accomplished by MSFN tracking from earth by
on-board terrain correlation, by landmark tracking, or by a horizon
sensor.

MSFN tracking produces accurate orbital elements along the radio
line of sight, but much poorer accuracy normal to the line of sight. Thus,
for polar orbits, if the orbit plane is near the 0 to 180-degree meridan, the
in-plane orbital elements will be well defined, but the orbit plane
inclination and node will be relatively poorly defined. Conversely, an
orbit near the 90 to 270-degree meridian will have the orbit plane well
defined, but the in-plane orbit elements will be poorly known. Refer-
ences 3-6 and 3-7 indicate that three-sigma orbit determination errors
with MSFN , tracking for Apollo -type orbits are 3000 to 6000 feet/914 to 1830
meters down range, 500 feet/ 152 meters in altitude, and 10, 000 feet/3048
meters in cross-range position. Navigation accuracies for 0 to 183 degrees
longitude polar orbits should be comparable.

For on-board navigation, two lunar terrain matching techniques were
considered. The first is radar terrain contour correlation. This does not
appear feasible, when reasonable radar beamwidths are considered, at
60 nautical miles (111 kilometers) altitude. The second technique is
optical correlation of the terrain pattern with stored images. Experimental
studies at Boeing have indicated that lunar surface features wash out
completely for high sun angles and when viewed within about 20 degrees of
the sun line. Thus, it is estimated that optical image correlation of lunar
surface features would not be feasible within 20 to 30 degrees of the lunar
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noon. The method would also require accurate reference images obtained
under similar lighting conditions. In summary, terrain matching tech-
niques do not appear feasible for lunar orbit navigation.

The other on-board lunar navigation technique considered is landmark
tracking. On manned tugs this would be accomplished with the manual
telescope already discussed. On unmanned tugs, a gimbaled TV camera is
proposed. It would be remotely viewed and pointed via uplinked commands
from either an orbiting lunar station (OLS) or from earth if there is no
OLS. The TV camera is also used during terminal descent prior to landing
to locate the landing site. To facilitate TV landmark tracking, the
computer would keep the camera pointing at the estimated landmark loca-
tion, based on the last received pointing commands. Telemetered pointing
update commands would change the computed landmark position. This
pointing mechanization is similar to that of the LM landing point designator
(LPD) system.

Since the TV camera would be part of the lunar landing kit, perhaps
mounted on part of the landing gear, significant alignment uncertainties
with IM-mounted star trackers must be assumed. But even assuming
0. 6-degree maximum pointing errors (alignment and tracking errors), the
down-range and cross-range position errors relative to a landmark directly
below the spacecraft would be only about 3800 feet (1158 meters), which is
acceptable for navigation prior to landing. The position fix error when the
manual telescope is used should be less than 0. 1 degrees, or
750 feet (229 meters).

The limitations due to lighting conditions mentioned for optical image
correlation: would roughly apply also for landmark tracking. In addition,
horizon sightings could be made with the manual telescope near the
terminators on the dark side of the moon.	 These limitations indicate that
MSFN tracking for one or two orbits prior to DOI will be desirable or
necessary.

Landmark tracking after DOI prior to powered descent initiation (PDI)
can be used to update the spacecraft position. If a landmark near perilune
is chosen; the much lower altitude would permit more accurate position
fixes. For example, if a 0. 6-degree error with the remotely pointed TV
camera and 50, 000-feet (15240 meters) altitude are assumed, the position
error would be only 500 feet (152 meters).

Regardless of the navigation method used, lunar orbit navigation
acclzr-acy is limited by uncertainties in the lunar gravitational field.
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Reference 3-8 indicates that orbit propagation uncertainties may be as large
(three sigma) as 1 nautical mile (1.85 kilometer) in cross range and
0. 5 nautical mile (0. 93 kilometer) down range after one orbit.

To summarize, the recommended navigation methods for lunar orbit
navigation are landmark tracking with either a remotely pointed TV camera
(unmanned) or manual telescope (manned) and MSFN tracking prior to
landing.

Navigation Summary

Potential navigation techniques for space tugs have been discussed at
length because it is a significant problem. For earth orbit navigation, the
recommended techniques are horizon tracking and the proposed EOS ground
radio beacons. Horizon tracking navigation alone is acceptable for most
missions, but is marginal for LEO to geosynchronous transfers, even with
a midcourse correction based on horizon tracking data taken during the
transfer.

For unmanned tug cislunar navigation, MSFN or DSN tracking is
recommended. Autonomous navigation probably could be achieved by adding
an earth tracker for use beyond geosynchronous altitude and a moon limb
tracker. The navigation accuracy, estimated weight, and delta-V penalties
have not been evaluated; but the estimated weight penalty of 50 pounds
(22. 7 kilograms) is unattractive.

F

	

	 On manned tugs, a manual telescope was selected for landmark track-
ing in earth and lunar orbits and horizon sightings in cislunar space. The

.	 cislunar navigation accuracy with the telescope should be acceptable, but
not as good as MSFN tracking.

In unmanned lunar orbits, landmark tracking can be performed with a
remotely pointed TV camera. However, MSFN tracking probably will be
required, on both unmanned and manned tugs, prior to landing.

3.3.2 Attitude Reference Sensors

The need for star trackers to determine the spacecraft attitude during
use of the on-board navigation sensors (horizon tracker, manual telescope,
and remotely pointed TV camera) has been mentioned. Star trackers can
provide an inertial attitude reference in earth orbit, cislunar space, and
lunar orbit. For IMU realignment on the lunar surface, local vertical can
be determined by accelerometers and azimuth by a star tracker. Gimbaled
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star trackers were selected to provide adequate fields of view in space with
minimum vehicle attitude maneuvering. A combined tracker and gimbal
angle resolver accuracy of 20 to 30 arc seconds is obtainable. Two star
trackers are needed for FO/FS failure tolerance and simultaneous operation
of the two trackers. This will allow attitude hold in coasting flight with the
IMU shut down. Failure of one tracker will still allow IMU realignment by
sequentially acquiring two known stars. For FO/FO/FS failure tolerance,
three star trackers are required.

Another approach, selected for the EOS, is a nongimbaled star
pattern mapper. With t 3 star magnitude detector sensitivity and a
34- x 34-degree field of view, two stars are always visible. A resolution
of 30 arc seconds would be obtainable.

In addition to the star trackers, four wide-angle sun sensors, mounted
90 degrees apart around the IM, were selected. Each sun sensor will have
90 to 100 degrees angular field of view in roll and 180 degrees field of view
longitudinally. To guard against the sun sensors seeing the attitude control
jet exhaust plumes, it is suggested they be mounted on top of the ACS pentads.

The sun sensors will provide a quick attitude reference to facilitate
star acquisition and will allow an attitude hold mode of ,operation with either
end of the spacecraft pointed toward the sun to minimize propellant boiloff
with low electrical power consumption. In earth orbit, a horizon tracker
can also be used to facilitate initial attitude acquisition.

Equipment Location

To minimize alignment errors between the star trackers and horizon
tracker(s), all should be mounted on a common navigation base with the IMU.
However, since the earth subtends an angle of about 155 degrees in a
100-nautical mile (0. 185-kilometer) orbit, mounting the star trackers near
the horizon tracker would severely restrict the star tracker fields of view.
Therefore, the e=quipment layout tentatively recommended is to place the
star trackers and IMU on a common navigation base and the horizon
tracker(s) on the other side of the IM. The alignment errors resulting from
this arrangement must be evaluated by an analysis of the potential deflections
of the IM structure.

3. 3. 3 IMU Configuration

The principal considerations in selecting a candidate IMU were that it
meet the failure tolerance requirements and, to minimize development cost,
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that it be the same IMU as some other element of the IPP. Contemporary
IMU's generally have adequate performance (accuracy) for space tug
requirements. Hence no evaluation of IMU errors was attempted for this
initial study phase. A possible exception to the adequate accuracy state-
ment is retrobraking from lunar orbit for landing with a low thrust/weight
ratio spacecraft, where accelerometer biases can cause position errors on
the order of one nautical mile (1.85 kilometer), three sigma (Reference 3-9).
However, calibration of the accelerometer biases during orbital coast can
reduce these errors by a factor of three, which produces acceptable position
errors.

The NR design for the earth orbiting space station selected a strap-
down Hexad IMU (six gyros and six accelerometers with input axes normal
to the faces of a regular dodecahedron). The configuration allows continuous
comparison of the gyro and accelerometer outputs during operation to detect
failures and permits complete attitude reference and velocity measurement
with three gyros and/or three accelerometers failed. It thus provides
FO/FO/FS failure tolerance. The strapdown configuration allows replace-
ment of individual gyros and accelerometers and eliminates the relatively
high failure-rate slip rings necessary with an all-attitude stable platform.

The NR shuttle (EOS) also originally selected a strapdown Hexad IMU.
However, this decision recently has been changed, and four gimbal plat-
forms (to provide FO/FO/FS redundancy) are now proposed. Low-cost
platforms, such as the Kearfott KT-70 and KT-84 models with the simple
gyroflex gyros, are being investigated. Primary reason for the reselection
of the IMU was development cost of the proposed strapdown Hexad unit
(which was not the same IMU as that proposed for the space station).

The IMU selected for the space tug is the proposed strapdown Hexad
IMU for the space station, manufactured by Hamilton Standard. The Hexad
IMU configuration can be reduced to a pentad configuration (five gyros and
five accelerometers) if only FO/FS failure tolerance is required. The input
axis configuration is no longer completely symmetrical, as is the Hexad
arrangement, but would still allow complete IMU operation with any
two gyros and/or two accelerometers failed. A pentad configuration has
been assumed for estimating weight and power with FO/FS failure tolerance.

Another IMU considered for the tug is the Micron IMU being developed
by Autonetics. This unit uses two electrostatically suspended, 1-cm
diameter, spinning balls to measure altitude and acceleration, and an
MOS integrated circuit computer for preprocessing the inertial data.
The physical characteristics of the IMU are approximately 3 pounds
(1.4 kilogram) 12 watts, and 0.05 cubic feet/0.0014 cubic meter. The
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design goal for accuracy is 0.01 degrees/hour, and the MTBF (with AF
derating) is 2000 hours. The low acceleration levels experienced in space
would allow the electrustati; levitation voltage to be lowered, with a
resultant reduction in operating power.

A potential shortcoming of the micron IMU is the angular pickoff
accuracy, which may be on the order of one milliradian. This would require
the star trackers to be used for attitude reference during navigation sightings.

The Micron IMU was not selected for the space tug because: it is still
under development. However, the order of magnitude or more reduction in
weight, volume, and power, compared to the Hexad IMU, makes it extremely
attractive. Should initial tests, within the next two or three years, prove
out the concept, it should be considered for the tug.

3. 3.4 Computer Requirements

GN&C computations will be performed by the communications and
data management system computer complex, and the weight, volume, and
power requirements are included in the C &DM computer estimates.
Computer organization for FO/FS and FO/FO/FS failure tolerance are
discussed in the C&DM system section.

GN&C computations will be required for navigation data processing,
guidance, attitude control, thrust vector control (including throttling),
alphanumeric crew displays, accepting pilot commands and inputs, and
overall mission sequencing and control. The requirement for automatic,
autonomous tug operation will require that all GN&C operations be scheduled
in a master executive program (MEP). These operations will occur not
only at specified times, but also on the basis of flight variables such as
range, altitude, prior sensor acquisition:, etc. It is believed that the
diversity of constraints and objectives for space tug missions will require
a separate MEP to be assembled for each mission. Each MEP will be
composed of standard building blocks, and the assembly can be semi-
automated with a program compiler. The MEP will be loaded into the tug
computer memory directly or via uplink from the ground in the case of
tugs already in space.

The memory requirements for tug GN&C operations were grossly
estimated by extrapolation from the Apollo LM computer memory
(approximately 38, 000 words). The major new requirements for the tug
are processing for alphanumeric displays and the MEP. The estimated
memory requirement for tug GN&C function is 50, 000 words.
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Word length and computational speed were not evaluated. A 24-bit
word length would be adequate for all GN&C computations except navigation,
which would require double-precision operations. A 32-bit word length
probably would eliminate the need for double-precision computations,
especially if the Apollo W-matrix technique were used, but would require
many split word operations for efficient memory use.

Autonomous cislunar navigation and midcourse guidance (possible
only on manned missions with the selected navigation sensor complement)
imposes substantial on-board computation and memory requirements. On
Apollo, the spacecraft state vector can be updated in cislunar space but
midcourse guidance capability is not included. Autonomous G&N computa-
tion techniques for the space tug will require detailed investigation and may
increase the G&N computer memory requirements above the estimated
50,000 words.

3. 3. 5 Lunar Landing Sensors and Guidance

Special sensors are required during the terminal phases of lunar
landing to:

1. Measure altitude and-velocity relative to thejunar surface.

2. Locate the intended landing site.

3. Detect surface obstacles before touchdown.

The sensors for performing these three functions are discussed in
the following subsections. Lunar landing guidance is discussed in the
final subsection.

Landing Radar



laser doppler returns from the porous lunar surface appears questionable.
rt	 Third, power limitations might limit the region of operation to less than the

30, 000-feet (9144 meter) altitude capability of the present LM landing radar.
Fourth, a laser radar would be blinded by dust during the last few hundred
feet of descent and probably would be susceptible to false returns as this
region was approached. Laser landing radars do not appear attractive.

Landing Site Locating Sensor

The spacecraft location relative to the intended landing site must be
determined during the terminal phases of landing to remove accumulated
navigation errors. The potential sensing methods for landings at new sites
are basically the same as those mentioned for lunar orbit navigation:
terrain contour matching or optical image correlation and optical tracking
of the landing site. For follow-on landings at previously reached sites,
the rendezvous radar can track a beacon or reflector at the site.

Terrain contour matching, at altitudes below about 30, 000 feet
(9144 meter), probably would be feasible, although some lunar mare areas
may not contain enough surface features to allow a contour match. Contour
measurement could be performed by the landing radar altimeter beam.
Contour matching would be independent of lighting conditions, but would
require an accurate contour map of the approach corridor to the landing site
for each mission.

Terrain image correlation would also be feasible under suitable
lighting conditions, but would require a reference image of the approach
corridor under similar lighting and would require new hardware development.

Landing site tracking could be accomplished on manned missions with
the manual telescope and on unmanned missions with the remotely pointed
television camera discussed under lunar orbit navigation. The TV camera
would be controlled from an OLS or from earth. An early simulation study
(Reference 3-10) indicates that the earth-moon round-trip delay of
2.6 seconds is not a significant problem. Reference 3-9 estimated that a
500 by 500 element TV picture would provide sufficient field of view and
resolution for identifying the landing site. With a one-second frame time,
the required transmission bandwidth would be approximately 0.8 MHz. The
principal drawbacks to optical landing site tracking are the lighting condi-
tions required during landing and, for unmanned tugs, dependence on
communications with earth or an OLS during landing.

JAY 3
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Despite these restrictions, landing site tracking with the manual
telescope or remotely pointed TV camera is the recommended technique for
landing site identification for landings at new sites. The principal advantage
is the capability for visual inspection of the landing site during the terminal
guidance phase and redesignation to a nearby site if necessary. This
selection is predicated on the opinion that landing at new sites without visual
inspection during final approach is not a realistic mission requirement.
Follow-on landings at night for resupply or rescue can still be accomplished
by tracking a beacon or reflector at the landing site, as mentioned.

Pilot or teleoperator workload and TV transmission delay effects can
be minimized by automatically pointing the telescope or TV camera at the
computed landing site location and using manual pointing commands only to
update the computer location. This is similar to the LM landing point
designator mechanization.

Reference 3-9 estimates the required field of view for landing site
tracking to be 21 x 21 degrees. This would allow the manual telescope to
have a magnification of approximately 3X and still retain the field of view
needed to assure landing site acquisition.

Surface Obstacle Detection

The final sensing function before touchdown is to determine if the
selected site is smooth enough to permit a safe landing. The problem is
compounded by the dust cloud stirred up by the rocket exhaust during the
final few hundred feet or descent, which blocks direct visual inspection of
the site.

Reference 3-9 discusses two techniques for surface obstacle detec-
tion. The first is a mapping radar that would scan a surface area about
50 feet (15 meter) square directly under the spacecraft from 100 to 200 feet
(30.4 - 60.8 meter) altitude. Data processing of the radar range (altitude)
returns would detect any abrupt elevation changes (rocks or small craters)
greater than one to two feet (0. 304 to 0.608 meter). Lateral resolution
would be on the order of two ' to three feet (0.608 to 0.914 meter). The
obstacle detection radar would be a new development.



The spacecraft position in the picture would be computed from its position 	 k
at the time of picture freeze (based on spacecraft altitude, altitude and TV
camera pointing angle at the instant of picture freeze), and the spacecraft
velocity since picture freeze, from IMU acceleration and landing radar
velocity measurements. The computed spacecraft position also would be
displayed in the frozen TV picture. The static picture of the lunar surface
with the current spacecraft position superimposed would provide the
teleoperator or pilot with sufficient information to maneuver the spacecraft
to a safe touchdown area.

Resolution of surface features in the frozen TV picture, assuming a
500-line picture resolution and a low sun angle, would be more than adequate
to detect dangerous rocks or craters. A potential problem with the concept
is the spacecraft position uncertainty, which accrues in the minute or so
of time from picture freeze to touchdown due to lateral velocity uncertain-
ties. On the Apollo LM, the three-sigma velocity error at.touchdown is
estimated to be 0.8 fps (0.24 ms). Thus, for example, if the time from
picture freeze to touchdown were 90 seconds (a reasonable value), the space-
craft 3- sigma position uncertainty in the frozen picture would be about
75 feet (23 meter). This uncertainty might be reduced by modifying the
landing radar to provide more accurate lateral velocity measurements at
low altitudes.

Figure: 3-2 is a sketch of a frozen television picture display. The
three-sigma, spacecraft lateral position uncertainty circle, about the com-
puted spacecraft position, is superimposed on the frozen picture of the
lunar surface. Altitude, altitude rate (h dot), and the hover time remaining
are also shown in the display.

The selected obstacle detection technique for the space tug is the
frozen, or instant replay, TV picture concept just described. The selec-
tion is made on the basis of excellent surface feature resolution and
minimum requirements for new hardware development. The restrictions
on sun. angle during landing inherent in the concept is consistent with the
lighting restrictions already assumed for optical tracking of the landing site.

Failure Tolerance

Fail operational/ fail safe (FO/FS) tolerance will require two landing
radars and two gimbaled landing TV cameras (unmanned) or one landing
TV camera (manned). On manned tugs, landing site tracking is normally
done with the manual telescope, although the landing TV would be used as
backup for landing site tracking if the telescope failed. If both landing
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Figure 3-2. Frozen Television Picture for Lunar Landing
Surface Obstacle

radars fail before landing or the landing TV camera and the manual telescope
both fail before the landing site is reached, the fail safe mode of operation
is to abort the landing. For landing TV failures during the surface obstacle
detection phase (during the final near-vertical descent to touchdown), pilot
inspection of the landing site prior to visual blackout by the rocket-generated
dust cloud is considered to be a fail operational mode of landing. If the
pilot decides that a landing based on prior visual inspection of the landing
area is unsafe, the landing must be aborted. Two facilitate landing site
visual inspection, outward leaning windows for the two crewmen are
recommended. For FO/FO/-FS failure tolerance, one additional landing
radar and landing TV camera must be added in each case.
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commences after the intended landing site is acquired with the telescope or
landing TV camera, within a few miles of the landing site and at a velocity
of a few hundred feet per second.

The nominal trajectory computed by the guidance equations of
Reference 3-9 is an initial thrust -off coast, followed by a final constant
thrust arc to the terminal point at a constant spacecraft angular rate.

At the start of terminal guidance, after landing site acquisition and
the first trajectory computation, maximum thrust is maintained for
one guidance cycle. The thrust direction is defined by extrapolating the
constant attitude rate of the final thrust arc backwards in time to the initial
time. The resulting initial thrust direction is near optimal for reducing the
duration of the final thrust arc.

At the next guidance cycle, a new nominal trajectory .is computed,
based on the present spacecraft velocity and position relative to the landing
site. The total delta V of the new nominal trajectory, including the delta V
expended during the preceding guidance cycle, is then compared with the
final thrust arc delta V of the previously computed nominal trajectory. If
the computed delta V has decreased, maximum thrust is maintained for
another guidance cycle. Otherwise, the engine is throttled back to minim-am
thrust.

During; the minimum thrust coast, the thrust direction is again defined
by extrapolating the computed angular rate of the final thrust arc backwards
to the current time. At the end of the coast, the engine is throttled up to
the preselected thrust level and, if the terminal point is not changed, the
constant -angular- rate fixed- thrust program is flown to the terminus. If the
landing site is redesignated during the final thrust arc, a new constant-rate
thrust program at a modified constant thrust (within the engine capabilities)
to reach the new landing site is computed. Thus, the nominal thrust level
selected for the final thrusting arc is a compromise between minimum
propellant consumption (maximum thrust) and landing site uprange redesig-
nation capability.

The thrust_ direction at the terminal point is monitored during each
guidance cycle to avoid unsafe flight path angles at the terminal point. If
the estimated final thrust direction is too far from vertical, maximum
thrust in the vertical direction is commanded until the situation is corrected.

The guidance equations and logic were verified in a three-dimensional
digital simulation. One trajectory from the simulation is shown in
Figure 3 - 3. The figure shoves most of the final thrust period (after the
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minimum thrust coast) at maximum thrust, with a short part-throttle arc
at the end. This occurs because the vehicle studied in the simulation used
the LM descent engine (DPS), and the DPS throttling restrictions (continu-
ously throttleable only below 67 percent of maximum thrust) necessitated
this thrust schedule to retain limited uprange landing site redesignation
capability.

The maximum-minimum-constant thrust sequence of the guidance
scheme is the same as an optimal (minimum delta V) trajectory for landing
(for the same thrust levels), but the constant-attitude-rate thrust-direction
program differs somewhat from the optimal bilinear tangent program,
and the guidance logic extends the initial maximum thrust period beyond the
optimum throttle-down point. However, analysis shows that the constant

4

attitude rate thrust direction program requires less than two fps more
delta V for landing than the optimal thrust direction program, and examina-
tion of the simulation results shows that the try-it-and-see, throttle-down
guidance logic also produces less than two fps delta V penalty for a two-
second guidance cycle. This latter penalty could be reduced by simple
modifications to the guidance logic. Thus, the constant angular rate guid-
ance scheme of Reference 3-9 provides near optimal performance. 	 '-

However, the constant attitude rate guidance equations are far
simpler to solve than determining the optimal bilinear tangent thrust pro-
gram parameters. In the digital simulation, the guidance equations and
logic required only about 700 words of computer memory, compared to
the 3000 words of memory estimated in Reference 3-2 for a true optimal
guidance scheme. (The constant rate guidance memory requirements appear
to be also somewhat less than the memory requirements for the comparable
LM guidance program, although a precise comparison is difficult.)

Although constant attitude rate guidance was evaluated only for lunar
landings, the near optimal performance and modest memory requirements
make the concept attractive for other thrust maneuvers as well. Principal
modifications required would be the inclusion of, approximately, central
gravity field effects and modifications of the end point constraints to allow,
for example, the final down-range position to be unconstrained.

3. 3.6 Rendezvous and Docking Sensors
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Two hundred docking simulations with the first generation ITT laser
rendezvous and docking system produced RMS errors of 0.03 feet
(0.009 meter) in the lateral position and 0.01 degree is pitch and yaw angle
at docking. All runs resulted in satisfactory alignment for docking.

Laser Acquisition Considerations

The principal drawbacks to the ITT laser system are the requirement
for a cooperative target and the limited acquisition range of 65 nautical
mile (120 kilometer). This range ir., adequate for LEO rendezvous, but is
marginal for geosynchronous orbit rendezvous with the estimated apogee
altitude errors of 20 to 30 nautical mile (36 to 48 kilometer) (three sigma)
using only horizon tracking data, and the f15-degree search coverage of
the active vehicle laser radar. System improvements to increase the laser
detection range to about 85 to 90 nautical miler, (157 to 167 kilometer) have
been investigated, but this would still provide marg" : al acquisition
capability. Even if the geosynchronous mission is to a still operating
Comsat, Naysat, or TDRS, most of the LEO to geosynchronous orbit trans-
fer will be outside of the usual antenna beamwidth of such satellites. Thus
little navigation assistance from the target will be available during the
transfer.

Either ground tracking of the tug or contact with one of the EOS
ground beacons before or during the transfer probably would reduce the
apogee altitude uncertainty to an acceptable value for laser radar acquisition
of the target. However, range limitations of the EOS ground beacons,
which are unknown, probably would limit beacon contacts to the first 45 to
60 degrees of the transfer (600 to 1000 nautical mile/ 1111 to 1852 kilometer
altitude).

i.t may be reasonable to assume the availability of ground tracking for
this phase since many of the unmanned satellites currently use this tech-
nique for deployment and stationkeeping. Current NR studies being
conducted under contract to GSFC have shown that the accuracy of this
technique is sufficient to obtain target acquisition.

On autonomous Dinar missions (which can only be manned missions
with the selected navigation sensor complement), some difficulty may also
be experienced in locating an OLS with the laser radar after lunar orbit
insertion. However, landmark tracking and lunar horizon sightings for
one or two orbits should refine the orbit parameters sufficiently to permit
laser acquisition if the OLS orbit ephemeris is known and it is within
detection range. Thus, the primary target acquisition problem is for
geosynchronous transfers.
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Three approaches were considered for aiding target acquisition at
geosynchronous transfer apogee:

1. Gimbal the active radar to obtain wider search angle coverage.

2. Place flashing light beacons on the target vehicle and acquire
the target with the tug star trackers.

3. Add a microwave rendezvous radar on the tug and a transponder
on the target to obtain longer range acquisition capability.

The first approach appears feasible if the relative velocity between
the vehicle is small so that several minutes are available for acquisition.
(Target acquisition for the 30 degree by 30 degree search field of view of
the non-gimbaled unit may take up to 150 seconds.) For geosynchronous
orbits, this would require that target acquisition be started after the tug
circularization burn at apogee, since the tug-to-target closing rate before
circularization is approximately 0.8 nmi/second (1.48 kilometer/ sec),
which would allow insufficient acquisition time.

The second acquisition technique, tracking a flashing light beacon on
the target with a star tracker, has been adopted for the shuttle. This is to
be used on conjunction with the ground beacon interrogator on the shuttle
and a transponder on the target to obtain range and range rate. (The EOS
originally also selected the ITT laser radar for rendezvous and docking,
but adoption of manual docking as the normal mode of operation allowed
other rendezvous-sensing techniques to be considered.)

X

	

	 The detection range of visible beacons is, at this point, undetermined.
The shuttle- evaluation estimated detection ranges up to 200 nmi (370 kilo-
meter). Limited data on Apollo experience in seeing the flashing light on
the LM is given in Reference 3-11. Maximum detection ranges on the order
of 100 nmi (185 kilometer) with the bare eye or with the Apollo scanning
telescope were recorded. With the 28-power Apollo sextant, and a sunlit
LM. against a sky background, visual detection occurred at ranges up to
400 nmi (740 kilometer). Stdr tracker sensitivities generally allow detec-
tion of t 2 to t 3 magnitude stars, or no better than the human eye. This
limited data are inconclusive, but indicate that star tracker detection of a
flashing light beacon at 100 nmi (185 kilometer) or more is feasible, which
would be adequate for acquisition with a gimbaled star tracker. When used
in conjunction with the ground beacon interrogator, or a simple VHF or
S-band ranging scheme, sufficient information. for rendezvous would be
obtained.
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The third method for improved acquisition is the addition of a rendez-
vous radar. This method is less attractive than the other techniques
discussed because of the requirement for additional equipment on the tug,
but is definitely feasible. Reference 3-12 describes an advanced rendezvous
radar design capable of operation at range rates up to those encountered in
geosynchronous orbit rendezvous. The most significant system parameters
are:

Detection range:

Maximum range rate:

Angular coverage:

Range accuracy:

Range rate accuracy:

Angle tracking accuracy:

Acquisition time:

Weight:

Radar and antenna:
Transponder and antenna:

Power:

Radar
Transponder

Radar antenna:

Frequency:

0 to 250 nmi (463 kilometer)

0 to *4900 fps (1493 mp s )

*150 , ax. and el.

0.0014 percent or 1.2 feet/ (0.36 m)

1 percent or 1 fps/0.3 mps

2 milliradians (3o-)

14.7 seconds

30 lb (13.5 kilogram)
2 3 lb (10.4 kilogram)

69 Watts
32 Watts

24 x 24 inches (61 x 61 cm)

X band

A fixed interferometer array antenna provides the excellent angle
resolution. Pseudo-random noise code ranging and separate transmitting
and receiving elements provide ranging capability to near zero range.

This radar would solve the geosynchronous orbit rendezvous acquisi-
tion problem for a moderate-weight penalty. The measurement accuracies
and minimum range also appear adequate for docking, but this capability is
questionable and is not claimed for the system in the reference.

The geosynchronous orbit target acquisition. problem with the
rendezvous laser radar has been examined in some detail because it appears
to be a significant problem for geosynchronous missions, and several
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potential solutions have been discussed. At this time, no recommendation
is made as to which solution is preferable. Analysis of the alternative
solutions and better estimates of geosynchronous transfer apogee position
errors are required before a choice is made.

Noncooperative Rendezvous

Reference 3-12 also investigated a noncooperative rendezvous radar.
For a 30-nmi (55-kilometer) detection range against a 5-square-meter
(50 square feet) target, the estimated system characteristics are 94 pounds
(43 kilograms) and an average transmitted power of 132 watts. Estimated
measurement accuracies and range-rate capability are similar to those for
the cooperative radar. Several problem areas of noncooperative radar
design are mentioned in the reference, including return signal strength
fluctuations with target aspect angle of up to 50 db. Because of the weight
penalty and unresolved problems of noncooperative rendezvous radars,
only cooperative rendezvous capability is proposed for the space tug. If
• noncooperative rendezvous capability is required for some tug missions,
• suitable radar must be developed and carried along as part of the payload.

Additional Docking Sensors

A nongimbaled television camera was also selected for monitoring
automatic docking of the IM or PM, by the crew or on the ground. It was
assumed that crew module docking could be monitored by direct vision by
one crewman. Provisions for manual takeover of docking, by the pilot or
ground monitor, will also be incorporated. Each docking port will also have
a contact sensor or sensors to indicate when docking has been completed.

Failure Tolerance

For fail operational/ fail safe (FO/FS) tolerance, two laser radars
are specified. If both radars fail, then fail safe operation can be obtained,
depending on the range to target and other factors when the radar failure
occurs, by either aborting the rendezvous or completing the rendezvous,
using a star tracker and radio ranging, and manually docking with the
TV camera or by direct vision. For FO/FO/FS tolerance, three radars
are required, with the same rationale for fail safe operation after the
third radar failure.

Selected G&N Techniques/Sensors Summary

The conclusions of this section are summarized in Table 3-2.



Function Selected Technique

Attitude reference •	 Star trackers

•	 Acquisition sun sensors

Navigation

Earth orbit •	 Horizon tracker

•	 Landmark tracking (manned)

Lunar orbit •	 MSFN tracking

•	 Landmark tracking with
telescope (manned) or remotely
pointed TV (unmanned)

Cislunar space •	 MSFN tracking

•	 Horizon sightings (manned)

Inertial measurement unit •	 Strapdown Pentad IMU used
on space station

Lunar landing

Altitude and velocity •	 LM landing radar

Landing- site tracking •	 Telescope (manned) or remotely
pointed TV (unmanned)

Surface obstacle detection •	 Frozen TV picture

Follow-on landings •	 Surface beacon tracking

Lighting conditions 0	 Low sun angle required

Rendezvous and docking ITT laser radar
(Docking television camera
monitoring and remote
manual docking)

Space Division
North American Rockwell
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Table 3-2. Selected Guidance anc1. Navigation Techniques and Sensors
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3.4 CREW MODULE GN &C EQUIPMENT

Although crew module G &N equipments were briefly mentioned in
several places in the preceding section, this section more clearly defines
the displays, controls, etc. , needed in the CM. The concept of the space tug
G&N is to perform most mission phases without crew assistance, but the
crew can enhance the automatic capability and in a few phases crew partici-
pation or ground monitoring is required.

3. 4. 1 Crew GN&C Functions

The most frequently performed crew GN&C task will be taking naviga-
tion sightings with the manual telescope. Sightings will be taken, in various
mission phases, on earth or lunar landmarks, earth or lunar horizon, and
lunar landing sites. The proposed technique for taking horizon sightings with
the telescope is described in the navigation discussions of the previous
section. Telescope sightings on rendezvous targets may also be made to
provide target acquisition beyond the range of the rendezvous laser radar.

The telescope will be designed, as on Apollo, to be automatically
pointed by the computer to facilitate target acquisition, or manually pointed
by the navigator with suitable manual controls. Hence, a more accurate
name for the instrument is semi-automatic telescope. To facilitate rendez-
vous target or lunar landing site acquisition, and to increase the accuracy
of navigation sightings, a 2X to 3X magnification is recommended for the
telescope.

The crew will manually control the tug prior to lunar landings to select
the touchdown, point and may also manually control docking if the laser
rendezvous and docking radars fail. The manual controls for docking will
enable the pilot to manually control spacecraft attitude or perform small
delta-V maneuvers with the ACS thrusters during any mission phase. Capa-
bility will also be provided, as on Apollo, for manual takeovers during main
engine thrust maneuvers.

The crew will also control, through switch settings or computer key-
board inputs, the G&N system configuration. This includes equipment,
on-off control and spacecraft control modes, deadbands, etc. In addition,
as part of the status monitoring of all systems, the crew will monitor the
G&N system status via appropriate displays.

An additional important function will be performed by the crew on
manned quick-response missions in which there is insufficient time to com-
pile a master executive program (MEP) before the mission. On these
missions, the crew will replace the MEP by calling up specific computer

I
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programs and routines through the computer entry keyboard, as is done on
Apollo spacecraft. The capability will also exist, of course, for manually
entering data into the computer via the keyboard.

3. 4. 2 Crew Controls and Displays

Manual Controls

The manual controls required in the CM are:

1. Two or three rotation (attitude) controllers

2. Two translation (ACS delta-V) controllers, semi-automatic
telescope pointing Horizon reticle rotation controls and
"mark" button

3. One main engine throttle control

One rotation controller will be portable for spacecraft control during
navigation sightings or docking. The rotation controllers not only control
spacecraft attitude through the ACS jets, but also control the main engine
gimbals after manual takeovers of thrust maneuvers and during hovering
translation maneuvers before lunar landings. Two or three rotation
controllers provide FO/FS or FO/FO/FS tolerance during lunar landings,
which is the critical mission phase for manual control.

The translation controllers will include a T-handle, as on Apollo, to
initiate manual takeovers of main engine thrusting maneuvers in space,
and perhaps initiate lunar landing aborts. Two translation controllers are
required for failure tolerance during occasional cargo transfer operations,
etc., in which docking must be manually controlled.

Automatic engine throttling to control spacecraft velocity and altitude
will be the normal mode of operation for the terminal phases of lunar
landings, but a manual throttle is also provided to enable manual control of
altitude during hovering translation maneuvers to clear crater rims or other
surface obstacles that the landing radar altimeter would not sense soon
enough.

The semi-automatic telescope is used not only for navigation sightings
from orbit, but for landing-site tracking during lunar landings. During this
phase, the landing television came ra(s) will be slaved to the telescope line of
sight. In the event of telescope failure, landing site tracking can be accom-
plished with the TV camera(s). This provides FO/FS or FO/FO/FS tolerance
for landing site tracking.
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GN&C System Configuration Controls

The GN&C configuration will be controlled by appropriate switches on
two panels: an ACS mode select panel and a GN&C power control panel.
The ACS mode control switches and spacecraft manual controls will be wired
into a manual control electronics unit also mounted in the CM.

Computer Entry Keyboards

Two keyboards will be provided for entering or requesting data from
the computer, calling up particular programs, etc. These units will be
adjacent to the all-purpose displays described below and are included in the
communications and data management system (C&DMS) weight, volume, and
power tabulations.

GN&C Displays

The primary GN&C displays will be provided by a light emitting diode
(LED) matrix alphanumeric display and a three-color cathode ray tube (CRT)
display. Both of these displays are considered part of the C&DMS.

The CRT display will be mounted at the pilot's station and will provide:

1. Alphanumeric data from the computer

2. Graphic displays (computer generated) of spacecraft attitude
and rates, velocities, range, altitude and other flight variables

3. Landing TV and docking TV pictures

The alphanumeric displays replace the display portion of the Apollo
display-keyboard (DSKY). The most frequent graphic display will be an
attitude display replacing the Apollo flight director attitude indicator (FDAI).
During the landing and docking operations, flight variables (velocities,
altitude, range) will be displayed in addition to the television picture. After
the TV picture is frozen before lunar landings, the spacecraft horizontal
position will be indicated on the static TV picture.

The alphanumeric display will be mounted at the second crewman, ! s
(navigator's) station. The alphanumeric and CRT displays will be mounted
adjacent to keyboards so that the desired displays can be requested. -

An FDAI was also considered for inclusion, but was rejected because
of the weight and power penalty, lack of all- attitude capability, and because
it could be replaced by an equivalent CRT display.
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During lunar landings, if lateral hovering maneuvers were required to
reach a safe touchdown site, failure of the CRT display would mean loss of
both lateral velocity and position indications and might force a landing abort.
If pilot or navigator visual inspection indicated no surface obstacles to be
avoided, the landing could proceed under automatic control with the CRT
failed. During all other mission phases, a CRT failure is not crucial since
manual control is a backup mode only.

In addition to the primary CRT and alphanumeric displays, various
GN&C system caution and warning lights may be desirable. These have not
yet been defined.

3.4. 3 Backup Attitude/Velocity Control

A rate/attitude strapdown gyro triad and longitudinal integrating
accelerometer were included in the CM equipment to provide a simple backup
attitude and velocity control system. The electronics for these sensors
would be part of the electronics unit for manual controls and ACS mode
switching. The gyro outputs would be displayed by attitude error needles.
The accelerometer output would be displayed on a digital delta-V readout
that could be manually preset. Thrusting maneuvers could be accomplished
almost entirely independently of IM GN&C equipment bk manually aligning
the spacecraft to a desired inertial orientation from telescope sightings to
known stars (an awkward but feasible procedure), setting the delta-V meter,
and manually controlling the spacecraft attitude during the burn. The sensor
concept is, of course, similar to the Apollo stabilization and control system
(SCS) and entry monitor- system (EMS) delta-V meter. It is recommended
that the rate gyro triad and accelerometer be mounted on a common naviga-
tion base with the telescope.

3.4.4 CM-IM Relative Equipment Location

In Section 3. 3. 2, placement of the horizon tracker(s) on the opposite
side of the IM from the star trackers was recommended to provide maximum
fields of view for the star trackers. Since the telescope is used for earth
landmark tracking, it must be on the same side of the spacecraft as the
horizon tracker(s). The telescope base-star tracker base alignment will be
flight-calibrated by sightings on known stars. Since the fields of view of the
telescope and star trackers are mutually exclusive, the alignment will be
determined by telescope sightings on known stars other than those seen by
the star trackers.
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3.5 SELECTED GN &C EQUIPMENT

The GN&C system components selected for the space tug are briefly
described here and the system weight, volume, and power requirements are
tabulated. Where suitable components are not known to exist or existing
equipment would require substantial modification, specific hardware has not
been selected, and the weight, volume and power have been estimated. For
several components, such as the IMU, the hardware finally chosen probably
will be identical to that chosen for the EOS or space station, so that the
present selection must be tentative. The required redundancy level for the
FO/FS or FO/FO/FS tolerance is in most cases obvious or has been
discussed in Section 3. 3, but where appropriate, it is mentioned here.

In general, the equipment selected meets minimum requirem nts of the
space tug and only proved sensor types have been chosen. This selection
philosophy was adopted to minimize weight (a problem area) and development
cost. However, because this philosophy was followed, the design objective
of autonomous operation has not been achieved for several mission phases,
and other guidelines (e, g. , unrestricted lighting conditions for lunar landings)
have not been met. Satisfying these design objectives or guidelines would
require, in most instances, development of entirely new sensors. In some
cases, the sensor feasibility is questionable. A further comment about the
selection approach is that advanced sensors now under development, such as
the Autonetics Micron IMU, would provide significant reductions in weight
and power if their expectations are borne out.

Since GN&C c;quipment is split among the various tug modules and
varies somewhat with the vehicle configuration and type of mission, the
equipment complements have been tabulated separately by module (IM, CM,
and PM) and by function (basic equipment, docking, and lunar landings).
Total GN&C weight volume and power is then tabulated for various types of
missions.

Upon request, Honeywell Aerospace Division submitted recommenda-
tions for the tug GN&C description based on subsystem requirements
generated early in the study. The HI data took advantage of much more
detailed studies performed for the EOS program and provided NR with
valuable insight. Appendix C contains the complete HI final report.

3. 5. 1 Intelligence Module Basic GN&C Equipment

-

	

	 The basic equipment complement is common to all missions and does
not include add-on's such as the rendezvous and docking sensors. The IM
basic G&N equipment consists of an IMU with associated preprocessor,

`-	 gimbaled star trackers for attitude reference, sun sensors for attitude;
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acquisition and sun pointing attitude hold, horizon tracker(s) for navigation
measurements up to geosynchronous altitude, and a navigation sensor base
for the star trackers and IMU. For adequate fields of view for the star
trackers while making horizon tracker measurements in low earth orbit, )
the horizon tracker(s) is mounted on the opposite side of the IM from the
navigation base and sensors. If further study shows that horizon-tracker-to-
navigation-base alignment uncertainties resulting from structure deforma-
tions cause unacceptable navigation errors, then an additional star tracker
mounted on a common base with the horizon tracker(s) will be required to
determine the alignment in orbit.

1

The IM will also contain the electronics for controlling the ACS
t

reaction jets (ACS driver amplifiers) and the main engine gimbals and
throttling (engine gimbal amplifiers). In addition to the equipment just listed,
the GN&C system will use the computers, central timing unit, data bus, and
signal conditioning units, which are part of the communications and data
management system.

The,. selected IMU is the Hamilton Standard strapdown Hexad IMU and
associated, preprocessor proposed for the EOSS. This unit, with six
nonorthogonally mounted gyros and accelerometers, provides FO/FO/FS
tolerance., For FO/FS tolerance, a modified concept 6f this IMU with only
five gyros and accelerometers was selected. The IMU preprocessor	 -
compares the redundant gyro and accelerometer measurements to detect
instrument failure and includes logic to disregard failed instrument outputs. J

l
No specific star tracker was selected, but representative weight,

volume, and power was estimated for a gimbaled star tracker with
f60 degrees gimbal freedom about two axes. The estimated weight of
17 pounds (7. 7 kilograms) is considered to be slightly conservative. Star
trackers typically have RMS tracking accuracies of 15 arc-seconds or better,
which is more than adequate for space tug requirements. The limiting factor
on tracking accuracy may well be the gimbal angle readout resolution,
typically 20 to 40 arc-seconds.	 y°

The acquisition sensor concept was modeled on the surveyor acquisition
sun sensors. The weight, volume, and power were estimated somewhat
larger than for the surveyor acquisition sensors to be conservative. 	 f

The selected horizon tracker is the Quantics Industries edge tracker
L .y

model IVA selected for the NR space station and EOS designs. Each unit is
composed of four tracking heads and electronics. Estimated local vertical
direction accuracy is 0.05 degrees. Prototypes have been built, but have
not yet been flown in space. The horizon tracker electronics are dual
redundant, and the unit can operate with only three tracking heads` operative.
Hence, only one tracker is needed for FO/FS tolerance, and two for
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FO/FO/FS capability. The range of operation is from 80 to 25, 000 nautical
miles (148 to 46,400 kilometers) altitude. The navigation base (for the IMU
and star trackers) weight and volume are estimates, with Apollo data used
as a basepoint.

Weight, volume and power estimates for the ACS driver amplifiers
and main engine gimbal amplifiers were supplied by Honeywell, based on
proposed EOS equipment. One engine-gimbal amplifier assembly with
internal redundancy is required for FO/FS tolerance. Two assemblies with
less internal redundancy provide FO/FO/FS capability. In some cases, the
fail safe mode of operation may be with an ACS reaction jet or one main
engine inoperative.

Most GN&C signals, commands, and data within the IM will be carried
on the data bus as part of the C &DM system. Some signals and commands
to the reaction jets and main engines will be carried on separate wires. An
allowance of 15 percent of the IM component weight has been included in the
IM GN&C basic equipment weight estimate for wiring.

The weight volume and power estimates for the IM GN&C basic equip-
ment is tabulated in Table 3-3.

3. 5. 2 Crew Module Basic GN&C Equipment

The crew module basic GN&C equipment consists of rotation and
translation controllers to manually control the spacecraft with the ACS
reaction jets; a triad of attitude/rate gyros and a longitudinal integrating
accelerometer mounted on the telescope base to provide a backup attitude
control and manual thrust maneuver control system; a semi-automatic
telescope with pointing controls and base for navigation sightings and lunar
landing site tracking; manual control electronics; an ACS control mode
selection panel; and a GN&C power control panel. The rotation controllers
are also used to manually control the main engine gimbals, through the
manual control electronics unit, during manual thrust maneuvers and
hovering translation maneuvers before lunar landings. The functions of the
various items of equipment are more fully described in Sections 3. 3 and 3.4.

In addition to the components listed, the crew will use for GN&C
operations the alphanumeric and multi-format graphics displays and the two
keyboards for requesting displays or entering data into the computer. The
displays and keyboards are part of the C &DM system.

A firm requirement for the accelerometer and gyro triad does not exist
since these signals are generated by the primary system. The elements
were added to the system to minimize the functional involvement of manual
control with the primary system.
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Guidance, Navigation and Control Subsystem Basic Equipment

Unit Characteristics Total Characteristics

Weight Volume Weight Volume

Description Source
Pwr
(w) Code Qty

Pwr
(w)lb (kg) 0 (m3) lb (kg) pt3 (m3 )

Intelligence Module Basic Equipment

Inertial measuring unit and processor HS pentad 61 28 1.25 0.035 178 I 1 61 2 8 1.25 0.035 178
Gimbaled star tracker Estimate 17 8 0.20 0. 006 10 CP 2 34 15 0.40 0.011 10
Acquisition sun sensors and electronics HAC 1.5 1 0.01 0.000 1 CP 4 6 3 0.04 0.001 4
Horizon/earth tracker (edge tracker) QI 45 20 0.44 0. 0 1 2 38 CP 1 45 20 0.44 0.012 38
Navigation sensor base Apollo 17 8 0.80 0.023 0 T 1 17 8 0.80 0.023 0
ACS driver amplifiers HI 20 9 0.31 0.009 16 T 2 40 18 0. 62 0.018 16
Main engine gimbal amplifiers (4 engines) HI -- -- -- O 1 25 11 0.36 0.010 58
Signal distribution wiring (0.15 x weight) Estimate -- -- --

,
-- 36 16 0.07 0.002 1 0

264 119 3.98 0: 112 304Total IM GN&C basic equipment -- -- -- -- --

Crew Module Basic Equipment

Rotation control Apollo 12.5 6 0. 12 0.003 12 L. D 2 25 11 0.24 0.007 24

Translation control Apollo 9 4 0.10 0.003 20 L. D 2 18 8 0.20 0.006 40

Rate gyro triad (mounted on telescope base) Estimate 9 4 0.10 0.003 15 L. D 1 9 4 0.10 0.003 15

Integrating accelerometer (mounted on telescope. base) Estimate 2 1 0.05 0.001 10 L. D 1 2 1 0.05 0.001 10

Serai•automatic telescope, controls, and base EOS 38 17 1.28 0.036 15 T 1 38. 17 1.28 0.036 15

Manual control electronics Apollo 16 7 0.40 0.011 50 T 1 16 7 0.40 0.011 50

AC'S mode select panel EOS est 10 5 0.30 0.008 0 T 1 10 5 0.30 0.008 0
GN&C power control panel EOS est 10 5 0.30 0.008 0 T 1 10 5 0.30 0.008 0
Signal distribution wiring (0.3 x weight) Estimate -- -- -- -- - 36 16	 1 0.07 0. 002 0

164 74 2.94 0. 082 154Total CM GN&C'basic equipment -- -- -- -- -- -
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In general, crew intervention in tug GN&C functions is a backup mode
of operation. Hence, no redundancy is required for most of the crew module
GN&C equipment. The major exception to this is manned lunar landings,
where manual control of hovering translation maneuvers before touchdown
is the primary mode. Hence, two rotation controllers are required to allow
for failure of one controller before a lunar landing.

The weight, volume, and power estimates for the rotation and trans-
lation controllers and the manual control electronics are Apollo values. The
weight, volume, and power assumed for the attitude/rate gyro triad and the
integrating accelerometer are estimates based on contemporary instruments.
The semi-automatic telescope weight, volume, and power were estimated
based on Apollo data and EOS estimates (for a telescope-sextant combination).
The ACS control mode selection panel and GN&C power control panel esti-
mated weights are EOS estimates. Thirty percent of the CM GN&C equipment
weight was allowed for signal wiring in the CM.

The CM basic GN&C equipment weight, volume, avid power are
tabulated in Table 3-3.

3. 5. 3 Rendezvous and Docking GN&C Equipment

Sensors required for rendezvous and docking are a rendezvous and
docking radar mounted on the docking face for target acquisition, tracking,
and automatic docking; a docking television camera, also mounted on the
docking face, for crew or ground monitoring of automatic docking and manual
completion of docking if necessary; and contact sensors to indicate when
latching of ,the docking mechanism has been completed.

Equipment required on target vehicles consists of corner reflectors or
a laser radar transponder mounted on the docking face, and visual docking
aids, consisting of a distinctive pattern, standoff cross, etc. on the docking
face to provide visual cues for manual docking. Noncooperative rendezvous
can be accomplished only by adding a skin-tracking rendezvous radar to the
tug as part of the payload.

The selected rendezvous and docking radar is the ITT scanning laser
radar system. This unit is the only known system that can provide accurate
enough measurements for automatic docking. It has sufficient target
detection range for rendezvous most of the time, and it has also been
selected for the EOS and space station. The system is currently in an
advanced state of development.

The principal system characteristics are given in Table 3-4. In the
rendezvous and docking discussion of Section 3. 3, it was pointed out that the
laser radar has marginal detection range and field of view for geosynchronous
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Table 3-4. Scanning Laser Radar System Characteristics

Maximum range

Minimum range

Range accuracy

Range rate

Range rate accuracy

Angular field of view
without gimbals (by
piezoelectric beam steering)

Angle accuracy

Angular rate

Acquisition mode

Track mode

Angular rate accuracy

Acquisition scan time

Weight

Volume

Power

65 nautical miles (120 kilometers)

0

:0. 0210 or t0. 33 feet (10 cm),
whichever is greater

1-16, 400 fps (0-5 kmps)

f1. 0% or f0. 16 fps (*0.5 cmps)
whichever is greater

30 x 30 degrees

f0. 02 degree

0-0.4 degrees/sec

0-10 degrees/sec

t1. 07o or f0.01 degree/sec,
whichever is greater

1 to 150 seconds

35 pounds (16 Kg)

0. 86 ft  (0. 024 m3 )

30 watts
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orbit rendezvous. Several methods of alleviating the problem were
considered, including use of a star tracker to acquire a flashing-light
beacon on the target.* Tracking of the rendezvous target with a star
tracker, in conjunction with radio ranging, could also be used as a backup
rendezvous technique if all laser radars failed. If further investigation
verifies that target acquisition and tracking by a star tracker is feasible,
then the required redundancy level of the laser radars could be reduced by
one. It would also require, of course, that targets be equipped with a
flashing light beacon. For the present, though,..it is assumed that two laser
radars are required for FO/FS and three are required for FO/FO/FS
tolerance. Rendezvous and docking radars are required on the IM and CM
dock-i.ng faces, but not on the PM docking face since it will dock only to an
OPD, which itself has a laser radar.

The docking television camera weight, volume, and power estimates
were based on the Lear Siegler, Inc. (LSI) missileborne television system.
This vidicon unit has 700-line resolution and 10 shades of grayness. The
field of view may be chosen at will by proper selection of camera lens,
which is mounted with a standard 16-mm "C" mount.

Since manual docking is a backup (FS) mode of operation, only one
camera is required on each docking face. The CM docking face does not
require a TV camera since it is assumed that the pilot will have direct
vision through a window in the docking face. One translation controller in
the CM should be portable so that it can be attached to a mount by the dock-
ing window.

The contact sensors weight was estimated at 2 pounds (0. 907 kilo-
grams) per sensor, with four sensors required for each docking port.
Rendezvous and docking sensor  weight, volume, and power estimates for
the CM, IM, and PM are shown in Table 3-5.

3. 5.4 Lunar Landing GN&C Equipment

Additional G&C equipment required in the CM for manned lunar
landings are an engine throttle control for complete manual takeover of the
spacecraft (the normal mode is manual control of lateral motion only, with
automatic altitude and descent rate control) and a landing television picture
memory for displaying the frozen TV picture after the landing site is
obscured by dust. The weight, volume, and power of these components were
estimated, and a 30-percent weight factor was allowed for signal wiring.

"This method has been adopted for EOS (shuttle) rendezvous.
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Unit Characteristics Total Characteristics

Weight Volume Weight Volume
Pwr PwrI

Description Source lb (kg) ft3 (M3 ) (w) Code Qty lb (kg) ft3 (M3) (w)

Crew Module Docking Equipment

Laser rendezvous and docking radar ITT 35 15. 9 0.86 0. 0243 30 D 2 70 31.8 1. 72 0. 0487 30

Contact sensor Est 2 0.9 0 0 4 8 3.6 0 0

Signal distribution wiring (0.2 x weight) Est -- -- -- -- -- 15 6.8 0.03 0.0008 0

93 42.2 1. 75 0. 0495 30Total CM docking GN&C equipment -- -- --

Intelligence Module Docking Equipment

Laser rendezvous and docking radar ITT 35 15. 9 0.86 0. 0243 30 D 2 70 31.8 1.72 0.0487 30

Docking TV camera LSI 10 4. 5 0.20 0. 0056 30 D 1 10 4.5 0.20 0.0056 30

Contact sensor Est 2 0.9 0 -- 0 4 8 3.6 0 -- 0

Signal distribution wiring (0.2 x weight) Est -- -- - 17 7.7 0.03 0.0008 0

105 47.6 1.95 0.0551 60Total IM docking GN&C equipment

Propulsion Module Docking Equipment

Docking TV camera LSI 10 4. 5 0.20 0. 0056 20 D 1 10 4. 5 0.20 0. 0056 30

Contact sensor Est 2 0. 9 0 -- 0 4 8 3.6 0 -- 0

Signal distribution wiring (0.2 x weight) Est -- -- -- 8 3.6 0 0

Total PM docking GN&C equipment 26 11.7 0.20 0. 0056 30

4%,
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Lunar landing sensors consist of a landing radar to measure altitude
and three velocity components and a gimbaled television camera for landing
site acquisition and tracking and generation of the static picture of the
landing site for surface obstacle avoidance. These sensors will be mounted
at the lower end of the spacecraft or on the landing gear.

The Apollo LM landing radar (or possibly a modification thereof) was
selected for the landing radar, and Apollo values were used for the weight,
volume, and power estimates. Two or three landing radars are required
for FO/FS or FO/FO/FS tolerance.

