NASA TECHNICAL MEMORANDUM

N11-2541I NASA TM X-2245

$$
\begin{aligned}
& { }^{\text {CASE FIS }} \text { COPY } \\
& \text { COS }
\end{aligned}
$$

PRELIMINARY IMPACT SPEED

 AND ANGLE CRITERIA FOR DESIGN OF A NUCLEAR AIRPLANE FISSION PRODUCT CONTAINMENT VESSELby Patrick M. Finnegan, Richard L. Puthoff, and James W. Turnbou
Lewis Research Center
Cleveland, Ohio 44135

PRELIMINARY IMPACT SPEED AND ANGLE CRITERIA FOR DESIGN OF A
 NUCLEAR AIRPLANE FISSION PRODUCT CONTAINMENT VESSEL
 by Patrick M. Finnegan, Richard L. Puthoff, and James W. Turnbow*
 Lewis Research Center

SUMMARY

Studies show that if the gross weight of a nuclear aircraft is greater than a million pounds, the payload should be greater than 15 percent. However, these studies make only marginal provisions for systems to contain fission products in an accident.

One method of containing fission products is to put the reactor in a containment vessel and then protect the vessel from rupture during an accident. One source of rupture is ground impact. To design a system to prevent rupture during impact, the impact speed and angles must be known. This report estimates the probable impact speed and angles based on a survey of accident data compiled at Norton Air Force Base.

Reports and photographs of 96 major accidents occurring before 1965 and involving multiengine jet aircraft were studied. Impact speeds were estimated by examining damage to aircraft and components, depth of impact craters, and depth of penetration in the earth of heavy objects like engine shafts. Impact angles were determined by estimating the order in which parts of the aircraft contacted the ground. The order was determined by scrape marks on the ground, damage to the airframe, and distribution of parts torn from the aircraft.

Impact speed and angle are presented for landing and takeoff accidents, cruise accidents without in-flight structural failure, and in-flight structural failure accidents. The landing and takeoff accidents had an average impact velocity of 200 feet per second ($61 \mathrm{~m} / \mathrm{sec}$) from any direction and a maximum impact velocity of 300 feet per second ($91.5 \mathrm{~m} / \mathrm{sec}$) within a 10° solid angle about the roll axis. The cruise accident without structural failure had an average impact velocity of 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$) and a maximum possibly as high as 1000 feet per second ($305 \mathrm{~m} / \mathrm{sec}$), both within a 10° solid angle about the roll axis. The in-flight structural failure accident had an average impact velocity of 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$) from any direction and a maximum possibly as high as 1000 feet per second ($305 \mathrm{~m} / \mathrm{sec}$) within a 10° solid angle about the roll axis. Reactor containment vessel impact speed and angle design criteria are established by the in-flight structural failure accident. Impact speed and angles for other accidents fall within the speed-and-angle envelope for the in-flight structural failure accident.

[^0]
INTRODUCTION

Nuclear airplane studies have shown that nuclear power is not feasible for airplanes with gross weights under 500000 pounds (227000 kg) (ref. 1). If a 500000 -pound $(227000-\mathrm{kg})$ aircraft were designed with radiation levels sufficiently low so that it could be flown and serviced with procedures like a chemical airplane, the payload would be essentially zero. If a 500000 pound ($227000-\mathrm{kg}$) aircraft were designed for reasonable payloads, the radiation levels in the cargo compartment and near the reactor shield package would be high and special expensive flight and ground operating and maintenance procedures would be required. Studies also showed that the nuclear powerplant weight does not increase proportionally with aircraft gross weight but more like the square root of the gross weight. Thus, if the gross weight were increased by 100 percent from 500000 to 1 million pounds (227000 to 454000 kg), the powerplant weight would increase by only about 40 percent and the difference could be used for payload. The potential large increase in payload with an increase in gross weight is one of the major reasons for another look at nuclear power for aircraft.

Today there are airplanes flying with gross weights greater than 700000 pounds (318000 kg) (C5A and 747) and airplanes on the drawing boards with gross weights greater than 1 million pounds (454000 kg). Studies show that the payload fraction for a nuclear-powered 1 - to $1.5-$ million-pound ($454000-$ to $680000-\mathrm{kg}$) gross weight aircraft is 15 to 25 percent. However, these studies do not include weight penalties for systems to contain fission products in an aircraft accident. Feasibility of a nuclear airplane now may depend not on shield weight but on the weight of the fission product containment systems.

One method of containing fission products is to put the reactor in a containment vessel (CV) and then protect the vessel from rupture during a crash. Major sources of rupture are midair collisions, ground impact, postcrash fire, and postcrash fission product decay heat. This report is concerned with only one source of CV rupture, ground impact.

The purpose of the report is to establish preliminary impact velocity criteria for the design of a fission product containment vessel which could sustain a ground impact during an aircraft accident without rupturing. The critieria will be in the form of impact angle and impact speed that a nuclear-powered airplane containment vessel may be expected to experience. The speed and angles will be determined from a study of the records of accidents involving large aircraft.

The source of data was the Air Force accident records at Norton Air Force Base. Reports and photographs of 96 major accidents occurring before 1965 and involving multiengine jet aircraft were studied. The accidents were analyzed by Dr. James W. Turnbow of AvSER Division of Dynamics Sciences Corporation under contract to NASA.

NASA personnel and H. Firstenberg of NUS Corporation helped Dr. Turnbow search the records and collect the data for analysis.

Dr. Turnbow estimated the impact speeds and angles by studying the accident records and photographs and comparing the aircraft and ground damage with that resulting from aircraft crash experiments conducted by AvSER for the Air Force. Impact speeds were estimated by examining damage to aircraft and components, depth of impact crater, and depth of penetration in the earth of heavy objects like engine shafts. Impact angles were determined by estimating the order in which different parts of the airplane contacted the ground. The order was determined by examining scrape marks on the ground, damage to the airplane, and distribution of parts torn from the airplane.

The data obtained from the survey of the accident records are presented in the appendix. The reactor and containment vessel that must survive an accident are briefly described. The type of accidents studied and the method used to analyze the accidents are described and the probable impact speeds in the primary directions about the containment vessel are presented.

DESCRIPTION OF REACTOR AND CONTAINMENT VESSEL

Two reactor locations in the airplane are being considered. In one, the reactor shield - containment vessel system (RSCV) is in the cargo bay (fig. 1(a)); and in the other, it is mounted above the cargo bay (fig. 1(b)). The latter design separates the RSCV from the airframe and cargo with the advantage that it follows its own independent crash trajectory and is not impacted by the cargo. These sketches do not show any of the provisions that may be required to protect the CV from rupture during impact.

The RSCV is shown schematically in figure 2. During a crash the reactor and shield may be damaged severely but this may not be important to safety as long as the CV does not rupture. The CV has penetrations for coolant and electrical leads. Valves will be provided for the coolant penetrations, and electric leads will be sealed in the vessel wall. Systems will be provided to assure the valves are closed before the CV contacts the ground.

TYPE OF ACCIDENTS SURVEYED

During the search of the aircraft accident records, information was collected on nine categories of major accidents: takeoff, landing, cruise over land, in-flight structural failure, in-flight refueling, cruise over water, midair collision, taxi accidents, and fire during repair. All the accidents studied resulted in major damage, essentially complete destruction of the airplane. The data for the 96 accidents reviewed are pre-
sented in the appendix. However, this report is concerned with the ground impact problem only and, therefore, cruise-over-water, taxi, and fire accidents are not considered. In-flight refueling and midair collisions are considered because their ground impact characteristics are similar to those resulting from in-flight structural failure.

The ground impact period of the aircraft accident is assumed to start the moment the first part of the aircraft contacts the ground and to end when the aircraft comes to rest. The kinetic energy of the aircraft is absorbed by sliding friction between the aircraft and the ground, by deformation of aircraft parts, and by displacement of earth (or cratering).

