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EFFECT OF VELOCITY PROFILE DISTORTION IN CIRCULAR TRANSVERSE- 

FIELD ELECTROMAGNETIC FLOWMflERS 

by Norman C. Wenger 

Lewis Research Center 

SUMMARY 

The theory of circular transverse-field electromagnetic flowmeters is extended to 
include the effect of distortion from axial symmetry in the fluid velocity profile. A gen- 
eral formulation is developed for computing the flowmeter sensitivity for any given vel- 
ocity profile. It is shown how to best select the flowmeter pipe wall thickness and elec- 
trical conductivity to minimize e r ror  in the flow measurement due to uncertainties in the 
velocity profile. The "fully developed" velocity profile and corresponding flowmeter 
sensitivity a re  then computed for a Hartmann number range from 1 to 1000. Numerical 
results a r e  presented in tabular form for a range of flowmeter parameters that is nor- 
mally found in liquid metal applications. These results enable the experimenter to cor- 
rect  flow measurements for the effect of velocity profile distortion produced by the flow- 
meter itself. 

INTRODU CTlON 

Electromagnetic flowmeters have been used for many years to measure the flow rates 
of a great variety of electrically conductive fluids including blood. The advent of nuclear 
reactors and associated energy conversion devices that use liquid metal coolants has 
caused renewed interest in electromagnetic flowmeters. 

Electromagnetic flowmeters use Faraday's law a s  the basic principle of operation. 
The motion of a fluid through a stationary magnetic field induces a potential gradient in 
the fluid. The value of this potential gradient, which is indicative of the flow rate, can be 
determined by measuring the potential difference between electrodes which a r e  in elec- 
trical contact with the fluid. If the fluid has a high electrical conductivity, the potential 
gradient will result in a large induced current in the fluid. The induced current produces 
a magnetic field which can also be measured and used to indicate the flow rate. Flow- 



meters which use this latter principle are generally referred to as induced-field flow- 
meters. 

Although there are many types of electromagnetic flowmeters in use, the most com- 
mon type for liquid metal applications and the only type that will be considered in this re- 
port is the transverse-field flowmeter shown in figure 1. The flow is contained in a cir-  
cular pipe which is normally made from nonmagnetic materials such as 316 stainless 
steel. A permanent magnet or direct current electromagnet is used to produce the uni- 

,-Known magnetic Nux density ,’ in magnet a i r  gap 
I 
/ 

I ,- Nonmagnetic pipe wall 

7, 
Permanent magnet 

Output potential 

I 

I 

Figure 1. - Transverse-field electranagnetic flowmeter. 

form transverse static magnetic field. Electrodes for detecting the induced potential are 
located on a pipe diameter which is perpendicular to both the pipe axis and magnetic field. 
If the pipe wall is conductive, which is the most common situation found in practice, the 
electrodes a re  fastened to the outer wall of the pipe as shown. If the pipe wall is noncon- 
ductive, however, the electrodes must penetrate the wall to be in electrical contact with 
the fluid. 

There are several reasons for the popularity of this type of flowmeter. In addition to 
its basic simplicity, it does not require that the pipe be cut open during installation if the 
pipe wall is conductive since nothing is inserted directly into the flow stream. This is 
particularly advantageous in applications involving corrosive liquid metals where the 
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opening of a line to insert  a flowmeter is both a possible source of contamination to the 
liquid metal and a hazard to the personnel involved. 

determining the relation between the measured potential and the average fluid velocity 
or  flow rate. Early studies of this problem by Williams (ref. 1) , ThGrlemann (ref. 2), 
and Kolin (ref. 3) considered the case where the pipe wall was nonconductive and where 
the fluid velocity profile was symmetric about the axis of the pipe. It was found that the 
output potential is simply equal to  the product of the pipe inner diameter, the applied 
transverse magnetic flux density, and the average fluid velocity. This result is valid for 
any velocity profile as long as the profile has axial symmetry. 

Several years later, Elrod and Fouse (ref. 4) considered the case where the pipe wall 
is conductive. They found that the output potential for this case is also proportional to the 
average fluid velocity as long as the velocity profile has axial symmetry. For the same 
flow rate, the output potential is reduced from that found for a nonconducting pipe by a 
factor which involves the fluid and wall conductivity and the wall thickness. 

metric. This asymmetry can be due to two effects. I the flowmeter were located imme- 
diately downstream from an elbow or obstruction in the flowline, the velocity profile can 
be greatly distorted from axial symmetry. The obvious Solution of moving the flowmeter 
further downstream may not be possible in many cases. T\he second cause of velocity 
profile distortion from axial symmetry is the flowmeter itself. If the fluid is highly con- 
ductive, as in the case of liquid metals, the large induced cur'qent interacts with the ap- 
plied magnetic field and produces a force on the fluid. This force, which is nonsymmet- 
rical, is normally quite large and severely distorts the velocity profile from axial sym- 
metry. This distortion can be reduced by decreasing the intensity of the applied magnetic 
field. However, the output potential, which is approximately proportional to the applied 
magnetic field intensity, will normally vanish into the ambient electrical noise before the 
distortion becomes negligible. 

Considerable effort has been expended to determine how the velocity profile affects 
the output potential and, hence, the measurement of the average fluid velocity. A general 
formulation has been developed by Shercliff (refs. 5 and 6) showing the relation between 
the output potential and the velocity profile. 
profile, but it is limited to the case where the pipe wall is nonconductive. In the first part 
of this report, this formulation is extended to the case where the pipe wall is conductive. 
This formulation allows the experimenter who has some knowledge of the general shape of 
the velocity profile to  compute a more accurate relation between the output potential and 
the average fluid velocity. It also shows how to best select the pipe wall thickness and 
conductivity to minimize the effect of uncertainties in the velocity profile. This formula- 
tion is most applicable when the fluid is a poor conductor so that the velocity profile in 
the flowmeter depends on conditions upstream frdm the flowmeter and may be predictable. 

The main problem with this and all other types of electromagnetic flowmeters is 

In many cases found in practice, the velocity profile of the fluid is not axially sym- 

\ 

This formulation is valid for any velocity 
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In the second part of this report, the effect of self-induced velocity profile distortion 
by the flowmeter itself is considered in detail. The exact solution for the velocity profile 
has been obtained by Ufland (ref. 7), Uhlenbusch and Fischer (ref. 8), and Gold (ref. 9) 
for the case where the pipe wall is nonconductive. The solutions are in the form of an in- 
finite series involving modified Bessel functions of the first kind. The significant figure 
requirement for summing these series exceeds that of modern computers, however, un- 
less the Hartmann number M, which is the ratio of the electromagnetic forces to the vis- 
cous forces in the fluid, is less than about 20. The range of Hartmann numbers encoun- 
tered in liquid metal applications is typically 50 to 500. 

obtained by Singh and Noriboli (ref. 10) for the nonconductive pipe wall case. Although 
their results seem reasonable, their solution cannot be formally justified. The Bessel 
functions in the ser ies  solution were replaced by an asymptotic form valid only when the 
argument, which is large but finite, is much larger than the order of the Bessel functions. 
The ser ies  was summed, however, from order zero to infinity (ref. 9). 

Some work has been done on the conductive pipe wall case when the wall has finite 
thickness. Shercliff (ref. 11) obtained a solution for the velocity profile and induced out- 
put potential using an iterative technique. These solutions a re  in the form of power ser ies  

2 in the Hartmann number up to the term. M . The series give useful numerical values for 
the velocity profile and output potential only for M less than 2. 

Considerable work has been done on the conducting pipe wall case using the "thin 
wall" approximation. In this approximation, the pipe wall is assumed to be sufficiently 
thin s o  that the effect of the wall can be incorporated into a boundary condition at  the pipe 
inner radius. Using this approximation, Ihara, Tajima, and Matsushima (ref. 12) ob- 
tained a solution in infinite series form which also suffered from the same numerical dif- 
ficulties as did previous nonconductive wall solutions for Hartmann numbers greater than 
about 20. Also using the thin wall approximation, Shercliff (refs. 11 and 13), Chang and 
Lundgren (ref. 14), and Gold (ref. 15) obtained approximate asymptotic solutions a t  large 
M for the velocity profile and average fluid velocity. These solutions do not account fully 
for the effect of the boundary layer at the pipe wall. Moreover, only Shercliff (refs. 11 
and 13) computed the output potential. The output potential solution is approximate and 
holds only over a limited range of Hartmann number and pipe wall conductivity. 

This report presents a solution for the output potential as a function of the average 
velocity for the fully developed velocity profile. The pipe wall is assumed to be conduc- 
tive and of arbitrary thickness. The solution is obtained using a variational principle for 
magnetohydrodynamic channel flow (refs. 16 and 17) and the Ritz approximation technique. 

The problem is also solved exactly using a procedure similar to that used in refer- 
ences 7 to 10 and 12. The exact solution, which is in infinite series form, also suffers 

An asymptotic solution for the velocity profile at large Hartmann numbers has been 
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from numerical difficulties at large M. It is useful, however, at low M for testing the 
variational solution which is approximate. 

experimenter, by interpolating between the computed points, can obtain accurate values 
for correcting measurements for the effect of velocity profile distortion due to the flow- 
meter itself. The parameter values covered are as follows: Hartmann number - 1,  2,  5, 
10, 20, 50, 100, 200, 500, and 1000; ratio of pipe wall to fluid conductivity - 0, . l ,  .5,  
l . ,  1 . 5 ,  and 2. ; and ratio of outer-to-inner pipe diameter - l . ,  1 . 0 5 ,  1 .15 ,  1 .25 ,  and 
1.35.  

Sufficient numerical results from the variational solution are presented so that the 

THE MODEL - BASIC EQUATIONS AND BOUNDARY CONDITIONS 

P r  el i m i n a r y  Con side rat ions 

The motion of a conducting fluid through an electromagnetic flowmeter is a complex 
process. The velocity profile of the fluid at the entrance to the flowmeter is determined 
by conditions upstream from the flowmeter. A s  the fluid approaches the magnetic field 
region, electric currents a r e  induced in the fluid which react with the applied magnetic 
field and produce a force on the fluid. If the fluid is a poor conductor o r  the magnetic 
field is weak (i. e . ,  low Hartman number), this force is small and the fluid velocity pro- 
file remains essentially unchanged when passing through the flowmeter. However, if  the 
Hartmann number is large, the velocity profile changes significantly with distance and 
time as the fluid travels through the magnetic field region. If the applied transverse 
magnetic field is uniform along the pipe axis and of sufficient extent, the velocity profile 
will eventually reach an equilibrium profile or "fully developed" profile. From this 
point on the profile does not change with distance o r  time until the fluid nears the down- 
stream end of the magnetic field region. After the fluid exits the flowmeter, the velocity 
profile eventually relaxes to  axial symmetry barring any obstruction o r  elbow in the line. 

The ideal point to connect the electrodes for measuring the induced potential is after 
the velocity profile is fully developed. This choice has several advantages. If the elec- 
trodes were located at a point further upstream, the analysis becomes very difficult since 
the velocity profile at that point is dependent on upstream conditions which may be un- 
known. Furthermore, in this entrance region the induced potential varies with distance 
along the pipe. Consequently, the output potential depends not only on the velocity pro- 
file in the plane where the electrodes are attached but also on the velocity profile at 
points upstream and downstream as well. Any analysis of this region must, of necessity, 
be three-dimensional. In the fully developed region, however, there a r e  no variations 
with respect to distance along the pipe so that a two-dimensional analysis is adequate. 
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Another factor that must be considered is whether the flow is turbulent or nonturbu- 
lent. Many, if not most, flows in liquid metal practice are turbulent. It has been found 
experimentally, however, that the imposition of a magnetic field transverse to the flow 
will suppress turbulence and raise the critical Reynolds number from about 2000 to  a sub- 
stantially higher value. If the magnetic field strength is sufficiently high, the flow in the 
fully developed region can be made nonturbulent . This provides a great simplification in 
the analysis since the time varying terms in the fluid dynamic equations need not be con- 
sidered. 

tance or entry length to achieve a fully developed profile for proper selection of the mag- 
net dimensions and electrode placement. And it is necessary to determine the critical 
Reynolds number to ensure nonturbulent flow. 

