
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19710023069 2020-03-23T16:20:08+00:00Z



X-514-71-312

NASA TM X t , 
fo 5 6 6 3

E

t
ATTITUDE DETERMINATION AND

SENSOR ALIGNMENT VIA WEIGHTED

LEAST SQUARES AFFINE TRANSFORMATIONS

PAUL B. DAVENPORT

AUGUST 1971

^^,^2^29 3031^^

y
►̂
 R 

A^
6Ig>> Q,

04SA s FI VED

^ at/taroC,  
6'1111	 2^^^0

9LS^^^^^

--- GODDARID SPACE FLIGHT CENTER
GREENBELT, MARYLAND

-5-100 	 (ACCESSION 'NA8ER)	 (TH U)f
a

• i	 (PAC, S)	 —^ ----^L_

1/' ^nr\/`nJ	

(CODE

v
SA R OR TMX OR AD NUN, R)Q

_
 (NA	

(AT ORY)



AAS NO. 71-396

ATTITUDE DETERMINATION AND

SENSOR ALIGNMENT VIA WEIGHTED

LEAST SQUARES AF1i ? TRANSFORMATIONS

Paul B. Davenport

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryiand

v

AAS/A IAA
ASTRODYNAMICS SPECIALISTS CONFERENCE 1971
FT. LAUDERDALE, FLORIDA
AUGUST 17 - 19 1971



mi mmING PAGE BLANK NOT MINIM 	 2

ATTITUDE DETERMINATION AND

SENSOR ALIGNMENT VIA WEIGHTED

LEAST SQUARES AFFINE TRANSFORMATIONS

Paul B. Davenport

Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

The position and orientation of a vehicle, sensor, actuator, etc., relative

to a fixed set of axes (another vehicle, sensor, etc.) may be represented mathe-

matically by an affine transformation (linear transformation plus a translation).

Syml;olically, Z = MX + V, where M is Dui mxn matrix, V and Z are mxl column

vectors, and X is an nx1 vector. This matrix equation also represents any linear

relationship between known inputs X and measured outputs Z; e.g., if X is the

first n powers of a scalar x then each component of Z is a polynomial in x. The

weighted least squares estimate of M and V is discussed assuming that various

measurements Z are given (along with the input X). Although there are m(n+1)

parameters to be estimated, a simple weighting tunction allows a solution by

inverting only an nxn matrix. This case, including constraints on M (orthogonal,

rotation, symmetric and skew-symmetric) will be examined in detail.
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ATTITUDE DETERMINATION AND

SENSOR ALIGNMENT VIA WEIGHTED

LEAST SQUARES AFFINE TRANSFORMATIONS

MOTIVATION

Many problems of navigation and guidance (sea, air, space) can be stated

fundamentally as the determination of the orientation and/or position of an axis

or axes relative to another set of axes (e.g., coordinate axes). The very heart

of navigation is to determine the attitude and/or position of a vehicle so that

the vehicle may be headed toward (or held into) a desired position and/or ori-

entation. To perform these tasks numerous sensors and actuators are usually

employed. This then requires the knowledge of the position and orientation of

each device relative to the vehicle axes. Thus, there is the dual problem of

determining the location of each instrument axes relative to the vehicle axes so

that the orientation and/or position of the vehicle axes relative to some under-

lying coordinate axes riay be ascertained.

The first problem (instrument alignment and calibration) is usually per-

formed once or rather infrequently under laboratory conditions whereas the

attitude and/or position evaluation is performed in the "field" by the navigator

(human or computer) . For precise missions of long duration the "navigator"

may be required to perform instrument alignment and calibration calculations

in addition to the attitude and/or position determinations. Gyro drift, thermal

bending, stresses, fatigue, etc. may combine to produce unacceptable tolerances.

In this event, it would be convenient if the navigator's prior skills (computer 	 I

algorithms) for determining orientation and/or position could be applied to the

1
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I	 alignment problem. Here, a mathematical model anti techniques will ue pre-

sented which apply to a large class of alignment and calibration problems, atti-

tude determination, and position determination. The development is via matrix

algebra so the results apply to any vector space of arbitrary finite dimension.

0	 THE MODEL

Regardless of the instrumentation, physical vector quantities are generally

being sensed — either directions (star, sun, horizon, etc.) or multiple scalar

quantities which collectively define a vector (triads of magnetometers, gyros,

accelerometers, etc.). Thus, the output of many sensors or actuators can be

represented by mxl matrices (vectors) of components (or direction cosines) in

an m-dimensional Euclidean space. Such m-tuples will be denoted as Z. Lik<,-

wise, the components of the physical vector (magnetic field, sun direction, etc.)

are known relative to some underlying coordinate system. These vectors will

be denoted by the vector X. The generalized problem of navigation could then

be stated as the determination of the relationship between X and the measure-

ment vector Z. For most practical systems this functional relationship can be

expressed as

Z - MX+V
	

(1)

where M is an mxn constant matrix and V is an mxl fixed matrix (vector).*

X is an nxl vector which may be just the components of the physical vector

being measured (in which case m = n) or more generally X may be an n-tuple

whose entries are any known functions of the components, such as powers of

No distinction is made in notation between vectors and matrices except that the latter part of
the alphabet (starting with T) will be reserved for vectors.

