

NASAP-70
USER'S AND PROGRAMMER'S MANUAL
Howard Okrent
Lawrence P. MeNamee

NAS'AP-70 USER'S AND PROGRAMMER'S MANUAL

Prepared by
Howard Okrent
Lawrence P. McNamee
With Contributions and Assistance From
Alfred Tyrıll
David Paletz
Steve Grandi
Donnamare Meyerhoff
Dennis Sesar
Michael Wilson

School of Engineering and Applied Science
Unıversity of Calıfornia
Los Angeles, Calıfornia

The study for this report was carried out in the Computer Science Department, Unıversity of Calıfornia, Los Angeles, under National Aeronautics and Space Administration Contract NAS 12-2138.

The development of the program and the preparation of this manual was a cooperative effort. We acknowledge the cooperation, patience, and understanding of Dr. W. W. Happ of the Electronics Research Center of NASA. We also express our appreciation to our sister universities and other NASAP-70 participants for their suggestions and help.

Within UCLA the cooperative spirit has also prevailed. Our thanks and appreciation go to: Alfred-Tyrill, who programmed the Fast Fourier Transform and plotter; David Paletz, who programmed the algorithm for building optimum circuit trees at a given frequency and the transfer function printout, Steve Grandı, who programmed the sensitivity analysis routines, Mrs. Donnamaie Meyerhoff for her excellent survey of transient models and the background study in radiation effects in solid state devices, Dennis Sesar for this critical review of the computational errors and run time limitations of NASAP-70, and Michael Wilson who investigated the application of NASAP-70 to large scale problems.
Chapter 1 THE NASAP-70 PROJECT 1-1
1.0 Introduction 1-1
1.1 Capabilities and Limitations 1-1
1.2 Historical Perspective 1-4
1.3 Format of the Manual 1-5
REFERENCES 1-7
PART I THE USER'S GUIDE
Chapter 2 A USER'S VIEWPOINT $2-1$
20 Introduction 2-1
2. 1 Preliminary Considerations and Modeling. 2-1
2.2 Circuit Preparation 2-3
2.3 Coding Mechanics 2-9
2. 4 Coding Tips 2-57
2. 5 NASAP Analysis of Nonlinear DC Circuits 2-59
2. 6 Network Partitioning Schemes for NASAP-70 2-70
2.7 Computational Errors 2-82
REFERENCES 2-95
Chapter 3 THEORETICAL FOUNDATIONS 3-1
30 Introduction 3-1
3.1 Linear Graph Theory 3-1
3.2 Transformation of a Linear Graph to a Flowgraph - Disjoint Current and Voltage Relationships 3-7
3.3 Flowgraph Theory. Shannon-Happ Formula 3-9
3.4 Transfer Function Formulation. 3-11
3.5 Sensıtıvities Concepts 3-20
3.6 The Svoboda Method for Computing Roots of Polynomials 3-26
3.7 A. C. Analysis-Bode Plot 3-34
38 Transient Response 3-36
REFERENCES 3-45
PART II A PROGRAMMER'S MANUAL 4-I
Chapter 4 NASAP-70 PROGRAMMER'S GUIDE
4.0 Program Organization 4-1
4.1 General Description 4-1
4. 2 Algorithms and Dictionaries 4-3
4.3 Modular Organization 4-57
REFERENCES. 4-61
Chapter 5 SYSTEM REQUIREMENTS 5-1
5.0 Computer Requirements 5-1
5.1 Running A NASAP Problem from the Source Deck 5-1
5. 2 NASAP-70 Input Data 5-3
5.3 Overlay Organızation 5-11
5.4 The Fortran AND and OR Functions 5-13
5.5 Compatıbılıty Among Varıous Computers 5-14
Appendix A A-1
Appendix B B-1
Appendix C C-1

CHAPTER 1

THE NASAP-70 PROJECT

1.0 Introduction

NASAP-70 is a digital circuit analysis program developed at UCLA with the cooperation and advice of a number of University, industrial, and governmental research groups located in virtually all sections of the United States. The program consists of a number of commonly required circuit analysis routines that are based upon the flowgraph techniques and algorithms of W. W. Happ and others. ${ }^{1-3}$ As was pointed out by Happ, two distinct advantages can be realized (1) The requirement for writing a set of independent circuit equations is eliminated, and (2) the resulting flowgraph is unique. Because of these characteristics and the modular manner in which the program is constructed, algorithms can easıly be mechanized, changed, and expanded for digital computation.

The program documented herein is the final installment of this cooperative project initiated by the Electronics Research Center of NASA four years ago.

1.1 Capabilities and Limitations

NASAP-70 can handle linear circuits cons1sting of constant-value passive elements, independent and dependent current sources, and independant and dependent voltage sources. The dependent sources must be linearly related to a voltage or current located in another part of the circuit. Nonlmear functional relationships (dependencies) and time-varying parameters cannot be handled in general. However, provisions have been included to accommodate a single nonlınear or external characteristic in resistors as advanced by Haag and Weber ${ }^{4}$

Central to the NASAP-70 program is its capability to formulate transfer functions from a topological description of the circuit and its numerical specification of components. The format of the input code, selected by a user, dictate the manner by which a transfer function is derived by the program. The following input codes, adentified by the names NASAP, TREE, and CIRCUIT, can be employed

1. NASAP - directs the program to form its own tree and transfer function.
2. TREE - allows a user to define his own tree from which a transfer function can then be constructed by the program.
3. CIRCUIT - directs the program to select a tree by which a transfer function is constructed according to a user specified frequency to assure relatively accurate coefficients.

With one minor, but practical exception, a transfer function, relating a voltage across or a current through an element to either a drıving voltage or current source, can in general be requested. Any number of transfer function requests can be made in any given computer run. The transfer function formulations are printed out as a ratio of two polynomials in S with numerical coefficients.

In conjunction with a particular transfer function request, a user can ask for

1. The sensitivity of a transfer function to changes in circuit parameters - A maximum of twenty valld sensativity requests can be processed for each circuit. The sensitivity function is printed as a ratio of two polynomials in S with numerical coefficients.
2. A worst case analysis - For circuits of twenty elements or less (not counting independent voltage or current sources) a worst case analysis can be formulated as a ratio of two polynomials in S with numerical coefficients. Tolerances for each element can be userspecıfied or defaulted automatically with 10% values by the program.
3. Poles and zeros of all transfer functions
4. The sensitivaty of poles - When pole sensitivity is requested, it is implied that it is formulated for all elements for which a sensitivity request had been issued.
5. Transient response - A user can request a transient response of any transfer function for an mpulse, a step function, a sine wave, an exponential, a biased pulse, or pulse train driving function.
6. An A. C. frequency response (Bode Plot)

The output format for the transient, A. C. frequency response, sensitivity and worst case analysis functions can be presented by either tables, printer plots or both The input data is written on a free-field format. Diagnostics are provided for reading the input circuit description cards. If mistakes are relatively minor, corrections are made automatically by the program and are printed out to inform the user of the changes made. The program will not abort a run unless a serious error (one which cannot be easily interpreted) is encountered. The normal input is by cards. An on-line version of NASAP-70 has been developed but is not documented here.

NASAP-70 has been written completely in FORTRAN IV and has been developed on the IBMI 360/91 and run on the SDS Sigma Seven Digatal Computers at UCLA It has been successfully converted to other machines by other research groups at installations across the country By means of overlays, approximately 32 K of core memory is required to handle circuits consisting of 30 elements.

The maximum number of elements that NASAP-70 can accommodate in practice is determined by the number of bits in the computer word. Even though computer words, in essence, are extended by software, circuits wath more than 30 elements cannot be handled efficiently by the 32 bit IBIN machines. Other machines with longer data words, such as the CDC 6600, can accommodate larger circuit problems.

1.2
 Historical Perspective

To properly understand the place that NASAP-70 takes in the computer-aided design field, it is fitting to trace the development of the field, in general, and contrast it with NASAP-70. Typical circuit design programs, such as ECAP, SCEPTRE, NET-1, and CIRCUS derive their conceptual foundation from the treatise of Gabriel Kron, who was the first person to systematize circuit equations for solution by digital techniques. ${ }^{5}$

Kron noted that the topological-algebraic structure of networks could be treated separately in formulating mexh, nodal, and branch equations from a primitive set of ohmic relations. Even to this day, the influence of Kron's pioneering efforts are still being felt in all the major circuit program developments, meluding NASAP-70.