An artist's idea of the crash history for two major types of impact is shown in figures 3 and 4. Figure 3 shows a low-velocity, low-impact-angle accident; and figure 4 shows a high-velocity, high-impact-angle accident. These figures describe the major classes of crash history for an aircraft with a heavy package, similar to the RSCV of a nuclear airplane, loosely secured to the airframe. These types of impact are discussed in the following section and the probable impact angles and speeds are estimated.

METHOD USED TO ANALYZE THE ACCIDENTS

The analysis of aircraft accidents relies heavily on the experience and judgment of the investigator since little quantative data is available. Each of the accidents presented in this report had been studied by an Air Force investigation team at the time the accident took place. This investigation team tried to estimate the impact speed and the orientation of the aircraft at the time of impact, which is the information needed for this report. They also took photographs of aircraft damage, cratering, and scrape marks on the ground. They measured lengths of scrape marks, depth and volume of craters, and depth of penetration of heavy objects. And they tried to estimate the order in which parts of the airplane struck the ground, Some of the data presented in the appendix were taken directly from the accident record. The remaining data in the appendix were estimated by Dr. Turnbow based on his examination of the photographs and records and on a comparison with the results of controlled crash experiments conducted by AvSER for the Air Force. The speed-against-angle data presented in table I were prepared by NASA from data in the appendix.

The following characteristics are used to define ground impact: impact speed, terrain impact angle, yaw angle, roll angle, and pitch angle (see fig. 5). Impact speed is defined as the speed relative to the ground. Terrain impact angle is the angle between the roll axis and its projection on the impact surface. The roll angle is the angle between the weight vector and the yaw axis. The yaw angle is the angle between the roll axis and the velocity vector perpendicular to the yaw axis. And the pitch angle is the angle between the roll axis and the velocity vector perpendicular to the pitch axis. The
LAも
ACCIDENTS, 96 ACCIDENTS OCCURRING FROM 1960 TO 1965)

Type of accident	Number of aircraft involved	In-flight structural failure	Percentage distribution of velocity at impact					Percentage distribution of terrain impact angle				Percentage distribution of roll angle				Percentage distribution of yaw angle				
			<100 (31)	<200 (61)	<300 (91.5)	<400 (122)	>400 (122)	$<10^{\circ}$	$<30^{\circ}$	$<60^{\circ}$	$<90^{\circ}$	$>10^{\circ}$	$<30^{\circ}$	$<90^{\circ}$	$<180^{\circ}$	$<10^{\circ}$	$<30^{\circ}$	$<60^{\circ}$	$<90^{\circ}$	$<180^{\circ}$
Takeoff:	20	0	25	60	10	5	---	85	10	---	5	75	10	15	---	95	---	---	---	5
On airport	5	0	40	60				100				80		20	---	80	---	---	---	20
Off airport	15	0	20	60	13.3	6.7	---	80	13	---	7	74	13	13	---	100		---	---	---
Landing:	30	2	47	47	3	----	3	87	3	10	---	97	---	---	$\therefore 3$		---	---	---	---
On airport	17	1	65	35		----		94		6	---	100	---	---	---		---	---	---	--
Off airport	13	1	23	61	8	----	8	77	8	15	---	93	---	---	7		---	---	---	---
Cruise over land	15	9	7	7	20	13	53	33	33	7	27	60	7	20	13	86	---	7	---	7
Refueling	7	4	---	43	----	----	57	43		14	43	57	---	---	43	57	---	---	---	43
Cruise over water	4	1	---	---	----	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Midair collision	6	4	---	---	----	----	100	33	---	---	67	33	--.	---	67	33	---	---	--	67
Taxi	13	---	100	---	----	----	---	100	---	---	---	100	---	---	---	100	--	---	--	---
Fire during repair	1	---	100	---	----	----	---	100	---	---	---	100	---	---	---	100	---	---	--	---
Total	96	20	---	---	----	--.-	---	---	---	---	---	---	---	---	---	---	---	--	---	---
In-flight structural failure	96	20	8	23	8	----	61	36	28	18	18	41	17	17	25	71	---	---	---	29

pitch angle is more difficult to estimate than the other angles and is not tabulated in table I. Consequently, two assumptions about the pitch angle are made. When the velocity is high (i. e., above stall speed), the pitch angle is assumed to be small ($\pm 10^{\circ}$). When the velocity is low (i. e., below the stall speed), the pitch angle is assumed to be any angle from 0° to 90°.

IMPACT SPEED AND DIRECTION FOR THE BASIC TYPES OF ACCIDENTS

Impact speed and direction are estimated for the three basic types of flight accidents: landing and takeoff accidents, cruise accidents without structural failure, and cruise accidents with structural failure. The major types of impact are described in figures 3 and 4. The impact speed and angle data from the 96 accidents are summarized in table I for the three types of accidents. Figures 6 to 8 present the data for each type of accident graphically superimposed on the RSCV.

Landing and Takeoff Accidents

On the average, landing accidents are the least severe type of accident. This is because during landing the aircraft velocity is relatively low and the angle between the ground and the aircraft is small. Most of the kinetic energy is absorbed by sliding friction between the fuselage and the ground. Generally, the wings will tear off and the fuselage will break into several pieces; but in most landing accidents, the fuselage will not be crushed significantly. The landing accident is similar to the accident described in figure 3 except that the impact angle can vary over a broad range, as discussed below.

The impact speed and terrain and the roll and yaw angles at impact are presented in table I. The impact speed for the average landing accident is 200 feet per second ($61 \mathrm{~m} / \mathrm{sec}$) and the impact can come from any direction. The impact speed for the maximum landing accident is about 300 feet per second ($91.5 \mathrm{~m} / \mathrm{sec}$). In the maximum accident, the pitch angle will be small $\left(\pm 10^{\circ}\right)$. The terrain angle may vary from 0° to 60°. The roll angle may vary from 0° to 180°. The yaw angle will be small $\left(\pm 10^{\circ}\right)$. The probable solid angle within which the 200 - and 300 -feet-per-second ($61-$ and $91.5-\mathrm{m} / \mathrm{sec}$) velocity will occur is shown in figures 6(a) and (b). Figure 6(c) shows the combined average and maximum velocity profile for landing accidents.

The severity of the maximum takeoff accident is about the same as that of a landing accident. The severity of the average takeoff accident is slightly higher than that of the average landing accident. As shown in table 1 , the percentage of accidents below 200 feet per second ($61 \mathrm{~m} / \mathrm{sec}$) is 85 percent for takeoff accidents and 93 percent for
landing accidents. Since the severity of the landing and takeoff accidents is about the same, the landing accident impact speed and angle distribution, as shown in figure 6(c), is also applicable to takeoff accidents.

Cruise Accident Without Structural Failure

The nonstructural failure accident is characterized by high speeds parallel to the roll axis and small pitch and yaw angles. The aircraft cannot maintain high speeds parallel to the yaw and pitch axis. High speeds in these directions cause large aerodynamic forces which would tear the aircraft apart. If the speed in the yaw or pitch directions increase, the aircraft turns into the wind, decreasing the speed in these directions; or the wing and/or tail stalls (or breaks off) and the aircraft becomes unstable, the drag rises, and either the aircraft speed decreases or the aircraft breaks up. The cruise accident without structural failure is described schematically in figure 4. Six of the 15 cruise overland accidents did not have structural failure; and of these, about one-half had impact velocities below 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$). It is very difficult to determine the impact velocities above 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$) because the destruction for higher velocities is very similar to the destruction at 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$). However, if no drag devices were used to slow the aircraft down, the impact velocities could be as high as 1000 feet per second ($305 \mathrm{~m} / \mathrm{sec}$). The yaw angle and pitch angles are small (i. e. , $\pm 10^{\circ}$). The terrain angle can range from 0° to 90°. The maximum and average accidents have the same angle distribution. The probable solid angle within which the 400 - to 1000 -feet-per-second ($122-$ to $305-\mathrm{m} / \mathrm{sec}$) speed will occur is shown in figure 7.