2

k

r

ti



E

t

5

the components. As a special case X might be a scalar and M the coefficients

of a polynomial.

The above relationship is known as an affine transformation (linear trans-

formation plus a translation). It includes as special cases; linear transforma-

tions, V -- 0; and translations, M - I. If M is non-singular, then it has the

geometric interpretation of defining the orientation of one coordinate system

relative to another.	 This includes a rotation of axes. reflections, non-orthogonal

axes f' -,hearing), and a different scale factor for each component. In some ap-

plications additional constraints may be placed upon M and V. For example, 	 4

attitude determination (orientation of rigid body with one point fixed) requires

to be a rotation matrix (orthogonal with determinant of plus oneM	 (	 g	 P	 ) and V be

zero. Equation (1) also models a system of m single axis devices, each with

different scale factors, located non-orthogonally from the center of the vehicle.

Furthermore, there are no restrictions of smallness, i.e., the displacements

may be large.

When M, V, and X are given it is trivial to compute Z (the coordinates

relative to a vehicle, a conglomerate of instruments, etc.) so as to point a

sensor or actuator as desired. A more pertinent problem to the navigator,

however, is to determine M and/or V given the local measurements Z (con-

taining errors) and the vectors X. In this case, (1) can be considered as a sys-

tern of linear equations containing m(n + 1) unknowns (the elements of M and V).

Thus, if n + 1 independent vectors X k and the corresponding measurements Z 

(each with m independent components) are known M and V are determined

uniquely. This is not generally the case, however; one usually has insufficient

data or an over-determined system with inconsistent equations due to

I
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measurement errors. The classical approach to this dilemma is to seek an

"estimate" of the parameters which is best in some sense. Here, the estimate

which minimizes the weighted sums of squares of the vector norm will be dis-

cussed, i.e., the minimization of

f (M, V) _ L [zk - ( MXk + V )] T Pk [ Zk - ( MXk + V ) ]	 (2)
k=1

where the Pk are positive definite symmetric weight matrices (e.g., the variance-

covariance of Z k ) Indicating the relative ;.accuracy of Z k . The different Z k may

represent measurements from different types of instruments or readings from

the same instrument at different times. The sum nation is taken over all such

measurements P. Expanding (2), bearing in mind that P kT = P k , and collecting

terms gives:

f (M, V) -	 77T P 77 - 277T P Myy + M y T Pk Myy

(3)

+ VT p  V - 2 Zj Pk V + 2 VT "k M Xk ] .

The summation indices are hereafter omitted for convenience. Unless otherwise

a
stated the summation ranges over all measurements.

a

THE CONDI'T'ION EQUATIONS

The necessary conditions that f (M,V) have a minimum are

of
am..

1J

(4)

of

rt

4
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for all i and j (i = 1, 2, ..., m; j = 1, 2, ..., n). Formally, this results into

m(n + 1) linear scalar equations in the m(n + 1) unknowns (ml j and v,). A more

elegant and informative procedure is to retain the matrix notation and express

the resulting conditions as matrix equations rather than a large number of scalar

equations. To facilitate this, the following definition is made; If h is a scalar

function of an mxn matrix Q with elements q,, then the "gradient" of h(Q), de-

noted as Vh(Q) or simply Vh, is the mxn matrix with elements (Vh)i j given by

ah
(Vh )i j = a q,

The gradient of several elementary scalar functions (which are adequate for the

present discussion) are given below:

Vh(U) = W, i-f h(U) = WT U = t1 T W, W and U nx1 matrices

Vh(Y) = (P T + P)Y, if h(Y) = Y TPY, P nixm, Y mxl

Vh (N) = YU T , if h (N) = Yr NU , N mxn

1,7 h(N) = (PT + P)NUU T , if h(N) = (NU)TPNU.

These identities follow directly from the definition and the rules of matrix

multiplication. For a function of several matrices, e.g., h(P,Q) the notation

V (P)h denotes the gradient of h with respect to P only. In other words, V (P)

operates on h as if h were a function of P alone.

In terms of the above definitions, the condition Equations (4) can be written

as

V(M)f = 0,

V (V) L = 0

Performing the indicated operators on (3) and equating to zero yields the fol-

lowing simultaneous matrix equations:

5
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LO 
P k M %k "kT L Pk Zk V ♦ L Pk V yT - 0

8

(5)

L Pk V - L Pk Zk + L Pk M Xk	 0 .