Kron's ideas, which were presented from an engineering point of view, were formally studied by J. Paul Roth who proved the interrelationship of the topological-algebraic structure of networks from an abstract mathematical position. ${ }^{6}$ Even though Kron's work was known for a couple of decades, it never achieved popularity untıl Seshu and Reed published their papers and a book in which a rigorous proof of network theory was presented in a manner palatable to engineers. 7,8

Since that time, the field of computer-anded circuit design has exploded attracting outstanding investigators from many engineering and sclence fields. Noteworthy among the investigators are Branin, Bashkow, Calahan, Katzenelson, Malmberg, Kuh, Rohrer, Desoer, and many others. ${ }^{\text {9-16 }}$

All of these researches advocated the matrix or state space method dealing with circuit problems. NASAP-70, on the other hand, with its flowgraph approach, traces its origin to Claude Shannon who discovered
the topological gain formula while investigating the functional operation of an analog computer. ${ }^{17 *}$ Shannon's formula which is an analytic equation for calculating the gain for an open loop system (csrcuit) was generalized by W. W. Happ to Include closed systems. ${ }^{1}$ The Shannon-Happ formula fabricates the backbone of NASAP-70 upon which the transfer function, sensitivity, and frequency response of a large class of linear systems can be computed.

The NASAP project was started approximately four years ago at the Electronics Research Center of NASA with the Shannon-Happ formula as a programming kernal. The first year was devoted to program development which included transfer function, sensitivaty, and A.C. frequency response capabilities. The second and third years brought further program development and application studies into areas of NASA research. This past year the NASAP project came to a close. The fanal version of the NASAP program, called NASAP-70, 1 s documented herein. In addition, seven applications manuals are being written in the areas of Electronic Filter Design, Instrumentation Circuits, Biomedical Circuits, Communication Circuits, and 18-20 others.

1.3 Format of the Manual

The manual is divided into two parts (1) A User's Guide, which is made up of Chapters 2 and 3, and Appendices B and C, and (2) a Programmer's Manual which consists of Chapters 4 and 5, and the program listing and dictionary of program variables in Appendix A.

In Chapter 2, the fundamentals of setting up a problem for NASAP-70 are presented without any deep discussion of the theory involved It has been written, however, to show the program can be used for large problems, and how computing time and computational errors can be predicted and reconcıled.

[^0]The theory behind NASAP-70 has been reserved for Chapter 3 . Appendix B describes the most popular transistor models in use today, and includes a discourse of environmental effects (radiation) on transistor models.

Chapter 4 contains a detailed description of the NASAP program. This chapter should be read in conjunction with Appendix A, the program listing and dictionary of variables. Chapter 5 describes the system requirements for $1 m p l e m e n t i n g ~ N A S A P-70$.

The format of the User's Guide and Programmer's Manual has been designed to place those topics which can usually be self-contained in an individual chapter. It is for this reason that all references pertinent to a chapter have been placed at the end of that chapter. The format of the manual also provides a convenient method to add, delete, or change portions of the manual wathout disrupting larger segments of the entire manual.

REFERENCES

1. Happ, W.W., "Flowgraph Technıques for Closed Systems," IERE Transactions Aerospace and Electronic Systems, AES-2, pp. 252264, May 1966.
2. Happ, W. W., "Flowgraphs as a Teaching A1d, " IEEE Transactions on Education, E-9, pp. 69-80, June 1966.
3. Gupta, S. C. Happ, W. W., "A Flowgraph Approach to the Laplace Transform and Transient Analysis of Discrete Systems," J. Franklin Institute, Vol. 280, pp. 150-163, August 1965.
4. Moe, M L., Schwartz, J. T., "Designers' Manual for Instrumentation Circuat, "Final Report Contract NAS 12-2043, Denver Research Institute, University of Denver, Denver, Colorado.
5. Kron, G., Tensor Analysis of Circuits, Wiley, 1939.
6. Roth, J P., "An Application of Algebraic Topology to Numerical Analysis On the Existence of a Solution to the Network Problem," Proc. National Academy of Science, Vol. 41, pp. 518-521, 1955.
7. Reed, M. B. Seshu, S., "On Topology and Network Theory," Proceedings of the Symposium on Circuit Analysis, University of Illino1s, Urbana, Illinois
8. Seshu, S , Reed, M. B. , Linear Graphs and Electrical Networks, Addıson-Wesley, 1961.
9. Branin, F.H. Jr., Computer Methods of Network Analysis with Applications in Science and Engineering, to be published by Prentice-Fall.
10. Bashkow, T. R , "The A Matrix, New Network Concept," IRE Transactions on Circuit Theory, Vol. CT-4, pp. 117-120, September 1957.
11. Calahan, D. A., Computer-Aıded Network Desıgn, McGraw-Hill, 1968.
12. Katzenelson, J., "An Algorithm for Solving Nonlinear Resistive Networks," Bell System Techmical Journal, Vol. 44, pp. 1605-1620, November 1965.
13. Malmberg, A.F., et al., "Net-1 Network Analysis Program," Report LA-3119, Los Alamos Scientific Laboratory, Los Alamos, New Mexico.
14. Kuh, E.W., Rohrer, R.A., "The State Variable Approach to Network Analysis, " Proceedings of IEEE, Vol. 53, pp. 672-686, July 1965.
15. Kuh, E.W., Desoer, C., Basic Cırcuit Theory, McGraw-Hill, 1966.
16. Special Issue on Computer-Aided Design, Proceedings of IEEE, Vol. 55, No. 11, November 1967.
17. Shannon, C.E., "The Theory and Design of Linear Differential Equation Moclines, "National Defense Research Committee, OSRD Report 411, January 1942.
18. Moe, M. L., Schwartz, John T., "The Application of NASAP to the Design of Biomedical Instrumentation Circuits, "Denver Research Institute Report DRI \#2535, University of Denver, January 1970.
19. Haag, K.W., Weber, E.W., "Designers Manual for ComputerAided Design of Communication Circuits, " Department of Electrical Engineering, Illinois Institute of Technology, December 1969.
20. Zobrist, G., et al., "Designer's Manual for Electrical and Electronic Filters," Final Report Contract NAS 12-2041, Department of Electrical Engineering, University of Missouri, Columbia, Missourı.

PART I THE USER'S GUIDE

CHAPTER 2

A USER' S VIEWPOINT

2.0 Introduction

This chapter describes the step-by-step procedure of how to prepare a circuit for analysis by NASAP-70. The discussion has been restricted to an explanation of the rudiments of coding and does not include a detanled study of circuit theory or programming. That has been reserved for Chapter Chapters 3, 4 and 5. Examples have been dispersed throughout the discussion. Also included are some design tips from a user's viewpoint of NASAP-70, partitioning schemes, error analysis, and nonlınear techniques.

It must be emphasized, however, that if one is to really achieve a good design, a deeper understanding of circuit theory, and the advantages and Imitations of computer methods contained herein are necessary. To that end the user is encouraged to read the articles and books referenced at the end of the chapter. ${ }^{1-4}$

2.1 Prelıminary Considerations and Modelıng

Before any problem is coded for a computer run, it is important to make a check on the valıdity of the circuit itself and the device models. Difficulty usually arises when some physical device, such as a transistor, diode, etc., is replaced by a lumped parameter model made up of some dependent active devices and passive elements, and inserted into the remaining network without really looking for such conflicts as two electrically difference current sources placed in series, or two electrically different voltage sources placed in parallel. In general, no loop in a circuit may consist entirely of voltage sources, including independent and dependent sources, nor should any node be formed entirely of branches in which only independent and dependent current sources are present. If such
a case should occur, it would mean that NASAP-70 (or any other program for that matter) would not be able to formulate a set of independent equations necessary for solution since it violates the fundamental conservation of energy law.

It is also imperative to have a circuit designer select the appropriate model for a physical device. Quite often the model chosen has been derived for one type of operation and is assumed to be valld for another. All models are restricted to some extent. There are A.C., D.C., and transient models, some are considered small signal or large signal, while others are considered low frequency or high frequency. There are also the so-called environmental and radiation-effect models. Generally speaking, all models are appropriate only for the particular application for which they were derived, and if a circuit designer places a model in a universal catch-all role, only misleading results can occur.

In Appendix B descriptions of typical transıstor models have been compiled and classified according to the intended use. Also include there is a tabulation of how the model parameters can be calculated from the manufacturer's device specifications. A rather in-depth study of solidstate modeling for a radiation environment is also given.

Besides modeling, other difficulties can appear when a complicated circuit is approximated by reducing the number of circuit. All too often, entire sections of a circuit are replaced by a simple series or parallel circuit, the cumulated practice of which can eliminate critical modes of carcuit operations. As is usually the case, the circuit designer is so preoccupied with establishing models or reducing the size of the circuit in order to code it for the computer that he completely loses the physical . realization of the problem itself. No matter how carefully a computer program is concelved, its operation can be completely frustrated by improper use by circuit designers who consistently violate sound engineering practice for the sake of accommodating a computer program.

2. 2 Circuit Preparation

Once an appropriate circuit configuration has been established, making certain that no physical inconsistencies exist, the step-by-step preparation procedure for coding NASAP-70 can then be carried out. The procedure recommended here is described by means of an example circuit problem shown in Figure 2.1(a) which calls for an A. C. transfer function relating the voltage $V_{\text {out }}$ across the inductor to the input voltage $V_{\text {in }}{ }^{4}$ The A. C. equivalent circuit is shown in Figure 2.1(b). Note that the battery has been replaced by its internal mpedance of zero ohms and the transistor has been modeled by a simple input resistor and a dependent current generator placed in parallel with an output resistor. (High frequency effects are not considered here and actually are not required to illustrate the preparation procedure.)