The required entry length has been considered both theoretically and experimentally 
by Shercliff (refs. 6,  13, and 18) for the nonconductive pipe wall case. By using a 
Rayleigh type of approximation, Shercliff found that for nonturbulent flow the entry length 
L is of the order of 

Thus, to  apply the results of this analysis it is necessary to  know the required dis- 

a L E R e -  
M 

where Re is the Reynolds number, a the -pipe inner radius, and M the Hartmann num- 
ber which is assumed to  be large. Using Re = l o4  and M = lo2,  which are typical val- 
ues found in practice, results in an entry length of 100 pipe radii. Experimental values 
for the entry length (ref. 13) are generally about one-half those given by equation (1). For 
the case of a conductive pipe wall the computed entry length is reduced by the factor 
l/YM(R - 1) (ref. 6) giving 

a L M Re 
Y M ~ ( R  - 1) 

where y is the ratio of the wall to fluid conductivity and R ' the ratio of the pipe outer- 
to-inner radii. Equation (2) is based on the assumption that YM(R - 1) >> 1. For the 
same values of Re and M used previously, the predicted entry length is 5 pipe radii for 
R = 1.2 and y = 1. An experimental investigation of the entry length has not been made 
for the conducting wall case nor has the problem of a turbulent entry flow been considered 
for either case. These should be worthwhile a reas  to explore in future investigations. 

The required magnetic field strength necessary to suppress turbulence has received 
considerable attention, however. The experimental work of Shercliff (ref. 6) and 
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Loeffler, Maciulaitis, and Hoff (ref. 19) has indicated that the critical Reynolds number 
Recrit for a circular pipe with a nonconductive wall is given by 

Recrit = 250 M ( 3) 

for large M. No results are available on the critical Reynolds number for the conducting 
pipe wall case. However, it is expected that the increased electric current in the fluid 
which results when the pipe wall is conductive will give greater stability to theflow and 
increase the critical Reynolds number from that given by equation (3). Experimental ver-  
ification of this effect is also a worthwhile area for future investigations. 

Thus, to use the results based on the velocity profile in the fully developed region, it 
is necessary that the magnetic field be at least a few entry lengths in extent along the pipe 
axis and that the electrodes be attached at least an entry length from the upstream end of 
the flowmeter. Furthermore, the magnetic field strength should be sufficiently large so 
that the Reynolds number is less than the critical Reynolds number to ensure nonturbulent 
flow. 

The Model 

The model to be analyzed is shown in figure 2. The pipe has inner radius a and 
outer radius b and i ts  axis coincides with the z-coordinate axis. The flow is in the 
positive z-direction. The magnetic permeability of the pipe wal l  is assumed to  equal that 
of free-space. The applied magnetic field go is uniform (independent of x, y,  and z) and 
is alined parallel to the x-axis. If the pipe wall is conductive, the induced output poten- 

Figure 2. - Pipe cross section. 
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tial is measured between points A and D.  If the pipe wall is nonconductive, the poten- 
tial is measured between points B and C. In all cases it is assumed that the electrodes 
draw no current from the flowmeter and that the region beyond the pipe outer radius is an 
insulator. 

Basic Equations and Boundary Conditions 

The basic equations to be used are the standard magnetohydrodynamic equations for 
steady state, fully developed, incompressible, nonturbulent flow. These equations, which 
consist of Maxwell's equations, the continuity equation, the momentum transport equation, 
and the generalized Ohm's law, a r e  given by 

4 e - c  

where E ,  B,  J, pe, c0, and po a r e  the electric field intensity, magnetic f lux  density, 
electric current density, electric charge density, electric permittivity of free-space, and 
magnetic permeability of free-space, respectively; and V, pm, 77, of ,  and p a re  the 
fluid velocity, density, viscosity, electrical conductivity, and pressure, respectively. 
(All symbols a r e  also defined in appendix A . )  It has been assumed that the permittivity 
and permeability of the fluid are the same as that of free-space and that the fluid proper- 
ties pm, 77, and af are constant. 

It can be shown by using typical values for liquid metal properties that the terms in- 
volving the electric charge density pe in equations (4f) and (4g) a re  negligible compared 
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with other terms in these equations (ref. 14). The term involving pe in equation (4d) 
must be retained, however. 

Some general properties of the solution of the basic equations can be found without 
actually solving the equations. Since the pipe cross  section and applied magnetic field do 
not vary along the z-axis, all quantities in the basic equations a re  independent of z ex- 
cept for the pressure. The pressure consists of the sum of two terms, one linear in z 
and the second involving an unknown function of x and y (ref. 20). Hence, the axial com- 
ponent of the pressure gradient is a constant. It can also be shown that the fluid velocity 
has only a z-component V, and the current density J has only x- and y-components. 
Furthermore, the total magnetic field has only two components - the applied field Bo in 
the x-direction and an induced field B, in the z-direction. 

Using these general properties of the solution, the basic equations can be reduced to 
a more manageable set. One approach is to combine all the basic equations yielding one 
fourth-order equation in V,. A second, and more preferable, approach which results in 
two coupled second-order elliptic equations is to eliminate all dependent variables other 
than V 

can be defined as 

and either the induced potential or the induced magnetic field. 
Z 

First, consider retaining V, and the induced potential. The induced potential U 

E = -VU ( 5 4  

Thus, equation (4a) is satisfied for any U. Next, taking the divergence of equation (4b) 
reveals that 

Using this result along with equation (4g) with the pe3 term omitted a s  discussed pre- 
viously then gives 

v2u = v (3 x 5) 

The right side of equation (5c) can be simplified by remembering that 3 has only a 
z-component and that E has only x- and z-components. Thus, 

is the first of the coupled second-order equations involving only V, and U. The second 
equation can be obtained by combining equations (4f), (4g), and (5a) to eliminate E and 3 -c 
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and then taking the z-component of the remaining vector equation giving 

2 ax a Y 2  11 77 

An equivalent se t  of coupled second-order equations involving only V, and BZ can- 
be obtained in an analogous manner. Taking the curl of equations (4b) and (4g) and com- 
bining gives 

Expanding both sides of equation (5f) using standard vector identities and using equa- 
tions (4a), (4c), and (4e) and known properties of the solution to simplify the result give 

The second equation can be obtained by combining equations (4b) and (4f) to eliminate 
and then taking the z-component of the resulting vector equation giving 

The equations just derived apply, of course, only in the fluid. Equations which de- 
scribe the electromagnetic field in the pipe wall region can be obtained from the previous 
sets by setting the fluid velocity equal to zero. Thus, for the first  set  which involves only 
Vz and U the corresponding equation for the wall region is 

2 2 E + E = o  
. I  

ax2 ay2 

Likewise, for the second se t  which involves only Vz and BZ the corresponding equation 
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for the wall region is 

In addition to these basic equations, appropriate boundary conditions must be speci- 
fied to determine the solution uniquely. These conditions are 

= o  
vz I r=a- 

-VBZ 1 5 ,  
uf 

Of  vu * ir 

U ( r , a - = U (  r =a + 

1 

r =a - u w  * dr/ r=a + 
= - VBZ 

= ow vu * ir 
r=a- I r=a+ 

= o  
r=b- 

vu ir 

= o  
BZ I r=b- 

where ir is the unit vector in the radial direction, u w  is the electrical conductivity of 
the wall, and I 
slightly less than r = a. 

refers to evaluating the quantity preceding it at a radial point just 
r=a 

The boundary conditions require the following: 
(1) The fluid velocity must be zero along the pipe inner radius (eq. (sa)). 
(2) The 8 or circumferential component of the electric field must be continuous 

(3) The radial component of the electric current must be continuous across  the fluid - 
across the fluid - pipe wall interface at r = a (eqs. (6b) and (6c)). 

pipe wall interface at r = a (eqs. (6d) and (6e)). 



(4) The radial component of the electric current must vanish at the outer pipe radius 
r = b (eqs. (6f) and (6g)). 
Note that although there are only four stated boundary conditions they result in seven 
equations since equivalent forms involving both U and BZ are given. 

convenient to reexpress the equations in the cylindrical coordinate system and to use di- 
mensionless coordinates and dimensionless variables. This can be achieved by intro- 
ducing the following quantities: 

Dimensionless potential: 

When solving the basic equations and associated boundary condition equations, it is 

U W =  
BoaVo 

Dimensionless velocity : 

Hartmann number: 

M = Boa# 

Magnetic Reynolds number: 

R = p (T avo m o f  

Dimensionless axial pressure gradient: 
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Dimensionless induced magnetic field: 

Ratio of wall .  to .fluid conductivity: 

U y = -  W 

@f 

Dimensionless radius: 

r 
P = -  a 

Ratio of pipe outer-to-inner radii: 

b 
a 

R = -  

Characteristic velocity for the flow: 

vO 

Substituting equations (7a) to (7i) back into the basic equations and boundary conditions 
t h p  yields the desired equations in dimensionless form. The equations a re  grouped so 
that the f i r s t  se t  involves only the velocity and induced potential and the second set  in- 
volves only the velocity and induced magnetic field: 

( 8b) --- - 
P a e  

a2v 1 av 1 a2v 

ap2 P a~ p2 a 2  
+ -  - +--= 
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WJ p=l -=wJ p=l + 

aw 
ap 

= y -  aw 
aP 
- 

p=1- + 
p=l 

awl = o  

- aB 
ap 

- -  aB Y- 

p=1- aP 

ap I p=R- 

+ 
p= 1 

- -- a 2 B + I  aB 1 a2B- + - - -  
aP 2 P a~ p2 a$ 

( 9 4  

= o  
p=1- 

( 9 4  
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= o  
p=R- 

Either the set of equations (8a) to (8g) or the set (sa) to (9g) completely specifies the 
problem. 

INDUCED POTENTIAL FOR AN ARBITRARY VELOCITY PROFILE 

In this section, a formulation is developed for  computing the induced potential for a 
given but arbitrary velocity profile. The solution is obtained by using the dimensionless 
equations involving the velocity and induced potential (8a) to (8g). Equation (8b), which 
relates the fluid velocity to the forces on the fluid, need not be solved, however, since the 
velocity is assumed to be given. It is also assumed that the given velocity profile vanishes 
a t  the pipe wall so  that equation (8d) is satisfied. 

Induced Potential 

The solution for the induced potential can be obtained in a straightforward manner by 
using a Green's function. The Green's function G(p, B Ipo, Bo) can be defined a s  the solu- 
tion of the following equations : 

G I  p=1- = G  I p=l + 

aG - 
aP 

aG 
= Y -  

ap + 
p=1- p=l  

= o  
p=R- 

where 6( ) is the Dirac delta function. 
By properly combining equations (8a) to (8g) with equations (loa) to (1Od) and using 
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Green's second identity it can easily be shown that the dimensionless potential W in the 
wall region is given by 

The potential in the fluid region 0 I p 5 1 is also given by equation (11) with the l/y 
factor omitted. 