The landing television camera (and associated pointing system) weight,
volume, and power were estimated without specific units in mind. Two or
three landing TV systems are required for FO/FS or FO/FO/FS capability
on unmanned landings. On manned landings, one less TV system is needed
since the normal mode of operation is to track the landing site through the
telescope, and pilot direct vision of the touchdown area can be substituted
for the frozen picture display. A 15-percent weight factor was allowed
for landing sensor signal wiring.

The lunar landing equipment weight, volume, and operating power
estimates for the CM and for manned and unmanned lunar landing kits are
given in Table 3-6.

3.5. 5 Total GN&C Subsystem

The total space tug GN&C subsystem weight, volume, and operating
power for unmanned and manned space missions and unmanned and manned
lunar landing missions are shown in Table 3-7. A schematic of the system
is shown in Figure 3-4.

3.6 SPACE TUG GUIDELINE IMPLICATIONS

Several of the guidelines and design objectives given in the space tug
RFP introduce significant feasibility questions or development cost or
substantial weight penalties for the GN&C subsystem. The equipment
redundancy required for FO/FS or FO/FO/FS tolerance of course introduces
a weight penalty on all subsystems and will not be considered here as it is
discussed elsewhere. The guidelines and design objectives affecting
primarily .the G&N system are discussed briefly in this section.

3. 6. 1 Autonomous Earth Orbit Navigation

All elements of the NASA IPP (space station, EOS, space tug, RNS),
as well as proposed Air Force spacecraft, have a requirement or design
objective ,of autonomous operation. Fully_ autonomous earth orbit navigation
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Table 3-6. Guidance, Navigation and Control Subsystem Lunar Landing
Equipment

Unit Characteristics Total Characteristics

Weight Volume Weight Volume
Pwr PwrI

Description Source lb Fjkgj 0 (m3) (w) Code Qty ;; lb (kg) ft3 (m3) (w)

Crew Module Lunar Landing Equipment

Main propulsion throttle control Est 6 2. 72 0. 06 0. 0017 6 L 2 12 5 . 44 0.12 0.0034 12

Landing television graphics memory Est 10 4.54 0.10 0. 0028 50 L 1 10 4.54 0.10 0 . 0028 50

Signal distribution wiring (0.3 x weight) Est -- -- -- -- -- - - 5 2.27 .; 0.01 0.0003 0

27 12 . 25 0.23 0.0065 62Total CM lunar landing GN&C equipment -- -- -- -- -- -- - -

Lunar Landing Kit, Unmanned

Landing radar Apollo 43 19.5 2. 00 0. 0566 135 L 2 86 39.0 4.00 0.1133 135
LM

Gimballed television camera Est 30 13 . 6 0.40 0 . 0113 60 L 2 60 27.2 0.80 0.0226 120

Signal distribution wiring (0.15 x weight) Est -- -- -- -- -- - - 22 10.0 0 . 04 0.0011 0

168 76 . 2 4.84 0.1370 255Total unmanned lunar landing kit GN&C equipment -• -- -- -- -- -• - -

Lunar Landing Kit, Manned

Landing radar Apollo 43 19.5 2.00 0.0566 135 L 2 86 39.0 4.00 0. 1133 135
LLI

Gimballed television camera Est 30 13.6 0.40 0.0113 60 L 1 30 13.6 0.40 0.0113 60

'Signal distribution wiring (0.15 x weight) Est -- -- -- -- -- - - 17 7.7 0.03 0.0008 0

133 60.3 4.43 0.1254 195Total manned lunar landing kit GN&C equipment -- -- -- -- -- -- - -
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Weight Volume
Power

System Description lb (kg) ft3 (m3) w

Unmanned space missions

Intelligence module basic equipment 264
T

120 3.98 0.1127 304
Intelligence module docking equipment 105 476 1.95 0.0552 60
Propulsion module docking eqi: :3ment 21 10 .20 0.0057 30

390 606 6.13 0.1736 394Total unmanned space mission GN&C eq1-l irment

Manned	 missionsspace

Crew module basic equipment 164 74 2.94 0.0832 154
Crew module docking equipment 93 42 1.75 0.0495 30

Intelligence module basic equipment 264 119 3.98 0.1127 304

Propulsion module docking equipment 21 10 0.20 0.0057 30

542 245 8.87 0.2511 518Total manned space mission GN&C equipment

Unmanned lunar landing missions

Unmanned space mission equipment 390 177 6.13 0.1735 394

Unmanned lunar landing kit 168 76 4.84 0.1371 255

558 253 10.98 0.3106 649Total unmanned lunar landing mission GN&C equipment

missionsManned lunar landing

Manned space mission equipment , 542 246 8.87 0.2512 518
Crew module lunar landing equipment 27 12 0.23 0.0065 62
Manned lunar landing kit 133 60 4.43 0.1254 195

702 318 13. 53 0.3831 775Total manned lunar landing mission GF&C equipment

7. °xuidance, Navigation and Control Subsystem Totals
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methods, using only on-board sensors, either provide marginal or inadequate
navigation accuracy for some missions or involve unproved sensing tech-
niques (e. g., automatic known or unknown landmark tracking). The cost to
develop and test new techniques would be substantial, and the techniques
might be shown to be unworkable.

The alternative approach, for earth orbit navigation, is to deploy a
ground beacon or navigation satellite system to provide semi-autonomous
navigation capability. The ground beacon system recently selected for the
EOS appears to be a good choice, but all IPP vehicles and missions should
be considered in selecting the system. To summarize, external aids for
earth- orbit navigation appear to be highly desirable or necessary. The
selection and deployment of an orbital navigation aid system is a national
space program decision.

3. 6. 2 Autonomous Navigation for Earth Escape, Cislunar Space and Lunar
Orbit

Autonomous cislunar navigation of unmanned tugs would require the
addition of an earth tracker for earth sensing above synchronous altitudes
(or modification of the horizon tracker) and a lunar limb tracker. These
sensors do not exist to our knowledge. Thus, both a weight penalty and
development cost would be incurred in providing autonomous Cislunar
navigation capability.

Autonomous unmanned lunar orbit navigation could be achieved with
a network of lunar surface radio beacons or by automatic lunar terrain
image correlation. Either approach would be costly.

Lunar or planetary missions require determination of the trajectory
after escape orbit insertion. On-board horizon trackers, earth sensors,
and lunar limb sensors could provide adequate navigation for lunar missions
with some delta-V penalty, but probably not for planetary missions. Radio
beacons or navigation satellites for earth orbit navigation have too short a
detection range or, in the case of synchronous satellites, have antennas
pointed at the earth. (A steerable high-gain antenna on a synchronous
satellite would be a possibility. ) None of the potential autonomous or
semi-autonomous methods would be as accurate as MSFN or DSN ground
tracking.

The potential development costs, weight, and delta-V penalties, - and
accuracy degradation of autonomous or semi-autonomous. navigation tech-
niques for lunar missions and transplanetary injection should be weighed
against the cost of maintaining some MSFN or DSN stations before autono-
mous or semi-autonomous navigation methods are adopted.
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3. 6. 3 Unrestricted Lighting for Lunar Landings

Unrestricted lighting conditions for landings at new sites would
require development of a lunar terrain contour matching radar and an
obstacle-detection radar. These probably could be combined into one radar,
but a new development would be required. Follow-on landings for resupply
or rescue under almost all lighting conditions can be achieved by tracking
a visible light beacon at the landing site with a star tracker. Radar tracking
of a transponder at the landing site would permit follow-on landings under
all lighting conditions, but would require addition of a tracking radar to the
tug equipment.

A terrain contour/ obstacle detection radar has not been specified for
'	 the tug because of the weight penalty and because a requirement to land at

a new site without visual inspection of the site before landing is considered
unrealistic.

3. 6.4 Mission Operational Limitations

Although not specifically in conflict with any RFP guidelines or design
objectives, three operational limitations are worth mentioning. The first
two deal with rendezvous.

Optical rendezvous sensors (laser radar or star tracker tracking
a light beacon on the target) will require avoiding rendezvous or docking
approach directions within about 20 degrees of the sun. The second
restriction is that only cooperative rendezvous capability is included in the
basic tug capability. Non-cooperative rendezvous will require addition of
a skin-tracking radar, weighing about 100 pounds (45 kilograms), to
the payload.

The third limitation is the requirement to assemble an MEP for
unmanned missions, as discussed under computer requirements in
Section 3. 3. 'Although a standard MEP for many missions may be feasible,
with only specific targeting data read, into the computer for individual
missions, the variety of potential constraints and objectives for tug missions
may well dictate the assembly of special MEP's for some missions. Thus,
tug missions will still require pre-mission planning.

3. 6. 5 Summa ry

The weight and delta-V penalties, feasibility questions, and sensor
development costs to obtain autonomous navigation and unrestricted lighting
lunar landing capabilities have been discussed. These should be carefully
weighed against the cost of performing ground tracking of the spacecraft
during some mission phases and against the operational limitation of
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restricting lunar landing lighting conditions. The feasibility of autonomous
lunar missions and lunar landings at new sites without visual inspection
of the landing site should be evaluated.

3.7 FUTURE STUDIES

The most significant studies for refining the space tug GN&C subsystem
concept revolve around weight reduction, autonomous navigation accuracy,
and additional sensor studies. These considerations have been mentioned
in various places in the previous sections and are summarized in the follow-
ing paragraphs.

3. 7. 1 Weight Reduction

GN&C system weight can be reduced primarily by substitution of
lighter weight sensors and by reducing the required equipment redundancy.
A primary candidate for sensor weight reduction is the IMU, where substitu-
tion of the Micron IMU, if it is proved on tests, would save 60 to 65 pounds
(27 to 29 kilograms). Equipment redundancy can be reduced by accepting
FO/FS tolerance. Secondary methods for performing G&N functions can
be investigated.

3.7.2 Autonomous Navigation

Studies of navigation accuracy with autonomous or semi-autonomous
methods are needed to evaluate these methods, especially for LEO to
geosynchronous transfers and in cislunar space. The computer requirements
for autonomous cislunar guidance and navigation should also be estimated in
order that the feasibility of autonomous cislunar space operations can be
evaluated.

3. 7. 3 Additional Sensor Studies

The feasibility and potential detection range of visible light beacon
tracking by a star tracker during rendezvous should be evaluated. If the
method is feasible, this might allow removal of one laser radar from each
docking face.

Radar sensors for lunar terrain contour matching and surface obstacle
detection should be more closely investigated. This is contingent, though,
on whether or not a new-site landing without visual inspection of the landing
site is considered to be a realistic mission requirement. If the frozen
television picture concept for landing-obstacle detection is adopted, the
errors in the estimated spacecraft position relative to the frozen, picture
should be evaluated.
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4.0 COMMUNICATIONS AND DATA MANAGEMENT SUBSYSTEM

4.1 REQUIREMENTS

The communications and data management subsystem provides the
capability for acquisition, processing, storage, and both internal and
external exchange of information related to tug checkout, monitoring, and
operations. The subsystem supports all mission concepts without recon-
figuration within individual modules, with the exception of software.
FO-FO-FS is a design goal, with FO-FS a minimum requirement.

4.2 COMMUNICATIONS

Communications parameters establishing requirements for transmit-
ter power, antennas, receivers, and operational limitations include the
information rates and quality (required signal-to-noise ratio, or error rates)
and the geometry of the links. Basic requirements for the tug links are
shown in Table 4-1.

Consideration of the broad variety of potential tug missions has led to
establishment of four classes of information. A low data rate capability
includes commands, tracking information, gross status measurements, and
voice. This link would be capable of data rates up to =4000 bits per second.

Moderate rates would be required for remote monitoring of vehicle
subsystem response to commands or status during critical periods, check-
out routines, and dumps of stored data. Rates are assumed up to
50, 000 bits per second.

Television capability equivalent to that on Apollo provides a general
video monitoring capability for overall situation assessment. The link
capacity also could be used for high speed data dumps or for simultaneous
transmission of several channels of data over the link.

The high resolution link requirement is primarily for visual support
to a remote operator. This applies when the tug is remotely controlled and
when the manned tug 74 controlling another vehicle. Again, the link capacity
is available for multiplex transmissions or backup to a lower capacity mode..

Table 4-1 indicates the probable requirements for these classes of
links for tugs in low or geosynchronous earth orbit, in lunar orbit, or on
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Table 4--1 Y Tug Communications Requirements

i	 ^	 1

To
From

Low Earth
Orbit Tug

Other Low
Earth Orbit
Elements MSFN TDRS

Geosync
Tug

Lunar Orbit
Tug

Lunar Surface
Tug

Lunar
DRS

Low Earth AB-D ABCD ABCD AB-- ---- ---- ---- ----
Orbit Tug

Other Low AB-D N/A N /A. N/A A--- AB-- AB-- N/A
Earth Orbit
Elements

MSFN ABCD N/A N/A N/A A--- AB-- AB-- N/A

TDRS AB-- iii/A_ N/A N/A ---- ---- ---- N/A

Geosync A--- AB-- ABCD ---- AB-D ---- ---- N/A
Tug

Lunar Orbit ---- AB-- ABC- ---- ---- AB-D AB-D A---
Tug

Lunar Surface ---- ABC- ABCD ---- ---- AB-D N/A AB--
Tug

Lunar ---- X/A N/A N/A ---- A--- AB-- , N/A
DRS

A Low data rates - commands, tracking, status, voice - up to -4000 bits per second
B Moderate data rates - SS response, checkout, data dump - =50, 000 bits per second
C Apollo type TV - general video information = 500, 000 hertz bazeband... Power equivalent 3, 000, 000 bits

per second data
D High resolution (broadcast) Low frame rate TV - visual monitor for control... Power equivalent to = 10, 000, 000 bits

per second data
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N
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the lunar surface. Future studies, with detailed analysis of the missions
and with firm specifications for the performance of interfacing elements,
could alter the specific rates, but the changes should not be significant in
terms of the equipment requirements. Exceptions would be in cases where
a requirement develops for a higher capacity on specific links, or if com-
mercial quality color TV were to be required at the maximum ranges. No
such requirements are foreseen now.

Figure 4-1 indicates the geometry involved between elements opera-
ting in the vicinity of earth. Ranges are of interest in determining the RF
path losses, as indicated on the chart. Angles are of importance in that
antenna coverage, gain, and pointing re.quirements are related.. Line of
sight restrictions may also be seen. Figure 4-2 indicates similar param-
eters for operations in the vicinity of the moon. The potential lunar
satellite parameters shown are considered likely candidates for such a
system. The closest libration point satellite would be at something like ten
times the altitude, and would require somewhat more detailed studies to
establish reasonable operating parameters.

4.3 DATA MANAGEMENT

Data management functional requirements are , outlined in Table 4-2.
The major requirements which affect the data management are the rates,
information storage requirements, and subsystem interfaces. The
requirements are based on a general purpose computer, multiprocessor
data management approach. The weight and power advantage for aerospace
vehicles requiring flexibility and long operational life is great, and studies
such as that for the EOS and EOSS show feasibility. In addition, a similar
approach offers a potential for commonality in design, operations, and in
actual hardware.

Table 4-3 presents an estimate of the tug operational memory and
mass memory requirements. The operational memory includes the rapid
access (nanoseconds) programs required for essentially real time control
of the subsystems, including data management. Mass memory includes
programs which are accessible in milliseconds. It is supplemental to the
ope=rational memory and stores long term operational programs, alterna-
tives, data for long term analysis, and any special mission information.

Word length (40 bits) is for sizing only. Figure 4-3 shows the FOSS
sizing with tug requirements indicated by arrows. It should be noted that
the original effort in this study separated the G&C computer and the data
management computer, with an interface between data busses. Similarity
of data handling resulted in processors and memories integrated into *h.e
data management subsystem, with the exception of a few dedicated
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Table 4-2. Data Management Functional Requirements

Information acquisition
External

Internal

Information processing

Manned control and display

Digital, audio, video

Command response programs
Subsystem performance limits
Manned operation data
Manned procedural data
Emergency responses

Ranging
Commands and updates
Manned verif. , video, voice
EVA biomed. T/M
Subsystems status.
G&N computer parameters
TV and manned inputs

Status: Caution and Warning,
C/O,  ops , maint.

Program selection and display
Transmission or storage formatting
Trans mode selection and antenna

pointing
Navigational updating

Remote command and control
Subsystem control, C/O and

override
Local and external TV display
Program readout and status

indication
Caution and warning

Internal information exchange

Stored information g
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Table 4-3. Computer Memory Requirements

Functional Category

Operational
Memory

(40 bit words)
Mass Memory
(40 bit words)

Supervisory 279000 89000
(Overall subsystem control)

Flight Oper. (guidance, command
and control)

1.	 Mission plans 109000 329000

2.	 Orbital operations 59000 659000

3, Command 169000 209000

Onboard C /O, and monitor and 71000 170000
alarm

Operations management 28j000 149000

(Ant. pointing, cmd execution, SS
operation, communications control) 940000 1569000

operations required continuously by the guidance and control subsystem.
These computing units are identified as pre-processor and are included in
the G&C subsystem.

4.4 SELECTIONS

Configuration selections are outlined in Table 4-4 for the communica-
tions and data management subsystem. Heavy reliance is placed on EOS and
EOSS trade studies. Since basic functional requirements are similar, the
majority of trade parameters such as weight, power, size and complexity
are valid, with major differences being in the sizing as indicated in
Figure 4-3.

4.4.1 Link Frequencies

Frequency selection can be optimized in terms of power, bandwidth,
coverage, and antenna requirements. However, the frequency spectrum is
heavily assigned and utilized, with both international and government agree-
ment required for operation in specific frequency ranges. The driving factor
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Table 4-4. Communications and Data Management Selection

Key Areas	 C riteria	 Selections

%0

Minimum impact	 Near-high rate/cislun-lo rate: Omnis
on structure	 Geosync to MSFN; TDRS, LDRS: 2 ft (. 61m) parab

Ant. dev. stage	 Lun surface to MSFN: 6 ft (1.8m) parab (surface
deployable)

Compatibility	 >1000 Ft:	 Integ with comet
Weight	 <1000 Ft:	 G&N (video-laser)

From EOSS trades	 Video:	 FDM
- system weight,	 Voice:	 FDM
EMI, ' complexity	 Digital:	 TDM	 j

Antennas

Tracking

Multiplexing

ProcessingI Flexibility	 I General purpose multiprocessor
EOSS trades	 I/O controller: MOS-LSI

Storage

Data acq/output

EOSS trades	 Operating memory: Plated wire
Speed	 Mas s memory:	 Plated wire
Weight, volume	 Archival, memory:. Tape

EOS/EOSS trades	 Remote acquisition - local commutation/digitization
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for tug frequencies will be compatibility with interfacing programs. Earth
and moon programs will apparently still be largely using S-baud frequencies
in the vicinity of 2. 3 GHZ. The TDRS link may be either S or Ku (around
13. 5 GHZ) band. The use of Ku-band will require equipment for both bands,
but will offer a distinct advantage in the antenna requirements should a need
develop for TV or equivalent data rate relay through the satellite. S-band
is preferred to avoid the need for an isolated system for TDRS use only.

VHF is expected to be used less in the tug time period. However,
there is roughly a 100 to 1 power advantage over S-band due to lower path
loss when antennas on both transmitting and receiving elements are
required to be near omni-directional. The advantages of omni coverage are
that transmissions can be to several receivers in different directions at the
same time, and acquisition and tracking will not be required to maintain
communications. These conditions would apply to voice links associated
with the crew module.

4.4.2 Antennas

Omni-directional antennas will provide adequate gain for low data
rate links, and for high data rates at shorter ranges. Structural limitations
favor surface or near-surface mounted antennas. Apollo data indicates that
four S-band omni -directional antennas, equally spaced, will be required.
Locations avoiding RF masking by RCS plumes are desirable. VHF omni<-
antennas will be needed on the CM only. Two VHF antennas on opposite
sides of the CM should provide adequate coverage.

Directional antennas will be required for longer ranges and for
relative angle measurements. Basic choices are between arrays and para-
bolas. The arrays are attractive if surface mounting could be achieved.
However, coverage could not include angles near the longitudinal axis, and
some vehicle design problems exist in using a large surface area for an
antenna array.

Arrays extended on a boom may compete favorably with the conven-
tional parabolic design in the next few years. Small apparent ,advantages
and development complexity lead to a choice of conventional parabolic
designs at this time.

4.4.3 Tracking

Tracking requirements include the capability to transpond a ranging
signal from the MSFN or other space elements such as the EOSS, and to
perform ranging on cooperative targets as well as determine relative
bearings to the target. Combining these functions with the communications
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links may be achieved with little penalty in power and weight, compared to
an independent tracking system. There is a potential capability at distances
closing to 1000 feet ( 305 meters). Closer approaches will be supported by
the G&C subsystem with a laser radar or by a video camera assigned to
G &C.

A possible requirement exists for higher accuracy tracking in the
range from 1000 ( 305 meters) to about 20 miles ( 37 kilometers), depending
on the detailed operational parameters of the vehicles involved. Alternatives
are to provide an approach radar as a separate installation, or to use the
G&C laser radar at the extended range. In the tug time period, the exten-
sion of the laser range appears to be feasible with cooperative targets. A
skin track requirement (non-cooperating targets), not presently foreseen,
would force addition of a separate radar. Current estimates for such a
radar are 120 pounds and 400 watts for a 20-mile (37-kilometers) range,
plus redundant units.

4.4.4 Multiplexing

EOS/EOSS trades have been performed on both quantity and type of
multiplexing. Choices are possibly more straightforward in the tug. Video
and voice are basically analog signals which lend themselves to frequency
division multiplexing (FDM), unless a very large number of channels are
involved. The tug will have a small number of such channels and will not
approach the complexity required to consider time division multiplex (TDM).
The digital signals are inherently TDM. FDM of the digital signals would
only be a real consideration for data rates exceeding those currently esti-
mated for the EOSS. The required tug rates will be considerably lower.

4.4.5 Processing

The general purpose multiprocessor approach selected in FOSS
studies is also suitable for the tug. This distribution of the processing
allows a large amount of backup to critical functions with minimum weight,
and permits great flexibility in the missions over a long time period.

4.4.6 Storage

EOSS trade information indicates plated wire as a choice for operating
and mass memories. Early studies had rejected plated wire because of the
limitation of the memory stack size. Present memories of this type are
limited in size due to manufacturing problems. The high precision
required for magnetic plating on the memory wires currently limits pro-
duction runs to wires with a maximum length of about 9 inches (22.8 centi-
meters). The result is that available production modules are usually about
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105 bits in size. To achieve reliable larger storage, a large amount of
supporting electronics is required to combine additional memory stacks
with a total weight and power (and cost) penalty overriding the attractive
features of the basic plated wire memory.

Further investigation indicated that progress is continuing in the
plated wire manufacturing techniques, and production lengths are increas-
ing. Modules with 10 7 bit capacity are expected to be available in the near
future. The plated wire then becomes a choice based on overall speed,
weight, size, and inherent reliability.

It should be noted that scratchpad memories within the processor
probably will be solid state to achieve the high speed needed. However,
the capacities are small enough so that the higher pow_ er and volume per
word will not be a significant factor.

Archival memory consists of long-term records of data samples,
alternate programs for mass memory, collections of unprocessed data
for later transmission to the MSFN, or other information for which access
is not time critical. Tape machines now are the best approach to this type
of storage. A great deal of investigation by industry and various agencies
in several electro-optical storage methods is being conducted. Develop-
ment is at an early stage and potential utilization should be reviewed at a
later date.

4.4. 7 Data Ac qui s ition / Output

EOS/EOSS studies indicate factors in thousands of pounds for trades
between wire rLuis from subsystems to the computer against remote acqui-
sition units with local commutation and digitization for subsystems inputs
and outputs. The shorter runs in tug will decrease the factors considerably.
However, weight factors in hundreds of pounds will still be considerable,
and the physical signal interconnections, a traditional problem in aerospace
vehicles, is made much simpler.

4.5 SUBSYSTEM CONFIGURATION

4.5. 1 Functional Interfaces

A preliminary functional diagram of the tug communications and data
management (C &DM) subsystem is shown in Figure 4-4. At this general
functional level, a strong similarity exists with both the .EOS and EOSS
configurations. The duration of space operations, flexibility, lack of
atmospheric operational requirements, and to some extent the stress on
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unmanned capability has resultec; vi a tendency to lean toward the EOSS
studies. However, the use of EOS components is not precluded by the

 functional arrangement.

Current estimates indicate that the major portion of the crew-related
subsystem elements can be located in the CM, resulting in very little
penalty on components in the IMi for manned operation capability. In
general, the CM interface with the IM data management ele-meats would be
similar to the interface with communications during remotely controlled
operations. Primary differences would be in the duty cycle requirements
and in the additional load due to the EC /LSS. The effects of adding a crew
module are expected to be primarily in the software.

4.5.2 Physical Configuration

Communications Equipment

Required commuunications capacity has been categorized as low and
moderate data rates, Apollo type TV, and high resolution low frame rate
TV. To establish a value for communications equipment physical charac-
teristics, the link gain required for these categories must be established
for the links indicated in Table 4-1.

The required ratio of total signal power to noise density (C/No) in a
receiver output is a function of the type of modulation, bandwidth, and the
required quality of the output information. Table 4-5 shows values that
are assumed for the four classes of links. Links will be calculated for the
46 db-Hz voice-low data value. A/loderate data rates will require an
additional 10. ? db link gain, Apollo TV 18 db more than moderate data, and
high resolution TV 5 db more than the Apollo quality link.

A nominal receiving system temperature of 500 K is assumed for
space elements. Current MSFN station values for G/T, 19. 6 db for a
30-foot (9. 1-meter) station and 28. 6 db for an 85-foot (26 meter) station,
are used for MSFN valves. G/T for a TDRS is assumed to be 0 db, and
for a LDRS as indicated in Figure 4-2, -14 db. Path losses are shown in
Figure 4-5 as a function of range. Table 4-6 establishes a baseline,
assuming low orbit vehicles to use omni antennas (G/T = -27 db) and not
including any system losses.

A next iteration includes additional 5 db losses, allowing for modula-
tion, feed and multiplexing, and antenna losses as well as some time
degradation. An exact value would require more detailed system designs.
An additional consideration is that about 17 dbW represents a practical
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Link Parameters
EIRP Required

dBW
(228.6 dbw/°K-Hz (C/No EIRP Mod Apollo

Link Loss - G/T - Boltz Noise) + Reqd] = Lo-Data or Data or TV or TV

Low Earth Orbit To:

Low orbit (max range)
MSFN (30 ft)

173.9- ( - 27)-228.6
167.9- 19.6-228.6

+ 46
+ 46

18.3
-34.3

29
-23.6 -5.6 -0.6

TDRS 192.6- 0.0-228.6 +46 10.0 20.7
Low orbit (Nominal

R ange )
(270 nmi)

153.6- (-27)-228 . 6 + 46 -0 . 2 10.5 28.5 33.5

Gaosync Orbit To:

Low orbit 192.6- ( -27)-228 .6 +46 37.0 47.7
MSFN Same as low orbit

db

+ 24.7 -9 . 6 1.1 19.1 24.1

Geosync
more path

Same as nominal low-
orbit to low-orbit

-0.2 10.5 33.5

Lunar Orbit To:
= or or or

Earth orbit 211.4- ( -27)-228 . 6 + 46 55.8 66.5
MSFN (85 ft) 211.4- 28.6-228 . 6 + 46 0 . 2 10.9 28.9
Lunar orbit (max)
LDRS

161 . 7- (-27)-228 . 6
176.8- ( - 14)-228 . 6

+ 46
+ 46

6 . 1
8.2

16.8 34.8

Lunar surface 155.7- ( -27)-228 . 6 + 46 0 . 1 10.8 28.8 33.8

Lunar Surface To:

Earth Orbit Same as lunar orbit 55.8 66.5 84.5
MSFN Same as lunar orbit 0 . 2 10.9 28.9 33.9
Lunar orbit Same as orbit to 0.1 10.8 33.8

surface
LDRS Same as lunar orbit 8.2 18.9

3
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m
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upper limit of power for long life S-band space transmitters. Higher powers
appear reasonable only if severe weight, redundancy, and cooling problems
are accepted.

Table 4-7 includes the above factors, indicating power in excess of
17 dbW as required antenna gain.

Inspection of the table shows that operation with omni -directional
antennas will require a maximum of 35 watts RF in near-earth operations,
and 40 watts RF in the vicinity of the moon. Modes requiring greater
power exceed the practical limit of transmitters in tug applications. For
example, the next lowest requirements would require transmitter power as
follows to operate with omni-directional antennas.

Low earth orbit
	

213 watts RF

Geosynchronous orbit
	

256 watts RF

Lunar orbit
	

152 watts RF

Lunar surface
	

2450 watts RF

These powers are excessive, and establish the possible omni-directional
antenna operational modes as those listed in the table.

Gain and beamwidth parameters for a standard parabolic antenna are
shown in Figure 4-6. Gain requirements from the right hand column of
Table 4-7 are illustrated in Figure 4-7, with the gains of 2-, 4-, and
8-foot (. 61--, 1. 22-, and 2. 43-meter) parabolic antenna indicated.

The chart indicates that a 2-foot (.61-meter) antenna will be adequate
for the majority of links, with little improvement realized by an increase
to an 8-foot (2.43-meter) antenna. Problems arise with links from geo-
synchronous altitude or lunar distances to low earth orbital elements. For
these specific cases, directional antennas, possibly combined with low
noise receivers, will be assumed as ' a requirement for the earth orbital
elements. Requirements from the lunar surface may be supplemented with
a deployable 8- to 10-foot (2.44- to 3.05-meter) antenna to be set out after
landing. The additional gain will allow the MSFN links to operate in a
minimum power mode.

The resultant tug communication configuration consists of a trans-
ponder capable of operation at 1-, 5-, and 40-watt outputs, a 2-foot
(.61-meter) parabolic antenna and 4-foot (1.22-meter) omni antenna.
Nominal operation probably would be in the 5 -watt mode.

4-1$
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Omni Modes High Gain
Required Required
RF Power Antenna Gain

Link Description Watts Description db

Low earth orbit to:

MSFN (30 foot) All 3 max None --

TDRS Low data 32 Mod data 10

Low earth orbit Low/mod data 3.5/35 Apollo TV 16.5
(nominal range) TV 21.5

Low earth orbit None -- Low data 6.3

(max range) Mod data 17

Geosync orbit to:

Low earth orbit None - - Low data 25

Mod data 37.5

MSFN (30 foot) Low /mod data 3 Apollo TV 7.1

TV 12.1

Geosync (nominal Low/mod data 3.5/35 TV 21.5
range)

Lunar orbit to:

Earth orbit None - - Low data 43.8

Mod data 54.5

WFN (85 foot) Low/mod data 4/40 Apollo TV 16.9

Lunar orbit Low data 12 Mod data 4.8
(max R)

LDRS Low data 28 None --

Lunar  surface Low/mod data 4/40 TV 21.8

Lunar surface to:

Earth orbit None -- Low data 43.8

Mod data 54.5

Apollo TV 72.5

MSFN (85 foot) Low/mod data 4/40 Apollo TV 16.9

TV 21.9

Lunar orbit Low/mod data 4/40 TV 21.8

LDRS Low data 28 Mod data 16.9
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GAIN - (DECIBELS)

LOW EARTH ORBIT OPERATION!
TO: TDRS -

MOD DATA
NOMINAL LO ORBIT

APOLLO T\
T\

MAX. LO ORBIT
LO UAT^

MOD DAT)
GEOSYNCHRONOUS ORBI
OPERATIONS

TO: LO ORBIT
LO DAT)

MOD DATA

MSFN - APOLLO T\
T\

GEOSYNCH - T^
LUNAR ORBIT OPERATION
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Figure 4-7. Link Antenna Gain Requirements
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A consideration in specifying antennas is the detailed flight operational
modes. Any location of a single antenna will result in a fairly large area
blocked to the antenna. Operational problems could add a requirement for
a second high - gain antenna. An additional consideration is potential loss of

Y signals due to blockage or reflections when two or more vehicles are oper-
ating near each other. Reflection problems may be reduced to some extent
by requiring circular polarization on all antennas.

The consideration of voice operations with the addition of a crew
module leads to the VHF requirement. The 18 db advantage in path loss
over S-band allows wide voice coverage with little penalty in weight and
power. An Apollo VHF unit is assumed . suitable for this function.

Data Management

The major factors in sizing the data handling portions of the sub-
system include the total capacity of the memories, the operating rates, and
the redundancy required. Components identified in EOSS studies provide
somewhat simpler extrapolation to the tug requirements than the current

{	 EOS configuration, and therefore were used for physical configuration
estimates.

k4.	 EOS studies utilized core memories as a baseline, with evaluation in
.	 progress of plated wire. The plated wire essentially represents an order

a
of magnitude reduction in the power required. Figure 4-8 shows the weight
and power requirements of a memory consisting of four 32, 000 32-bit

-^

	

	 word modules from information supplied b S.-	 Y acetac, Inc. The estimatedP
tug access rates, based on the plated wire speeds, are indicated for
operational and mass memories.

A	 The present EOS concept also integrates the input-output function into
the processor. This approach may satisfy the tug requirements also.
However, a deeper study into the detailed performance requirements and
subsystem interfaces is needed to evaluate the potential direct use of
EOS hardware.

Memory requirements were extrapolated from similar functions in
the EOS/EOSS studies. Redundance estimates are based on assumed
simultaneous performance of critical computations with comparison of
results and self-testing capability in the overall processing system. The
operating memory would include redundant access to the memory stacks,
plus spare storage in the stacks. The mass memory would include complete
redundancy of storage on all critical programs. An additional area for
backup storage of programs is in the archival tape memory, although the

a
primary use anticipated is for the storage of operational history for dump
to an interrogating station on demand,

4-22
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HZ	 HZ	 KHZ	 KHZ	 MHZ	 MHZ
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Figure 4-8. Power Required —Core Vs Plated Wire Memories
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Potential reductions in the processing requirements could be made by
assuming re-programming for each mission phase through the communica-
tion link, or by finding methods for reducing operating rates. There is a
possibility of designing the system to operate at a wide variety of access
rates, with the speed dependent on the operations actually being performed.
While this adds considerable complexity to the design, reference to the
variation in power with speed shown in Figure 4-8 :indicates that a major
reduction in average power might be obtained.

The displays and controls are extrapolated from the components
identified in the EOSS studies. The major units are suitable for a wide
variety of missions with both format and content adjustable by software
changes. Direct control and display elements would be restricted to
caution and warning, and backup to critical areas. In general, the approach
would be to treat the crew module as a remote control station, with the
exception of the critical backup mentioned above. Basic components
include color TV displays formatted by the processor and by the video bus,
light emitting diode (LED) alphanumeric displays, keyboards, hand con-
trollers, switches, and lights. While EOSS assemblies were used for
estimations of size, weight and power, the actual installations would be
tailored specifically for tug use.

Equipment: Summary

The C &DM equipment for the IM is listed in Table 4-8, and that for
the,- CM in Table 4-9. As indicated in the tables, EOSS studies are a major
source of physical characteristics. The major effects which are readily
apparent of assuming EOS hardware would be in the memory power require-
ments, integration of the I/O units into the processors, and use of a
larger number of the smaller EOS interface units to replace RACU's. The
footage requirements for wiring assumes basic wire and cable runs will
be near walls, with reasonably direct access to crew and subsystem areas.
Weights are based on current Apollo RF and video coax, and on triple
redundant data busses with weights equivalent to standard twisted shielded
pair line.

4-24
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^	 Table 4-8. Communications and Data Management Subsystem IM Equipment

i Unit Characteristics Total Characteristics

Weight
lbs	 (kg)

Volume
ft3	 (m3)

Pwr
(w) Code Quantity

Weight
lb	 (kg)

Volume
ft3	 (m3)

Pwr
(w)Deccription Source

S-band transmitter / receiver FOSS extrap 25	 0.113 0.70	 0.0198 30 C, CC 2 50	 22. 7 1.40	 0.0396 30
(10-1b spare package) EOSS extrap C. CC

Omni-antenna Apollo 7.5	 3.4 0. 25	 0.0071 0 C. CC 4 30	 13 . 6 1.00	 0.0283 0

2-ft parabolic steerabie antenna Estimate 20	 9.07 1 . 50	 0.0424 15 C, CC 2 40	 18. 14 3.00	 0 . 0849 15

Comm switching and checkout EOSS extrap 40	 18.14 1.31	 0.0371 25 T 1 40	 18. 14 1.31	 0 . 0371 25
control (dual)

Premodulator processor (dual) EOSS 50	 22.68 1.17	 0.0331 50 - 1.5 75	 34.02 1.75	 0. 0495 50

MOS-LSI input/output controller FOSS 10	 4. 54 0.26	 0.0074 25 T 3 30	 13.61 0.78	 0.0221 75

MOSS-LSI processor FOSS 10	 4. 54 0.26	 0 . 0074 30 T 4 40	 18.14 1.04	 0.0294 120

Plated-wire operational memory EOSS extrap 37.5	 17.01 0.495	 0.0140 20 T 4 150	 68.03 1.98	 0. 0561 80
(787.5 K bits each)

Tape archival storage memory Jmpr Apollo 40	 18. 14 0.88	 0.0249 40 I 1 40	 18.14 0.88	 0.0249 40

Plated-wire mass storage EOSS extrap 20	 9.07 0.26	 0.0074 5 T 5 100	 45. 36 1.36	 0.0385 25
memory (1680 K bits each)

Central timing unit (dual) EOSS 18	 8.16 .44	 0.0124 30 T 1 18	 8.16 0.44	 0 . 0125 30

Video unit EOSS 18	 8.16 0.23	 0.0651 12 CC 2 36	 16.32 0.46	 0.0130 12

Remote acquisition and control FOSS 6	 2. 7 0.04	 0.0011 8 T 7 42	 19. 05 0.28	 0. 0079 56
units: 256 channel

128 channel (est 3	 1 . 4 0.02	 0.0006 4 T 1 3	 1.36 0.02	 0.0006 4
64 channel number) 1.5	 0.7 0.01	 0. 0003 2 T 3 4.S	 2.04 0. 03	 0.0008 6

Signal dist wiring and data bus: 52	 23.6
heavy coax (AF) 70 ft
light coax (video/RF) 148 ft tat 18	 8. 2 3.25	 0.0920 0 - - 255	 115.66 3.25	 0.0920 0
Shielded twisted pair (data 1 185	 84.0
bus) 925 ft

953.5	 432.47 18. 98	 0.5372 568Total IM comas and data
ansnagemeat



Unit Characteristics Total Characteristics

Weight Volume Pwr Weight Volume Pwr
Description Source lb	 (kg) ft3	 (m3) (w) Code Quantity lb	 (kg) ft3	 (m3) (w)

'JHF transmitter/ receiver (dual) Apollo 12	 5.4 0. 22	 0.0062 20 C 1 12	 5.4 0.22	 0. 0062 20

VHF antenna Apollo 10	 4.5 0.40	 0. Q113 0 C 2 20	 9.1 0.80	 0.0226 0

Conwmander 's console (color TV. EOSS 50	 22.7 3.00	 0.0849 85 T 2 100	 45. 4 6.00	 0. 1699 85
audio, I/O keyboard, manual
controls connector, status
lights)

Idght emitting diode alphanumeric EOSS 30	 13.6 0. 90	 0.0255 25 T 1 30	 13 . 6 0.90	 0.0255 25
display and electronics

Remote acquisition and control
units: 256 channel IEOSS 6	 Z. 7 0.04	 0.0011 8 T 2 12	 5.4 0.08	 0.0023 16

188 channel (Est) 3	 1.4 0.02	 0. 0006 4 T 1 3	 1.4 0. 02	 0.0006 4

64 channel 1.5	 0.7 0.01	 0. 0003 2 T 2 3	 1.4 0. 02	 0.0006 4

Signal diet ariring -and data bus:
Heavy, come (RF) - 44 ft 33	 15.0

IJSM coax (video/RF) - 80 ft Est 10	 4.5 2.62	 0.0742 0 - - 219	 99.3 2.62	 0.0742 0

Shielded twisted pair (data bus)- 176	 79.8
800 ft

399	 181.0 10.66	 0.3019 154Total CM comm and data mgt
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5.0 ELECTRICAL POWER SUBSYSTEM

5.1 REQUIREMENTS

The electrical power subsystem must generate, condition, and distri-
bute electrical power to the using subsystems throughout the tug mission
cycle. Internal energy sources are required to deliver power during all
free-flying mission phases, including dormant periods up to 1,80 days for
unmanned missions. During maintenance periods or while the tug is
attached to the propellant depot, electrical power is assumed to be avail-
able from the depot. The following basic requirements are considered
applicable:

1. Provide continuous electrical power to all subsystems during
active mission cycle phases ranging nominally from 10 to 15 days
and as high as 45 days. Quiescent space time periods for
unmanned missions (minimum power levels) may range up to
180 days.

2. No added power capacity will be planned for power transfer to
other vehicles or for experiments. Available power to payloads
other than tug subsystems will be limited to that available due to
some subsystems being turned off (e.g., lunar surface
operations).

3. Minimum ground checkout and space-based servicing/mainte-
nance will be required to meet a 3-year life span or 10 missions
(reusability).

4. Fail-operational is required after first and second failures, and
fail-safe is required after third failure.
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This study presents parametric trade data and rationale necessary to
establish a preferred EPS configuration.

5. 2 LOAD PROFILE ANALYSIS

The EPS must supply a 24-hour average power level per mission day,
which is a function of the type of mission or crew size. Typical power level
requirements for various tug subsystems are listed in Table 5-1 for both
unmanned and manned missions (selected missions for 2-, 4- and 6-man
crews). An emergency operation power level also is assumed. A more
detailed breakdown by subsystem component is contained in the separate
subsystem sections. A typical load profile is shown in Figure 5-1. The
power profile is based on the following assumptions:

1. All subsystems not operating at full power simultaneously

2. Subsystems redundancy adequate to meet fail operational, fail-
safe requirements

3. Average power levels were obtained by estimates given in the
"Code" column of each subsystem component list. A key to the
codes is given in Table 5-2.

5. 3 ENERGY SOURCES

Solar, electrochemical, and nuclear energy sources are available as
potential power generation energy source candidates for the tug. Because
of unique mission requirements (i. e., long space dormant periods), a com-
bination of these energy sources may be required to meet the electrical
power requirements. Energy source selections are influenced by many
factors which are discussed in the following paragraphs. Some of the
parameters may appear favorable from the EPS subsystem viewpoint but 	

_ *^

may have an undesirable impact upon the overall tug mission operational
capabilities. Evaluation of the EPS configuration considers adverse effects t

or constraints upon tug missions as presently envisioned. Candidate energy
sources are shown in Figure 5-2. 	 y



Unmanned Missions

Manned Missions
Lunar

6-Man 4-Man 4-Man 2-Man Space Landing
Subsystem 7 Days 45 Days 7 Days 7 Days Emergency 7-Days 45-Days Emergency

Crew Module - - -

Environment control and life 1128 1064 984 839 450
support

Guidance and navigation 154 154 154 154 100

Msnued docking equipment 30 30 30 30 -

Communication and data 154 154 154 154 50
management

Thermal control 88 88 88 88 70

Electrical equip and losses 25 25 25 25 15

Total crew module (watts) 1579 1515 1435 1260 - - -

Intelligence module

Guidance and navigation 331 331 331 331 200 331 331 200

Unmanned docking equipment - - - - - 60 60 -

Communication and data 568 568 568 568 70 568 568 70
management

Thermal control 105 105 l05 105 50 62 62 50

Electrical equipment and losses 270 270 270 270 80 230 230 80

Total intelligence module (watts) 1274 1274 1274 1274 1251 1251 400

Propulsion module

Docking equipment 30 30 30 30 - 30 30 -

G and N lunar landing: equipment - 62 - - - - 279 -

Total tug vehicle (watts) 2883 2881 2739 2564 1085 1281 1560 400

Note: Peak transient and propulsion heater loads are not included. 	 Heater loads as high as 3600 watts additional for durations less than
20 minutes can be expected.
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Table 5-1. Anticipated Tug Subsystem Average Power Levels
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INMimi mil! —11000 9-16ptiwo

LANDING
(0. 25 HR)

DOCKING	 2636 COMM
(0.25 HR) UP/DN LINK

2500': 2425 (2 HR/DAY) INERTIAL FLIGHT (75% OF MISSION)

2296
2226	 COAST FLIGHT (25% OF MISSION)

2020
MANNED

2000

'ELECTRICAL NOTE:	 BASED UPON AVERAGE POWER
POWER (WATTS) LEVELS. PEAK POWER REQUIREMENTS

DURING PROPULSION HEATER
Ln

'	 1500 OPERATIONS REQUIRE ADDITIONAL
3600 WATTS (TOTAL ENERGY
ESTIMATED FOR HEATER OPERATION

1177 PER MISSION IS ABOUT
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Table 5-2. Average Power Timeline Codes and Assumptions

Codes Descriptions Time Duration (Ur)

L Landing operation 0.25

D Docking, operation 0.25

R Rendezvous operation 1.00

I Inertial flight 75 percent of mission

CP Coast phase 25 percent of mission

C Communication up/down link 2. 00 per day

CC Communication checkout 1.00 each dock, separation, land

T Total mission 100 percent of mission

O Negligible amount of mission 0 percent of mission

Solar array systems have a number of drawbacks; i.e.. impact of cell
equilibrium temperature, radiation degradation, power requirement for
solar array orientation if employed, mission operational constraints in
docking or other vehicle operations, drag penalty in low earth orbits, etc.
Thus, not only must the solar array panel be sized for end-of-the-mission
performance but also for storage of electrical energy required for the dark:
period of operation. These factors impose weight and cost penalties on
solar array use. On the other hand, solar array systems have demonstra-
ted high reliability for space applications.

The electrochemical energy sources considered for the tug are fuel
cells, APU's and batteries. In some instances, it is difficult to isolate the
chemical energy sources and the associated conversion functions (i.e. ,
batteries). For this reason, the electrochemical candidates will be treated
as a direct electrical energy source.

Fuel cells are high thermal efficient devices for the direct conversion
of chemical energy into electricity. Two reactants (fuel and an oxidizer)
supplied to the fuel cell are consumed in an electrochemical reaction pro-
ducing electricity, water, and heat. The hydrogen-oxygen fuel cell,
because of its high thermal efficiency and water production capability,
becomes the most practical ;means of electrical power generation for

' S-5
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manned earth-orbiting applications and other relatively short-duration
missions where the water byproduct is required to fulfill mission require-
ments (water conversion efficiency equals approximately 98 percent; hence, 	 !
some of the reactant fuel penalty is affected by the water credit). If the
fuel weight is chargeable to the EPS (byproduct water considered a waste
in this case), then the fuel cells are less attractive as a means of electrical
power generation. Solar power sources by themselves (i. e. , without
energy storage) ara not candidates because of their requirement for light;
thus, fuel cells ma y be used with solar energy systems for supplying
eclipse power. In this case, a portion of the water byproduct may be used
to meet manned mission water requirements and the balance dumped over-
board. The combination of fuel cells and electrolysis cells (fuel cells
operating in a back-to-back mode) becomes a strong candidate for supply-
ing eclipse power (where water credit is not needed) because of the
elimination of the consumable reactants fuel penalty.

Secondary alkaline batteries are potential energy sources for both the
storage and generation of electrical power when used with solar array
systems and as peak power batteries employed to optimize selection of the
fuel cells and nuclear power sources. In addition, batteries can function as
an emergency power source or primary source for relatively low power
levels and short-mission durations. Application of batteries for the tug
primary energy source have been eliminated because of the initial and
resupply weight penalties needed to meet the tug energy requirements,r
(power levels and mission durations).

APU's were eliminated on the basis of noncompetivity with fuel cells
in reactant consumption rate and expected lifetimes. The tug loads would
not demand APU performance characteristics (i. e., high peak loads for
short durations with a relatively low average power level).

Radioisotope heat-energy source concepts are advanced to the stage
that both static and dynamic energy conversion methods are applicable to
the power range required for the tug. Fuels that may be considered are:
Co-60, Sr-90, Po-210, and Pu-238, with the last fuel being the primary
contender. Shadow shielding and source separation distances were evalu-
ated in an attempt to reduce shielding requirements (weight). Safety aspects
(i. e._, shielding, controlled reentry and recovery, and end-of-life disposal)
present design problems resulting in high weight penalties for the heat
source; however, as with all large isotope heat sources, the major dis-
advantages are cost and lack of assurance of availability.

Other nuclear (i, eo reactors) are not considered competitive
for tug applications rased upon availability, cost, and safety ;(mission
constraints) requirements because several alternate' power systems may
be used that are more applicable for the required power levels. 'Trade
study data for the leading energy source candidates are presented in the
following paragraphs.y	

5-?
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5. 3. 1 Solar Photovoltaic Concepts

A number of solar array configurations have been considered in
previous NR studies. Several different design approaches are possible,
four of which are:

1. General Electric rollup soles array

2. Hughes flexible rollup solar array

3. Boeing large area solar array

4. ATM array

The General Electric concept for the rollup array features two-array
substrates that are deployed by a single Bi-stem deployable boom. The
array structural stiffness is provided by tension in the two substrates. In
the deployed state, the array has a single-point attachment at the vehicle
interface. A calculated power-to-weight ratio of 32. 3 w/lb (71.3 w/kg) for
the basic 250-square foot (23 square meter) array module is made possible
by the use of beryllium for the storage drums and the leading edge member.

The Hughes flexible rollup array (1.5 kw) concept deploys two sub-
strates from a common drum with four Bi-stem rods mounted in two
actuators. Development of this array, which has a power-to-weight ratio
of 21 w/lb (46 w/kg), is expected to be completed with a flight demonstra-
tion in the third quarter of 1971 (under Air Force Contract F33615-68-C-
1676). In addition to the basic rollup array, the Contract includes the
associated two-axis orientation and control system along with the necessary
power conditioning, energy storage, and instrumentation.

The Boeing large area solar array is a 1250 square-foot (116-square-
meter) (gross module area) folding panel array, which has a power-to-
weight ratio of 21 _w/lb (46 w/kg) . This concept utilizes a beryllium
framework panel with the solar cells mounted on a fiberglass tape sub-
strate, which is stretched on this frame.



A qualitative comparison of the first four concepts was made to
determine the configuration best suited for a tug mission. A three-point
rating system based on a set of mission-related performance areas was
used to rank each concept. The performance factors are discussed with
supporting rationale with results shown in Table 5-3.

Maximum Productivity

This generalized performance area has been divided into two specific
measures of productivity (i. e., power-to-weight ratio and power-to-stowed-
volume ratio). The power-to-weight ratio is a function of the basic array
design if it is assumed that the solar cell and cover glass are the same for
each approach. The GE rollup array ranks "best". because the system
has the highest power-to-weight ratio (30 watts per pound/66 watts per
kilogram). Both the Hughes rollup and the Boeing foldout arrays have a
power-to-weight ratio of approximately 21 watts per pound (46 watts per
kilogram). The ATM array is the obvious choice for the last place because
of the 2. 76 watts-per-pound (6. 08 watts-per-kilogram) ratio. The scaling
up or down of the existing concepts to the sizes required for the tug should
not change the relative ranking of these concepts. Also, the structural
modifications required to withstand the acceleration modes of operation
should have similar weight penalties for all solar-array approaches.

Table 5-3. Solar Array Comparison Matrix

Performance Factor
GE

Rollup
Hughes
Rollup

Boeing
Foldout

ATM
Array

Maximum productivity
Power-to-weight ratio 1 2 2 3
Power-to-volume ratio 1 1 3 3

Cost ($/kw) 2 2 3 1

Minimum constraint 1 1 3 3
imposed on operation

Minimum degradation and 2 2 2 1
resupply

Maximum ability to achieve 1 2 2 1
primary power operation

( reliability)

Code:	 1 = best; 2 = good; 3 # worst
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The stowed volume of the array also is an important measure of the
performance of each concept. Both rollup array approaches have been
ranked "best" because of the inherent compactness of these designs
(approximately 300 watts /ft 3 or 10,590 watts /m3 ). By comparison, both
fold-out panel approaches have large stowed volume requirements
(approximately 60 watts /ft 3 or 2118 watts /m3).

Cost

A quantitative comparison of array system costs would be difficult to
determine; however, the relative ranking of each concept can be estimated
based on present development status and inherent hardware costs associated
with each design. The ATM array is ranked lowest in cost because of
its advance state of development and relatively low hardware cost. Both
rollup array approaches are presently in the same state of development
(i. e. , design qualification of a prototype model). Boi l' of these systems
should have approximately the same hardware costs. The Boeing foldout
array must be ranked as the highest in program cast because of the lack of
present funding and the high hardware costs associated with the formed
beryllium framework.

Minimum Constraint Imposed on Operations

Both rollup array approaches are ranked "best" in this category
because of their capability for repeated orbital extension and reaction
cycles. In addition, these rollup arrays can be retracted into a relatively
small package for removal and replacement in orbit. The mechanical
interface with the station is relatively simple for either rollup array
approach. On the other hand, the folding panel array configurations are not
capable of orbital retraction without major redesign of the linkages.

Minimum Degradation and Resupply

All candidates should rank approximately the same in this category,
except for a small advantage associated with the ATM array with its honey-
comb substrate. This heavy substrate will afford backside shielding against
radiation damage as well as increased thermal mass to increase the low
temperature during eclipse periods. This reduced operating temperature
excursion may reduce thermal cycling damage to the solar cell intercon-
nections during lunar orbit operation.

Maximum Ability to Achieve Primary Power Operation

This performance factor can be related to the inherent reliability of
the array system. Because the reliability of the solar cells and associated
interconnection should be the same for all candidates, the reliability of the

5-1U
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deployment operation is the factor that must be assessed to determine the
relative ability to achieve primary power operation. The GE rollup array
was ranked "best," because deployment is accomplished with one deploy-
able boom in one actuator. The Hughes rollup array requires four deploy-
able booms in two actuators. The Boeing foldout array is a multiple fold
system with flipout side panels. The ATM array also was ranked "best"
because of the flight experience that will be logged prior to the possible
application of the array for tug.

Array Configuration Conclusion

Based on this qualitative comparison, it is concluded that the two
rollup concepts have many distinct advantages over the foldout panel
approaches. It is more difficult to select between the two rollup concepts
because of the performance similarities between these approaches.
However, the GE single deployable boom configuration has the following
additional advantages over the Hughes two-boom concept;

1. It requires no synchronization of boom deployment/ retraction.

2. It has a single hard-point attachment to the supporting structure
in the deployed condition.

3. It is potentially a lighter-weight approach because less structure
is required to deploy the same solar cell area.

Figure 5-3 shows the relative solar array size and system weights as
a function of power level for both earth orbit and lunar orbit operation.

5. 3. 2 Energy Storage Candidates

All candidate EPS I s require storage of electrical energy to meet
electrical peak, eclipse or emergency power requirements. The trade tree
for the energy storage concepts is shown in Figure 5-4 and discussed in the
following paragraphs. Two candidates considered were secondary batteries.,.
and regenerative fuel cells (separate fuel and electrolysis cells) for pos-
sible application in conjunction with solar array primary system. The
regenerative fuel-cell system is eliminated because more than adequate
reactants would be available on the tug (boiloff from propulsion system
requirements).