Assumang that the circuit model in Figure 2.1(b) is adequate for the desired analysis, the initial preparation of coding for NASAP-70 requires that a umque identification be imposed on the topology of the carcuit, the circuit elements, and the dependencies. Consequently, the nodes are numbered consecutively starting with the number 1 and the elements are redefined according to a letter-number format, where each component is unambiguously determined, according to type, by one of three possible coding schemes described in section 2.3. No two components can have the same code identifications. Dependencies are indicated on the circuit diagram by a dash line which designates the current or voltage variable upon which the sources are dependent This is done only as a crutch to remind the designer not to forget it when the circuit information is actually coded.

After the nodes are assigned numbers (topology), and the carcuit elements and dependencies are distinguished, as shown in Figure 2.2 for the coding scheme NASAP, the unknown directed current variables must be assigned to each carcuit branch element. Generally speaking, the current

(a) CIRCUIT DIAGRAM

(b) A.C. MODEL

Figure 21
(2)

Figure 22 Prepared Cırcuit Diagram for Coding Scheme NASAP

direction in each passive element can be assigned arbitrarily although some caution must be exercised in assigning currents to passive elements related to dependent sources. The current directions in active devices also must be handled with care so that the proper voltage-current relationship can be establıshed.

Voltage Sources. The current direction associated with eather an independent or dependent voltage source should be established in the positive sense of the voltage rise - from minus to plus - as shown in Figure 2.3(a). (An opposite rule could have been assumed but this would have required that a negative voltage value be read in with the input data. Since such a practice is somewhat unnatural to most circuit designers, it has been avoided here as a matter of good practice rather not that it cannot be done.) Following the current assignment rule as stated presents no difficulty when independent voltage sources are being considered, in general, the same rule can be applied to dependent voltage sources provided the dependency relationships are consistent with the physical phenomena involved. (A number of examples consisting of dependent sources have been included in this chapter and are described in sufficient detail to illustrate how the common current assignment rule for both dependent and independent voltage sources can be adopted.)

Current Source In dealing with either dependent or independent current sources, the positive voltage sense is taken in the direction of positive current flow as shown in Figure 2. 3(b). Similar to the discussion concernIng dependent voltage sources, the positive sense of the voltage across the dependent current source is the same as that defined for the independent current source provided the dependency relationship is consistent with the physical phenomenon. Examples are included to illustrate the procedure to be employed.

Figure 2.3 summarizes the current-voltage relationship for the dependent and independent active devices and passive elements. If the assignment of the current direction is in agreement with these configurations -
including the dependency considerations described below - the NASAP-70 program can then be properly coded.

Dependencies. A major concern of the NASAP-70 in programming dependency relationships is to assure that the proper sign is attached to the coded dependency parameter. Consider the transistor model shown in Figure 2. 4(a) which has been extracted from the diagram of Figure 2.2. For this common emitter circuit, if a current flows into r_{1}, the dependent current source I_{β} will generate positive current flow as indicated in Figure 2.4(a). For the case depicted β is taken as a positive number, and thus the current can be expressed as $I_{\beta}=\beta I_{r}$. If the assigned current direction in r_{I} is taken as in Figure 2. 4(b) while the I_{β} direction of flow is retained, then the dependency parameter would be $-\beta$, a negative number. Therefore it is important that the physical dependency phenomenon be clearly understood for each device that is being modeled.

Another dependency example is shown in Figure 2.4(c). For this case a dependent voltage source V_{μ} is considered, where V_{μ} is linearly related to the voltage v_{1} developed across the resistor r_{1} as shown. In order to maintain the positive value of the parameter μ in the relation $V_{\mu}=\mu V_{1}$, it is necessary that the positive sense of V_{1} be taken across r_{1} as the physical phenomenon dictates. Thus, this requires that the current through r_{1} be assigned so that the desired voltage polarity of V_{1} is produced. Alternative measures can be taken, but practicality dictates that it is best to follow one rule because it leads to fewer errors and presents a better means for debugging. The user must be cognizant of the dependency relationship involved and code according to the plan best suited to his own tastes.

Once all the preparation steps are completed to uniquely adentify the topology, the carcuit elements, and the dependencies, and to assign the current direction in all the circuit elements - the circuit diagram is then ready for coding. Notice, for example, in Figure 2.2 that all the nodes

Figure 24 Dependency Parameters
are numbered consecutively starting wath the number 1. Zero and negative node numbers are not permitted. Also note that all curcuit elements have been redefined to conform to the NASAP letter-number coding scheme (see Section 2.31). It must be emphasized that even though some of the elements could have the same value, they still have to be assigned different numbers in their respective letter-number symbol. The dependency relationship is illustrated by a broken line with the associated dependency parameter value placed in the middle of $1 t$.

2.3 Coding Mechanics

The general order of a NASAP-70 program deck is shown in Figure 2.5. The first group of cards allows a user to head the output listing wath the title information punched on them. No more than ten cards are permitted.

The second group of cards contains the topology information, element designators, the values of the elements, and dependencies of the circuit to be analyzed. Three dıfferent circuit description coding rules can be utılized.

The last group of cards contain the desired output requests.
The title, circuit description, and output request cards are separated from each other by control cards. The necessary control card information is dictated by the circuit description format selected by a user.

Any number of individual problems can be processed during a computer run. However, the above mentioned order must be maintained for each problem. The last card of the entire group of cards must be a STOP card. Only one STOP card is allowed.

2.3.1 Circunt Description Codes

The circuit description coding rules are based upon a free-field format whereby each element identifier is written on a programming sheet, one to a line, with its corresponding topological, numerical, and dependency information. Thus a circuit composed of, say, 15 elements will require 15 cards, exclusive of the control and output request cards.

Title Cards

Control Card \#1
Curcuit Description Cards
Topology
Element Identufication
Numerical Values
Dependencies

Control Card \#2

Output Request Cards:
Transfer Function
Pole Sensitivity
Parameter Sensitivaty-
Worst Case
Transient Response
Poles and Zeros
Frequency Response
Nonlinear Parametric
Response
Control Card \#3
STOP Card

Figure 25

The three different code formats available in defining a circuit to NASAP-70 are identified to the program by punching one of the words: NASAP, TREE, or CIRCUIT on control card \#1.

NASAP: For compatibility with other versions of NASAP, control card \#1, with NASAP punched on it, will cause the program to accept the circuit description in the form presented in A USER'S GUIDE AND PROGRAMMER'S MANUAL FOR NASAP ${ }^{5}$ and CODING INSTRUCTIONS FOR NASAP 69/I. ${ }^{6}$ The NASAP coding of a circuit relieves the user of selecting a tree Instead, the program automatically builds a tree that results in a transfer function being formed in a minimum of computation time

The circuit coding requires that six fields of information be set down on each card, and since a free field format is employed, the ordering of the information must be taken into account This is done by inserting at least one blank to separate the fields from each other, permitting the information to be inputted without regard to column orientation

The general form of the circuit input data is.

$$
\binom{\text { ELEMENT }}{\text { DESIGNATOR }} \text { (ORIGIN NODE) (TARGET NODE) }\left(\begin{array}{c}
\text { NUMERICAL } \\
\text { OR } \\
\text { DEPENENCY } \\
\text { VALUE }
\end{array}\right)\binom{\text { UNITS }}{\text { (OPTIONAL) }}\binom{\text { DEPENDENCY }}{\text { DESIGNATOR }}
$$

The parentheses are not allowed on the coding sheets, but are placed here for clarıty sake.

The first letter of each ELEMENT DESIGNATOR must conform to the following relationship:

Table 2. 1

| V Voltage Source | C | Capacitor |
| :--- | :--- | :--- | :--- |
| I Current Source | L Inductor | |
| | | R Resistor |

Any of those letters may be followed by up to 11 alphanumeric characters to bring the total number of characters in the ELEMENT DESIGNATOR to not more than 12 .

The second and third fields contain the numbers of the origin node and the target (terminal) node, respectively, of the assigned current flow through the element. The fourth field accepts the numerical value of the carcuit element, if the element is not a dependent source, and accepts the dependency parameter value if it is. The numerical values can be expressed in either decimal numbers with or without a decimal point, or in Fortran E-format.

The fifth field is an optional units field that allows a user to operate in other than the MKS system of units. In effect the units field is a scale factor multiplier to the numerical value field. The accepted symbols are given in Table 22 No mixing or interchanging of scale factors are permitted. If UNITS is not specified, MKS units are assumed

Table 2.2

ELEMENT	SCALE FACTOR	MULTIPLIER
RESISTOR	K	10^{3}
CAPACITOR	M	10^{6}
	PF	10^{-12}
INDUCTOR	UF	10^{-6}
	UH	10^{-6}
	MH	10^{-3}

The sixth field position is employed only if a dependency exists, which is indicated by writing either an I, for current, or V, for voltage, followed by the element identifier of the element upon which the dependency exists.