The solution for the Green's function is most easily obtained by using Fourier expan- 
sion techniques. Since equations (loa) to (10d) reveal that G is an even function of 
0 - eo, let 

Substituting equation (12a) into (loa) and using the orthogonal properties of the functions 
cos n(O - 6,) n = O , l ,  2, . . . over the interval of 8 - 0, from 0 to 28 show that 
Gn(p, po) satisfies the equation 

where 

2 i f  n = O  
E =  n 

Since the solution of interest is the induced potential in the wall region 1 I p 5 R 
due to the fluid motion within the pipe 0 I p 5 1 it is only necessary to solve equation 
(12b) for 0 I p I 1 and 1 I po I R. The solution of equation (12b) subject to the bound- 
ary conditions (lob) to (10d) is given by 
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and 

Thus, substituting equations (12c) and (12d) back into equation (12a) completes the solu- 
tion for the Green's function. Combining the Green's function solution with equation (11) 
then yields a formula for computing the potential at any point in the pipe wall due to  any 
fluid velocity profile. 

sured (see fig. 2). This potential difference WAD is given by 
In practice, only the potential difference between points A and D is normally mea- 

Combining equations (11) and (13a) and using the Green's function solution just obtained 
give 

F lowm eter S en sit iv i  ty 

Rather than consider the absolute induced potential difference for a given flow condi- 
tion, it is more convenient to define a sensitivity for the flowmeter in terms of the poten- 
tial difference per unit of flow. It is also customary to  include the applied magnetic field 
strength and the pipe inner diameter in the expression for the flowmeter sensitivity. 
Thus, the flowmeter sensitivity S can be defined as 

'If the pipe wall is an insulator, the same definition is used for S with Um and 
WAD replaced with UBc and WBc, respectively. 
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where Vzm, the mean or average flow velocity, is 

Vzm - - --$ ~ ~ 0 2 ’ V z ( r ,  e)r d r  dB 

aa 

In terms of the dimensionless variables, S is given by 

where 

Thus, the flowmeter sensitivity for any velocity profile is obtained by combing equa- 
tions (1 3b), (14c), and (14d) giving 

where 

(1 5b) na pn-l cos (n - i ) e  sin - 
2 

2Rn ~- 

(R2n + 1) + y(RZn - 1) 
n= 1 

Equation (15a) is the desired result of this section. It shows that the flowmeter sensi- 
tivity is the ratio of the weighted average of the velocity over the pipe cross section to  the 
average velocity with a weighting factor of K(p, e). 

equations (15a) and (15b). First consider the case where the pipe wall is nonconductive. 
Many of the early results on flowmeter sensitivity can be obtained quite simply from 
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This corresponds to setting y = aw/af = 0 and R = b/a = 1 .  The last step of setting R 
equal to 1 is a mathematically convenient way of moving the electrodes from points A 
and D to B and C without redoing the analysis (see fig. 2). It does not require the 
wall to be infinitely thin. If R = 1, y can actually assume any value since the term in- 
volving y in the expression for K(p, e) vanishes. 
gives 

co 

nn pn-l cos (n - i ) e  sin - c 2 
K(p,O) = 

n=l 
This immediately shows that if the velocity profile 

Using these values in equation (15b) 

(nonconductive pipe wall) (16) 

has axial symmetry (i. e.,  is indepen- 
dent of e) then only the n = 1 term in K ,  which has unit magnitude, will contribute to 
the numerator in equation (15a). Thus, a flowmeter with a nonconductive pipe wall and an 
arbitrary but axially symmetric velocity profile has a sensitivity of 1 or 1 volt of signal, 
per meter per second of average flow, per weber per square meter of applied magnetic 
field intensity, per meter of pipe inner diameter. This result has been known for several 
decades. 

where the pipe wall is conductive. Again, only the n = 1 term in the weighting factor 
K(p, e) contributes to the numerator in equation (15a). This time, however, the n = 1 
term has less than unit magnitude giving a reduced sensitivity of 

Next, consider the case where the velocity profile is still axially symmetric but 

2R 

(R2 + 1) + y(R2 - 1) 
S =  

This sensitivity is less than that for a nonconductive wall since some of the induced out- 
put potential is shunted by the conductive wall. This effect was first computed by Elrod 
and Fouse (ref. 4). 

until the profile is specified. However, much can be learned by examining the behavior 
of the weighting factor K(p,O) over the pipe cross section. If K(p,8) were  a constant, 
the flowmeter would be "ideal; " that is, its sensitivity would be completely independent 
of the velocity profile. 

result from summing the series in equation (1 5b). 

The flowmeter sensitivity for a nonaxially symmetric profile cannot be computed 

Figures 3 and 4 show typical numerical values for the weighting factor K(p, e) which 
The values shown are normalized 

2The series expression for K(p, e) given by eq. (15b) can be expressed in closed 
form only for the case of a nonconductive pipe wall giving 

2 
K ( ~ , O )  = - 1 3  P COS 26 (nonconductive pipe wall) 

2 4 1 + 2p COS 2 e +  
This result was also obtained by Shercliff (refs. 5 and 6). 
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Figure 3. - Flowmeter weighting factor. Ratio of pipe outer-to-inner radii, R - 1.15. 
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Figure 4. - Flowmeter weighting factor. Ratio of pipe wall to f lu id  conductivity, y = 1.00. 
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with respect to the weighting factor at the center of the pipe to  make the results more 
easily comparable. The value of the weighting factor at the center K(0,O) is 

2R (R2 + 1) + y(R2 - l)] , the pipe shunting factor for axially symmetric flow. Because 

of symmetry considerations only one quadrant (0'5 8 5 909 need be considered. Fig- 
ures 3(a) to (d) show the normalized weighting factor as a function of radius at constant 8 

values of Oo, 30°, 60°, and 90°, respectively. The pipe outer-to-inner radii ratio R is 
1.15 and the wall to fluid conductivity ratio y is varied from 0 to  2 .  As  shown, the 
normalized weighting factor is almost constant near the center of the pipe and drops off 
slowly near the wall for 8 less than about 60'. For 8 = 90°, however, the weighting 
factor increases quite rapidly with radius and, in fact, becomes infinite at the wall for 
y = 0. The flowmeter output is, therefore, most sensitive to the flow at points near the 
wall at 8 M 90' and least sensitive to the flow near the wall at 8 M 0'. The large ratios 
of wall to fluid conductivity make the weighting factor closer to that of an ideal flow- 
meter which has a constant weighting factor. 

ratio of wall to  fluid conductivity y is held constant at 1 and the pipe outer-to-inner 
radii ratio R is varied. The results show that as the wall thickness increases the 
weighting factor becomes more nearly a constant. 

to-inner radii and wall to fluid conductivity are the least sensitive to the shape of the 
fluid velocity profile. This insensitivity to the velocity profile is achieved only at the 
price of reducing the overall sensitivity since a thick, highly conductive pipe wall gives 
the largest shunting effect. Thus, the experimenter who can select the pipe wall thick- 
ness and conductivity must consider at least two effects in minimizing the flow measure- 
ment e r ror .  The pipe wall must be sufficiently thick and conductive to minimize e r ro r s  
due to the uncertainty in the exact velocity profile, and at the same time the wall must 
permit a sufficiently large output potential to minimize the measurement e r ror  due to the 
ambient electrical noise. 

- A s  mentioned in the INTRODUCTION, the principal use for the preceding analysis is 
in the case of low Hartmann number where the velocity profile in the flowmeter is deter- 
mined by upstream conditions. In the following section, the case where the velocity pro- 
file is determined by the flowmeter itself is considered. 

I[ 

Figures 4(a) to  (d) show additional numerical results for K(p, e) only this time the 

It  can be concluded, therefore, that flowmeters with the highest ratio of pipe outer- 

INDUCED POTENTIAL FOR FULLY DEVELOPED VELOCITY PROFILE 

In this section, the entire set of basic equations wil1,be solved simultaneously to ob- 
tain the self-consistent solution for the fully developed velocity profile and the corre- 
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sponding induced potential. From these results the flowmeter sensitivity can be easily 
computed . 

tion will be obtained, and second, an approximate solution using a variational principle 
and the Ritz technique will be computed. The exact ser ies  solution can be summed 
numerically using modern computers only for Hartmann numbers M less  than 10 to 20, 
whereas the solution found using the variational principle can be evaluated at all Hartmann 
numbers. The exact series solution is of value, however, since it gives some insight on 
the accuracy of approximate solution in the lower Hartmann number range. In addition, 
it is much faster computationally to use the ser ies  solution where it applies. Finally, by 
using transformation techniques such as the Watson transform it may be possible to 
transform the exact ser ies  solution which converges slowly at high Hartmann numbers 
into one which converges rapidly. 

Two approaches will be followed. First, an exact series representation of the solu- 

Exact Series Solution 

Solution - of basic equations. - In obtaining the ser ies  representation of the solution it 
is convenient to work with equations (sa) to (9g) which involve only the velocity and induced 
magnetic field. Equations (sa) and (9b)'can be uncoupled by introducing the auxiliary func- 
tions f and g where 

Substituting equations (18a) and (18b) back into equations (sa) and (9b) reveals that f 
and g must satisfy the following equations: 

aP2 P a P  p2 ae2 4 
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The general solution for f and g can be expressed as a Fourier series in 8 .  Sym- 
metry considerations show that both V and B, and, hence, f and g,  must be even func- 
tions of 0 about 0 = 0. Thus, only cos ne type terms need appear in the series. The 
coefficients in the Fourier series are, in general, linear combinations of the modified 
Bessel functions with argument MP/2. Since modified Bessel functions of the second 
kind diverge at zero argument, they must be excluded. Thus, the solutions to equations 
(19a) and (19b) are given by 

n=O 

where An and Bn are constants to  be determined. Combining the solutions for f and g 
with equations (I 8a) and (1 8b) give the general solution for V and B in the fluid region 
o r p s 1 :  

n=O 

co 
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In the pipe wall region 1 S p 5 R the induced magnetic field satisfies equation (9c) 
which is Laplace's equation. The solution of this equation which satisfies boundary con- 
dition (9g) can also be found using Fourier expansion techniques and is given by 

cn = - Y 

n(R2n + 1) 

m 

R P  R P  

M2 In 2M 
m o 6  +- 

n R2n -n - p )cos110 l 5 p ~ R  

4 (1 - R2k)S*(:)Ck 

1 

n odd 

n=l 

where the Cn are constants to be determined. 

solutions given by equations (21a), (21b), and (2112) to satisfy the three remaining bound- 
a r y  conditions (sa), (ge), and (9f). Substituting equations (21a) to (21c) into equations 
(9d) to (9f) and using the orthogonal properties of the cos n0(n = 0, 1, 2,  . . .) functions 
over the interval 0 5 0 5 277 and the integral definition of the modified Bessel functions 

The unknown constants An, Bn, and Cn can be determined by requiring the general 

J O  

give the following relations: 

Cn = 0 n even 

r 

00 1 

k=1,3,5, .  . . 
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Qo 

A =  n 1 (' - R2k)[k+n(:) + 'k-n(;)lck 

k = 1 , 3 , 5 , .  . . 

7 

n Bn = (-1) An 

+ 'h+k(F)+ 'h-k (F) 

8 L - J  

m=O 

J 
( 2 3 4  
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where 

and the prime (') denotes differentiation with respect to L e  argument of the modified 
Bessel functions. 

These equations show that the Cn (n = 1,3,5, .  . .), which are the coefficients in the 
expansion for the induced magnetic field in the pipe wall, satisfy an infinite set  of linear 
algebraic equations. The solution for the C, can be obtained by truncating the infinite 
set  at a sufficiently large n and then solving the remaining finite se t  using standard tech- 
niques. It should be noted that in this set of equations both the inhomogeneous terms, 
Tn(M/2), and the coefficients of the Cn terms, S*(M/2), involve infinite series (see 
eqs. (23e) and (23f)). These infinite series, however, involve only the Hartmann number 
M and are independent of the conductivity and radius ratios y and R .  Thus, the ser ies  
need be summed only once for each M of interest. 

Once the Cn have been determined, it is then quite straightforward to compute the 
An using equation (23c) and the Bn from equation (23d). The velocity and induced mag- 
netic field can then be found from equations (21a) to (21c). Before presenting numerical 
results, expressions for the average velocity, induced potential, and flowmeter sensi- 
tivity will be obtained. In addition, the limiting case of low M will be considered. 

Average velocity and induced potential. - The flowmeter sensitivity, in terms of the 
dimensionless variables, is the ratio of the potential difference WAD to twice the mean 
velocity Vm (see eq. (14c)). Thus, to compute the sensitivity for the series solution 
just obtained it is necessary to relate the induced potential to the velocity and induced 
magnetic field. This is most easily done by first computing the electric field and then 
evaluating the line integral of the electric field from one electrode to the other to obtain 
the potential difference. Since the answer is independent of the path of integration, it is 
most convenient to use the circumferential path along the outer surface of the pipe wall. 

In the pipe wall region, Maxwell's equations and Ohm's law can be combined to give 

-c 

V X ' 5 = j j ,  J = p  u E=-j j ,  u VU 0 o w  o w  

Since the path of integration corresponds to a constant radius, only aU/a 0 need be eval- 
uated: 
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Reexpressing equation (24b) in terms of the dimensionless variables then yields 

The potential difference WAD can be computed by integrating equation (24c) with respect 
to 0 from -n/2 to n/2 along the curve p = R: 

Combining this expression for WAD with the general solution for B in the wall region 
(eq. (21c)) then gives 

n ns WAD=--- CnR sin-  
2 

111 
n=1,3,5, ... 