5_11
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Figure 5--4. Energy Storage Concepts

The requirement of long reliable life for a high number of charge and
discharge cycles (25 to 30 thousand) is the primary factor favoring a nickel-
cadmium battery for use with solar arrays. Silver - zinc batteries may be
considered for peaking power requirements. However, silver-zinc bat-
teries have a short wet stand life and a lower charge -discharge cycle
capability at the discharge depth required for application. Silver-zinc
battery capability is expected to be increased to at least a one -year opera-
tion with a few hundred cycles charge -discharge capability at 15 percent
DOD. Although lighter than nickel -cadmium batteries (from two to five
times lighter), the silver - zinc batteries have a shorter life than nickel-
cadmium batteries (=two to three years) and this may impose a greater
logistics and maintenance problem. The silver-cadmium batteries are
excluded from consideration for large -scale application because of their
excessively high cost. Such batteries are limited to applications where
minimum magnetic field interference with experiments is a requirement.
Long battery- life requirements are best met by operating at low tempera-
tures ( < 32 F/2?3 K) and at shallow depth of discharge ( <15 percent).
Thermal control of the battery employs a coldplate with three separate
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cooling loops with the excess heat rejected to the radiator. Loss of any one
cooling loop will in no way degrade battery performance, whereas loss of
any two loops will result in some performance degradation.

Figure 5-5 shows the battery cycle life and total energy characteris-
tics for nickel-cadmium, silver-cadmium, and silver-zinc batteries. , Two
lines are plotted in the figure for each type of battery. The lower line pre-
dicts the number of discharge-charge cycles to failure versus the percent
depth of discharge in each cycle. A 20-percent discharge of a 10-kwh
battery yields 2 kwh, for example," and a total energy output over its life
of 2 kwh times the number of cycles, which provides a point on the upper
curve. Peaks on the energy curves for each battery correspond to depths
of discharge which produce optimum life. Table 5-4 lists representative
values for available nickel-cadmium secondary power sources.

5. 3. 3 Radioisotope Power Systems

Radioisotope heat sources decay exponentially in time at a rate that
is not affected by external forces (i. e. , for any particular radioisotope the
decay rate is a constant). As a result of this property, the heat generation
from the decay of radioisotopes cannot be turned off. This feature makes
them a very reliable heat source. On the other hand, they continually
constitute a hazard that must be designed for during all handling phases.
The manner in which safety constraints are met may result in large effects
on the radioisotope heat source weight.

Table 5-4. Nickel-Cadmium Battery Summary

Battery Capacity
(Ampere Hours)

Total Packaged Weight
(24 Cells lb/kg)

Physical Dimensions
(in/cm)

12 34/15.4 6x8x11.8
(1.5 x 20. 3 x 30)

20 56/25.4 7. 5 x 7.5 x 13. 1
(19 x 19 x 33. 3)

50 132/59.9 19. 9 x 11.9 x 6.4
(50. 5 x 30.2 x 16)

100 255/115.7 21. 7 x 16.6 x 8.4
(55x42x21.3)

5-14
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The selection of an isotope for a particular application is based on
considerations related to the isotope half-life, power density, availability,
and safety. For unmanned tug applications, safety is primarily concerned
with protection of the general public and requires that the isotope heat
source be controlled during all phases of use: fabrication, shipment,
ground handling, prelaunch, launch, preorbit, operation, rendezvous, and
end-of-life disposal.

The following properties are desirable for radioisotope fuels to be
used in space power systems: long half-life, high-power density, readily
available, minimum shielding required, low biological hazard, fuel form
compatible with encapsulation materials, high melting temperature, and
low cost.

4

	

	 Radioisotopes with power densities sufficiently high to warrant con-
sideration for space power application can be categorized as alpha, beta,

z or gamma emitters. The gamma emitters have been eliminated from con-
sideration for manned space applications because of the executive shield
weights that would be associated with their use. The beta emitters, with
the exception of Pm-147 and Pm-170, also require excessive shielding. Of
the alpha emitters, Po-210, Pu-238, Cm-242, and Cm-244, have received
the most attention for use in space power systems.

No radioisotope completely satisfies the previously mentioned list of
desirable requirements. Further evaluation narrows the six radioisotopes
down to Po-210 (half life of 138 days) for short-duration missions and
Pu-2 38 (half life 86 years) for long-duration missions. Therefore, the
AEC has concentrated on these two isotopic fuels for their heat source
development effort. One of the drawbacks of using Pu-238 is its cost
($540 per thermal watt) and availability. For unmanned missions where the
pa`,-load has a high tolerance for nuclear radiation, perhaps some of the
lower-cost gamma and beta emitters should be reconsidered. For example,
Cm-244 (an alpha emitter) with a half life of 18 years, has an estimated
price of $64 per thermal watt. Co-60, a heavy gamma emitter with 5. 3
years half life, has an estimated future price of $16 per thermal watt.
However, it is assumed that the use of gamma emitters would be excluded
because ground personnel and the general public must be protected from the
consequences of handling, launch, or reentry accidents for unmanned space
applications and system commonality with manned mission applications.
For this reason, a Pu-238 heat source is used to show representative
radioisotope power system weights for the tug.

All the radioisotope power systems considered to date for unmanned
applications are based on static power conversion devices (thermoelectric
or thermionic). The current operational systems, SNAP 3, SNAP 19, and
SNAP 27, use thermoelectric converters. SNAP 27 is the largest of these

5-16
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systems with a 63-watt electrical output. Current state -of-the - art thermo-
electric devices convert thermal energy to electricity with efficiencies
varying from 5 to 9 percent. The higher efficiency is obtained by cascading
SiGe and PbTe materials. The weights shown on Figure 5-6 are based on
the use of cascaded thermoelectric converters. The hot junction of the
converter is thermally coupled to the isotope heat source by a circulating
liquid metal. Another liquid metal loop removes heat from the converter
and rejects the waste heat to space by means of a radiator. The heat
source weight includes an allowance for a controlled system for intact
reentry and recovery of the isotope fuel capsules. This feature accounts
for 75 percent of the heat source weight and over 40 percent of the total
power system weight.

The cost of Pu-238 and the direct relationship between the weight
necessary for safety and the quantity of radioisotope required places
emphasis upon the importance of power conversion efficiency. Column I
of Table 5 - 5 lists weights and other characteristics for a radioisotope
power system based on an organic Rankine power conversion system.
Total weight is reduced approximately 50 percent over the thermoelectric
conversion system shown in Column II of the table. Also, in order to
minimize Pu - 238 inventory, the system is sized for average orbit power
(allows for power conditioning losses). Peak power is obtained by a
secondary battery assist.

S. 3.4 Fuel-Cell Concepts

A number of fuel cell types considered ' in previous NR studies are
capable of space shutdown and restart. Two of the leading fuel - cell can-
didates types for space power application are: (1) ion exchange membrane
(solid polymer electrolyte) - General Electric, and (2) Alkaline low
temperature matrix - Pratt and Whitney, Allis -Chalmers.

The General Electric Company and Pratt and Whitney Aircraft are
presently under NASA contract to further develop applicable fuel cell
technology for the earth -orbiting shuttle program. Although 2000 to 3000
hours of operating life can presently be obtained, a potential of 10, 000 hours
of fuel-cell operating life appears feasible. Table 5 -6 compares projected
characteristics for the ion exchange membrane and low-temperature
absestos matrix units for a projected 2-kilowatt unit with a 5000-hour life.
No clear choice between the two fuel-cell design approaches should be made
at this time. Figure 5 -7 shows the reactant supply pressure effect for the `^,.
ion exchange membrane unit on cell voltage versus current. Typical
34 to 40 such cells are required in series per fuel -cell stack to provide the
required voltage regulation (minimum voltage requirement considerations).
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Figure 5-6., PU-238 Radioisotope Power Systems Comparisons



Power Conversion

I
Organic
Rankine

II
Thermo-
Electric

Net Electrical Power Output, kwe 2.36 2.36

Heat source power, kwT (Beginning 16.4 28.6
of life)

Maximum cycle temperature (F/K) 700/644 1450/1061

Radiator area (ft?-/m2 ) 127/11.8 198/18.4

Average radiator temperature 310/428 305/425
(F /K)

Overall thermal effect percent (1 ) - 60

Weight (lb/kg)

Power conversion subsystem 110	 50 400 (2)	 181

Heat rejection subsystem 185	 83.9 290	 132

Boiler and Na'K Lines 100	 45.4 -

Start system and organic .73	 33 -
inventory

Auxiliary NaK heat rejection 64	 29 112	 51

Power conditioning and control 220	 100 220	 10,0

Structure 68	 31 102	 46

Heat source CIR (3) 984	 446 1720	 780

Secondary batteries 200	 91 200	 91

Total (lb) 2004	 909.3 3044	 1381

(1) Not including PC and D
(2) Includes NaK lines, pumps, etc.
(3) CIR = controlled intact reentry	 J

NON W! 000

01% Space Division
Noith American Rockwell

Table 5-5. Pu-238 Fueled Radioisotope Power Systems
( One - Ye ar Life)
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Table 5-6. Comparison of Projected Fuel Cells (2 KW Rating)

Item
General Electric

Ion Exchange
Pratt and Whitney
Low Temp Matrix

Water removal Wick Pump

Weight (lb/kg) 60127 80/36

Volume (ft3 /m3 ) 4/0.113 7/0.198

Operating temp (o F/K) 140-180/333-356 180/356

Parasitic power (w) 50 80

Specific reactant
Consumption (lb/kwh)/
(kg/kwh) 0.98/0.44 0.84/0.38

Voltage degradation
(MV/cell-hr) 0 5

Waste heat (Btu/kwh) /
(Wt /We) 2400/0.703 2100/0.615

Reactant purging
Frequency and quantity rating 2nd 1st

Tolerance air, CO and CO2
Life degradation, system 1st 2nd
inerting required and
reactant supply integration
rating

Supply integration rating

Low-temperature tolerance

Storage and quiescent 2nd 1st
mode rating

5-20
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Figure 5-7. Typical Ion Exchange Single-Cell Performance
(Cell Active Area 0.7Ft2/0.065M2)

The number of stacks per fuel cell module will affect the module weight,
redundancy, and transient performance capability. A three-stack-per-
module configuration may be optimum for tug applications.

The reactant (H2 and 02) supply for fuel-cell operation is assumed to
be available from the tug propulsion subsystem supply. Filtering of the
propellant grade reactants will improve fuel-cell performance and minimize
purging requirements. Figure 5-8 shows the energy requirements,
reactant consumption, and water production rates for various average power
load levels as a function of mission cycle duration. Figure 5-9 depicts the
heat rejection requirements for fuel-cell electrical power output. Because
fuel cell operation will be in the range of 140 to 180 F/333 to 356 K. heat
rejection may be integrated with the tug thermal heat rejection loop
without significant weight penalty.

5.4 POWER CONDITIONING AND DISTRIBUTION

The basic function of power conditioning equipment is to modify the
electrical characteristics of the power source to some desired form or
values. The power generation concept recommended for the tug is pri-
marily a direct current (dc) system at a 28-volt nominal value. Static
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i
inverters will be used to provide a centralized primary alternating current
(ac) power source rated at 115 volts and 400 Hertz. Trend data indicate
power conditioning equipment has about a 30 lb/KVA (13.4 kg/KVA) weight-to-
power density. Requirements for voltage regulators and battery chargers
will be influenced by the primary energy source selection. For example, a
higher charge rate would be required for a solar array system with limited
time in the light period per orbit (for earth or lunar orbit phases). Because
fuel-cell system operation is relatively independent of vehicle orbiting
requirements, a longer period or trickle charging could be utilized for
battery recharge. Selection of the type and rating of power conditioning
equipment must be established following firmer definition of the tug load
requirements.

The power distribution and protection system consists of the equip-
ment or components necessary to control and distribute conditioned
electrical power to the using subsystems. Solid-state switching devices
(SSSD) may be used to provide remove control (by computer) for controlling
power to the using loads and to provide wire protF ction in event of equip-
ment malfunctions. These devices may be used in place of conventional
circuit-breakers for load control from the busses to the load equipment.

Wiring will be sized to allow a voltage line drop not to exceed the
load equipment voltage and power requirements. Insulated wires will be
nonflammable, nontoxic, and, where applicable, twisted or shielded to
minimize electromagnetic interference and cross -talk. Typical per unit
weights for various sized harness wires are listed in Table 5-7. An
additional 10 percent of total harness weight is normally required for
connectors.

Flat wire may find limited usage in tug applications. Although flat
wire may be more flexible (bending, etc. ) for-harness routing and requires
less volume, it is not suitable for twisting. Twisting of conductors causes
cancellation of induced magnetic fields. Also, the flat-wire conductor
thickness becomes excessive when shielded for general purpose wiring.
Therefore, flat wiring would not be recommended for general purpose
wiring but could be used for data management type signals and would
alleviate possible connector space problems encountered with coaxial cables.

5.5 RECOMMENDED ELECTRICAL POWER SUBSYSTEM

A primary power system utilizing fuel cells and consumable H2 and
02 reactants is recommended for the tug vehicle. The primary driver for
this selection is that the reactants will be available on the vehicle for the
propulsion subsystmm. As a result, reactant tankage and contingency
(excess reactant supply) penalties can be minimized for the power system

5-24
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Table 5-7. Typical Teflon Insulated Wire Wei¢hts

Wire Size
Gauge No. Type

Unit Weight

Lb / Ft Kg / M

24 Single 0.0021 0.0031

24 Shielded 0.0044 0.0065

22 Single 0.0035 0.0052

22 Two-cond. /twisted 0.0072 0.0107

22 Two-cond. /shielded 0.028 0.0416

20 Single 0.005 0.0074

20 Two-cond. /twisted 0.011 0.0164

20 Two-cond. /shielded 0.036 0.0536

16 Single 0.01 0.0148

16 Two-cond. /twisted 0.021 0.0312

16 Two-cond. /shielded 0.055 0.0818

12 Two-cond. /twisted 0.05 0.074

10 Single 0.035 0.052

8 Single 0.068 0.101

8 Two-cond. /twisted 0.14 0.21

4 Two-cond. /twisted 0.38 0.56
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through common usage. The reactant demand varies with the tug energy
requirements as shown in Figure 5-8. The reactant amounts would be
insignificant compared to the propulsion subsystem requirements. Other
prime considerations for this choice include:

1. Greater mission operational flexibility (less constraints in
docking, etc.)

2. Greater suitability for short-term mission cycles

3. Available source of water for manned operations

4. Commonality with other NASA program developments (cost of
fuel-cell development borne by EOS program)

5. Greater growth capability to meet increased power demands,
because abundant reactant supply would be available

6. Fuel-cell heat rejection can be integrated with the tug thermal
or environmental subsystems requirements.

The need for another primary Energy source (i.e. , solar array) is not
considered a requirement, unless planetary missions or long dormant
space operations (without reactant availability) become dominant factors.

Figure 5-10 shows the EPS subsystem configurations for unmanned
and manned missions. Modular concepts will be utilized where possible
to provide commonality and minimum impact for changes to meet new load
requirements. Three fuel cells will provide the voltage regulation and
redundancy capability for the main power subsystem for unmanned missions.
Three 3-phase, 400-Hertz inverters are included for alternating current (ac)
loads in the otherwise direct current (dc) power subsystem configuration.
Three secondary peaking batteries will supplement the fuel cells for peak
loads and emergency power requirements. Power will be distributed to
decentralized power control centers throughout the vehicle with due regard
for electromagnetic compatibility considerations. Solid-state switching
devices and circuit-breakers will be used for switching and control where
practical. Cooling of solid-state conversion-equipment and batteries will be
effected through mounting on cold plates. Fuel-cell cooling will be effected
through the tug heat rejection radiator loops. Where practical, the EPS
components will be located in the intelligence module (TM).
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For manned mission, two additional fuel cells and other components
duplicating the basic unmanned EPS configuration will be utilized to meet
mission requirements. The same rated type components are planned; thus,
the unmanned IM EPS configuration can be converted to a manned EPS
configuration by providing additional components in a modular form.
Table 5-8 provides weight and volume estimates for the major components.
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Unit Characteristics Total Characteristics
Weight Power Weight Volume Power

rce lb (kg) ft (m3) (Watts) Code Oty lb (kg) ft (m3) (Watts)

- - - - - 50 22.6 0.50 0.014 25

^polation 66.7 30 . 2 1.33 0.0376 - i	 - 3 200 90.7 4.00 0.113 -

polat; 53.5 24.3 0.18 0.005 - C. CC j	 3 160 72.6 0.54 0.015 -

Apo	 ion 5.3 2.4 0.07 0.002 30 C, CC 3 16 7. 3 0.22 0.006 90

.pc	 ,n 5.3 2.4 0.12 0.0034 16.7 T 3 16 7.3 0.36 0.010 50

4.67 2.1 0.:5 0.013 23.3 T 3 14 6.4 1.33 0.0376 70

- - - - - 100 45.4 1.00 0.0283 20

- - - i	 - - 506 207.4 7.45 0.210 230

.polation 66.7 30.2 1.23 0.0376 - 1 66.7 30.2 1.33 0.0376 -

.polation 5.3 0.12 0.0034 16.7 C, CC 1 5. 3 2.4 0 . 12 0.0034 16.7

4.67 2.1 0.45 0.0127 23.3 T 1 4.7 2.1 0.45 0.0127 23.3

- - - - - 50 22.6 0.50 0.0141 0

- - - - 126.7 57.5 2.40 0.0678 40
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6.0 ACTIVE THERMAL CONTROL SUBSYSTEM

6.1 REQUIREMENTS

The active thermal control subsystem transports heat from the
interior to the exterior of the vehicle, complementing passive thermal control
provisions, to maintain thermal equilibrium between preset bounds. Ideally,
the passive system minimizes solar absorptivity, while maximizing infrared
emissivity, to reduce the size of the active system. Both heat sinks and
sources are used by the active system to maintain component temperatures
within required limits.

The structure of part of the tug is dominated by thermal insulation
requirements of the cryogenic propellant. Elsewhere, the vehicle envelope
is rather loosely defined. The major internal heat producers, electronics,
power sources, and crew size, vary with mission class. Wide variations in
mission duration and thermal environment will be encountered by the tug.
Under these circumstances, requirements must be supplemented by assump-
tion in selection of a subsystem approach from the candidates. The require-
ments and assumptions are listed in Table 6-1.

The environmental control and life support subsystem (EC/LSS) will
provide cabin atmosphere thermal control by fluid loop, but will transfer
heat via a heat exchanger to the active thermal control subsystem for
removal.

Thermal control requirements imposed 'on mission operations will be
minimized. This includes special vehicle orientation requirements such as
the barbecue rotation mode, orienting an area of the vehicle surface toward
deep space to establish an efficient heat sink, and the practice of presenting
a minimum, highly insulated part of the vehicle to the sun for prolonged
periods.

6.2 CANDIDATE EQUIPMENT

All candidate active thermal control methods either result in heat loss
by radiation or by mass expulsion. Each type must have a circulating
system that removes heat from generators. Radiation systems require a
suitable heat sink, such as deep space or fluids expended for other purposes.
Typical radiation systems include space radiators of the Apollo type, heat
pipes, propellant heat sinks, and propellant boiloff heat sinks. Mass
expulsion systems include liquid boilers and ablative surfaces. The

6-1
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1. Space mission crew size 0 - 6 men

2. Lunar landing mission crew size 0 - 4 men

3. Metabolic heat production rate 430 - 496 Btu/man-hour (126-145 W/man-hour)

4. Space mission duration 7 days

5. Lunar landing mission duration X45 days

6. Space quiescent period 4180 days

7.
t

Lunar surface quiescent period 430 days

8. Vehicle total use span 43 years

9 Fuel cell heat production rate 0. 667 Wheat/We

10. Battery heat production rate 0. 25 Wheat/We
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Table 6-1. Active Thermal Control Subsystem Requirements
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candidates considered reasonable for tug include the Apollo-type radiators,
a propellant boiloff heat sink, and a liquid boiler.

The circulation system may include either liquid or gas as a working
fluid. A forced-gas system has the advantages of less costly manufacturing
processes and may be more easily maintained in space; however, it requires
more weight, power, and volume (Reference 6-1). The liquid system uses
cold-plate contacts to the electronic components. The cold plates are small
reservoirs in the circulation fluid lines and present a large area in common
with the electronics package. Special heat-conductive grease is applied at
the package/cold plate interface to facilitate heat flow.

Many of these candidates were evaluated in a trade study described in
Appendix B.

6.3 RECOMMENDATIONS

Apollo-type radiators were selected as the method of heat rejection
for tug on the basis of versatility and simplicity. Radiators weigh
approximately 24. 6 pounds per Btu/hr (38. 0 Kg/w) of heat to be rejected.
Water has a heat sink capacity of approximately 0. 001 pound per Btu
(0. 001545 kg/w-hr). A vehicle generating 1 kilowatt of heat during a seven-
day mission would require 84 pounds (38 kg) of radiators or 573 pounds
(260 kgs) of water. Very little of the water requirement could be generated
by fuel cell power sources since they produce approximately 0. 00015
pounds of water per Btu (0. 000232 kg/W-hr) of combined heat and electrical
power. Hence, the choice of radiators for tug was clear.

The liquid cold-plate method of removing heat from electronics equip-
ment was chosen over the forced-gas approach on the basis of a trade study
described in Reference 6-1. Study results are shown in Table 6-2 and were
derived for a 10-psia (7031-kg/m ) environment. A lower pressure, as
recommended for tug, would degrade the heat transfer coefficient and
increase the weight, volume, and power requirements for the forced-gas
system.

The arrangement of radiators on the vehicle is particularly important
since in space the radiator works more effectively when pointing away from
the sun. It is impractical to mount the radiators on the forward end of the
vehicle, since no module is forward for all missions. Furthermore, this
configuration would .impose orientation requirements relative to the sun on
the vehicle. Considering these facts, and recognizing the need for redundancy,
the suggested configuration is four panels mounted equidistant around the
periphery of the vehicle. Any two of the panels will meet the peak cooling
requirement when one, or its opposite, faces the sun. Although peripheral
mounting is probably the best radiator arrangement for space missions, it

6-3
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Table 6-2. Comparison of Cold Plate versus Forced-Gas Requirements

Parameter

Weight Volume Power

lb/watt kg/watt in.3/watt cm3/watt watts/watt

Cold plate

Forced gas

0.0035

0.048

0.0016

0.022

0.38

3.8

6.2

62.

0.00063

0.16
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is unusable for daytime conditions on the lunar surface. A radiator seeing
the lunar surface must itself have a surface temperature above 135 F (300 K)
in order to reject any amount of heat, regardless of the relative sun angle.

It is therefore necessary to provide other radiators, which do not see
the lunar surface, for the tug Lander. The landing radiators could be in the
form of a kit to be attached in space prior to the landing mission. They .
would use the available space atop the tug for rigid mounting and, in the
case of an excess area, would require additional deployable panels. Because
these radiators now point toward the sun in the worst case and are con-
sequently inefficient, it is worthwhile to investigate the feasibility of heat
pumps.

A heat pump is a single- or multiple-loop refrigeration system that
raises the radiator surface temperature, permitting more efficient heat
rejection. Unfortunately, heat pumps require relatively large amounts of
electrical power to operate. The trade study described in Appendix B shows
that the minimum usable radiator surface temperature with a heat pump
system is the optimum, considering both weight and electrical power.

A

Under these conditions, the heat pump transfers internal heat from the
circulation loops to the top of the vehicle. It also provides a source of
redundancy if a panel leaks, fails to deploy, or is otherwise unusuable. In
these cases the vehicle would be cooled by raising the heat pump power to
raise the surface temperature of the remaining top radiator panels.

During lunar landing missions, significant amounts of heat may be
removed by utilizing the high specific heat of hydrogen boiloff gas. Approx-
imately 1500 Btu/lb (3. 5 x 10 6. kg) of waste heat may be absorbed at the
predicted temperatures. It appears that the boiloff rate closely follows sun
angle, peaking at high noon. If boiloff gas is used during this period, the
most constraining requirement for radiators may be reduced. Assuming
500 pounds (226 kgs) of hydrogen is lost by boiloff per month on the lunar
surface, and that the rate curve approximates a cosine, then the peak boiloff
rate is 2. 34 lb/hr (1. 06 kg/hr). Effectively, therefore, the radiator heat
rejection requirement is reduced by the peak boiloff rate times the best
absorption capacity of the hydrogen, amounting 'to 3450 Btu/hr (1 kw).

The trade study reported in Appendix B provided sufficient data to
establish parametric weight, volume, and power models. For the data to
be used, however, ±1te total heat load of the active system must be assessed.
The following paragraphs describe the effort.
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Coupling between the electrical power source and the cooling system
exists because power generated to drive the cooling system also produces
heat. Expressed mathematically,

PT = PS + PC	(6-1)

f
where the cooling system power required is

P C = C[PT + HS + HMMI	 (6-2)

and PT = total power generated

PS = total subsystem power demand, including conversion and dis-
tribution equipment, but not including cooling power

PC = cooling equipment power demand

C = constant of proportionality, containing effects of pump efficiency,
temperature differences, head loss in the lines, etc;

HS = heat of reaction in the electrical power source

HM = crew-generated heat

M - the crew size.

All heat generated by the crew must be transported from the EC/LSS
thermal loop to the ; adiators by the ATC. Values for crew and fuel cell
heat production rates are listed in Table 6-1. A typical value of 136 watts
is recommended for the crew heat production rate. Peaking battery heat
production is negligible, since its rate is much lower than that of the fuel
cell and occurs over relatively short time spans. The -nnstant C is
evaluated at 0. 040956 by comparison with the Apollo system, which rejects
heat at 5000 Btu/hr (1468 watts) using 60 watts of electrical power.

The equations become more complicated when modularity is considered.
Power sources are located in the IM, while the CM contains the crew. In
order for the IM penalty for manned missions to be minimized, separate
cooling systems are assumed for the two modules. All of these considera-
tions influence the cooling system power. The six separate equations are

P	 = P + P
TIM SIM CIM

6-6

(6-3)

SD 71-292-5;
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TCM SCM CCM

• 
CIM	 TIM S

PC CMTCM M

HS	= NP 	 (6-7)

T	 TIM TCM

where N is the fuel cell heat production rate. Applicable modules are
denoted by subscripts. Solving for the intelligence module and crew module
cooling system power,

(6-9)PC =
IM 

A1PS 

IM 
+ A2PS CM + A3HMM

PC	= A4 ( PS + HMM)
CM	 CM

where
_ C(1+N)

A 1	 1-C (1+N)

_ CN
A 2 	 (1-C) (1-C-CN)—

A 3 = A 2 C
_ C

`̂ '4 1-C

(6-10)

(6-11)

(6-12)

(6-13)

(6-14)

Evaluating Al through A4 with the values discussed, the final forms
of the coolant circulation system electrical power equations are

PC	0. 07328PS + 0. 03057PS	+ 0. 1703 M,	 (6-15)
IMIM	 CM
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where the units of all variables are watts. The subsystems power terms
(PS) are, strictly speaking, variable during the mission, but average power
values give good approximations.

Once the circulation system power is established, the weight may be
estimated by again scaling from Apollo data. The 60-watt, 185-pound
(84-kg) system yields a ratio of 3. 083 lb/watt (1.40 kg/watt) of operating
power. The system weight-to-volume ratio is assumed to be 35 IWO
(560 kg/m3).

For the space mission radiators to be sized, surface thermal coating,
age, sun angle, and mounting provisions must be considered. These topics
are fully discussed in Appendix B. Assuming a solar absorptivity of 0. 3, an
infrared emissivity of 0. 9, an average sun angle of 8 degrees, and an
average radiator surface temperature of 80 F (300 K), the scaling factor is
0. 0277 ft 2 /watt (0. 00257 m2 /w) of heat transported. These values corres-
pond to a segmented radiator, peripherally mounted, and 3500 sun hours old.
Again, expressing the function mathematically,

AS = K (PT + HS + HMM)
	

(6-17)

where AS is the radiator area,

K is the scaling factor, and the remaining terms are as defined for
Equations (6-1) and (6-2). Separate equations may be shown for IM and CM:

A S	= K [P,r	+ HS ]	 (6-18)
IM	 IM

AS	= K [PT	+ HMM]	 (6-19)
CM	 CM

Solving for the IM and CM radiator areas with Equations (6-3), (6-4), (6-7),
and (6-8),

A S	= K(1+N) (PS + PC ) + KN (PS	+ PC )
IM	 IM	 IM	 CM	 CM

A S	= K (PS + PC ) + KHMM
CM	 CM CM

6-8

(6-20)

(6-21)

SD 71-292-5
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These equations may be further simplified by substituting for the cooling
circulation system power, using Equations (6-15) and (6-16). Carrying out
the substitution and evaluating coefficients,

A	 = 0. 04964 P	 + 0. 02071 P	 + 0. 1154M	 (6-22)

	

SIM	 SIM	 SCM

A S	 = 0. 02893 PS	 + 3. 9349M	 (6-23)

	

CM	 CM

where the units of power are in watts and area in square feet. The weight
of this type of radiator is 0. 2 lb/ft 2 (0. 975 kg/m2).

Lunar landing missions require a heat pump system, as previously
recommended. The system would use a top-mounted, add-on assembly
including a vapor compression refrigeration system and additional radiators.
At 80 F (300 K), the heat pump would require an additional 0. 0271 watts of
operating electrical power per watt of heat transported. The hydrogen boil-
off -gas heat exchanger would remove approximately one kilowatt of heat
from the system, however. Assuming the heat pump equipment is self-
cooled, the equations are

PR = R (PT + HS + H M M - 1000)	 (6-24)

PC C (PT -PR + HS+HMM-1000)	 (6-25)

PT + PR+PC + PS	 (6-26)

HS + NP 	 (6-27)

where PR is the refrigeration power, and

R is the constant of proportionality for the heat pump system. Note
that the heat pump is assumed to use the entire circulation system.

A procedure is followed similar to that for the circulation system.
power evaluation, and the heat pump equation is

PR = 0. 05106 PS + 4. 166 M - 30. 6318
	

(6-28)

The heat pump equipment adds to the , system weight.0. 04 pounds
(0. 0181 kg) for every watt of heat or 1.48 lb/watt (0. 67 kg/watt) of o erating
power. If mounted inside the tug, the equipment contributes 35 lb/ft
(560 kg/m3).

6-9
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Attached to the top of the tug horizontally, to avoid seeing the lunar
surface, the lunar landing radiator must operate in direct sunlight.
Here it is assumed the radiator is new and has a solar absorptivity of 0. 018,
yielding a value of 0. 0683 ft ?- (0. 00633 m2) per watt of heat transported.
The area equation is

AR = L (PT + HS + HMM-1000)	 (6-29)

where A R is the lunar landing radiator area in square feet.

L is the scaling factor, and the remaining terms were defined
previously.

The evaluated top-mounted radiator equation is

AR = 0. 1259 PS + 28.027 M - 206.079	 (6-30)

Since the radiator may be attached in space it must have more
supporting structure than the ground-installed space mission radiators. A
value of 0. 9 lb/ft 2 (4. 4 kg/m2) was used for the panel section which fits
directly on the top of the vehicle. This panel may include up to 139 ft2
(12. 9 M 2) for a 15-foot-diameter module. If the radiator requires more
area than the top of the vehicle permits, then erectable leaves may be
added. These are estimated to weigh 1. 9 lb/ft 2 (9. 3 kg/m2), including the
erection mechanism.

The weight and volume of the hydrogen boiloff heat exchanger was
estimated to be similar to an Apollo EC/LSS liquid-to-gas heat exchanger,
which weighs 38 pounds (17.2 kg) and is estimated at 0.25 ft 3 (0.0071 M3).

Table 6-3 summarizes the parametric active thermal control equip-
ment data discussed. Schematically, the various components are related
as shown in Figure 6-1.

The parametric data may be used to establish characteristics for
specific missions. Once the power demand is established for all user
subsystems, and the conversion and distribution equipment loads are
defined, the basic requirements for ATC weight, volume, and power may
be found from the table. These basic requirements must then be
multiplied by the desired redundancy factors. Since the internal cooling
equipment has a somewhat flexible capability, it was assumed that redun-
dancy could be obtained by multiple systems, each a fraction of the total
requirement. Thus the circulation system weight, power, and volume is not
greatly affected by redundancy. Radiators may be designed to contain
redundant plumbing over the same area to afford a measure of redundancy.

6-10
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Radiator Area

O O O Weight Volume

ft2 2ft /PSIM 2ft	 P/ SCM ft2/P S ft2 /M
Power

lb lb/ ft2 lb /W ft3 ft3/lb
W W/PSIM W/PSCM W/PS W/MFunction Mission (m2) (m2/PSIM) (m2/PSCM) (m2 /PS) (m2 /M) (kg) (kg /m2 ) (kg/W) (m3) (m3 /kg)

Coolant circulation system (IM) All - - - - - - - 3.083 - 0. 0286 - 0.07328 0.03057 - 0.1703
(1.40) (0.00178

Coolant circulation system (CM) All manned - - - - - - - 3.083 - 0.0286 - - 0.04271 - 5.8079
(1.40) (0.00178)

Fixed space radiator (IM) All - 0.04964 0.02071 - 0.1154 - 0.2 - - - - - - - -
(0.00461) (0.00192) (0.01075) (0.975)

Fixed space radiator (CM) All manned - - 0.02893 - 3.9349 - 0.2 - - - - - - - -
(0.00192) (0.365) (0.975)

Heat pump refrigeration system Lunar Landing - - - - - - - 1.48 - 0.0286 -30 . 6 - - 0.05106 4.166
(0.67) (0.00178)

;etachable space radiator
(Area <-139 ft2 .	 512. 9 m2 )

Lunar Landing -206.1
(-19.1)

- - 0.1259
(0.0117)

28.03
(2.61)

- 0.9
(4.4)

- - - - - - - -

Erectable space radiator
(Area x 13 9 ft ? , -- 12.9 m2)

Lunar Landing -Z06.1
(-19.1)

- - 0.1259
(0.0117)

28.03
(2.61)

- 1.9
(9.3)

- - - - - - - -

Hydrogen boiloff gas heat exchanger Lunar Landing - - - - - 38.0 - - 0 . 25
(17.2) (0.0071)

Notes: O, O	 PSIM + PSCM = PS

OPS is the total electrical power demand, including conversion and distribution equipment, but not including cooling power
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Figure 6 - 1. Active Thermal Control Schematic Diagram



01% Space Division
North American Rockwell

Even so, the total area derived from Table 6-3 is doubled to ensure safety.
A sketch of the configurations is shown in Figure 6-2. ATC equipment
characteristics are presented in Table 6-4. Note that the intelligence
module radiators are located on the propulsion module.

6.4 CONCLUSIONS

Data, both parametric and fixed, have been generated for a selected,
cone_:cional, active thermal control subsystem. The configuration shown
does not appreciably affect overall vehicle operation during space missions.
Lunar landing missions require that significant additions be made to the
system to meet requirements in severe lunar surface environment.

Future studies should consider other active thermal control systems.
These may include:

a
1. Boiler use of excess water generated by fuel cells

r:
2. Integrating space and lunar landing mission radiators

3. Heat pipes for their potential weight and power savings

4. Passive cooling methods for their potential weight and power
savings

5. Louver panel radiator
-w Y

6. Absorption refrigeration cycle system

The last item received only preliminary treatment during the present
study, as reported in Appendix B. A comparison was made between the
absorption cycle and the vapor compression cycle systems, as used during
lunar surface noon. Only ammonia in a water absorber was considered as a
refrigerant, and a constant fin temperature for the radiator was assumed.
Future studies should include consideration of other refrigerants.

6-13
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Table 6-4. Active Thermal Control Subsystem Equipment

U)
b

r	 _	 `
2

Description Source

Area Weight Volume
Pwr
(w)f:2 (a..2) lb (kg) ft3 (m3)

Intelligence module basic equipment
Coolant system: cold plates, pumps, dual plumbing Apollo est - 184 83. 5 5.26 0.1489 61.6

Intelligence module added manned equipment (6 men)
Coolant system: cold plates, pumps, dual plumbing Apollo est - 141 64.8 4. 04 0. 1144 43.4

Propulsion module basic equipment
Space radiator (dual plumbing) Apollo est 80.6 7.48 16. 2 7.3 0 0

Propulsion module added manned equipment (6 men)
Space radiator (dual plumbing) Apollo est 68 6.32 13.4 6.1 0 0

Propulsion module added lunar landing equipment
GH2 boiloff heat exchanger (dual plumbing) Apollo est - 38 17.2 0. 25 0. 0070 0

Crew module equipment (6 men)
Coolant system (EC/LSS separate): cold plates, pumps. Apollo est - 168 76.2 4. 83 0. 1368 88

dual plumbing
Space radiator (dual plumbing) Apollo est 118.6 11.01 23.7 10.8 0 0

Lunar landing radiator kit unmanned equipment
Radiator panel and erection system (dual plumbing) 120 11.15 54 24.5 0 0
Coolant system: condenser, heat exchanger, plumbing - 35.4 16.1 1.00 0.0283 24

Lunar landing, radiator kit manned equipment (4 men)
Radiator panel and erection system (dual plumbing) 228 21.28 294 133.4 0 0
Coolant system: condenser, heat exchanger, plumbing - 137 62. 1 3.41 0.0965 93

9
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7.0 AUXILIARY CONTROL SUBSYSTEM

7.1 REQUIREMENTS

The tug auxiliary control system (ACS) is part of a stabilization system
that complements the vehicle main propulsion. Upon command it holds the
vehicle at a fixed inertial attitude or angular rate, maneuvers the vehicle to
a desired attitude, provides the force necessary for separation from, or
docking with, another vehicle, and damps disturbance torques. It may also
be required to steer the vehicle during main propulsion operation. For the
tug, the stabilization system may be comrr.,anded either manually or auto-
matically. In either case, the system will include both attitude and rate
feedback loops. In the concepttial phase, it is not necessary to design the
stabilization system. However, estimates of jet size, quantity, configura-
tion, and propellant usage are needed. Where possible, the estimates are
derived parametrically since a broad spectrum of missions are involved.

Several questions are addressed in this section, beginning with ACS jet
location on the vehicle and the number of jets to be used. Next, jet thrust
levels are derived from consideration of operational requirements. Esti-
mates of ACS propellant usage are obtained by examining individual mission
elements. Finally, the jet thrust level time history and the resulting pro-
pellant usage are discussed. Simplified attitude and translation control
requirements are defined to specify thrust levels within the range of Apollo
spacecraft requirements.

Present concepts of the tug indicate that it .will take roughly a cylindri-
cal form consisting of specialized modules that separately enclose one or
more of the major systems: propellant, oxidizer, main propulsion engines,
cargo, crew, and supporting subsystems. Since not all of the modules will
be included on every mission, it is desirable to concentrate the ACS on a
single module. The moment arm for a jet couple is thus approximately the
diameter of the cylinder. The distance between the jet station and the
vehicle c. g. is an alternative moment arm, but cannot be used to provide a
pure moment. A summary of the ACS requirements is given in Table 7-1.

Both forces and moments are required of the ACS to provide transla-
tional and rotational vehicle control. The most convenient arrangement is
to have the jets located in clusters of four each at-90-degree intervals around
the circumference of the cylinder and oriented parallel to standard body
axes as in the case of the Apollo service module.



01% Space Division
North American Rockwell

Table 7-1. Auxiliary Control Subsystem Requirements and Drivers

Requirements

1. Jet external envelope must fit within 15-foot-diameter (4. 56-m) EOS
cargo bay

2. ACS will provide 6-degree-of-freedom translation and rotational
acceleration levels appropriate for passive or active docking and
separation.

3. ACS will provide roll control during a single main-engine propulsive
maneuver.

4. ACS will provide adequate rotational acceleration response about any
axis for orientation maneuvers and for all disturbance damping.

5. ACS will provide adequate longitudinal acceleration for vernier
midcourse velocity correction.

6. ACS will provide adequate attitude hold precision for all sensor
pointing requirements.

7. No credible single points of failure without justification,

8. Ten-mission reusable life, three-year total life.

Drivers

1. Common propellant tankage for ACS and main propulsion.

2. Jets fail off only.

3. Independent translation and rotation capability for docking and
separation.

4. Fail-safe condition must permit docking (tug passive).

5. Unlimited maximum surge demand for two jet operation.

6. Degraded response allowed for failure conditions,

7. Not sensitive to vehicle c, g, position.

7-2
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Four clusters of four jets each provide the capability of full control
with a single jet, or even an entire cluster, inoperable. However, there
are other cc,mbinationrs of two jets failed that preclude translation in one
direction.

It ml! st be assumed at this point that the ACS will be designed such
that jets only fail off. Without this design, serious loss of propellant would
occur with a jet failure, even if control could be maintained.

7.2 JET CONFIGURATION

A preliminary description of normal and failure mode operation is
shown in Table 7-2 for a 16-jet system. Normal operation uses two to
four jets to obtain pure rotations and translations. Lateral or vertical
translation disturbs yaw or pitch control appreciably when the jet center is
greater than a diameter from the c. g. If one jet is inoperable, a logic
change to use the alternate set of roll jets is necessary to maintain full
control. Lateral or vertical translation authority is approximately one-
third of normal with one jet out. When two jets are inoperable, no lateral
or vertical translation control is left, for the worst case, and the active
docking capability is lost. A logic change is mandatory to maintain pitch
or yaw stabilization, but it requires that the jet center not be coincident
with the c. g. Other logic changes are recommended as shown. When three
jets fail, no further complications arise.

If the 16-jet system is used on the tug, there are two requirements:
The ACS must be designed so that jets cannot fail stuck on, within the
multiple failure criteria, and the ACS must be located away from the c. g.
to assure safe operation after the second jet failure.

The second requirement probably defeats the modularity and multi-
mission tug concepts. Cargo, under certain conditions, may be added to
either end of the vehicle. The IM, which should contain the jet system,
may be anywhere in the module .,tack above the PM. The IM may also be
required to operate as a free mi-Aule. All three of these conditions may
include times when the c. g. and jet station coincide. Therefore, the 16-jet
complex at a single body station will not suffice.

In an attempt to avoid a shotgun approach to the analysis of other
configurations. the following method is used. First, the question of how
many jets at a single station is necessary will be attacked. The objective
is to determine minimum complexity and number of jets to reach fail
operational - fail operational - fail safe (FO-FO-FS) and fail operational,
fail safe (FO-FS). In this case, FS means the tug is stable, but may not be
capable of active docking. The re scx a vehicle, however, could approach

-3
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Table 7-2. Auxiliary Control Jet Failure Operation

i

NUMBER
OF JET'S
FAILED

ROLL PITCH OR YAW X TRANSLATION Y OR Z TRANSLATION COMMENTS

NfJRMAL
OPERATION

401/

"—'— OPERATIONAL

(Y OR Z

ONE JET
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and dock with the FS tug and thereafter command maneuvers. It is important
at this point to realize that one step past FS means a divergent tumbling rate,
which probably precludes any rescue or salvage.

Table 7-3 shows the independent configurations necessary for rotation
and translation with a single jet station at an arbitrary distance from the
c. g. and no jets failed. All foreseen possibilities are shown for the stated
conditions. The concepts, labeled A, B, and C are combined in Table 7-4.
to show complete sets. These sets, however, suffer from weak failure
tolerances, as is indicated in the right hand four columns. For example,
combination AAA, which is identical to AAC, would be in the fail-safe con-
dition after a minimum of one jet failure. Thus, the next step is to selec-
tively add jets to increase the failure tolerance.

The FO-FS level of redundancy is reached under the conditions shown
in Table 7-5  and the FO-FO-FS level of redundancy in Table 7-6. A more
detailed analysis of the 20-jet pentad shown in Table 7-5 is given in Table 7-7,
where it is shown that the level of redundancy is FO-FS only under a combi-
nation of worst case conditions. For all other cases, FO-FO-FS or better
will be obtained.

All of the single-jet station configurations suffer from a disadvantage.
Lateral translation, when the jets are away from the vehicle c. g. , must be
accompanied by countertorquing in pitch or yaw. The result is degraded
response.

The multiple-jet-station cases are more difficult to analyze in that
literally hundreds of configurations may be postulated that use 16 to 32 jet
sets. Two generalized examples have been selected for analysis, however.
A FO-FS generalized concept is shown in Figure 7-1, in which the two jet
stations may be widely separated or they may be both on the IM. Sixteen
jets are necessary if some of the jets are canted outward to serve double
duty. Isp losses are incurred by this approach. Figure 7-2 shows a
generalized concept that uses 24 jets, with none of the jets canted.

Multiple-jet-station configurations have two distinct advantages over
those of the single-jet station. They are independent of c. g, location and
they do not suffer from degraded lateral translation response.

The 20-jet pentad configuration shown in Table 7-5 is recommended
for the following reasons:

1. The minimum, worst case redundancy is FO-FS

2. The configuration does not use radially pointing jets,; which
compound the vehicle outer envelope problem.

7-5
SD 71-292-5
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Table 7-4. Single Jet Station ACS Combinations

• 1V0 RST CASE FA ILUR V' COMBINATIONS
• ALL FAILURES TO ZERO THRUST

COMBINATION GEOMETRY
NUMBER
OF JETS C.G.

FAILURES TO FAIL SAFE

LJIVG LAT PITCH-

YAW ROLL

C. G.
Jet 2-4 1 1 1
Station

AAA, AAC 1.6

C. G. ;e
Jet 3 1 2 1
Station

C. G.
Jet 2-4 2 1 3
Station

ABA, ABB 16
C.G.
Jet 3 2 3 3
Station

C.G. =
Jet 2-4 3

1
3

Station

AAB, ABC —$ 20
C.G. #
Jet 3 2 4 3
Station

r 	 77, 777r r ..._
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Tat le 7-5. Redundancy Requirements for Single Jet Station ACS
With FO-FS Redundancy

• FAIL-OPERATIONAL, FAIL-SAFE REQUIREMENT

ALL FAILURES TO ZERO THRUST

D ^►

. S.
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CONDITION
NUMBER OF
JETS REQUIRED. GEOMETRY
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20 -$

B' 24
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Table 7-6. Redundancy Requirements for Single Jet Station ACS
With FO-FO-FS Redundancy



Table 7-7. Failure Mode Analysis of a 20-Jet, Single-Station Configuration
—^ INDICATES JETS USED
_.^. INDICATES FAILED JETS
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NO FAILURES: - OPERATIONAL
ATTITUDE - COUPLES IN 3 DEGREES

OF FREEDOM
TRANSLATION - 2 ENGINES IN EACH

DIRECTION

ONE FAILURE: - OPERATIONAL
ATTITUDE - COUPLES IN 3 DEGREES

OF FREEDOM
TRANSLATION - 2 ENGINES IN EACH

DIRECTION

TWO FAILURES: - SAFE
ATTITUDE - SINGLE ENGINE OFF THE CG
TRANSLATION - SINGLE ENGINE WITH

ATTITUDE INDUCED MOTION

15 FT

I

I

VIEW A-A
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3. It is relatively simple, in that few jets are required and only four
clusters are needed. Only one jet station is required.

4. All jets may be rated at the same thrust level.

7. 3 JET THRUST LEVEL

In a rate-stabilized attitude control system, the factor dominating ACS
control-moment levels is adequate authority over disturbances. If a factor
of approximately seven is maintained over all prolonged distrubance torques,
then the ACS will meet any other attitude control requirement for large
thrust. The thrust level thus obtained may also meet requirements for
sensitive control, docking, navigation sightings, etc. , provided that the
vehicle mass and moments of inertia do not radically change during the
mission,

For assurance of adequate response during maneuvers, the jet thrust
level must be of sufficient magnitude. A reasonable case of the largest pitch
or yaw moment of inertia, in conjunction with the most constraining maneuver
time requirement, would set the upper thrust level requirement. Unfortu-
nately, neither the times nor the configuration yielding the largest moment
of inertia (including payload) are easily identified this early in tug develop-
ment. Spur-of-the-moment calculations conducted during the study produced
results ranging from 123 lb/jet (547 N/jet) to 350 lb/jet (1557 N/jet). All
the calculations assumed maneuver times based on intuition only. As will
be shown, it is desirable to keep the maximum thrust as low as possible.
The most reasonable value, therefore, appears at this time to be 200 pounds
(890 newtons).

More data exist to support the requirements for minimum jet thrust.
A minimum pulse should produce a rotational or translational velocity change
at least half an order of magnitude less than any velocity error allowance
for docking. This will be referred to later as the docking resolution require-

,

	

	 ment. Apollo easily met this requirement, with the help of a very low mini-
mum pulse duration (approximately 0. 013 seconds). If 0 2 /H2 propellant is

_	 used with tug, indications are that the minimum pulse duration is nearer
0. 050 seconds. The longer the pulse, the louver the thrust level has to be
to achieve the same velocity change.

Another driver for a low minimum thrust is propellant u ,age. As will
be shown, propellant increases as the square of the minimum impulse bit
(thrust times minimum pulse duration) during attitude hold. Long coast
periods during which attitude hold control is used could account for a major
portion of ACS propellant if the jets are too large. From another standpoint,
the lower the thrust level progresses, the more susceptible the control
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system is to the effects of disturbances. The major disturbances are
strongly influenced by vehicle configuration. Since tug is designed to be
somewhat variable in configuration, thrust should likewise be variable to
optimize propellant consumption.

The conclusion is that a variable-thrust-level ACS is necessary to
meet the varied requirements of tug, either by selection of multiple jets,
use of mu tiple jet levels, or by throttling jets. The throttling approach is
recommended for the following reasons:

1. No jet configuration change is necessary to increase or decrease
the variable range.

2. Only slow response throttling is necessary; therefore, simple
propellant flow rate valves may be used.

3. Throttling capability will pay for itself in propellant weight saved
and is less complex than the other alternatives.

Several ACS operating regimes may be encountered during a tug
mission. The requirements of each regime have been established during
development of other spacecraft and are applicable to the tug. This study
employs Apollo program spacecraft criteria as a basis for these require-
ments, since nearly all tug manned-mission elements have Apollo parallels.
Although it is not necessarily true that the control forces and moments
adapted for Apollo spacecraft represent the only appropriate ranges, adequate
control characteristics are assured if they are used. Because the ACS jets
are only part of the stabilization loops, the angular and translational acceler-
ations they produce are time-limited by velocities. Through proper sizing
of the moments and forces they produce, desirable system responses will be
generated. The objective of the approach taken is, therefore, to produce
tug control that responds the same as Apollo spacecraft.

Anoth,W .7! reason for relying on Apollo requirements is to preclude the
design of an Jnefficient system. Unnecessarily large control moments cause
jets to operate in short bursts, which requires fast-acting elements in the
rest of the control loop and jet operation at low Is p* Weak control moments
optimize Isp and loop element cost but give sluggish response to commands
and are unable to damp disturbances rapidly. These points are summarized
in Figure 7-3.

Typical Apollo CSM and LM mass properties data used in the analysis
are given in Tables 7-8 and 7-9. From the data, the rotational and transla-
tional accelerations shown in Table 7-10 were computed. These accelera-
tions are the end product of years of intensive study in the -areas of handling

7-14
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• MINIMUM IMPULSE JET OPERATION
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• HIGHER COST AUTOPILOT, DRIVER
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• RAPID RESPONSE TO COMMANDS

i
• TIME-CONSUMING MANEUVERS (HIGH ISO
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Figure 7-3. Angular Acceleration Requirement Bounds



Mission Phase
W

(lb/kg)

Ixx
(slug-ft2/

kg-m-sec2)

Ivy
(s jug -ft2 /

kg-m-sec2)

Iz z
(slug-ft2/

kg-m-sec2)

After CSM/LM separation 33,900/15,377 23,080/3,191 26,040/3,600 25,980/3,592

Touchdown 16,933/7,681 13,150/1,818 15,190/2,100 17,515/2,421

Liftoff 10 ,699/4 ,853 6,710/928 3,390/469 5,910/817

Prior to CSM/LM docking 5,634/2556 3,265/451 2,950'/408 2,070/286

Effective RCS thrust moment arm = 5 feet/1. 5 meter (x axis), 5. 5 feet /1. 7 meter (y and z axis)

d
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Table 7-8. Apollo CSM Mass Properties Data

Mission Phase
W

(lb/kg)

Ixx
(slug-ft2/

kg-m-sec2)

Ivy
(slug-ft2/

kg-m-sec2)

Izz
(slug-ft2/

kg-m-sec2)

CSM separation and transposition
docking 63,484/28,796 7 3,970/4 ,696 78,300/10,824 80,570/11,139
CSM/LM prior to LOI 91,200/41,276 52,200/7,216 518,000/71,613 5Z9,000/73,134

CSM in lunar orbit 37,085/16,821 20,417/2,8Z3 57,015/7,882 63,475/8,775

CM/SM prior to separation Z5,655/11,637 14, 350/1, 984 47, 345/6, 545 48,430/6,695

Effective RCS thrust moment arm = 7. 25 feet/2. 21 meter) in each axis

Table 7 -9, LM Mass Properties Data
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qualities, disturbance environments, and timing constraints. It may be
noted in the table that the LM control moment authority is much greater
than that of the CSM, since LM RCS must steer during main propulsion
operation. Both stages of the LM rely on a single RCS system, which
indicates that the preferred control acceleration may adequately cover a
large range.

The throttling ratio may be calculated from a consideration of docking
resolution. Angular rate is the most constraining of the six docking accuracy
requirements listed in Table 7-10 for a small vehicle. To maintain a ± 1. 0
deg/sec envelope, the control system must at least be able to control within
0. 4 deg/sec. Assuming a 15-foot-diameter jet couple with a minimum pulse
duration of 0. 05 sec allows derivation of the maximum thrust level for
rotational rate docking resolution with Apollo requirements for any vehicle
moment of inertia. The minimum value of the thrust level results from
considering the lowest obtainable moment of inertia. This value is approxi-
mately 2940 slug-ft 2 (406 kg-m-sec 2 ) for the mini-tug pitch axis. With the
data used in a simple torque equation, the jet thrust level is calculated to
be 27 pounds (120 newtons). The throttling ratio from the assumed 200-pound-
rated (890-newtons) thrust is then 7. 4 to 1. Further analysis has indicated
that a throttling ratio of 5 to 1 is adequate for all other tug configurations.
As a special case, the mini-tug flow-rate valves might be designed to give
a larger throttle ratio.

7.4 ACS PROPELLANT USAGE ANALYSIS

For calculating the propellant used by auxiliary propulsion during a
specific mission and for a defined vehicle configuration, approximate equa-
tions have been derived. These equations include many simplifying assump-
tions, but yield results sufficiently accurate for their purpose.

The known or assumed data pertaining to the calculations are:
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Operation Requirements and Assumptions Expected Nominal Acceleration

Attitude hold and Independent of acceleration None
stationkeepng

Disturbance settling Main propulsion self-stabilizing. 	 RCS provides initial 0. 16 to 1.8 deg/sect (1)
and attitude maneuvers orientation and shutdown transient control.

RCS attitude stabilization during main propulsion 2.4 to 30 deg/sect (2)
operation

Docking and separation Axial Velocity:	 0. 1 to 1. 0 fps (0. 03 to 0.3 mps) 0. 16 to	 1.8 deg/sect (1)

Radial Velocity: 0 to t0. 5 fps (0 to f0. 15 mps) 0. 07 to	 0.50 fps2 (3) 0.02 - 0. 15 mps?-

Angular Velocity.: 0 to tl . 0 deg/sec 2. 4 to 30 deg/sec (2)

Roll Angular Position: 0 to *10 deg 0. 19 to	 2.29 fps2 (4) 0. 06 - 0. 70 mps2

Pitch and Yaw Angular-Pos: 0 to f10 deg

Radial Position: 0 t 12 inches (0 t 30 cm)

Lunar landing Main propulsion self-stabilizing.	 RCS provides initial No data
and launch orientation and shutdown transient control.