The E 4uations (5) still represent m (n + 1) linear equations, but offer a

notational advantage over those implied by (4) in that M and V appear explicitly

rather than their components. Apparently, generalized techniques for solving

such systems are non-existent except to re-write the equations as a single

matrix equation of the form CY = W where Y and W are column vectors of di-

mension m(n + 1). A convenient notation exists for accomplishing this, but the

numerical solution may present a prodigious amount of computation even for

relatively small n and m.

This last representation of the problem (CY = W) could have also been ob-

tained by using classical linear estimation results rather than the above approach.

(1) can be re-written for each observation as Z k - C k Y, where the matrix C  is

a function of X k and Y is a column vector composed of the unknowns m ,, and v

in some order (e.g., the columns of M plus V concatenated). If the classical

least squares conditions are applied to the matrix equation representing all such

observations (assuming each vector observation is independent) then one obtains

the same matrix equation as that derived from re-writing (5) in the form CY = W.

It is not the intent here to do this explicitly, but to appeal to well-known least

squares results to insure that a solution to (5) exists. The development leading

to (5) was selected since it gives more insight into the nature of the solution and

is more amenable to constraints which will be considered later.

6
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THE ::ASE OF AN EXPLICIT MATRIX SOLUTION

The complexity of (5) can be attributed to the generalized statistical model

rather than the geometrical model. .L the weight matrices are of the forn)

Pk	pk P for all k (P a fixed positive definite matrix and Pk a positive scalar)

then (5) may be solved explicitly in a closed simple form. Under these condi-

tions (5) reduces to:

	PMAl + PVX^	 PBo

PMXO + SPV = PZo

where

AO	
E Pk Xk 

XT BU =L	 Pk Zk 
V

XO	 L Pk Xk .	 ZG	 L Pk Zk '

and

S = L Pk

Since P was defined to be non-singular (G) is equivalent to

MA = B,

(S)

V - s ( Zo - MX0),
1

(6)

(7)

where

A	 Ao - I Xa Xo	 B = Bo - I Zo XoT .
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Hence, if P , = p k P, the questions of existence, uniqueness, and the solution

itself depend only on the simple matrix equation MA = B where A is a corstant

:ixn symmetric matrix and B is a fixed mxn matrix.

If A is non-singular, then (8) has a unique solution

M = BA-1

1
V z: s(Z0 -Mx0)

which minimizes (2) (the sufficiency of (8) for a minimum follows frorn the

nature of the function and linear least squares theory) . The least squares trans-

latien is given by M = I (the identity matrix), V= Z 0 ; whereas the least squares

linear transformation is M = B 0 A -1 and V = 0.

SEQUENTIAL SOLUTIONS

A familiar identity from recursive least squares

	

^C - U WT	 = C. 1 (I - b U WT C- ') 	 (9)

with

1

	

1	 WT C-1 U _ a

may be employed to examine three different models (full affine, translation only,

acid lines r transformation only) with a single matrix inversion. If V denotes

the vector of the least squares translation, L the matrix of the least squares

linear transformation, N and V the matrix and vector of the least squares affine

transformation, then

V, = s ZO

s

i

a



L = Bo AO- t

i = XoA-IXo -Sf

A- t = AO t (I - r X0 0 Ao

M = BA- l ,

L - r (L Xo - Z o ) XoT AO 1

1
V	

S 
( Z o — M Xo ) .

The above formulas imply the existence of A O t wider the earlier assumption

that A was non-singular. This is indeed the case, but the converse (A- 1 exists

if A- 1 exists) is not true if X oT Ao 1 X o - s.

The identity (9) may also be applied to a recursive solution of (8). If a

superscript is added to each of the intermediate quantities in (7) to denote the

summation limi., e.g.,

_	 F
Ao - L Pk Xk XkT

k=1

then

Ae = Ae-t + p P X P X PT , Bo = Bp -t + PP	Ze Xj

XfX^f- 1 + PP XP	 ze = Zo- 1+ 	 PP ZP

SP = SP-1  + 
P P

LL

Therefore,

9
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(AoQ -1 =	 Q1 -1 (	 _	 T	 Q-1 -1)	 (-Af )	 r I	 q X f X P  (AOF-

where

	

q	 Xr (Ao - 1 ) -1 X f + I 'pt

provided (A Fo -1 ) - 1 exists.

A SINGULAR CASE

When ti.:e matrix A is singular, then th-ore is insufficient data to define the

model uniquely. For some applications. however, any solution which firs the

data might be adequate. Since A is symmetric, there exists an orthogonal

matrix Q such that A = Q DQ -1 where D is a diagonal matrix with entries d^

(j = 1, 2, ..., n). Eq. (8) can then be written as M' D = B' with M' = M  and

B' = B Q. Let r denote the number of non-zero elements of D and assume that

Q and D are such that these non-zero elements occupy the first r columns (rows)

of D. The above equations then give

(j	 =	 1, 2,	 . . .,	 r)

with m; ; arbitrary for j = r + 1, ..., n. The consistency of the solution can be

justified by appealing to classical linear least squares estimation theory. To be

consistent requires b' , = 0 U = r + 1, ..., n), i.e., the last n -r columns of B'

are zero.