With the "NASAP" coding rules, the prepared circuit diagram of 'Figure 2.2 can be coded as shown below:

ELEMENT DESIGNATOR	ORIGIN NODE	TARGET NODE	$\begin{gathered} \text { PARAMETER } \\ \text { OR } \\ \text { DEPENDENCY } \\ \text { VALUE } \end{gathered}$	UNITS	DEPENDENCY DESIGNATOR
V1	1	6	1		
R1	6	1	50		
C1	6	5	10.7	PF	
R4	5	3	25.		
R3	3	1	325		
C2	3	1	10	UF	
I1	4	3	98		IR4
R5	4	3	2	M	
R2	2	4	20	K	
L1	2	1	1.7	MH	

Note the coding peculiar to the dependent current source I1. Since Il is related to current flow in the resistor $R 4$, the dependency relation is indicated in the sixth field position as IR4 with the dependency parameter β (which is equal to a value of 98) coded in the fourth field. If other dependent sources were present, they too would follow the identical coding scheme.

Control card \#2, for the NASAP codung rules, must contan eather the word OUTPUT or the word END.

TREE The TREE input code can be employed by a user who wishes to form a transfer function based upon a user-defined tree. Control card \#1, with the word TREE on $1 t$, alerts the program that the curcuit description that follows contains a user specified tree in addıtion to the topological, elemental, and dependency information.

The general format of the carcuat coding is
ELEMENT INDENTIFIER/DEPENDENCY (ORIGIN-TARGET) = VALUE UNITS

To obtain a worst case function, a card must be inserted immediately after control card \#2 (the END or OUTPUT cards), with the word, WORST. Tolerance cards must also be provided, since the variation of each element must be known. Tolerance cards have the following format
TOL = ELEMENT DESIGNATOR = VALUE
where ELEMENT DESIGNATOR is a circuit element, and VALUE is the relative tolerance $\frac{\Delta Q}{Q}$ of the element Q. If no TOLERANCE card is provided for an element, a default value of . $1(10 \%$) is assumed.

When a WORST CASE Function is requested, the sensitivity functions for all elements are also printed out automatically. Therefore no SENSITIVITY cards can be present when a WORST card is present. A typical WORST CASE analysis is given in the examples in Appendix C.

POLE SENSITIVITY The sensitivity of the poles of the transfer function is obtained by adding the word POLES to the ROOTS card:

ROOTS, POLES.
Pole sensativity in NASAP-70 is defined as

$$
P S=\frac{d S_{1}}{d Q} Q
$$

where S_{1} is a pole and Q is a circuit parameter whose value changes causing a change in the root S_{1}. The sensitivity of the poles are produced for all elements for which a sensitivity request is made (or for all elements if a WORST card is included).

Pole sensitivity function is printed as the ratio of two polynomials in S, just Iıke the parameter sensitivity function and is interpreted sumilarly. Plot Requests: Printer plots can be requested of NASAP-70 to produce: (1) transient responses of transfer functions from a group of user-specified standard inputfunctions, (2) a bounded frequency response of transfer functions, and (3) bounded (parameter, pole, and worst case) sensitivity responses.

The plot request is a single card of the form
PLOT (option 1 / option $2 . . .$. .)
where the options are types, parameters, and limits of the printer plots. All options for any one plot request must appear on one card since continuation cards are not allowed., Not all the options are required since defaults are provided. Options may appear in any order on the plot card.

A transient response can be obtained for an mpulse, step, sine, exponential, pulse, and pulse train by specifying an option according to

Table 2.6

OPTION FORMAT	DESIRED INPUT RESPONSE
TYPE $=$ IMPULSE	Impulse
TYPE $=$ STEP	Step function
TYPE $=$ SINE	Sine Wave
TYPE $=$ EXPONENTIAL	Exponential
TYPE $=$ PULSE	Pulse or Pulse train

To provide control over the format of the printer plot itself the following options can be included

Table 2.7

Option Format	Interpretation
AMPLITUDE $=$ a number	Represents the magnitude of any of the waveforms in Table 2.7
DENSITY $=$ a number	Specifies the number of calculations per plotted output point
$\text { TIME } \quad=\underset{\text { (in secs) }}{\text { a number }}$	Specifies the duration of the applied input, it must always be present for any transient response request
$\text { STEP } \quad=\underset{(\text { a } \operatorname{secs})}{ } \quad \begin{aligned} \text { a number } \end{aligned}$	Specifies the time between individual calculated points

For the PULSE type option, the following additional options can be employed

Table 2.8

Option Format	Interpretation
BIAS = a number	Used in conjunction with the AMPLITUDE option to produce a Train of positive and negative pulses
WIDTH = a number	
(in secs) CYCLE	a number (in secs)

To allustrate how some of the pulse options are combined, consider the plot statement

PLOT (TYPE=PULSE/AMPLITUDE=10/BIAS=-2/WIDTH $=10 / \mathrm{CYCLE}=15 / \mathrm{TIME}=30$)

The program interprets this statement to mean a pulse train of two pulses (TIME $=30$ seconds) where each pulse alternates between +8 and -2 (from AMPLITUDE $=10$, BIAS $=-2$) and each pulse duration 1 s 15 seconds (CYCLE $=15$) with a change from a positive to negative amplitude 10 seconds from the beginning of the cycle (WIDTH = 10). Figure 2.12 illustrates the waveform involved.

Figure 212 Pulse Wave Options
Options associated with other type mputs are as follows•

Table 2.9

TYPE OPTION	INTERPRETATION		
CONSTANT = a number	Used only with EXPONENTIAL input. It represents the a in Ke		
FREQUENCY = a number			
(in Hz/sec)		\quad	Used only with the SINE input to
:---			
specify the frequency of the sine wave			

Table 210 summarizes all the type input options and their permissable function and printer graph parameters. Only the furst two letters of each word are needed. For instance, AM may be used to abbreviate AMIoLITUDE, IM for IMPULSE, etc.

The following default conditions apply

Table 2.10

TYPE	TRANSIENT OPTIONS								
	AMPLITUDE	BIAS	CONSTANT	FREQUENCY ${ }^{1}$	DENSITY	TIME	WIDTH	CYCLE	STEP ${ }^{2}$
IMPULSE	X				X	X			X
STEP ${ }^{2}$	X				X	X			X
SINE	X			X	X	X			X
EXPON	X		X		X	X			X
PULSE (PULSE- TRAIN)	X	X			X	X	X	X	X

1. The option "frequency" is used here in conjunction wath the TYPE option SINE, it is also used as a TYPE option in generating a frequency response (see Table 2.12).
2. Step is used in three senses as a TYPE option to denote a step function, as an increment between plot points (in secs) for transient responses, and as an increment between plot points (in CPS) as given in Table 2. 12.

Table 2.11

OPTION	DEFAULT
TYPE	IMPULSE
TIME	1 second
STEP	.01
AMPLITUDE	1
DENSITY	1
CONSTANT	1
FREQUENCY	1

Inconsistent requests will be ignored and are defaulted from left to right, e.g.,

PLOT(TYPE = IMPULSE/FREQ = 2) yields an impulse response.
The printer plot capability can also be employed to produce a frequency plot (Bode) of a transfer function and sensitivity functions. The PLOT instruction include the appropriate codes shown below

Table 2.12

FORMAT	INTERPRETATION
$\begin{aligned} & \text { TYPE }=\text { FREQUENCY } \\ & \text { TYPE }=\text { SENSITIVITY } \\ & \text { TYPE }=\text { WORST } \end{aligned}$	Plots the magnitude and phase of the transfer function Plots the magnitude and phase of the sensitivity function Plots the magnitude of the square worst case tolerance function
$\begin{aligned} \mathrm{EL} \quad= & \text { Element Designator } \\ \mathrm{FROM}= & \begin{array}{l} \text { a number } \\ \text { (in CPS) } \end{array} \\ \mathrm{TO}= & \begin{array}{l} \text { a number } \\ \text { (in CPS) } \end{array} \\ \mathrm{STEP}= & \begin{array}{l} \text { a number } \\ \text { (in CPS) } \end{array} \end{aligned}$	Specifies to the program which particular sensitivity function request should be plotted (from a ${ }^{1}$ SENSITTVITY' or ' WORST' card) Specifies the beginning of a frequency, sensitivity, or worst case response plot Specifies the end of a frequency, sensitivity, or worst case response plot Indicates the frequency step increment between individual calculated pounts

Note that the keyword STEP is used in a dufferent context here than in the translent response case.