RCS attitude stabilization and horizontal translation
t hrusting during main propulsion operation

3. 6 to 18. 7 deg/sect (3)
0. 38 fps	 (4) 0.115 mps

(1) .Apollo CSM pitch or yaw rotational bounds

(2) LM pitch or yaw rotational bounds

(3) Apollo CSM translational bounds

(4) LM translational bounds
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Atmin Minimum jet pulse duration

AV Translational velocity change

F Single ACS jet thrust level

2 Vehicle overall length

g Earth gravitational acceleration

I sp Rated specific impulse

©db Attitude-hold deadband half-amplitude

80 Initial angular rate error

W Total vehicle weight

K ACS propellant flow constant for main propulsion roll control

Xi Distance from an arbitrary reference point on the vehicle
center line to the geometrical center of the i th module

The data to be derived are

	

IX 	Roll moment of inertia

	

Iy	 Pitch or yaw moment of inertia

	

WP	 ACS propellant weight for an operation

	

To	 Minimum attitude maneuver time

	

T	 ACS jet operating time
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A better approximation, however, considers the modules as separate
cylinders with individual densities. The roll moment of inertia is essentially
unchanged:

where the Wi are the individual module weights. The pitch or yaw moment
of inertia is more difficult to derive. The moment of inertia of each
individual module about its own c. g. is

Wi d2 Q?

I	 7 + 12Yo.	 g
i

Each of the centroidal moment of inertias must be translated to the
total vehicle c. g. , defined as

where Xi and X are measured from the same arbitrary reference point on	 ..^F
the vehicle center line. The distance translated for each module is

D. = X - X.	 (7-6)

In the translation to the total vehicle c. g. , the moment of inertia of
each module increases accoring to the parallel axis theorem:
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Of the two major terms in parentheses, the second may be simplified.
Expanding this term,

1	 EWiXi 2 2	 EWiXi	 1	 2

g Wi £W,	 g WiXi Z;W + g WiXi

which is the same as

(7-8)

1 (EWiXi)2

g EWi

2 ( EWiXI)2

g EWi + 1 JW.X. g (7-9)

The first two of these terms may be combined, and the resulting form of
Equation ( 7-9) substituted into the complete equation is

2	 2	 EW,Xif	 (EW,X,)
y	 g (ITZ g ^	 gi

which condenses to its final form:

W,	 2 f ?	 2	 - (EWiXi)2
(
d
1-6 g 	 + 12 + Xi	 g F W.	 (? -11

7.4. 2 Lateral and Longitudinal Translation Equations

Lateral and longitudinal translation is described by a simple force
consideration:
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7.4. 3 .ACS Roll Control for Main Propulsion

If the tug is designed for a single main propulsion engine, the engine
is incapable of gimbaling for roll control. ACS roll control in this case
probably uses an insignificant amount of propellant. Estimates of propellant
usage should come from flight or test data. The form of these data is an
average flow rate, K.

W  = K at	 (7-14)

7. 4.4 Main Propulsion Shutoff Disturbance Damping Equations

During main propulsion engine shutoff, appreciable lateral forces are
incurred, which gives rise to a net vehicle angular rate in an arbitrary
direction. This rate is then damped by the ACS. Assuming a simplified
logic as shown in the top sketch in Figure 7-4, the operation is completed in
one cycle. To fit the case at hand, the torque equation is

d	 60nF2 I
= Y( T 3)

(7-15)

where Iy was selected as a typical axis of concern. For convenience, assume
a zero coast period so that At in Equation 7-13 may be substituted for T in
Equation 7-15. Solving for propellant in the final form,

6I e
W  = I— d0	 (7-16)

sp

7. 4. 5 ACS Attitude Maneuver Equations
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A part of the desired attitude change is covered while the moment is applied
and is described by its second integration:

6 = nFdT2	
7-18

1 ^—	 ( )

y

The total maneuver time, At, is composed of

oAt = T + —: --	 7-19
6	 (	 )
max

and the total maneuver angle, 06, includes

06 = (82 - 6 1 ) + 2 6 1 = 6 2 + 61	
(7-20)

When the coast period is zero, 06 = 28 1 , and from Equation (7-18),

2 8Iy^16
T o	 nFd	 (7-21)

which represents the minimum time to rotate the vehicle through a given
angle by operating the ACS continuously, The five equations, (7- 17) through
(7-21) maybe used to eliminate 6 1 , 6 2 , and 8max to yield

2	 2 1/2
T	 At - (L^t - T O ) (7-22)

The maneuver propellant is found by substituting Equation (7-22) into the
definition of I

sp
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and thrust level of the jets. Minimum propellant usage, therefore, results
from the relaxation of pointing requirements and the decrease of force.

The attitude hold model is shown in the bottom sketch of Figure 7-4.
It ignores the effects of system lead generated with rate feedback and the
effects of disturbance torques. From the sketch, the total limit cycle dura-
duration is

t = ZA i + 4c	 mn
eb (7-24)

Now integrating the ACS moment about any single axis yields the rate of
drift across the deadband:

nFd at min	 (7-25)41 

Substituting Equation (7-25) into Equation (7-24) and factoring,

t 2	of 2. + 8 6db I	 (7-26)0c	 tmin I min	 nFd .

At its minimum expected value, the second terrr-s,,in the brackets is an order
of magnitude larger than the first term in the brackets. Therefore, an
approximate form of Equation (7-26) may be used:

16 6db I	 2	 8 6db It	 atc — nFd Lit	 min << nFdmin
(7-27)

The total coast period is composed of p cycles, each of which is tc in

duration:
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Substituting Equations (7-27), (7-28), and (7-29) into the definition of Isp,

W _ nF A ton
p	 I

sp

(nF at min ) 2 0 t d
I
sp

(7-30)

giving the final form of the equation for single-axis attitude hold. A more
useful form includes three-axis attitude hold by combining moments of
inertia:

2	 2	 1Wp _ (nF^t min) Ot d I + i	 (7-31)
8 1 s 8db	 y x

Since attitude hold propellant is sensitive to many factors, some insight is
needed for the proper use of Equations (7-30) and (7-31). The single-axis
equation was plotted in a propellant flow rate versus moment of inertia field.,
shown in Figure 7-5. Apollo data from Table 7-8 have been included for
comparison. Actual Apollo flight data, although difficult to interpret, appear
to lie above the broad bars, indicating the equation yields slightly optimistic
results. The ACS equations are summarized in Table 7-11.'

7. 4. 7 ACS Propellant Computation

All. of the acceleration data derived from Apollo RCS capabilities, and
shown in Table 7-10, were used in a computer program together with the
propellant estimation equations derived here. The program also contained
logic necessary to control the ACS thrust level within the Apollo requirements.
The program was developed not to produce data for mission time lines, but
rather to prove the feasibility of defining ACS requirements with this approach.
A flow diagram of the program is shown in Figure 7-6. Two examples of
program results are shown in Figure 7-7 and 7-8. The examples were run
early in the contract study and used preliminary data. In the examples no
restriction on throttling ratio was exerted. For serious design, however_
the throttling ratio should be held within a range that allows use of a simple,
reliable flow control valve. It may be seen in both figures that the thrust
was decreased by the program logic when a prolonged period of attitude hold
was forseen. Equation (7-3 1.) shows that propellant usage over these periods
increases as the square of the thrust level; and, if throttling were not
incurred, much larger propellant usage would result.

Although no further use of the computer program was undertaken
during the study, the equations were used in the Mission Functional Analysis



Table 7-11. ACS Propellant Equations

Function Equation

Roll moment of inertia IX
d2

=	 Wi
89

2	 (EWixd
Wi .	 d 2 p i	 2	 -

Pitch or yaw moment of inertia Iy 1	 16 + 12 
+X

g EWg

W AVLateral or longitudinal translation W =
IP g
sp

Single main propulsion engine roll control W  = K At

6I	 8
Main propulsion shutoff disturbance damping W =	 y	 o

P Isp d

1	 2nF 22 Z=- T
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Figure 7-5. Attitude Hold Propellant
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INPUT DATA: CASE TITLE
TIMELINE: TIME

OPERATION DESCRIPTION
TOTAL WEIGHT
TOTAL LENGTH
AV REQUIRED
ATTITUDE ANGLE REQUIRED

VEHICLE DIAMETER
MINIMUM JET PULSE WIDTH

FIXED DATA: NOMINAL ISP
MINIMUM ISp
GRAV ACCELERATION
VEHICLE ACCELERATION BOUNDS
NO. COMBINED JETS
ATTITUDE DEADBANDS
PROPELLANT FLOW RATE

MOMENT OF INERTIAL COMPUTATIONS

HOLD MODE

OUTPUT DATA: CASE TITLE
TIMELINE: OPERATION DESCRIPTION

TIME
THRUST LEVEL
PROPELLAN T USAGE
TOTAL IMPULSE
MOMENTS OF INERTIA

TOTALS: PROPELLANT+ CONTINGENCY
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Computer program, which is described in the Operations .Analysis section
of the report. Results of this program show the depletion of other expend-
ables in conjunction with ACS.

7.5 RECOMMENDATIONS

An ACS jet configuration that incorporates multiple failure tolerance,
without inhibiting the advantages of Tug modularity, requires 20 jets. The
ACS design requires throttleable jets to utilize common tankage without
reducing the tug multimission scope. The maximum jet thrust is 200 pounds
(890 newtons) with a 5 to 1 throttling ratio set tentatively until refined
vehicle configurations and mission descriptions are available.

Rotational and translational acceleration bounds, reflecting thrust
moment and force levels, have been set by Apollo design. These, together
with the approximate equations derived in this section, are sufficient to
determine the ranges of total impulse and propellant required. Early
indications are that the total impulse range is from 75, 000 to 200, 000 lb-sec
(334, 000 to 890, 000 newton- seconds).
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8.0 AUXILIARY CONTROL PROPULSION SUBSYSTEM

8.1 REQUIREMENTS

The wide range of space tug missions and payloads results in ACPS
total impulse requirements that vary from 75, 000 to 200,000 pound-seconds
(334, 000 to 890, 000 newton-seconds). The functions that must be performed
by the ACPS include (1) attitude control, (2) rendezvous and docking, and
(3) delta-V maneuvers under the minimum capability of the main propulsion
system. This range of functions, coupled with the different payloads and
missions, demand thrust levels that range from 200 to 40 lbf (890 to
178 newtons). The tug operating life and maintainability requirements differ
so from those of the currently operational attitude control propulsion sys-
tems that off-the-shelf hardware is not really available, even for the earth
storable liquid bipropellants. North American Rockwell experience indicates
that total impulse (propellant) requirements for attitude control systems
usually increase as system design progresses. For this reason, in addition
to the variations in preliminary requirements, it is felt that heavy emphasis
must be assigned to growth capability and mission flexibility. The prelimi-
nary space tug ACPS requirements are presented in Table 8-1.

Table 8-1. ACPS Requirements

Total impulse

Maximum thrust

Minimum thrust
(for attitude hold)

Minimum engine ON time

759 000 to 200, 000 Lbf-sec
(334, 000 to 890, 000 N-sec)

200 Lbf (890 N)

40 Lbf (178 N)

50 milliseconds

Number of engines	 20

System lif e	 10 missions
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8.2 ACPS CANDIDATES

The candidate propellants for the space tug ACPS are earth storable
liquid bipropellants and monopropellants, in addition to the cryogenic
bipropellants used for the main propulsion system. In the past, spacecraft
attitude control propulsion has been limited mainly to earth storable hyper-
golic bipropellants for larger (manned) systems and monopropellants or cold
gas for the smaller (unmanned) systems. The main propulsion systems for
these spacecraft operations have generally used earth storables rather than
cryogenic propellants. Since the space tug will utilize cryogenic propellants
for the main propulsion system, the use of these same propellants for the
ACPS is desirable. This is especially advantageous for space-based opera-
tion, which will require space resupply and maintenance. Because of the
impracticality of distributing liquid phase propellants to the engines through
long manifolds, the ACPS thrusters must be supplied with oxygen and
hydrogen in the gaseous phase. The development of this gas-gas oxygen/
hydrogen attitude control propulsion technology is in progress for the EOS
and the space station.

Preliminary screening of potential candidate propellants led to selec-
tion of the following candidates for more thorough evaluation.

1. Earth storable liquid bipropellant (nitrogen tetroxide/
monomethylhydrazine)

2. Earth storable liquid monopropellant (hydrazine)

3. Cryogen-.c bipropellant (gaseous oxygen/gaseous hydrogen)

Other candidate propellants were considered initially, but were dis-
carded prior to conceptual system design. The higher-energy earth storable
bipropellant combinations, which use chlorine trifluoride or chlorine penta-
fluoride, offer good performance but the state of the art has not progressed
to the point where the added performance is worth the added cost and risk.
Further, the use of corrosive-toxic propellants complicates servicing,
maintenance, and logistics with the attendant possibilities of plume damage
to payloads or other vehicles, and hazards to personnel.

The cryogenic propellant combinations that use elemental fluorine were
rejected because performance is not much better than can be obtained with
G02/GH2 and the oxidizer has the same corrosive, toxic properties of the
fluorine compounds mentioned. Finally, if cryogenics are used, it is advan-
tageous to use common propellants with the main propulsion system, which
simplifies resupply and allows use of common tankage, not only for propel-
sign, but for lif a support and fuel cells.

8-2
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With the candidate propellants restricted to earth storable
(bipropellants or monopropellants) or cryogenics (GO2/GH 2 ) the next step
was conceptual design of the propulsion system, and in some instances,
comparison of alternate concepts for each propellant combination.

Further evaluation led to selection of five candidate systems. They
are described here and shown in Figures 8-1 through 8-5.

8.2.1 Low-Pressure GO2/GH2 System

The low-pressure GO2/GH2 system takes propellant (either liquid or
gas) directly from the main propellant tank through a heat exchanger and a
pressure regulator and to the engines. The system considered here does
not have an accumulator, but that could be added. The major advantage of
this system is that it uses low-pressure propellants from the main tanks.
It does not use turbopumps or compressors. The low-pressure system has
the disadvantage of being bulky and relatively heavy, since the low P c engines
become quite large if a high area ratio is used. To fit within the design
envelope, the system's  area ratio must be cut back to about 5, giving a
specific impulse of only 375 seconds (3680 N-s/kg). Moreover, the low-
pressure system is more sensitive to pressure and temperature changes
than the high-pressure systems, and more accurate regulation is required
for throttling. This system has been considered for the EOS, but tug is
likely to have even lower main tank pressure, since it is more sensitive to
residual gas weight. This implies that current low P c thruster technology
development may be inapplicable.

8.2.2 Pump-Fed GO2/GH2 System

The pump-f ed GO2 /GH2 system pumps liquid propellants from the
main tanks to the heat exchanger, where they are converted to the gaseous
state and stored in accumulators. Pressure regulators downstream of the
accumulators provide propellants to the engines at a pressure of approxi-
mately 300 psia (207 n/cm 2 ). This inlet pressure allows an engine chamber
pressure of 250 psia (173 n/cm 2 ), which results in a compact engine and a
specific impulse of 420 seconds (4110 n-s/kg). -The accumulators provide
enough propellant to allow operation of four engines steady state for 20 sec-
onds. The pumps and conditioning unit are expected to have a response of
less than five seconds and a maximum flow rate that exceeds (by a small
margin) the four-engine steady-state flow requirements. These design
values were chosen .to give a good balance between accumulator weight and
turbopump short-cycling duty requirements.
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The chief disadvantage of the pump-fed system is that use of a positive
expulsion device in the main tanks is necessary to provide liquid propellants
to the pumps since mixed-phase pump work would be excessive. While this
system offers the best flexibility and growth potential, it requires the most
apparatus of the five candidate systems considered.

8.2.3 Supercritical G0 2 /GH2 System

This system uses independent supercritical propellant storage from
which gas-phase propellants (above critical temperature) are passed through
a heat exchanger and then through a pressure regulator and to the engines.
This system would operate at the same chamber pressure as the pump-fed
system. The supercritical storage offers the advantage of single-phase flow,
which alleviates the need for an expulsion device, and a simplified condition-
ing unit. The major disadvantage of this'system is that it is not integrated
with the main tankage and is, therefore, limited in flexibility.

8.2.4 Storable N2O 4 /MMH System

The candidate storable liquid bipropellant system selected for this
study uses nitrogen tetroxide (N 2O 4) and monom ethyl -hydrazine (MMH).
This propellant combination is hypergolic and, therefore, requires no igni-
tion device. N2O 4 /MMH systems have been used extensively in spacecraft
and have been developed to a high degree. The components developed for
these systems have fairly short lives, however, and for the reusable space
tug rnodifications would be necessary. The use of moderately toxic-
corrosive propellants that are not interchangeable with the main propellants
is, of course, the major disadvantage of this system. For a vehicle designed
to a relatively low impulse specific mission, this system is extremely attrac-
tive, but it is not as applicable to multipurpose vehicles.

8.2.5 Storable Hydrazine Monopropellant System

Hydrazine (N 2H 4) monopropellant systems have seen extensive-use
since the development of the Shell 405 spontaneous catalyst in 1964. These
systems have been used for numerous attitude control systems and, although
performance is rather low (compared to bipropellants), they offer simplicity,
low cost, ease of development, good storability, low-temperature exhaust,
and relatively clean exhaust (ammonia). Use of a separate low-performance
propellant that cannot be replenished from the main tanks results in loss of
flexibility and complicates servicing and maintenance. As in the case of the
liquid bipropellants, the hydrazine system could be attractive for design of
a one-shot low-total-impulse-mission vehicle.

k

8-9
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8.3 CANDIDATE ACPS WEIGHTS

Weight estimates for the five ACPS candidates are listed in Tables 8-2
through 8-6 for different total impulse values. Figure 8-6 depicts total sys-
tem effective burnout weight as a function of total impulse for the candidate
systems. Total system effective burnout weight is approximated as the sys-
tem weight plus one-half of the usable propellant.

Weights presented herein are based on use of twenty 200-pound-thrust
(890-newton) engines and component redundancy as necessary and practical
for reliability. It should be noted that a portion of 'the integrated systems
weight can be charged to the electrical power systerW, and the environmental
control system based on the amounts of oxygen and hydrogen that they use.

8.3. 1 Candidate Trades

Although the main propulsion system trades are mostly governed by
performance considerations, the primary factors involved in the choice of
the ACPS concept do not include the usual performance index—impulse
weight ratio. From the preceding discussion, it can be seen that there is
little weight difference between the competitive concepts after the integrated
systems are compensated for their support of the electrical power and
environmental control systems. All the candidate systems have adequate
functional capability and. performance for a nominal tug mission. The pri-
mary evaluation factors are discussed in the following paragraphs:

8.3.2 EOS Compatibility

With respect to EOS compatibility, the oxygen/hydrogen systems rate
much higher than the storable systems because of storable propellant
toxicity, contamination, and corrosive properties. In the case of an abort,
it might be necessary to dump propellants, which would be somewhat more
simple with oxygen/hydrogen than with storables. It would also probably be
simpler to dump from the main tanks only rather than from main tanks plus
independent tanks.

8.3.3 Programmatic Factors

Space tug propulsion technology will be favored by any similarities in
design choice with the EOS and space station programs. However, the EOS
and space station choices are not now firm in many areas. The approach
used in this study was to consider first the design alternatives irrespective
of their status in order to determine their payoff. At that point, the develop-
ment risk and cost of any promising technology advancement that is not
certain for EOS or space k3tation must be assessed twice, with and without

{ ;	 the other program technology. At this time it is not possible to make those
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Table 8-2. Low-Pressure ACPS Weights

Metric Units (kg) English Units (Lbm)

445, 000 n-s 890,000 n-s 100,000 lb-sec 200, 000 lb-sec

02 H2 02 H2 02 H2 02 H2Total Impulse

Propellant weight 155.0 25.8 212.0 51.7 233 57 466 114
(from main tanks)

Storage tank penalty 4.1 6.8 8.2 13.6 9 15 18 30
from main tanks

Conditioning unit

Gas generators 595 5.5 5.5 5.5 12 12 12 12

Heat exchanger 6.8 9.1 6.8 9.1 15 20 15 20

227.0 227.0 500 500Engine

Lines and valves 38.1 38.1 84 84

Tonal system weight 435.0 576.0 957 1271

Effective burnout weight 368.0 445.0 812 981
(Total weight
1/2 usable propellant)
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100, 000 lb-sec (445, 000 n-s) 200,000 lb-sec (890, 000 n-s)

02 (lbm) H2 0 2 (kg) H2 02 (lbm) H2 02 (kg) H2Total Impulse

Propellant weight 208 52 94.3 234 4 11 104 18 9. 0 47.0
(from main tanks)

Storage tank penalty 8 13 (	 3.6 5.9 16 26 7.2 11.8
from main tanks

Accumulator 27 54 12.2 24,5 27 54 12.2 24.5

Insulation 3 5 1.4 2.3 3 5 1.4 2.3

Residual propellant 14 4 6.3 1.8 14 4 6.3 1.8

Conditioning unit and plumbing
i

(2 ea) TurboP umpss 31 45 f	 14.0 20.0 31 45 14.0 20.0
Gas generators 12 12 5.4 5.4 12 12 5.4 5.4
Heat exchanger 15 20 6.8 9.1 15 20 6.8 9.1

260 118 260 118Engines

Lines and valves 22 10 22 10
(in intelligence module)

Total system weight 805 365 1086 493

Effective 'burnout weight 675 306 826 375
( total weight
1/2 usable propellant)
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100, 000 lb-sec (445, 000 n-sec) 200, 000 lb-sec (890, 000 n-sec)

02(lbm) H 2 02 (kg) H2 OZ (lbm) H2 02 (kg) H2Total Impulse

Propellant weight 225 57 102.0 26.0 450 115 204.0 52.1

Storage tank 70 175 32.0 79.0 140 350 63.5 159.0

Insulation 4 8 1.8 3.6 11 18 5.0 8.2

Heat exchanger 15 20 6.8 9.1 I	 15 20 6.8 9.1

Gas generator 12 12 5.4 5.4 12 12 5.4 5.4

260 118 260 118Engines

Lines and valves 22 10 22 10

Total system weight 880 399 1425 646

Effective burnout weight 750 340 1165 528
(Total weight - '
1/2 usable propellant)
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Table 8-4. Supercritical Storage ACPS Weights
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Total Impulse

75,000 lb- sec
(333, 616 n-s)

200, 000 lb - sec
(890, 000 n- s)

300 , 000 lb-sec
(1, 334, 000 n-s)

lbm kg lbm kg lbm kg

Propellant weight 274 124.0 732 332.0 1097 498.0

Storage tanks 31 14 . 0 43 20 . 0 50 23.0

Helium storage 23 10.0 36 16.0 44 20.0

Helium 3 1.4 6 2.7 11 5.0

Lines and valves 30 13.6 30 13.6 30 13.6

Engines 190 86.2 190 86.2 190 86.2

Total system weight 551 250 . 0 1037 470 . 0 1422 645.0

Effective burnout weight 417 189 . 0 680 308.0 886 402.0
(total weight -
1 /2 usable propellant)
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Table 8 - 5. Bipropellant N2O 4 /MMH ACPS Weights



Table 8-6. Monopropellant Hydrazine ACPS Weights

Total Impulse

50,000 lb-sec (222, 411 n-s) 150, 000 lb-sec (667, 233 n-s)

lbm kg lbm kg

Propellant weight 260 118.0 775 354.0

Storage tank 12 5.4 33 14.9

Helium storage 15 6.8 45 20.4

Helium 3 1.4 5 2.3

Lines and valves 25 11.3 25 11.3

Engines 160 72.6 160 72.6

Total system weight 475 215.0 1043 473.0

Effective burnout weight 350 159.0 668 303.0 
( total weight -
1 /2 usable propellant).
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assessments. However, it is felt that for a Prephase A evaluation, all of
the candidate systems are acceptable from° a programmatic point of view.
It must be noted, however, that storable system development would be con-
siderably less expensive than the GO?/GH 2 systems. These factors will
require careful consideration and reevaluation in subsequent design phases.

8.3.4 Mission Operations Margin and Flexibility

The maximum operation margin and flexibility are obviously obtained
by use of an integrated (replenishable) ACPS. This is true not only from the
ACPS point of view, but also regarding life support, electrical power, and
main propulsion. Growth of a system of this type is limited only by main
tank propellant limitations. Of the two candidate integrated systems, the
pump-fed system, although more. complex, is selected as the most flexible
because of better performance, compactness, and a higher propellant pres-
sure, which allows more margin for throttling the engine thrust.

8. 3. 5 Maintainability, Reliability, and Operating Lif e

Design margin plus redundancy is the usual approach used to achieve
mission success. Future long-duration missions will require drastic
improvements in system capability, but the expected increase in component
reliability will not be sufficient to achieve the mission requirements. Also,
a point is reached where in-flight maintenance is a more effective method of
meeting requirements than the use of redundancy. In the case of the space-
based tug, it is expected that ACPS mission success will be achieved by a
combination of hardware design, redundancy, and in-flight maintenance.

As mentioned, space tug maintenance and life requirements differ con-
siderably from those of presently operational spacecraft. The attitude
control propulsion systems are usually designed and qualified for one mis-
sion. Propellant lines and components are brazed in place, which makes
component replacement difficult even on the ground. Another major problem
in maintenance of an earth storable bipropellant system is the necessity to
decontaminate the system before opening it to make repairs. This is neces-
sary because the propellants are toxic and corrosive. The components are
designed with extensive use of elastomeric materials, which are effective
seals for relatively short missions but are not compatible with the earth
storable propellants or space environment for any length of time. Because
of these problems, the so called off-the-shelf components are generally not
expected to be suitable for the space tug, but in the case of an expendable
version an off-the-shelf storai)J--: system would be attractive. Because of
the other problems associated with earth storable propellants, such as
plume contamination, toxicity, interface complexity, low performance, and
lack of flexibility (due to separate fixed propellant supply), an attempt to
develop a system of this type with the necessary operating life and

8-17
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maintainability does not seem practical. The gaseous oxygen/gaseous
hydrogen systems being developed for tug-associated programs will be
designed with maintenance in mind and they have the major advantage of
being nontoxic with clean exhaust products. This is important and possibly
essential for space maintenance.

8.4 CANDIDATE COMPARISON

Table 8-7 presents relative comparisons of the five candidate systems
in each of the evaluation categories. It can be seen from the table, as well
as from the previous discussion, that there is no clear cut winner among the
candidates. To select a baseline system it is necessary to assign priorities
to the evaluation factors. In this study it is felt that maximum weight must
be assigned to mission margin Iflexibility, closely followed in importance by
EOS compatibility and maintenance/operating life. Under these ground rules,
the pump-fed GO2/GH2 system is the logical selection for the baseline ACPS.
For an expendable tug, the evaluation factor weights would be considerably
different, and the storable bipropellant would be selected.

8.5 BASELINE ACPS

The baseline pump-fed ACPS characteristics are shown in Table 8-8.
The accumulatir characteristics are given in Table 8-9 and general per-
formance information is presented in Table 8-10. The accumulators were
sized initially for a 60-second supply of propellant (with four engines firing),
but later were reduced in size to a 20-second propellant supply after it was
determined that the conditioning unit could respond within five seconds. The
pressure regulators located downstream of the accumulators will be designed
to regulate at a pressure of approximately 300 psia (207 n/cm 2 ) for normal
operation with a throttling capability to allow thrust reduction to 40 pounds
force (178 n) as required.

One of the major objections to the pump-f ed ACPS is the need for a
liquid-gas separation device. The ACPS could use a pump which would
accept mixed flow, possibly a positive displacement type, but in the event of
all vapor suction, the compression work is excessive.

A preliminary feasibility evaluation of a capillary device (in the main
tanks) to supply propellant for the ACPS resulted in a design supplying
approximately 200 pounds (90 kilograms) of propellant to the ACPS between
any two, or after the 'Last main engine burns.

An umbrella-type dutch twill retention screen of 30 by 250 mesh with
pore openings of 0. 00276 inch (0. 07 millimeter) will assure propellant reten-
tion, but provide sufficient open area for low pressure loss during propellant
flow and for rapid refilling. The retention screen is mounted on a conical

8-18
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Good Good None
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No No Yes
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Simple Clean Low Relatively
High
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Best Average Yes No Yes Yes

Supercritical
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Average Above

Average
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Storable
N204/MMH
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Corrosive-
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Highest Low Short None with
EOS and
Space Sta

`Low Poor No Yes No No

Storable Complex Relatively Average Lowest Shortest None with Poor Low No Yes No No

N 2 
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4
clean NH3 .
N2, H2

EOS and
Space Sta
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Table 8-8. Baseline ACPS Characteristics

Gaseous oxygen /gaseous hydrogen

Pump-fed replenishable system

Capillary devices in main tanks for liquid feed to pumps

Accumulators provide 20 seconds propellant

Supply for four engines

Conditioning unit response 5 seconds

200-Pound (890 Newtons) thrust engines with throttling
to 40 pounds (178 Newtons) thrust

Table 8-9. ACPS Accumulator Characteristics

Storage pressure

GO  GH2

1000.0/703.0 K 1000.0/703000.0
PSIA/(Kg/M2)

Storage supply temperature 380.0/211.0 200.0/111.0
°R/(K)

Blowdown pressure 375.0/264.0 K 375.0/264.0 K
PSIA/(Kg /M2)

Blowdown temperature 460.0/256.0 242.0/134.0
°R/(K)

Stored gas weight 49.0/22.0 12.0/5.4
Lb/(Kg)

Storage volume 6.0/0.17 12.0/0.34
Cu Ft (cu meters)

Max recharge/withdrawal rate 1.7/0.77 0.4/0.18
lb/sec (kilograms/sec)

Residual gas weight 14.0/6.4 4.0/1.8
lb (kilograms)
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Number of engines

Net specific  impulse

Exhaust thrust cancelled

Exhaust thrust used

Chamber pressure

Area ratio

Mixture ratio (engine)

Mixture ratio - ACPS system

Engine specific impulse

Thrust each

3.65

100 psia-/70.3 K Kg /M2

4 lb/17.8 N

216 sec

60

4

1.0

20

200 lb to 40 lb
(890 N to 178 N)

420 sec

386 sec

399 sec

250 psia/144 K Kg/M2

40

4.2

Table 8-10. ACPS Performance
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-	 frame which is advantageous for strength, refilling, and bubble purging
s	 during main engine burn. For adequate refilling of the compartment, the

half cone angle should not exceed 80 degrees.

In addition to propellant retention, there is the problem of propellant
n	 acquisition and expulsion. For this function, a wheel-like propellant collec-

tor is provided within the retention compartment. The outside circumference
of the wheel acts as the circumferential collector, the spokes are radial col-

~- lectors and the hub is the central manifold and outlet. The wheel collector
is made of thin tubular material (which has been "swiss-cheesed") wrapped
with dutch twill mesh. Figure 8-7 illustrates this capillary device.

The collector is designed to provide ACPS propellant at the design
flowrate of two pounds per second, and to collect propellant after gas breaks
through into the compartment, but prevent gas passage into the collector.

When gas breaks through into the collector, the amount of trapped
propellant is minimized by proper collector- . compartment volume
relationships.

The common tankage system includes a supply of cryogenics for main
propulsion and a liquid-to-gas conversion system for ACS, EPS, and ECLSS.
A schematic of the system, neglecting redundancy, is shown in Figure 8-8.
Liquid oxygen and hydrogen are stored in the main tanks at 20 psia
(13. 8 Newtons per square centimeter). After conversion, the gases are
stored in the accumulators at 350 to 1000 psia (240 - 689 Newtons per square
centimeter). Through regulators, pressure is lowered to 300 psia
(207 Newtons per square centimeter) for ACPS, 50 to 1000 psia (35 to
689 Newtons per square centimeter) for EPS, and 5.5 to 14.7 psia (3.8 to
10. 1 Newtons per square centimeter) for ECLSS. In the Crew Module, an
intermediate oxygen storage container is provided at the accumulator
pressure.

Oxygen and hydrogen consumption by the subsystems may be calculated
using the parametric data developed in the appropriate report subsections.
Oxygen weight in the crew module, from Table 2-3, is

9 9.0 Lb + 0.3 62 Lb /D +	 1.840 Lb /M-D

(44. 9 Kg) + (0. 164 Kg/D) + (0.835 Kg/M-D)

where D is mission time in days and M is crew size.

(8-1)
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Fuel cell 02 /H? reactants are consumed at 0.845 pound/KWh
(0.383 kilogram/KWh) (see Figure 5-8) using an 8:1 mixture ratio. ACS
propellant usage may be calculated from the equations in Table 7-11 at a
4. 2:1 mixture ratio. The conditioning unit consumes 8 percent of the total
propellant passed to the accumulators, at a mixture ratio of 1:1.

The dependence of ACS propellant usage on mission-specific require-
ments does not permit the statement of a completely numerical expression
of parametric oxygen and hydrogen consumption, similar to the scaling
equations in other sections. Data for selected missions have been computed
and are shown in Table 8-11. ACS propellant estimates in the table were
obtained from Figures 7-7 and 7-8. Usable and residual propellants in the
accumulator tanks were assumed to be constant throughout the mission, thus
they did not enter into the calculations.

The ACS fixed equipment is summarized in Table 8-12.



Table 8=11:. Oxygen/Hydrogen Weight Summary

Space Missions Lunar Landing

Unmanned Concept 5 Slingshot Geosynchronous

Unmanned 6 Men 4 Nien

7 Days 7 Days First Stage Second Stage 45 Days

Oxygen Hydrogen Oxygen	 Hydrogen Oxygen Hydrogen Oxygen Hydrogen Oxygen Hydrogen

Lb (Kg) Lb (Kg) Lb (Kg) Lb (Kg) Lb (Kg) Lb (Kg) Lb (Kg) Lb (Kg) Lb (Kg) Lb (Kg)Description

Crew oxygen
Initial pressurization
Normal metabolic use

-
-

-
-

-
-

-
-

22
77

10 . 0
34. 9

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

22
331

10.0
150.1

-
-

-
-

Leakage

Emergency. IVA and EVA use
_

-

_

-

_

-

_

-

3

77
1.4

34 . 9
-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

16

77
7.3

34.9
-
-

-

-

179 81 . 2 446 202.3Total crew oxygen - - - - - - - - - - - - - - - -

Electrical power reactants 129 58.5 16 7.2 (	 331 150.1 42 19.1 8 3.6 1 0.45 129 58 . 5 16 7.3 2160 980.0 269 122

Auxiliary control propellant 362 164 . 2 91 41 . 3 362 164.2 91 41 . 3 72 32.7 18 8.16 362 164.2 91 41.3 690 313 . 0 172 78

491 222 . 7 107 1	 48.5 872 395.5 133 60.4 80 36.3 19 8.61 491 222.7 107 48.6 3296 1495.3 441 200Total subsystem usable propellant

Conditioning unit propellant 24 10. 9 24 10.9 40 18.1 40 18.1 8 3.6 8 3.63 Z4 10.9 24 10.9 150 68.0 150 68

515 233 . 6 131 59.4 912 413 . 6 173 78.5 88 39.9 27 12.24 515 233.6 131 59.5 3446 1563.3 591 268Thal subsystem usable propellant

3.93 5 . 30 3.26 3.93 5.8302 /H2 mixture ratio

Table 8-12. Auxiliar y Control and Propellant Subsystem Equipment
Unit Characteristics

Weight Volume Weight Volume
Pwr Pwr

Lb (Kg) Ft3 (m3) Lb (Kg) Ft3 (m3)Description Source (W) Qty W)

Intelligence module equipment
Engines
Lines and valves

Bell
Estimate

13.0
9.0

5.9
4.1

0.16
0.35

0.0045
0.0099

0
0

ZO
2

260
17

117.9
7.7

3.20
0.70

0.090n
0.01QV

0
0

Accumulator tanks and insulation
Oxygen
Hydrogen

Estimate
Estimate

-
-

-
-

-
-

-
-

0
0

2
2

30
59

13.6
26.8

6.00
12.00

0.1699
0.3398

0
0

3n7 166.0 21 . 90 0.6201 0Total IM ALPS equipment - - - - 0 0

Propulsion module equipment
Turbopump

Oxygen
Hydrogen

Gas generator

Aerojet & RK
Aerojet & RK
Aerojet & RK

15.5
22.5
12.0

7.0
10.2
5.4

0.35
0.35
0.70

0.0099
0.0099
0.0198

0
0
0

2
2
2

31
45
24

14.1
20.4
10.9

0.70
0.70
1.40

0.0198
0.0198
0.0396

0
0
0

Heat exchanger
Oxygen
Hydrogen

Litres and valves

Aerojet & RK
Aerojet & RK
Estimate

15 . 0
20.0
13.0

6.8
9.1
5.9

0.13
0.30
0.50

0.0037
0.0085
0.0141

0
0
0

2
2
2

30
40
26

13.6
18.1
11.8

0.25
0.60
1.00

0.0071
0.0170
0.0283

0
0
0

196 88.9 4. 65 0. 1316 0Total PM ACPS equipment - - - -
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9.0 RELIABILITY AND REDUNDANCY ANALYSIS

9.1 MAJOR COMPONENT REDUNDANCY RECOMMENDATIONS

Redundancy recommendations for 135 major components have been
made in detail. The redundancy level varied from none to multiple
depending on the particular subsystem criticality and reliability estimate.
General agreement with the fail operational-fail safe redundancy level was
marred by particular differences in redundancy nomenclature and configura-
tion. Further evaluations need to be made of necessary additional, but not
listed, equipment, e. g. , structure, docking structure, failure detection
sensors, meteoroid protection, the main propulsion system, lunar landing
gear, and propellants. Table 9-1 contains a discussion of each component
and an indication of the recommended redundancy based on judgment. The
factor in the right hand column indicates the recommended redundancy level
over the resulting interpretation of weight ratio with respect to the minimum
operational unit.



Table 9-1. Subsystem Component Redundancy Recommendations

Component Description and Discussion
Redundancy

Recommendation*

1. EC LSS

a.	 Crew module space mission fixed FS/ 1. 1
equipment

(1)	 Furniture: Items should be designed
to adequately meet requirements with
minimum weight, e.g., bunks and
control seats should be the same item;
tables and control console should be
the same item; and no chairs should be
included.	 Potential for weight saving.
Only a few items need be redundant;
e. g. , food preparation equipment.

(Z)	 Food management: FS/ 1. 1

(3)	 Water management: • FO-FS / 1. 5

(4)	 Waste management: Has the potential FS/1.5
for producing severe emergencies.
Those parts that could produce bio-
logical contamination should be made
redundant.	 Those parts that could be
bypassed by a "throw out the package"
mode should be at least FS.

(5)	 Temperature and humidity control: FO-FS/1.67
Failure could abort mission and lose
crew.

(6)	 Atmospheric purifier:	 Again crew FO-FS/1.67
emergencies are all too possible.

k FS = Fail safe
FO = Fail operational
ND = Not defined
MR = Multiple-redundant

M = Margin
0 = Operational



Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

Redundancy
Component Description and Discussion	 Recommendation*

(7) Atmospheric pressure control: Crew I FO-FS/3
critical function.

(8) Atmospheric circulation: Crew I FO-FS/ 3
critical function.

(9) Atmospheric thermal loop: Moving 	 FS/1.5
parts should be multiple-redundant,
but the heaviest parts (cold plates)
need extra margin to prevent leakage
as well as a backup, emergency
mode. Total cold plate area need
not be larger, just divided into two
equal, independent loops and r equir -
ing special orientation. Tug will be
sent back to Earth for cleaning
following any thermal loop failure;
so that there will be no necessity
for multiple redundancy for con-
tinuing to succeeding missions.

(10) EVA life support: Apollo-type equip-	 FS/l. 5
ment has become relatively stand-
ard. For the short time period,
FS is all that is required.

(11) Emergency life support: Contin- 	 ND/ 1
gency action in itself— no need for
redundancy.

(12) Nitrogen storage: Single redundancy 	 FS11.25
for moving parts. Margin for tanks. I	 4

(13) Interior lighting: Spar a lights with	 FS/ 1.5
fixture margin and single redundancy.
Designed to be removed only when no
voltage is applied.

1
W
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

r

Redundancy
Component Description and Discussion Recommendation*

b.	 Crew module lunar landing additional
fixed equipment

(1)	 Furniture:	 Experiment station should
not only be capable of completing
missions, but also prevented from

FO-FS/3

atmosphere contamination.

(2)	 Food management: Three smaller
pieces should be used where any two
would continue to succeeding

FO-FS/ 1. 5

missions, and any one is sufficient
in emergency.

(3)	 EVA life support: FS/1

CO	 Crew module space mission spare
equipment

[Spares need. to be integrated with initial
redundancy.	 Some spares are, indeed,
necessary in all cases except emergency
life support.]

d.	 Crew module -lunar landing additional
spare equipment

[The particular features which will be
exercised more fully on lunar landing
should be made more 'edundant or
include more spares, e. g. , tempera•-
ture and humidity control and atmos-
phere thermal loop. 	 In addition, special,
particulate cleaning equipment needs to
be added externally, in the airlock and
internal to the pressure shell.]



Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

Component Description and Discussion
Redundancy

Recommendation*

e.	 Crew module expendables and con-
sumables - space missions

(1)	 Housekeeping: Specific items need MR/ 1. 1
added pieces.	 Redundancy can be
high because of low individual item
weight, e. g.,, several extra trash
bags.

(2)	 Food management: Food can be MR/ 1. 1
stretched.	 Individual item weight is
low, so that redundancy is high. Safe
amount is zero, since rescue, takes
short time.

(3)	 Waste management: Individual item MR/ 1. 25
is low, so that redundancy is high.
Crew critical item..

(4)	 Temperature and humidity control: MR/ 1. 25

(5)	 Atmospheric purification: MR/ 1. 25

(6)	 Atmospheric circulation:	 Margin for MR/ 1. 25
quantity.	 Crew critical.

(7)	 Crew support: Small items, with
multiple redundancy.

MR/ 1. 1

(8)	 Nitrogen: M/ 1. 1

f.	 Crew module expendables and
consumables - lunar landing missions

[Sar^e as for space missions except for
items being used more on lunar surface:

(1)_ Temperature and humidity control: MR/ 1.5

(2)	 Atmospheric purification:] MR/ 1. 5 .
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

Component Description and Discussion
Redundancy

Recommendation*

2.	 Guidance, navigation, and control subsystem

a.	 Intelligence module basic equipment

(1) Inertial measuring unit and processor: FO-FO-FS/2
Small size makes meteoroid hit very
unlikely.	 tyro redundancy is adequate
with Pentad.	 Care should also be
taken to make the gyro environmental
control adequately reliable (need
further detail).

(2) Gimbaled star tracker: 	 Used as 0/1
backup only.	 No redundancy neces-
sary for reliability.

(3) Acquisition sun sensors and 0/1
electronics:

(4) Horizon/earth tracker (edge tracker): 0/1
Redundancy for high altitude already
included in standard design of four
heads.

(5) Navigation sensor base: Structure. M/1. 1
Margin only.	 Environmental control
needs some redundancy.

(6) ACS driver amplifiers:	 Internally FO-FO-FS/4
and multiple redundant.

(7) Main engine gimbal amplifiers: FO-FS/3
Requires internal and multiple
redundancy.	 Safe item only.	 Single
engine requires two amplifiers per
gimbal actuator. 	 Four-engine con-
figuration need have only a single
amplifier per gimbal actuator. Each
amplifier has selected internal
redundancy.
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)
x

Redundancy
Recommendation*
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Redundancy
Component Description and Discussion Recommendation*

(8) GN&C power control panel: FS/1. 1

(9) Signal distribution wiring: FS/1. 5

C.	 Crew module docking equipment

(1) Laser rendezvous and docking radar: FO-FS/2
Not a radar.	 Laser on tug and
corner reflector on passive docking
target.	 Required for accurate
measure of target distance and
direction for efficient closing
trajectory computation.	 Could use
target or ground sources for
position, or even crew controlled in
a pinch.	 However, this is the normal
docking mode and should last for the
tug lifetime.

(2) Contact sensor: Required during each FO-FO-FS/4
docking to signal initiation of latching
mechanism operation. 	 Susceptible to
docking shock.	 Since it is light, a
multiple redundant configuration
would allow a voting logic and long
life.

(3) Signal distribution wiring: FS/ 1. 5

d.	 Intelligence module docking equipment

(1) Laser rendezvous and docking radar: FO-FS/2

(2) Television camera: Ba:okup for any FS/ 1-
unplanned interference in the docking
area.

(3) Contact sensor: FO-FO-FS/4

(4) Signal distribution wiring: FS/1 5

Alk Space Division
9TV NorthAmeftm Rockwell

Table 9-1. Subsystem Component Redundancy Recommendations (Cont)



Redundancy
Component Description and Discussion Recommendation*

e.	 Propulsion module docking equipment

(1) Television camera: FS/1

(2) Contact sensor: FO-FO-FS/4

(3) Signal distribution wiring: FS 11. 1

f.	 Crew module lunar landing equipment

(1) Main propulsion throttle control: FO-FS/2
Provide at least a separate throttle
for each engine with provision for
gang operation. 	 For four engines,
one throttle for each engine is
sufficient.	 For one engine, two
methods of throttling control are
required, with reversion to full
thrust on failure.

(2) Landing television graphics memory: 0/1
Landing aid.

(3) Signal distribution wiring: FS/2

g.	 Lunar landing kit - unmanned

(1) Landing radar: Required for each FO-FO-FS/2
landing.	 Internally and multiply
redundant.	 Should adjacent radars
fail, use opposite two's.

(2) Gimbaled television camera: Backup FO-FS/2
for landing, but useful as viewers
before and after.

( 3) Signal distribution wiring: FO-FS/2

JOW '040 -0-
	 ^.
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)



lations (Cont)

edundancy
)mmendation*

FO-FS /2

/1

-FS/2

-FO-FS/2

I-FO-FS/1

,-FS/2

I-FO-FS/2

,-FO-FS/2

-FO*-FS / 3

-FO-FS/4
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-FS /I
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Component Description and Discussion
Redundancy

Recommendation*

(10)	 Plated wire mass storage memory: FO-FO-FS/2

(11)	 Central timing unit:	 Internally
redundant.	 Two sources per unit.

FO-FS/ 1

(12)	 Video unit: Has to work for unmanned
operations.

FO-FS12

(13)	 Remote acquisition and control units:

256 Ch FO-FO-FS/7

128 Ch FO-FO-FS/2

64 Ch. FO-FO-FS/4

(14)	 Signal distribution wiring and data
bus:	 Individual pieces are normally
redundant.

FS / 1

b.	 Crew module equipment

(1)	 VHF transmitter/receiver: One unit
has dual performance capability.

FO-FS/1

(2)	 VHF antenna: FO-FS/2

(3)	 Commander's console: FO-FS12

(4)	 Light-emitting diode alphanumeric
display: Internally redundant display.

FO-FS/1

(5)	 Remote acquisition and control units:
Vital to computer operations.

256 Ch. FO-FO-FS/3

128 Ch. FO-FO-FS / 1

64 Ch. FO-FO-FS/2

(,6)	 Signal_ distribution wiring and data bus: FS/1

01% Space Division
North American Rockwell
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

Redundancy
Component Description and Discussion Recommendation*

4.	 Electrical power subsystem

a.	 Crew module equipment - Power FS/2
distribution wiring:

b.	 Intelligence module basic equipment

(1)	 Fuel cell:	 Basic power source. FO-FO-FS/3
Battery backup for FS.

(2)	 Battery: Size so that any two will MR
suffice for emergency attitude
stabilization.	 Backup operation only.

(3)	 Battery charger: MR

(4)	 Inverter: AC power must be FO-FS/3
generated for ACS.

(5)	 Power controller: 	 Internally FO-FS/3
r edundant.

(6)	 Power distribution wiring: 	 At least FS/2
two circuits.

C,	 Intelligence module added manned
equipment

(1)	 Fuel cell:	 FO-FO-FS/(3 basic +) FO-FO-FS/l
1 added.

(2)	 Battery:	 Multiple redundant/ MR/0
(3 basic +) 0 added.

(3)	 Battery charger: Multiple redundant/ MR/0
(3 basic +) 0 added.

(4)	 Inverter: FO-FO-FS/(3 basic +) FO-FO-FS/l
1 added.



Redundancy
Component Description and Discussion Recommendation*

(5)	 Power controller: FO-FO-FS/ FO-FO-FS / 1
0 basic +) 1 added.

(6)	 Power distribution wiring:	 At least FS/2
two circuits.

5.	 Active thermal control subsystem

a.	 Intelligence module basic equipment - FS/2
Coolant system:	 Vital to electrical power
and electronic cooling.	 Moving parts need
at least double redundancy, fixed cold
plates must have two independent circuits.

b.	 Intelligence module added manned
equipment - Coolant systems:	 Vital. FS/2

c.	 Propulsion module basic equipment

(1)	 Space radiator (dual plumbing): 	 Four MR/2
independent panels, each with dual
fluid paths.	 These eight smaller
loops allow multiple redundancy
through isolation valuing.	 Leafage
from any one must be detected and
the flow valve closed.	 This will allow
con:..inuing the mission and proceeding
to subsequent missions with partial
system failure.	 The current radiator
sizing at double the anticipated heat
load provides for four redundant. loops
during normal operation with another
redundant loop during emergency
operation.

d.	 Propulsion module added manned equip-
ment (six man) - Space radiator:

MR/2

}

Space Dlvlslon
North American Rockwell

Table 9-1. Subsystem Component Redundancy Recommendations (Cont)
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

Redundancy
Component Description and Discussion Recommendation*

e.	 Propulsion module added lunar landing FS/2
equipment - GH2 Boiloff heat exchanger.
Required for maximum cooling during
lunar noon.	 Should also have dual loops.

f.	 Crew module equipment ( six man)

( 1)	 Coolant system ( EC/LSS separate): FS/2
Vital to crew module operation.
Moving parts should have two circuits.
Leakage inside the CM is deadly to the
crew; therefore detection equipment
must be sensitive and accurate.
Leakage in a single loop is grounds
for special maintenance ( i. e. , return
to ground for thorough cleaning)
because of possible corrosion in
inaccessible corners. 	 The second
loop may allow completion of that
mission and must allow return of the
crew in a safe manner.

( 2)	 Space radiator; Four panels with two MR/2
loops each.

g.	 Lunar landing radiator kit unmanned
equipment

( 1)	 Radiator panel and erection system MR/2
(dual plumbing): Again four foldout
panels with dual plumbing in each.

( 2)	 Coolant system: Closed, independent FO-FS/2
system from the IM. 	 Electrical
connection only.	 Required for lunar
surface operations.	 Two loops at
least.

.^.I"p



Component Description and Discussion
Redundancy

Recommendation*

h.	 Lunar landing radiator kit manned
equipmeikt

(1)	 Radiator panel and erection system MR/2
(dual plumbing):

(2)	 Coolant system: FO-FS/2

6.	 Auxiliary control system

a.	 Intelligence module equipment

(1)	 Engines:	 Critical system.	 ACS must FO-FS/ 1. 67
work for mission success or retrieval
success.	 Single mission duty cycle
requires a large number of starts (on
the order of 5000/mission). Design-
ing for ten missions for no failure is
difficult.	 Some redundancy is
currently required to be able to con-
tinue missions with partial failure.
Twenty engines give all the control
needed in attitude and short transla-
tion.	 Sixteen engines will work, but
require an additional axial engine for
translation efficiency.

(2)	 Lines and valves„ Each engine must FO-FS/2
have We own set of valves (non-
redundant) with a fail -closed feature.
Each engine must be interconnected
with every other, so that the engine
redundancy can be effective.

Table 9-1. Subsystem Component Redundancy Recommendations (Cont)
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

Component Description and Discussion
Redundancy

Recommendation*

( 3) Accumulator tanks and insulation: FO-FS12
Oxygen.	 Critical component because
of ACS, fuel cell, and EC/LSS
supply.	 Provision of at least two
accumulators is necessary to
eliminate a single failure point.
Backup is provided by direct ,
access to conditioning unit outlet,
bypassing failed accumulators.

(4) Accumulator tanks and insulation: FO-FS12
Hydrogen.	 Critical equipment.
Supplies ACS and electrical power.
Unmanned operation could fail this
entirely and still be safe, since oxy-
gen gas in the ACS would be
sufficient for ACS and batteries
would supply the power.	 Manned
operation requires at least one fuel
cell to remain active for EC/LSS;
e. g. , backup is provided by direct
access to conditioning unit outlet,
bypassing failed accumulators.

b.	 Propulsion module equipment

(1) Turbopumps: Oxygen and hydrogen. FO-FS12
Two turbo pumps are enough because
complete failure is still safe; i. e.
the IM accumulators will supply
enough 02 and H2 for retrieval oT
rescue.

(2) Gas generators: FO-FS/2

(3) Heat exchanger: Oxygen. FO-FS/2

NMI
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Table 9-1. Subsystem Component Redundancy Recommendations (Cont)

Component Description and Discession
Redundancy

Recommendation*

(4)	 Lines and valves: Lines need be as FO-FS/2
redundant as the equipment they
serve.	 Valves must be multiple-
redundant, depending on function
and individual reliability.

* FS = Fail safe
FO = Fail operational
ND = Not defined
MR = Multiple-redundant

M = Margin
0 = Operational
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10.0 PROPELLANT RELIQUEFACTION

The possible use of reliquefaction for conservation of propellants on
the Space Tug has been studied. The purpose for such equipment would be
to minimize boiloff over long periods for potential rescue missions, or for
long term lunar base or lunar orbital storage. A study of both total and
partial reliquefaction is included in this report. References 10-1 and 10-2
have been used to provide basic background on the types of power systems
and reliquefiers which may be used. Reference 10-3 provides small size
refrigerator scaling data on weight and power as a function of both tempera-
ture and refrigeration power to supplement data in reference 10-2.

For the purposes of this study the assumption was made that only a fuel
cell power supply typical of the tug's basic power system would be considered.
Both solar and nuclear power were excluded as being outside of the range of
interest for the tug (too heavy, and requiring special orientation control,
etc.). Such power supplies may be applicable, however, to the Space Station,
orbital propellant depot, lunar base or any other interfacing system which
could supply reliquefaction capability when the tug is docked.

The results show that total reliquefaction is not reasonable when con-
strained to the use of fuel cell power. Consumption of 5 PPH/2. 3 KGPH
of H2/02 is required to reliquefy 1 PPH/0.45 KGPH of hydrogen and about
0.8 PPH/0. 36 KGPH to reliquefy 1 PPH/0.45 KGPH of oxygen. Thus,
unless other energy sources are used, total reliquefaction is not
advantageous.

ft
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This analysis has been based on an integral propellant tank design
concept for a 60 K lb/27 K kg propellant tug. Figure 10-1 shows total
propellant boiloff as a function of insulation thickness. This curve is valid
for low orbits or the lunar surface over the day-night average. The integral
hydrogen and oxygen tanks are assumed to have boron-epoxy skirts along
with NARSAM insulation on the tanks. In each case a forward and aft skirt
design is assumed. For a boil-off rate of 1 PPH/0.45 KGPH each the
oxygen and hydrogen tanks insulations are 1. 7 in. /4.44 cm and 1. 3 in.
3. 5 cm thick respectively. No attempt was made to optimize this although
past effort has shown that between 1. 0 and 2. 0 inches (2. 54 and 5. 1 cm) is
best for a synchronous equatorial orbit, 30-day mission. Since the curve is
sharply exaggerated in slope, it would appear that the boil-off of 1 PPH/
0.45 KGPH for each propellant would be a reasonable baseline.