Let D+ be a diagonal matrix with entries d^ = 1/d j (j = 1, 2, ..., r) and

d j+ = 0 for j = r + 1, ..., n. The above solution can then be expressed as:

10
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4W	 ,0^

	

M Q	 M'	 B' D + + N ,

where N is an mxn matrix whose first r columns are zero and the last n - r

columns are : arbitrary vectors . Solving for M yields

M = BQD + Q-1 + NQ-1

= BA - + NQ-1

where A + Q D+Q- 1 is the pseudo-inverse of A 19 1 . Denoting the non-zero

columns of N as N r+1 , ..., Nn and the corresponding columns of Q (the eigen-

vectors associated with the zero eigenvalues of A) as Q r + I . ..., Qn , then

N Q -1 - ^_ N J Q T (summed from r+ 1 to n) .

Analogous to the least squares vector of least norm, one may cbtain the

unique least squares matrix of least norm (norm of M defined as tr ( M T M) _

tr (M M T ), tr denotes " trace of") by letting N be the null matrix. On the other

hand, since M may represent a linear transformation, a solution which is

"closest" to the identity transformation may be desirable, i.e., minimizes the

N	 norm of I - M when M is square. This solution is obtained by setting N J = Q j

U = r + 1, ..., n). Both of these special solutions are easily verified by using

the well-known properties of the pseudo-inverse and trace fu Aon.

The vector V is always given by the second equation of (8) whether A is

non-singular or not. Thus, in the singular case
z	 ..

V	 g l ZO 	B A+ X0 	 (QjT X0 ) Nj

(summation from r + 1 to n). If QT Xo is non-zero for some j, then the arbi-

trariness of N may be used to eliminate V instead of imposing the above con-

ditions on M.

11
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THE GENERAL SOLUTION

Thus far, the solution to the simultaneous matrix equations (5) , which

provides the minimum of (2) , has been exhibited under all conditions for the

special weighting P k = p k P. If each vector measurement Z k is statistically in-

dependent and the variance-covariance matrices of each Z k differ only by a

multiplicative constant then these solutions provide the minimum variance solu-

Lions. This is the situation when all vector measurements relate to the same

type of instrument (whose variance-covariance matrix varies only by a scalar)

or when each vector measurement is composed of m independent scalar measure-

ments with the same variance. In the general case, one might forsake a mini-

mum variance requirement in order to obtain a simple solution by assigning a

single weight to each vector. In many instances this may be an adequate solution

or serve as an initial approximation for an iterate scheme.

As noted previously, the computational complexity of the problem soars

when the general weight is considered. The dimension of the matrix to be in-

verted is increased by a factor of m which enlarges the computations by a factor

of order m 3

Should accuracy considerations dictate the additional effort, however, there

is available notation for deriving the larger system of linear equations in matrix

form. This is via the direct product (also tensor or Krcnecker product) of

matrices. If A is an mxn matrix and B a m'xn' matrix, the direct product of A

and B, in that order, is defined by the partitioned matrix

i

12
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1 B a12 B	 B \

1

	

a21 B st 22 B	 a 2 B

A0X B	 ^.

	

m 1 B am 2 B	 amn B

A `^ B is an (mm )x(nn ) matrix. For properties of AQ B when A and C are

square see 171 or 1 8 J . For an mxn matrix C, let C denote the (mn)xl column

vector k^ hose components are the elements of C ordered by ro%% s ( c k = c i ;

k = j	 ( i - 1)n: i = 1. 2, ... , m : j = 1, 2. ... , n) . For an mxl matrix (vector)

V. V V With these definitions. it is straightforward to verify that if C = ANB

then

C - (A (D BT ) N

In terms oI the above notation. the conditions (5) may be expressed as:

F M + G V = Bo,

GT M + PV	 Y,

where

F	 Pk O X^, XkT , G	 Pk O X,
(10)

Bo -	 Pk Zk "{:	 Z0 - L Pk Zk

and

P - L Pk

13
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Lancaster I GI discusses this notation as well as the direct solution of matrix

equations siniilur to that of (5) for V	 0.

Since P is non-singular (the sum of' positive definite matrices)

V	 P 1 (Zo - GT M)

and M must satisfy

(F -- G P° 1 GT ) M	 Bo - G P - 1 Zo .

The form of these last two equations is similar to that o: the simple weight

case (8) , but the order of the coefficient rr c.rix may be considerably higher.