To illustrate how the PLOT options can be used, consider the plot statements

$$
\begin{aligned}
& \mathrm{PLOT}(\mathrm{TY}=\mathrm{FR} / \mathrm{FR}=10 / \mathrm{TO}=1 \mathrm{E} 3 / \mathrm{ST}=1.122) \\
& \mathrm{PLOT}(\mathrm{TY}=\mathrm{SE} / \mathrm{EL}=\mathrm{C} 3 / \mathrm{FR}=10 / \mathrm{TO}=1 \mathrm{ES} / \mathrm{ST}=1.22)
\end{aligned}
$$

taken from the output request statements in Figure 2.7. The first statement requests a frequency plot of the transfer function VR4/VV1, to encompass
the frequency range from 10 to 1000 cps in increments of 1.122 cps . The second statement requests a plot of the sensativity function of the transfer function VR4/VV1 with respect to the element C3. The frequency range is the same as the first plot statement. Figures 2.13 and 2.14 are plot and table outputs of the two PLOT requests.

Note that the PLOT requests always refer to the previous transfer function request, if more than one such request is made. The sensitivity plot request must include an element option since more than one sensitivity request can be called for in conjunction with a transfer function request. Both the magnitude and phase are printed out.

Control Card \#3 can have eather the word EXECUTE or END on at.

As another example problem describing PLOT requests, consıder the circuit shown in Figure 2.15 taken from the report by Moe and Schwartz. ${ }^{7}$ The input code is shown in Figure 2.16 where the transfer function of the voltage across C7 to the drawing voltage source V1 is requested. There are three transients plots requested (1) an mpulse response of .5 sec duration, (2) a step response of .5 sec duration, and (3) a 4 cps sine wave response, outputted every. 005 second until 9 seconds 1 s reached.

The output plots and tabular data are shown in Figures 2.17 through 2. 22.

Figure 2.23 shows a typical deck setup for multiple circuat problems for one computer run. The three different coding schemes are illustrated.

Complete mput and output listing of another sample problem can be found in Appendix C. Note only one STOP appears - at the end of the deck.

Figure 2 13a

GREATEST VALUE $51.5540 C E_{\sim} 02$ \qquad LOKEST_VALUE ㅖ -1.79034 E 02 \qquad — - . - -- ——_- . \qquad --- - \qquad -.... - .

Figure 2 13b
PLOT (TY*SE/EL=C3/FR=1C/TC* $1 E 3 / S T * 1.122)$
SENSITIVITY WITH RESPECT TC C3
tre transfirn of tre respense is -m-

NUMER. CCEFFS.
0.0
$1.053 C E E$ C2
$7.0515 C E G 0$
$3.574 C 2 E-02$
$7.4725 S E-C 5$
$4.44249 E-C 8$
0.0

greatest value $=2038786 E 00$
Lehest value $=00$

Figure 2 14a

Figure 2 14b

Figure 彳 15 Complete Simplified Circuit for Ana:
Complete EOG System with a Fourt

NASAP (SIMPLIFIED EDG SYSTEM WITH BLINK INPUT)

```
V1 1 2 0.1166
R12 3 1.0
C12 0.2265F
R2 310.876
V2 142.14 VR2
R3451.0
C2 5 10.0580F
I116 1 VC2
I261 1 VC4
C361 0.04459F
V3 171.0 VC3
R478 0.02275
C4 }811.0
V4 19 10.99 VC4
R5 9 10 1.0
C5 101 0.007496F
V5 1 11 50 VC5
R6 11 12 0.1
R7 12 13 14K
C6 13 14 1.6UF
R8 14 1 15.4K
R9 16 14 1M
R10 14 15 10K
R11 12 16 14K,
R1215 1 200
I 3 1 15 500 VR9
R13 15 16 10K
C7 16 1 2.0UF
OUTPUT
VC7/VV1
PLOT(TY=IM/TL=0.5)
PLOT(TY=ST/TI=0.5)
PLOT(TY=SI/FR=4/TI=1.0/ST=.005)
EXECUTE
STOP
```

Figure 216 NASAP - 70 Input Coding

```
IRANSFER FUNCTION .....
```


Figure 218

Figure 220

Figure 2 22a
Z эwose thomes

	TITLE CARD
CONTROL CARD \rightarrow	NASAP
	VINPUT 121
	IOUTPUT 341 IRI
	R124.37M
	C23 232 E 10 PF
	LO 1433
CONTROL CARD \rightarrow	OUTPUT ${ }^{\text {a }}$ (st Problem
	WORST CASE
	TOL=LO $=50$
	V I OUTPUT/VVINPUT
	ROOTS, POLES
	PLOT (TYPE = IMPULSE/TIME = 10)
	PLOT (TYPE = FR/FR $=.01 / \mathrm{TO}=1 \mathrm{E} 2)$
	PLOT (TY=WORST/FR $=.01 / \mathrm{TO}=1 \mathrm{E} 2)$
	VR-/VVINPUT
CONTROL CARD \rightarrow	EXECUTE
	ANOTHER OPTIONAL TITLE CARD
CONTROL CARD \rightarrow	TREE
	$\mathrm{EI}(1-2)=1$
	$\mathrm{DJ} 2 / \mathrm{IRE} 1(3-4)=1$
	RE1 $(2-4)=.37 \mathrm{M}$
	$\mathrm{CE},(2-3)=2 \mathrm{E} 10 \mathrm{PF}$
	LJ, $(1-4)=33$
CONTROL CARD \rightarrow	END
	SENS=RE1 $\}$ 2nd Proble
	SENS=LJ
	VLJ/VE1
	PLOT (TY $=$ SI/ AM $=2 / \mathrm{FR}=10$)
	PLOT (TY=SE/FR=1E-3/TO=1E6/EL=RE1)
	END

PRECEDING PAGE BLANK NOT FHMED

Figure 223 Sample Data Decks for NASAP-70

Figure 224 Example of Outputs Taken Across Two or More Cırcuit Elements

As is usually the case with any application program, a number of design tricks will evolve as the carcuit designers become famılıar with its operation. Some of these tips are described here.

Outputs Taken Across Two or More Circuat Elements
Quate often a circuit designer needs the transfer function expression taken across more than one circuit element, and with the capabilities of NASAP-70, as many computer runs as there are circuit output elements will be required. To circumvent this difficulty, an extra current source can be anserted across the desired output terminals and the output voltage measured across it (see for example Figure 2.24). This element can be viewed as an Ideal voltmeter, that 1s, a device that extracts a constant value (which is always zero) of current from the circuit. By adding the output current source ($I=0$), provision has been made for a general method of solution.
(As an added note, an ideal ammeter which is a short circuit is a voltage source whose voltage is a constant value of zero.)

Total Output Response
This design tip is really a reminder to the circuit designer of how the output response of a circuit should be handled when a number of active devices and energy storage elements are present. For such cases NASAP-70 requires that as many transfer functions as there are active devices and elements with energy stored in them be computed, relating these devices to the output requested. The transient response associated for each trans fer function is then computed and summed all together to form the total output response. It is important to not e that any charged capacitor with V_{0} volts has to be replaced by an uncharged capacitor in series with a battery of V_{0} volts

Also, any inductor L with an initial current of I_{0} through it has to be replaced by an inductor placed in parallel with a current source I_{o}

These sources are considered like any other active device, and thus their presence must be reflected in the desured output response.

There are approximation-oriented guidelines by which a tree selection procedure should be implemented. For low frequency approximation, capacitors should be chosen as links while inductors should be chosen branches (as much as possible while still retaining a tree structure.) Conversely, high frequency approximation results in inductors chosen as lınks while capacitors are chosen as branches. The practical underlying
reason is that while a zero is well represented and well behaved on a computer, $\infty \leftarrow 1 / 0$ causes error and havoc on the machine and thus will not be accepted by the algorithm This means that if one requires low as well as high frequency approximations for the same problem, this problem. should be submitted as two problems with two different trees Similarly, elements wath relatively large impedances compared with the circuit (for example, grid-plate tube impedance) should always be chosen links. (To set $I \leftarrow 0$ which means grid current equal zero.) On the other hand, elements with relatively small input impedances (r_{1} in some transistors) should always be chosen branches (To set $\mathrm{V} \leftarrow 0$).

In an approximation, branches can be collapsed or links can be opened without disturbing the tree structure. This fact can be verified by observing the example problems. Hence, by carefully selecting elements to be links or branches, foresight in design can be incorporated into circuit description and a great deal of flexibility in calculations can be achieved.

2. 5 NASAP Analysis of Nonlinear DC Circuits**

The basic procedure for analyzing four classes of nonlınear dependencies is described (1) Nonlınear controlled source dependent on current or voltage in the carcuit, (2) Nonlinear controlled source dependent on a parameter external to the circuit such as temperature, (3) Nonlınear resistor dependent on current or voltage associated with its terminals, and (4) Nonlınear resistor dependent on a parameter external to the circuit.

A method for obtaining models for nonlinear elements is presented and is used to establish a model for an exponential nonlinearity This model is used in the analysis of transistor bias circuits.

Also included are the analysis procedures for power supply regulator circuits using the real s evaluation option. This analysis produces results related to the load and line regulation properties of the regulator.