In- Flight Structural Failure Accident

The in-flight-structural-failure accident category includes structural failure during landing, takeoff, cruise overland, in-flight refueling, and midair collision accidents. The refueling and midair collision accidents are included in the structural fallure category because the ground impact in these accidents is similar to the ground impact due to structural failure during landing, takeoff, or cruise.

If the fuselage, wing, or control surface fails, the accident is characterized by tumbling of the aircraft; relatively low impact velocities (terminal velocity of broken fuselage); and 0° to 360° terrain roll, yaw, and pitch angles. If the major parts of the aircraft stay intact, the accident characteristics are similar to in-flight accidents without structural failure.

Twenty of the 96 accidents had in-flight structural failure. About 60 percent of these accidents had an impact speed of 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$) or greater, possibly approaching 1000 feet per second ($305 \mathrm{~m} / \mathrm{sec}$). The aircraft that broke up in flight had impact velocities less than 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$). The terrain impact angle ranged from a few degrees to 90°. The roll angle ranged from a few degrees to 180° or an inverted impact. When the aircraft stayed intact, the yaw angles were small. When the aircraft broke up in flight, the yaw angles ranged from 0° to 180°. The impact velocity profiles for the average and most severe accidents are shown in figures 8(a) and (b). The combined velocity profile is shown in figure 8(c).

CONTAINMENT VESSEL IMPACT SPEED AND ANGLE DESTGN CRITERIA

The CV impact speed and angle design criteria are a combination of the impact speeds and angles for takeoff and landing accidents and for cruise accidents with and without structural failure. The individual impact speed and angle diagrams are shown in figures 6 to 8. The impact speed and angle diagram for the design criteria accident is shown in figure 9. It is determined by the structural failure accident. Impact speed and angles for other accidents fall within this envelope. The speed in the 10° solid angle about roll axis can range from 400 to 1000 feet per second (122 to $305 \mathrm{~m} / \mathrm{sec}$). The velocity in all other directions will be 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$) or less.

CONCLUDING REMARKS

The landing and takeoff accidents had an average impact velocity of 200 feet per second ($61 \mathrm{~m} / \mathrm{sec}$) from any direction and a maximum impact velocity of 300 feet per second ($91.5 \mathrm{~m} / \mathrm{sec}$) within a 10° solid angle about the roll axis. The cruise accident without structural failure had an average impact velocity of 400 feet per second $(122 \mathrm{~m} / \mathrm{sec})$ and a maximum possibly as high as 1000 feet per second ($305 \mathrm{~m} / \mathrm{sec}$), both within a 10° solid angle about the roll axis. The in-flight structural failure accident had an average impact velocity of 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$) from any direction and a maximum possibly as high as 1000 feet per second ($305 \mathrm{~m} / \mathrm{sec}$) within a 10° solid angle about the roll axis. From this data a "design basis velocity profile" was established. This velocity profile is 1000 feet per second ($305 \mathrm{~m} / \mathrm{sec}$) at a 10° solid angle in the frontal direction and 400 feet per second ($122 \mathrm{~m} / \mathrm{sec}$) in all other directions.

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, December 16, 1970, 126-15.

APPENDIX - A BRIEP SURVEY OF THE CRASH SURVIVABILITY POTENTIAL

OF A LARGE PACKAGE MOUNTED AT THE CENTER OF GRAVITY OF

A LARGE FIXED-WING AIRCRAFT

As a means of estimating the probability of crash survival of large loads mounted near the center of gravity of typical fixed-wing multiengine jet or propeller-driven aircraft, a survey was made of approximately 96 accidents of large aircraft occurring during the period 1960 to 1965. The accumulated data are presented in table II. The table provides an estimate of the following factors:
(1) Type of accident
(2) Approximate impact conditions
(3) Accident location (on or off airport)
(4) Severity of accident
(5) Ground area involved
(6) Cause of accident
(7) Percent of aircraft destroyed
(8) Survival rate for a package mounted near the center of gravity

It should be pointed out that, in many instances, the data presented in table II are not exact. Many factors such as area of destruction, impact acceleration, percent of fuselage destroyed prior to postcrash fire, etc., have been estimated from photographs and other evidence available. For example, visual comparison of the damaged aircraft with similar damage obtained in engineering tests is often the only means of estimating impact acceleration. In table II the notation 100 to $200+\mathrm{g}$'s simply implies total destruction of the aircraft and that the true decelerations are actually unknown. Estimates in the $0-$ to $30-\mathrm{g}$ range are probably reasonably correct.

The accidents reported in table II are believed to be quite appropriate to the study under consideration. The best interpretation of the data is made by considering inflight, takeoff, and landing accidents separately. Taxi accidents and accidents to parked aircraft, while reported in table II, have not been further examined in this report.

TABLE II. - ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WIND MULTIENGINE AIPCRAFT

	Takeoff accidents				
	1	2	3	4	5
Type of aircraft	KC-135A	KC-135	C-133	B-47	B-47
Velocity at impact ${ }^{\text {- }}$	$270 \mathrm{ft} / \mathrm{sec}(82 \mathrm{~m} / \mathrm{sec})$	250 to $340 \mathrm{ft} / \mathrm{sec}(76$ to $104 \mathrm{~m} / \mathrm{sec}$)	Takeoff speed	$270 \mathrm{ft} / \mathrm{sec}(82 \mathrm{~m} / \mathrm{sec})$	$275 \mathrm{ft} / \mathrm{sec}(84 \mathrm{~m} / \mathrm{sec})$
Impact angle with terrain	---	30°	Assumed shallow	Shallow	60° to 70°
Roll angle	20° left	Extreme 70° right bank	---	45° right	---
Yaw angle	---	---	---	---	---
Terrain	Flat; trees, wall, building	Flat; small trees	Water	Flat	Flat
Distance from runway	$4900 \mathrm{ft}(1490 \mathrm{~m}) \text { from }$ lift off	$12600 \mathrm{ft}(3840 \mathrm{~m})$	$3 / 4$ mile (1210 m)	$1 / 2$ mile (810 m)	$23000 \mathrm{ft}(7000 \mathrm{~m})$ from start of takeoff
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Postcrash fire Unknown 0 Crashed in fog after takeoff, completely destroyed	Postcrash fire 0 0 Total destruction Yes	Fire and explosion 0 0 Fragmented Yes 10	Postcrash fire 30 0 Unknown 6	In-flight postcrash fire 0 0 Total destruction Yes 10
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	200 ft by $1800 \mathrm{ft}(61 \mathrm{~m}$ by 550 m)	$\begin{aligned} & 500 \mathrm{ft}(152.1 \mathrm{~m}) \\ & 4 \mathrm{ft}(\max)(1.2 \mathrm{~m}) \\ & 300 \mathrm{ft} \text { by } 800 \mathrm{ft}(92 \mathrm{~m} \text { by } 204 \mathrm{~m}) \end{aligned}$		$\begin{aligned} & 2000 \mathrm{ft}(610 \mathrm{~m}) \\ & 1 \mathrm{ft}(0.3 \mathrm{~m}) \end{aligned}$	Crater 6 to 8 ft (1.8 to 2.4 m) or more 150 ft by 200 ft (46 m by 61 m)
Estimated g-level	---	---	---	10 to 15	100 to 200+
Cause of accident	---	Mechanical failure, lost two engines	Lost propeller in flight	Lost thrust on takeoff roll	In-flight fire and loss of control
Number of casualties: Crew Ground	9 fatal	4 fatal 0	6 fatal	4 fatal 0	4 fatal 2
Percent of aircraft loss *	100	100	100	100	100
Estimated chance of survival of package at center of gravity	Unknown but possibly poor	0 percent	Poor	50 percent, except for fire	0 percent