The average dimensionless velocity Vm can be obtained by combining the definition 
for the average (see eq. (14d)) with the general solution for V given by equation (21a) 
and performing the integration with respect to p and 8. This gives 

n=O 

where equation (23d) was used to eliminate the Bn terms. The flowmeter sensitivity is 
then simply the ratio of WAD (eq. (25)) to twice Vm (eq. (26)). 

number can be obtained by expressing Tn(M/2) and S*(M/2) in a power series in M by 
using the asymptotic form for the modified Bessel functions for small argument. Substi- 
tuting these expansions into the set  of equations for the Cn (eq. (23b)) then gives 

Asymptotic solution for small M. - Results for the limiting case of low Hartmann 
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+ .  . ] (274 
YRmPo y(R2 - 1)M2 c1 = 

8[(R2 + 1) + y(R2 - l)] 48 8 [(R2 + 1) + y(R2 - l)] 

Knowing the Cn, it is then quite simple to compute the An using equation (23c): 

A o = P  [L-!!!-- 2 y(R2 - 1)M2 

32[(R2 + 1) + y(R2 - 1)l 128 

f '1 
A l = P o \ $ + + -  Y(R2 - 1) 

2[(R2 + 1) + y(R2 - 1)l 

A2 = Po{:+ M . . .} 
A n = P o { + + . . ]  n r 3  

M 

Substituting these results for the Cn and An into the general expressions for the in- 
duced potential difference WAD, the average velocity Vm, and the sensitivity S then 
gives 
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r(R2 - 1)M2 

8 [(R2 + 1) + r(R2 - 1d 
- w ~ ~ =  r 2 

2 L(R + 1) + r(R2 - 1)l 48 

y(R2 - 1)M2 ~- - + .  . } 
48 8 [(R2 + 1) + y(R2 - 1)l 

I 

This same result has also been obtained by Shercliff (ref. 11) who used an iterative 
procedure. The first term in the expression for the sensitivity is recognized as the pipe 
wall shunting factor. The results show that the fully developed velocity profile at low 
M causes a decrease in the sensitivity. Equation (28c) gives useful numerical re- 
sults (within 1 percent) for M 5 4. Extending the results in the same manner including 
terms that vary as M4 expands the useful range to only M 5 4 . 5 .  In the next section, a 
numerical evaluation of the exact series solution is presented. 

Numerical results - -  for exact ~- series - -  solution. - The infinite ser ies  for Tn(M/2) and 
S*(M/2) were summed using an IBM 7094 computer and double precision arithmetic. 
The modified Bessel functions were evaluated to at least 14 place accuracy. The prin- 
ciple difficulty in summing these series for Tn(M/2) and Snk(M/2) is that the terms al- 
ternate in sign and the values of the sums are normally many orders of magnitude less 
than the magnitude of the largest term in the series. To obtain a minimum of 3 to 4 place 
accuracy for Tn(M/2) and S&(M/2) the values for n, k,  and M were  restricted to 
where the values for Tn(M/2) and S*(M/2) were at least 10'' to 10-l' times the largest 
term in their respective series. This restricted n and k to be less than 19 for M of 
5 and 10, and less than 11 for M of 20. 

diately determines the maximum number at which the infinite set of equations for the Cn 
The limitation on the maximum values permitted for n and k for a given M imme- 
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must be truncated. A detailed study of these equations reveals that they are diagonally 
dominant, at least for M 5 20. The computed value of C1, for example, was found to be 
almost independent of the number of equations used. Thus, the values obtained for the 
Cn are accurate, but the number of Cn that can be computed is limited. 

infinite series. Often this series did not converge using the finite number of Cn avail- 
able. "he nonconductive pipe wall case (R = 1) presented no trouble at this point since the 
series vanishes so that An could be computed for any n. However, as the pipe wall 
thickness and conductivity and the Hartmann number are increased, the maximum number 
of An that can be computed decreases since there are insufficient numbers of Cn avail- 
able to sum the series. For example, using the thickest wall (R = 1.35) and largest con- 
ductivity ratio.of interest (y = 2.0) permits the An up to A16 to be calculated to 4 place 
accuracy at M = 10 but only up to A6 to the same accuracy at M = 20. 

Additional limitations occurred in evaluating the velocity profile, the induced poten- 
tial difference WAD, the average velocity V m' 
flowmeter sensitivity. There were insufficient numbers of An available to evaluate the 
series solution for the velocity profile (eq. (21a)) at M = 20 except for the case of a non- 
conductive pipe wall. A s  the pipe wall thickness and conductivity increased, the values 
for M had to be restricted in order to sum the series to 4 place accuracy with the finite 
number of terms available. For thickest and most highly conductive pipe wall case con- 
sidered (R = 1 . 3 5 ,  y = 2.0), the velocity profile series could only be summed for M 5 12.  

The infinite series for the average velocity over the pipe cross section (eq. (26)) con- 
verged faster than the series for the velocity at any given point in the cross section. The 
series for  Vm could be evaluated to at least 5 place accuracy for M 5 10 and to a max- 
imum er ror  of a few parts in the third place at M = 20. The series for theinduced poten- 
tial difference WAD converged rapidly for M 5 20 and presented no difficulty. 

The values a re  accurate to the 3 places shown except at M = 20 where the third place 
may be in e r ro r .  The values used for the ratio of the outer-to-inner pipe radii R a re  
1 . 0 0 ,  1.05, 1 . 1 5 ,  1 . 2 5 ,  and 1 . 3 5  and the values used for the wall  to fluid conductivity 
ratio y a r e  0,  0 . 1  , 0 . 5 ,  1.0,  1 . 5 ,  and 2.0. The motivation for selecting these particu- 
lar values is presented in appendix B. 

Results a re  given for Vm/Po, WAD /P , S(=Wm/2Vm), and the "distortion factor" 

FD. 

The next difficulty arose in evaluating the An given by equation (23c) because of the 

and the ratio W A D / ~ V ~  which is the 

The numerical results a re  presented in table I for M values of 1, 2, 5,  10, and 20. 

The distortion factor FD is related to the flowmeter sensitivity by 

s = -  2R FD(R7?/7M) 
(R2 + 1) + y(R2 - 1) 
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It is introduced to clearly separate the two causes for reduced sensitivity. The first is 
simply the electrical shunting effect of the induced output potential by the conductive pipe 
wall for the axially symmetric profile. This is the first term in equation (29), and it is 
independent of M. The factor FD accounts for  the change in sensitivity due to the dis- 
tortion of the velocity profile f rom axial symmetry by the applied static magnetic field. 

The results in table I show that the distortion factor FD, which is 1 at M = 0, de- 
creases as M increases. This result is in agreement with the asymptotic solutions for 
small M given in the previous section. What is surprising, however, is that F,, de- 
creases more rapidly with increasing M if R and y are small. This is not expected 
since small values for R and y produce the least distortion in the velocity profile at 
low M and, hence, are expected to yield the smallest change in FD. However, the pre- 
vious section, which considered the effect of an arbitrary velocity profile, showed that 
flowmeters with small R and y are the most sensitive to distortions in the velocity pro- 
file from axial symmetry. Thus, even though flowmeters with small R and y produce 
the least distortion for M 5 20, they produce the largest change in the distortion factor 

FD' 
The remaining entries in table I show that both Vm/Po and WAD/Po decrease with 

increasing M and that the decrease is more rapid for large R and y .  This effect is 
due to the increase in Po which is proportional to the pressure drop per unit length 
along the pipe. As M increases, the velocity profile distorts from its Poiseuille profile 
resulting in a larger viscous drag force. In addition, if the pipe wall is conductive, some 
of the induced current, which must form a closed path, can return through the pipe wall 
rather than only through the fluid, thus giving a net electromagnetic drag force on the 
fluid. The increase in these forces must be balanced by a corresponding increase in Po 
to maintain the same flow. The values for Vm/Po can be used to predict the pressure 
drop across a flowmeter. However, it must be remembered that the tabulated values a r e  
only for  the fully developed region. Appropriate amounts must be included for the entry 
and exit regions to obtain the total pressure drop. 

In the next section, an approximate solution is obtained using a variational principle 
and the Ritz technique. 

Approximate Solut ion Using Variational Principle and Ritz Technique 

Variational principle. ~ - An alternative approach for obtaining a solution is to convert 
the problem of solving the governing differential equations and associated boundary condi- 
tions into an equivalent variational problem. It can be shown (refs. 16 and 17) that the 
Euler-Lagrange equations and natural boundary conditions of the functional F are the 
basic equations and boundary conditions (8a) to (8g) where F is given by 
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d8 

The functional F has the property that its first variation is zero. Thus, F is sta- 
tionary; that is, first-order changes in V and W about their true values produce only 
second-order changes in F. It can also be shown that of all functions that a r e  continuous 
with piecewise continuous first derivatives, the particular functions for V and W 
that make F stationary satisfy equations (8a) to (8g) and, hence, a r e  the desired solu- 
tions. 

value Fst is given by 
A very important property of the functional F (refs. 16 and 17) is that its stationary 

= Po f 'j2" Vp dp d8 
0 0  Fst 

Since the dimensionless pressure gradient Po is a constant, the stationary value for F 
is proportional to the average fluid velocity in the pipe. This is a very useful result since 
the average velocity is one of the quantities needed to obtain the flowmeter sensitivity. 
The stationary value of F can normally be computed to good accuracy by using approxi- 
mate functions for V and W. 

tremum. However, if the class of admissible functions for V is restricted so that either 
V or aV/ap is specified at p = 1-, then it can be shown that the stationary value for F 
is a maximum (refs. 16 and 17). Thus, if F is maximized over a subset of the entire 
class of admissible functions for V and W subject to this restriction, the resulting 
stationary value when used in conjunction with equation (31) will give a computed average 
velocity which is less than or equal to the actual average velocity. The proper restric- 

A careful study of equation (30) reveals that the stationary value of F is not an ex- 
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tion to  impose is to require all admissible functions for V to be zero at p = 1- which 
is boundary condition (8d). 

tained using the Ritz technique. In this technique, the velocity and potential are ex- 
pressed in terms of known functions of p and 8 that approximate the true solution but 
contain adjustable parameters 01, . . . , 52,. Substituting this approximate solution into 
equation (30) and performing the integrations over p and 8 then leave F as a function 
of the adjustable parameters al, . . . , Qn and the characteristic parameters of the 
model Po, M, y ,  and R. Assuming that the approximate solution for V vanishes at 
p = 1-  for all values of sC1, . . . , an, the stationary value of F can be found by maxi- 
mizing F with respect to Ql, . . . , an. The corresponding values for Q1, . . . , an at  
the stationary point, when substituted into the approximate functions for V and W, will 
yield the closest approximations to the velocity and potential that a r e  possible for the 
class of functions used. 

Fourier expansions: 

Ritz technique. - Approximate solutions for the velocity and potential will be ob- 

It is convenient to express the general solutions for V and W by the following 

N 

n=O 

where the radial functions fn  and gn are to be determined. Symmetry considerations 
show that the cos 2nO and sin (2n + 1)s functions with n = 0, -1, 2, . . . ~0 a re  com- 
plete for V and W, respectively. Substituting expansions (32a) and (32b) into equa- 
tion (30) and performing the integration over 8 then give 
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Each of the radial functions fn and gn can be expressed in series form as 

I, 

j =1 

Since the functions pn(n = O , l ,  2, . . . , m) form a complete set with respect to functions 
that are continuous with piecewise continuous derivatives, the exact solution can be ob- 
tained by setting cyqi = i - 1, pnj = j - 1, N = 00, I = 00, and Jn = =J, by substituting 
equations (34a) and (34b) into equation (33), and by finding the stationary point of F by 
solving 

n 

(354 aF - = 0  
aAni 

n = 0 , 1 , 2 ,  . . ., N; i = 1 , 2 , 3 ,  . . . , I n  

-- aF  - 0  
acnj 

n = 0 , 1 , 2 ,  . . .,N; j = 1 , 2 , 3 ,  . . ., J, 

for Ani and Cnj. The solution of this doubly infinite set of equations yields the exact 
solution to the problem. In practice, these equations are solved by first truncating the 
sets at some arbitrary upper limit and solving the resulting equations. The upper limit 
is then increased and the process is repeated until the sequence of solutions converges. 
Convergence to the correct solution is assured since the functions used in the expansions 
form complete sets.  

The main difficulty with this technique is that, for large M, the number of equations 
to be solved of the form (35a) and (35b) become prohibitively large before convergence is 
achieved. The reason for this difficulty at high Hartmann number is that the functions 
fn,  for example, are normally very small for p < 1 - (1/M) (except for fo) and become 
large and oscillatory with p for 1 - (1/M) < p < 1. It takes a large number of functions 
of the form pn (n = O , l ,  2, . . .) to represent a function with this behavior. 