[^1]
2.5.1 Modeling Circuit Element Variations

Linear and nonlinear circuit element variations in a resistive circuit can be simulated with the use of the PLOT(TYPE=RE) capabilities of the NASAP program which results in a real variable evaluation of the transfer function. Consider a variable circuit element $A(x)$ where A may be a resistor, a current source, or a voltage source and x may be a current, a voltage, or some external parameter such as temperature. The function $A(x)$ is approximated by a ratio of polynominals using either approximation methods or trial and error.

$$
\begin{equation*}
A(x)=\frac{P(x)}{Q(x)} \tag{2.1}
\end{equation*}
$$

The variable x is replaced by s and a circuit is synthesized which has a transfer function or an input immitance-given by $P(s) / Q(s)$. When the TYPE=REAL option is used, this circuit will simulate the variation of the circuit element $A(x)$ if the range of s is the same as the expected range of x . It should be noted that since the circuit is used for simulation purposes only, it does not have to be physically realizable, i. e., controlled sources or negative circuit elements may be used.

The method for using this model in computer analysis of a circuit depends on the circuit element and variable which A and x represent. In Cases I and II of the discussion which follows it is assumed that $P(s) / Q(s)$ is realized as an input impedance. If the realization is an input admittance or a transfer function, relatively minor modifications are required.

Case I

A is a controlled voltage or a current source and x is a voltage or a current in the circuit.

The dependency function $A(s)$ is synthesızed as an impedance and a current generator of value unity is connected to the impedance. This auxilliary network is hinged to the network which 1 s to be analyzed. The nonlinear dependent source in the network is replaced by a source which is
dependent on the voltage across the auxillary network. The transfer function $x /$ independent source is specified and the TYPE $=$ REAL option is used. The solution for the circuit is obtained from the tabular printout or the graphical plot as the value where $\mathrm{x}=\mathrm{s}$. If x is not the desired output variable, the circuit is recoded with $A(x)$ replaced by its known value from the above solution. The auxilliary network is eliminated and the desired output variable is specified.

This analysus is applicable when the curcuit contains no more than one variable source.

To illustrate the method, consider the circuit of Figure 2.25. Let $R=2$ and assume that V is a function of I_{1} and is adequately approximated by

$$
\begin{equation*}
V\left(I_{1}\right)=\frac{I_{1}^{2}+I_{1}-5}{I_{1}+1} \quad 0 \leq I_{1} \leq 1 \tag{2.2}
\end{equation*}
$$

A pencil and paper solution results in

$$
\begin{equation*}
I_{1}=.921, V_{0}=.0795 \tag{2.3}
\end{equation*}
$$

For computer analysis an impedance is synthesized for which

$$
\begin{equation*}
Z(s)=\frac{s^{2}+s-5}{s+1}=s-\frac{5}{s+1} \tag{2.4}
\end{equation*}
$$

A circuit realization of this impedance is shown in Figure 2.26. The auxilliary network is hinged to the basic circuit with $R 2=2, I 1=\operatorname{IR} 7$ and V2 $=$ VR6. Note that the R5, R6 resistance combination is used for voltage measurement only and could be replaced by a single, large valued resistance. The transfer function IR1/VV1 is specified and a frequency of 915 to . 925 in steps of . 001 is specified. The frequency range is chosen on the basis of the expected "ballpark" value of the current IR1. If a good estmate of IRI cannot be made, a larger frequency range is specified with larger

Figure 225 Circuit for Example

Figure 226 Computer Analysis Models
increments and more than one pass on the computer may be necessary to obtain IR1 to the desured degree of accuracy.

The computer analysis results in

$$
\begin{equation*}
\frac{\operatorname{IR} 1}{\tilde{V} V 1}=-.25 \frac{-7-s+s^{2}}{1+s} \tag{2.5}
\end{equation*}
$$

and the printout table gives $\operatorname{IR} 1=s$ for $s=.921$. The value of $V 2$ is then obtained as $V 2=-1.682$. The basic circuit is then coded using this value of V 2 and the result is $\mathrm{VR} 3 / \mathrm{VVI}=.0795$.

Case II

A is a controlled voltage or current source and x is an external parameter which is known to vary over a specified range.

In this case, the controlled source is generally dependent on a current or voltage in the circuit (denoted by y in this discussion) and the dependency factor is a function of an external parameter x. The $h_{F E} I_{B}$ generator in the transistor dc equivalent circuit where $h_{F E}{ }^{\text {is }}$ temperature dependent is an example of this situation. The circuit is coded with $y A(x)$ replaced by a generator, $V(s)$, which is dependent on the voltage across the auxilliary network. The desired transfer function is specified and the SIGMA option is used. The computer solution gives the relation between the output variable and x in functional (replace s by x), tabular and graphical forms. This method is applicable for any number of variable sources in the circuit which depend on the same external parameter x .

The circuit of Figure 2.25 is used to illustrate the procedure with $R=2$ and V dependent on I_{1} and temperature according to

$$
\begin{equation*}
V=I_{1} \frac{T^{2}+T-5}{T+1} \quad 10 \leq T \leq 50 \tag{2.6}
\end{equation*}
$$

A hand solution results in

$$
\begin{equation*}
V_{0}=\frac{T^{2}+3 T-3}{T^{2}+5 T-1} \tag{2.7}
\end{equation*}
$$

For computer analysis the nonlinear dependency has the same functional form as in Case I and therefore $Z(s)$ of Figure 2.26 simulates the temperature dependency. The auxilliary network is hinged to the basic curcuit with I1 $=$ IR1 and V2 $=$ VR6. The transfer function VR3/VV1 is requested and a frequency range of 10 to 50 in steps of 1 is specified. The result is

$$
\begin{equation*}
\frac{V R 3}{\mathrm{VV} 1}=\frac{-3+3 s+s^{2}}{-1+5 s+s^{2}} \tag{2.8}
\end{equation*}
$$

A table is printed out and a graph of the function over the range $s=10$ to $s=50$ is plotted.

Case III
A is a resistor and x is the voltage across or the current through the resistor.

The circuit is coded wath $R(x)$ replaced by $Z(s)$. The transfer function $x /$ independent source is specified and the TYPE=REAL option is used. The solution for the circuit is obtained from the tabular printout or the graphical plot as the value where $\mathrm{x}=\mathrm{s}$. If x is not the desired output variable, the circuit is recoded with $R(x)$ replaced by its known value and the desired transfer function is specified. This analysis is applicable when the curcuit contans no more than one nonlinear resistance.

In the circuat of Figure 2.25, let $V=-2$ and R be dependent on I_{2}.

$$
\begin{equation*}
R\left(I_{2}\right)=\frac{I_{2}^{2}+I_{2}-5}{I_{2}+1} \quad 2 \leq I_{2} \leq 4 \tag{2.9}
\end{equation*}
$$

The solution 1 s

$$
\begin{equation*}
I_{2}=2.155, \mathrm{~V}_{\mathrm{o}}=-.771 \tag{2.10}
\end{equation*}
$$

For computer analysis, the basic circuit of Figure 2.26 is used with R2 replaced by $Z(s)$ and $V 2=-2$ IR7. The transfer function IL1/VV1 is requested and a frequency range of 2.15 to 2.16 in steps of .001 is specified. As in Case I, it may require more than one pass on the computer to determine the proper frequency range and increment which will result in the desired degree of accuracy for IL1. The computer analysis gives

$$
\begin{equation*}
\frac{\text { ILI }}{\mathrm{VV} 1}=2.67 \frac{1+\mathrm{s}}{-4.333+1.667 \mathrm{~s}+\mathrm{s}^{2}} \tag{2.11}
\end{equation*}
$$

for which ILI $=s$ at $s=2.155$. The value of $R\left(I_{2}\right)$ is evaluated as $R\left(I_{2}\right)=.5702$. The basic circuit is recoded using this value of R and the above value for V. The analysis results in VR3/VV1 $=-.771$.

Case IV

A is a resistor and x is an external parameter which is known to vary over a specified range.

The carcuat is coded with $R(x)$ replaced by $Z(s)$ and the desired transfer function is specified. The computer solution gives the relation between the output variable and x. This method is applicable for any number of variable resistances in the circuit which depend on the same external parameter x .

As an example, let $V=2$ and R be a function of temper ature in the circuit of Figure 2.25.

$$
\begin{equation*}
R(T)=\frac{T^{2}+T-5}{T+1} \quad 10 \leq T \leq 50 \tag{2.12}
\end{equation*}
$$

A hand solution gives

$$
\begin{equation*}
V_{o}=.667 \frac{T^{2}+3 T-3}{T^{2}+1.667 T-4.333} \tag{2.13}
\end{equation*}
$$

In the computer analysis, the basic circuit of Figure 2.26 is used with R2 replaced by $Z(s)$ and $V 2=2 \operatorname{IR7}$. The frequency range 10 to 50 m steps of 1 is specified and the computer output is

$$
\begin{equation*}
\frac{V R 3}{V V 1}=.667 \frac{-3+3 s+s^{2}}{-4.333+1.667 s+s^{2}} \tag{2.14}
\end{equation*}
$$

A table is printed out and a graph of the function over the range $s=10$ to $s=50$ is plotted.