TABLE 1. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCDENTS TO FLXED-WING MULTIENGINE AIRCRAFT

	Takeoff accidents				
	6	7	8	9	10
Type of aircraft	C-130	C-124A	B-47	B-47E	B-47E
Velocity at impact	$132 \mathrm{ft} / \mathrm{sec}(40 \mathrm{~m} / \mathrm{sec})$	$220 \mathrm{ft} / \mathrm{sec}(67 \mathrm{~m} / \mathrm{sec})$	$575 \mathrm{ft} / \mathrm{sec}(175 \mathrm{~m} / \mathrm{sec})$	$290 \mathrm{ft} / \mathrm{sec}(89 \mathrm{~m} / \mathrm{sec})$	$169 \mathrm{ft} / \mathrm{sec}$ (est.) ($52 \mathrm{~m} / \mathrm{sec}$)
Impact angle with terrain	Forced landing following takeoff	Shallow	8°	10° (est.)	Nose high altitude
Roll angle		Left roll	Right wing touched, then left wing low at impact	---	---
Yaw angle		---		. ---	---
Terrain		Flat wooded; large trees	Flat	Flat	Flat
Distance from runway	1/2 mile (810 m)	2 miles (3200 m)	$4 \frac{1}{2}$ miles (7250 m)	Several miles	240 ft (73 m)
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity	No fire 100 --- None No 1	Explosion and fire 50 0 (tail section) Yes $\quad 8$	Postcrash fire 0 0 Many Yes 10	Postcrash 0 (est.) 0 Probably many Yes 10	Postcrash fire 0 \square --- 7
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	--- --- -	$1300 \mathrm{ft}(400 \mathrm{~m})$ \qquad 100 ft by 1000 ft (31 m by 310 m)	$1900 \mathrm{ft}(580 \mathrm{~m})$ Few inches ---	$\begin{aligned} & 900 \mathrm{ft}(270 \mathrm{~m}) \\ & 1 \text { to } 2 \mathrm{ft}(0.31 \text { to } 0.62 \mathrm{~m}) \\ & 150 \mathrm{ft} \mathrm{by} 900 \mathrm{ft}(46 \mathrm{~m} \text { by } \\ & 270 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1200 \mathrm{ft}(370 \mathrm{~m}) \\ & 1 \text { to } 2 \mathrm{ft}(0.31 \text { to } 0.62 \mathrm{~m}) \\ & 200 \mathrm{ft} \text { by } 1200 \mathrm{ft}(62 \mathrm{by} \\ & 360 \mathrm{~m}) \end{aligned}$
Estimatedg-level	1	$20+$	15 to $25+$	15 to 25	18 (est.)
Cause of accident	---	Pilot error	Fire in tail section from ATO bottle	Pilot error, insufficient deicing	Pilot error
Number of casualties: Crew Ground	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 18 \text { fatal; } 4 \text { major } \\ 0 \end{gathered}$	1 fatal 0	1 fatal; 2 minor	4 fatal
Percent of aircraft loss	Landing gear	100	100	100	100
Estimated chance of survival of package at center of gravity, percent	100	25	0	0	50

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCDENTS TO FLXED-WING MULTIENGINE AIRCRAFT

	Takeoff accidents				
	11	12	13	14	15
Type of aircraft	C-130A	KC-135	C-123B	C-131	B-52
Velocity at impact	Slow	Takeoff speed	$169 \mathrm{ft} / \mathrm{sec}(52 \mathrm{~m} / \mathrm{sec})$	$209 \mathrm{ft} / \mathrm{sec}(64 \mathrm{~m} / \mathrm{sec})$	---
Impact angle with terrain	---	. ---	Shallow	Struck on 15° slope	---
Roll angle	---	20° roll	0°	---	Left roll
Yaw angle	---	10° yaw	0°	. ---	---
Terrain	Flat	Flat; trees	Runway	Rising; wooded	wooded hills
Distance from runway	5000 ft (1500 m)	$3000 \mathrm{ft}(910 \mathrm{~m})$	On runway	---	4.75 miles (7600 m)
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Posterash fire Perhaps 30 20 Many breaks Yes	Postcrash fire Estimated to be small 0 Fragmented Yes 10	Small fire	No fire 6	Fire and explosion 0 0 Many Yes 10
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	400 ft by $400 \mathrm{ft}(122 \mathrm{~m}$ by 122 m)	$1000 \mathrm{ft}(305 \mathrm{~m})$ 1 to $2 \mathrm{ft}(0.3$ to 0.6 m) 200 ft by $1000 \mathrm{ft}(61 \mathrm{~m}$ by $305 \mathrm{~m})$	$\begin{gathered} 157 \mathrm{ft}(48 \mathrm{~m}) \\ \ldots- \\ \ldots \end{gathered}$	$\begin{array}{r} 306 \mathrm{ft}(94 \mathrm{~m}) \\ \ldots \\ \ldots- \end{array}$	Crater 250 ft by 60 ft (76 m by 18 m)
Estimated g-level	---	---	1 to 2	$10+$	100 to $500+$
Cause of accident	Engine failure	Engine failure, pilot error	Stall	Pilot error	Pilot disorientation
Number of casualties: Crew Ground	5 fatal 0	6 fatal 0	5 fatal; 10 fatal 0	1 fatal, 10 major, 10 minor 0	9 fatal
Percent of aircraft loss	100	100	100	100	100
Estimated change of survival of package at center of gravity, percent	10	0	Good, except for fire	100	0

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCLDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	Takeoff accidents				
	16	17	18	19	20
Type of aircraft	B-47E	$\mathrm{RB}-47 \mathrm{E}$	C-130	WB-47	C-123
Velocity at impact	Stall speed	$169 \mathrm{ft} / \mathrm{sec}$ or greater ($52 \mathrm{~m} / \mathrm{sec}$)	$\begin{aligned} & 50 \text { to } 68 \mathrm{ft} / \mathrm{sec}(15 \text { to } 21 \\ & \mathrm{m} / \mathrm{sec}) \end{aligned}$	$270 \mathrm{ft} / \mathrm{sec}(83 \mathrm{~m} / \mathrm{sec})$	$186 \mathrm{ft} / \mathrm{sec}(51 \mathrm{~m} / \mathrm{sec})$
Impact angle with terrain	Low (also tail low)	Low	Estimated at impact with 7 -ft (2. 1-m) dike	Nose high; shallow flightpath	---
Roll angle	0°	35° right	---	Wallowing; right tire hit first	--
Yaw angle	0°	---	Right	Yawed 180° in final 500 ft	---
Terrain	Flat	Flat	7-ft (2.1-m) dike	Flat	---
Distance from runway	$3000 \mathrm{ft}(920 \mathrm{~m})$ beyond	Just off runway	Crashed into embankment 4000 ft (1120 m) from runway end	On runway	On runway
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Postcrash fire 60 0 1 break aft of wing trail- ing edge No 3	Posterash fire 80 0 Yes 4	No fire 80 80 1 break just aft of cockpit No 4	Postcrash fire 60 0 3 major pieces No 5	Aircraft settled back on runway after takeoff and overran runway. No major damage to fuselage; no fire.
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	$1400 \mathrm{ft}(430 \mathrm{~m})$ Nil 150 ft by 1400 ft (46 m by 430 m)	$\begin{aligned} & 900 \mathrm{ft}(270 \mathrm{~m}) \\ & 1 \mathrm{ft}(31 \mathrm{~m}) \end{aligned}$		$\begin{aligned} & 1900 \mathrm{ft}(580 \mathrm{~m}) \\ & \text { Nil } \\ & 100 \mathrm{ft} \text { by } 1900 \mathrm{ft}(31 \mathrm{~m} \\ & \text { by } 58 \mathrm{~m}) \end{aligned}$	---
Estimated g-level	$5+$	10	10 (short duration)	---	---
Cause of accident	---	Hump in runway; pilot disorientation	Engine failure on takeoff	Hump in runway; pilot disorientation	Pilot error; weather
Number of casualties: Crew Ground	4 fatal	```3 fatal (from fire; 2 ma- jor) 0```	1 major 0	3 fatal (from fire; 2 major) 0	0 0
Percent of aircraft loss	100	100	70	100	---
Estimated chance of survival of package at center of gravity	Good, except for fire	Good, except for fire	100 percent	Good, except for fire	100 percent