It was found, however, that if the exponents cyYni and p in the trial functions (34a) 
and (34b) are also considered as adjustable parameters rather than fixed integers then 
convergence is achieved with a manageable number of equations. Thus, in addition to 

nj 
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solving equations (35a) and (35b), equations of the form 

-- aF  - 0  
a an i  

n = 0 , 1 , 2 ,  . . ., N; i = 1 , 2 , 3 ,  . . . , I ,  

- = O  aF 
a Pnj 

n = 0 , 1 , 2 ,  . . ., N; j = 1 , 2 , 3 ,  . . . 7  Jn 

(354 

(3 

must also be solved. Since the exponents are variables, completeness of the set of ex- 
pansion functions is no longer assured. However, this is not a serious drawback since 
much is known about the general form of the solution and various tests are available for 
checking the results. 

In order to further minimize the number of equations to be solved, several of the 
known properties of the solution were built into the trial functions. In the pipe wall re -  
gion, the radial functions g, which satisfy equations (8c), (8e), and (8g) are given by 

2n+l + R4n+2 p-(2n+l) Jn 
(364 n = 0 , 1 , 2 ,  . . . )  N; 1 5 p S R  C ‘nj 

P gn(p) = 
1 + R4n+2 j=1’ 

Thus, the expression for gn given by equation (34b) is used only over the interval 
0 S p 5 1 and equation (36a) is used for gn for 1 5 p 5 R. In addition, the boundary 
condition which requires V to vanish at p = 1- can be built into the tr ial  functions quite 
simply by setting fn( l )  = 0 or 

C A n i = 0  n = o , 1 , 2 ,  . . - 9  N 
i=l 

Equation (36b) ensures that the stationary point of F is a maximum. Thus, rather than 
solving equations (35a) to (35d) to obtain the stationary point, an alternative approach is 
to maximize F with respect to the Ani, Cnj, ani, and p 
given by equation (36b). 

parameters a re  restricted to the linear coefficients such a s  the Ani and C 
tions (34a) and (34b). The equations to be solved for the stationary point ((35a) and (35b)) 
are, therefore, linear in the adjustable parameters since fn  and gn appear in F only 

subject to the constraint 

Evaluation of solution. - In most applications of the Ritz technique, the adjustable 

nj 

in equa- 
nj 
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, 
1 
i 
Y to the second power. The solution is thus reduced to solving a system of simultaneous i 

linear algebraic equations. 

equations for the Ani and C ((35a) and (35b)) but they are nonlinear in ani and pnj. 
In addition, the other equations that are introduced ((35c) and (35d)) a r e  nonlinear in all 
variables. 

Allowing the exponents in equations (34a) and (34b) to vary still results in linear 

nj 

Rather than attempt to solve these nonlinear equations, it was found simpler to niax- 
c imize F directly. This was done by using the search technique developed by Powell 

(ref. 21) which finds the minimum of a function of several variables without calculating 

primarily to determine how many adjustable parameters were needed for convergence as 
a function of M, R ,  and y .  The problem was repeatedly solved for increasing values of 
N, In, and Jn where N is the upper limit in the summation over the angular index n 
(see eqs. (32), (33), and (34)) and In and Jn are the upper limits in the summations 
over the radial indices (see eqs. (34a) and (34b)). The process was terminated when an 
increase in N ,  In, and Jn did not produce a corresponding increase in the maximum 
value for F. 

quired for convergence occurred when the pipe wall was nonconductive (i. e . ,  R = 1.0,  
y = 0). The number of parameters was then fixed at  the value required for convergence in 
the nonconductive pipe wall case when evaluating results for other values of R and y a t  
the same M. Table I1 shows the number of parameters used a t  each value of M. 

Although this technique for maximizing F worked well even if the initial guess was 
poor, it was too slow for computing all the results. Consequently, once the solution for 
the nonconductive pipe wall case at each M was determined, a modification of another 
technique developed by Powell (ref. 22) for solving systems of nonlinear algebraic equa- 
tions was used. This technique, which is a combination of Newton's method and the me- 
thod of steepest descents, was used to solve equations (35a) to (35d) as follows: 

(35b), and (36b) were solved exactly for Ani and Cnj. This could be done quite rapidly 

i derivatives. (Maximizing F is the same as minimizing -F.) This technique was used 

It was found that at a given Hartmann number, the largest number of parameters re- 

(1) Using the best guess available for the exponents ani and pnj, equations (35a), 

I since these equations are linear algebraic equations in Ani and Cnj. 

flnj n1 

(2) The solution for the Ani and Cnj with the corresponding values for ani and 
were  then used to evaluate aF/aani and aF /ap  . (left sides of eqs. (35c) and (35d)). 
(3) Powell's technique was then used to compute values for uni and p 

f 

that satis- 
nj 

fied equations (35c) and (35d). Each time new values of aF/aani and aF/apnj were 
required steps (1) and (2) were  repeated. 

and aF/apnj was less than a cutoff value which was typically 
(4) The iterative procedure was terminated when the sum of the squares of aF/aani 

to 10- . 
(5) After completing steps (1) to (4) for given values of R and y ,  the process was 
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Figure 5. -Flowmeter distortion factor, 
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1 
i / repeated for new values for R and y of interest at the same M. The new guess used 

in step (1) was the solution for the previous R and y .  
Once the stationary point for F and the values of the adjustable parameters at the 

stationary point were computed, the approximate solutions for V and W could be de- 
termined by combining equations (32a), (32b), (34a), (34b), and (36a). 

Numerical results. - Numerical results obtained using the variational principle and 
the Ritz technique are presented in table III. Values are given for the average velocity 
Vm/Po, the induced potential difference WAD/Po, flowmeter sensitivity S,  and distor- 
tion factor FD for M values (1, 2, 5, 10, 20, 50, 100, 200, 500, and l O O O ) ,  R values 

results for the distortion factor FD are also presented in figures 5(a) to (d). 
At low values of M, the distortion factor decreases with increasing M. The rate of 

decrease is greatest for pipes with a thin, poorly conducting wall and least for pipes with 
a thick, highly conductive wall. These results are in exact agreement with those found 
previously from the exact ser ies  solution. A s  M continues to increase, however, the 
distortion factor reaches a minimum if the pipe wall is conductive, and then it begins to 
increase and to asymptotically approach 1 as M becomes infinite. If the pipe wall is 
nonconductive, the distortion factor continues to decrease with increasing M and 
approaches approximately 0.924 as M becomes infinite. 

The results in figure 5 show that it is important to include the effects of velocity pro- 
file distortion by the flowmeter itself when making precision flow measurements. If these 
effects are not considered, the indicated flow measurement will be less than the actual 
flow. If the pipe wall is nonconductive, this e r ro r  increases with increasing M and ap- 
proaches (1 - 0.924/0.924)XlOO or 8.2 percent as M becomes infinite. If the pipe wall 
is conductive, the e r ro r  reaches a maximum, typically 2 to 5 percent, in the Hartmann 
number range 10 to 50 and then decreases to zero as M becomes infinite. 

velocity profiles. Figures 6 to 8 show the variation of V with p at fixed 8 values of 
O o ,  30°, 60°, and 90'. The velocity is normalized with respect to Vc, the dimension- 
less velocity at the center of the pipe. Three cases are shown - the nonconducting pipe 
wall (R = 1.00, y = 0), a thin, poorly conducting pipe wall (R = 1.05, y = O . l ) ,  and a 
thick, highly conducting pipe wall (R = 1.35, y = 2.0). 

At M = 0, the velocity profile is axially symmetric and assumes the normal 
Poiseuille shape for all cases. As  M increases, the velocity profile becomes flattened 
particularly along 8 = 0'. A s  M continues to increase, the profile also flattens along 
8 = 90' if the pipe wall is conductive, and the profile eventually approaches slug flow as M 
becomes infinite. If the pipe wall is nonconductive, however, the flattening effect is not 
as pronounced along 8 = 90°, and the profue does not approach slug flow as M becomes 
infinite. 

1 

\ '  (1.00, 1.05, 1.15, 1.25, and 1.35), and y values (0, 0.1, 0.5, 1.0, 1.5, and 2.0). The 

The reason for the behavior of FD with increasing M can-be seen by examining the 
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(c) Cylindrical coordinate, 0 = 60'. (d) Cylindrical coordinate, 0 = 90°. 
Figure 6. -Velocity profile. Ratio of pipe outer-to-inner radii, R = 1.00; ratio of pipe wall to f lu id  conductivity, y = 0. 
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Figure 7. - Velocity profile. Ratio of pipe outer-to-inner radii, R = 1.05; ratio of pipe wall to f lu id  conductivity, y = 0. 1. 
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Figure 8. - Velocity profile. Ratio of pipe outer-to-inner radii, R = 1.35; ratio of pipe wall to f lu id 
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The reason for this flattening phenomenon is as follows. If the pipe wall is noncon- 
ductive, all the induced current must remain in the fluid since the current must form a 
closed path and there can be no current in the pipe wall. The net electromagnetic 3r X 

force on the fluid is, thus, zero. Since T X  5 is not identically zero everywhere, the 
effect of this force is to distort the profile. The magnitude of this force is greatest near 
the center of the pipe where it opposes the flow and along the pipe wall near 8 = 0' and 
180' where it aids the flow. This force is minimal near the pipe wall at 8 = 90' and 2'70' 
since 5 and '5 are essentially parallel in this region. 

through the pipe wall. It was found that this fraction increases as M increases so that 
at high M virtually all the return current is in the pipe wall. In addition, it was found 
that the current density in the fluid becomes uniform over the cross  section at high M 
giving a uniform electromagnetic force. The net effect is that the uniform electromag- 
netic and pressure forces balance each other in the core region resulting in a constant 
core velocity with negligible viscous forces. The viscous forces a re  only important in 
the thin boundary layer region where the velocity drops sharply from its core value to 
zero at the wall. 

If the pipe wall is conductive, a fraction of the induced current in the fluid returns 

The reason for the variation of the distortion factor with M is now clear. If M is 
small, the distortion factor decreases with increasing M since the velocity profile be- 
comes distorted because of the nonsymmetric electromagnetic forces. The distortion 
factor decreases rather than increases since the flow is being shifted from a region where 
the sensitivity weighting factor is high (along 8 = 90°, 2700) to where it is low (along 
8 = Oo, 180') (see figs. 3 and 4). As  M continues to increase, the velocity profile goes 
to slug flow if the pipe wall is conductive, and thus the profile returns to axial symmetry. 
This causes the distortion factor to return to 1 .  If the pipe wall is nonconductive, the 
profile remains distorted from axial symmetry a s  M increases. The distortion factor 
for this case approaches 0.924 as M becomes infinite. 

Accuracy of results. - The last main consideration is to determine the accuracy of 
the numerical results just presented. In most applications of the Ritz technique, the num- 
ber of adjustable parameters is increased until the stationary value of the functional con- 
verges to a definite value. If the trial functions are expressed using a complete set of 
functions, convergence to the correct result is assured barring any er ror  that may be in- 
troduced in the computation process. It is often difficult, however, to determine i f  con- 
vergence has actually been obtained without using many more parameters than are actually 
needed to obtain acceptably accurate results. In the problem under study, it was not pos- 

sible because of computer time limitations to increase the number of adjustable param- 
eters much beyond the point of apparent convergence. Thus, auxiliary tests must be used 
to check the results. 

Numerical results from the exact series solution given in table I can be compared 



with the variational solution results in table III for M values of 1, 2, 5, 10, and 20. The 
differences between these results are at most 1 part in the third place. To obtain a bet- 
ter feel for the magnitude of the e r ror ,  the percentage difference between the exact and 
variational solutions is shown in figure 9 as a function of (R - l )y  at M = 10. The differ- 
ences a re  determined for the average fluid velocity, induced potential difference, and 
center velocity. Figure 9 is based on results computed to 5 places which were later 
rounded to 3 places for presentation in tables I and III. 

ity has the least e r ro r .  In fact, the e r ror  in the average velocity is lower by more than 
an order of magnitude from the e r ror  in the center velocity. This phenomenon was ex- 
petted since the stationary value of a functional, which in this case is proportional to the 
average velocity, is typically an order of magnitude more accurate than the e r ror  in the 
trial functions. The e r ror  in the induced potential difference WAD also turns out to be 
about an order of magnitude less than the e r ror  in center velocity. Thus, the e r ro r  in the 

The figure shows that the center velocity has the largest e r ro r  and the average veloc- 

- 

0 Center velocity, V 
A Induced potential,%AD 
0 Average velocity, V, 

n 

0 I- \ t 

Figure 9. - Error  in solution from variational principle and Ritz technique 
at  Hartmann number M 10. 
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I i 
flowmeter sensitivity and distortion factor is about an order of magnitude less than the 
e r ro r  in the center velocity. The same relations between the various e r ro r s  were also 
found for results at M values of 1, 2, and 5 although the magnitude of the e r ro r s  de- 
creased as M decreased. 