.ks with the simple weight case, the translation, linear transformation, and

lull affine models are separable by a generalization of (9). Explicitly.

(F - GP-1 GT )-1 - F-1 (I - G K G T F-1 ) ,

w ith

P + K- 1 = GT F" 1 G,

provided the indicated inverses exist.

CONSTRAINTS

In some applications one may have a priori knowledge about the nature of M

and desires to restrict or constraint M to be a particular type of matrix. One

important application is where M is lmown to be the matrix of a rotation (ortho-

gonal with determinant of + 1) which defines the orientation of a rigid body.

Other types of special matrices which will be discussed are: orthogonal

(M T M = 1), symmetric (M T -NI = 0) , and skew-symmetric (M T + M = 0) .

14
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The definitions of the special matrices aix)ve are all expressable as a

number of scalar equations of the type g i i (M) = k; I (k, i constant) . Thus. all

of the constraints may be handled by the method of Lagrange. This requires

the minimization of

h (M, V) =	 f (M. V) + g (M) ,

where f(1\1. V) is as in (2) and

g ( M ) ' E X i! g i i
(summed over all scalar constraint equations). The Xi i are the Lagrangean

multipliers to be determined and as the notation implies are considered as ele-

ments of an unknown matrix A.

The necessary conditions for the constrainted minimum in terms of the

gradient defined earlier are now

V (M) h = V (M) f+ V (M) g_ 0,

V(V)h	 V(V) f	 0.

The results of performing the operator are then the same as (5) with the terms

associated with V (M)g added to the first equation.

The gradient operator can be readily applied to the function g(M) for each

of the special matrices being considered. The results are:

Symmetric:	 gii = mi i - m i i , Vg = - 2 A ,

where

AT = - A ;

^l

r

15
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Skew-symmetric: gi i = m ,, + MI) ,	 g	 2 A

where

AT = A

n
Orthogonal:	 gi i=	 M  i m k i , V g = 2 MA

k = I

where

AT - A.

The rotation matrix is ,the same as the orthogonal case with one additional scalar

constrain, namely d(M) = 1 (d(M) denotes determinant of M). Since orthogonal

solutions will include the rotations, the rotation case will be considered as a

special case of the orthogonal one rather than by adding another Lagrange

multiplier.

ORTHOGONAL AND ROTATIONAL SOLUTIONS

The resulting matrix equations for the orthogonal case are:

Pk M Xk Xk + L Pk V XkT f M A = Bo

LP 
k M Xk 

+ P V - ZO.

(.1)

MT  	 = 1,

AT = A.

where B o , Z o , and P are defined by (10). M and A are square matrices to be

determined so that all four matrix equations in (11) are satisfied.

The Equations (11) are quite complex and owing to the non-linearity of two

of the equations cannot be handled by any of the techniques used heretofore.

16
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Fortunatelv, an explicit solution does exist for a simple weighting which allows

insight, into the geometry of the problem as well as the effects of weighting.

When a single weight is associated to each vector, i.e., Pk - pkI (Pk positive

and I the identity matrix) then the first two equations of (11) can be written as:

M (Ao + A) + V XT	 Bo

MX0 +sV	 ZOI

with AO, X o , and s given by (7). Solving the second equation for V and substi-

tuting this into the first equation yields

M(A + A) = B,	 (12)

where A and B are defined as they were in (S). From (12) one deduces that

o; .

BT B = ( A + A) MT M(A + A) = (A + A) 2

since A + A is symmetric and M T M = I. Letting H = (A + A) gives

H2 = BT B,

(13)

M It	 B.

These last two equations show the dependence of the solution on the square

root of the matrix BT B. If H is a non-singular symmetric matrix such that

H2 == BT B, then A = H - A is symmetric and

M - BH-1	(14)

is orthogonal for M T M = H -1 BT B1-1 -1 = H " 1 H 2 H_ 1 = I. Thus, the M and A just

•	 defined afford solutions to the Equations (11) when P k = pk I for all k.

17
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The conditions imposed on If thus far are not enough to insure uniqueness,

e.g., - H is also a non-singular symmetric square root of 11 T 13 if 11 is. Further-

more, the condition equations in (11) only assure that the extremal values of f

are a subset of all solutions. In order to establish the true minimum, the effects

of the solutions on the value of f must be examined.

If U is any Column vector then U TU = tr(UU T ). From this, it is straightfor-

ward to show that

f (M, V) = t r (C) + t r (M A M T ) - 2t r (M BT)

where C is a constant matrix independent of Al. Since tr(A1A11 T ) -- tr(11 T MA) =

tr(A) when M T M = I, the above expression may be written as:

f(M.V) - tr(A+C)- 2tr(M BT ) .

Hence, the minim .m of f is provided by the maximum of tr(MB T ) which is equal

to tr(II) for AM B. This establishes that the desired minimum is obtained

when 11 is the symmetric square root of B T B with largest trace.