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	Landing accidents				
	1	2	3	4	5
Type of aircraft	KB-50J	C-97	C-124A	C-131E	RC-121D
Velocity at impact	$\begin{aligned} & 160 \text { to } 180 \mathrm{ft} / \mathrm{sec}(49 \text { to } 55 \\ & \mathrm{m} / \mathrm{sec}) \end{aligned}$	$169 \mathrm{ft} / \mathrm{sec}(52 \mathrm{~m} / \mathrm{sec})$	---	$135 \mathrm{ft} / \mathrm{sec}(41 \mathrm{~m} / \mathrm{sec})$	$135 \mathrm{ft} / \mathrm{sec}(41 \mathrm{~m} / \mathrm{sec})$
Impact angle with terrain	25°	1^{0} to 2^{0}	50°	5° (est.)	0°
Roll angle	Left	0°	Left wing down	0°	0°
Yaw angle	--	0°	---	---	0^{0}
Terrain	Flat	Flat	Flat	Flat	Flat
Distance from runway	$1500 \mathrm{ft}(460 \mathrm{~m})$ left, $10000 \mathrm{ft}\left(3050{ }^{\circ} \mathrm{m}\right)$ from end (down)	28 feet short (8.5 m)	1.3 miles (2100 m)	650 ft short (200 m)	Ran off side of runway
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Postcrash fire 20 (est.) 0 Tail, many others (fire) Yes 9	Small fire 100 100 0 No 1	No fire 0 0 Completely destroyed Yes 10	No fire 95 95 1 break, at leading edge of wing No 3	Fire 100 100 0 No 1
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	100 ft (est.) (31 m) Unknown 150 ft by 300 ft (46 m by $92 \mathrm{~m})$	---	Crater Unknown $200-\mathrm{ft}$ ($61-\mathrm{m}$) diameter	----	----
Estimated g-level	$30+$	1 to 3	500	3 to 5	3
Cause of accident	Stall after bounced landing	Gear-up landing short of runway	Rudder and elevator control malfunction	Fuel system and/or engine failure	Collapse of left main gear
Number of casualties: Crew Ground	5 fatal; 1 major 7 various	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	7 fatal 0	$\begin{gathered} 3 \text { major; } 1 \text { minor } \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
Percent of aircraft loss	100	30	100	---	100
Estimated chance of survival package at center of gravity, percent	0	100	0	100	100

TABLE II. - Continued. ACCUMULATED DATA FOR 96 Arplane accidents to fixed-wing mulitengine aincraft

	Landing accidents				
	6	7	8	9	10
Type of aircraft	C-133B	KB-50J	KC-97G	B-47E	KC-97G
Velocity at impact	$160 \mathrm{ft} / \mathrm{sec}(49 \mathrm{~m} / \mathrm{sec})$	---	$140 \mathrm{ft} / \mathrm{sec}(43 \mathrm{~m} / \mathrm{sec})$	$220 \mathrm{ft} / \mathrm{sec}(67 \mathrm{~m} / \mathrm{sec})$	$169 \mathrm{rt} / \mathrm{sec}(52 \mathrm{~m} / \mathrm{sec})$
Impact angle with terrain	Level attitude; high descent rate	Aircraft left runway on landing; nose gear	5°	Shallow ($<2^{\text {O }}$)	Shallow
Roll angle	---		0°	Right wing hit first	Right wing hit ground
Yaw angle	---		0^{0}	0°	---
Terrain	Flat	---	Over water on approach	Flat	Flat
Distance from runway	$5000 \mathrm{ft}(1500 \mathrm{~m})$	On runway	3000 ft short (910 m)	525 ft short (160 m)	On runway
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Postcrash fire Probably 15 to 20 5 Probably many Yes 9	No fire None No	Postcrash fire; aircraft sank 60 60 2 breaks; tail intact Right wing separated 6	Minor postcrash fire 100 100 None No	Postcrash fire controlled 95 95 1. break, aft of wing trailing edge No
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	100 ft to 200 ft (est.) (31 m to 61 m) 200 ft by 400 ft (61 m by 122 m)	.-.	---	$2000 \mathrm{ft}(610 \mathrm{~m})$	None None None
Estimated g-level	30 (vertical)	--	5 to 10	1	3
Cause of accident	Unknown	Pilot error	Low approach	Stall	Stall; hit fuel trucks on roll-out
Number of casualties: Crew Ground	9 fatal 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	5 fatal 0	4 fatal 0	$1 \text { major }$
Percent of aircraft loss	100	20	100	50	Not repaired
Estimated chance of survival package at center of gravity	Very poor	100 percent	Fair to good	Excellent	Excellent

TABLEIR. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FEXED-WING MULTIENGINE AIRCRAFT

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \multicolumn{5}{|c|}{Landing accidents} \\
\hline \& 11 \& 12 \& 13 \& 14 \& 15 \\
\hline Type of airerat \& B-47E \& KC-135A \& B-47. \& KB-50J \& B-52 \\
\hline Velocity at impact \& --- \& \(270 \mathrm{ft} / \mathrm{sec}(82 \mathrm{~m} / \mathrm{sec})\) \& - - \& \(169 \mathrm{ft} / \mathrm{sec}(52 \mathrm{~m} / \mathrm{sec})\) \& \(34 \mathrm{ft} / \mathrm{sec}(10 \mathrm{~m} / \mathrm{sec})\) \\
\hline mrpact angle with terrain \& Went off runway after touchdown \& Nearly flat \& \begin{tabular}{l}
Ground looped; slid \\
backward; struck building
\end{tabular} \& \(0^{\circ}\) \& --- \\
\hline Roll angle \& --- \& Left \& --- \& \(0^{\circ}\) \& --* \\
\hline Vay angle \& -- \& \(0^{\circ}\) \& Yawed to right \& \(0^{\circ}\) \& --- \\
\hline Terram \& Flat \& Trees \& Flat \& Runway \& Runway \\
\hline Distance from runway \& Just off runway \& \(1 \frac{1}{4}\) miles (2000 m) \& 1000 ft to right (305 m) \& On runway \& On runway \\
\hline In-fight structural falure \& No \& No \& No \& No \& Yes \\
\hline \begin{tabular}{l}
Condition of afreraf: \\
Fire? \\
Percent of Cuselage intact before fre \\
Percent of fuselage intact ater tire \\
Fuselage breakage \\
Wings separated? \\
Impact severity rating
\end{tabular} \& Postcrash fire

None
No

No \& \begin{tabular}{l}
Postcrash fire 40 (tail)

0

Many breaks

Yes

 \&

Postcrash fire

90

20

None

Right wing

3
\end{tabular} \& Postcrash fire

None

No \& | Postcrash fire |
| :--- |
| 100 |
| 0 |
| None |
| Yes, on landing 3 |

\hline | Ground marks: |
| :--- |
| Length of gouge marks |
| Depth of gouge marks |
| Area of destruction | \& \[

$$
\begin{gathered}
6000 \mathrm{ft}(1830 \mathrm{~m}) \\
-\ldots \\
\ldots-
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& <300 \mathrm{ft}(9 \mathrm{c} \mathrm{~m}) \\
& --- \\
& 150 \mathrm{ft} \text { by } 300 \mathrm{ft}(46 \mathrm{~m} \\
& \text { by } 92 \mathrm{~m})
\end{aligned}
$$

\] \& --- \& \[

$$
\begin{gathered}
2100 \mathrm{ft}(640 \mathrm{~m}) \\
--- \\
\ldots
\end{gathered}
$$
\] \& ---

\hline Ssimatedg-level \& 3 to 5 \& $15+$ \& 3 to 5 \& 1 to 3 \& 0

\hline Cause of accident \& Pilot error \& --- \& | Bounced landing; |
| :--- |
| veered off runway; |
| ground looped | \& Emergency, wheels up on landing \& In-flight refueling accident, wings collapsed on rollout