Figure 10-2 describes the total reliquefaction refrigeration weight and
power requirements as a function of insulation thickness. The analysis has
assumed a reversed Brayton cycle refrigerator rejecting its heat at 540 R/
300 K. Reference 10-2 contains cycle performance estimates of a number
of practical refrigerators although data on working units is still sparse.
For 1 PPH/0.45 KGPH boil-off rate, the hydrogen and oxygen total
r eliquefier s require 5. 5 KW and 0. 8 KW respectively. Assuming the fuel
cell power source, the reactant consumption is about 1' lb/hr/KW (0.45 kg/
hr/KW); thus it would require 5. 5 PPH/ 2. 5 KGPH of reactants to r eliquefy
1 PPH/0.45 KGPH of hydrogen and 0. 8 PPH/0. 36 KGPH to reliquefy 1 PPH/
0.45 KGPH of oxygen which is not a bargain.

Figure 10-2 also shows that in addition to the fuel cell expendables it
is necessary to add in a fixed weight of 250 lb/ 113 kg for a hydrogen relique-
fier and a weight of 35 lb/16 KE for an oxygen r eliquefier. 	 While it is
unlikely that the tug will use total reliquefaction, the orbital propellant depot,
the Space Station and the lunar base all may potentially incorporate large
solar or nuclear power supplies that may reduce the cost of power.
Considering the cost of transporting propellant into orbit (about $200/lb-
$441/KE) and the added cost of transporting it to a lunar base, it is
reasonable to conclude that eventually reliquefaction will be provided as an
economic measure.	 For example, the loss of >5.0, 000 lb/22, 680 kg x
propellant/year from the orbital propellant depot (about 5. 5 PPH/2. 5 KGPH
total) could cost $106 /yr.	 A refrigerator reliquefying 4.0 PPH/1.8 KGPH
H2 and 1. 5 PPH/0. 68 KGPH 02 would require 14. 5 KW of power and weigh
700 lb (650 + 50)/317 kg (295 + 23). 	 If a nuclear or solar power supply
could be obtained providing 300 lb/KW -136 kg/KW, the total'. system weight
would be about 5000 lb (4350 + 700)/2290 kg (1973 + 317).	 This is off in the
future but is interesting to contemplate from the` vantage point of tug r
reusability and long germ storage. J;

r.`
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The analysis of the partial reliquefier was initiated because the
constraint of a fuel cell power supply requires that the hydrogen and oxygen
reactants be obtained from the boil-off. The work presented in reference
10-2 shows that based on the performance of reasonable heat exchanges and
turbo-machinery, including some para to ortho hydrogen conversion, that
41. 3 percent of the boil-off hydrogen can be reliquefied. For the typical
tug boil-off of 1 lb/hr for each propellant, the hydrogen reliquefa.tion
requires 0. 13 KW of power and the unit will weigh about 90 pounds.
Balancing out the fuel cell requirements for 02 and H2 indicates that about
0. 52 lb/hr of 02 is reliquefied and the rest of the 02 is consumed powering
the reliquefiers. The total power requirement is about 530 watts for both
systems, producing 0.41 lb/hr LH2 and 0. 52 lb/hr L02, for a total supply
of 0. 53 lb/hr of reactants to the fuel cells and a loss of about 0.45 lb/hr
of hydrogen which is unrecoverable. Over a period of 30 days, a total of
1440 pounds of propellant would be vented; however, with partial relique-
faction, about 670 pounds can be recovered. The basic problem, however,
is that the added 130 pounds of empty weight is magnified 10.4 times in
terms of propellant so that no net saving is available. This large exchange
coefficient makes it very difficult to incorporate the added fixed weight of
any thermal protection scheme. It is interesting to note in Table 10-1 that
for larger boil-off amounts the fraction reliquefied is increased because of
the reduction in specific power. For example, if 10 lb/hr of H2 and 02 are
to be partially reliquefied the 4. 1 lb/hr of H2 is summed with 7. 5 lb/hr of
02 for a total of 11. 6 lb/hr and a total power of 3. 6 KW.

The basic conclusion is that the use of reliquefaction on the Space Tug
does not appear very suitable unless it can be made disposable, or a plug-in
module attached to or operated by permanent bases.



^^ff
	 t 	 I

Fuel Cell
^tef^erence Specific Unit Reactant

Boiloff Reliquef Power Power Power Weight Consumption
[lb/hr (kg/hr)] [lb/hr (kg/hr)] (watts) watts

(watts (watts) [16 (kg)] [1b/hr (kg/hr)]ref

1	 (0.45) 0.41	 (0. 19) 23.1 5.5 130 86	 (39) 0.13	 (0.059)

2	 (0.90) 0.82	 (0.37) 42.2 4.2 194 130	 (59) 0.19	 (0.086)

4	 (1.81) 1. 64 	(0.74) 92 3.3 300 200	 (90) 0.30	 (0.136)

10	 (4.53) 4.13	 ( 1 .87) 231 2.4 500 375	 (170) 0.55	 (0.250)
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11.0 MANIPULATORS

Firm requirements for manipulators to be used in conjunction with the
tug have not yet been identified. In the operational time period most likely
to be used for tug deployment (the 1980's), it seems reasonable to assume
that contemporary satellites and experiment modules that require servicing
will incorporate appropriate hard-docking provisions. This provision will
permit reliable connection and even pressurized access to servicing areas of
the satellite. However, there may be some older satellites still in service
that do not have docking provisions. Unanticipated maintenance in the vicinity
of a space base also could require the use of manipulators.

A brief review of nine pertinent reports on manipulators tends to sub-
stantiate the approach previously described. Matrix Research Company
contributed one of the reports, which was generated for a related NASA
MSFC contract (Reference 11-1). Table 11-1, which summarizes a survey
of present technology, was taken from the MRC report. In addition, various
in-house specialists were consulted. Although many of the topics covered by
the reports related to nonspace applications of manipulators, the following

F	 appropriate considerations may be drawn from them:

1. Unless a satellite is specifically designed for physical contact,
even contacts conducted with extreme care are likely to result in
damage (although this is not always of great consequence).
Furthermore, the tug approach to an active satellite should be
planned so that the satellite is deactivated or controlled from a
communication link. If such remote control is impossible, care
should be taken to avoid occulting the satellites' sun-star sensors,
because the unprogrammed loss of lock may initiate a search mode
involving angular rates.

2. The incorporation and operation of manipulators requires appreci-
able electrical power and a considerable amount of specialized
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From the previous considerations, the following tentative conclusions
can be reached:

1. Manipulators, when needed, should be contained in an add-on kit
preferably attached to a docking port on the tug. A companion kit
providing the manned interfaces (controls, displays, etc.) would
be placed in the crew module or other control station. All kit
attachments, power, and other systems support required should
be standard tug parts.

2. An alternative to attaching manipulator kits to the tug would be to
develop the manipulator system as a separate system transported
as a payload package to the satellite or other site for use. Thus,
deployment of the system would be similar to deployment of a
satellite. Systems adaptable to this philosophy are under study by
several contractors in addition to NR ( such as G. E.), and maxi-
mum advantages of this expertise would be taken with minimum
tug impact.

3. Hard-docking provisions should be imposed as a requirement on
all future space satellites expected to demonstrate long life and
involving repairability. Once the tug is docked, repair may be
accomplished directly within coupled pressurized compartments,
with IVA, or with crew EVA if necessary.

From the point of view of tug development, use of a separate package
manipulator system or provisions for hard docking would minimize the
impact on the tug design requirements. Because the tug already is required
to accomplish a wide spectrum of missions and operations, this design
impact minimization may be desirable. From the satellite viewpoint, space
repair and maintenance provisions appear to be a necessity for long economi-
cal life and high success probability; therefore, docking provisions to
facilitate servicing appear justifiable. In addition, tight weight constraints
on past satellites should be relieved somewhat with the advent of the space
shuttle.

A separate study was conducted to apply these findings to tug constraints,
and is presented in Appendix D. Figure 11-1 shows a sketch of a manipulator
submodule concept. Table 11-2 presents a generalized composite mission
sequence containing events pertaining to both maintenance and retrieval oper
ations. The retrieval phase contains events showing a more rigid attachment`
of the satellite to the tug (in preparation for the acceleration of orbit trans-
fer) than is necessary for maintenance tasks,
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Operating Sequence

Mission Phase Phase Segment Operation

Predocking Assess satellite angular rates visually
Determine hard-point contact locations
Establish approach trajectory
Arms extended

Docking Very low relative velocity at impact
Acquisition Satellite hard points engaged

Clamps energized

Post-docking stabilization Deactivate satellite attitude control if necessary
-Damp relative angular rates
Retract arms to desired position
Secure tethers

Tug/satellite operations Follow preplanned operational sequence

Maintenance Separation Orient satellite attitude
Reduce relative motion to within satellite bounds
Release tethers and clamps, retro with ACS

Hard docking for propulsion Retract arms to tug /satellite contact _ position
Retrieval Activate hard docking attachments

Inspection and checkout
Main propulsion burn
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Table 11-3 lists estimated weight and power requirements for both the
manipulator submodule and the accompanying crew module internal controls
and displays for a manned tug. It should be noted that the submodule
described does not utilize a full neuter docking system.

Future studies should be concerned with establishing requirements
for space maintenance and the retrieval of satellites that include the impact
on satellite design. These requirements should precede the development of
new or modified existing manipulator systems.

Table 11-3. Estimated Manipulator Kit Description

Category Weight (lb-kg) Power (W)

Exterior Manipulator Kit (totals) 486	 220.6 205

Manipulator arm assemblies (2) 280	 127.0 40 (400 peak)
Torque and force restraining

arms (2) 20	 9.1 5
Tool attachments and fixtures 46	 20.9 25
Manipulator/docking port attachment

bracket 20	 9.1 --
Control  electronics 50	 22.7 100
Video cameras (2) 50	 22.7 35
Electrical power distribution 20	 9.1 --

Crew Interface Kit (totals) 60	 27.2 115
Manual controls 20	 9.1 30
Binocular video viewer 20	 9.1 70
Electrical power distribution 10	 4.5 --
Communications and data

management 10	 4.5 15

Electrical Power System
at 1 lb /watt 320 	 145. 0

Total Estimated System Weight 866	 393.0
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12.0 SUBSYSTEMS SUMMARY AND CONCLUSIONS

12.1 BASELINE SUBSYSTEMS

In each of the previous sections of this report, requirements,
feasibility trade studies, and considerations of redundancy led to the selec-
tion of components. The weight, volume, and power characteristics of
these components may now be summed and viewed as a complete system.
To provide traceability, Table 12-1 relates tables of individual subsystem
and kit summaries to the totals. Tables 12-2 through 12-5 itemize the
totals, where it is noted that basic PM and IM equipment is common for
any space mission. Added equipment (kits) are necessary for manned and
lunar landing missions.

12. 1. 1 Module and Kit Feasibility Analysis

The feasibility of the modular approach for the tug was investigated
continuously throughout the study. It has been shown that the geosynchronous
orbit mission requires very high performance, which tends to preclude pro-
pulsion module (PM) compromises for multipurpose use. However, these
compromises do not appear to be substantial until considering the lunar
lander version, wherein landing loads, cargo pods, landing gear attach-
ments, and special visibility-access requirements are imposed on the
configuration. The PM is generally optimized for the geosynchronous (high-
energy) mission and is utilized off-loaded for other applications. Block
changes, such as structure beef-up, retractable engines, and various kits,
are usually required for the lunar lander version.

A single basic crew module (CM) design appears feasible for trans-
porting up to 6 men to and from a space station, 4 men for 45-day lunar
surface stay, and for 6-12 man rescue. Docking adapters on top or on
bottom as needed provide crew ingress-egress for the various mission
applications.

A cargo module (CAM) can be of almost any reasonable shape for use
in earth-orbital missions. In general, the CAM should provide for standard
docking interfaces at each end and should be pressurizable for compatibility
with a space station. The special constraints of the lunar landing configura-
tion of the tug. (i. e. , low cg, easy loading and surface access, and maintain-
ing vehicle balance) result in a choice of hemipods or cylindrical halves that
can be EOS-launched and readily attached laterally to tug landers low on

v
.F



Table 12-1. Key to Subsystems Summaries

Subsystem./Kit Component Summaries Totals

Unmanned Manned

Space Lunar Space Lunar
Missions Landing Missions Landing

(Table (Table (Table (Table
Description Table 12-2) 12-4) 12-3) 12-5)

ECLSS Fixed Equipment 2-4 X X
Spare Equipment 2-5 X X
Expendables and Consumables 2-6 X X

G&N Basic Equipment 3-3 X X X X
Rendezvous and Docking Equipment 3-5 X X X X
Lunar Landing Equipment 3-6 X X

Comm & Data Mgt Intelligence Module Equipment 4-8 X X X X
Crew Module Equipment 4-9 X X

EPS Total Electrical Power Equipment 5-8 X X X X

ATC Total Active Thermal Control Equipment 6-4 X X X X

ACS Total Auxiliary Control Equipment 8-12 X X X X
Oxygen/Hydrogen Weight Summary 8-11 X X X X
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Weight Volume
Pwr

Des cription Lb Kg Ft3 M3 (W)

Intelligence Module

Guidance, navigation, and control basic equipment 296 134 4.48 0. 1269 331
Unmanned docking equipment 105 48 1.95 0.0552 60
Communications and data management equipment 953 432 18.98 0.5375 568
Electrical power basic equipment 506 230 7.45 0.2110 230
Active thermal control basic equipment 184 83 5.26 0.1489 62
Auxiliary control equipment 278 126 3.90 0.1104 0
Auxiliary propellant equipment 89 40 18.00 0.5097 0

2411 1093 60.02 1.7000 1251Total IM for unmanned space missions

Propulsion Module

Do cking equipm ent 21 9.5 0.200 0.0057 30
Active thermal control basic unmanned equipment 16 7.3 0 0
Auxiliary propellant equipment 196 88.9 4.65 0.1317 0

233 105.7 4.85 0. 1373 30Total PM for unmanned space missions

Total subsystem equipment for unmanned space missions 2644 1199 64.87 1.8370 1281
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Weight Volume
Pwr

Description Lb Kg Ft3 M3 (W)

Crew Module (6-men, 7 days)

Environmental control and life support basic equipment 1294 587 106.62 3.019 1128
Spare equipment for ECLSS 205 93 14.02 0.397 0
Expendables and consumables for ECLSS 498 226 22.52 0.638 0
Guidance, navigation and control basic equipment 164 74 2.94 0.083 154
Manned docking equipment 93 42 1.75 0.050 30
Communications and data management equipment 399 181 10.66 0.302 154
Electrical power equipment 50 23 0.50 0.014 25
Active thermal control equipment 192 87 4.83 0.137 88

2895 1313 163.84 4.640 1579local CM for manned space missions

Intelligence Module

Unmanned intelligence module less docking equipment 2306 1046 58.07 1.644 1191
Electrical power added manned equipment 127 58 2.40 0.068 40
Active thermal control added manned equipment 141 64 -4.04 0.114 43

Total IM for manned space missions 2574 1168 64.51 1.826 1274

Propulsion. Module

Unmanned propulsion module 233 106 4.85 0.137 30
Active thermal control added manned equipment 13 6 0 0

246 112 4.85 0.137 30Total PM for manned space missions

5715 2593 233.20 6.603 2883Total subsystem equipment for manned space missions
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Table 12-3. Manned Space Mission Subsystem Equipment Summary (6-Man, 7 Days)



Weight Volume

Pwr
Description Lb Kg Ft3 M3 (W)

Intelligence Module

Unmanned intelligence module for space missions 2411 1093.6 60.02 1.699 1251

Propulsion Module

Unmanned propulsion module for space missions 233 105.7 4.85 0.137 30

Active thermal control lunar landing equipment 38 17.2 0.25 0.007 0

271 122.9 5.10 0.144 30Total PM for unmanned lunar landing missions

G &N Lunar Landing Kit (unmanned equipment) 168 76.2 4.84 0.137 255

Active. Thermal Control Kit (unmanned equipment) 89 40.4 1.00 0.028 24

Total subsystem equipment for unmanned lunar landing 2939 1333.1 70.96 2.008 1560
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Weight Volume
Pwr

Description Lb Kg Ft3 M3 (W)

Crew Module (4 men, 45 days)

Basic crew module for space missions 2895 1313 163.84 4. 63 9 1579
ECLSS added lunar landing fixed equipment 623 283 3 0.8 6 0.874 80
ECLSS added lunar landing spare equipment 30 14 1.20 0. 03 4 0
ECLSS added lunar landing expendables and consumables 1138 516 45.35 1.284 0
Guidance, navigation and control added lunar landing equipment 27 12 0.23 0.006 62

4713 2138 241.48 6.837 1641Total CM for manned lunar landing missions

Intelligence Module
2574 1168 64. 51 .1. 827 1274Manned intelligence module for space missions

Propulsion Module

Manned propulsion module for space missions 246 112 4.85 0.137 30
Active thermal control lunar landing equipment 38 17 0.25 0.007 0

284 129 5.10 0.144 1 30Total PM for manned lunar landing missions

G&N Lunar Landing Kit (manned equipment) 133 60 4.43 0.125 195

Active Thermal Control Kit (manned equipment) 431 195 3.91 0.111 93

Total subsystem equipment for manned lunar landing 8135 3690 319.43 9.044 3233
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opposite sides. These hemipods can serve double-duty as a single cylinder
module by bolting the two halves together and adding docking adapters.

The IM can incorporate the basic subsystems required for unmanned
tug flight. Add-on kits can provide the necessary additional power, thermal
control, communications, etc., for longer duration and manned flight.
While options exist as to the specific location of some of these subsystem
elements (within PM or within IM), the differences do not appear large at
this phase of the tug study.

The wide variety of missions to which the IM may be subjected indicates
that a separate module is desirable. If the IM is combined with the propul-
sion module, little if any weight is saved, because components must still be
mounted and interconnected. The structural weight as well as vehicle length
would decrease slightly; however, the PM forward end must be closed out to
provide support for a docking port. If the IM is combined with the PM, the
missions that do not require a PM (shuttle/space station short range cargo
and crew transfer and space station remote experiment module control)
would be penalized. IM integration with the crew module would severely
penalize all unmanned missions.

Many potential equipment divisions within the IM are possible. If the
IM is to be capable of flying alone, .it must have as a minimum all unmanned
functions. Beyond this requirement it also may include certain manned
functions. Inclusion of manned electrical power sources in the IM seems
attractive, because fewer IM/CM interfaces are required, space mainte-
nance of EPS is centralized, and crew safety may be slightly improved.
The presence of auxiliary control thrusters on the IM precludes using that
area for active thermal control space radiators. Therefore, the IM radi-
ations would be mounted on the PM or on a separate skirt for the cases
where the IM flies alone.

The internal IM arrangement consists of four ACS support elements
(tanks, valves, electrical, and fluid lines) between which all other equipment
is mounted. The ACS support elements, as well as the other equipment, are
mounted to the exterior IM walls for ease of removal and to promote passive
thermal control.

The preceding comments are summarized in Figures 12-1 and 12 -2. In
Figure 12-2, kits including radiator, landing gear, manipulators, and long
range extensible antenna kits either may be eliminated or integrated into mod-
ules with further study. Basic radiators for space operation are mounted on
the vehicle periphery. The lunar surface radiator is added to the top of the
tug to reduce reradiation heating. The top radiator is initially folded against
the vehicle sides when docked and during landing. If a 22-foot-diameter
(6.7 meters) tug is landed, no deployable radiator area is required. A

12-?
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EARTH ORBIT MISSIONS

CAM

JKITS

• Extra subsystems req'd for manned flight
• Landing gear - min. tare wt. on vehicle

• Mod. high pert. - min. propellant logistics
UPMMin. scar provisions for landing missions

 • Multiple engines desired for redundancy
,

• Provisions for 4 men, 28+ days stay
• Pressurized crew transfer
• Lunar landing visibility, surface access -

	

o	 low in vehicle stack
CM

,-^	 A Subsystems, "bra ins"
• Adaptable to manned or unmanned operations

IM e Additions for lunar

• Single module can be left on surface
• Easy loading at LOSS

^	 • Easy unloading on surface

	

^:=	 • Little effect on vehicle c. g.

'0 Max. perf, in geosync mission 	 47• Single engine preferred for efficiency
• Short configuration to save space

• 6-man crew transport
2-man working module

• Pressurized crew transfer
• Visibility of payload docking operations -

fwd. location

Subsystems, "brains"
• Manned or unmanned provisions
• Remote or manual control

Easy loading at space station
• Transferable to another vehicle
• Pressurizable double docking

cnd
a	 provisions for manned flight
• Manipulators for repair/retrieval
s Neuter docking adapters - either end

of any module

Figure 12-1. Desired Module Characteristics
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landing gear kit could be either an integral component or could be a separate
assembly for each leg; either method would involve EVA to attach. A mani-
pulator kit may be attached at the docking port. Inside the CM, if manned,
an additional assembly would contain all necessary controls and displays.
An antenna kit would be required if high date rates are to be transmitted
from lunar orbit to earth. This antenna should be approximately 6 feet
(1. 8 meters) in diameter and could be attached to the tug or could be ground-
deployed after landing, depending upon mission requirements.

Although the sequence of modules and kits in the vehicle stack depends
somewhat upon the mission requirements, these differences will be mini-
mized as the tug concept becomes more formalized. A preliminary descrip-
tion of the module and kit sequence for a space mission is shown in

`	 Figure 12-3.

Another aspect of the case for module feasibility involves assembly.
An indication of the complexity of module interfaces is given in Figure 12-4
which shows the multiplicity of connections between the major modules of
the tug. The number and types indicate the difficulty of making and breaking
these connections reliably in space. The cryogenic propellants in particular
require meticulous cleanliness, "zero” leakage, and shielding from heat
shorts.

It is recomm-ended that the PM-to-IM and IM-to-CM interfaces be con-
sidered ground-assembled only, until such time as a very capable space base
facility becomes available to support these operations.

Throughout the report, many special purpose assemblies, kits, and
submodules have been mentioned where their capabilities contributed to
design feasibility. The description of these have been collected and sum-
marized along with the standard modules in Table 12 -4.

12. 1.2 Tug Module Use With Other Vehicles

Several areas in the report deal with the use of modules in various
stack sequences or alone as in the case of the IM. Tug modules also may be
used as integral parts of other vehicles. The IM may be used as a stabiliza-
tion and data processing center for satellites and experiment modules; the
CM is adaptable as a small space station; and the PM is a suitable injection
stage. In all of these cases, however, an effort must be made to ensure
interface commonality.

The potential application of cislunar crew transportation using an
RNS/CM has been explored through respective team coordination. To mate
a tug CM to an RNS requires physical commonality and also that the RNS
supply all of the essential CM support functions. These include as broad

12-10
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CAPABILITIES

• MANIPULATOR SUB MODULE

• 4 MEN-28 DAY LUNAR STAY
6 MEN-7 DAYS SPACE
12 MEN-1 DAY RESCUE

UNMANNED/MANNED
FLIGHT SUPPORT
AUTO & REMOTE OPS

• MAIN PROPULSION
MAIN & AUX PROPEL.

Ai • CARGO HEM I -PODS
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• CARGO HANDLING

• ECILSS
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• G&N, COMM & DATA MGT
• ELECT. PWR & THERM CONT.
• AUX FLT CONTROL SYS
• ATT. CONTROL

• PROPULSION
• PROPELLANT STORAGE & COND.
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Figure 12-3. Current Philosophy of Module Organization
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Module /Kit Description Eff ectivity

PM Propulsion module All large delta-V missions

IM Intelligence module All tug missions

CM Crew module All manned missions

CAM Cargo module Resupply cargo missions (cylinder
or hemipods)

PL Payload Special and general purpose cargo,
satellites, experiments, etc.

- Electrical power kit Additional supply inserted in IM for
manned missions or payload sup-
port (includes additional radiators)

_ Radiator kit Top-mounted heat pump system for
lunar landing active thermal con-
trol capability

- Landing gear kit Bottom-mounted deployable legs

- Manipulator submodule Remote control manipulator assem-
bly attached to forward end of tug
at docking port for assembly,
maintenance and retrieval missions

- CM manipulator interface
assembly

On-board remote control system
inside CM

- Lunar landing G&N sensors Landing sensor system added to PM
and interior of CM

- Lunar landing antenna Tug-mounted or portable parabolic
antenna for additional communica-
tions capability

_ Docking adapter kit Provides capability for standard
neuter docking to Apollo probe or
drogue

_ G&N docking sensor assembly Attached to foremost surface of tug
and payload for active rendezvous
and docking capability
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categories electrical power and computer access. No major problems are
foreseen in electrical power compatibility; however, it is doubtful that the
RNS software is capable of supporting the statusing, -ommand, communica-
tions, and control requirements of the CM without compromising its baseline
design. Crew water and oxygen could be stored for these missions independ-
ently in the CM. A further analysis may consider the use of an IM/CM atop
the RNS as an alternate concept.

With only a minimum of buffering and signal conversion equipment,
the IM provides all of the functions necessary to control large launch vehicles
such as the Saturn V and INT-21. The major difficulty in substituting the IM
for the IU is in packaging, because different outer diameters are involvod.
To circumvent this problem, the standard IM could be installed higher in the
launch vehicle stack or could be a part of the payload control and be used
after the launch vehicle is jettisoned. Used strictly as a launch vehicle con-
trol module, the IM contains a surplus of equipment and would not be an
effective replacement for the IU.

12.2 ALTERNATE SUBSYSTEM CONFIGURATION

Apart from the weight aspects of subsystems, answers to numerous
other questions were posed as objectives in this report. The outcome of
some of these questions includes factors that will decide the tug's feasibility.
It is worthwhile, therefore, to discuss each of these factors separately. To
give the answers credibility, alternative vehicle descriptions have been gen-
erated. These descriptions are confined to subsystem changes but are
explained elsewhere in the report in terms of the overall vehicle and its
missions.

12.2. 1 Multipurpose Capability

In a sense, many spacecraft have had multipurpose capability in that
they can perform small variations in a nominal mission and can carry pay-
loads that have large functional differences. All of these spacecraft required
a sizable separate design and development effort to ensure proper perform-
ance in the unique aspects of each mission. Often these additional efforts
came after the initial design had flown many times. The logical next step in
technology is to design a vehicle with this flexibility at the start and in such
a way that the compromises for any single mission are minimized. Multi-
purpose capability may be a consideration completely independent of other
factors, such as reusability and autonomous operation. However, it does
seem necessary at this point to incorporate the concepts of modularity,
common subsystem propellant tankage, and common internal data exchange
for feasibility. Multipurpose tug capability also depends somewhat upon
commonality with the other IPP elements (particularly support from the EOS)
for economic operation.
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12.2.2 Reusability

In contrast with multipurpose capability, the reusability feature has
not been implemented previously. In the design of other spacecraft, gross
weight decreases were traded for the needed reliability and the protection
necessary for atmospheric entry without physical degradation. The incre-
ment in reliability must be added to the tug to afford reusability, but the
resulting weight increment is minimized by space-basing or the protection
of the EOS cargo bay during return to earth. The cost of reusability depends
upon the .requirements of space or ground basing, in that the technology of
space maintenance and checkout lags far behind that of ground basing.
Thert,fore, it is logical to reflect this fact in component redundancy. A
ground - based ver -.on of the tug would have approximately one failure level
less than that of the baseline tug.

12.2.3 Modularity

To afford a multipurpose capability, the tug may be "assembled" from
building blocks. The concept partially removes the constraints of the EOS
cargo bay envelope from the tug design and also permits specialized versions
of the tug for different mission classes. Conversely, modularity penalizes
the gross weight of any single version. A fully integrated, specialized tug
would display fewer interface -oriented components. The structural cost of
modularity is investigated elsewhere in the report. Intuitively, if the versa-
tility of the tug is diminished, the justification for iodularity also decreases.
In particular a ground-based ;, less autonomous vehicle with slightly less
multipurpose capability would tend to have an integrated intelligence and
propulsion module.

12.2.4 Autonomous Operation

Large costs are involved in the maintenance and operation of command
,d .-ontrol centers to suit' °f present day spacecraft. These centers are

equipped for one-at-a-time missions, and their complexity will be greatly
magnified if they are to support the proposed future traffic on the same basis.
Any simplification of the ground station function therefore is justified pro-
vided a greater cost to the spacecraft is not incurred.

Studies in the feasibility of autonomous operation have been carried out
for the tug and several related programs, and concepts have emerged. Data
down-link should be condensed to short, high data rate transmissions where
possible. Uplink command-control transmissions should be reduced in func-
tion and also should be condensed. One approach is to command a prepro-
grammed sequence of events to be carried out without ground monitoring.
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Details of autonomous navigation concepts are presented in the G&N
section and have been shown to be feasible. A relationship exists between
orbital injection accuracy and midcourse correction propellant expenditures.
An optimum condition exists when the cost of accurate navigation equipment
matches the cost of midcourse correction propellant. (This problem is yet
unsolved.)

Autonomy also may extend to rendezvous and docking sensors. A
reasonable approach is to organize IPP elements so that the nonaccelerating
spacecraft (EOSS, orbiting lunar station, lunar surface base, and OPD)
furnish all rendezvous and docking sensors, allowing all accelerating vehicles
(tug, CIS, RNS, EOS, OOS, etc.) to save the weight. Rendezvous and dock-
ing between two accelerating vehicles then would require special purpose
sensor equipment. Another reasonable approach is to require other onboard
equipment to serve a dual purpose as rendezvous and docking equipment. In
this vein, the S-band communication link would yield range magnitude infor-
mation, and star trackers would provide relative angular data. The feasi-
bility of this system is now being studied for use with the EOS.

The first of these approaches has been selected as a measure of
autonomy for the tug.

12.2. 5 Common Cryogenic Tankage

In support of multipurpose capability, common tankage permits a more
optimum tank capacity for any single mission, especially the missions where
the tank weight is most important. Without the concept, separate tanks for
main propulsion, auxiliary propulsion, fuel-cell reactants, and crew oxygen
would include the capacity for the most demanding mission in each case plus
a contingency capacity.

Common tankage provides an additional advantage in that orbital refuel-
ing problems are greatly simplified. The recommended tug concept includes
a common refueling connection to enable oxygen and hydrogen to be loaded
into the main propulsion tanks and to be disseminated to user subsystems
upon demand.

However, this concept is not without fault. A penalty lies in the conver-
sion of the cryogenics to gas and to increase the pressure for subsystems
use. Its use by the fuel cells requires purity standards that probably do not
permit helium pressurization in the main tank. An efficient method of recov-
ering boiloff gases has not been found, even though their quantity is significant.
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12.2. 6 Comparison of Alternate Subsystem Configurations

The comments and conclusions drawn for multipurpose, reusable,
modular, autonomous, and common tankage capabilities are summarized in
Figure 12-5. One implication from the foregoing discussions is that, with
proper organization, the tug capabilities may be "grown" by starting with a
version that has somewhat lesser capability and gradually increasing its
capability without incurring exhorbitant redesign costs. Obvious new instal-
lations when equipment is added include wiring harnesses and coolant circula-
tion lines. Although the feasibility of the entire approach is not yet
determined, it merits study, because it allows a modest beginning and
permits growth to capitalize on future state-of-the-art.

Table 12-7 is included in an attempt to identify the meaning of space-
basing and autonomy at the component level. The approach was to treat each
vertical division as an independent characteristic; however, while an increase
in autonomy means primarily the addition of different equipment, redundancy
is added unavoidably by accumulating alternatives. For example, another
memory module added to allow new onboard computation also provides a
backup to existing memory modules. Less redundancy was assumed to be
the major difference between space and ground-basing; again, the addition of
redundant components sometimes provides more autonomy.

The component descriptions in Table 12-7 do not seem to produce logi-
cal vehicles balanced in their capabilities. For this reason, various mixes
of capabilities were devised by selecting equipment from the baseline lists.
These variations are shown in Figure 12-6. The first four bars on the left
of the figure represent various baseline configurations. In the fifth case,
approximately 800 pounds (360 kilograms) may be saved if all the secondary
effects are considered when the requirements for precision C&N are relaxed
and the rendezvous and docking sensors are removed. The next three cases
show variations in autonomy for a ground-based reusable vehicle. The first
of these cases shows a reduction of approximately 800 pounds (360 kilograms)
by lowering redundancy levels while keeping the baseline capability. Another
250 pounds (113 kilograms) are saved in the second of the three cases by
removing active docking sensors and the related equipment in other subsys-
tem areas. A total weight of 1400 pounds (634 kilograms) results when
autonomy is reduced to a safe minimum. This case retains redundancy
necessary for man-rated interfaces and a high level of mission success but
would require mission specialized software programming before each launch.
The last case on the right of the figure was synthesized to be comparable with
proposed uprated versions of existing injection stages while maintaining
growth capability. As an expendable vehicle, it tends to require a shorter
mission life, allowing inclusion of battery primary electrical power and a
storable bipropellant ACS.
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Table 12-7. Comparison of Tug Subsystems Capabilities

Functionally Diminished Subsystems
Baseline Subsystems

(Unmanned) Minimum Autonomy Ground Based Expendable

General Comments
Modular Modular Modular Modular
Multimission Multimission Multimission Multimission
Growth potential included Growth potential included Growth potential included Growth potential included
Reusable Reusable Reusable
Common tankage Common tankage Common tankage
Space based Space based
Maximum autonomy

Subsystem — Specific Comments

C&N Easeline G&N — Gnd updates G&N— Lees redundancy G&N — Minimum redundancy
Gyro pentad IM 	 (1) Delete horizon/earth tracker Delete one-star tracker Delete one-star tracker
Gimbaled star tracker (2) Simplify nav base Delete one ACS driv. amp assy
Sun sensors and elect. (4)
Horizon/earth edge tracker (1)
Navigation sensor base (1)
ACS driver amplifiers (2)
Main eng gimbal amps (1)

G&N Rend and Docking Baseline G&N — Nonauton. ran and dock G&N — Less redund, no PM sensors G&N — Min redund, no sensors
IM laser ran and dock radar (2) Delete all ran and dock sensors Delete. One laser Delete all ran and dock sensors
IM television camera (1) Television cameras
PM television camera (1) Two contact sensors
IM contact sensor (4)
PM contact sensor (4)

Comm and Data Mgt Baseline C&DM — Min software C&DM — Less redundancy C&DM — Min redund, auto disposal
S-band trans/receiver (2) Delete: One I/O controller Delete: 3/5 S-B trans/rec Delete: 3/5 S-B trans/rec
Omni antenna (4) Two gen purp Two omniantennas Two omniantennas
2-ft/0. 61M steerable dish (2) processors One 2-ft steerable dish One 2-ft/0. 6M steerable
Dual comm switching and C/O (1) Two op memories 0. 5 premed processor dish
Dual premed processor (1. 5) Tape memory One I/O controller 0. 5 premed processor
MOS-LSI I/O controller (3) Five mass memories Two gen purp One I/O controller
MOS-LSI gen purpose processor (4) Two video units processors Two gen purp processors
787. 5 K bit operational memory (4) Five remote ACQ 1,vo op memories Two op memories
Tape archival storage memory (1) & cent un Tape memory Tape memory
1680K bit mass storage memory(5) Five mass memories Five mass memories
Dual central timing unit (1) Video unit Video unit
Video unit (2) Five remote ACQ Five remote ACQ
Remote ACQ and control units (11) & cent un & cont un

Electrical Power Baseline EPS — Less pwr read EPS — Less wh, less redund EPS — Batt primary, min redund
1.33 Kw O2/H2 fuel cell (3) Changed to reflect less demand Changed to reflect less demand Changed to reflect less demand
Z6.7 AH NiCd battery (3) Delete: One fuel cell Change fuel cells to batteries (3)
Battery charger (3) Two batteries Delete: Three battery chargers
167 VA inverter (3) Two battery chargers One inverter
Power controller (3) One inverter Two pwr controllers

One pwr controller

Active Thermal Control Baseline ATC — Less heat produced ATC — Less heat produced ATC — Lees heat produced
IM coolant system (1) Changed to reflect less heat Changed to reflect less heat Changed to reflect less heat
PM space radiator (4)

Auxiliary Control Baseline ACS — No change ACS — No change ACS — 100 lb/45 Kg nto/MMH
200-1b/91 Kg O2/H2 engines (20) engines (20)
Lines and valves (2 sets) Changed to reflect lean total IMP

Auxiliary Propellant Baseline APS — No change APS — No change APS — Indep. tanks due to leas IMP
02 , H2 accumulator tanks (4) Delete cryo conditioning
02 , H2 turbopumps (4)
C;,, H . gas generators (2)
02, H2 heat exchangers (4)
Lines and valves (2 sets)

Sig and Pwr Dist Wiring Baseline Wiring — Leas complex Wiring — Less complex Wiring — Lose complex
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12.3 IPP ELEMENT REQUIREMENTS IMPOSED BY TUG

Throughout the subsystems studies, as well as in other areas of the
contract effort, requirements for other vehicles have been assumed to pro-
vide a basis for decision. An accounting of the more important of these
requirements is made in this section.

The more obvious requirements for tug support by other vehicles are
propellant and crew provision resupplies. The quantity of propellant to be
transferred to tug tanks is a function of the mission. The method of orbital
tanking is discussed in the appropriate design and operations sections. In
most cases, the tug docks an aft docking system to the supplying vehicle so
that shorter propellant transfer lines are used. Line connectors are mated
after the completion of docking and checkout.

Crew provision resupplies are most easily transferred from the supply-
ing vehicle through a CM pressurized hatch. A list of the resupply items is
presented in Table 12-8. All of the data are .directly traceable to require-
ments presented in the ECLSS section of this report. Included in the list are
expendable, consumables, and an estimated 5 percent of the total onboard
inventory of spare parts. The method of transferring these items depends
upon the conditions in the supplying vehicle: a container holding the entire
inventory could be attached to the CM port and unloaded as each item is
stowed by the CM crew.

A large number of other requirement areas are noted in Table 12-9.
All of the interface requirements should be defined in more detail by coopera-
tive teams with vested interests in each of IPP elements.

12.4 TUG QUIESCENT ^:TORAGE

If the tug is to be reusable and space-based, provisions for storage
between missions must: be made. The requirements for quiescence are
180 days in space or 30 days on the lunar surface. The space storage period
may be spent docked to another vehicle or free-flying. In any case, reactiva-
tion should be accomplished within 2 hours.

The tug in free-flying quiescence condition needs attitude stabilization
from the ACS to satisfy various types of requirements. Whether the stabili-
zation is necessary throughout the storage period or only during the reactiva-
tion period depends upon these requirements. If propellant boiloff is to be
minimized by pointing a minimum, highly insulated portion of the tug surface
area at the sun, this can only be provided by continuous attitude stabilization.
Other requirements also may lead to continuous attitude stabilization during
free-flying quiescence, but they are not apparent at this time.
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Table 12-8. Crew Module Resupply Summary

Space Missions Lunar Landing Missions

2 Man/7 Days 4 Man/7 Days 6 Man/7 Days 4 Man/31 Days	 4 Man AS Days

Weight Volume Weight Volume Weight Volume Weight Volume Weight Volume

Description
Source/

Type Lb Kg Ft  M3 Lb Kg Ft3 M3 Lb Kg FO M3 Lb Kg FO M3 Lb Kg I t3 N13

Expendables and Consumables

Housekeeping: cleaners, trash
I

bags, char filters EOSS Extrap 6.6 3.0 0.30 0.008 13.1 5.9 0 . 60 0.017 19 . 7 8.9 0 . 90 0.025 55.0 24. 9 2.50 0 . 071 82 . 0 37.2 3.73 0. 106
Food mgt: dehyd /froz food,

utensils, soap Skylab 61.5 27.9 2.79 5.079 1 1:3.0 55.8 5.57 0.158 184 . 0 83.5 8.38 0.237 450.0 204.1 20.40 0.578 664.0 301.2 30 . 20 0.855
Waste mgt: chemi cal and

bacterial filters Skylab 15.0 6.8 11.65 U. 047 27.5 12.5 3.02 0 . 086 40.0 18.1 4 . 40 0.125 29. t< 13.1 3.20 0.091 30.0 13.6 3.30 0.093

Temp and humid cont. filters Apo!lo,'Skylab 5.9 2.7 0.14 0 . 604 11.3 5. 1 0 . 27 0.008 16 . 7 7.6 0.40 0.011 11.3 5.1 0 . 27 0.008 11 . 3 5.1 0.27 0.008

Atmos purif. particle and
mole filters, char FOSS Extrap 5.6 2.5 0.17 0.005 6 . 1 2.8 0 . 18 0.005 6. 7 3.0 0 . 20 0.006 10.0 4.5 0.30 0.008 12.2 5. 5 0.37 0.010

Atmos circ: UGH Apollo /Skylab 63 . 0 28.o 2.17 0 . 061 1. 6.0 57.2 4.35 0. 123 189.0 85.7 6. 50 0.184 456. 0 206.8 15.70 0.445 662.0 300.3 22.80 0.646

Crew support: clothes, bedding,

towels, soap, med EOSS Extrap 12 . 8 5.8 0 . 58 0.016 25.5 11.6 1.14 0.032 38.3 17.4 1 . 74 0.049 108 . 0 49.0 4.90 0. 139 159.0 72.1 7.20 0.204

Nitrogen: cryo baseline Estimate 3.4 1.5 -- 3.4 1.5 -- 3.4 1.5 -- 11.0 5.0 -- 15.4 7.0 --

Total CM ECLSS expend
consumables - 173.8 78.8 7 . 80 0.220 335 . 9 152 . 4 15.13 0.429 497.8 225.7 22 . 52 0.637 1130.3 512 . 5 47.27 1.340 1635.9 742.0 67.87 1.922

Spare Equipment: stowable parts. Apollo/
controls, filters. hoses and bags Skylab /EOSS 5.0 0. 009 7 . 6 3.4 0.51 0.014 10 . 2 4.6 0. 70 0.020 9.1 4.1 0.57 0.016 9.1 4.1 0.57 n, 016

- 178.8 8

L30.

0.229 343.5 155.8 15.&4 0.443 508.0 230.3 23.22 0. 657 1139. 4 516 . 6 47.84 1 . 356 1645.0 746. 11 68.44 1. 938Total CM ECLSS resupply
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Prolonged disturbance torques arising from external environment
(solar pressure, gravity gradient, magnetic fields, etc. ) typically are
periodic and result in very low vehicle velocities. Internally produced
torques (rotating machinery and outgassing) produce secular torques, which,

`	 over prolonged periods, cause large accumulated angular velocities. Neither
type of torque will preclude stabilization during the reactivation period if
communications contact can be established.

It is important to design the tug so that the stabilization system may
be turned off during free-flying quiescence, because a rather large propel-
lant consumption and an appreciable fraction of equipment life is involved.
Unless a separate, low-grade stabilization system is employed for quies-
cence, nearly all other subsystems must be operating in support. On the
other hand, with all subsystems turned off, reactivation could be accom-
plished by remote operation of circuit breakers in a pr eplanned sequence.

'.	 Initial onboard power is supplied by batteries.

If the tug docks with another vehicle for quiescent storage, then the
problem is greatly simplified. Here, thermal control is the major concern.
The other vehicle might supply sufficient power, on the order of 60 watts,
to permit operation of the coolant circulation pumps so tnat heat may be
transported to the tug radiators. No advantage is seen' in transporting heat
to a docking port heat exchanger to• be dumped by the other vehicle.

The computer may be deenergized during quiescence without loss of
data, if the memory elements are nonvolatile. Both the operating and mass
memories could be volatile, if they are resupplied with data and program
records from a tape memory during reactivation.

To summarize, quiescent storage in space may be spent either free-
flying or docked to another vehicle without great penalty. Quiescence
requirements should be established to minimize expenditures of propellant
and equipment operating life, Quiescent storage of the tug on the lunar
surface should only be attempted if an external power source is provided to
operate the coolant circulation and heat pump systems.
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13.0 RECOMMENDED FUTURE SUBSYSTEMS EFFORT

The preceding sections indicate that the rapid advancement in most
areas makes assessment of the current state of technology difficult. If
compromises are made to take advantage of equipment commonality with
EOS, these compromises should be noted and reassessed in the event of
EOS equipment changes.

The prospects of large weight savings because of near -term technology
advancement are very significant. Not only are software and sensor sup-
pliers predicting weight and power reductions, but implementation of the
changes will relax EPS and ATC requirements. As an estimate of the
change in magnitude that could be expected if key predictions are realized,
comparisons were made with data in Figure 12-6. New subsystem weights
were totaled assuming the use of dual Micron IMU components, ground
radio beacon tracking in place of an onboard horizon / earth edge tracker,
star trackers and Comm-link ranging in place of laser radar for rendezvous
and docking, K-band communications in place of S-band, and the use of
beam-lead software technology. No specific time period was associated
with these advancements. The results imply that the unmanned baseline
subsystem weight could be reduced approximately 800 pounds (362 kilograms).
Therefore, these advancements are well worth pursuing.	 r

Detailed future study descriptions for subsystems are presented in
Volume 6 of this report and are reiterated in Volume 4.
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APPENDIXES

These appendixes contain the reports from three tradeoff studies
conducted under a separate, company-sponsored effort. A fourth report
describes the Honeywell guidance, navigation and control study that was
conducted for the tug. In each of these reports, tug requirements were used
exclusively. However, since the contributors were using company funds,
they were not required to include the international system of units. Thus,
in all of the appendix reports, data are presented in English units only.

-
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APPENDIX A

ENVIRONMENTAL CONTROL AND LIFE SUPPORT
SUBSYSTEM TRADE STUDY

INTRODUCTION AND SUMMARY

This report presents the technical results of the environmental control
and life support subsystem (EC/LSS) study performed in support of the
Prephase A study of a reusable space tug. This preliminary design report
features various studies that include development of requirements and
constraints, consideration of operating modes, and tradeoff and comparison
studies leading to selection of optimum subsystems and processes. The
EC/LSS was evaluated over a range of mission objectives to provide support
for a two- or six-man seven-day mission capability, with extended system
growth for a four-man 45-day mission, including a 28-day stay on the lunar
surface. Tradeoff and comparison studies were conducted in areas where
multiple solutions were available. Tradeoff studies were performed to
evaluate processes, such as regenerative (closed) types and nonregenerative
(open) types of EC/LSS. Processes were evaluated and selected on a basis
of weight, power, and volume. Foi, establishment of EC/LSS characteristics
of weight power, and volume, data developed for space station studies were
adapted to tug crew sizes and mission duration requirements.

The objective of this report is to define the EC/LSS required to support
a design configuration effort for earth orbit, lunar, and planetary missions,
adopted to a reusable space tug program. The definition is at the assembly
level, although definition to the subassembly level has been included in
several instances to show more clearly how the significant EC/LSS functions
are performed.

Study Objectives

Specific objectives of the study program reported herein are:

1. To identify and define candidate EC/LSS assembly concepts for
potential application to the space tug program and make assembly
level concept selection for each application.

2. To perform tradeoff analysis at the assembly level in order to
select the preferred assembly concept approach. Estimate
itemized weight, power, and volume for the EC/LSS.

A-1
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3. To define the general characteristics of these selected approaches
for space tug applications.

4. To define subsystem requirements for the EC/LSS commensurate
with the various mission classes.

3

The
Z

specific assemblies and functions within the EC/LSS that were	
F

investigated under this study program are noted in Figure A-1.	 This func-
tional matrix shows the specific assemblies and functions, which can be
organized into three levels:	 w

1. Specific assemblies or major EC/LSS areas such as atmospheric
storage, active thermal control, etc.

2. Selected systems and functions such as cabin thermal loop,
pressure control, or storage, etc.

t

3. System candidates affected by tradeoff analysis, such as the
selection of the best CO 2 removal system using LiOh, molecular
sieve,	 etc.

The major candidate affected by tradeoff analysis were in the areas of
CO2 removal, CO 2 reduction for water recovery, water electrolysis for
02 recovery, trace contaminant control, and water reclamation. Candidate
selections were made on a basis of weight, power, and volume. However,
additional tasks for the evaluation of the EC/LSS will be conducted on the
basis of reliability, safety, performance, availability, interfaces, and
system flexibility. These tasks are not included as part of this study phase.

EC/LSS Summary

The major EC/LSS requirements and drivers that have a direct effect
on vehicle volume, size, and weight and electrical power penalties for the
selection of an EC/LSS were crew size and metabolic load, on-board con-
sumable storage (a function of crew and mission duration), cabin volume,
which affects cabin leakage and air circulation, and radiator heat rejection
capabilities. ,

Table A-1 summarizes weight, power, and volume for the selected
EC/LSS assemblies and subassemblies installed in the vehicle., Table A-2
presents the weight of EC/LSS consumables for the three mis.9i.ons considered
in the tradeoff evaluation.

Results from tradeoff analyses, which minimized weight, power, and
volume, show that the nonregenerative (open) type of system is best adapted
to fulfill 11 mission objectives and EC/LSS requirements of the tug program.

F	 ''
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FIXED EQUIPMENTRECOMMENDED SYS. DESCRIPTION

1891 (856)	 1 925	 1 126.3 (3.57)TOTAL FIXED EQUIPMENT

WEIGHT
LB	 (KG)

POWER
WATTS

VOLUME
CU. FT	 (M31

36 (38.9) 145 4.52 (.128)

0 (0) -- 0 (0)

121	 (54.8) 150 18.87 (.534)

310 (140) 250 35.55 (1.01)

41	 (18.6) 30 2.14 (.061)

60 (279.2) 300 6.39 (.180

134 (60.6) -- 10.54 (.294)

81 (36.6) -- 1.80 (.051)

48 (21.1) 50 4.8 1.1361

154 (70) -- 7.0 (.198)

79 (35.8) -- 3.6 (.102)

778 (352) -- 31.12 (.882) 3

ONTAM I NENT CONTROL

02 REMOVAL

C IRCULATION

TEMP. & HUM. CONTROL

PRESSURE CONTROL

CABIN THERMAL LOOP

WASTE MANAGEMENT

EMER. LIFE SUPPORT

WATER & FOOD MGMT.

CREW SUPPORT

HOUSEKEEP I NG/ ATM. COND

EVA LIFE SUPPORT

CAT. Oh./SORPTION

LiOH

FANS

FANS, HX. & CONDEN HX.

5 PS IA, TWO GAS CONT.

PUMPS & HX.

WASTE STORAGE

HIGH PRESS. GAS

TYPICAL OF APOLLO

TYPICAL OF APOLLO

FILTERS, TRASH BAGS, ETC

PLSS & OPS (4 UNITS)

METHOD

En
d

1
N
.oN
1

All

Table A- 1. EC/LSS System Selection



CONCEPT METHOD 2 MEN-1MEN-1 DAYS 6 %)7 DAYS 4 
MEN-As 

DAYS

FOOD FREEZE DRIED & FROZEN 54 (24.4) 161	 (73) 665 (300)

LION COMPOUND & CANISTER 69 (31.2) 186 (84) 809 (364)

EMERG. OXYGEN RE PRESS & PLSS RESUPPLY 37 (16.7) 37 (16.71 259 (117)

ATMOS. STORAGE

CM CHARGE 02 & N2 at 14.7 PS IA 95 (43) 95 (43) 95 (43)

OXYGEN METABOLIC, LEAKAGE, ETC. 28 (1.2.7) 80 (36.0 324 (146)

NITROGEN HIGH PRESS. 3 (1.36) 3 0.36) 17 (7.1)

WATER STORAGE 	 I POTABLE •

TOTAL CONSUMABLES 286 (129) 562 (254) 2169 (980)

TOTAL ECILSS 2177 (985) - 2453 0110) 4060 (1835)

*WATER FROM FUEL CELLS

J

d

1
N
.D
N
I

Table A-2. EC/LSS System Selection

CONSUMABLES	 WEIGHT o..oLBS
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The regenerative (closed) system, such as molecular sieve or steam desorbed
resin for the removal of CO 2 , Sabatier or Bosch reactor for water recovery
from CO2 reduction, wick feed or gas circulation for 0 2 recovery from water
electrolysis are competitive for the longer mission stay times and larger
crew sizes. The fixed equipment and spare weight, plus the electrical,
power penalty of these systems, are prohibitive for the tug program.

The fixed-equipment weight values in the tables include system spare
weight. Expendable items such as chemicals normally programmed for
replacement were included as a consumable. The total consumables did not
include the weight of stored water. Water generation from fuel cell opera-
tion was sufficient to meet the crew drinking and washing requirements. CM
configurations identifying the various location of equipment for the EC/LSS
subsystem are shown in Figures A-2, A-3, and A-4.

PRIMARY DESIGN CRITERIA

The primary design criteria influencing the design of the EC/LSS are
summarized in this section for reference. The criteria are given in the
following categories; (1) Summary of EC/LSS Requirements (Table A-3),
(2) Space Tug Mission Definition (Table A-4), -(3) Crew Requirements
(Table A-5) and (4) EC/LSS Subsystem Design Requirements (TableA-6).
The criteria are listed in a form to provide a quick review of the EC/LSS
design basis.

Requirements and Constraints

For the safety and comfort of the crewmen, the EC/LSS provides a
pressurized oxygen-containing atmosphere, removes metabolic waste
products, and meets food and personal hygiene requirements.

During tug manned operation, the cabin oxygen partial pressure and
total pressure are maintained at levels suitable for sustained occupancy.
A condensing heat exchanger and a lithium-hydroxide canister remove water
vapor and carbon dioxide, respectively. Trace contaminants are controlled
by leakage and adsorption on activated charcoal. Extra-tug activity uses
portable life support system (PLSS) units, which are recharged by the tug
subsystems, for life support.

The EC/LSS has significant interfaces with the electrical power,
reactant storage, and structural subsystems. Electrical energy is required
for operation of compressors, fans, pumps, and control and for recharging
the PLSS batteries. An atmosphere supply is required continuously during
manned operation to make up metabolic oxygen consumption and leakage.
Water for drinking, for reconstitution, and PLSS cooling during EVA is
obtained from storage tanks and from fuel-cell water generation.