Figure 9 also shows that the e r ro r s  decrease as (R - 1)y increases. Thus, the non- 
conductive pipe wall gives the largest e r ro r ,  and the thickest most highly conductive pipe 
wall gives the least e r ro r .  This phenomenon was also expected since it took the largest 
number of parameters to obtain convergence for the case of a nonconductive pipe wall. 
The same number of parameters required for convergence at a given M value for the 
nonconductive wall case were used for all conductive wall cases a t  the same value for M. 
Consequently, the accuracy of the results should improve a s  the quantity (R - 1)y in- 
creases.  

The e r ror  in the results for higher M values can be estimated by assuming that the 
effects observed for low M a re  also true for high M (i. e . ,  the e r ro r s  in sensitivity and 
distortion factor a re  about an order of magnitude less than the e r ror  in center velocity 
and that a nonconductive pipe wall gives the largest e r ror ) .  

be easily computed exactly at any value of M. It is given by (eq. (2la) with p = 0)  

The center velocity for the nonconductive pipe wall case is the only quantity that can 

v C = - -  

M Io(,) (37) 

Figure 10 shows the percentage e r ror  in the variational solution for the dimension- 
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Figure 10. -Error in solution for center velocity for a nonconductive pipe wall (solution obtained using Mri-  
ational principle and Ritz technique). 
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less center velocity with a nonconductive pipe wall as a function of M. As shown, the 
e r ror  increases with increasing M and is slightly less than 4 percent at M = 1000. The 
flattening effect in the e r ro r  curve at M values of 20 to 100 is due to the large increase 
that was made in the number of adjustable parameters at these M values (see table 11) 
If the e r ror  relations observed at low M are valid for high M, the error  in flowmeter 
sensitivity and distortion factor should be about 0.4 percent at M = 1000 for a noncon- 
ductive pipe wall and decrease from this value as M decreases and (R - l)y increases. 

Other checks on the results can be made at high M. It is known from the general 
theory of magnetohydrodynamic channel flow that if the channel wall is conductive, the 
velocity profile is constant over the channel cross section almost up to the wall where it 
drops rapidly to zero (refs. 13 and 14). Thus, the distortion factor for the circular 
channel under consideration should approach 1 as M becomes large which is in agree- 
ment with the computed results. 

comes large. Although all the mathematical steps can not be formally justified, it has 
been shown by Shercliff (ref. 13) and Gold (ref. 9) that the flowmeter sensitivity and dis- 
tortion factor a r e  asymptotic to 3n /32 or 0.925 at high M. This value differs from the 
computed value of 0.924 at M = 1000 by only 0.16 percent. 

Another possible way of checking the results is to examine the energy balance. The 
rate a t  which energy is being supplied to the moving fluid by the pressure source should 
equal the rate at which energy is being dissipated because of viscous losses in the fluid 
and ohmic losses in the fluid and wall. However, it can be shown that trial functions of 
the form given by equations (32) and (34) result in solutions which satisfy the energy bal- 
ance equation exactly so that this check is not an independent test. 

The approximate solutions can be tested, however, by determining how well they 
satisfy the basic equations (8a) to (8g). It is only necessary to examine equations (8a) , 
(8b), and (8f) since the trial functions were selected to satisfy the remaining equations 
identically. The residuals, or  differences between the left and right sides of these equa- 
tions were computed at selected points over the pipe cross  section p 5 l for equations 
(8a) and (8b) and along the fluid - pipe wall interface p = 1 for equation (8f). 

the approximate solution was almost exact a s  should be expected. Even if the residuals 
became large, however, which occasionally occurred near p = 1 for equation (8b), the 
approximate solution was still quite accurate. It was also observed that the residuals at 
all values of M became smaller a s  (R - l )y  increased which indicates that the error  at 
all values of M is reduced as (R - 1)y is increased. 

Rather than attempt to determine a relation between-the size of the residuals and the 
e r ro r  in the solution, which is a very difficult task, it was decided to test the solutions 
as follows. Using the approximate solution for the velocity, the potential was computed 

If the channel wall is nonconductive, the velocity profile remains distorted as M be- 

2 

For low values of M, it was found that if  the residuals were small everywhere, then 
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by solving equations (8a), (8c), (8e), (8f), and (8g) exactly. The potential difference WAD 
for this solution was then compared with that obtained directly from the variational solu- 
tion. It w a s  found that for M values of 20 or less the two solutions differed at most by 
0.01 percent. For M values of 50 to 1000 the two solutions differed typically by 0.05 
percent and at most by 0.15 percent. 

The values shown in table I11 for the potential WAD/Po, flowmeter sensitivity, and 
distortion factor were actually computed by solving for the potential exactly using the ap- 
proximate variational solution for the velocity. The difference between the solutions ob- 
tained this way and those obtained directly from the variational solution, however, a r e  at 
most 2 parts in the third place. 

The same procedure was also applied to equations (8b) and (8d) by solving them ex- 
actly for V using the approximate solution for W. The difference between the average 
value of this solution for V and the average found from the stationary value of the func- 
tional was  at most a few parts in the f i f t h  place. 

A s  a final test ,  the method of solution using the Ritz technique was amended so that 
the trial functions for W exactly satisfied equations (8a), (8c), (8e), (8f), and (8g) for 
any given trial function for V. The advantage of this method is that for any choice for the 
trial function for V, the trial function for W is constrained s o  as to satisfy all the basic 
equations identically except for equation (8b). Thus, all the adjustable parameters can be 
concentrated in the trial function for V. The sole purpose of the variational principle 
and Ritz technique then reduces to generating the best approximate solution for equa- 
tion (8b). This method of solution required a considerable amount of computer time so 
that it only was used for spot checking. The results obtained by this method differed very 
little from those given previously, however, indicating that the previous values a r e  quite 
accurate. For example, at M = 200, R = 1.00, and y = 0 the previous solution for  the 
center velocity which was in e r ro r  by 2 . 2  percent was reduced to  1 . 6  percent using this 
amended technique and 26 adjustable parameters compared with 40 parameters used pre - 
viously (see table PI). The corresponding changes in average velocity, output potential, 
flowmeter sensitivity, and distortion factor were 0.07, 0.16, 0.09, and 0.09 percent, 
respectively. 

est, namely the flowmeter sensitivity and distortion factor, are of the order of a few 
tenths of a percent at the higher Hartmann numbers which are commonly found in liquid 
metal applications. This e r ro r  is comparable to the e r ro r  in determining the pipe shunt- 
ing factor. Since the uncertainty in the electrical conductivity for most of the liquid 
metals is of the order of *l percent, the pipe shunting factor can only be determined 
typically to within rt0.25 percent. In addition, there are the e r ro r s  associated with mea- 
suring the applied static magnetic field and output potential. However, these e r ro r s  can 
often be held to less than *O. 1 percent. 

On the basis of all these tests it is felt that the e r ro r  in the main quantities of inter- 
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CONCLUDING REMARKS 

The theory of circular, transverse-field electromagnetic flowmeters has been ex- 
tended to include the effects of distortion from axial symmetry in the fluid velocity pro- 
file. A general formulation was developed to relate the flowmeter sensitivity to any given 
but arbitrary velocity profile. It was found that flowmeters with a thick, highly conduc- 
tive wall are the least sensitive to uncertainties in the velocity profile. The analysis was 
then extended to determine the effect of velocity profile distortion by the flowmeter itself. 
The fully developed profile was computed using a variational principle and the Ritz tech- 
nique. It was found that if the distortion from axial symmetry in the fully developed pro- 
file were not considered in computing the flowmeter sensitivity, then e r ro r s  of up to 
8 .2  percent would result in the flow measurement if the pipe wall were nonconductive. 
The e r ror  is reduced if the pipe wall is conductive, but it is still typically 2 to 5 percent 
for most liquid metal applications. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 28, 1971, 
120-27. 
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APPENDIX A 

SYMBOLS 

Bn 

BO 

BO 

B2 

-c 

b 

‘n 

‘nj - 
E 

F 

FD 

Fst 
f 

fI-l 

G 

gn 

In 
7 

Jn 

expansion coefficient in ser ies  for f (eq. (20a)) 

expansion coefficient in trial function for fn  (eq. (34a)) 

pipe inner radius 

unit vectors 

dimensionless induced magnetic field (= B2/Bo) 

magnetic field 

expansion coefficient in series for g (eq. (20b)) 

magnitude of So 
applied uniform static magnetic field 

induced axial magnetic field 

outer radius of pipe 

expansion coefficient for W in pipe wall (eq. ( 2 1 ~ ) )  

expansion coefficient in trial function for gn (eq. (34b)) 

electric field 

functional for MHD flow (eq. (30)) 

flowmeter distortion factor (eq. (29)) 

stationary value of F 

auxiliary function (eqs . (1 8a) and (18b)) 

radial function in expansion for V (eq. (32a)) 

Green’s function 

radial function in expansion for G (eq. (12a)) 

auxiliary function (eqs . (1 8a) and (1 8b)) 

radial function in expansion for W (eq. (32b)) 

number of radial terms in nth angular term in expansion for V (eq. (34a)) 

electric current density 

number of radial t r rms  in nth angular term in expansion for W (eq. (34b)) 
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K flowmeter weighting factor 

L entry length 

M 

N nvmber of angular terms 

Hartmann number (= Boa(af/q) 1 /2) 

P 

R 

Rm 
Re 

Tn 
U 

'AD 9 'BC 
V 

3 
vC 

'm 

V O  

vz 

'zm 
W 

%i 

Pn j 
Y 

dimensionless axial pressure gradient -- - 

pressure in fluid 

ratio of pipe outer-to-inner radii (= b/a) 

magnetic Reynolds number (= p O u ~ V o )  

Reynolds number (= pmaVo/q) 

critical Reynolds number 

cylindrical coordinates (fig. 2) 

flowmeter sensitivity (= Um/2aBoVZm = Wm/2Vm) 

infinite series (eq. (23f)) 

infinite series (eq. (23e)) 

induced potential 

induced potential difference between points A-D or B-C (fig. 2) 

dimensionless axial velocity (= Vz/Vo) 

fluid velocity 

dimensionless center velocity 

dimensionless average velocity 

characteristic fluid velocity 

axial fluid velocity 

average velocity 

dimensionless induced potential (= U/BoaVo) 

dimensionless potential difference between points A-D or  B-C (fig. 2) 

rectangular coordinates (fig. 2) 

exponent in expansion for f n  (eq. (34a)) 

exponent in expansion for gn (eq. (34b)) 

ratio of wall to fluid conductivity (= aw/af) 

($1 ::) 
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, 
'ij 

'n 
E 
0 

v 

Kroniker delta function (= 1 if i = j ,  = 0 if i # j) 

( = 2  if n =  0, = 1 if n#O)  

electric permittivity of free space 

fluid viscosity 

magnetic permeability of f ree  space 

dimensionless radius (= r/a) 

electric charge density 

mass density of fluid 

electrical conductivity of fluid 

electrical conductivity of pipe wall 

ad justable prameter s 

5 1  



APPENDIX B 

I 1.0 

FLOWMETER PARAMETERS 

I I 

The purpose of this section is to acquaint the reader with some typical values for the 
flowmeter parameters that are encountered in liquid metal applications. First, consider 
the - ratio of outer-to-inner pipe radii R. Figure 11 shows R as a function of the pipe 

A 
1. 6r 

0 Schedule 20 
0 Schedule 40 
0 Schedule 60 
A Schedule 80 

A 

0 a 
0 

A 
0 

used in computations 

n o 
n A  

0 
0 

A 

. I  . 2  . 5  

Figure 11. - Ratio of outer-to-inner radi i  for commercial steel pipes. 

inner radius a for schedule 20, 40, 60, and 80 commercial steel pipes. Despite the 
large variation in diameters and wall  thicknesses for these pipes, the points on the 
curve R against a fall within a narrow band. Because of the large number of applications 
for pipes in the inner radius range 0.01  to 0 . 1  meter, the R values used in the compu- 
tations were concentrated in the corresponding range of 1 .00  to 1.35 .  In addition to the 
various schedule pipes, tubing is frequently used in liquid metal applications; particu- 
larly thin wall tubing in proposed space applications where weight is an imporknt factor. 
The R values for this tubing are generally in the range 1 . 0 2  to 1.10. 