\hline | Number of casualties: Cxew |
| :--- |
| Ground | \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\] \& | 1 fatal; 1 major; 1 minor |
| :--- |
| 0 | \& | 1 fatal; 2 major |
| :--- |
| 0 | \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$
\] \& 3 major; 2 minor

$$
0
$$

\hline Percent of aircrat loss \& 100 \& 100 \& 100 \& 100 \& 100

\hline Estmated chance of survival package at center of gravity \& 100 percent \& 0 percent \& 80 percent, except for fire \& Excellent, except for ire \& Excellent, except for fire

\hline
\end{tabular}

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	Landing accidents				
	16	17	18.	19	20
Type of aircraft	E-47	C-124C	C-97	E-47	B-47
Velocity at impact	---	$200 \mathrm{ft} / \mathrm{sec}(61 \mathrm{~m} / \mathrm{sec})$	140 to $150 \mathrm{ft} / \mathrm{sec}(43 \mathrm{to}$ $46 \mathrm{~m} / \mathrm{sec}$)	Landing speed	$317 \mathrm{ft} / \mathrm{sec}(98 \mathrm{~m} / \mathrm{sec})$
Impact angle with terrain	8°	6°	---	45°	---
Roll angle	Right wing hit ground, then left wing	---	---	Right	---
Yaw angle	---	---	---	---	---
Terrain	---	Flat; wooded	Flat	Flat	Flat
Distance from rumay	4757 ft (1450 m)	Some distance from airport	On runway	$500 \mathrm{ft}(152 \mathrm{~m})$ right of runway	$900 \mathrm{ft}(270 \mathrm{~m})$ beyond end of runway
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Small fire 100 100 None No	Postcrash fire 85 0 1 break (tail) Yes (1) 5	No fire 99 None No	Small fire 100 90 None No	Postcrash fire 100 10 Yes --- 10
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	---	$675 \mathrm{ft}(206 \mathrm{~m})$	---	$\begin{gathered} 1000 \mathrm{ft}(305 \mathrm{~m}) \\ --- \\ -- \end{gathered}$	$\begin{gathered} 750 \mathrm{ft}(230 \mathrm{~m}) \\ --- \\ -- \end{gathered}$
Estimated g-level	3	$10+$	---	5 to 8	5
Cause of accident	Pilot error	Pilot error, clipped tree	Landing gear collapse	Pilot error during landing	Material failure and pilot error
Number of casualties: Crew Ground	1 fatal 0	3 major 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1 major 0	$\begin{gathered} 1 \text { fatal; } 3 \text { major } \\ 0 \end{gathered}$
Percent of aircraft loss	10	100	5	10	100
Estimated chance of survival package at center of gravity	100 percent	80 percent, except for fire	100 percent	100 percent	Excellent, except for fire

TABLE IL. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	Landing accidents				
	21	22	23	24	25
Type of aircraft	C-140A	C-123B	C-123B	C-123B	B-52
Velocity at impact	Landing speed	---	$186 \mathrm{ft} / \mathrm{sec}(57 \mathrm{~m} / \mathrm{sec})$	$186 \mathrm{ft} / \mathrm{sec}(57 \mathrm{~m} / \mathrm{sec})$	---
Impact angle with terrain	Shallow	Ran off runway after landing; slight damage to belly	Pancake landing	0°	50° inverted
Roll angle	Slight right		---	---	---
Yaw angle	---		---	---	---
Terrain	Flat	Flat	Flat	Fall	Hilly; wooded
Distance from runway	$1900 \mathrm{ft} \mathrm{short} \mathrm{(} 580 \mathrm{~m}$)	Just off runway	On runway	$450 \mathrm{ft}(137 \mathrm{~m})$	---
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Postcrash fire 90 10 None No 	No fire 99 None No $0+$	No fire 75 \qquad 1 break near tail No 3	No fire 100 None No $0+$	Explosion 0 0 Many Yes 10
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	$1000 \mathrm{ft}(305 \mathrm{~m})$ \qquad 200 ft by 1000 ft (61 m by 305 m)	---	---	---	$\begin{gathered} 200 \mathrm{ft}(61 \mathrm{~m}) \\ --. \\ \ldots \end{gathered}$
Estimated g-level	$10+$	1 to 2	3 to 5	---	$100+$
Cause of accident	Stuck elevator	-	Pilot error	Failure of thrust reversal	Fin failure
Number of casualties: Crew Ground	5 major 0	0	1 major; 3 minor 0	0	2 fatal; 3 major; 1 minor 0
Percent of aircraft loss	100	15	50	5	100
Estimated chance of survival package at center of grayity, percent	Excellent, except for fire	100	100	100	0

	Landing accidents				
	26	27	28	29	30
Type of aircraft	C-130	C-135A	B-47	C-12 IG	B-58
Velocity at impact	---	Landing speed	Landing speed	---	$257 \mathrm{ft} / \mathrm{sec}(73 \mathrm{~m} / \mathrm{sec})$
Impact angle with terrain	---	Nose low; steep angle of descent	---	---	Hard landing
Roll angle	---	---	---	---	0
Yaw angle	---	---	---	---	0
Terrain	Flat	Flat	Flat	---	Flat
Distance from runway	$28 \mathrm{ft}(8.5 \mathrm{~m})$ short	$\begin{aligned} & 0.8 \text { mile }(1290 \mathrm{~m}) \\ & \text { short } \end{aligned}$	$100 \mathrm{ft}(31 \mathrm{~m})$ short	---	$5000 \mathrm{ft}(1520 \mathrm{~m})$ from approach end of runway
In-flight structural failure	No	No	No	No	No
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Postcrash fire None No 1	Postcrash fire 100 0 None No	Postcrash fire 100 10 No No 9	Postcrash fire 0 0 Fragmented Yes 10	Postcrash fire 100 20 None No
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction		$\begin{aligned} & 700 \mathrm{ft}(210 \mathrm{~m}) \\ & --- \\ & 200 \mathrm{ft} \text { by } 700 \mathrm{ft}(61 \mathrm{~m} \\ & \text { by } 210 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 3500 \mathrm{ft}(1060 \mathrm{~m}) \\ \ldots- \\ -- \end{gathered}$	----	$5000 \mathrm{ft}(1520 \mathrm{~m})$ --- ---
Estimated g-level	---	$10+$	---	$100+$	3
Cause of accident	Pilot error	---	Pilot error	To low on let down	Pilot error
Number of casualties: Crew Ground	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	3 fatal 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	3 fatal; 5 major 0	2 fatal; 1 major 0
Percent of aircraft loss	Small	100	100	100	100
Estimated chance of survival package at center of gravity, percent	100	---	50	0	Good, except for fire

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

		In-flight accidents over land			
	1	2	3	4	5
Type of aircraft	B-52D	B-52B	B-47	C-117A	C-117A
Velocity at impact	High	$710 \mathrm{ft} / \mathrm{sec}(216 \mathrm{~m} / \mathrm{sec})$	---	---	---
Impact angle with terrain	57°	5° to 15°	---	---	---
Roll angle	$155^{\circ} \mathrm{left}$	30° left	---	65°	---
Yaw angle	---	---	---	---	---
Terrain	Hills	Flat	--- .	Flat	---
Distance from runway	---	---	---	---	---
In-flight structural failure	Yes	Yes	Yes	Yes	Yes
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Postcrash fire 0 0 0 Total destruc- tion Yes 10	Postcrash fire 0 0 Many Yes 10	Postcrash fire 50 0 Many Yes 10	Postcrash fire 0 0 Fragmented Yes (1)	Postcrash fire 0 0 Many Yes 10
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	$\begin{gathered} 500 \mathrm{ft}(150 \mathrm{~m}) \\ \ldots- \\ \ldots \end{gathered}$	$\begin{aligned} & 3100 \mathrm{ft}(950 \mathrm{~m}) \\ & 2 \mathrm{ft} \text { or less } \\ & 1000 \mathrm{ft} \text { by } 3100 \mathrm{ft}(305 \mathrm{~m} \\ & \text { by } 950 \mathrm{~m}) \end{aligned}$		150 ft by $300 \mathrm{ft}(46 \mathrm{~m}$ by 92 m)	---
Estimated g-level	100 to $200+$	---	---	---	$200+$
Cause of accident	Clear-air tur- bulence; structural failure	In-flight fire; bailout at $20000 \mathrm{ft}(6100 \mathrm{~m})$	Material failure	Lost wing due to metal fatigue	Material failure
Number of casualties: Crew Ground	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2 fatal 0	9 fatal 0	9 fatal 0
Percent of aircraft loss	100	100	100	100	100
Estimated chance of survival package at center of gravity, percent	0	0	0	0	0