A-6
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Figure A-3. Four-Man Lunar Lander - 28-Day-Stay Configuration
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Table A-3. Summary of ECLSS Requirements

Characteristics

0

Crew Size

Metabolic Load

Onboard Consumable Storage

02

CO2 Concentration

Atmosphere Temperature Selectabil ity

Ventilation Rate

Potable Water Usage

Wash Water Usage

Atmospheric Leakage

Cabin Volume

Radiator Heat Rejection

6 men normal, 12 men maximum

11,900 Btu/day-man

45 days

1.84 Ib/man-day

5.0 mm Hg nominal, 7.6 mm Hg maximum

65 to 75°F, nominal

40 ft/min, nominal

6 lb/man-day (approx. )

4 lb/man-day (approx. )

0.7 to 1.0 lb/day (N2/02)

1250 ft3 at 5 s 0 psia

5,000 to 2 0, 000 Btu/hr ^iZ 
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Table A-4. Space Tug Mission Definition

¢ t ai.w.	 . ,	 ..- <	 .!	 ..i	 , .	 -.	 _,	 w Est. ' 3.	 ._	 ..

d

N
N
to

Item

Crew Size

Mission Duration

Resupply Period

Gravity

Vehicle Environment

Maintenance

Power Supply

Emergency Reserve on Expendables

Launch Expendables/Spares

Vehicle Configuration

Vehicle Total Volume

Vehicle Leakage Rate

Heat Rejection

Characteristics

Nominal: 6 men; Maximum: 12 men

Nominal: 7 days; Maximum: 45 days

Nominal: 7 days; Maximum: 45 days

0 to 1 g (includes artificially induced gravity)

Space vacuum to 14.7 psis

InfIight repair and maintenance

3.5 kw fuel cells (1.0 Ib/watt penalty)

One day of essential requirements

45-day supply

See figures 1-2 through 1-4

1250 to 2660 ft3

.7 to 1.0 lb/day 02/142

Space radiators
Z 19AD^

o
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Table A-5. Crew Requirements

is Characteristics

Netabolie beat (total) Nominal: 11,900 Btu/man-day
Ranges 10,300 - 13,600 otq/a^
Design maximum: 650 Dtv/aan-hour

latent load Nominal: 3400 Btu/man-ay
Ranges 2320 - 8500 Btu/aaa-day
Design nas:immat 360 Stu/an-day

Sensible load Nominal# 8500 Btu/man-day
Range: 4920 - 9680 Btu/man-ay

Oygen consumption Nominal: 1.64 lb/man-day
Range: 1.67 - 2.45 lb/aut-day

002 production Nominal: 2.25 lb/man-day
Range: 1.98 - 3.0 lb/span-dy

Food conniption (dry) Nominal supply: 1.68 lb/man-day
Nominal intake: 1.50 lb/man-day

Dried foods 1.04 lb/man-day
Met foods (dry part) 0.64 lb/man-day

Frozen
Canned
Fresh

Food not ingested 0.18 lb/man-day
Mater in wet foods 0.96 lb/man-day
Fackage-dried foods 0.73 lb/nan-day maxima
heksgo-wet foods 0.45 lb/mm-day maximum

latent water lose Nominal: 3.40 lb/msa4ay
hangs: 2.78 - 8. 5 lb/man-48y

Urine production

Yates Nominal: 3.45 lb/man-day
gauges 2.54 - 4.48 lb/wt-day

Solids 0.13 lb/man-day

F«w production

ester 0.25 lb/man-day
Solids 0.13 lb/man-day

Netabolic balance (lb/man-day)

Input 6.32 water
1.84 02
1.50 dry food

Output 3.40 latent M
3.45 urine NX
0.25 feeal 1e
2.25 CO
0.13 Urine solids
0.13 fecal solids
0.05 hair, skim, ete.

A-12
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Table A-6. ECLSS Subsystem Design Requirements

Item

Total Pressure

02 Partial Pressure

Diluent

CO2 Partial Pressure

Cabin Trace Contaminants

Atmosphere Temperature

Cabin Ventilation Rate

Cabin Humidity

Water Requirements Model
Crew Water Consumption

Drinking & added to dried food
Water stored in other food
Residual not ingested

Wash Water
Partial body hygiene (hand and face,
hair groom)

Other Water Requirements
Urine Flush
Vehicle Leakage

Water Purity

Special Life Support

IVA
EVA

Expendables - Oxygen
- Water

Characteristics

5.0 psia nominal, 3.5 psia design minimum

3.5 ps is nom inaI , 3.7 ps is max imum

Nitrogen

Nominal: 7.6 mmHg maximum
Emergency maximum: 15.0 mm Hg for 2 hr

See Table 2-5

Control range between 65 and 75 F;
control tolerance t3 F of selected
temperature

40 ft/min nominal; 15 ft/min minimum;
100 ft/min maximum

Absolute humidity range- 8 mm Hg to
12 mm Hg ppH2pO; relative humidity
range: 30 to 5-0% approx; minimum
dewpoint: 57 F

6.54 lb/man-day nominal supply;
6.32 lb/man-day nominal intake;
5.89-12.0 lb/man-day range

5.17 lb/man-day
.96 Ib/man-day
0.22 lb/man-day

4.0 1 b/man-day

3.5 lb/man-day
0.3 Ib/day

See Table 2-6

2 per mission with 2 men (normal)
2 per day with 4 men (2 8 day max.)
Lb IbA hr.. sortie

5.61b/4 hr. sortie

A-13
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Manned Operation

An atmosphere will be supplied that provides a minimum oxygen partial
pressure of 3. 5 psia. The cabin carbon-dioxide partial pressure will not
exceed 7. 6 mm Hg. The normal operating level will be 5. 0 mm Hg.

ix	a^.	
The cabin will be controlled within the range 50 ±20 percent relative

	

Y	 humidity by condensation and removal of water. If maintenance of a water
balance is required, the condensed water maybe collected, processed,
stored, and used by other subsystems.

The above EC /LSS functions will be supported by a tug atmosphere
ventilation flow rate. The ventilation flow will be adequate to remove
sensible heat, water vapor, carbon dioxide, and trace contaminants and to
provide a substantially uniform atmosphere temperature and composition
throughout tha cabin.

Airborne trace contaminants will be controlled by tug leakage, air-lock
losses, and adsorption in the activated charcoal contained in the lithium-
hydroxide canisters. If needed, a catalytic burner will be added for the
removal of low - molecular-weight trace contaminants.

A waste management system will be included for processing of biologi-
cals and packaging waste materials. All processed waste will be stored
aboard the CM, except for urine.

The water management system will store water carried from earth for
an initial charge. All other water used will be generated by the electrical
power system. The water balance may include that reclaimed from humidity
condensate and excess water from fuel cell generation for thermal control
system cooling.

Sufficient quantities of food and personal hygiene provisions will be
included for the mission duration. The food supply will provide a caloric
food value of 3280 calories per man-day for life support. The personal
hygiene provisions will be analyzed to include requirements for clothing,
shaving, hair / nail clipping, and tooth care.

Pertinent Data

Table A-7 lists the pertinent data on trace contaminants utilized; the
aerospace drinking water standards are defined in Table A-8.

A-14
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Table A-7. Maximum Concentration and Production Rate of
Trace Contaminants

W
Production Rates Space

Maximum
AllowableNon-

Biological Biological Total Concentration
Contaminant (grin/day) (gm/day) (gm/day) (trig/m3)

Acetone 10.20 0.0099 10.20 240
Acetaldehyde 2.50 0.0023 2.50 36
Acetic Acid 0.25 0.25 Z. 5
Acetylene 2.50 2.50 180
Ace tonitr ile O. Z S 0.2 5 7
Acrolein 0.25 0.25 0.25-
Allyl Alcohol 0.29 0.25 0.5
Ammonia 2.50 12. 14.50 3.5
Amyl Acetate 0.25 0.25 S3
'Amyl Alcohol 0 . 25 0.25 36
Be nse ne 2. 50 2.50 8
n-Butane 2. 50 2. 50 180
iso-Butane 0.25 0.25 180
Butane -1 2.50 2.50 180
cis-Butene-2 0.25 0.25 180
trans -Butene - 2 2.50 2.50 180
1, 3 Butadiene 2.50 Z.50 220
too-Butylene 0.25 0.25 180
n-Butyl Alcohol Z . 50 0.036 Z. 54 30
iso Butyl Alcohol 0.25 0.25 30
sec-Butyl Alcohol 0.25 0.25 30
tort-Butyl Alr ohol 0.25 0.25 30
Butyl Acetate 0.25 0.25 71
Butraldehydes 0.25 0.25 70
Butyric Acid 0.25 0.25 14
Carbon Disulfide 0.25 0.25 6
Carbon Monoxide Z.50 0 . 4 Z.9 29
Carbon Tetrachloride 0.25 0.25 6.5
^.arbonyl Sulfide 0.25 0.25 25
Chlorine 0.25 0.25 1.5
Chloroacetone 0. ZS 0125 100
Chlorobensene 0.25 0125 3S
Chlorofluorometbane 0.25 0.25 24
Chloroform 2. SO Z1 50 24

Chloropropane 0125 0.25 94
Caprylic Acid X 0125 1SS

A-15
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Table A-7. Maximum Concentration and Production Rate of
Trace Contaminants (Cont)

Production Rates apace
Maximum

Non- Allowable
Biological Biological Total Concentration

Contaminant (Sm/day) (Sm/day) (gin/day) (mg/m3)

Cumene 0.25 0.25 25
C yc lohexane 2.50 2.50 100
C yclohexane 0.25 0.25 100
Cyclohexanol 0.25 0.25 20
Cyclopentane 0.25 0.25 100
C yclopropane 0.25 0.25 100
Cyanamide 0.25 0.25 45
Decalin 0.25 0.25 5.0
1. 1 Dymethyl 0.25 0.25 120

cyclohexane
trans 1. 2. dimethyl 0.25 0.25 120

C yclohexane
2 9 2 Dimethyl bu^ane O.25 0.25 93
Dimethyl Sulfide 0.25 0.25 15
1. 1 Dichloroethane 2.50 2.50 40
Di iso Butyl Ketone 0.25 0.25 29
1. 4 Dioxane 2.50 2.50 36
Dimethyl Furan 0.25 0.25 3.0
Dimethyl Hydrazine 0.25 0.25 0.1
Ethane 2. 50 2. 50 ISO
Ethyl Alcohol 2. 50 0 . 12 2.62 190
Ethyl Acetate 2.50 2 . 50 r	 140
Ethyl Acetylene 0.25 0.25 ISO
Ethyl Benzene 0.25 0.25 44
Ethylene Dichloride 0.25 0.25 40
Ethyl Ether 2.50 2.50 120
Ethyl Butyl Ether 0.25 0.25 200
Ethyl Formate 2.50 2.50 30
Ethylene 2.50 2.50 180
Ethylene Glycol 0.25 0.25 114
trans 1. Methyl 3 0.25 0025

Ethyl C yclohexane

Notes: Decalin a decahydronaphthalene
1 9 4 Dioxane N p-Dioxane
Ethylene dichloride s ethylene chloride = 1. 2 diehloroethans
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Table A-7. Maximum Concentration and Production Rate of
Trace Contaminants (Cont)

Production Rates Space
Maximum

Non- Allowable
Biological Biological Total Concentration.

Contaminant (gm/day) (Sm/day) (gm/day) (mg/m3)

Ethyl Sulfide O. ZS 0. Z5 97
Ethyl Mercaptan 0.25 X 0.25 2.5
Freon 11 2.50 2.50 560
Freon 12 2.50 2.50 500
Freon 21 0.25 0. Z5 420
Freon 22 0.25 0.25 350
Freon 23 0.25 0.25 12
Freon 113 0.25 0.25 700
Freon 114 2.50 Z. 50 700
'Freon 114 unsym 0. Z5 0.25 700
Freon 125 0.25 0.Z5 25
Formaldehyde 0. Z5 0.25 0.6
Furan 0.25 0.25 3
Furfural 0.25 0.25 2
Hydrogen Z.50 0.6 3.10 215
Hydrogen Chloride 0. ZS 0.25 0.15
Hydrogen Fluoride 0.25 0.25 0.08
Hydrogen Sulfide 0.0007 0.0009 1.5
Heptane 0.25 0.25 200
Hexene-1 0. Z5 0. Z5 180
n-Hexane Z. 50 2.50 180
Hexamethylcyclotri- 0.25 0.25 240

sihexane
Indole 0.25 1.2 1.45 126
Isoprene 0.25 0. Z5 140
Methylene Chloride Z. SO Z. 50 21
Methyl Acetate 2.50 2.50 61

Notes: Freon 11	 = Trichlorofluoromethane
Freon 12	 = Dichlorodifluoromethane
Freon 21	 = Dichlorofluoromethane
Freon 22	 = Chlorodifluoromethane
Freon 23	 = Fluoroform `e Trifluoromethane
Freon 113	 = Trichlorotrifluoroethane
Freon 114	 = Dichlorotetrafluoroethane
Freon 125	 = Pentafluoroethane



Production Rate • Space
Maximum

Nos- Allowable
Biological Biological Total Concentration

Contaminant (gm/day) (gm/day) (gm/day) (mg/m3)

Methyl Butyrate 0025 0925 30
Methyl Chloride 0.2s 0.2s 21
2-Methyl-1 Butane 0.25 0.25 1430
Methyl Chloroform 2. s0 2.5o 190
Methyl Furane 0.25 0.25 3
Methyl Ethyl Ketone 2.50 2. so 59
Methyl Isobutyl 0.25 0125 41

Ketone
Methyl Isopropyl 2. so 2. so 70
' Ketone
Methyl Cyclohexane 0025 0025 200
Methyl Acetylene 0.25 0.25 169
Methyl Alcohol 2.50 0112 2.62 26
3-Methyl Pentane 0125 0.25 295
Methyl Methacrylate 0.25 0.25 41
Methane 29.5 7.2 36.7 1720
Mesitylene 0.25 0.25 2.5
mono Methyl 0.25 0125 0.035

Hydrazine
Methyl Mercaptan 0.25 2
Naphthalene 0.25 0125 5.0
Nitric Oxide 0.25 0125 32
Nitrogen Tetroxide 0.25 0.25 1.9
Nitrogen Dioxide 0.25 0.25 0.9
Nitrous Oxide 0.25 0125 47
Octane 0.25 0.25 235
Propylene 2.50 2.50 180
iso-Pentane !.so 2.50 295
n-Pentane 2.50 2.50 295

Notes: methyl ethyl ketone s 2-buranone
methyl isopropyl betane s 3-:methyl 2, butanone s t-methyl

butanone • 3
methyl acetylene s propine =- propynl
me •itylene * 1. 3, 5 trimethyl bensene
Propylene s propose
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Table A-7. Maximurn Concentration and Production Rate of
Trace Contaminants (Cont-)

Production Rates Space
Maximum

Non- Allowable
Biological Biological Total Concentration

Contaminant (gm/day) (gm/day) (gm/day) (mg/m3)
Pentane-1 0.25 0.25 • 180
Pentene-Z 0.25 0.25 180
Propane 2.50 2.50 180
n-Propyl Acetate 0I Z5 0.25 84
n-Propyl Alcohol 2.50 2.50 75
iso-Propyl Alcohol 2.50 2.50 98
n-Propyl Benzene 0.25 0.25 44
too-Propyl Chloride 0.25 0.25 260
iso-Propyl Ether 0.25 0.25 120
Proprionaldehyde 0.25 0.25 30
Propionic Acid 0.25 0.25 15
Propyl Mercaptan 0.25 82
Propylene Aldehyde 0. Z5 0. Z5 10
Pyruvic Acid 4.53 4.53 0.9
Phenol 0125 4.53 4.78 1.9
Skatol 0. Z 5 141
Sulfur Dioxide 0.25 0. Z5 0.8
Styrene 0.25 0.25 42
Tetrachloroethylene 0.25 0.25 67
Tetrafluoroethylene 0.25 0.25 205
Tetrahydrofurane 0.25 0.25 59
Toluene 2.50 2.50 75
T richlor oethyle ne 2.50 2. 50 52
1, 2, 4 Trimethyl 0.25 0.25 49

Benzene
I t I t 3 Thrimethyl 0.25 0.25 140

cyclohexane
Valeraldehyde 0.25 70
Valeric Acid 0.25 110
Vinyl Chloride 2.50 2.50 130
Vinyl Methyl Ether 0.25 0.25 60
Vinyldene Chloride 0.25 0.25 20
0-Xylene 2.50 2.50 44
M-Xylene
p-Xylene

2.50
Z.50

2.50
2.50

44
44

Notes: Propylene aldehyde s crotonaldehyde
Tetrachlaroethylene = Perchloraethylene
Vinyl methyl ether = methoxy ethane
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Chemical Requirements Milligram/liter
or ppm

Source

Total solids
Cadmium
Chromium, hexavalent
Copper
Lead
Silver
Iron

1000.0
AS

0.0s
3.0
0.2
0. S
1.0

Space Science Board
Space Science Board
Space Science Board
Space Science Board
Space Science- Board
Space Science Board
Air Force Potable Water Standard for 1967

Manganese 0.1 Air Force Potable Water Standard for 1967
Zinc
Mercury
Nickel

15.0
0.005
1.0

Air Force Potable Water Standard for 1967
NASA PF-SPEC-1
NR

Chemical oxygen demand
Selenium

0.5
0.012

NR
U. S. Dept. of Public Health

Other Standards Units Source

Color 15.0 Air Force Potable Water Standard for 1967
Turbidity 25.0 Air Force Potable Water Standard for 1967
Taste and odor	 (odor No. 3.0 Air Force Potable Water Standard for 1967

pH

Microorganisms

6.0-8.0

Essentially no

NASA PF-SPEC-1

U. S. Dept. of Public Health
coliforms

Particulates Level 3 NR SPEC MA0610-017

7 14-1
16

3
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SYSTEM DESCRIPTION

The EC/LSS subsystems described herein are those selected on a
weight, power, and volume penalty basis. Other evaluation criteria, such
as reliability, safety, performance, availability, interfaces, and system
flexibility, have not been introduced and may alter the above selections
somewhat.

Atmospheric Storage

The atmospheric storage assembly, which is composed of an oxygen
storage subassembly and a nitrogen storage subassembly, contains subcrit-
ical nitrogen tankage for leakage nitrogen makeup, and high-pressure
oxygen for PLSS refill, CM repressurization, and other emergency use.
The main oxygen supply for the CM and crew requirement will be stored in
the main propulsion tanks. With proper filtering, the oxygen can be delivered
to the CM in the gaseous state for normal metabolic consumption and CM
leakage. There will be heaters and flow devices to control the rate of oxygen
usage. Oxygen storage proved to be less of a vehicle penalty than generating
oxygen by the water electrolysis method.

CO Z Management

The CO 2 management assembly evaluated for this program consisted
of subassemblies for CO 2 removal, water recovery from CO 2 reduction,
and 02 recovery from water electrolysis. All of these regenerable types
were traded off against a nonregenerable system. Selection was made on a
basis of weight, power, and volume penalty.

Several processes can provide carbon dioxide control. The two active
processes for CO 2 control investigated in this program were nonregenerable
absorption by lithium hydroxide and regenerable types such as molecular
sieve, steam desorbed resin, and solid amine. The first process is irre-
versible and characterized by the use of expendables. The other processes,
such as the molecular sieve, is a cyclic process in which one bed is regen-
erated while the alternate is being used. Both of these active control
techniques may be supplemented to a small degree by normal cabin leakage.
Systems based on absorption by nonregenerable sorbents are generally
simple. The cyclic processes used in regenerable systems are, by
comparison, more complex, but may offer weight savings for long-duration
missions.

Tradeoff analyses based upon weight, power, and volume penalties
show that for the seven-day tug mission, the nonregenerable absorption
process using lithium, hydroxide is by far the optimum approach. For the

SD 71-292-5
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45-day mission (28-day stay on the lunar surface), the regenerable process
requires less volume, and the weight and power penalty combined are
comparable.

Tradeoff studies were also conducted to determine the practicality of
generating water from CO? reduction and the manufacturing of oxygen by
water electrolysis. Results frrm the tradeoff analysis show that water and
oxygen storage is by far more, practical.

Therefore, for tug application, the CO? management assembly will
consist of a nonregenerable (open) type of subsystem using lithium hydroxide
for CO2 removal. No provisions will be made for water recovery from CO?
reduction or O Z recovery from water electrolysis.

Atmosphere Control

The atmospheric control assembly consists of subassemblies for trace
contaminant, humidity, temperature and pressure control, and circulation.

The trace contaminant control subassembly removes gaseous trace
contaminants, aerosols, particulates, and bacteria from the cabin atmosphere.
It consists of a debris trap, filters, ammonia sorbent bed, acid gas sorbent
bed, catalytic oxidizer, and regenerable charcoal beds.

Atmospheric priessure control and composition is maintained by the
pressure control subassembly. It consists of a total pressure sensor and
partial pressure sensors, regulators, etc. to provide the proper scheduling
of N2 and 02 to maintain the respective partial pressure levels.

The humidity control subassembly and the thermal control subassembly
control the cabin temperature and the humidity level in the vehicle. Their
functions are provided by packages consisting of fans, sensible heat
exchangers, condensing heat exchangers, a water separator, check valves,
temperature control valves, and fan bypass valves.

The circulation subassembly consists of additional fans to provide the
necessary ventilation flow. Redundancy in all subassemblies has been
considered for maintaining crew requirements during the 12-man rescue
mission.

Active Thermal Control Assembly

The active thermal control assembly consists of the radiator loop and
the cabin thermal loop assemblies.
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The radiator loop is a refrigerant transport circuit that removes heat
i from the cabin thermal loop in the liquid transport circuit interface heat

exchangers and rejects the heat to space via the vehicle radiator. The cabin
thermal loop is a liquid circuit that removes heat from all the equipment
requiring heat rejection and transfers this heat to the radiator loop in the
interface heat exchangers.

Water Management

Plater reclamation systems were evaluated and compared with the
water storage-type of water supply. The regenerative systems evaluated
were air evaporation, vapor compression, vacuum distillation pyrolysis,
and vapor diffusion. Results indicate that the air evaporation has the least
penalty based upon weight, power, and volume even though the expendable
weight is quite large. This system does represent a very high penalty when
compared with a water-storage-type system.

For tug applications, the water-storage system is practical because of
its minimum water storage requirement at liftoff supplemented by fuel cell
water during the mission. This approach results in a very low weight
penalty to the vehicle.

The water storage subassembly consists of separate storage tanks for
wash and potable water. Water bacteria control also incorporated.

Waste Management

The waste management assembly consists of subassemblies for
collection of urine, collection and processing of solid wastes (feces and
trash), and disposal of waste.

The Apollo approach has direct application to the tug program because
of the similar operational systems. Urine will be vented overboard, and
provisions will be made to prevent bacteria growth in the urine system.
There are several potential approaches to the processing of the fecal waste.
Chemical treatment as in Apollo, or vacuum drying, results in the minimum
weight penalty to the vehicle. Feces could be collected and vacuum-dried
in the fecal collection and processing subassembly. All trash could also be
vacuum-dried and compacted for storage in the trash management
subassembly.

Hygiene

The provisions for personal hygiene include clothing and medical and
dental support, as well as general housekeeping functions. Clothing for the
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crew will be based on use of expendable clothing inserts. No cleaning or
laundering of clothing is planned for this mission duration.

The category of cleaning supplies include wet packs for body cleaning.
The water balance includes water for hygiene pruposes. Body shower
provisions are not planned for the tug program.

-	 Food Management
r

The food management assembly consists of subassemblies for food
and provisions for its storage, preparation, serving, and disposal.

Crew Accommodations

The crew accommodations assembly consists of all the exercise and
entertainment, as well as furniture for the crew.

Emergency and Auxiliary Life Support

This assembly consists of the PLSS, IVA/EVA-suited operation
support equipment, and emergency oxygen subassemblies, and has provisions
for fire fighting, repressure capabilities, and survival food and water. IVA-
suited operation is provided by the emergency oxygen supply. EVA operation
will be accomplished with an advanced PLSS with a closed loop or regenera-
tive cycle concept.

SYSTEM TRADEOFF EVALUATION

The functional matrix chart (Figure A-5) shows the specific assemblies
and associated functions within the EC/LSS investigated under this study
program. The major candidates affected by tradeoff analysis were in the
areas of CO2 removal, CO2 reduction for water recovery, water electrolysis
for 02 recovery, trace contaminant control, and water reclaimation. The
remainder of the functional assemblies, such as atmospheric storage, active
thermal control, waste management, water management, food management,
atmospheric control, hygiene, crew accommodations, and emergency life
support, were not included since these areas are not easily isolated as
assemblies. Further, they are not easily evaluated at the assembly level
since their selection rests heavily on subsystem integration requirements
and design. For tug applications, these systems were scaled down. directly
from space station data based upon crew size.

Tradeoff studies were performed to evaluate processes, such as
regenerative (closed) types and nonre generative (open) types of EC/LSS.
Processes were evaluated and selected on a weight, power, and volume
basis only. Tradeoff data were based on the latest space. station information

A-24
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available. These data were prepared from information originally supplied
by Hamilton Standard (Reference A-1 and A -2) and , converted into parametric
curves. These parametric data were generated to help evaluate system
penalties based upon weight, power, and volume. For space station FCLSS
assembly data of weight, power, and volume to be adapted for tug applica-
tions, the space station trade study data utilizing process rates were
converted into crew size and mission duration and plotted in parametric
curve form. (See final paragraph of this appendix. ) The parametric
data generated herein for determining assembly weight, power, and volume
as a function of crew size and mission duration are considered relative and
are intended to be used as tools only for the valuation and selection of system
or assembly processes. Tradeoff evaluation was conducted over a range of
tug mission objectives to provide support for a two- or six -man seven-day
mission capability, with extended system growth for a four-man 45-day
mission, including a 28-day stay on the lunar surface.

Tradeoff data were based upon the following ground rules and
assumptions:

1. System fixed weight and electrical power penalties were assumed
to be directly proportional to crew size.

2. System spares weight was assumed to be directly proportional to
mission time.

3. System expendable weight was assumed to be a function of the
number of crew and mission duration.

4. The following process rates were used to convert space station
trade study data into parametric data for tug crew size and
mission duration:

a. CO2 removal

b. CO 2 reduction

C. H2O reclamation

d. H 2O electrolysis

e. Contaminant control

2. 25 lb CO 2 /man day

2.25 lb CO 2 /man day

0. 618 lb H2O /hr per man

0. 193 lb H2O/hr per man

Mission size (No. of men)

5. Tug volume penalties were obtained from a computed density factor
based upon space station data of weight and volume. A separate
density factor was used for each assembly concept.

A-26
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CO2 Management

Tradeoff studies were conducted in order to select the optimum CO2
management system that would meet the tug crew and mission requirements.
The areas of CO ? management investigated were CO 2 removal, CO 2 reduc-
tion for water recovery, and H2O electrolysis for 0 2 recovery. Regenerative
(closed) systems were evaluated and compared with a nonregenerative (open)
type system on a weight, power, and volume penalty basis, and a selection
was made.

CO 2 Removal

Carbon dioxide is generated continuously as a metabolic product in
the tug during manned operations. The carbon dioxide must be removed
from the tug atmosphere in order for a normal partial pressure of 5. 0 mm
Hg and a maximum operating value of 7. 6 mm Hg to be maintained. Several
methods are considered for this purpose. Lithium hydroxide, for instance,
reacts with carbon dioxide, and this reaction can be used to remove X02
from the atmosphere. The reaction is, for practical purposes, irreversible.
Thus a system utilizing lithium hydroxide to remove CO 2 is termed a
nonregenerative system.

Lithium hydroxide (LiOH) is a granular solid that readily absorbs
carbon dioxide in air in the presence of water vapor. The chemical reaction
that takes place is

H2O
2 LiOH + CO ? - Li? CO 3 + H 2O + Heat

The LiOh combines with CO 2 in the presence of some water vapor to
become Li2 CO 3 , and H 2O and heat are liberated in the process. UGH
may be packed in a replaceable cartridge or canister and located in a loop
in the entrance portion of the environmental control system. Filters must
be provided to keep LiOH dust from being circulated into the cabin. For
this study one pound of LiOH was assumed to absorb 0. 925 pounds of CO2.
Hardware weight is assumed to be 60 percent of that of the sorber weight.

Substituting a material for LiOH that can be reactivated and reused
many times is the basis for the design of a regenerative CO2 removal
system. For tug applications three types of regenerative CO2 removal
systems were selected for tradeoff purposes: (1) molecular sieve, (2) steam
desorbed resin, and (3) solid amine. Schematics of these concepts are
presented in Figures A-5, A-6, and A-7. Description and operations are
not included herein but can be obtained from References A-1 and A-2.

A- 27
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a
i

Tradeoff curves were constructed show the fixed system weight,
electrical power, and the spares weight for the three regenerative system.
Bases for the curves were obtained from parametric data in Section 14. 1. 7.
System fixed weight and electrical power were plotted as a function of crew
size (Figure A-8). System spare weight was plotted against mission duration,
(Figure A-9).

On a weight penalty basis (fixed and spare weight) the steam-desorbed
resin concept has the minimum weight penalty. Considering the A- 10

r	 electrical power penalty, the molecular sieve requires the least power.
Figure A-10 shows the total launch weight penalty (fixed plus spare weight)
for the nonregenerative and regenerative systems. For a two-man tug
concept, the LiOH sorption system shows a minimum weight up to 26 days
of mission time at which point the steam-desorbed resin regenerative
system shows the least weight peanity. For a six-man tug, the corns-over
point between a nonregenerative and regenerative concept is about 14 days.
Table A-9 summarizes the weight, power, and volume of all the candidates
for the three missions: two men-seven days, six men-seven days and
four men-45 days.

Review of the Table A-9 shows that the selected system candidate for
the removal of CO2 is the nonregenerative LiOH system. This system shows
a very low weight penalty for the seven-day missions and is comparable with
the steam-disorbed resin for the longer mission of 45 days when electrical
power penalty is considered. A total weight penalty comparison based upon
an electrical power penalty of one lb/watt for the longer mission favors the
nonregenerative system. Results show a Weight penalty of 809 pounds for
LiOH as compared to 832 pounds for the steam desorbed resin concept.

CO2 Reduction

Four regenerative concepts were evaluated for the reduction of CO2
to form water and by-products. These concepts are schematically shown
in Figure A-11, Sabatier - methane dump; Figure A-12, Bosch reactor;
Figure A-13, solid electrolyte; and Figure A-14, Sabatier -methane cracking.
Tradeoff study curves were constructed to show the system fixed weight and
power penalties versus crew size (Figure A- 15), system spare weight as a
function of mission time (Figure A-16), and expendable weight as a function
of man-days (Figure A-17). Review of the four concepts show that the
Sabatier-methane dump has the lowest weight penalty for system fixed weight,
spare weight and is also very low on electrical power demand. Figure A-17
indicates that the expendable weight is the highest by a large margin for the

1<	 Sabatier-methane dump concept, whereas the Bosch reactor requires the
minimum quantity of expendables. However, when comparing these concepts
on a total system weight basis (Figure A-18), it can be shown that the
Sabatier-methane dump has the minimum weight penalty for the tug mission

A-30
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VOLUME	 FT'
Fired Spares Total

7.6 1.2 8.80

5.2 0.93 6.13

5.2 1.65 6.85

2.0 0.46 2.46

11.70 1.90 13.60

8.10 1.45 9.55

9.80 3.16 12.96

5.43 1.21 6.64

9.65 3.0 12.65
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Table A-9. COz Removal
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t^

N
^D
N

^,7a

w

MISSION CANDIDATES WEIGHT PENALTY--- LBS ELEC. PWR.
Fixed Spares Expend Total Watts Cycle

2 Men ®1 Mole Sieve 220 35 -- 225 240 Cont.

7 Days 2 Steam Desorbed Resin 150 27 -- 177 400 Cont.

Q Solid Amine 150 48 -- 198 900 Cont.

* ® Li OH 56 13 -- 69 -- --

6 Men (J Mole Sieve 340 55 -- 395 580 Cont.

7 Days (2)Steam Desorbed Resin 235 42 -- 277 780 Cont.
Q Solid Amine 285 92 -- 377 1480 Cont.

* .4. L i OH 152 34 -- 186 -- Cont.

4 Men Mole Sieve 280 87 -- 367 400 Cont.

45 Days* (!)Steam  Desorbed Resin 200 72 -- 272 560 Cont.

QSol id Amine 230 129 -- 359 1180 Cont.

* (@ LiOH 664 145 -- 809 -- --

7.914.44 1
 

12.35
23.60	 5.19 , 28.79

NOTE: Expendables include such items as filters.. catalysts or chemicals normally programmed for replacement.

* Selected system candidate based on minimum weight and power penalty.
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requirement. For longer mission durations the slope of the curves indicate
that the Bosch reactor concept would become optimum. The solid electro-
lyte concept is the least desirable due to its large system weight penalty plus
its high electrical power demand.

Table A- 10 summarizes the weight, power, and volume of the candidates
selected for water recovery by CO ? reduction. Results indicate that the
Sabatier-methane dump concept is the optimum on a weight, power, and
volume basis. Even when comparing this regenerative concept with a stored
water system (based upon ,9 pounds of water per man day) the regenerative
concept shows the minimum weight penalty.

For tug applications, however, electrical power will be generated by
fuel cell operation. Since water is a by-product and the water generation
rate exceeds the crew consumption rate, there is no need for an additional
water generation source.

H2O Electrolysis

Methods of generating oxygen by regenerative means were investigated
for the tug program. Five concepts of water electrolysis were reviewed
and are schematically shown (Figures A-19 through A-23): (1) wick feed,
(2) circulating electrolyte, (3) cabin air, (4) gas circulation, and (5) solid
polymer.

Similar weight tradeoff curves showing system fixed weight, spare
weight, electrical power penalty and total system weight penalty were plotted
(Figures A-24, and A-26).

Table A-11 summarizes the candidate weight, power, and volume
penalties for the three tug mission requirements. Results indicate that the
gas circulation and solid polymer concepts are comparable and represent
the lowest system weight penalty to the vehicle. However, the overall
weight penalty based on the electrical power demand results in a penalty
of 2200 to 3200 pounds. Generating oxygen by electrolysis for the tug
program is costly when compared with a stored oxygen system. Based upon
the normal and emergency oxygen requirements, the total weight of oxygen
required for the most critical mission will not exceed 700 pounds. Therefore,
for short mission requirements similar to tug, a non-regenerative (open)
type of stored system is preferable.

Contaminant Control

Contaminants are those chemical compounds found in trace amounts in
air or water which might be harmful to man if present in high concentrations.
They are likely to build up during long-term manned space missions in which
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PERI

Table A-10. CO 2 Reduction

!MISSION CANDIDATES WEIGHT PENALTY--- LBS ELEC. PWR. VOLUME --- FT3
Fixed Spares Expend Total Watts Cycle Fixed Spares Total

2 Men * Sabatier/Methane Sump 35 4 7 46 50 Cont. 3.1 0.53 3.63

7 Days 2	 Bosch Reactor 100 10 5 115 200 Cont. 8.9 0.66 9.56

31 Solid Electrolyte 180 13 I	 6 199 750 ' Cont. 16.0 0.84 16.84

Sabati er/Methane Cr:,--kinci 175 12 5 192 500 Cont. 15.5 0.76 16.26

6 Men i Sabatier/Methane Dump 40 5 35 80 75 Cont. 3.54 1.78 5.32

7 Days Bosch Reactor 135 14 9 158 300 Cont. 11.95 1.02 12.97
3	 Solid Electrolyte 242 17 10 269 1800 Cont. 21.40 1.20 22.60

Sabatier/Methane Cracking 200 14 9 223 800 Cont. 17.70 1.02 18.72

4 Men * Sabatier/Methane Dump 38 17 90 145 60 Cont. 3.35 4.75 8.10
45 Days Bosch Reactor 118 32	 ( 28 178 240 Cont. 10.41 2.66 13.07

Sol i d E1 ectrolyte 215 47 40 302 300 Cont. 19.10 3.86 22.96
Sabatier/Methane Crackin 186 41 28 255 650 Cont. 16.50 3 .06 19.56

NOTE: Expendables include such items as filters, catalysts or chemicals normally programmed for replacement.

* Selected system candidate based on minimum weight and paver penalty.
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Figure A-22. Gas Circulating Concept
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ELEC. PWR. VOLUME ---- FT3
Watts Cycle Fixed Spares Total

1400 Cont. 4.08 0.48 4.56

1400 Cont. 5.58 0.78 6.36
2000 Cont. 6.70 0.52 7.22
900 Cont. 3.72 0.41 4.13

3000 Cont. 5.94 0.72 6.66

3000 Cont. 9.30 1.32 10.62
4800 Cont. 11.15 0.91 12.06
3000 Cont. 5.20 0.56 5.76
3000 Cont. 5.94 0.49 6.43

2000 Cont. 5.21 1.28 6.49

2000 Cont. 7.44 3.47 10.91
3200 Cont. 8.92 1.09 10.01
1800 Cont. 4.46 1.81 6.27
2000	 1 Cont. 4.46 1.55 6.01

mally programmed for replacement.
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the atmosphere is being regenerated. There are various sources of these
contaminants: the metabolic processes of the crew that result in saliva,

H	 urine, feces, flatus, and expired air; gassing products from food and
supplies stored and used aboard the spacecraft; and gassing products result-
ing from the operation of the various systems within the spacecraft. Other

`	 sources of contaminants are the materials from which the spacecraft is made
and any reaction products of individual gassing components. Table A-7

_	 presents a complete list of the possible trace contaminants that may be
present in the tug command module. Three types of contaminant control
devices will be used on Tug: ( 1) fiberglass particulate filters to remove the
particulate matter and aerosols from the cabin air; (2) activated charcoal
filters located downstream of the particulate filters to remove the high
molecular weight organics; and (3) a regenerative type of contaminant control
which oxidizes many of the potential contaminants into water and carbon
dioxide.f

For to applications, three methods of contaminant control b reg PP	 Y	 en-g
erative means were investigated: ( 1) non-regenerable charcoal/ catalytic
oxidation (Figure A-27); (2) catalytic oxidation/ sorption (Figure A-28); and
(3) regenerable charcoal/catalytic oxidation (Figure A-29). 	 1

Tradeoff curves show the weight and power penalties for the three
candidates: Figure A-30 shows the system fixed weight and electrical power
penalties as a function of crew size; Figure A-31 shows the system spares
weight versus mission duration; and Figure A-32 shows the system expend-
able weight versus man days. The total system weight tradeoff is presented
in Figure A-33.

Table A- 12 is a summary of the tradeoff study and indicates that the
catalytic oxidation sorption concept is the best choice from a weight penalty
basis and is comparable with the non-regenerable charcoal/ catalytic oxida-
tion concept in electrical power demand.

Expandable weight is also much lower for the catalytic oxidation/
sorption concept.

W ater Reclamation

An area of major consideration on any manned space mission is water
management. The water management system is a very important aspect of
manned space travel; selecting a proper technique could result in significant
weight savings for a medium- or long-term mission.

1.-54
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Total

2.94

2.97

5.13

4.02

4.52

8.18

5.67

3.49

6.66	
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MtSS10N CANDIDATES WEIGHT PENALTY--- LBS ELEC. PWR. VOLUME ^- FT3
Fixed ISpares Expend Total Watts Cycle Fixed Spares Total

2 Men * (D Ai r Evaporation 86 36 14 136 350 Cont. 8.60 5.72 14.32
7 Days (Z)Vapor Compression 255 97 4 356 200 Cont. 25.50 11.60 37.10

(3 Vacuum Distillation Pyro. 255 106 1 362 800 Cont. 25.50 12.30 37.80

Vapor Diffusion 322 22 2 X44 500 Cont. 32.20 2.78 34.98

6 Men *(I)Air Evaporation 120 54 17 191 900 Cont. 12.0 8.25 20.25

7 Days Vapor Compression 275 105 4 384 300 Cont. 27.5 12.50 40.00
3 Vacuum Distillation Pyro. 275 114 1 390 1400 Cont. 27.5 13.10 40.60

Vapor Diffusion 352 25 3 380 1200 Cont. 35.2 3.23 38.43

4 Men * 1 Air Evaporation 103 80 25 208 ; 600 Cont. 10.3 12.10 22.40

4 5 Days 7,0 Vapo r Comp res s i on 265 167 8 440 240 Cont. 26.5 20.10 46.60
3 Vacuum Distillation Pyro. 265 191 2 458 1150 Cont. 26.5 22 .40 48.90
4 Vapor Diffusion 338 47 1	 4 1800 l Cont. 1 33.8	 1 5.88 1 39.68

NOTE Expendables include such items as filters, catalysts or chemicals normally programmed for replacement.

* Selected system candidate based on minimum weight and power penalty.
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For a 45-day mission, a review of several methods of water
reclamation seemed practical, since the time span in long enough so that
a significant weight saving could be made.

Four concepts of water reclamation systems were reviewed and are
schematically shown; air evaporation (Figure A-34), vapor compression
(Figure A-35); vacuum distillation pyrolysis (Figure A-36); and vapor
diffusion (Figure A-37).

Tradeoff study curves were constructed to show the system fixed
weight, spare weight, expendable weight, electrical power penalty and the
total system weight pent Ity for each concept (Figures A-38 through A-41).

Table A- 13 is a summary of the tradeoff study and shows that the air
evaporation concept for reclaiming water has the lowest weight penalty, and
the vapor diffusion is the next best. However, when considering the overall
weight and electrical power penalties, the vapor compression concept is the
best. selection.

For tug applications a regenerative system presents the lower weight
penalty when compared with a stored water system. However, since fuel
cells will be used for the tug, and water generation is a by-product of these
cells, there is no practical need for a regenerative system.

Table A- 14 shows the water consumption and generation requirements.

For normal metabolic and washing needs there is ample water available
for the 6-man or 4-man CM configuration. For EVA operations using PLSS
on the lunar surface the water requirement for a 4 hour sorties is 5. 6 pounds.,
Four men would increase this water usage requirement to 22. 4 pounds. The

Table A- 14. Water Consumption and Generation Requirements

Requirements

Metabolic
Washing

Total

6 men
4 men

Water Consumption

6. 13 lb/man day
4. 0 lb/man day

10. 13 lb/man day

60.78 lb/day
40. 52 lb/day

Water Generation
by Fuel Cells'

70 lb/day

70 lb/day
70 lb/day

", Based on 3. 5 kw at 20 lb H20/day/kw

A-64
SD 71 -292 -5



MOLDING
TA%K

TASTE
A ATER

1401-01'.41
TAP.K

r

F
i

E

E	 4+

E

^O
4

^^TI

vEt#T 5 RED 0

C14EM
T ANK

	

s RED D	 OE SiS , _ e

	

INFECTOR	 I	 .,Ea*1'.41
I	 CO•.F141upaT10•. '

ISOLATION
VALVE

5REG0
INFECTOR

FEED	 VENT TO	 1	 CDDLA VT
PUVP	

SPACE	 t

I
FRONT STEW	 + J

SUPPLY

aICK

C001-Ah1	 `SICK	 '	 CO%TROL	 ,

	CONDENSER	 OESIGN t	 I
--	 AEATINGSEPARATOR

CONDENSER	
C0%FIGI1RA r I--h

1

SEPARATOR 1
REG.	 eiEATER

iAN

C'= T.
SENSOR

JrE 	 1	 Pump
 1

1

1

CO%DUCT	 t

SENSOR
TO

URINAL S

CHARCOAL	 BACTERIA	 ^— STEAVA

aED	 FILTER	 IN

TO POTABLE STORAGE

z cc
0

^ A
D co

m
oA
i N^3 0
O zn

cD

Figure A-34. Closed Cycle Air Evaporation Concept

r'

CONTROLLER



Z w
A.3 AD M
CD _v
n• C
O) N
O
9-
cu

.. _ 11^ElYby 	..	 tt^tRS+̂w9t^sY°^?^!lY±fs3^ _	 _, _. _

IL

SOLIC^

Figure A-35. Vapor Compression

+IVM^ j IOM	 .`	 ,

VENT f^
,5 eA L.0



a

i
4
3

Z cf)0-0
D0
me
QQ^ o

3r

m

VENT

CHEM
TANK

FROM OTHER FROM O+
TANKS SUPPLY

EVAPORATOR

r
I
IHEATER

CONTROL

I PYROL.
LNIT

COOLANT

a

x

i
CONTROL

INJECTOR

HOLDING	 HOLDING
TANKS	 TANK	 INJECTOR

A A S T E
ATER

SOLIDS

!STO:rRAGE
	 SENSOR

am PU%1P

1	 ^

^—&4CONOUCTIVITY
SENSOR k^—^

i
d

	

($^

PUMP	 r FLOYb-

I IN	 I

TO	 CO%DuCTIV1Tv
URI%AL S	 SENSOR	 TO URINALS	 I PYROL. 1

1	 1

'
ISOTOPE	 1

UNIT	 1 1 H x1	 1	 I.

BACTERIA	 STEAAI IN	 I 02	 FANFILTER	 '	 IN	 1

	

FLOA	 OVERTEMP.

	

TO	 I	 OUT	 CONTROL
POTABLE
STORAGE	 ISOTOPE

HEATING CONFIGURATION

Figure A-36. Vacuum Distillation/Pyrolysis Concept

t	 x



1

-ENT	
— COOLANT —1

1

CHEM	 1

TANK

t OECD	

r	

1

f-- ^
	 I/EwfEw

r-
1	 1

COb^w011 Ew

tw^CCfOw



01% 
Space Division	

I .
 North American Rockwell

11" + If+ +++H+f i	 i ........

TH f 1 f 4+'4+'+ -+-44

T n

17-

4 tt IT

M1 I 4TT NI

I

Nkli M 1 1 1ti ll H ' Illlil it I	 1i 111 111111 1 ill

I

I ill 1111111111 1 11 Ill! 11	

1

HI! 11111 lill ill I I 11. IfIt,

Ili	 IWA

I H 1 ;1 111 lill I, Nil Ill III 111111[ Ill

I

I I I	 I

Ill

Ill

hill

Hill I

i ll

i

Ill
Ill

I
H

Ill !' IMI! lHil l lHll I li
HII

!I ll IIH

I il

11111111

I	 IIIIIIIII lill Ill

0 11 1H H Ill Mill , 11141a 41 RJR 1! 1

11111[al [1111iff . M i 1 10 RIM, i l 1 410111M VIN 1VL1 a M 1 1411 U lit

4111#11111M4 Ulm d 1 1IrMm -to H it, It- it it"in aM
+f+

M

4 71i'M111114
X I

XX 0

ti 111I.Buts, 111tTl i w1iM,
f- +t+

fill,
_11 It— 4+11 t

51t1 1;!i-i if M
. . ........

I	 1 1 ;{

It

1	 "4

'ti
jil i	 j.:

X

T: X	 I

7-
HIIII

0 V

M

Figure A-38. Water Reclamation System Weight Trade Study Syst-am

Fixed Weight and Electrical Power Penalty

A-69

SD 71-292-5



01% Space Division
North American Rockwell

r,.
}

:t	 t
I^t

II7 :	 ;^ ,r

Ei	 ; ;: u :ri !f. i1i^ t':. i^*S 	 ;fi i c'ri i tx ; ii ' +.ii

r
LI'
71.  , 14 r

" r x }~ j tit	 t :: t i I itll

I: :l:i IF -1 I^

{t H{. - tr	 .
1	

'1 ;' :t:r t: t' 'It; : "i t . ^. t^;f '!l f ^''
1' t « ^. , ! *C #	 : j :L: " :i 14: :F.

^;j^ ' i t'r!i !^
:;

^
i !:

i	
}	 ,

'i I •'"	 'fit	 -^,

'}1^ t :fi;
:il ' Itt{

tiit
Ili

is ;tl
:sii

i i, (},I i'it ^^	 I	 }^t ' ^i'i ,; ^^,

i	 t:

^:

^^ I t f^I I	 I
l 11 il: it ' 1.l' II' • „ ,	 t

)e*,

•I
if::,: :Jl:::!i	 +R;tfi iii :t;i !: ;, ^; fft ,!t' i ii1 1 !^ !'! ii '^: ii: :ii •^

:1i

;	 t

+ } },fj jft; i	 it tiit ;(ii,. 'i :; I 11. ;r 't:
{tii

Irit '
(^

fj:
,ii

.;Ii .If'
l4

t~ l 	ii'	 t
F

Ijl:
ii ii lf i l - ill ' i ^! " jl i	 f; i;i!

il_	 i tf+i
t4.1-1r	 "

't'fi iif ;Ij! !iii (	 i ^r , :r tli
{;{ t r `i ^!{! i ^ f. Ei	 fi

} ,Ifi ;;
ji! '}(l .?i ,

Ii
11'. :: 1: lr;: t" I;^t 'Iri It:t ,!: i;i:	 ft1{I

^
.lI: .i. •t li

t,j	 jrl'	
11	 4If^!It: ^' ^(: : t , y

i::' !I •'
iI ij, eA

1^:1 ' I I '

}I11

I i i

..

:^1}

fii

tif} 1': ! i :{;

'l:l

1	 '} i ! :1,

it

I:I: ! rl l I: 1 ^ :11! t	 i !(I
lid

' ! w

:i :I	
^ I;i

!^ll f;i!	 } jl i	 •I!

:It	 it	 l.ii
1

:i i'tl I	 ` ^';:

i fit

;	 =

t l. '::1 %

ICE1

V'.

:l i' jtl! ' it: " ' .i! '?' :1 " :

;' !
ilia

:i:
t t! If,

j it ' }i til' fill `; '( ;I fill

!!k
ttt; i! :i: j11 f^i t'i tft:

Ifs
, ij!} ji (; ! }	 f.	 l^	 ;

' i' itlt
1}	

} ...
:I:

i m :1 : ; ;t'(

y

^

o Y :11

J! }i}
!tlt	 ti	 t

to

,de Study

92 -5



I
i4r	 $. ,,,.>: _,vas	 ^,y^	 "^z 'rata ^.;-fin-	 .... ^	 -.. '•°.-. a . ^ .-.?.-s. ..`.	

__	 r_. -^^, -:	 _ _._:.	 ^? x-^;,^oe^r3`='_^	 . a"'^s.^'''k:^`° ^-s°'	 "^^ .	 _..?x*"imH-`T«-'*^-;rr

Space Division
.h':.9.. 	

North American Rockwell

160, 0 A/R

Qz l^i9POi4 C'OMPipESS/o/V

^p Q V,09CU411Vf 016 T/LGAT/ON
PYROL YZI-S

iov

W

W fO

o
aaa_.---

O ,Za10	 6Q?	 AGM	 /M a. M .ice

MAN GAYS

NOTE : CXPe1V,0,  Bf- ES //VCG 4IDe SG/Chy / re/WS 4S1' 4 r46 E'Sa
CA TAG YS 7`.5	 /3vRA094 C Y RAWM?..*WM60
tl=Ooe ooeei°6f3Cd-"C-137.-

Figure A-40. Expendable System Weight Trade Study

A-71

^s SD 71;- Z92-5



„
Space Division
North American Rockwell

°t ^ i ^ !j 'j! •' ;;^' ^;;; j ; !!	 iIN fj	 i ! ^ I { tt^' 'i	 :r. :.r .1!, !I' it	 l

t}
t ^	 ! f	 ,; ;l ; ; ';'

(li l

^

'l! j! ♦

i:i' ; ;r. !	 ! '„ 1! :j i^

I	 !^

jjjt	 ill
'

'

1 ij' I	 t l 'll I! i' '	 I' '!^1
Ili Illl

'H! ! I I (!iI 'i !! T i
'^ '	 I ! I^/D _

''t' li l ! ! I 1' I t^ It i t
1 1

1
'^.!.
I

”
u , 'c i •	 !

;;	 ; ;
;G^r

W' ;;; ;; ;}:: r	 c^!; ^ i# !,
:j '! tti; { },,; irl; r	 . !i ^

+;{ i i:; t	 f ! #; t t # ' 'lj
!{:{ i!	 i

i'	 .: '} ii{,

II Iljl .lit 11t1 itt
,;,

^'. *t I I , r . , ^

l I '	 l! !	 •I :i;t rf:I i.^' ,t. E!

i t
N i ,

iil
!

I,!; !,i,
II

ii j
;;,; 1;'

l! i't, :^ I r i t j
'	

t t I

 ;

}

^'	 ft#E; 'Q ; ' ' j il! .Ii.; I1!.^,
^ ;
.,!,

:t+:
i^

i j.t
}
I, i i

t'„
'!!! !	 i fj 1 :

1 1..ii 'II .l.it. I

' ► il I	 it:f1, i'ii iiji i	 ;; y, ;:
. +1 +1

! ,	 ,
l id i!i i 'II t

	 ! ti
!1
17

til ,j; !

,.

;, 1. tl, ,^: 1'i
c	 {I !i 1 ^ 1.

i , i t ji t {'	 '' iij' !j! ;i t i ':!t i ! '	 i` i!!! !u lili !!ii l

ii

Vic!! !
flf jjj '' !	`ii' ji!' iii i!tt !	 ^ # 1	 ! ' ji j { j i Ijf ! i il. 1l t ' j!i; r s'ji `^	 i HI .t.

I:
,:

ltl, ;	 Ii	 !, iii
;	 t.

l; li I
1 :1

'	 :{	 ;
t,

.lt ;,1;

:'

1!

:',!

1 t'
j {1

t!	 1
j 1

1 1	 1,

I	 I l fl
i	 t

!j !
li
t:^# }! !	 !j

111

:!;! ! f;i fi-:I	 :1i
:^.	 a:

r1
?

l7"
t'

!i	 j i !I ;iii iii
n: r ci: ' !	 r ^:	 ! ! tt	 ' ;'

111 1i' ,t, :Itt trt ^;' ,1^: 4. (.

!t !t (^t ^! ^^
^,. ' :I; ^1 ^II 1;. It

11	
l . F ^	

}	
1 i^^l

ij ii	 i!ij il!i ;!! tl •lt :t I	 ^ Ii

i,iii'^ ;i!; 'i:^ •.i;j ;;' !!ii }!' li1! !!i :!i i ;! j II!j jlli !! j' j	 II	 t I! i i !' ► 	 li' t 'ti! 'jj t j^	 ij'j fill
i

:::
l

iiv .,1,
Il

l;•
i	 i.

i^
^i;

I ii
;

;	 1

!!!i

:.'	 .t .^;

hii ijH
,;

f1I

lit'

IIITI H

1 711

; l	 I fill ilj !

t

i	 tj (!! j,i '! ► ; !!#! ii ji ! }

!.fi
.ti:

!i i i' `i! i ili f	 it {' !	 t i	 t' l i t, :, . j ; } t I	 :! !,: !	 '^.f

ii-' .,!^ : !;i ^" ^^ !>>' : !i ijii ^ i	 !• ^ ; t	 1^•; jl 1	 Ij t	 !' ^= 
't

i	 i(^ ! } #if ` f.
i^ i!il

1„
i iij iiC !ii: lit : ! { }I :ti

i
i ! tit

1,
I i { !, l i " ;

 ii , I 	, ;!i j!^! ;}ji j 'i; j i	 ! tI i ! f i f i	 .!
ji:i !	 i

t
i!(!

ti#' t } {
11

`SS
1
f

!	 !i' 1; 'i:
ij .• :I. I t 1^'

" i	
1t

{j! •^ ^lj, I'li	 I'I
ti

;	 `)

!'I!

!	 III ' " t	 t1
'!1.

!1 :I
!	 11 11 1

,!f 11

:,

i^Wi :''•^^
!Ili ff!

Up

lit;

'ii

' 1 '
:ttl '+.• !ill ^,^

;I

lrtf

I

''

! !, 1

;.: ;i :; ; ; : iii: ^!j ij! #`#j	 ! ; ii !!li '^^( j`' ► i !!i ;,i :I: i{jl ` ''l ! fj

' Ii ! fi I	 i ! iii i 1: 1  ,# ' j ! 41'
I.

V

';^ ^^' ^!^

!

iii

t
l'fl

11

iii

lit!
,

il li 	 t l ii

tii

^1!i

t I1I

!!}t

1 t,

Iki}

• 1 '

!i'

I'

,i ' l 'tl i

Il
ijl

!' t

{	 }( ' (1(i i

1 t	 r t ll'' HL 'I itt 1

,^ tiii :i'.' .I::.. ::.I.: :t!t +t	 (!I ! 'l^! j t! ?! { I f ' ^ i

t Trade Study

292-5



A-73
SD 71- 292-5

a, ,.,—.,.„z ::: _,
	 -.a--	 ^-ou-- 	 '',`	 .y '. v''s' —"	 >	 . ,_.^_

0114 Space Division
North American Rockwell

resultant water usage rate with PLSS operation is 66. 92 lbs/day with
70 lb/day being generated. The present water balance indicates that at
peak electrical load output the fuel cells can generate sufficient water to
meet the crew water consumption requirements. However, if longer EVA's
are planned (8 hrs/sortie), or conditions where electrical power demand is
reduced, water generation by fuel cell operation would not be sufficient and
a regenerative ^ycle would be practical to supplement the delta water
consumption requirements.