2.5.2 Modeling Temperature Varıations of Transıstor Parameters

The parameters of the transistor de equivalent circuit, $h_{F E}, V_{B E}$ and $I_{c o}$, are temperature dependent. The functional form of the dependence may vary depending on the construction of the transistor. Generally, graphical plots of the dependencies are available from the manufacturer on request.

Analytical investigations predict the following nomanal temperature variations.

$$
\begin{equation*}
h_{F E}(T)=h_{F E o}(1-25 B+B T) \tag{2.15}
\end{equation*}
$$

where $h_{\text {FEO }}{ }^{\text {1s }}$ the value of $h_{F E}$ aat $25^{\circ} \mathrm{C}$
T is expressed in ${ }^{\circ} \mathrm{C}$ $B=.02$ for $G e$ and .013 for Si
$\mathrm{V}_{\mathrm{BE}}(\mathrm{T})=\mathrm{V}_{\mathrm{BEO}}+25 \mathrm{D}-\mathrm{DT}$
where $V_{B E O}{ }^{1 s}$ the value of $V_{B E}$ at $25^{\circ} \mathrm{C}$
$D=.002$ to .0025
$I_{C O}(T)=I_{C O O_{C O}} \frac{T-25}{\bar{F}}$
where $I_{c o o}$ is the value of $I_{c o}$ at $25^{\circ} \mathrm{C}$

$$
F=10 \text { for } G e \text { and } 7 \text { for } \mathrm{Sl}
$$

The model for temperature variation of $h_{F E}$ requires
$Z(s)=1-25 B+B s$
while the $V_{B E}$ model must satisfy

$$
\begin{equation*}
\mathrm{Z}(\mathrm{~s})=\mathrm{V}_{\mathrm{BEO}}+25 \mathrm{D}-\mathrm{Ds} \tag{2.19}
\end{equation*}
$$

Simple series RL curcuits will satisfy these relations with $R=1-25 B$ and $L=B$ for the $h_{F E}$ model and $R=V_{B E O}+25 D$ and $L=-D$ for the $V_{B E}$ model. The current generators used to complete the auxilliary networks will have value $h_{F E O} I_{B}$ for the $h_{F E}$ model and unity for the $V_{B E}$ model.

The circuit to simulate $I_{c o}$ variation is somewhat more complicated than the $h_{F E}$ and $V_{B E}$ models. As indicated by Equation (2.17), $I_{c o}$ doubles every $10^{\circ} \mathrm{C}$ for germanium and every $7^{\circ} \mathrm{C}$ for slicon. A trial and error method results in the following approximating functions for the temperature range $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

$$
\begin{align*}
& I_{c o G e}(T)=I_{c o o} 128.485 \frac{T+.471698}{T^{2}-159.394 T+6632.58} \tag{2.20}\\
& I_{c_{O S L}}(T)=I_{c o o} 202.650 \frac{T-12.5480}{T^{2}-149.500 T+5690.00}
\end{align*}
$$

Figure 2.27 shows a possible synthesis of the normalized approximating function $I_{c o}(s) / I_{c o o^{\circ}}$. The values of the elements are listed below.

	Ge	Si
C	.007783	.0049346
R_{1}	-.8037	-1.4797
R_{2}	.0090349	-.640268
L	.019154	.0510255

Although these circuits model temperature variation of $I_{c o}$, they do not satisfy the transistor model since $\left(h_{F E}+1\right) I_{C O}{ }^{\text {is }}$ required and $h_{F E}{ }^{\text {is }}$ also temperature dependent. This product can be modeled with the configuration shown in Figure 2.28 If $\frac{1}{Y_{h}(s)} \gg Z(s)$ for the real s range of interest, then

$$
\begin{equation*}
I=h_{F E O} Y_{h}(s) Z_{I_{c o}}(s) \tag{2.22}
\end{equation*}
$$

The control variable which is required for the transistor model is

$$
\begin{equation*}
I=\left[h_{F E}(s)+1\right], I_{C O}(s) \tag{2.23}
\end{equation*}
$$

sunce $Z_{I_{C O}}(s)=I_{c o}(s) / I_{c o o}$, the correspondence is

$$
h_{F E O} Y_{h}(s)=\left[h_{F E}(s)+1\right] I_{C O O}
$$

or

$$
\begin{equation*}
Y_{h}(s)=\frac{\left[h_{F E}(1-25 B+B s)+1\right] I_{c o o}}{h_{F E}} \tag{2.24}
\end{equation*}
$$

A summary of the models is presented in Figure 2.29 where a complete transistor circuit is modeled. The V1, R1 combination is included

Figure 227 Model for $I_{c o}$ Temperature Variation

Figure 228 Configuration to Obtain Product Relation

In this model so that V2, I4 and I5 can be constant amplitude controlled sources. If a plot of the collector current is required, the transfer function IR5/VV1 is specified. A typical printout for the circuit shown in Figure 2. 29 using the (TYPE=REAL) option is included in Appendix C.

2.5.3 Regulation Curves for Power Supply Regulators

The TYPE=REAL option of the NASA-70 program is useful in obtaining power supply regulation curves. In the circuit of Figure 2.30, R2 is a large valued resistor which is used for measuring voltage across the auxilliary network. The voltage across R1 is constant, the voltage across LI varies Inearly with s, and the voltage across R2 is the sum of VR1 and VL1. For

GERMANIUM TRANSISTOR

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{re}}=1 \mathrm{~K} \\
& \mathrm{~h}_{\mathrm{oe}}=25 \times 10^{6} \mathrm{mho} \\
& \mathrm{~h}_{\text {FEo }}=50 \\
& \mathrm{~V}_{\text {BEo }}=2 \mathrm{v} \\
& \mathrm{I}_{\text {coo }}=1 \mu \mathrm{a}
\end{aligned}
$$

Figure 229 Model for Simulation of Temperature Variation Effects in a Transistor Circuit *Resistors Included in Model for Voltage Measurement
**Resistor Included in Model for Current Measurement

Figure 230 Power Supply Regulator Cırcuit Analysıs
load regulation data, V is made dependent on VR1 and I is made dependent on VL1. Line regulation information is obtained if V depends on VR2 and I depends on VR1. If V depends on VR2 and I depends on VL1, a regulation curve is obtained for simultaneous variation of line voltage and load current.
2. 6 Network Partitioning Schemes for NASAP-70 ${ }^{11}$

Assume a general network is partitioned into several smaller subnetworks as shown in Figure 2.31. The input and output variables, X_{1} and X_{2}, can be located arbitrarily. Note that the partitioning conveniently lends itself to transfer function formulations Subnetwork 1 ports are 1 dentified by $X_{1}, 1_{2}$, and 1_{3}, the other subnetwork ports are numbered similarly.
2.6.1 N-Port Interconnection Methods

Some interconnection methods are briefly described here to make the discussion self-contained. A detailed description can be found in reference 12.

Laemmel Method The Laemmel Method ${ }^{13}$ is employed to connect two subnetworks in cascade as shown in Figure 2.31. This technique utilizes the open circuit impedances of the network. The input and output ports of N_{1} and N_{2} are in groups of a and b, respectively. The network N_{c} obtained by cascading N_{1} and N_{2} has its input and output ports in group a of N_{1} and group b of N_{2}, respectively.

Figure 231 A Complex Network Partitioned into Several Smaller Networks

The impedance matrix of subnetwork N_{1} is defined as

$$
U=\left[\begin{array}{cc}
U^{a a} & U^{a b} \tag{2.25}\\
U^{b a} & U^{b b}
\end{array}\right]
$$

where

$$
\begin{aligned}
& U^{a a}=\left(u_{1 j} 1=1--q, j=1--q\right), U^{a b}=\left(u_{1 j} 1=1--q, j=q+1 \cdots-r\right) . \\
& U^{b a}=\left(u_{1 j} 1=q+1---r, j=1--q\right), \quad U^{b b}=\left(u_{1 j} 1=q+1--r, j=q+1--r\right)
\end{aligned}
$$

are the open circuit impedances relating ports of the subnetworks. Note that the U matrix, and succeeding matrices, are partitioned according to the grouping of the input and output ports.

In a similar manner, the open loop impedance matrix for N_{2} is

$$
T=\left[\begin{array}{cc}
T^{a a} & T^{a b} \tag{2.26}\\
T^{b a} & T^{b b}
\end{array}\right]
$$

where

$$
T^{a a}=\left(t_{1 j} 1=1---s, j=1--s\right), T^{a b}=\left(t_{I j} 1=1--s, j=s+1 \cdots-w\right) .
$$

$$
T^{b a}=\left(t_{1 J} 1=s+1--w, j=1--s\right), T^{b b}=\left(t_{1 J}^{1=s+1}---w, j=s+1---w\right)
$$

are open carcuit impedances relating ports in N_{2}.