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	In-flight accidents over land				
	6	7	8	9	10
Type of aircraft	B-47	B-52	C-130A	C-130	KB-50J
Velocity at impact	---	---	Cruise speed	---	Wreckage scattered
Impact angle with terrain Roll angle	Crashed on mountain, 80° slope	Started to disintegrate in air	Flew into mountain, 30° slope; total destruction		radius after explosion and fuselage breakup at $800 \mathrm{ft}(240 \mathrm{~m})$
Yaw angle				---	
Terrain	---	---	Wooded hills	---	Water
Distance from runway	---	---	18 miles (29 km)	---	---
In-flight structural failure	No	Yes	No	Yes	Yes
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Fire and explosion 10 0 Many Yes 10	Fire and explosion 20 0 Many Yes 10	Postcrash fire Perhaps 10 0 Many Yes	No fire --- Landed safely following loss of propeller and engine	Posterash fire \qquad 0 Exploded in flight at $800 \mathrm{ft}(242 \mathrm{~m})$ \qquad 10
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	$\begin{gathered} --- \\ \text {--- } \\ 2800 \text {-ft }(850 \mathrm{~m}) \text { long } \end{gathered}$	5 miles by $1 \frac{1}{2}$ miles (8000 m by 2400 m)	---	---	$\text { 1200-ft }(367-\mathrm{m}) \text { radius }$
Estimated g-level	Perhaps 100	$200+$	Perhaps $100+$	---	---
Cause of accident	Pilot error	Material failure	Pilot error (too low)	---	Disintegration of turbine wheel
Number of casualties: Crew Ground	4 fatal 0	3 fatal; 1 major	13 fatal 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2 fatal; 1 major 0
Percent of aircraft loss	100	100	100	---	100
Estimated chance of survival package at center of gravity, percent	0	0	0	100	0

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	In-flight accidents over land				
	11	12	13	14	15
Type of aircraft	RB-66B	B-47E	C-124	C-124C	B-47E
Velucity at impact	$270 \mathrm{ft} \mathrm{sec}(82 \mathrm{~m} \mathrm{sec})$	$500 \mathrm{ft} \mathrm{sec} \mathrm{(152} \mathrm{~m} \mathrm{sec)}$	---	$340 \mathrm{ft} \sec (107 \mathrm{~m} \mathrm{sec})$	$680 \mathrm{ft} / \mathrm{sec}(210 \mathrm{~m} / \mathrm{sec})$
Impact angle with terrain	20°	20°	90°	60° to 90° (struck mountain)	80°
Roll angle	Right	$90^{\circ} \mathrm{right}$	Broke up in air	---	---
Yaw anyle	---	Some yaw	-	*--	--"
Terrain	Flat	Flat: trees and marsh	Flat and marshy	Mountain	Hilly
Distance from runway	6.9 miles from approach end	---	---	---	---
In-flight structural failure	---	---	---	---	---
Condition of aireraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Posterash fire 20 0 Tail and many others (fire) Yes 10	Nofire 0 0 Gross fragmentation Yes 10	Pustcrash fire 0 0 Many Yes 10	0 0 Total destruction Yes 10	Posterash fire and explosion 0 0 Fragmentation Yes 10
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	$600 \mathrm{ft}(183 \mathrm{~m})$ 2 ft for $20 \mathrm{ft}(0.6 \mathrm{~m}$ for 6 m) 150 ft by $600 \mathrm{ft}(46 \mathrm{~m}$ by 183 m)	$\begin{aligned} & 300 \mathrm{ft}(91 \mathrm{~m}) \\ & 2 \text { to } 3 \mathrm{ft}(0.6 \text { to } 0.9 \mathrm{~m}) \end{aligned}$	200-ft ($61-\mathrm{m}$) diameter Area $200 \mathrm{ft}(61 \mathrm{~m})$ in diameter	None (rock) 300 ft by 1000 ft (91 m by 305 m)	Craters $4 \mathrm{ft}(1.2 \mathrm{~m})$ 300 ft by 200 ft (91 m by 61 m)
Estimated g-level	20 to 30	100 to 200	---	100 to $200+$	100 to $500+$
Cause of accident	Flameout (crew ejected)	Mechanical failure in flight	Disintegrated at 9000 ft due to cyclone	Pilot error	Asymmetrical loading of fuel tanks (probable cause)
Number of casualties: Crew Ground	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	4 fatal 0	6 fatal 0	10 fatal 0	$\begin{gathered} 1 \text { fatal; } 1 \text { minor } \\ 0 \end{gathered}$
Percent of aircraft loss	100	100	100	100	100
Estimated chance of survival package at center of gravity. percent	0	0	0	0	0

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	Midair collisions				
	1	2	3	4	5 and 6
Type of aircraft	HC-97	HC-54	B-47		$2 \mathrm{KC}-135 \mathrm{~A}^{\prime} \mathrm{s}$
Velocity at impact	Midair collision resulted in (1) separation of tail from fuselage at midsection (station 790) due to internal explosion, and (2) fire in fuselage and number 3 engine	Midair collision resulted in (1) wing failure due to explosion between inboard and outboard engines (wing separated from aircraft), and (2) fuselage broke in two at main cabin entrance door	Impacted in level attitude; slight left turn, low longitudinal velocity	Nose-down attitude; low horizontal velocity	Midair collision over water, no witnesses and no survivors
Impact angle with terrain					
Roll angle					
Yaw angle					
Terrain					Water
Distance from runway					---
In-flight structural failure	Yes	Yes	Yes	Yes	---
Condition of aircraft:					
Fire?	---	---	Postcrash fire	Postcrash fire	---
Percent of fuselage intact before fire	-	---	---	---	--
Percent of fuselage intact after fire	-	---	0	0	---
Fuselage breakage	---	---	Many	Many	---
Wings separated?	---	---	Yes	Yes	---
Impact severity rating	---	---	10	10	---
Ground marks:					
Length of gouge marks	---	---	50 ft (15 m)	$50 \mathrm{ft} \mathrm{(15} \mathrm{m)}$	---
Depth of gouge marks	---	---	3 ft (0.9 m)	$3 \mathrm{ft}(0.9 \mathrm{~m})$	---
Area of destruction	---	---	---	---	---
Estimated g-level	---	---	High vertical g	$100+$	---
Cause of accident	---	---	Midair collisi	; pilot error	---
Number of casualties: Crew Ground	----	----	3 fatal; 1 m	ajor; 1 minor	11 fatal 0
Percent of aircraft loss	---	---	100		---
Estimated chance of survival package at center of gravity, percent	---	---			---

table in. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING
-MULTIENGINE AIRCRAFT

	In-flight accidents over water			
	1	2	3	4
Type of aircraft	C-133A	B-52G	C-124C	C-133A
Velocity at impact	---	---	---	---
Impact angle with terrain	---	---	---	Possible breakup in flight
Roll angle	---	---	---	---
Yaw angle	---	---	---	---
Terrain	Water	Water	Water	Water
Distance from runway	---	---	---	25 miles (40 km) out at sea
In-flight structural failure	No	No	No	Yes
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	Lost at sea; complete destruction on impact	Lost at sea; no witnesses	Disappeared on overwater flight	
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	-"-	----	---	----
Estimated g-level	---	---	---	---
Cause of accident	---	Low approach; pilot error		
Number of casualties: Crew Ground	6 fatal 0	8 missing 0	9 missing (assumed fatal) 0	10 missing 0
Percent of aircraft loss	100	100	100	100
Estimated chance of survival package at center of gravity, percent	0	---	---	---