Secondary Subsystems Evaluation

Tradeoff and comparison studies were perfurmed in those areas
where multiple solutions were available. The tradeoffs and recommendations
presented in the preceding sections were made for the selection of an optimum
assembly process to be used for tug applications. However, there are other
Environmental Control Systems areas where multiple solutions are not
available, but in those cases selection as part of the ECLSS rest heavily
with subsystem integration requirements and design. Subsystems or
assemblies that fall within this category are listed below.

AM ---,

1. Atmospheric control

C it culation/ventilation

Temperature and humidity control

Pressure control

2. Active thermal control

Cabin thermal loop

Radiator loop

3. Water management

Wash and condensate recovery

Water storage and control

4. Waste management

i



5.

6.

7.

0114 
Space Division
North American Rockwell

Emergency life support

Emergency at-mosphere and storage

EVA life support system

Food management

Crew support and accommodations

8. Hygiene

Housekeeping and atmosphere conditioning

For tug applications the weight of these subsystems were scaled down
directly from space station data references 14. 1-1 and 14. 1-2. Fixed
system weight for the above subassemblies were assumed to be a function
of crew size and are presented in Figures A-42 and A-43. Tables A-15
through A-20 show subsystem weight, power and volume penalty for the
following tug missions; 2 men for 7 days; 6 men for 7 days; and 4 men
for 45 days. Wash and condensate recovery plus water storage and control
were considered as a weight penalty assessed only to a closed loop system.
Tables for the open system did not include these weight values.

Volume data were obtained from computed density factors based upon
space station data on subassembly weight and volume. A list of the density
values used to obtain volume sizes for tug are presented in Table A-21.
Electrical power data were obtained directly from space station subsystem
evaluation studies (Reference A-1 and A-2).

Consumables

Consumables for tug applications were evaluated by the use of a RAX
Computer Program (Reference A-3), designed for space station studies. The
program is flexible and readily adaptable for tug crew size and mission
requirements.

The program provides the following consumable weight information.

Food management:

Dehydrated food	 Other food package

Dehydrated food package	 Water in food

Other food	 Food package reserve

A-74
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Table A- 15. ECLSS Secondary Systems (Closed System)
Mission N2 Men, 7 T)ays

WEIOiT PENALTY .--, LRS. ELEC. POKIER VOLUMIE.,. FT3
SUBSYSTEMS REQUIRED

FIXED SPARES EXPEND. TOTAL WATTS CYCLE FIXED SPARES TOTAL

T Circulation 31 10 -- 41 50 Cont. 4.62 1.77 6.39

Q Temp. & Hum. Control 80 24 6 110 250 Cont. 11.90 5.31 17.21

Pressure Control 30 10 -- 40 10 Cont. 1.52 0.57 2.09

Q Cabin Thermal Loop 15 4 -- 19 200 Cont. 1.61 0.41 2.02

Q Wash & Condens. Recovery 14 4 7 25 150 Cont. 4.68 1.83 6.51

6	 Water Storage & Control 340 28 -- 368 130 Cont. 62.00 2.48 64.48
Waste Management 24 8 15 47 190 Int. 1.26 2.52 3.78
Emer. & Aux. Life Support

Provisions

1. Emerg. Oxygen Sys. 21 7 -- 28 -- -- 0.46 0.16 0.62

9	 2. EVA Life Support Sys.
2 units 29 __ 389 -- -- 14.40 1.16 15.56

(®	 Food Mgmt - Apollo Type 25 8 -- 33 50 Int. 2.50 .80 3.30

^- Crew Support -- -- 13 13 -- -- -- .59 0.59

Hskp/Atm. Cond. 5 2 -- 7 -- -- 0.23 0.09 0.32

f01At. 945 134 41 112G 1030 105.18 17.69 F122.87

Z V10
^m
D^

^. c
N

A

M

E

NOTE: *WATER FROM FUEL CELLS

EXPENDABLES INCLUDE SUCH ITEMS AS FILTERS, CATALYSTS OR CHEMICALS
NORMALLY PROGRAMED FOR REPLACEMENT.

EVA LIFE SUPPORT SYS. INCLUDES A PLSS & OPS.
IF A RESISTANCE OVEN IS USED ADD 75 LBS & 80 WATTS AVG. POWER



Table A-16. ECLSS Secondary Systems (Closed System)
Mission -6 Men, 7 Days

WEIGHT PENALTY,-- LBS. ELEC. POWER VOLUME ~FT3
SUBSYSTEMS REQUIRED

FIXED SPARES EXPEND. TOTAL WATTS CYCLE FIXED SPARES TOTAL

Q Circulation 91 30 -- 121 150 Cont. 13.55 5.32 18.87

2	 Temp. & Hum. Control 225 68 17 310 250 Cont. 33.50 2.05 35.55

Pressure Control 31 10 -- 41 30 Cont. 1.57 0.57 2.14

Q Cabin Thermal Loop 46 14 -- 60 300 Cont. 4.96 1.43 6.39

Wash & Condens. Recovery 42 14 25 81 150 Cont. 14.0 6.50 20.50

Q Water Storage & Control 610 50 -- 660 130 Cont. 710.20 4.42 114.62

Q Waste Management 73 21 40 134 190 Int. 3.84 6.70 10.54
Emer. & Aux. Life Support

Provisions

1. Emer. Oxygen Sys. 62 19 -- 81 -- -- 1.38 0.42 1.80

2. EVA Life Support Sys.
2 units
360

29 __ 389 -- __ 14.40 1.16 15.56

0	 Food Mgmt - Apol 1 o Type 37 11 -- 48 50 Int . 3.7 1.10 4.8

Q - Crew Support -- -- 38 38 -- -- -- -- 1.72

Hskp/Atm. Cond. 18 2 -- 20 -- -- 0.82 0.09 0.91

TOTAL 1595 268	 1 120 t 1983 _1 1250	 1 1 201.92 31.48	 1 233.40
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NOTE: *WATER FROM FUEL CELLS

EXPENDABLES INCLUDE SUCH ITEMS AS FILTERS, CATALYSTS OR CHEMICALS
NORMALLY PROGRAMMED FOR REPLACEMENT.

EVA LIFE SUPPORT SYS. INCLUDES A PLSS & OPS.
IF A RESISTANCE OVEN IS USED ADD 75 LBS & 80 WATTS AVG. POWER



WEIGHT PENALTY -%, LBS. ELEC. POWER VOLUME...FT3
SUBSYSTEMS REQUIRED

FIXED SPARES EXPEND. TOTAL WATTS CYCLE FIXED

8.95

[SPARES TOTAL

Q 'Circulation 60 20 -- 80 100 Cont. 3.54 12.49

Temp. & Hum. Control 152 45 8 205 250 Cont. 50 1.08 23.58
Q Pressure Control 30 10 -- 40 20 Cont. 1.52 0.57 2.09
Q Cabin Thermal Loop 30 10 -- 40 250 Cont. 3.22 1.03 4.25

Q Wash & Condens. Recovery 28 9 14 51 150 Cont. 9.35 3.82 13.17
Water Storage & Control 475 38 -- 513 130 Cont. 86.30 3.37 89.67

a Waste Management 49 15 30 94 190 Int. 2.59 4.95 7.54
Emer. & Aux. Life Support

Provisions

Q 1. Emerg. Oxygen Sys. 42 12 -- 54 -- -- 0.94 0.38 1.32
Q 2. EVA Life Support Sys.

Food Mgmt - Apol l o Type

4 units
720

31
58

10
__

--

778

41
--
50

__

Int.
28.80

3.1
2.32

1.0
31.12

4.1
Q Crew support -- -- 154 154 -- -- -- 7.0 . 7.0

Hskp/Atm. Cond. 63 16 -- 79 -- -- 2.9 0.7 3.6

TOTAL 1680 243 206 2129 1140 170.17 1 29.76 199.93
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Table A-17. ECLSS Secondary Systems (Closed System)
Mission -4 Men, 45 Days

3 Day Flt. , 28 Days Surface, 14 Day Surface Contingency

NOTE: *WATER FROM FUEL CELLS

EXPENDABLES INCLUDE SUCH ITEMS AS FILTERS, CATALYSTS OR CHEMICALS
NORMALLY PROGRAMMED FOR REPLACEMENT.

EVA LIFE SUPPORT SYS. INCLUDES A PLSS b OPS.

IF A RESISTANC€ OVEN IS USED ADD 75 LBS A 80 WATTS AVG. POWER



Table A-18. ECLSS Secondary Systems (Open System)
Mission -2 Men, 7 Days

WEIGHT PENALTY .,•. LBS. ELEC. POWER VOLUME... FT3
SUBSYSTEMS REQUIRED

FIXED SPARES EXPEND. TOTAL WATTS CYCLE FIXED SPARES TOTAL

(D	 Circulation 31 10 -- 41 50 Cont. 4.62 1.77 6.39

Temp. & Hum. Control 80 24 6 110 250 Cont. 11.90 5.31 17.21

(3 Pressure Control 30 10 -- 40 10 Cont. 1.52 0.57 2.0°

Cabin Thermal Loop 15 4 -- 19 200 Cont. 1.61 0.41 2.0?
Wash & Condens. Recovery -- -- -- -- -- -- -- -- --
*Water Storage & Control -- -- -- -- -- -- -- -- --

(	 Waste Management 24 8 15 47 -- -- 1.26 2.52 3.78

Emerg. & Aux. Life Support
Provisions

1. Emer. Oxygen Sys. 21 7 -- 28 -- -- 0.46 0.16 0.62

2. EVA Life Support Sys.
2 units

360
29 __

389 - _ __ 14.40 1.16 15.56

Food & Water Mgmt 25 8 -- 33 50 Int. 2.50 .80 3.30

Crew Support -- -- 13 13 -- -- -- .59 0.59

Hskp./Atm. Cond. 5 2 -- 7 -- -- 0.23 0.09 0.32

TOTAL 591 102 34 727 560 38.50 13.38 51.88 j

w

Z w

m
D^
Q

"IOTE: *WATER FROM FUEL CELLS

EXPENDABLES INCLUDE SUCH ITEMS AS FILTERS, CATALYSTS OR CHEMICALS
NORMALLY PROGRAMMED FOR REPLACEMENT.

EVA LIFE SUPPORT SYS. INCLUDES A PLSS & OPS.

IF A RESISTANCE OPEN I5 USED ADD 75 LBS h 80 WATTS AVG. POWER

.r



WEIGHT PENALTY o--LBS.	 ELEC. POWER
SUBSYSTEMS REQUIRED

FIXED	 SPARES EXPEND. TOTAL	 WATTS	 CYCLE

# IN 41,r	
"""

VOLUME,FT3

FIXED ISPARES I TOTAL

Ci rculation 91 30 -- 121
Temp. & Hum. Control 225 68 17 310

( Pressure Control 31 10 -- 41

Q) Cabin Thermal Loop 46 14 -- 60
Wash & Condens. Recovery -- -- -- --
*Water Storage & Control -- -- -- --

(2) Waste Management 73 21 40 134
Emer. A Aux. Life Support
Provisions

Zo ^ 1. Emer. Oxygen Sys. 62 19 -- 81.

2. EVA Life Support Sys. 2
3 
units 29 -- 389

Food & Water Mgmt 37 11 -- 48
Q Crew Support -- -- 38 38

Hskp./Atm. Cond. 18 2 -- 20

F
N
`c
N

TOTAL 943 204 95 1242

NOTE:	 *WATER FROM FUEL CELLS

EXPENDABLES INCLUDE SUCH ITEMS AS FILTERS, CATALYSTS OR CHEMICALS
NORMALLY PROGRAMMED FOR REPLACEMENT.

EVA LIFE SUPPORT SYS. INCLUDES A PLSS & OPS.
IF A RESISTANCE OVEN IS USED ADD 75 LBS h 80 WATTS AVC. POWER

150 Cont. 13.55 5.32 18.87

250 Cont. 33.50 2.05 35.55

30 Cont. 1.57 0.57 2.14

300
--
--

Cont.
--
--

4.96
--
--

1.43
--
--

6.39
--
--

3.841 6.70 1 10.54

50	 Int.

780

].38 0.42

14.40 1.16

3.7 1.1

1.72

0.82 0.09

77.721 20.56

1.8D

15.56

4.8

1.72

0.91

98.28

Table A-19. ECLSS Secondary Systems (Open Sy-stem)
Mission -6 Men, 7 Days



Table A-20. ECLSS Secondary Systems (Open System)
Mission -4 Men, 45 Days

3 Day Flt. , 28 Day Surface, 14 Days Surface Contingency

WEIGHT PENALTYr•• LBS. ELEC. POWER VOLUME~FT3
SUBSYSTEMS  REQUIRED

FIXED SPARES EXPEND. TOTAL WATTS CYCLE FIXED SPARES TOTAL

Q Circulation 60 20 -- 80 100 Cont. 8.95 3.54 12.49

Temp. & Hum. Control 152 45 8 205 250 Cont. 22.50 1.08 23.58

Q Pressure Control 30 10 -- 40 20 Cont. 1.52 0.57 2.09
Q Cabin Thermal Loop 30 10 -- 40 250 Cont. 3.22 1.03 4.25

Wash & Condens . Recovery -- -- -- -- -- -- -- -- --
*Water Storage & Control -- -- -- -- -- -- -- -- --

Q Waste Management 49 15 30 94 -- -- 2.59 4.95 7.54
Emer, & Aux. Life Support

Provisions
1. 	 Emer. Oxygen Sys. 42 12 -- 54 -- -- 0.94 0.38 1.32

Q 2.	 EVA Life Support Sys. 4 units
720 58 -- 778 -- -- 28.80 2.32 31.12

Food & Water Mgmt 31 10 -- 41 50 Int. 3.1 1.0 4.1

Crew Support -- -- 154 154 -- -- -- 7.0 7.0

10 HAp/Atm. Cond. 63 16 -- 79 -- -- 2.9 0.7 .3.6

TOTAL 1177 196 l92 1565 670 74.52 22.57 97.09

I%
z v^

DA^c
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Table A-21. Density* Values for Computing Subsystem Volumes

ECLSS CONCEPT FIXED SYS-DENSITY
LB/FT3

SPAREST-DENSITY
LB/FT3

CO2 Removal 29 29

CO2 Reduction 11.3 22.5

Water Electrolysis 26.9 26.5

Contaminant Control 17.8 33.2

Water Reclamation 10 8.7

Circulation 6.7 5.65

Temp. & Humidity Control 6.75 41.5

Pressure Control 19.7 17.5

Cabin Thermal Loop 9.3 9.7

Wash & Condensation Reclamation 3 6

Water Storage & Control 5.5 11.3

Waste Management 19 9.1

Emergency Life Support 45 --

EVA Life Support
PLSS
OPS

26	 25 avg.23 --

Food  Management in --

Food Consumables & Hygiene 22 --

NOTE:	 To determine the volume of a subsystem fixed hardware and spares, -

divide the fixed weight or spare weight value by the subsystem density

listed in the above table.
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Food management (Continued)

Utensils, soap, etc.

Crew support:

Personal hygiene

Clothing, towels, soap

Medicines

'Toilet paper, covers, etc.

Housekeeping/ atmosphere cond.

Cleansers, trash bags, etc.

Charcoal- odor

Filters - air

Atmospheric storage

Oxygen

Metabolic and leakage

Tank weight

Reserve 02

Reserve tank weight

Nitrogen

Leakage

Tank weight

Re serve

Tank weight

Water storage

Metabolic and wash

Tank

Reserve

Tank

Tables A-22 and .A-23 show the consumable breakdown for the throe
tug missions.

Food will consist of both freeze dried and frozen types and the amount
of each will depend upon the length of mission. For longer missions a
greater percentage of the frozen food will be stowed. To prepare the frozen
food a resistance oven will be provided. This will add 75 pounds of weight
and require an added 80 watts of average power. For the 7-day mission it
is planned that only freeze-dried food be used.

LOH was placed in the consumable category for the weight evaluation,
and the amount required for this study was based upon one pound of L iOH
compound to absorb 0. 925 pound of CO ? . Canister weight was assumed to be
60 percent of the compound weight.

A-84
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Table A-22. ECLSS Final Weight Summary (Closed System)

SELECTED SYSTEM
TOTAL SYSTEM WEIGHT ELECT. POWER

L S WATTS VOLUME FT3
Men 6 Men 4 Men 2 Men 6 Men 4 Men 2en n en

CONCEPT METHOD 7 Days 7 Days 5 Days 7 Day 7 Days 45 Day 7 Days 7 Days 45 Days

CO2 Removal Steam I>Psorbed Resin 177 277 272 400 780 560 6.13 9.55 9.38

CO2 Reduction Sabatier/Methane Dump 46 80 145 50 75 60 3.63 5.32 8.10

H2O Electrolysis Gas CirCLIA tiro 155 3000 5.76

Solid Polymer 92 161 1400 2000 3.42 6.01

Contaminent Contr. Cat. Ox./Sorption 57 86 71 60 145 IOC 2.97 4.52 3.49

H 2O Reclamation Air Evaporation 135 191 208 350 900 600 14.32 20.25 22.40

Circulation Fans 41 121 80 50 150 100 6.39 18.87 12.49

Temp. & Hum. Control Fans, Hx. & Conden. Hx. 110 310 2n5 250 250 250 17.21 35.55 23.58

Pressure Control 5 to 7 PSIA Normal 40 41 40 10 30 20 2.09 2.14 2.09

Cabin Thermal Loop Pumps & Hx. 19 60 40 200 300 250 2.02 6.39 4.25

Wash & Condens. Rec. Reverse Osrmsis 25 81 51 115n 150 150 6.51 20.50 13.17

H2O Storage & Cont. Potable Tanks It Pumps 368 660 513 130 130 130 64.48 14.62 89.67

Waste Management Dry John & Waste Storage 47 134 94 190 190 190 3.78 10.54 7.54

Emer. Life Support Hick Press. Gas Storage 28 R1 54 -- -- -- 0.62 1.80 1.32

EVA Life Support PLSS & Ops. 389 389 778 -- -- -- 15.56 15.56 31.12

Food Mgmt. Reconstituted with H2O 33 48 41 50 50 50 3.3 4.8 4.1

Crew Support Personal Hygiene 13 38 154 -- -- -- 0.59 1.72 7.0

Hskp/Atm. Cond. Filters, Trash Bags, etc. 7 20 79 •- -- -- 0.32 0.91 3.6

SUBTOTAL 1627 2771 2986 3290 6150 4460 153.3 78.8 49.3

Consumables

Food Freeze Dried 54 161 665 -- -- -- 2.46 7.3? 30.20

Emer. Oxygen Repress & PLSS Resupply, 57.0 65.0 374.0 -- -- -- -- -- --
Leakage

Atmosp. Storage

C14 Charge 02 Plus N2 @ 14.7 PSIA 95 95 95 -- -- •• -- -- --

Oxygen CO2 Reduction -- -- -- -- -- -- •- -- ••

Nitrogen Tank 3 3 17 -- -- - -- •- --

Water Storage H2O Electrolysis -- -- -- -- •- -• -- -• -•

SUBTOTAL 209.0 324.0 1151.0 -- -- -- 2.46 7.33 30.20

TOTAL 1836 13095 4137 3290 6150 4460 155.7 286.1 279.5
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Table A-23. EC;LSS Final Weight Summary (Open System)

TOTAL SYSTEM WEIGHT ELECT. POWER
SELECTED SYSTEM

I
LBS WATTS VOLUME FT 3

2 Men 6 Men 4 Men 2 lien 6 Men 4 Men 2 Men 6 Men 4 Men
CONCEPT METHOD	 '7 Days 7 Days 45 Days 7 Days 7 Days 5 Days 7 Days 7 Days 45 Daysr

Contaminent

Control Cat. Ox./Sorption 57 86 71 60 145 100 2.97 4.52 3.49

CO2 Removal L10H 69 186 809 -- -- -- 2.46 6.64 28.79

Circulat i on Fans 41 121 80 50 150 100 6.39 18.87 12.49

Temp.	 & Hum.	 Cont. Fans, Hx.	 E Conden. Hx. 110 310 205 250 250 250 17.21 35.55 23.58

Pressure Control 5 to 7 PSIA Normal 40 41 40 10 30 20 2.09 2.14 2.09

Cabin Thermal	 Loop Pumps & Hx. 19 60 40 200 300 250 2.02 6.39 4.25

Waste Mgmt. Waste Storage 47 134 94 -- -- -- 3.78 10.54 7.54'`

Emer.	 Life Support High Press. Gas Storage 28 81 54 -- -- -- 0.62 1.80 1.32,

EVA Life Support PLSS & Ops. 389 389 778 -- -- -- 15.56 15.56 31.12'

;rater & Food Mgmt.
i

Typical of Apollo 33 48 41 50 50 50 3.3 4.8 4.1

i	 Crew Support Personal Hygiene 13 38 154 -- -- -- 0.59 1.72 7.0

Hskp/Atm.	 Cond. Filters, Trash Baas. etc. 7 20 79 -- -- -- 0.32 1	 0.91 3.6

SUBTOTAL 853 1504 2445 620 925 770 56.3 1109.6 129.3_

Consumables

Food Freeze Dried 54 161 665 •- -- -- 2.46 7.33 30.2Q

Emerg. Oxygen Repress & PLSS Resupply 37 37 259 -- •- -- -- --

k

--

Atmos. Storage

CM Charge 02 Plus N2 @ 14.7 PSIA 95 95 95

Oxygen Metabolic, leakage, etc. 28 80 324

Nitrogen High Press Tank 3 3 17 -- -- -- -- --- --

Water Storage Potable Tanks * * * -- -- -- -- -• --

SUBTOTAL 217 376 1360 -- -- -- 2.46 7.33 30.2.

TOTAL 1070 1680 3805 620 925 770 58.8 116.8 159.5

..,,.

*WATER FROM FUEL CELLS
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Water storage was computed by the RAX program but this item was not
included in the weight summary tables for consumables. The amount of
water required versus the water generated by the fuel cells was itemized in
Table A- 12. Since the water generated is greater than the water being
consumed by the crew there would be no water weight penalty to the ECLSS
and therefore no values were placed on the tables.

Oxygen storage is based upon the crew metabolic and CM leakage- rates
only. The 0 2 tank weight and reserve 0 2 and tank weight printed out in the
RAX program is not applicable to tug applications since these are directly
chargeable to the main propulsion system.

The process rates used in the RAX program to evaluate consumables
are listed below.

Food Weight

Dehydrated food	 1. 04 lb/man day

Dehydrated food package	 0. 73 lb/man day

Other food, (frozen dry)	 0. 64 lb/man day

Water stored in other food (ice)	 0. 96 lb/man day

Other food package (frozen food) 	 0. 45 lb/man day

Utensils, soap, etc. 	 0. 0125 lb/man day

Total	 3. 8325 lb/man day

Water Weight

Water for drinking in food	 5. 17 lb/man day
reconstitution

Hand washing (used for reserve) 4. 0 lb/man day

Water tank 5% of total water weight

A-87
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Oxygen

Metabolic Osygen Consumption	 1.84 lb/man day

Leakage	 0. 362 lb/day

Tank weight	 5% of total 02 weight

Nitrogen

Leakage	 0. 316 lb/day

Tank weight

5% of total N 2 weight

Crew support

Personal hygiene	 0. 50 lb/man day

Clothing, towels, soap	 0. 13 lb/man day

Medicines	 0.035 lb/man day

Toilet paper, covers, etc.	 0. 25 lb/man day

Total	 0. 915 lb/man day

Housekeeping/ atmosphere cond.

Cleansers, trash bags, etc.	 0. 20 lb/man day

Charcoal-odor	 0. 20 lb/man day

Filter-air	 0. 07 lb/man day

Total	 0. 47 lb/man day

UGH elements

LiOH compound	 2.3 lb/man day

Canisters	 60% of compound weight

Spares	 22°0 of compound and canister weight

A-8$
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Emergency Oxygen	 2 men	 6 men	 4 men

1 day	 1 day	 28 day
e

CM repress.	 1250 ft 3 at 5 psia, 70 F

PLSS recharge 1 lb/charge	 2 lb	 2 lb	 224 lb
= 4-hr supply

28 day on lunar surface

8 hr supply 2 lb	 2241

4 units

System Tradeoff Summary

Results of the tradeoff analysis show that the nonregenerative (open)
type of system is best adapted to fulfill all EC/LSS requirements and
mission objectives of the tug program. The regenerative (closed) systems,
such as molecular-sieve or steam-desorbed resin for the removal of CO2,
Sabatier or Bosch reactor for water recovery from CO2 reduction, wick
feed or gas circulation for 0 2 recovery from water electrolysis, become
competitive for the longer mission stay times and larger crew sizes. A
regenerative system nearly becomes competitive in the removal of CO2 for
the four-man, 45-day mission. Total weight, including power penalties for
the competitive candidates, was 809 pounds for LiOH and 832 pounds for
steam-desorbed resin. A two-bed molecular sieve used on Skylab is being
evaluated, and preliminary data point to a lighter weight system, which may
be competitive to LiOH for a four-man, 45-day mission. Table A-24 and
A-25 were compiled to compare between a regenerative (closed) loop EC/LSS
system with a nonregenerative (open) loop EC/LSS system. These tables
summarize weight, power, and volumes for all three tug missions. Table A-24
shows the results of the best regenerative concepts, which were selected
from tradeoff studies. .Table A-25 shows results of an open-loop EC/LSS

c: system. The distinction between a closed- and open-loop EC/LSS system
used for comparative analysis is identified by the methods selected. A
closed-loop system is identified by use of regenerative subsystem. The
open-loop system is identified by the use of nonregenerative types of
subsystem.

Review of Tables A-24 and A-25 clearly indicates that the overall
system weight, power, and volume for the closed-loop system is consider-	 b`_

'	 ably higher than for the open-loop system. However, when the consumable
weight penalties are considered the two systems become competitive for
the longer mission durations.

A-89
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Table A-24. EC/LSS Final Weight Summary (Closed System)

SELECTED SYSTEM TOTAL SYSTEM WEIGHT ELECT. POWER
LOS WATTS VOLUME FT3

2 Men 6 Men Men 2 Men Men 4 Men Men 6 Men 4 Men
CONCEPT METHOD 7 Days 7 Days 45 Days 7 Days 7 Days 45 Days 7 Days 7 Days 45 Days

	

!

CO2 Removal Steam Ocsorbed Resin 177 277 272 400 780 560 6.13 9.55 9.38

CO2 Reduction Saba tier/Methane Dump 46 80 145 50 75 60 3.63 5.32 8.10
H2 O Electrolysis Gas Circulation 155 3000 5.76

Solid Polymer 92 161 1400 2000 3.42 6.01

Contaminent Contr. Cat. Ox./Sorption 57 86 71 60 145 100 2.97 4.52 3.49
H 2O Reclamation Air Evaporation 135 191 208 350 900 600 14.32 20.25 22.40

Circulation Fans 41 121 80 50 150 inn 6.39 18.87 12.44

Temp.	 & Hum.	 Control Fans,	 Hx.	 & Conden. Hx. 110 310 205 250 250 250 17.21 35.55 23.58

Pressure Control 5 to 7 PSIA Normal 40 41 40 10 30 20 2.09 2.14 2.09

Cabin Thermal Loop Pumps & Hx. 19 60 40 200 300 250 2.02 6.39 4.25

wash & Condens.	 Rec. Reverse Osmosis 25 81 51 150 150 150 6.51 20.50 13.17

H 2O Storage & Cont. Potable Tanks A Pump;; 368 660 513 130 130 130 64.48 14.62 89.67

Waste Management Dry John & Waste Storage 47 134 94 190 190 190 3.78 10.54 7.54

Emer. Life Support High Press. Gas Stora ge 28 81 54 -- -- -- 0.62 1.80 1.32

EVA Life Support PLSS & Ops. 389 389 778 -- -- -- 15.56 15.56 31.12

Food Mgmt. Reconstituted with H 2O 33 48 41 50 50 50 3.3 4.8 4.1

Crew Support Personal Hygiene 13 38 154 -- •- -- 0.59 1.72 7.0

Hskp/Atm. Cond. Filters, Trash Bags, etc. 7 20 79 -- -- -- 0.32 0.91 3.6

SUBTOTAL 1627 2771 2986 3290 6150 4460 153.3 178.8 249.3

Cons umabl es

Food	 Freeze Dried

Emer. Oxygen	 Repress & PLSS Resupply,
Leakage

Atmosp. Storage

CM Charge	 02 Plus N2 @ 14.7 PSIA

54

57.0

95

161

65.0

95

665

374.0

95

--

--

--

--

--

--

-•

•-

--

2.46
--

--

7.33

--

--

30.20

--

--

Oxygen	 CO2 Reduction

Nitrogen	 Tank

Water Storage	 H2O Electrolysis

SUBTOTAL

--

3

--

209.0

--

3

--

324.0

--

17

--

1151.0

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

2.46

--
--
--

7.33

--

--

--

30.20

TOTAL 1836 3095 4137 3290 6150 4460 155.7 286.1 279.5
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Table A-25. EC / LSS Final Weight Summary (Open System)

SELECTED SYSTEM
TOTAL SYSTEM WEIGHT

LBS
ELECT. POWER
WATTS VOLUME FT 3

Men^2 6 Men 4 Men 2 Men 6 Men 4 Men 2 Men 6 Men 4 Men
CONCEPT METHOD 7 Days 7 Days 45 Days 7 Days 7 Days 15 Days 7 Days 7 Days 45 Days

Contaminent

Control Cat. Ox./Sorption 57 86 71 60 145 100 2.97 4.52 3.49

CO2 Removal LiOH 69 186 809 -- -- -- 2,46 6.64 28.79

Circulation Fans 41 121 80 50 150 100 6.39 18.87 12.49

Temp. & Hum. Cont. Fans, Hx. & Conden. Hx. 110 310 205 250 250 250 17.21 35.55 23.58

Pressure Control 5 to 7 PSIA Normal 40 41 40 10 30 20 2.09 2.14 2.09

Cabin Thermal Loop Pumps & Hx. 19 60 40 200 300 250 2.02 6.39 4.25

Waste Mgmt. Waste Storage 47 134 94 -- -- -- 3.78 10.54 7.54

Eme r. Life Support High Press. Gas Storage 28 81 54 -- •- •- 0.62 1.80 1.32

EVA Life Support PLSS & Ops. 389 389 778 -- -- -- 15.56 15.56 31.12

Water & Food Mgmt. Typical of Apollo 33 48 41 50 50 50 3.3 4.8 4.1

Crew Support Personal Hygiene 13 38 154 •• -- -- 0.59 1.72 7.0

Hskp/Atm. Cond. Filters, Trash Ba gs, etc. 7 20 1	 79 -• •- - 0.320.32 0.91 3.6

SUBTOTAL 853 1504 2445 620 925 770 56.3 109.5 129.3

Cons umabl es

Food Freeze Dried 54 161 665 -- -- -- 2.46 7.33 30.20

Emerg. Oxygen Repress & PLSS Resupply 37 37 259 •- -- -- •• - •-

Atmos. Storage

GM Charge 02 Plus N2 @ 14.7 PSIA 95 95 95 •- -• -- -- -- --

Oxygen Metabolic, Leakage, etc. 28 80 324 -- -- -- -- -- --

Ni trogen High Press Tank 3 3 17 -- -- -- -- --- --

Water Storage Potable Tanks * * * -- •• -- •• •• ••

SUBTOTAL 217 376 1360 -• •• -• 2.46 7.33 30.20

TOTAL 1070 1880 3805 620 925 770 58.8 1116.8 159.5

*WATER FROM FUEL CEi.LS
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Figure A-44 substantiates this. Weight tradeoff curves plotted
against mission duration (time) show the weight penalty trends for an open
versus closed system. This evaluation did not include the weight penalty
imposed on the system by electrical power requirements. Fixed weight
and consumable weight were the bases for this presentation. Fuel cells were
assumed to be the source of water supply for the open system. The weight
of the EVA equipment was not included. Results show that selection of an
EC /LSS by weight depends upon crew size and mission duration. For tug
mission objectives, two or six men for seven days or four men for 45 days,
a nonregenerative (open) system seems to be optimum and will be selected.
The points of intersection of the open versus closed system plots identifies
a boundary where an open system becomes less competitive. For larger
crews on longer missions, a closed system presents the minimum weight
penalty.

If electrical power were included in the overall weight penalty, the
intersection points would move to the right. For tug mission objectives the
electrical power requirement was approximately six times higher for a
closed system than for an open system.

WEIGHT
LB (KG)

5000 1 (2260)
(FIXED EQUIP. PLUS CONSUMABLES)

	

40001 (1815) 	 LEGEND:
OPEN SYS.

— —CLOSED SYS.

3000 (1360)

	

2000 (906)	 i

	

_	 2 MEN

10001 (453)

NOTE: EVA PLSS UNITS NOT INCLUDED

0

0	 4	 8 12	 16 20 24 28	 32 36 40 44 48 52	 56 60 64 68
TIME .-DAYS

Figure A-44. ECLSS Weight Tradeoff Open Versus Closed System

6 MEN

4 MEN

/ 
CLOSED
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Crew Accommodations

Habitability will be important in the success of long manned space
missions. For the space tug to be habitable, the design must be such that
crewmen ' s physiological and psychological needs are satisfied, In addition,
to conduct work efficiently, a crewman requires functional and well
organized work spaces.

Numerous space flight simulation studies, operational situations, and
hypothetical long - duration space missions have been analyzed to obtain
guidelines for estimating man's living space requirements. Celentano
efforts on crew living space requirements for long durations have been
recognized and were used in this tudy. The Celentano range used for tug
is identified as the values of cubic feet per man between optimal and per-
formance limits. For a mission duration of 45 days, the range varies from
420 to 190 ft3 /man. For seven days, an extrapolation was used, and the
values range from 120 to 50 ft3/man.

A tradeoff evaluation was conducted between an EC /LSS open and closed
loop system to determine the minimum volume penalty to the vehicle.
Figure A-45 shows evaluation results. They indicate that the open-loop
system imposed the least volume penalty to the vehicle for tug applications.
The closed - loop system required about twice as much volume as did the
open loop system. However, the slope of the curves indicate that for longer
missions the closed-loop system would have the minimum weight penalty.

In determining the volume allocation of the crew, the following
non-EC /LSS syst^!ms were used, along with the EC / LSS volume penalty.

Volume
System	 (f t3)

Guidance, navigation, & control	 6.25

Communications, data management & displays 	 24.38

Power distribution & conversion	 3.0
..........

Total CM astrionics 	 33.63

1 ,.
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VOLUME

FT 	 (M3)
400 1 (11.34)	 LEGEND

360 (10.21) .OPEN SYS.
— —CLOSED SYS.

320 (9.06) 6 MEN

280 (7.92) —

240 (6.80) 4 MEN	 —

200 (5.66)
6 MEN

160 (4.52) 2 MEN

120 (140) 4 MEN

80 (2.26) 2 MEN

40 (1.13)

0	 4 8	 12	 16	 20	 24 28	 32	 36	 40	 44	 48

TIME ,,, DAYS

CLOSED SYSTEM

OPEN SYSTEM

56

Figure A-45. ECLSS Volume Tradeoff— Open Versus Closed System
(Fixed Equipment Plus Consumables)
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Total
Vol	 No. of	 Vol	 Weight

Crew Furnishings:	 (f 1: 3 )	 Units	 (ft3)	 (lb)

1. Sleeping restraints/bunks 1.35 6 8. 1	 --

2. Seating restraints/chairs 3.35 6 20.2	 --

3. Galley 15.0 1 15.0	 --

4. Medical treatment area 12.4 1 12.4	 --

5. Knee space (for work 6.6 3 19.8	 --
surfaces)

6. Air lock 42.5 1 42.5	 --

Total crew accommodations 	 118.0

Figure A-46 is a bar chart of the volume allocation for the responsible
subsystems based upon requirements for a four-man, 45-day mission, The
EC/LSS assessment includes volumes for fixed and spares equipment plus
expendables and consumables such as food, personel hygiene, medicines,
clothing, towels, soap, etc. Crew furniture and command module a.strionics
volumes are as listed previously.

Figure A-46 also shows a family of curves for the crew available
living space as a functions of CM diameter. The Celentano ranges are also
identified. The purpose of this evaluation is to determine the optimum CM
diameter that will provide an adequate crew living and working space in tug
and be within the crew optimal and performance limits.	

4

For a tug mission of four men for 45 days, the curves indicate that
CM diameters of 15 feet or two modules of 12 feet will satisfy the crew
requirements. The 22-foot CM diameter is too large. For the seven-day
mission with six men, the 15-foot CM diameter seems to be best. The other
concepts are too large. Therefore, for mission objectives for tug and to
satisfy crew requirements, a 15-foot CM is required.

The weight evaluation of the crew furnishing is not included in this
report since the weight breakdown was not available. This evaluation will
be covered during the Phase A study of the Reusable Space Tug Program.
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Conclusions and Recommendations

Specific assemblies and associated functions within the EC/LSS were
investigated, and trade studies were conducted to determine the best EC/LSS
selection based upon evaluation factors of weight, power, and volume scaled
down from space station studies. The EC/LSS was evaluated over a range
of tug mission objectives to provide support for a two- or six-man seven-
day mission capability, with extended system growth for a four-man, 45-day
mission, including a 28-day stay on the lunar surface. Results of the tradeoff
studies indicate that a rionre generative (open) system presents the least
overall weight, power, and volume penalty to the vehicle. This system
selection has the flexibility of a single space tug design, which can effectively
accomplish the broad spectrum of the proposed and the potential tug missions
defined previously. Based upon the ground rules and assumptions established
for this study, the EC/LSS selection that fulfills tug mission objectives is
summarized in Tables A-1 and A-2.

Regenerative (closed) loop systems evaluated during this study phase
show a high weight and power penalty for tug applications. However, they
become competitive for the longer mission stay times and larger crew size.

System selections based upon a weight, power, and volume evaluation
must be considered limited. Other factors may have a higher rating when
the final design is established. Additional rational factors for the selection
of an EC /LSS should be reviewed and their merits evaluated with the result
of weight, power and volume before they are committed to a baseline
configuration.

Other factors to be considered are start-of-art status, availability,
development, reliability, safety, performance, cost, interfaces, and system
flexibility,

The following recommendations should be considered during the Phase A
Study period for the Reusable Space Tug.

1. Reassess the predicted state of art during the design phase.

2. Establish on a subsystem level the functiona design, including
schematics, circuit analysis and controls, component, and
hardware identification.

3. Evaluate the advantages and weight savings of collecting CO2
aboard the vehicle and then processing this gas after returning
to the space station.
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4. This study was based upon evaluations factors of weight, power,
and volume in the selection of the EC/LSS, but the relative
importance of other rational factors in the overall selection should
be considered. Weighted values should be given to. ,the evaluating
factors, and their order of priority should be established.

EC/LSS Parametric Data for Evaluating .Regenerative Systems

Presented in this section are parametric data to be used for the selection
of regenerative systems related to the EC/LSS. The major system candidates
that can be evaluated by the use of these parametric curves are in the area of
CO 2 removal, CO2 reduction for water recovery, water electrolysis for 02
recovery, trace contaminant control and water reclamation. The curves
are shown in Figures A-47 through A-60.

The assumptions and rational that underly development of the accom-
panying parametric data are noted here:

1. Space station parametric data (reference A-2), which were based
•:,n process rates, were converted into crew size and mission
duration.

2. System fixed weight and electrical power penalties were assumed
to be directly proportioned to crew size.

3. System spare weight was assumed to be directly proportional to
mission time and presented as a percentage of the system fixed
weight.

4. System expendable weight was assumed to be a function of man-days.

5. Volume penalties were obtained from computed density factors
based upon space station subassemblies weight and volume. These
density factors are listed in Table A-21 of the report.

The parametric data generated herein are considered relative, based
upon the authenticity of their source. They are intended to be used as tools
only for the evaluation and the selection of regenerative processes. These
data can be used over a wide,: range of crew size and mission durations such
as 0 to 12 crew members and mission durations up to 180 days.

Specific component or hardware weight and volume cannot be obtained
from this report because the data are only for evaluation and tradeoff studies
at the subsystem or assembly level.
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Curves for the assessment of weight of secondary subsystems are
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Aft Space Division
AM I

TWW North American Rockwell

{. ^	 ? ' ^
MY
r^

t ^

,

!1
rrt^^7it

F IT;Y 1 Y

t •

t
f• H^1^ rho

KIM f f ii f G-i ,,, f `^I i f	 I !' r	 !1 `: xi 
I `r s =

i
,

iril dl iiii I1. j
111H

t t

^.i ^^^'

't(

i ^j
r '
^1,

(	 1
.t	 i r ^	 •

+t
:{'

}at l	 f
{}	 f11:

!

` ;iI,,j t
l ^^	 ^ ^	 1

}} 11 ^ ^u

!.t 1^+
j
^ j} ^

t:
(f. 't

:i;
11

}{tF 1 } l^t;
:i1'

ti*

!^; :, (^^^ t a	 t i if • i • 1:r +t't t!; ( , f ^ ^ l i t 
•

•rtt ,1,. ,^ ^I

.,f ( •i	 1f
1

f(i1 if i :"^,,: 'I; f t	 '!il1	 „ 'If''.:i ^1'•; '	 !ifi !	 f lj „ (f( •:
I^ki

^•
(^" ii;i

-: }: • :if•,j I
i,ii •fii^ ;	 li iijl

^;!! '	 (l t il "I. ;' 1	 I ' .;I '^ih

i(i^ !. : i o ikl; ,.ij i ; ► .II Ilft 1 ^f ,	 I' ^I	 .j , ., ^ .	 ii ^ ^11
,

ll; !i^)



01% Space Division
North American Rockwell

O A/R E3i9PORAT/ON

O I^APoR C'OMPRESS/ON

4ZVO
	 O MG'UUM O/ST/CLAY/ON PY.4btYS/s

OO VAPOR D/FFUS/ON

N
'k- 

3dw
3

0
'woo

u

W ^000

o s-
0

NUMB E^''c Qf C'REiY

Figure A-59. Water Reclamation—Electrical Power Penalty

A-112
SD 71-292-5



It 4
:..^k^?.i^.ViYa ^.. °!aeat/Ar.'rr:x -;'+a^Fv	 kcS":.:=i ++mss.;:"a, _ _ :x .. ,._.«, ^.^s ^ ^v^, .»,_	 _ _r..E-	 ann^ ^roaec- cac;r __	 vs•. rs+

„
Space Division

North American Rockwell

tR ,

1IIJ

FIT	 14%,

11	
2 *fit

`
~i-

, i^	 } 	 .

y	 r

^; t	 , t1
({

^	 l `I't	 tl^	 ^	 t T	 T	 T. r	 ^

i I

! I I I i
t I 

I I i ' l	 I! ' !Iii	 !!. Il	 111	 i !	 l	
Ijlj	 1 11	

1	 ,.

1 I^ t̀ •^	 +	 :	 :.i!!	
t	 ( ,

il l ill	
t	 is

1	 ^!	 1	 I ^ 	 1 I	 ^I	 i^il I t	 'r	 ilj	 !	 r	 if11111111111	 I	 t^'
!	 ji'j	 1j !1 ^.	 ;	 t	 t it,	 i1.	 t	 i	 ; 1 	 1	 !	 }

0 fin

1	 ?i	 f r^^.}	 !^t4YS tftI, '	 .^^

},!	 ,^	 ! ;I:I ;!	 ^	 it}:	 ;1i	 'li!	 1; t;	 .;t	 I-	 ^	 l	 .{	 t	 }	 i	 .I	 1
1.1	 r

i t Litt	 !i!i .I' Ii 	 4	 !	 l	 !!;!	 r.	 t	 'i	 t	 IItillfli,!	 11

^'	 I	 j	 i}	 ! ! 'i'	 :t'J ttjl	 C,	 !!!	 )	 !t	 t	 i	 !+	
F

i	 1	 !Ili	 !' 11 1 1 II {	 ;	 1 1	 V I! j	 Ii i	..'I	 I	 I'	 it 	 HH11111{

iiji i!
oo 	 I i '	 !

!,	 !	 Al	 Ill	 ! i iV	 li	 i	 Ill	 iiii	 i 1 1 	 111111111111	 1	 H111111111 11hill11 11H111 1 1-11!
i!	 (ili

1H 	 t'

1

Hill

I	 I	 ll: . 	 ill	 ;i	 i	 1!	 I	 I

illilHi l 	 I'	 (I	 Ill

1'	 t	 I ii	 I'li i i' till	 ;.	 A.	 ,	 xxx
ZZ

{'	 I	 i	 i!I

^t'	 i1V,

It

Tilt

!'	 l	 .^-	 k

II^ i 	 t	 .( x	 I	 }	 '	 :.	 I	 ^	 ^	 .

it
	

1 1 	 it	 !i'}	 t  : i1 ;;tt	 'µ!	 ^':;	 .^;	 ,	 t	 I :	 ,	 t	 !	 '	 .!	 J	
I	

t
Q^;!

i i i'	 !	 I	 V ! ' l ^ j ^t ^1 1 i	 l i:	 Sri	
!}'::	

{!rl	 !t	 ::	 1	 t

1:	 !'	 1' i 1 '; !l t	 ^l	 Ilit	 11 ;'	 'jl	 Il q 	 If!!	
}:I,

rt	 `1	 1	 t it
t	 r • t _	 r'r	 t	 i 

^*'	 1	 ^t{^	 i!^	 '	 r;:r	 ,{	 $
}I;	 111	 'tl 'ICI !;;.j';	 ;	 :i;	 ttt	 il^ijt	 1	

4

	 f HUNt

! 'i l	 jl'	 'Vtl fl Ift1	
ttt	 1il	 ilk'	 :t1i	 ;t;1	 I	 t!	 t	 '	 t	 I	 t	 1

r

t	 i	 tti	 #^I C	 k
tIt	 11!'	 t.ct	 : : s1	 t	 ;	 !	 {	 !	 I	 i	 j	 }	 t

,

.1;  ,} a F S	 Y 't
	

:fit

Figure A-60. Water Reclamation - System Weight Trade Study Closed
Loop System

A-113
M

SD 71-292-5



APPENDIX B

ACTIVE THERMAL CONTROL
TRADE STUDY



01%
Space Division
North American Rockwell

APPENDIX B

ACTIVE THERMAL CONTROL TRADE STUDY

Active thermal control is concerned with the transport of waste heat
from sources inside the spacecraft (electronic equipment coldplates, fuel
cells, crew members, lights, and other equipment) to a suitable heat sink.
The latter is generally deep space, although the latent and sensible heats of
expendable fluids may also be used, especially during missions of relatively
short duration. Specific items of thermal control equipment applicable to
this study and discussed in detail are (1) space radiators, (2) heat pumps,
(3) water boilers and sublimator s, and (4) GH2 heat exchangers. A prelimi-
nary investigation of the feasibility of using an absorption refrigeration
cycle is also reported.

RADIATORS

Radiators generally perform the function of rejecting heat to the deep
space heat sink by means of radiation heat transfer. The performance of
this function is affected by the temperature level at which the radiator is
required to operate and by the external thermal environment to which the
radiator surface is exposed. The operating temperature level for the radia-
tor is determined by the requirements for specific heat transport fluid
temperatures necessary for thermal control and by the effects on the surface
of the external thermal environment. These effects can be controlled to
some extent by selecting radiator surface thermal control coatings that
display desirable ratios of as /E (solar absorptivity/infrared emissivity).
How the variation in the a s /E ratio affects radiator heat rejection is illus-
trated in Figure B -1 for two values of as and two different thermal environ-
ments. The lower of the two absorptivities (0. 18) represents the
characteristics of the thermal control coating used on the surface of the
Apollo ECS radiator panels at the time of application, while an absorptivity
of 0. 3 represents a degraded value for the same zinc-oxide potassium-
silicate paint. The degradation in the value of as is believed to be caused
primarily by proton bombardment, and must be taken into account in the
design of radiator systems that operate over long periods in environments
that are likely to produce such degradation.

Figure B-1 indicates that, for a solar oriented radiator, a low value of
as is desirable in order to maximize heat rejection from a given area. It
may also be seen that radiator surface temperatures in excess of 135 F are

SD 71-292 -5
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required in order to reject heat from a vertical radiator on the lunar surface,
even if the radiator is not subject to direct solar irradiation (at the subsolar
point).

The use of a vertical radiator on the lunar surface is complicated by
the fact that the radiator "sees" the lunar surface equally well as it "sees"
space. Figure B-2 presents heat rejection capability versus surface
temperature for various sun zenith angles for a white surface finish
(magnesium oxide). It can be seen that maximum heat rejection capability
during the lunar day occurs when the sun is on the horizon, and minimum
heat rejection capability occurs when the sun is directly overhead. The
importance of proper surface finish becomes evident when Figure B-3 is
investigated. This graph presents heat rejection capability as before,
except the radiator surface is assumed to have a finish with properties
similar to black paint (solar absorptivity = 0. 9, infrared emissivity = 0. 9).
In this case, maximum heat rejection capability is considerably lower than
before and occurs when the sun is directly overhead. Minimum heat
rejection capability occurs when the sun is close to the horizon. In both
cases, however, the radiator surface temperatures necessary for heat
rejection are well above the usual temperature levels required for space-
craft thermal control.

The radiator performance shown in Figures B-2 and B-3 leads to the
conclusion that the effect of thermal radiation from the moon's surface poses
a more serious problem than direct radiation from the sun. It follows,
then, that a radiator designed to operate on the lunar surface should be
oriented parallel to the lunar surface and insulated as much as possible from
this surface. The performance of a radiator surface oriented and insulated
in this manner is shown in Figure B-4 as a function of surface temperature
and for various sun zenith angles. The surface properties (a s = 0. 18,
E = 0. 95) applicable to the performance characteristics shown are almost
identical to those for the zinc-oxide potassium-silicate paint mentioned
above; and they are considered to be usable in preliminary trade-off studies
without adjustment.

Figure B-5 illustrates the effect of radiator surface temperature on
radiator area relative to the area required at 40 F. For example, a radia-
tor operating at an average surface temperature of 80 F will require only
33 percent of the area required for a 40 F radiator when both are rejecting
the same heat load. This area-temperature relationship is shown in
Figure B-5 for the same radiator paint mentioned earlier (a s = 0. 18, e = 0.9)
and for a solar oriented radiator panel. It is evident from this graph that
radiator operation at higher temperature levels is desirable from the stand-
point of reducing radiator surface area requirements.
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In order to use radiator performance data in the calculation of required
radiator surface area, it is necessary to establish the range'of heat loads
that will be considered in the various trade-off studies. This heat load
range is shown in Figure B-6 as a function of crew size for the tug, and was
calculated under the following assumptions:

Crew metabolic heat load = 500 Btu/hr per man

Electrical heat load = 0. 657 kw/kw generated

Unmanned mission load = 1. 33 kw

Two-man mission load = 2.91 kw

Four-man and six-man mission load = 3.33 kw

For a two-man crew, for example, these assumptions result in a total heat
load of

(2 x 500 Btu/hr) + (1. 657 x 2. 91 kw x 3412 Btu/kw-hr) = 17,400 Btu/hr

Note that the 1. 657 represents the inefficiency of power generation plus the
requirement to dissipate the total usable power.

Radiator area requirements for solar orientation and covering the
heat load range of Figure B-6 are shown in Figures B-7, B-8, and B-9 with
radiator surface temperature as a parameter. These area requirements
were calculated for both virgin and degraded thermal coating properties
(a s = 0. 18 - 0. 3); and for convenient identification of specific mission
requirements, vertical lines representing various crew sizes have been
added to the graphs. Examination of these graphs, specifically Figure B-9,
reveals that the effect of as degradation on required radiator area becomes
less pronounced as radiator operating temperature is increased. It should
also be noted that the radiator weight penalty shown in Figure B-9, calculated
at the rate of 0. 2 pound per squ.a re foot, represents only the difference in
weight between a spacecraft outer skin panel incorporating a fluid radiator
and a panel without such radiator provisions.

Estimates of weight and power requirements for a coolant circulating
system associated with a. space radiator (coolant pumps, plumbing, cold-
plates, heat exchangers, valves, and control elements) are shown in
Figure B-10 as a function of heat load. These estimates are based on the
Apollo system, which weighs 185 pounds (exclusive of radiators) and handles
an average heat rejection load of 5000 Btu/hr in earth orbit. The electrical
power requirements of this system are approximately 60 watts for operation
of a coolant circulating pump and a control valve system.
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Earlier in this discussion on radiator system characteristics, it was
mentioned that radiator surface thermal control coatings are subject to
degradation in the value of a s• The magnitude of this degradation as a
function of time is shown in Figure B-11 (Reference 2-1) for ARF-2, which
is the same zinc-oxide potassium-silicate paint discussed previously. This
curve indicates that as will degrade to a value of 0. 3 (ala o = 1. 65) after an
exposure of approximately 3500 sun hours. It should be noted, however,
that radiator surfaces are not subject to proton bombardment in near earth
orbits and that the exterior paint formulation used on the Apollo radiators
resists degradation caused by ultraviolet radiation.

To overcome the problem of a s degradation, coatings other than paints
are being developed. One class of these is the so-called second surface
mirror type coatings, such as aluminized Teflon foil, which exhibit very low

ir values of as and are not believed to be subject to degradation. However,
these coatings present problems in application and ground handling in that
extreme care must be taken to prevent scratching their highly polished
surfaces; and their successful application to a long-duration space radiator
system remains to be demonstrated.

HEAT PUMPS

In the context of this discussion of active thermal control systems, a
heat pump is essentially a device for transferring a heat load from the
temperature level of the source to a higher temperature level in the rejec-
tion system (radiator). A heat pump, or refrigerator, may be required
when the temperature of a process or piece of equipment being controlled
must be maintained below- a level obtainable by means of passive or semi-
active control methods. Refrigeration may also be employed to raise the
operating temperature level of the radiator system and thereby reduce
radiator surface area requirements. Such elevation in radiator operating
temperature may be advantageous if the resulting reduction in radiator
weight penalty is greater than the power and weight penalties imposed by the
refrigeration system or if the area available for radiators is limited. A
typical example of the reduction in radiator area requirements that may be
achieved is illustrated in Figure B-12 for an assumed heat load of 5000 Btu/hr
and a heat transport fluid temperature of 75 F. Without the use of a heat
pump, the required radiator area is shown to be 142 square feet. This
requirement is _reduced to about 37 square feet if the average radiator surface
temperature is raised to 200 F by means of a refrigeration system. This
elevation of the radiator temperature is seen to be achieved at a cost of
790 watts, representing a weight penalty that may or may not be tolerable.
But before proceeding with further details regarding heat pump weight penalty,
it is appropriate to describe the operation of heat pump systems applicable
to this study. These are the basic and the cascaded vapor compression
refrigeration systems.
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Basic Vapor Compression Refrigeration System

The basic vapor compression refrigeration system utilizes the latent
heat of vaporization of a working substance (refrigerant) to provide a low
temperature heat sink for a refrigeration or cooling load. Referring to the
schematic representation of the system and the corresponding pressure-
enthalpy diagram for the refrigerant (Figure B-13), the functioning of the
system may be understood by following the state points of the refrigerant
around the underlying thermodynamic cycle.