Now it is well-known that for an arbitrary square matrix B that B T B is

positive semidefinite . In fact, a classical result of matrix algebra states that

any square matrix B can be factored as in (13) with M orthogonal and 11 a unique

positive semidefinite matrix (polar decomposition, see 151 or 1 8] ). From the

discussion above, it is then clear that this choice of H provides the desired

minimum of the function f for the orthogonal case. If B is singular, however,

then any square root of BT B is also singular and the solution (14) is invalid (the

orthogonal part of the polar decomposition is not unique) . The construction of

the solution for the singular case actually constitutes a proof of the polar
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decomposition theorem. However. since We theorem does not cover the rota-

tional case even wilen B is non -singular, a co:istruetion which includes bath the

singular and rotatio- ► al cases is given below.

Since BT 13 is symmetric and positive semidefinitc. there i p an orthogonal

matrix N such that N - 1 BT BN - D' where I)' is a diagonal matrix with non-

negative entries d:, (i = 1, 2. ..., m; m the dimension of 13). The ith colurin

of N (denoted as N,) is a unit eigenvector of B T 13 corresponding; to the eigenvalue

d < c . Let D be a diagonal matrix such that D 2 D ' (d i 21 = d, ^). then the above
jW

matrix equation implies

(B N I ) T B N i 	= d ,2 i	
= 

0,	 for i :; ,j

and

I B N 12	 d 2.
1	 11

Hence, a complete set of orthonormal vectors Q, (i = 1. 2, - .., m) can be con-

strutted so that I3N , - d, , Q, - Let Q denote the orthogonal matrix obtained by

juxtoposing; the column vectors Q, in proper order so that BN = QD, thus

B = QDN - I . Now, set

M	 QN-1 ,

(15)

11	 NDN"1,

and with the definitions above it is easy to verify that M and H satisfy the Equa--

tions ( 13).* Note also that Q -1 BB TQ D 2 D', hence, the d' , i are also eigenvalues

of BB  with eigenvectors Q i .

Another polar decomposition is B = SM wi th S = QDQ-1

19
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The trace of I1, as given in (15), is just the sum of the entries d, i of D

which is a square root of D'. 'Therefore. the orth-)gonal least squares solution

is obtained by taking all positive square roots in the definition of D. If the re-

sultiag M also has a positive determinant then M is also the rotational least

squares solution. This will be the case when d(B} = d(D)d(1%1) > 0. If d(B) 	 0

then th; least squares rotation is obtained by changing the sign of the smallest

d i , in the definition of D, i.e., all entries of D are positive except the utiu xith

least absolute value. When d(B) 0 (13 singular) the constructed M (using non-

negative d, i ) may or may not have a positive determinant. Should the determi-

nant of M be negative then changing the sign of any vector Q , (the ith columi:

of Q) corresponding to a zero d i i will change the sign of d(M) without changing

the value of tr(II) - tr(D). The orthogonal solution is unique provided d(B) # 0.

'The rotational solution is unique unless the smallest eigenvalue is a multiple

root and d(B) < 0.

There are many interesting interpretations of the matrix M just constructed.

It is the orthogonal or rotation matrix which: (1) Minimizes Equation (3) for the

assumed weighting, (2) Maximizes tr(MBT ) thus minimizes the norm of B - M,

(3) Provides a polar decomposition of B, and (4) Is a solution of the matrix

equation NIB T - (MB T ) T =- 0. This last equation stems from the decomposition

B = SM, its significance will be discussed later. It is also noteworthy That the

orthogonal or rotational M is completely independent of the matrix A whereas

the unconstrainted solution was highly dependent upon A.

ATTITUDE DETERMINATION

Since the advent of the space age a wide variety of problems have been

pursued within the libel of attitude determination. These include determination

h
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of: (1) The orientation of all three coordinate axes of a stabilized vehicle,

(2) The direction and/or rate of the spin axis of a spin-stabilized vehicle, and

(3) Either of the above as a function of time. Each of these problems has been

solved for a wide range of sensors. In addition, many parametrizations

of the rotation group have been employed as the independent parameters 0 be

determined. The weighted least squares rotation matrix of the previous section

provides a solution to many of these problems without re-formulating equations

for each new sensor. It is applicable to any sensor whose output can be formed

into a vector of components relative to the coordinate system whose "attitude"

is to be determined. The desired parameters can then be obtained from the

determined matrix.

If the model assumes that the attitude is being held by inertial sensors

then readings at different times may be combined. This technique has been

used successfully for the Orbiting Astronomical Observatory 1 2 J to the extent

of determining attitude from magnetometer data only while in darkness (after

the magnetometers were aligned by techniques herein). When the attitude is a

function of time and M 1 is the least squares attitude matrix at time t 1 and M 2

the least squares matrix at t 2 then AM = M 2 1 1 defines the spin axis and angle

of rotation during the interval t 2-t 1 . If the spin axis and rate are considered

constant and the data taken at equal time intervals; a least squares estimate of

the rate matrix may be obtained by denoting the measured vectors at t as Xis

and those taken at t ; + 1 as Z's.