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-WING MULTIENGINE AIRCRAFT

	Refueling accidents (in flight)					
	1	2	3	4	5	6
Type of aircraft	B-52	C-135	B-47E	B-52G	$\begin{aligned} & \mathrm{B}-47 \mathrm{E} ; \\ & \mathrm{KC}-135 \mathrm{~A} \end{aligned}$	B-47B
Velocity at impact	---	---	---	$1000 \mathrm{ft} / \mathrm{sec}(305 \mathrm{~m} / \mathrm{sec})$	---	---
Impact angle with terrain	---	---	Aircraft broke up in air due to	60°	---	Refueling accident at 15000 ft
Roll angle	---	---	load	Left wing low	---	---
Yaw angle	---	---		---	---	---
Terrain	---	---	Flat	Small trees; hills	---	---
Distance from runway	Normal landing on runway	Normal landing on runway	---	---	---	Normal landing on runway
In-flight structural failure	Yes	Yes	Yes	No	---	Yes
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	No Fin and rudder lost No 1	No Engine lost No 1	Fire on impact Fragmented 0 2 breaks (in flight) In flight 10	Fire and explosion 0 0 Fragmented Yes 10		Left wing beyond outboard engine missing
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction			Crater $6 \mathrm{ft}(1.8 \mathrm{~m})$ Crater 50 ft (15 m) in di- ameter	Crater 8 ft (2.5 m) 400 ft by $1000 \mathrm{ft}(122 \mathrm{~m}$ by 305 m)		----
Estimated g-level	---	---	100 to 500	---	---	---
Cause of accident	Collision du	ing refueling	Spin after stall in refueling operation	Pilot error, stall during refueling	---	---
Number of casualties: Crew Ground	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 4 \text { fatal; } 1 \text { major } \\ 0 \end{gathered}$	$\begin{gathered} 6 \text { fatal; } 2 \text { major } \\ 0 \end{gathered}$	3 fatal; 1 major	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
Percent of aircraft loss	10	10	100	100	---	Left wing
Estimated chance of survival package at center of gravity, percent	100	100	0	0	---	100

TABLE II. - Continued. ACCUMULATED DATA FOR 96 AIRPLANE ACCDENTS TO FLXED-WING
MULTIENGINE AIRCRAFT

	Taxi accidents				
	1	2	3	4 to 10	11
Type of aircraft	C-130E	C-130E	C-121G	(a)	C-130
Velocity at impact	---	$8 \mathrm{ft} / \mathrm{sec}(2.5 \mathrm{~m} / \mathrm{sec})$	---	---	---
Impact angle with terrain	---	---	---	---	---
Roll angle	---	---	---	---	---
Yaw angle	-	---	---	---	*--
Terrain	---	Flat	-	---	---
Distance from runway	---	---	---	---	---
In-flight structural failure	---	,---	---	---	---
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating		No fire 100 None	Postcrash fire 100 20 \qquad --- ---	Postcrash fire 100 90 to 100 None No 1	
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction		Small			---
Estimated g-level	---	1	---	---	---
Cause of accident	-	Pilot error	Pilot error	Faulty materials	Pilot error
Number of casualties: Crew Ground	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
Percent of aircraft loss	15	20	100	0 to 30	5
Estimated chance of survival package at center of gravity, percent	100	100	0	100	100

${ }^{\mathrm{a}}$ Seven separate accidents to parked aircraft: B-52, C-118, C-121, two C-124's, and two C-130's.

TABLE II. - Concluded. ACCUMULATED DATA FOR 96 AIRPLANE ACCIDENTS TO FIXED-
WING MULTIENGINE AIRCRAFT

	Taxi accidents		Fire during repair
	12	13	1
Type of aircraft	C-130B	B-58A	C-133A
Velocity at impact	Taxi speed	Slow taxi	---
Impact angle with terrain	---	Gear collapsed and	---
Roll angle	---	aircraft slid off	---
Yaw angle	---	runway	---
Terrain	---	Flat	---
Distance from runway	On runway	On runway	---
In-flight structural failure	No	No	---
Condition of aircraft: Fire? Percent of fuselage intact before fire Percent of fuselage intact after fire Fuselage breakage Wings separated? Impact severity rating	No	Postcrash fire 100 20 None No 1	Fire 100 100 None Left wing
Ground marks: Length of gouge marks Depth of gouge marks Area of destruction	--	---	---
Estimated g-level	1	1 to 2	---
Cause of accident	Inexperienced personnel at controls	Pilot error	Fire during repair
Number of casualties: Crew Ground	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1 fatal; 2 major 0	1 major
Percent of aircraft loss	100	100	15
Estimated chance of survival package at center of gravity, percent	Good, except for fire	Good except for fire	100

REFERENCE

1. Wild, J. M.: Nuclear Propulsion for Aircraft. Paper 67-508, AIAA, July 1967.

(a) Reactor shield - containment vessel system in cargo bay.

(b) Reactor shield - containment vessel system above cargo bay.

Figure 1. - Reactor locations in aircraft.

Figure 2. - Schematic of reactor shield - containment vessel system.

Figure 4. - Schematic of high-velocity, high-impact-angle aircraft crash with reactor shield containment vessel system (RSCV) aboard aircraft.

Figure 5. - Angular orientation of aircraft at impact.

(a) Average accident; terrain impact angle, 0° to 180°.

(b) Maximum accident; terrain impact angle, 0° to 90°.

(c) Combined accident; terrain impact angle, 0° to 180°.

Figure 6. - Containment vessel impact velocity profile for landing and takeoff accidents.

(a) Average accident; terrain impact angle, 0° to 180°.

(b) Maximum accident (maximum accident includes average accident); terrain impact angle, 0° to 90°.

Figure 7. - Containment vessel impact velocity profile for cruise accident without structural failure.

(a) Average accident; terrain impact angle, 0° to 180°.

(b) Maximum accident; terrain impact angle, 0° to 90°.

(c) Combined accident; terrain impact angle, 0° to 180°.

Figure 8. - Containment vessel impact veiocity for cruise accident with structural failure.

Figure 9. - Design criteria impact speed and angle for containment vessel.

Abstract

The aeronautrical and pace activines of bee Uniled States shall be conducted so as fo contribate :. to the expansion of buman knowl. adge of phenomena in the amaphicre and space. The Alminiitration shall prowide for the tuider: prabicable and approptiate disisemination of intornation comcerning its actitites, and the results thergof:"

- National Aehonabtics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientificand rechnical information considered important: complere: and a lasting contriburion to existing knowledge

TECHNICAI NOTES: Information less broad in scope but nevertheless of impornance asa contribution tu existing knowledge:

TECHNICAI MEMORANDUMS

Informarion receiving limited distribution because of preliminary dita, eccurity chasiffa: riont or oher reasons.

CONTRACTOR RERORTS: Scicnutic and rechrucal information generated under a NASA contrict or grant and considered an important cohuriburion to existing knowledge

TECHNICAL. TRANSLATIONS: Information published in a forcign language considered to menit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications inctude conference proceedings, monographs, dita compilations, handbooks; sourcebooks, and special bibliographies

TECHNOLOGY UMHZATION PUBLICATIONS Information on technology used by NASA that mat be of pirticulit interest in commercial and other non-actoxpace applications Publications include Tech Briefs. Tuchnology Unlization Reports and Tectnologe Surres:

SCIENTIFIC AND TECUNICAL INFORMATION OFFICE

```
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION```


[^0]:    *Dynamic Sciences Corporation, AvSER Division, Phoenix, Arizona.