At state point 1, a mixture of liquid and vapor enters the evaporator
which is a heat exchanger designed to transfer the refrigeration or cooling
load (Qa) to the refrigerant. Absorption of this load provides the heat to
transform all of , he refrigerant into vapor, which leaves the evaporator with
a few degrees of superheat at state point 2. The pressure of the vapor leav-
ing the evaporator is raised in the compressor to permit transfer of the
cooling load plus the compressor input power at a higher temperature level
in the condenser. This compression takes place along the path from state
point 2 to state point 3. The high-pressure /high-temperature vapor leaving
the compressor enters the condenser, where it is cooled by rejecting the
total of cooling and compressor heat loads (Qa) to the heat sink. The latter
may be a circulating gas or liquid, or it may be deep space itself. In the
event that heat rejection is to take place directly to deep space, the con-
denser becomes a space radiator with integral fluid tubes. The refrigerant
leaves the condenser as saturated liquid (state point 4) and returns to the
evaporator via the expansion valve. This valve throttles the refrigerant
from the condensing pressure level to that maintained in the evaporator.
The valve also acts as a metering device that insures that the refrigerant
flow rate corresponds to the cooling load.

An actual vapor compression refrigeration system, in which the
compressor is driven by a constant speed electric motor, is normally
equipped with additional control devices such as hot gas bypass and liquid
quench valves. These are designed to prevent the evaporator pressure
from falling below a lower limit under low refrigeration load conditions.
However, they have been omitted from the schematic for sake of simplicity.

The design of a vapor compression refrigeration system for operation
in a zero-g environment required special attention to those processes that
normally rely on gravity for efficient operation. In the evaporator, for
example, bubbles of refrigerant vapor are removed from heat transfer
surfaces as soon as they are found, and their place is taken by liquid
refrigerant. This removal of vapor bubbles is dependent on body forces
that are not available in a zero-gravity environment. To overcome this
deficiency, evaporators employing capillary material to produce continuous
wetting of heat transfer surfaces have been designed. An alternative method

B-13
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is to induce centrifugal fluid forces by inserting twisted ribbons in evaporator
tubes. The induced forces will tend to hold the refrigerant liquid in contact
with the tube walls.

Similar zero-g considerations apply to the design of condensers. One
applicable design method consists of using condenser tubes that are tapered
towards the outlet, thereby maintaining relatively constant fluid velocities as
vapor condenses into liquid. Inertial forces induced by a spiral counterflow
design may also be employed.

Cascaded Vapor Compression Refrigeration System

A cascaded vapor compression refrigeration system consists essen-
tially of two or more separate but interconnected vapor compression systems
operating at different temperature levels. A cascaded system may be
employed when the difference in temperature level between evaporator and
condenser is too large to be handled by a single vapor compression system.

An example of a cascaded vapor compression refrigeration system is
shown schematically in Figure B-14 along with a temperature-entropy
diagram to illustrate operation of the system. The lower temperature
portion of the system, represented by the solid line cycle 1-2-3-4 on the
temperature-entropy diagram, absorbs a refrigeration or cooling load (Qa)
in the same manner as in the basic vapor compression refrigeration system.
However, the condenser of this lower temperature portion is replaced by a
heat exchanger that also serves as the evaporator for the upper temperature
portion of the system. This portion of the system is represented by the
dashed line cycle 5-6-7-8 on the temperature-entropy diagram. In the heat
exchanger, the refrigeration or cooling load plus the compressor input
power load of the lower temperature portion of the system are transferred
to the refrigerant circulating through the upper temperature portion. In the
process, the latter is being evaporated, while the lower temperature
refrigerant is being condensed. The pressure of the vapor leaving the heat
exchanger at state point 6 is raised in the compressor of the upper tempera-
ture portion of the system to permit rejection of the load absorbed in the
heat exchanger plus the input power load of the second compressor in the
condenser.

Control system components that permit operation of the system under
variable cooling load conditions, and that provide the proper matching of
capacities between the lower and upper temperature portions, have been
omitted from the schematic for the sake of clarity.

ga.
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Compressor input power requirements as a function of condensing
temperature and with evaporator temperature as a parameter are shown in
Figures B-15 and B-16 for the basic and the cascaded vapor compression
systems, respectively. These graphs are based on the thermodynamic
properties of Refrigerant-11 and Refrigerant-12 and on an assumed com-
pressor efficiency of 70 percent. Refrigerant vapor was assumed to leave
the evaporator with 5 F of superheat, and the condition of the fluid at the
exit of the condenser was assumed to be saturated liquid. In the cascaded
system, condensation of the lower temperature fluid (R-12) was assumed to
take place at 100 F, while evaporation of the higher temperature fluid (R-11)
was assumed to be at 90 F. Thus, a 10 F temperature differential was
provided in the heat exchanger connecting the two portions of the system.
All data shown are for a heat load of 1000 Btu/hr; and simple proportioning
may be used in the application of the data to other heat loads.

The results of using the heat pump data of Figures B-15 and B-16 and
appropriate radiator performance data (Figure B-1) are shown in Figure B-17
for the applicable heat load range. This graph shows required condensing
radiator area as a function of heat load, with evaporator and radiator surface
temperatures as parameters. Corresponding estimates of heat pump system
weight penalty are illustrated in Figures B-18, B-19, and B-20. The power
penalty in these graphs is based on an assumed penalty factor of 1. 0 pound
per watt, and radiator weight penalties were calculated at the same rate of
0. 2 pound per square foot used previously. Additional system weights (fluid
and equipment other than radiators) are based on a recent study
(Reference 2-2) which estimated this weight to be 40 pounds for a vapor
compression system handling a load of 1 kilowatt (3412 Btu/hr).

WATER BOILERS AND SUB LIMATORS

In lieu of rejecting waste heat to the deep space heat sink, the latent
heat of vaporization of water may be utilized as a heat sink if excess quantities
of water are available. Figure B-21 indicates the weight penalties involved
assuming the entire waste heat load is absorbed by boiling water. Weights
were established on the basis of 1000 Btu heat sink capacity per pound of
water and a 5 percent allowance for tankage,, plumbing, etc. In connection
with the use of water, it is worth noting that an evaporator (boiler) has been
developed for the Apollo ECS for operation in a zero-g environment. This
evaporator has a maximum heat load capacity of about 7500 Btu/hr and
weighs approximately 15 pounds. Another device for utilizing boiling water
as a heat sink is a sublimator, developed for use on the lunar module.
Although somewhat heavier than an evaporator of the same capacity, the
sublimator offers the advantage of fewer operating and control problems over
a varying load range.
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GH2 HEAT EXCHANGERS

If appreciable quantities of hydrogen vent gas are available during
extended lunar surface operations, serious consideration can be given to the
use of this gas as a heat sink. Due to its high specific heat (more than
3. 0 Btu/lb-F), each pound of hydrogen gas can absorb in excess of 1000 Btu.
This figure is based on an assumed vent gas temperature of -400 F and heat-
ing of the gas to 0 F before it is permitted to escape to space. Heating of
the gas can be achieved in a suitable heat exchanger in which heat is
transferred from a circulating fluid to the gas. Special precautions must
be taken in the design of such a heat exchanger system to prevent freezing
of the heat transport fluid.

ABSORPTION REFRIGERATION CYCLE STUDY FOR
REUSABLE SPACE TUG

The absorption refrigeration cycle considered in this study consists
of an aqua-ammonia-water system. The ammonia acts as a refrigerant and
the water acts as an absorber. Variation of radiator surface area, total
flowrate, and power requirements as a function of generator pressure and
refrigeration heat load is presented. The absorption refrigeration cycle is
compared with the vapor compression cycle.

Study results reveal that the vapor compression cycle would require
approximately 35 times more power and 38 percent less total radiator sur-
face area as compared with the absorption refrigeration cycle in order to
accommodate the same refrigeration heat load. No attempt was made in
this study to optimize design of the absorption refrigeration cycle because
considerable time and effort would be required.

Basic Absorption Refrigeration Cycle

The basic components of the absorption refrigeration cycle considered
in this analysis are an absorber, pump, heat exchanger generator, condenser,
and evaporator. Figure B-22 shows a flow diagram of the basic system and
Figure B-23 shows the temperature concentration diagram. The absorption
refrigeration cycle requires two working fluids, the refrigerant and the
absorbent, the refrigerant circulator from the absorber, to the generator,
to the condenser, to the evaporator, and back to the absorber. The
absorbent ideally circulates from the absorber to the generator and back to
the absorber. The basic function of the refrigerant is to remove the refrig-
eration heat load from the evaporator and reject it in space through the
condenser radiator. The main function of the absorbent is to absorb the
refrigerant vapor in the absorber, compress it to its liquid state at the
absorber pressure and temperature, and finally return it to the generator
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with the aid of the pump. Since the generator is at higher pressure than the
absorber, a pump is required to make the transfer. The pump is not a
compressor because the absorber has already provided the compression; it
is merely a circulating device which provides enough power to overcome
pressure head and friction losses through the system. The amount of power
required to drive the pump is considerably smaller in comparison to that
required to drive a vapor compressor f<ir the same refrigeration.

To utilize an absorption refrigeration cycle as a device to provide air.
conditioning on the reusable space tug, the absorber and condenser would
also function as space radiators and the generator would function as a solar
absorber. It is obvious from Figure B-22 that the total radiator surface
area would be larger in comparison to that required for a vapor compressor
cycle where only one condenser radiator is required.

The purpose of this study is to evaluate the total radiator surface area
and the power requirements in order to compare this system with the vapor
compression refrigeration cycle. This study is based on the ammonia-water
absorption refrigeration cycle. Its highly critical pressure and temperature
and high latent heat of vaporization make its use attractive in the absorption
refrigeration cycle. This study considers the effects of generator pressures,
condenser temperature, and absorber temperature on the radiator's surface
area and pump power requirements.

In order to compare the absorption cycle with the compression refrig-
eration, cycle, the total radiator surface area and power requirements of
both systems are presented as a function of the refrigeration heat loads.

Results and Discussion

Figure B-24 presents the radiator surface area as a function of the
generator pressure with solar absorptivity to emissivity ratio (as/() as a
parameter. It is obvious from Figure B-24 that the generator should operate
at high pressures if it is to keep the radiator surface area small. Also, the
importance in maintaining low solar absorptivity for the condenser and
absorber radiators is plainly demonstrated in Figure B-24.

Figure B-25 shows that the total flowrate (strong solution), and thus the
power requirements, are increasing with increasing generator pressure.
Consequently, the designer must sacrifice power requirements for lower
radiator surface area or vice versa.

Figure B-26 shows the variation of generator, absorber, and condenser
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Figure B-26 shows that the temperatures of both condenser and absorber
are increasing faster (dT/dP) than the generator temperatures with
increasing generator pressures. Since the major portion of the radiator's
surface area depends on the absorber and condenser surface temperature,
it would be highly desirable to operate the absorption system at higher
generator temperatures. The maximum operating generator pressure and
temperature would be of course established by the critical temperatures and
pressures of the refrigerant.

Figure B-27 presents the total radiator surface area and pump power
requirerents as a function of the refrigeration heat load. Superimposed
in this figure are the data obtained for the vapor compression refrigeration
cycle. Figure B-27 indicates that for the same refrigeration heat load
(10, 000 Btu/hr), the vapor compression cycle power requirement is
35 times higher than the power requirement for an absorption refrigeration
cycle. The total radiator surface area, however, for the vapor compression
cycle, is 38 percent of the total area of the absorption refrigeration cycle.
Consequently, the choice of the cycle refrigeration system would depend on
whether the power requirements or the radiator surface area is the govern-
ing designing factor for the reusable space tug.

An example of a trade between the two systems involving radiator area
weight penalty and a power weight penalty may be made as follows for a
refrigeration load of 10, 000 Btu/hr:

Refrigeration Cycle

Radiator Area
Power

Total
Weight
Penalty

(lb)
Area
Ft?-

Penalty	 (Lb)

Watts

Penalty
1 lb/watt

(lb)
<150 ft2

(0. 2 lb/ft 2 )
>150 ft 2

(2 lb/ft2 )

Absorption 300 30 300 35 35 365

Vapor Compression 110 22 - 19060 1 9 060 1, 082

This comparison shows the absorption cycle to have only one third of
the weight penalty of the vapor compression cycle. The weight penalty for
the radiator was assumed to be only 0. 2 pound per square foot for a 150
square foot area on the top of the tug and 2. 0 pounds per square foot for a
deployable radiator greater than the first 150 square feet.

B-31
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RADIATOR a/c f (PSIA)
TEMPERATURE

(F)

CONDENSER 0.2 0.9 300 150

ABSORBER 0.2 0.9 72 150

GENERATOR 8.0 0.1 300 300

4.	 PRESSURE
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CONDITIONS:

1. AQUA-AMMONIA/WATER ABSORPTION SYSTEM
. 2. MOTOR EFFICIENCY rl = 0.7
3, EVAPORATOR TEMPERATURE = 45 F

5. RADIATOR SURFACE AREA IS BASED ON THE OUTLET
TEMPERATURE

22004 
b . HEAT EXCHANGER EFFECTIVITY = 0.75
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Figure B-27. Comparison of Power Requirements and Total Radiator
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The fact that the inlet temperature for both the condenser and the
absorber would be higher would tend to reduce- the required radiator area.
However, this fact was hot considered because other factors in the detailed
design were also ignr . ed which would increase the radiator area. With a
tube and fin radiator the temperature distribution on the fin will be a function 	 F
of the fin length, the fin thickness, the absolute temperature of the fin base
at the tube wall, and the environmental heat incident on the fin surface.
These factors comprise the fin effectiveness and tend to increase the radiator
area required. These compensating details were ignored at this time so that
a comparable comparison could be made between the two refrigeration
cycles on a common basis.

The effects of increasing the absorber outlet temperature on the
radiator surface area and power requirements are presented in Figures B-28
and B-29. Note in Figure B-28 that the condenser surface area remains
constant with increasing absorber temperature. The condenser surface area
is only a function of the condenser temperature and the refrigeration load.
Since those Lwo parameters remain constant, the condenser area require-
ments will remain fixed. The generator surface area, however, increases
with increasing absorber temperature although the generator temperature
remains constant. The increase of generator surface area is due to the
increase of strong solution, and thus condenser heat flux requirements with
increasing absorber temperature.

Power requirements are increasing much faster with increasing
absorber temperature as compared to the increase of power requirements
with increasing generator pressure. Figure B-30 presents the effects of
condenser temperature on the radiator surface area. The condenser surface
area. `remains constant since all rejection heat load, condenser temperature,
and refrigeration flow rate remain fixed. The generator radiator surface
area, however, is increasing with increasing condenser outlet temperature.
This increase is attributed to the increase of the generator temperature
which, in turn, increases the radiation heat losses.

f

	

	 Figure B-31 presents the influence of condensing temperature on the
total flow rate and pump power requirements. Inspection of Figure B-31

i	 reveals that power requirements drop with increasing condenser temperature
for constant generator pressure and evaporator temperature. A comparison
between Figures B-29 through B-31 indicates that both radiator surface area
and power requirements can be reduced by maintaining constant absorber
temperature and generator pressure, while increasing the radiator tempera-
ture. This, of course, necessitates a reduction in evaporator and absorber
pressures.
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COMPONENTS
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(PSIA)
TEMPERATURE

(F)
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GENERATOR 300 265 0,90
CONDENSER 300 130 0.90
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Figure B-28. Radiator Surface Area Versus Absorber Temperature
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ATTACHMENT

FINAL REPORT

OPACE TUG CN&C

1.0 114 70DUCTION

In support of the NR pre-phase I. Space Tug Study, Honeywell has performed a

Cuidance, Navigation and Control (GN&C) Study. The purpose of the study is

to define the total GN&C equipm,t to be used over the total Space Tug mission

rc;jme. This includes both manned and unmanned operations with emphasis placed

U'll UiL4Unac(1 0 ULOiaatiC; operation. The depth of the system definition presented

here is felt to be consistent with that o_'a pre-phase A program.

This report provides additional system description of the Space Tug CN&C to

support the Reference 2 preliminary report.

A system description is presented for both"a frail operational/fail operational/

fail safe (FO/FO/PS) and a FO/FS redundancy requirement.

The size, weight and power of each LRU in the system is also given. Although

this information was presented in 	 Reference 2, it is included here because of 	 f`

refinements made to some of the devices. A summary of the results are shown be

Redundancy Requirement

	

70 I-O FS	 FO/FS

Size	 44,655 in 	 33,157 in 
Weight	 945.3 lb.	 673+6 lb.

A discussion of cable weight is also included since this usually represents a

significant fraction of the total; system weight. The discussion covers 1),the 	 x

data bus and associated line coupling units, 2) power cabling and 3) actuator

cabling.

A description of each device is also included with performance capabilities
t.

given for the sensors. In some cases, the device descriptions a-re not known_

in detail.

M.
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Ilia last section de.cribes equipment usage during various mission phases

or operations. 'Mis inion : zition is included to facilitate estilttnti . ng power
and for the development of power time lines. In addition, this section also

supplies estimates of navigation performance capability based on the accuracies

presented for the sensors.

.. 1	 3.0 Discussion

3.1 System Description
3.1.1 Block piaa,r: 1:1

'fhe syrt.cln prod o!-,cd for the Space Tug is %I A 1:,.r in concept to that
currently ur.cd in the Space Shuttle pro^;ra,;. In fact, m ny of the
et(U11.: 'W1tC a j^^ ^^' X4-0 !L:oIlLiLLi 1 to thoso in the Wiuttle System i:nd, t:hu:i,

will enjoy L:tC very :: ij;ni£ic zt uL benefit of beinL spice qualified. This
of course assu , rnes that the Space Tug Ch,'sC perforr,uulce requirements are
not significantly different from that of the Space Shuttle.

All devices which require interface with the central GN&C computer

communicate to the computer via a common data bus. Figures 1 and 2

illustrate the concept for both FO/FO/FS and a FO/FS redundancy

requirement. 'fhe GN£:C equipment is sho ,.m to be distributed between

the Intelligence Eodule (III) and the Crew Nodule (CM), with an inter-

face with the propulsion module. All required CN&C processing is

accomplishot; in the I14. Communication of the computer with the in-

dividual Line P.eplaccable Units (LP.U) is maintained under the control

of the computef. • During a particular mode of operation, each LRU

connected to the data bus is sequentially interrogated by the computer.

(The interrogation rates may be different depending on the mission phase.)

If data is to be transmitted to a particular MU, the data word, '-

preceded by the device address, is serially c.ociced onto the data bus.

The device after decoding the address accepts the data and'proceeds to

act upon it. Since each device address is unique, there is no

possibility that other devices will act on the data. If data is re-

quired from a pareieulai device, a short word containing the device address

and a control word is clocked onto the data bus. The data from the device

is then clocked onto the bus under control of the computer clock and	 a
intercepted by the computer. 11iis time sharing approach using a common

signal interface bus provides a very significant reduction in the amount

of spacecraft cabling that would otherwise be required by the more

conventional wiring; approaches.

C-4
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Redundancy of devices is illustrated in the figures by the multi-

plicity of blocks. The GN&C computer provides auton ►atic failure
detection and switch out.of a malfunctioning; circuit using voting

techniques aniong the redundant circuits.

3.1.2 Size, WeiLht and Power

The size, weight and power of each device in the system is given in

Tables I and II for both FO/FO/FS and FO/FS redundancy requirements.

These tables are nearly identical to those in the reference 2

preli;,;Anary report encept for refinements in the folloc•:ing L:cU's:

• Illu (FOIFS)

• TVC Gimbal Servo

Horizon Sensor

11 LD Power Interface

Radar Altimeter

GN&C Power Conditioning and Distribution

The equipments numbered 2-9 in the table are currently not a part

of the Shuttle GN&C baseline system. However, they may be included

in the baseline when Shuttle sensor trades studies are completed.

Rq;aipments numbered 1, 10-19 are part of the Shuttle baseline. The

size, weight, }power and MU description given in this report represents

the Oct. 19 1970 baseline description for these equipments. As

greater GN&C definition emerges, resulting from Shuttle studies, these

parameters will be refined. It is suggested that the NR Space Tug
team consult with the NR Space Shuttle team, occasionally, to keep

current with the GN&C baseline LRU's applicable to the Space Tug

Program.

The tables do not indicate the additional weight due to spacecraft

cabling, This is covered separately in the next section.
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LRU L QTY
WEIGHT

LB/DEVIC""
VOL`UMZ

IN3 /DEVICE
PG'dE2

WATT/DEVICE
TOT:1I.
'dEIGHT

TOTAL
VOLUME

TOTAL*
POvEF,

1.	 IMU HEXAD

2,	 STAR TRACKER

3	 SUN SENSOR

49	 HORIZON SENSOR	 "-	 -

S. /AWAVE REND. RADAR

6o	 LASER DOCKING RADAR

7,	 RADAR ALTIMETER

S.	 GN&C COMPUTER

9.	 R/J AND ENGINE IGN. DRIVER

10.	 TVC GIMBAL SERVO

11.	 ROTATION CONTROL

12,	 TRANSLATION CQ4TROL

13.	 MANUAL SEXTANT

f4o	 DISPLAY KEYBOARD

15._ GN&C CONTROL PANEL

16.	 MULTIFORHAT ELECT DISPLAYS

17.	 MFED POWER/INTERFACE

18.	 CAUTION & WARNING DISPLAYS

19•	 GN&C PWR ' COND/DISTRIB

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

CM

CM

CM

CM

CM

CM

CM

CM

IM

1

3

3

2

2

3	 '

4.

4

2

1.

1

1

1

1

1

1

1

1

1

111

7.5

3

45

110

30

10.2

33

20

25

12 .5

/
38

7.5

5

54

14

15

10

3,570

264

18

767

9,170

1 , 480

2 , 025

1,200

530

620

215

'175

29214

185

81

1,950

425

300

200

243

10

2

38

600

30

45

45

16
(quiescent)

58

12

20

14.6

37

25

52

22

75

1

111

22.5

9

90

220

90•

40.8

132

40

25

12 .5

9

38

7.5

5

54

14

15

10

3,570

792

54

1,534

18,340

4,440

8,100

4,800

19,060

620

215

175

2,214

185

81

19.950

425

300

200

243

30

6

76

1,200

90

180

180

32

58

12

20

14.6

37

25

52

22

75

1

945.3 44,655
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LRU LOC QTY
WEIGHT

LB/DEVICE

VOLUME	 PO'+JER

IN3/DEVICE	 WATT/DEVICE
TOTAL
[JIGHT

TOTAL
VOLUME

TOTAL*
POLIER

1	 ILN IM 1 92.5 2,970 203 92.5 20970 203
2. STAR TRACKER IM '2 7.5 264 10 15 528 20

3.	 SUN SENSOR IM 2 3 18 2 6 36 4

4	 HORIZON SENSOR IM 1 45 767 38 45 767 38

5. /A IfAVE'RENO. RADAR IM 1 110 99170 600 110 99170 600

69	 IASER DOCKING RADAR IM 2	 ' 30 10480 30 60 29960 60

7a	 RADAR ALTIMETER IM 3 10.2 2,025 45 30.6 6 9 075 133

80	 GN&C COIJPUTER IM 3 33 1,200 45 99• 39 600 135

9	 R/J AND ENGINE IGN DRIVER IM 1 20 530 16 20 530 16

109	 TVC GIMBAL SERVO IM 1 16.5 413 38.8 33 826 77.6

11	 ROTATION CONTROL CM 1 12.5 215 12 12.5 •	 215 12

12.	 TRANSLATION CONTROL CM 1 9 175 20 9 175 20

13a	 MANUAL SEXTANT CM 1 38 2,214 14.6 38 2,214 14.6

14e	 DISPLAY KEYBOARD CM 1 705
f	

185 37 7.5 185 37

15.	 GN&C CONTROL PANEL CM 1 5 81 25 5 81 25

169 	 ELECT DISPLAYS CM 1 54 19950 52 54 19950 52

179	 MEED POWER/ INTERFACE CM 1 14 425 22 14 425 22

18	 CAUTION & WARNING.DISPLAYS CM 1 15 300 75 15 300 75

19	 GN&C PWR COND/DISTRIB IM 1 7.5 150 0.8 7.5 150 1

V
1

r 1 ,

TABLE II SPACE TUG GN&C EQUIPMENT

REDUNDANCY REQUIREMENT - FO/FS
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3.1.3 Device Cable Weight-

It has been found in the past that the weight of cable harness

interconnecting the various devices of a system is a very

significant fraction of the total system weight. This is one of

the major reasons that a data bus approach is used in the Space

Shuttle and is proposed for the Space Tug. The data bus, however,

replaces only the signal interconnections between devices. There

still re=mains a large amount of conventional cabling necessary to

provide power to the various devices as well as provide analog or

discrete signals to actuators. In all cases, the estimated weight

of a cable is given in pounds per 1000 feet of cable since it is

not presently known how the devices will be-distributed on the

Space Tug. The weight given in this fashion allows NR to vary

equipment locations and compute a new cabling weight for each

conf igurntic;

3.1.3.1 Data s • The YM data bus as shown in Figure 1 is quad redundant

for the FO/FO/FS requirement and as shown in Figure 2 is triple

redundant for the FO/FS requirement. The al data bus is not.

redundant in both cases. The weights are as follows:

IM (FO/FO/FS) - 80 lbs/1000 ft.

IM (r0/FS)	 - 60 lbs/1000 ft.

CM	 - 20 lbs/1000 ft.
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C	 .
Size
Cu. In.

Weight
lbs

Power
watts

IM (FO/FO/FS) 41 82 10.25 4.1

IM (FO/FS) 29 58 7.25 2.9

C11 7 14 1.75 0.7

3.1.3.2 Power Cabling; • The size of the power cabling is a function of

the wire size and number of wires to each redundant device from

the G.d&C Power Conditioning and Distribution Assembly.

Wire size is a function of the current carrying capacity required

as well as the allowable voltage drop due to wire resistance.

The current- required can be determined by dividing the power

required by each redundant device by the voltage level to the

device (in most cases 28 VDC is assumed). Since line voltage drop

is a function of distance which is not known, a conservative

approach to sizing the wire is taken. It is assumed that the

wire capacity must not exceed 300 circular mils per ampere..

The number of power wires to each device is a function of the level

of redundancy within the device. In each case, two wires to each.	 ..0

redundant circuit is assumed, a power line and a return. Table III

summarizes the power cabling requirements for the system. In

calculating the cable weight for a particular device, the distance

between the device and the CN&C Power Conditioning and Distribution
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each reaction et. These are bundled in groups of 4 (with

each signal having a return) since the jets are clustered in

groups of four. This assembly also provides engine firing commands

to the propulsion engines. Assuming three redundant ignition systems

per engine, each cable contains 6 wirer, (hi and return). The cable

re<n^i.rar;.n! : are sui,;mari.zoel in Table IV.

TLC! 17%r1; Cil'.^"-'Li l Servo Lsscr.-.41y provides servo control si-,nals to six

actuators per engine (3 per gimbal). In addition, it accepts 6

gimbal position and 6 gimbal velocity transducer signals (3 per

gimbal) and provides a voltage reference to the transducers.

Table IV summarizes the cable requirements. It is seen that each

cable contains.48 wires.

Figure 3 illustrates the cable interfaces between the driver

devices and the actuators and may be used in estimating actuator

cable weights



LRU LOG
WIRE
SIZE

NO. OF
1141RES

WEIGHT*
LBS/ 1000 F'f

QTY.
OF LRU S

1.	 Ilr'U 11 ?:A13 111 14 C 112 1

2,	 ST IX TMCKER, 111 26 2 3.6 3'

3,	 SUN SL'NSO:? I1.1 26 2 3.6 3

4.	 HORIZON SENSOR IN 26 2 3.6 3

5.	 µ WAVE REND. RADAR IN 14 4 56 2

6.	 W.SER DOCIaNG RADAR IN 24 2 5 3

7,	 Rt DAR ALTIMETER IN 24 2 5 4

t3,	 GNMC COMPUTED. IN 22 2 7 4

9.	 R/J AND ENGINE IGN DRIVER IN 26 8 14.4 2

10,	 TVC GIMBAL SERVO IN 7.6 16 28.8 1

11.	 ROTATION C01:TROL CH 26 2 3.6 1

12,	 TRAIMATION CONTROL CN 26 2 3.6 1

13,	 MANUAL SM:TANT CH 26 2 3.6 1	 ,..

14.	 DISPLAY KEYBOARD CM 24 2 5 1

15,	 GN&C CONTROL PANEL C14 24 2 5 1•

16,	 NULTIFOMAAT ELECT DISPLAYS CM 22 2 7. 1

179	 MFED POWER/INTERFACE CM 26 2 3.6 1

18.	 CAUTION & WARNING DISPLAYS Ctrl 20 2 10.4 1

19.	 GN&C MIR COND/ DI STRIB 111 26 16 _ 14,4 1

4

•
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TABLE III LRU MIER CABLING (FO/FO/FS)
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TABLr IV	 R/J A1,11) PROPULSION ENGINE CABLING (FO/FO/FS)

LRU LOC
DIRE
SIZE

NO.OF
DIRE

1,7i:IC11T	 -'
LBS/ 1.000 FT.

1:0. OF
Ct ALES
PER LRU

QUMTI i'Y
Or 12RU S

ENG11:2 IGN ?'l l"IMP, 111 2

ic/ J I11 18 a 61.6 4

6 46.2 2

YVC GIMMAL SMIVO bIi 1

• ACTUATORS" PM	 26 12 21.6

• TRtYSDUCER INPUTS Pill	 26 12 21.6

. TRANSUUCn OUTPUTS P1.1	 26 24 43.2

TVC TOTAL 86.4 4

Per Cable
** Assume hydraulic actuators similar to Space Shuttle
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3.2 Device Description

The following describes the functions of each LRU as well as the contents•

In all cases each MU contains at least one acquisition, control and test

unit (ACT) to act as a buffer between the operational part of each LRU
and the - Line Coupling Units. The ACT unit is standard equipment used on

• the Shuttle program. It decodes the address field and function code of

the data word tr,., n!:mitted on the bus and transfers data onto and off of

the data VI-5.

'the redundancy provided in the C14 Display & Control equipment is generally

more than is necessary for the Space Tug application. However, this allows

the use of identical shuttle equipment which will have beer. space qualified

and available for use in the Space Tug Program.

3.2.1 IMU_ Hex d - The IMU Hexad consists of a strapdoFm sensor package con-

taitiluG gyros and acctlerometers • and quad redundant preprocessors

(FO/FO/FS). It provides an incremen^..al measurement of vehicle velocity

and attitude with respect to a skewed reference frame. The preprocessor

transforms the skewed reference frame and, in addition, provides auto-.	 -,

matic failure detection* and correction of failed sensors. A gross

description of the contents of the IMU Hexad followst

6 GG334 gas bearing gyros

6 CC177 accelerometers

12 Pulse rebalance electronic loops

. 4 Self contained pouter supplies

. 4 Preprocessors

. 12 Temperature control loops

4 ACT units

The above is reduced by one level of redundancy for FO/FS.

34.2.2 Star Tracker - The Star tracker consists of a non-gimballed tracking head

with an associated electronics assembly. It operates both in an acquisitior.

and track mode. It provides two axis position of `a star with respect'to

C- 16

SD 71-292 -5
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its bore sight to an accuracy of ±0.05 0 over a cone angle of 20 degrees.

An automatic sun shutter provides protection of the tracker head during

sun viewing periods. The contents of the Star Tracker includes

1 Image dissector tube

. 1 Sun shutter with sun sensor and control electronics

2 Deflection amplifiers (one for each axis)

1 ACC circuit

1 lcquisition/track logic circuit

. 1 Timing and sweep circuit

1 ACT unit

3.2.3 Sun Sensor - The Sun Sensor Assembly consists of a'sensor head using

silicon quad cells with a shadow mask plus supporting electronics.

The sensor provides two axis of sun position information with respect

to the boresight over a square POV of ±15 degrees in each axis. The

accuracy is better than 0.07:° in each axis. 'Ma electronics removes the

cosine la w effect from the sensor output, provides automatic gain control

over a dynamic range of 1000 and resolves the output of the four silicon

cells into two attitude error signals. nie contents of the Sun Sensor



01% NalhA+nerican Rockwell

-16-

error signals, the fourth head provides redwLdancy. The electronics

package is also dual redundant to maintain complete redundancy of

the Horison Sensor subsystem. The system is capable of measuring

attitude to about ±0.05 degrees over an attitude range of 80 to

25 9 000 nautizal miles. The system contains Lhe following elements:

. 4 Tracking-mirror subsystems

. 4 Optical-ankle readouts

L. horizon-tracking subsystems

Sun rejection detectors

.' 4 Heater circuits

. 2 Input power preregulators
•	 A

2 Pitch/ roll output circuitry

. 2 ACT units

3.2.5 Microwave Rendezvous Radar

The S-Land Solid State Rendezvous Radar is can; ablA of tracking both

cooperative and non-cooperative targets. the two axis, electro-

mechanically stedred antenna is comprised of a 16 element beam forming

array (provides graceful degradation). Dual electronic assemblies are

provided for each antenna assembly. For tracking cooperative targets,

the system operates in a CW tone ranging mode to provide a range, range

rate and angle accuracies of about ±0.1% or 50 feet, ±1 ft/sec. and •F0.2

degree, respectively, over a range of 500 ft. to 1500 nm. For tracking

non-cooperative targets, an intermittent CW mode is used to provide

range, range rate and 'tingle accuracies of `!-5% or 25 feet, i5 ft/sec. and

±0.4 degrees, respectively, over a range of 500 fte to 30 nm• the

cooperative target requires a transponder. Elements of the rendezvous

system are given below:

. l Sixteen element antenna array
• 1 Two axis mechanically gimbal-iced assembly
. 2 Electronics assemblies
. 2 ACT units

C-18
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3.2.6 Laser Dockinp, Radar

The Laser Docking Radar uses.a laser transmitter to provide a pulsed

narrow light beam which is then scanned by a beam steerer over a scan

field of view of 30 degrees by 30 degrees. A receiver using an image

disector tube (IDT) senses the return beam from the passive vehicle.

The transmitter/receiver combination on the active docking vehicle

then provides a measure of range, range rate and angle between the

active and passive vehicles.

For a cooperative target, optical corner cube reflectors are mounted in a

known geometrical pattern on the passive vehicle to return the laser beam.

The non-cooperative target depends on skin reflection. Thi system

provides a range accuracy of ±0.02% or 10 cm, range rate accuracy of

±1.0% or 0.5 m/sec. and angle accuracy of •!-0.02 degree transverse axis

and ±1.'0 degree longitudinal axis over a range of 0.75 .nautical miles.

The contents of the Laser Docking Radar are listed below:

1 laser transmitter

1 Beam steerer

1 Scanning optical ;detector (IDT)

. 1 Receiver optics

. 1 Ranging circuit

1 Threshold circuit

•	 . 1 Timing circuit
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3.2.7 I:ndar Al L t.lWLt r

'Pile ltadar AlLiMeLer uses pulsed radar, leading edge tracking to provide

an alLUU dc and altitude rate from 0 to 50 , 000 feet altitude. The

altitude accuracy is less than i(2 feet + 0.1% of altitude); altitude

r,ltr, i:; l(.ss than ±(3 ft/sec. + 3% of rate). The major components

ilclud":

1 l.r: CatvLr

.	 1 T).:i:;Lv

1 P per suPPly

2 Horn ar;l.ennas (transmit and receive)

1 ACT unit

3. 2.8 CNAC' C.ainprl^^

It is a,:;umed Lb.-it a computer with a 32K memory and 24 bit word length is

SUl f1 . G:lCli t: to j7::r orm all of t:he Space T'JS CIO" functions as wall as

perform cl;eckout ;,net fault isolation of the entire system. The computer

inLerfacc:; With Che data bus to control the operation of all MU' s. It

pr6vidc- , AULMIMLic I-Aode sequencing, controls the data rate to 2nd from

the txio;or:; and determines what IRU's are turned on and what level of

rcdijadaucy must Le provided for a particular mission operation. The

c01111wLar • is modu larized so that additional memory modules may be added.

The following modules comprise the CN&C computer:
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3.2.9 ^J^ lsnrine Ignition Control

The R/J and Engine Ignition Control Assembly provides control of the

valve solenoids supplying 02/I12 to the 16 reation jet combustion

chambers. Ignition circuits in the assembly ignite the propellant

mixture in both the reaction jet system and the main propulsion system.

The contents of each assembly includes

. 16 "MI-OFF" driver stages

1C+ Transient suppression circuits

22 Ignition circuits

9* 2 ACT units

3.2.10 TVC Gimbal Servo

The Thrust Vector Control Gimbal Servo Assembly provides proportional

control of the actuators which position the two axes of each propulsion

engine in the Propulsion Module. Fora FO/FO/FS requirement, 3 actuators

per gimbal for each of the 4 engines are used. In addition, 3 gimbal
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3.2.12 Translation Control

The Translation Control permits manual control of the Space Tug

translational position along all three axes. The device includes:

1 'T-handle

24 'Translation switches (d per axis)

4 Abort switches (manual abort during boost)

. !t ACT units

The i•lanual Sa:.LanL can be used for both star sightings and land mark

tracking-to provide INU alignments and near earth navigation as a

backup to the star sensor, sun sensor and horizon sensor. Star

sighting accuracies are of the order of 10 are sec. while landmark

tracking approaches 30 are sec. The contents of this LRU is as follows:

1 Sextant

. '!t•,,o	 gimbal assembly

2 Rjal redundant servo loops

1 v,-power supply

. 1 Control panel

1 ACT unit

3.2.14 Dis2lay Uevbo,,rd

The Display Keyboard permits manual communication with the GN&C processor

for manual cotiunands, manual checkout and status, data entry or program

changes, etc. It contains switches for introducing data and g/L displays

for readout. 'The contents of the display include:
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3.2.15 GN&C Control Panel

The CN&C Control Panel provides manual selection of GN&C modes. The

panel contains:

. 20 Illuminated switches

. 2 ACT units

3.2.16 Multiformat Electronic Displays

The multiformat display uses a cathode ray tube to provide a hi-bly

versatile display ,ystent for portraying either£;raphically or alplut/

numerically CN&C parameters for the various modes of operation. The

contents Include:

. 1 CRT

. 2 Processors

. 2 ACT units

3.2.17 14PLfl Power/Interface

This LRU supplies power and provides auxilliary electronics to the

Multiformat Electronic Displays. It contains:

. 1 Power supply
t'

0 1 Auxilliary electronics circuit
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3.3 Mssion Op(1 r.ricio:l

This section discusses the usage of the CN&C equipment during the various

mission phases. Estimates of navigation accuracy are also given.

3.3.1 Lcluip,aent Usll,,•F:

A suimnary of the equipment necessary to perf.orra various Space Tug CN&C

operations nro tabulated in Tables, V and Vl. Table V indicates equipment

LI$cf;e CLIII AI ,'. PiirC; MILL-M, tiC CT)C1'i:ti C,?: (;711Ct j ?C:r I-Mialed or uninani.ed) and

Table: VI U.' L,; c.,;uin ICnr_ usa; c? I;iw-n all op_---ati.on are performed manually.

Both tables aSS IUMe that the P11 is L=achcet. WrinZ automatic IN operation

only, Table V can be used with the exception that the TVC gimbal servo

assembly is not used.

These tables in conjunction with 'fables I and II can be used to derive

GN&C power time lines for both the FO/FO/FS and FO/FS redundancy

requi'roments once the mission time line is known. In computing power,

it is assumed that automatic operation requires that all redundant

elements of a piece of equipment being; used be turned "on" to facilitate

automatic failure detection and correction. For manual operation, it is

assumed that during non-critical operations, only one element of each

equipment being used is turned "on" since the crew can manually detect

and correct failure. However, during manual time critical,operations

such as Delta-V corrections and lunar landing and ascent, all redundant
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3.3.2 system Performance

The following is a brief discussion of the performance capability of the

equipment described in this report. In lieu of having definite per-

formance . requirements from which to define equipment, it is assumed that

the equipment defined for the Space Shuttle program is sufficient to

meet Space Tug requirements. Engineering judgement is used on those

equipment not having a Space Shuttle counter part. Individual sensor

accuracies linve been previously discussed un4ur Section 3.2 . This

discussion uses the sensor accuracies to estimate navigation update

accuracy, attitude update accuracy and Delta -V pointing error for the

various mission operations.

3.3.2.1 Near Earth and Synchronous Orbit Navigation
...^^r ^ r 'r r. rrrr .n.^ ..	 r^rr^.^.

Navigation updates for earth orbits use the star tracker and horizon

sensor to establish orbital position during automatic operation.

Using a ±0.05 degree accuracy for both sensors, a navigation accuracy

of 4.2 run (lar ) is projected.

Durin&manual operation, the sextant is used. It is estimated that

star sightings can be made to an accuracy of 0.003 0 while landmark

tracking can be performed to an accuracy approaching 0.008 0 . In this

case, updates on the order of 0 . 2 nm (lW) can be expected.
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in which case the error approaches .005 degree per axis. Since the

sextant and Ir1U are separated, it is expected that this accuracy would

be difficult to achieve due to relative structural bending or misalign-

ment between the III and Ctd. Optical monitors linking the two systems

would be required in order to achieve 0.005 degree accuracies.

3'.3.2.3 '1'ranslunar CoLrst 1' ayiJ•,.ati011

Wrin , Translunar Coz:sl. or Other tcop spike operations, it is assurnad

that earth bCSed Lracking would be used (Deep Space Network). The

present state of development for this systc--A yields accuracies on the

or.ler +50 feet. (Ic -)

3.3.2.4 AV Corrections

Based on tpollo experience, delta velocity, vector misalignments will be

in the order of 0.667 degree (lpr ) for propulsion engine burns of 60

seconds or less. AM miLaligruncm error improves for l(-,ger burns;

approaching 0.43 degrees for burn times bAtween 60 and 250 seconds.
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APPENDIX

REDUNDANCY RATIONALE

In interpreting a FO/FO/FS requirement for the Space Tug, it is assumed that

during manned missions the occurrence of two critical failures is sufficient

to abort the mission (this leaves two operational paths). This is similar to

the Space Shuttle interpretation, Applied to the Space Tug, this means that

generally equipment in the Ito will be quad redundant except for those equipment

that can be backed up'manually in the CM..

As an example, the crew module contains a sextant which can be used for refer-

ence alignment and docking therefore only three each of star trackers, sun

sensors, and docking radar systems are needed instead of four.

The IMU, computer and power conditioning and distribution unit are used during

all unmanned and manned operations, consequently, these are quad redundant.

The TVC gimbal servo is triple redundant on each motor. Since there are four

motors, any two of which may fail, the level of redundancy actually provided

by the TVC gimbal servo is FO/FO/FS/FS.

The two R/J and engine ignition drivers provide quad redundancy assuming that

maneuvers can be accomplished using one jet instead of,twoe

t
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that equipment similarity would be highly desirable and the extra redundancy

level provided by two dual electronic assemblies should be tolerated.

The radar altimeter does not have a manual backup, consequently, four are

required.

All of 'the equipment in the CM are not required to be redundant. Howevers a

certain degree of redundancy is inherent in these equipments since they are

identical to similar h arc;wsre. in the Space Shuttle which is required to be

redundant.

A FO/FS redundancy requirement is similar to the above except one less redun-

dancy level is provided.
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APPENDIX D

MANIPULATION REQUIREMENTS
FOR SPACE TUG OPERATIONS
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MANIPULATION REQUIREMENTS FOR SPACE TUG OPERATIONS

INTRODUCTION

The requirements and capabilities for performing useful work in space
have been subjected to much study, and the work has been reported in detail.

The work includes manipulative ability of astronauts, unmanned
remote control manipulative vehicles, and manned manipulative vehicles.

The reports on satellite maintenance requirements, astronaut rescue
requirements, and logistics support to space stations apply generally to tug
operations.

Tug, as a manned maneuverable vehicle, can be provided with manip-
ulation capability by several means 	 --

• EVA from tug as a tender

0 RMU from tug as a controller

0 Manipulation by tug crew and tug-mounted arms

The objective of this analysis is to identify manipulative tasks that
need to be accomplished and to evaluate candidate systems and their impact
on tug design and operations. In the Prophase A tug study, the evaluations
are somewhat speculative.

CLASSIFICATION
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The purpose of drawing these distinctions is to avoid argument based 	 }
on pure definitions. More important, however, we will cover the situation
where general purpose manipulative capability is required as back-up to
primary special purpose methods to improve system operational reliability.

Table D-1 shows this classification scheme and examples of tasks.
The general purpose methods identify candidate systems that can provide
dexterous manipulative capability to tug operations. The tug/RMU and
tug/manipulator options are classed as teleoperator systems.

The requirement for these systems as back-ups, or complements, to
the special-purpose methods will be considered in the analysis.

TUG FUNCTIONS AND MANIPULATION

Some of the principal functions of interest are shown in Table D-2.

SPECIAL DESIGN R11QUIREMENT

Three basic manipulator system design requirements are frequently
ignored at the design concept stage of development. The impact of the fol-
lowing special requirements on system analysis and concept development is
substantial.

Hovering and Coupling Compliance

The ability of astronauts and manipulator operators to grab moving
objects has been demonstrated. However, the complexity of the task is
severely limited by the relative velocity of motions between the terminal
device and the work object.

Hovering and Docking

Considering the hovering and mane mrerability of a tug vehicle and a
destabilized vehicle, or a tumbling astronaut,, it becomes evident that the
energy and flight-control-sensor demand can become extremely high.
Furthermore, the grapple, snare, or net device required for object acquisi-
tion must accommodate greater and greater demands on relative-position
precision„ Energy limitations, vehicle control capability, manipulator
dexterity, and acquisition-tool accommodations establish the limitations to
feasible tasks for .such station keeping and fly-by operations. The acquisi-
tion relative velocities of objects with various masses and C G. misalign
ments have been studied by many concerns. The conclusion is soon reached'
that the maneuvering capability between spacecraft and work objects is
obviously limited by energy demand, pilot instruments, and pilot capability.

s	 D-Z
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GENERAL
PURPOSE

EVA
TUG CREW! USES EVA
WHILE DOCKED* TO
SATELLITE

^	 TELEOPERATOR

RMU
^	 • TUG CREW OPERATES

RMU FOR SATELLITE
DOCKING AND

^	 REPLENISHMENT
(CAMERA FILM) ---	 i

MANIPULATORS
^	 • TUG USES MANIP'S FOR

ASTRONAUT RESCUE

o 19
A

D tD

MyM. <
i^

M,
m

Table D-1. Manipulative Capability - Classification and Examples

MANIPULATIVE
L^	 SYSTEMS

SPECIAL
PURPOSE

CARGO HANDLING
d •	 TUG COUPLES TO
uJ CARGO PACKAGE

•	 MANEUVERS IT TO
EOSS

DOCKS IT TO EOSS
OR IN IT

a
MATERIALS HANDLINGr

FOSS CREW BREAKS DOWN
EOS PAYLOAD WITH

ut MATERIAL HANDLING
EQUIPMENT

s	 CREW BUILDS TUG MIS-
SION MODULES USING
AUTOMATIC LOADING
DEVICES

f

Aj	 T
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Table D-2. Functions Requiring Tug Manipulation

t1"
tP

Grt
G
-•t

i

N

Tug Function Manipulation Task

Observation, detection, and • Position cameras, radiation counters, lights, sunshades
photo documentation and mirror (f y- by or docked or grappled)

Transportation, positioning, • Acquire objects for transport
and stabilization • Provide reactionless release for deployment after docking

• Operate spin/despin devices

Construction, rigging, and 0 Grapple structural elements for positioning for in-orbit
assembly assembly

• Tether object to EOSS (clear of docking ports)

• Deploy and attach lunar landing gear in orbit

Maintenance,- experiment • Acquire satellite by grapple and exchange experiment
exchange, and replenishment package or solar paddle

0 Change film casette

.k?ecover • Net/snare space junk for disposal

Retrieval t Grapple inoperative satellite and hold in-transit to EOSS

Rescue 0 Net/snare astronaut in tug rescue operations

s Grapple space vehicle for EVA crew transfer into tug

Hazardous material handling • Handle and dispose radioactive items --dangerous
and disposal chemicals and explosives.
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This is combined with the same factors for the vehicle manipulator system
and its operator in closing the gap between vehicle and work object for
acquisition prior to coupling for dexterous manipulation or EVA tasks.
The demand on the system is thus compounded to where the positioning
precision, and the relative velocities in accomplishing capture (grappling
or docking), must be conservative. Nonalignment of the two C. G. 's causes
further complications.

It is, therefore, not likely that any degree of dexterous manipulation
will be possible between a hovering spacecraft and a work object. Acquisi-
tion and docking, however, is an established capability.

Docked Manipulation

For dexterous manipulation tasks, the spacecraft must be coupled, or
attached by grapples to the object being worked on. The compliance of this
coupling directly affects the precision of manipulation that is possible.

Atomics International has found that the spring rate of the XYZ crane
supporting a manipulator arm in hot cell work can be too low (too compliant).
The dexterity of the manipulation can be substantially lowered by such
excessive compliance. TtiT R's Ocean Systems Operations found it necessary

ma y '	 to dock a neutrally buoyant submersible to a rail to control compliance of
the system sufficient to permit manipulation of valves and other tasks. It
has been determined that grappling with one arm, while manipulating by
another, will not provide the required fixity of the coupling. The neuter
docking device for tug will provide a rigid attachment means. However,
manipulator locations respective to the docking device are limited in two
ways:

1. Docking is only possible with objects providing a compatible
system.

2. Manipulative tasks can only be accomplished within the reach of
the arms from this fixed point on the work object.

Therefore, this configuration is more of a special case than would be
useful in evaluating general purpose manipulator systems for teleoperator
applications

Visual Feedback

The principal (and often only) feedback loop for manipulation is human
vision. For multiple points of view; of the work task from within the space-
craft, both direct viewing and TV viewing are needed. However, multiple
camera and stereo camera viewing have been used successfully,

D-5
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In the task of capturing a non - cooperative object, the vehicle pilot and
the manipulator operator will probably work in conjunction with each other.
If viewports are provided, the field of view should overlap so that each
operator can see the work at the same time. A practical consideration of
viewport locations on tug may show the need for portable controls. The
problem may be to find one or more viewports that bear on the target and
then the pilot and operator would need their controls at those particular
ports.

Lights and sunshades are required to control illumination levels.
Sunshades may also be required to limit servo-temperature rise when
operation is in direct sunlight. A manipulator arm is excellent for posi-
tioning cameras, lights, mirrors, and sunshades for manipulator tasks.
A manipulator can remove such devices from their stored location, attach
them to the work object, or hold and operate them.

The use of a manipulator arm as a camera positioner provides an
interesting capability. It allows the tug to inspect itself in areas that may
not be otherwise viewed except by EVA or another vehicle.

Mass Reactions

Some problems of mass reaction during docking were mentioned in
discussion of the transfer from hovering to docking.

Another consideration r(dates to the use of reaction tools such as
impact wrenches. This reduces the demand on the grappling system to
minimize relative motion during manipulation.

Manipulators can also be used in conjunction with the tug's docking
device to minimize disturbance to the work object during release of the
object. In this case the two arms would maintain control of the object dur-
ing release and separation of the drogue or the docking port. Thereafter
the arms would release the grab points on the object without imparting
forces to the object.
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Table D-3. Special System Design Requirements

1. Coupling Compliance

• EVA and manipulator dexterity limited in
accommodation of relative motion

• Tug or RMU must lock rigidly to work object.
EVA astronaut must tie to work object

2. Visual Feedback

• Principal feedback loop. Direct viewing and/or
multi-viewpoint TV required.

•	 Illumination, sunshades, and mirrors needed.

3. Mass Reactions

• High force/low reaction tools

•	 Relative velocity: mass, limited for acquisition

•	 Low-reaction acquisition and release required.

CANDIDATE MANIPULATOR SYSTEMS

As shown, it is apparent that tug can be provided with three manipula-
tive options: tug-based EVA, tug-based-and-controlled RMU, and tug-
mounted and controlled manipulator/grappling system.

Remote Maneuvering Unit

The GE space slave RMU is a general purpose teleoperator with arms,
tools, propulsion, TV, Tights, and communication links to control stations on
earth, on EO'SS or on tug. When control is from tug, the communication
time -delay problem becomes small compared to the substantial problem, of
earth-}used control of the RMU for manipulation on a planetary mission.

GE studies have established the requirements foz manipulation and
demonstrated feasibility by analysis and simulation. It can be argued that
tug is the logical control base for an RMU. This option also meets the
modular and kit concepts of the tug system since the RMU can be left at the
FOSS, or even controlled by EOSS for local jobs, when not in use on tug,

D-7
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With this configuration, tug could dock to a work object by either the
docking port or manipulator arms. It could then deploy the 'EMU  for exterior
inspection and work while the tug crew entered the satellite and performed
interior maintenance task.

The RMU might be particularly suitable for spin and despin operations.

Astronaut EVA

The tug can obviously use astronaut EVA methods to acquire manipu-
lative capability. In this case an air lock would be required. Since the
astronaut would probably leave the air lock through the docking port with
safety line and life support hoses, it can be argued that tug should be
equipped with manipulator arms that would be used to capture the work
object and lock on prior to EVA operations.

The astronaut could rig tethering struts or cables so as to free the
arms. One arm with a basket could be used as a cherry picker to position
the astronaut on the work.

This configuration, with two general purpose arms, would be similar
to the mini-tug concept. The relatively simple two-arm configuration does
not meet teleoperator capabilities except in conjunction with EVA.

Since astronaut EVA is presumed to be available, the impact on f-':.%
would be the air lock, two general purpose arms, and the required illun,i ,

-nation and TV systems.

Tug Manipulator (configuration

As a manned teleoperator, the tug would require the same arms,
tools, lights, cameras, and controls as the RMU except for the communi-
cation `i Ink.

The tug could carry arms and grapples with greater reach and force
capability. On the other hand, the bulk and mass of tug compared to RMU
would bar its access to certain jobs where smaller andmore agile RMU/
EVA options would be able to work.

Table D-4 summarizes the manipulator mode options.

D-8
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Table D-4. Tug Manipulative Options

• Tug Manipulator

( Tug with arms, grapples, lights, and TV)

Grapples to work object and performs tasks with arms
and tools

• Tug EVA

( Tug with arms, air lock, lights, and TV)

Grapples work object during EVA.

• Tug RMU

( Tug with command controls, lights, and TV)

Transports RMU to job and controls

RMU docking and manipulation—monitors

RMU TV and sensors.

SUMMARY AND CONCLUSIONS

Present tug system concepts have concentrated on a system of docking-
port devices that enable the tug to couple to various compatible packages and
objects to maneuver them, assemble them to other structures and packages,
and transfer personnel and cargo from one unit to another.

More dexterous manipulative capability than that is required to work
on noncompatible objects. Teleoperator studies and space maintenance
studies (by NR and others) have shown the requirement to perform such
dexterous tasks.
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Dexterous manipulative capability can be provided to tug operations
by three methods:

1. Tug-controlled-and-based RMU (teleoperator)

2. Tug-based EVA with air lock and two manipulator systems

3. Tug-mounted-and-controlled manipulator - tool and grapple
systems (with teleoperator capability)

The tug-EVA dual arm appears to merit detailed consideration. The
air lock might be mounted in a separate neuter docking cone that also carries
the dual manipulator arms.

As one of a few manned spacecraft on the spot, tug should be capable
of coping with targets of opportunity.