The usual statement of the attitude problem is without the translation since

position and orientation data are provided by different sensors. For this case,

21
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the second equation of (11) is omitted and V set to zero.	 This still leads to

equations of the form (13), but with a simplified B matrix, i.e.,

B	 B0	 L Pk Z  V

Since pk is assumed positive, let Pk q k; the matrix B may then be written as

B LkWk V

with V k = q k X  and W k = q  Z k . With this notation

t r (M BT ) = t r (L MV WkT ) _	 Wk M Vk -	 Wk • ( M Vk )	 ( 16)

As was mentioned earlier, every M satisfying (13) is a solution of the matrix

equation

M BT - ( M BT ) T = 0.	 (17)

Thus, the desired solution is among the solutions of (17). For the present case

(B = B o ) this yields

M Vk ) Wk - Wk (M Vk ) T = 0.	 (18)

'Fhe left-hand side of the above equation is a skew-symmetric matrix, thus

represents only n(n - 1)/2 independent scalar equations. In three-space, such a

matrix is isomorphic to a 5xl vector. Let 0 denote the skew-symmetric matrix
ti

formed from the vector U such that for any vector V, UV = U x V. Then the

independent scalar equations given by (18) can be expressed as:

L Wk x (M Vk ) = 0'	 (19)

22
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In summary, the desired weighted least ,;quares attitude matrix is that rotation

matrix which satisfies (19) and maximizes (16).

Expressing the condition c,,uations in terms of the cross and dot product

provides a physical or geometric interpretaLsn of' the solution which leads to

some interesting ohservations. The simplest c.-se is when only one measured

vector is available. In this case the answer is not unique, but a rotation about

the line W, - V i by the angle between W 1 and V, provides the "shortest" ro-

tation 121 . Note that an error in the length of Z 1 does not effect the ans ,,er.

A more practical situation and perhaps the one that has received the most

attention is when two measurements are given. Equation (19) requires that the

plane defined by V 1 and V 2 (plane I) be rotated into the plane defined by W 1 and

W 2 (plane II) such that

I W1 X (M V1)I	 -	 I (M V2) r. W2

This last condition requires the area of the triangle formed by W 1 , MV 1 , and

W 1 - MV 1 (triangie I) to be equal to the area of the triangle formed by W 21 MV 29

and W 2 - MV 2 (triangle II) . Since M preserves length ( I MV I = IV I ) this require-

ment may be stated as:

W 1 I I V 1 I sin © 1	 =	 I W 2 I I V 2 I sizl 92

or

P1 IZ 1 ! IX 1 I sin 0 1 = P2 IZ 2 I IX 2 I sin e2,
	 (20)

where B i is the positive angle between MX i and Z i , i = i, 2.
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The requirement that plane I be rotated into plane II may be satisfied as

follows: Let N 1 and N 2 be orthogonal vectors of unit length in plane I and

N 3 = N i x N 2 Similarly, let Q 1 and Q 2 be orthogonal unit vectors in plane II

and Q3 = Q 1 x Q 2 .  N = (N I , N 2 , N 3 ) and Q = (Q 1 , Q 2 , Q 3) are then rotation ma-

trices and the matrix M such that MN = Q or M = QN -1 is a rotation matrix

which indeed satisfies the requirement. Note that this form of Al is precisely

that of the polar deconiposit;on solution given by (15). It remains to define N 1,

N 2 , Q 1, and Q 2 explicitly so that all other conditions are satisfied.

It. is geometrically obvious and a routine matter to show that when

V I I = (V 2 I and 1W 2 1 = IW 2 1 the correct solution is given by:

N 1' 	 V1 - V 2 , N2	 V1 + V21 N i	 _ N; / IN' I	 ( i = 1, 2;

Q1 = W 1 - W2, Q^	 W1 + W 2 , Q, = Q;

This suggests a general solution of the form N , - x V i - V 2 and N2 = Y V I + V2

where x and y are scalars of proportionally depending on the relative lengths

of the given vectors. Indeed, it can be shown that, if

V 1 ' V1 X Y + V 1 , V 2 ( X - Y) - V 2 - V2	 0,

and
	

(21)

W2 ' W 2 X Y - W1 ' W 2 ( X - Y) - W 1 ' W1	 0,

then N',  and N 2 are eigenvectors of B IB (polar decomposition) . The first

equation of (21) is just the requirement that Ni and N2 be orthogonal. Th#:

vectors B N' and B N' are proportional to Q' 1 = W 1- y W 2 and Q 2= W1 + x W2

respectively, i.e., Q, and Q 2 are eigenvectors of B B I and the second equation

of (21) is the condition for their orthogonality.