ure 12 shows this ratio as a function of temperature for liquid mercury, lithium, sodium, 
potassium, and NaK for pipe walls made of 316 stainless steel and T l l l ,  a tantalum base 

Next, consider the ratio of the pipe wall to fluid electrical conductivity y .  Fig- 
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-1 / 
Values used in computations 

c t NaK-TI11 

‘-Hg-316 stainless 

c 
c - ‘L Na-316 stainless 

c 
I 1 I I I 

O J  200 400 600 800 loo0 1200 
Temperature, OC 

Figure 12. - Ratio of wall to fluid electrical conductivity for c m m o n  liquid metals and pipe materials. 

alloy. The conductivities of the liquid metals were obtained from references 23 and 24 
and the conductivities of the pipe wall materials were obtained from references 25 and 26. 
As shown in figure 12, the values of y encountered in practice are rather uniformly dis- 
tributed over the range 0 to 2. 
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TABLE I .  - RESULTS FROM EXACT SERIES SOLUTION 

----- 
0.998 

.999 

.999 

.999 

Pipe outer-to- 
inner radii 

ratio, R 

1 .00  
1 .05  
1 .15  
1.25 
1 .35  

----- 
0.999 

1.00 
1 .05  
1 .15  
1.25 
1 .35  

1.00 
1 . 0 5  
1 . 1 5  
1 .25  
1 .35  

1.00 
1.05 
1 .15  
1 .25  
1 . 3 5  

(a) Hartmann number, M = 1 

- 

Pipe wall to fluid conductivity ratio, y 

0 0.1 0 .5  1 . 0  1 . 5  2 .0  

Average velocity, Vm/Po 

1.22x10-1 1.22x10-1 
1.22 1 :::; 

I 

--------- --------- 
1.22x10-1 1.21x10-1 
1.21 1.20 
1 .20  1 .19  
1 .19  l . 1 8  1 

2.39 
2.33 
2.27 

~ 

----- 
0.992 

.975 

.953 

.928 

0.998 
.998 
.999. 
.999 

~ 

Sensitivity, S 

----- 
0.973 0.951 

.925 .868 

.878 .799 

.834 .740 

Distortion factor, FD 

----- 
0.998 

.999 

.999 
,999 

----- 
0.929 

.819 

.733 

.665 

- - - - - - - . 
2.20x10' 
1.85 
1.60 
1.42 
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0 0.1 0 . 5  1 . 0  1.5 2.0 

0.947 
.a66 
.797 
.738 

0.926 
.816 
.731 
.664 

----- 
0.994 

.995 

.996 

.997 

----- 
0.995 

.996 

.996 

.997 

TABLE I. - Continued. RESULTS FROM EXACT SERIES SOLUTION 

(b) Hartmann number, M = 2 

?ipe outer-to- 
inner radii 

ratio, R 

1.00 
1 .05  
1 .15  
1.25 
1.35 

Average velocity, V,/Po 

I I I ----- ---- 
1.11x10-1 

9.9ox10-2 

1.05 
1.02 

1. 16x10-1 
1.15 
1.15 
1 .14  

Induced potential, WAD/Po 
~ 

1 .00 
1.05 
1.15 
1 .25  
1 .35  

---- - ---- 
2.28x10-1 
2.24 
2.18 
2.12 

- - - - - - - - - 
2.22x10-1 
2.07 
1.94 
1.82 

- - - - - - - - - 
2. 02x10-1 
1.63 
1.37 
1 .19  

Sensitivity, S 

----- ----- 
0.905 

.772 

.676 

.603 

1.00 
1 .05  
1.15 
1.25 
1 .35  

1.00 
1.05 
1 .15  
1 .25  
1 .35  

~~ 

0 .988 
.971  
.950 
.925 

0.969 
.921  
,875 
.832 

Distortion factor, FD 

----- 
0.994 

.994 

.995 

.996 

----- 
0.994 

.995 

.996 

.996 

----- 
0.995 

.996 

.997 

.997 
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TABLE I .  - Continued. RESULTS FROM EXACT SERIES SOLUTION 

?ipe outer -to- 
inner radii 

ratio, R 

1 .00  
1.05 
1 .15  
1 .25  
1 .35  

1.00 
1.05 
1 .15  
1 .25  
1 .35  

1.00 
1 .05  
1 .15  
1 .-25 
1.35 

1 .00  
1.05 
1 .15  
1.25 
1 .35  

(c) Hartmann number, M = 5 

~ 

Pipe wall to fluid conductivity ratio, y 

0 . 1  1 0 . 5  I 1 . 0  I 1 . 5  I 2.0 
~~ ~ ~~ 

Average velocity, V,/Po 

- - - - - - - - - 
8. 11x10-2 
7.03 
6.38 
5.95 

Induced potential, WAD/Po 

1. 62x10-1 
1.42 
1.27 
1.15 

----- 
0.952 

.907 

.864 

.823 

Sensitivity, S 

----- 
0.931 

,854 
.788 
.731 

Distortion factor, FD 

----- 
D.976 

.9 80 

.9 83 

.985 

----- 
0.978 

.982 

.985 

.987 

----- 
0 .911  

.806 

.724 

.658 

----- 
0.979 

.983 

.986 

.988 

- - - - - - - - - 
1.33X10-' 
9.19x10-' 
7.12 
5.86 

----- 
0.892 

.763 

.669 

.598 

----- 
0.980 

.985 

.987 

.989 
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TABLE I. - Continued. RESULTS FROM EXACT SERIES SOLUTION 

0 0.1 

'ipe outer-to- 
inner radii 

ratio, R 

1.00 
1 .05  
1 .15  
1.25 
1.35 

1.00 
1.05 
1.15 
1 .25  
1 .35  

1.00 
1 .05  
1 .15  
1.25 
1.35 

1.00 
1.05 
1 . 1 5  
1.25 
1.35 

0.5 1.0 1 . 5  2.0 

(d) Hartmann number, M = 10  

--------- 
9. 80X10-2 
7.69 
6.40 
5.52 

-_------- 
8. 57X10-2 
5.82 
4.48 
3.68 

--- ------ 
5.84X10-' 
5.55 
5.31 
5.12 

Average velocity, Vm /P 

~~ 

- - - - - - - - - 
1.11x10-1 
1.04 
9. 77X10-2 
9.23 

----- 
0.949 

.936 

.920 

.goo 

----- 
0.955 

.9 59 

.964 

.968 

Induced potential, WAD/] 

----- 
0.958 

.965 

.971 

.975 

----- 
0.961 

.970 

.976 

.980 

- - - - - - - - - 
4. 24X10-2 
2.93 
2.40 
2.11 

--------- 
7.61X10-2 6.85X10-' 
)4.68 13.92 ' 

3.45 2.80 
2.76 2.21 

----- 
0.897 

.798 

.718 

.654 

----- 
0.879 

.756 

.665 

.595 

----- 
0.964 

.974 

.979 

.982 

----- 
0.966 

.976 

.981 

.984 

e 
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TABLE I. - Concluded. RESULTS FROM EXACT SERIES SOLUTION 

'ipe outer-to- 
inner radii 

ratio, R 

(e) Hartmann number, M = 20 

Pipe wall to fluid conductivity ratio, 

0 0.1 0 .5  1.0 1 .5  2.0 I 
Average velocity, Vm/Po 

-------_ 
1.55X10- 
8.59X10- 
6.60 
5.65 

- - - - - - - - 
2.71X10- 
1.30 
8.79X10- 
6.74 

-. 

----- 
0.876 

.757 

.666 

.596 
~ 

--------- 
2.11x10-2 
1.28 
9 . 8 7 ~ 1 0 - ~  
8.36 

--------- 
3. 30X10-2 
2.95 
2.69 
2.51 

Induced potential, WAD/Po 

--------- 
3.18X10-' 
1.62 
1.12 
8 . 6 6 ~ 0 - ~  

- - - - - - - - - 
6.17X10-2 
5.45 
4.91 
4.48 

--------- --------- 
4. 85X10m2 3.84X10-' 
3.24 2.16 
2.48 1.54 
2.03 1.21 

Sensitivity, S 

----- ----- 
0.924 0.909 

.889 .842 

.851 .781 

.813 .726 

----- 
0.892 

.798 

.719 

.655 

----- 
0.935 

.925 

.911 

.893 

Distortion factor, FD 

----- 
0.963 

.977 

.982 

.986 

----- 
0.954 

.969 

.976 

.981 

----- 
0.959 

.974 

.980 

.9 84 

----- 
0.948 

.960 

.968 

.974 
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TABLE II. - NUMBER O F  ADJUSTABLE PARAMETERS IN TRIAL 

FUNCTIONS FOR VELOCITY AND POTENTIAL 

J2 J3 

2 -  
2 -  
2 -  
2 -  
2 -  
2 2 -  
2 2 -  
2 2 -  
2 2 -  
2 2 -  

Hartmann 
number, 

M 

1 
2 
5 
10 
20 
50 
100 
200 
500 
1000 

J4 

- 
- 
- 
- 
- 

Number of 
angular 
terms, 

N 

2 
2 
2 
2 
2 
4 
4 
4 
4 
4 

Number of radial terms in each angular term 

11 

3 
3 
3 
3 
3 
4 
4 
4 
4 
4 

Velocity 

I2 

2 
2 
2 
2 
2 
2 
3 
3 
3 
3 

_____ 

J1 
~ 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

~ 
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TABLE III. - RESULTS FROM VARIATIONAL PRINCIPLE AND RITZ TECHNIQUE 

0 

Pipe outer-to. 
inner radii 

ratio, R 0 . 1  0.5 1.0 1 . 5  2.0 

1 .00  
1.05 
1.15 
1.25 
1.35 

1 .00  
1.05 
1.15 
1.25 
1.35 

1 .00  
1.05 
1.15 
1.25 
1.35 

1.00 
1.05 
1 .15  
1.25 
1.35 

(a) Hartmann number, M = 1 

--------- 
1.22x10-1 
1.22 
1.22 
1.22 

----- 
0.99.8 

.998 

.999 

.999 

Average velocity, Vm/po 

--- ------ 
1.22x10-1 
1.22 
1.21 
1.21 

- - - - - - - - - 
1.22x10-1 
1.21 
1.20 
1.19 

Induced potential, WADDO 

- - - - - - - - 
1.21x10- 
1.19 
1.18 
1.17 

1.76 1.57 1.42 

Sensitivity, S 

.799 .733 .677 
. a34 .740 .665 .604 

Distortion factor, FD 

----- 
0.998 

.999 

.999 

.999 

----- 
0.998 

.999 

.999 

.999 
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TABLE III. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

----- 
0.994 

.994 

.995 

.996 

'ipe outer-to- 
inner radii  

ratio, R 

1.00 
1.05 
1 .15  
1 .25  
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

1.00 
1,05 
1.15 
1.25 
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

----- 
0.994 

.995 

.996 

.996 

RITZ TECHNIQUE 

(b) Hartmann number, M = 2 

Pipe wall to fluid conductivity ratio,  

0 I 0.1 I 0.5 I 1.0 I 1 . 5  I 2.0 

Average velocity, V,/Po 
I 

1.1 5x10-1 
1.13 
1.11 
1.09 

--------- 
1. 13x10-1 
1.10 
1.07 
1 .05  

- - - - - - - - - 
1.12x10-1 
1.07 
1.04 
1 .02  

--------. 
1. l l x l o - l  
1.05 
1.02 
9.9oxlO- '  

----- 
0.988 

.971 

.9 50 

.925 

Induced potential, W A D D O  

I 1 -------- - 
2.22x10-1 
2.07 
1 .94  
1.82 

- - - - - - - - - 
2. 15x10-1 
1.90 
1.70 
1.55 

Sensitivity, S 

----- 
0.969 

.921 

----- 
0.947 

.866 

:,";," 1 :E 
~ 

Distortion factor, FD 

----- 
0.994 

.995 

.996 

.997 

- - - - - - - - . 
2 .02x10-~  
1.63 
1.37 
1.19 

----- 
0.926 

.816 

.731 

.664 

----- 
0.995 

.996 

.996 

.997 

----- 
0.905 

.772 

.676 

.603 

----- 
0.995 

.996 

.997 

.997 
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TABLE ID. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