r,

k.
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Solving the simultaneous Equations (21) yields

X - y	 a/c,

xy - b/c,

w ith

a = ( V 2' V 2)( W 2' W 2 ) - ( V 1 ' V 1)( W I ' W 1 ), b = ( W 1 ' W 1 ) ( V 1 ' V2) + ( V 2' V 2)( W 1 ' W2 )+

C = (VI ' V 1) (W I ' W2) + (14 2 ` W2) (V 1 ' V2)

These last two equations have two solutions, given by

a ±	 a 2 + 4b c	- a t	 a 2 + 41)c
X

2c	 '	 y 2c

where the sigrs of the radicals must be consistent. 	 Both solutions will also

satisfy (19) if

E	 Ni xVl - V 2 ,	 N2	 =	 yV l 	+ V 2 ,	 N^ _	 N' /IN' I	 (i	 =	 1, 2)

Qi W1 - y W 2 ,	 Q2	 =	 W 1 	+ x W 2 ,	 Q i -	 Q.'/  I Q; I

N 3 	= N 1 xN 2 , Q3	 =	 Q1XQ2t

N	 = (N1, N2,	 N3)'	 Q	 -	 (Q1'	 Q2+ Q3) '

and

M	 QN-1.

The solution that maximizes (16) may be ascertained by expressing V 1. V 2, W11

and W 2 in terms of N i , N2 , Q i , and Q 2 . When this is done, it is found that

x and y must also satisfy'the condition x + y > 0. The sign of the radical in the

definitions of x and y can be selected so that this condition is met. This, then,
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completes the solution when two measured vectors are given. This solution

appears in 121 without proof and Fraiture [ 4) offers a different construction.

Perhaps, the most important aspect of the two measurement solution is the

rinsight it provides to the effects of weighting. The length of each of the vectors

W, and W 2 obviously affects the solution, and their lengths are a function of the

weights as well as the lengths of the measured vectors Z 1 and Z 2. Therefore,

an error in the length of either Z 1 or Z 2 has the same effect as a weight factor

and biases the solution. This implies that the length of the measurement Zi

should be made equal to that of X i . One arrives at the same conclusion by

arguing that, since the rotation cannot change the length, any deviation in length

is due to measurement noise (provided any misalignment has been eliminated)

and should be removed. Likewise, the lengths of X , and X 2 may bias the solution

if they differ. This is particularly true when a sensor measuring only direction

is combined with one measuring length as well. Thus, it is concluded, that to

obtain an unbias attitude (rotation) matrix all data should be normalized so that

the only length appearing in the V's and W's is that due to the weighting factors.

This same conclusion is reached in 121 , but by a completely different argument.

When more than two measurements are given the polar decomposition of

the previous section provides a solution. The solutions in [31 Aso depend upon

the polar decomposition in slightly different form. 111 offers two solutions

quite different in nature. The polar decomposition solution indicates that care

;should be taken when employing an iterate or differential correction type of

solution. If the matrix B is non-singular then there are four solutions to the

condition equations, all satisfying the constraints: assume d(B) > 0, then the

desired solution is with all three positive square roots, however, any combination

R
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of two negative and one positive entries in D also yields a rotation matrix. A

similar argument exists for d(B) • 0. These spurious solutions could cause false

convergence with a poor initial estimate.

SYMMETRIC AND SKEW-SYMMETRIC SOLUTIONS

The constrainted equations for the symmetric and skew-symmetric cases	 i

are very similar, differing only by a plus or minus sign. Because of this, the

solutions are also similar and will be treated together. The resulting equa-

tions are still linear in M and A; thus, the general case can be handled by re-

constructing the independent scalar equations into a single matrix equation.

I	
As with the previous cases discussed, the weighting P k = Pk I offers a sim-

plified solution. In this case, the equations to be solved are:

E	 MA	 B±A,

	

M 7	f M,

AT = T A .

The upper signs pertain to the symmetric case, whereas the lower signs denote

the skew-symmetric case. The matrices A and B are as previously defined.

Once M has been determined, V is given as in (8).

From the above equations, one deduces that

B + BT - M A + (M A)T	 M A + AM. 	 (22)

-ince A is symmetric, there exists an orthogonal matrix Q such that Q -1 A Q = D

is a diagonal matrix. Equation (22) is then equivalent to:
I

	M'D+DM'	 Q- 1(B ± BT ) Q
t

27
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with M' = Q ' 1 M Q . The component equations are

(d ii + d^^) mi d	sip,	 (i, j = 1, 2.	 n)

where S = Q - 1  (13 t BT ) Q is symmetric or skew-symmetric uepending on the

case being considered. Therefore, M' is symmetric or skew-symmetric re-

spectively and it follows that M = Q M' Q - 1 is also.

w
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