0.1 0.5 1.0 1 . 5  2.0 

RITZ TECHNIQUE 

----- 
0.952 

.907 

.a64 

.a22 

(c) Hartmann number, M = 5 

----- 
0.931 

.854 

.788 

.731 

Pipe outer-to- 
inner radii 

ratio, R 

1.00 
1.05 
1.15 
1.25 
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

Average velocity, Vm/Po 

8.56 7.33 6.38 5.76 
8.42 6.97 5.95 

Induced potential, WAD/Po 

----- 
0.975 

.977 

.980 

.9 82 

--------- 
1. 62x10-1 
1.42 
1.27 
1.15 

Distortion factor, FD 

0.976 
.979 
.982 
.985 

----- 
0.977 

.982 

.985 

.987 

----- 
0.911 

.806 

.724 

.658 

----- 
0.978 

.983 

.986 

.9 88 

- - - - - - - - 
1.33X10- 
9.19x10- 
7.12 
5.86 

----- 
0.891 

.763 

.669 

.598 

----- 
0.979 

.984 

.987 

.989 
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TABLE III. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

0 I 0.1 

'ipe outer-to- 
inner radii 

ratio, R 

1.00 
1 .05  
1.15 
1.25 
1.35 

1.00 
1.05 
1 .15  
1 .25  
1 . 3 5  

1 .00  
1 .05  
1.15 
1 .25  
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

0.5 1.0 1 .5  2.0 

RITZ TECHNIQUE 

(d) Hartmann number, M = 10 

Pipe wall to fluid conductivity ratio, 7 

--------- 
5. 83X10-2 
5.54 
5.31 
5.12 

- - - - - - - - - . 
l . l l x l o - l  
1 .04 
9. 77X10-2 
9.22 

----- 
0.948 

.936 

.919 

.goo 

----- 
0.954 

- 9 5 8  
.963 
.968 

Average velocity, Vm/Po 

4. 24X10-2 
2.93 
2.40 
2 .11  

Induced potential, WADDO 

----- 
0.957 

.964 

.970 

.975 

----- 
0.960 

.970 

.976 

.980 

-- ------- 
3. 90X10-2 
2.59 
2.11 
1.86 

Sensitivity, S 

0.914 0.896 

----- 
0.933 

.893 

.853 .780 .718 

.814 .726 .654 

Distortion factor, FD 

----- 
0.963 

.973 

.979 

.9 82 

----- 
0.878 

.756 

.665 

.595 

----- 
0.965 

.976 

.981 

.984 
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TABLE III. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

0 

~~ 

Pipe outer-to- 
inner radii 

ratio, R 0.1 0 .5  [ 1.0 I 1 .5  1 2.0 

1.00 
1.05 
1.15 
1.25 
1.35 

----- 
0.924 

.a90 

.852 

.814 

1.00 
1.05 
1.15 
1 .25  
1.35 

----- 
0.909 

.a43 
- 7 8 1  
.727 

1.00 
1.05 
1.15 
1.25 
1.35 

1.00 
1.05 
1.15 
1.25 
1 .35  

RITZ TECHNIQUE 

(e) Hartmann number, M = 20 

D.937 
0.935 

.925 

.911 

.893 
~ 

----- 
0.940 

.947 

.955 

.961 

---- - ---- 
2.11x10-2 
1.28 
9 . 8 7 x 1 0 - ~  
8.36 

. 

Induced potential, WAD/%', 

--------- 
1.78X10-2 
1.02 
7 . 7 8 ~ 1 0 - ~  
6.61 

Distortion factor, FD 

----- 
0.948 

.961 

.969 

.974 

----- 
0.954 

.969 

.976 

.9 81 

----- 
0.893 

.799 

.720 

.655 

----- 
0.959 

.974 

.980 

.984 

-------- .  
1.55X10-' 
8.59X10-' 
6.60 
5.65 

- - - - - - - - - 
2.71X10-' 
1.30 
8.79X10-' 
6 .74  

0.876 
. 7 5 8  
.666 
.596 

0.963 
.978 
.983 
.986 
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1 .5  
- 

2.0 

----- 
0.968 

.983 

.987 

.990 

----- 
0.972 

.985 

.989 

.991 

TABLE III. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

RITZ TECHNIQUE 

(f) Hartmann number, M = 50 

?ipe outer-to 
inner radii 

ratio, R 

- 

Average velocity, Vm/l 
0 

- - - - - - - - - 
4 . 2 2 x l 0 - ~  
2.01 
1.45 
1 .21  

1 .00  
1.05 
1.15 
1.25 
1.35 

1.00 
1.05 
1.15 
1 .25  
1.35 
.. 

1 .00  
1 .05  
1.15 
1 .25  
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

--------.  
3.46X10-' 
1 .64 
1.20 
1.01 

--------- 
8. 01X10-3 
4.37 
3.18 
2.60 

--------- 
5 . 4 8 ~ 1 0 ~ ~  
2.69 
1.93 
1.58 

Induced potential, WAD/Po 

- - - - - - - - - 
2.43X1 O-' 
1.87 
1.54 
1.32 

----- 
0.928 

.924 

.913 

.896 

--___ 
0.934 

.946 

.9 56 

.964 

. ~~ 

--------- 
1. 48X10-2 
7 . 8 4 ~ 1 0 - ~  
5.47 
4.26 

--------- 
7. 60X10-3 
3.23 
2.11 
1.59 

-- 
6.12X10-' 
2.50 
1.61 
1.21 

--------- 
1.oox10-2 
4 . 5 7 ~ 1 0 - ~  
3.04 
2.31 

Sensitivity, S 

----- 
0.915 

.851 
.859 .787 .725 
.820 1 .732 I .659 

Distortion factor, FD 
~~ 

----- 
0.950 

.969 

.977 

.982 

----- 
0.961 

.978 

.984 

.988 
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TABLE III. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

_ _ _ _ _ _ _ _ -  
5 . 7 8 ~ 1 0 ~ ~  

2.92 
3.80 

2.43 

RITZ TECHNIQUE 

--------- 
2 . 7 3 ~ 1 0 ~ ~  

8 . 9 3 ~ 1 0 - ~  
1.28 

7.13 

(g) Hartmann number, M = 100 

ipe outer-to 
inner radii 

ratio, R 

Pipe wall to fluid conductivity ratio, y 

7 0 . 1  I 0.5 I 1.0 I 1 .5  I 2.0 

Average velocity, Vm/po  

1 .00  
1.05 
1.15 
1 .25  
1 .35  

--------- 
1 . 2 3 ~ 1 0 ~ ~  
5 . 3 9 ~ 1 0 - ~  
3.83 
3.15 

Induced potential, Wm/Po 

-____-- - -  
1. 08X10-2 
7 . 0 8 x 1 0 - ~  
5.38 
4.40 
- 

----- 
0.932 

.932 

.921 

.904 

----- -___  
5 . 1 2 ~ 1 0 - ~  
2.33 
1.55 
1.18 

- .  

--------- 
3 . 1 1 ~ 1 0 - ~  

a.20x10-4 
1 .27  

6.15 

1 .00  
1.05 
1.15 
1.25 
1.35 

- - - - - - - - - 
2 . 2 4 ~ 1 0 - ~  
8 . 7 4 ~ 1 0 - ~  
5.58 
4.17 

----- 
0.910 

.a11 

.728 

.661 

Sensitivity, S 

----- 
0.936 

.906 

.866 

.a25 

----- 
0.926 

.a57  

.792 

.735 

----- 
0.893 

.768 

.673 

.601 

----- 
0.982 

.991 

.993 

.995 

1 .00  
1 .05  
1.15 
1.25 
1.35 

Distortion factor, F,, 
~ 

D. 925 ----- 
0.937 

.954 

.965 

.972 

1.00 
1.05 
1.15 
1 . 2 5  
1.35 

----- 
0.972 

.986 

.990 

.992 

----- 
0.978 

.9 89 

.992 

.994 

----- 
0.960 

.979 

.985 

.989 
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TABLE III. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

0 I 0.1 1 0 .5 I 1.0 

Jipe outer-to- 
inner radii 

ratio, R 

1.00 
1.05 
1.15 
1.25 
1.35 

. .. 

_ _  

1.00 
1.05 
1.15 
1.25 
1.35 

- 

.~ 

1.00 
1.05 
1.15 
1.25 
1.35 

1.00 
1.05 
1.15 
1.25 
1.35 

1 .5  2 . 0  

RITZ TECHNIQUE 

--------- --------- 
1.25 2 . 2 7 ~ 1 0 - ~  3.50 8 . 2 9 ~ 1 0 - ~  

8.99x10-4 2.37 
7.21 1.87 

(h) Hartmann number, M = 200 

--------- - -_-_____ 
1 . 9 5 - r  4 . 7 2 ~ 1 0 - ~  3 . 3 5 ~ 1 0 - ~  

1.34 9 . 8 3 x 1 0 - ~  
1.08 a. 05 

____-  
0.948 

.914 

.a72 

.a29 

~ 

----- 
0.936 

.862 

.795 

.737 
~ 

-- ------- 
4 . 2 6 ~ 1 0 - ~  
2.36 
1.67 
1.31 

----- 
0.939 

.942 

.930 

.912 

0.972 
.9 a7 
.992 
.993 

----- 
0.945 

.964 

.975 

.981 

0.983 
.992 
.994 
.995 

Distortion factor, FD 

----- 
0.919 

.814 

.730 

.663 

----- 
0.900 

.771 

.675 

.602 

----- 
0.987 

.993 

.995 

.996 

~ 

----- 
0.989 

.994 

.996 

.997 
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TABLE 111. - Continued. RESULTS FROM VARIATIONAL PRINCIPLE AND 

0 

70 

0.1 0 .5  I 1.0 1 1 .5  1 2.0 

ipe outer-to- 
inner radii 

ratio, R 

-__- -  
0.965 

,921  
.a76 
. a33 

1 .00  
1 .05  
1 .15  
1 .25  
1 .35  

----- 
0.946 

.866 

.798 

.739 

1 .00  
1 .05  
1 .15  
1 .25  
1.35 

1.00 
1 .05  
1 . 1 5  
1 . 2 5  
1.35 

1 .00  
1 . 0 5  
1 . 1 5  
1 .25  
1.35 

RITZ TECHNIQUE 

(i) Hartmann number, M = 500 

Average velocity, V,/Po 

--------- 
5 . 4 5 ~ 1 0 - ~  
2.46 
1.66 
1.30 

---- ----- 
1 . 0 4 ~ 1 0 - ~  
4 . 7 1 ~ 1 0 - ~  
3.13 
2.39 

----- 
0.952 

.955 
,941  
,924 

- .  

Induced potential, W"P0 

--------- 
2 . 9 3 ~ 1 0 - ~  
1.09 
6 . 9 1 ~ 1 0 - ~  
5.13 

Sensitivity, S 

- - - - -  
0.989 

.995 

.996 

.997 

----- 
0.994 

.996 
,997 
,998 

2.34 
1.73 

----- 
0.926 

.817 

.732 

.664 

----- 
0.995 

,997 
.998 
.998  

----- 
0.906 

,773 
.677 
.603 

0.995 
.997 
.998 
.998 

-----I. ..... ,.---,-.,,,111111, I,., I I I I 11111 II. 111111 1111 1111 1 1 1 1 1 1 I I  111 



TABLE M. - Concluded. RESULTS FROM VARIATIONAL PRlN(:IPl,E AND 

0 

- 
Pipe outer-to- 

inner radii 
ratio, R 

1 .00  
1 . 0 5  
1 . 1 5  
1 .25  
1 .35  

0.1 0 .5  1.0 1 . 5  2.0 

1 .00  
1 .05  
1.15 
1 . 2 5  
1 .35  

I 

1 1 .35  

1.00 
1 .05  
1 .15  
1 .25  
1 .35  

_ _ _ _ _  
0.972 

.924 

.877 

.834 

$LIT2 TECHMQUE 

----- 
0.949 

.868 

.799 
,740 

(j) Hartmann number, M = 1000 

--------- 
1 . 6 4 ~ 1 0 - ~  
6 . 6 7 ~ 1 0 - ~  
4.39 
3.38 

----- 
0.963 

.963 
,948 
.928  

----- 
0.969 

.9  86 

.993 

.998 

4verage velocity. Vm Po 

Induced potential, WAD Po 

Distortion factor, FD 

- _ - _ _  
0.997 

.997 

.998 
,998 

----- 
0.997 

,998 
.998 
,999 

----- 
0.928 

,818 
.733 
.665 

- _ -_ -  
0.908 

,774 
,677 
.604 

_ _ _ _ _  
0 .997 

.998 

.999 
,999 

-_ - - -  
0.997 

.998  

.999 
,999 
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