Figure 232 Connecting Two N Port Subnetworks in Cascade
The overall open circuit impedance of N_{c}, obtained by interconnecting N_{1} and N_{2} (Figure 2.32), can be computed by Laemmel's relations

$$
\begin{align*}
& Z^{a a}=U^{a a}-U^{a b}\left(U^{b b}+T^{a a}\right)^{-1} U^{b a} \tag{2.27}\\
& Z^{a b}=U^{a b}\left(U^{b b}+T^{a a}\right)^{-1} T^{a b} \tag{2.28}\\
& Z^{b a}=T^{b a}\left(U^{b b}+T^{a a}\right)^{-1} U^{b a} \tag{2.29}\\
& Z^{b b}=-T^{b a}\left(U^{b b}+T^{a a}\right)^{-1} T^{a b}+T^{b b} \tag{2.30}
\end{align*}
$$

where

$$
T=\left[\begin{array}{ll}
z^{a a} & z^{a b} \tag{2.31}\\
Z^{b a} & z^{b b}
\end{array}\right]
$$

Laemmel's relations can be applied repeatedly to interconnect subnetworks of the form shown in Figure 2.31. For example, consider the first three subnetworks of row 1. Subnetworks 1 and 2 are combined to form subnetwork 1, 2 as in Figure 2.33(b). Subnetwork 1, 2 is rearranged and connected with subnetwork 3 to form subnetwork 1, 2, 3 of Figure 2.33(d). This process is continued until all subnetworks of row 1 have been interconnected. In an identical manner, the subnetworks of rows 2 are interconnected, producing t subnetworks. This is depicted in Figure 2. 34 The subnetworks are interconnected to reconstruct the original network.

Figure 233 Interconnection of Subnetworks
The total number of times the Laemmel method is applied in forming the original network from the group of subnetworks given in Figure 231 is tr-1, where t is number of rows and r is the number of columns of the subnetworks.

The following guidelines should be adhered to in subdividing a network for an analysis by the Laemmel Method

1. No mutual coupling should exist between components of different subnetworks,
2. A dependency relationship must be contained within a subnetwork,
3. The port of a subnetwork must be taken across an element which is part of a closed mesh, such as shown in Figure 2.35. (This restriction is due to NASAP-70 rather than to the methods themselves).

Cascade Parameter Method When a network can be partitioned into cascade subnetworks as shown in Figure 2.36 , the cascade parameter method ${ }^{14}$ is usually employed to compute transfer functions rather than the Laemmel method because of the reduction in computing time achieved. The cascade parameters relate the terminal voltages and currents for the overall network by the expression

Figure 234 Subnetworks of the Overall Network

$$
\left|\begin{array}{c}
\mathrm{V}_{\mathrm{I}} \tag{2.32}\\
\mathrm{I}_{\mathrm{I}}
\end{array}\right|=\left|\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right| \quad\left|\begin{array}{c}
\mathrm{V}_{0} \\
-\mathrm{I}_{\mathrm{O}}
\end{array}\right|
$$

where

$$
\left|\begin{array}{ll}
A & B \tag{2.33}\\
C & D
\end{array}\right|=\left|\begin{array}{cc}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right|\left|\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right| \cdots\left|\begin{array}{ll}
A_{r} & B_{r} \\
C_{r} & D_{r}
\end{array}\right|
$$

The transmission parameters A_{1}, B_{1}, C_{1}, and D_{1} for each subnetwork are the inverse voltage transfer ratio, negative inverse of the transfer admittance, the inverse transfer impedance, and the negative inverse current transfer ratio, respectively, of the input port to the output port. A_{I} and C_{I} are calculated with the output port open, B_{1} and D_{1} are calculated with the output port shorted. The transmission parameters can be computed by NASAP-70 and are in general ratios of polynomials in S.

Figure 236 Cascade Connection of Two Port Subnetworks

Parallel Interconnection Method Another means of network interconnection is the paralleling of ports of networks as shown in Figure 2.37. Murti and Thulasuraman ${ }^{15}$ show that two n-port networks described by short circuit admittances and having no internal vertices, can be combined in parallel if their edge and port orientations are identical, and also if their modified cut set matrices with identical row and column order are equal.

Let the short circuit admittance matrices of networks N_{1} and N_{2} be

$$
Y_{1}=\left|\begin{array}{cc}
Y_{1}^{\mathrm{aa}} & \mathrm{Y}_{1}^{\mathrm{ab}} \tag{2.34}\\
\mathrm{Y}_{1}^{\mathrm{ba}} & \mathrm{Y}_{1}^{\mathrm{bb}}
\end{array}\right|
$$

and

$$
Y_{2}=\left|\begin{array}{cc}
Y_{2}^{\mathrm{aa}} & \mathrm{Y}_{2}^{\mathrm{ab}} \tag{2.35}\\
\mathrm{Y}_{2}^{\mathrm{ba}} & \mathrm{Y}_{2}^{\mathrm{bb}}
\end{array}\right|
$$

The individual entries of these matrices are defined sumilar to the Laemmel matrices except that short-circuit admittances are involved.

Assuming the interconnection criteria are satisfied, the short circuit admittance matrix of the combined network is

$$
Y_{t}=Y_{1}+Y_{2}=\left|\begin{array}{cc}
Y_{1}^{\mathrm{aa}}+Y_{2}^{\mathrm{aa}} & Y_{1}^{\mathrm{ab}}+Y_{2}^{\mathrm{ab}} \tag{2.36}\\
Y_{1}^{\mathrm{ba}}+Y_{2}^{\mathrm{ba}} & Y_{1}^{\mathrm{bb}}+Y_{2}^{\mathrm{bb}}
\end{array}\right|
$$

Figure 237 Parallel Connection of Two N Port Networks
2.6.2 Network Interconnection Examples

The network shown in Figure 2.38 was arbitrarily constructed to Illustrate Laemmel's Method. Assume that V_{2} / I_{1} is required. Let this network be subdıvided into two subnetworks as shown in Figure 2.39

Figure 238

Figure 239

The port equations for subnetwork U are

$$
\left|\begin{array}{c}
V_{\mathrm{U}}^{\mathrm{U}} \tag{2.37}\\
\mathrm{~V}_{\mathrm{b}}^{\mathrm{U}}
\end{array}\right|=\left|\begin{array}{cc}
U^{\mathrm{aa}} & U^{\mathrm{ab}} \\
U^{\mathrm{ba}} & U^{\mathrm{bb}}
\end{array}\right| \quad\left|\begin{array}{c}
I_{\mathrm{a}}^{\mathrm{U}} \\
I_{b}^{U}
\end{array}\right|
$$

where

$$
\begin{aligned}
& U^{a \mathrm{a}}=\left(u_{I J}^{I}=1, j=1\right), U^{a b}=\left(u_{i J}^{I}=1, J=2,3\right), \\
& U^{b a}=\left(u_{1 J}^{I}=2,3, j=1\right), U^{b b}=\left(u_{1 J} I=2,3, J=2,3\right), \\
& V_{a}^{U}=V_{1}^{U}, V_{b}^{U}=V_{2}^{U}, V_{3}^{U} I_{a}^{U}=I_{1}^{U}, I_{b}^{U}=I_{2}^{U} I_{3}^{U}
\end{aligned}
$$

The port equations for subnetwork T are

$$
\left|\begin{array}{c}
V_{a}^{T} \tag{2.38}\\
V_{b}^{T}
\end{array}\right|=\left|\begin{array}{cc}
T^{a a} & T^{a b} \\
T^{b a} & T^{b b}
\end{array}\right| \quad\left|\begin{array}{c}
I_{a}^{T} \\
I_{b}^{T}
\end{array}\right|
$$

and those for network Z are

$$
\left|\begin{array}{c}
\mathrm{v}_{\mathrm{a}}^{\mathrm{Z}} \tag{2,39}\\
\mathrm{v}_{\mathrm{b}}^{\mathrm{Z}}
\end{array}\right|=\left|\begin{array}{cc}
z^{\mathrm{aa}} & z^{\mathrm{ab}} \\
z^{\mathrm{ba}} & z^{\mathrm{bb}}
\end{array}\right|\left|\begin{array}{c}
\mathrm{I}_{\mathrm{a}}^{Z} \\
\mathrm{I}_{\mathrm{b}}^{Z}
\end{array}\right|
$$

The matrices of (2.38) and (2.39) can readily be defined by an examination of Figures 2. 38 and 2. 39.

The desured transfer function is

$$
\begin{equation*}
\mathrm{V}_{2} /\left.\mathrm{I}_{1}\right|_{\mathrm{I}_{2=0}}=\mathrm{Z}_{21}=\mathrm{Z}_{\mathrm{ba}} \tag{2.40}
\end{equation*}
$$

From Equation (2.29) $Z^{b a}=T^{b a}\left(U^{b b}+T^{a a}\right)^{-1} U_{b a}$. Therefore the following mppedance parameters are computed utilizing NASAP-70 $t_{31}, t_{32}, t_{11}, t_{12}$, $t_{21}, t_{22}, u_{22}, u_{32}, u_{33}, u_{21}$, and u_{31}. Since the subnetworks are Iumped, Inear and passive, then $t_{12}=t_{21}$ and $u_{23}=u_{32}$, hence t_{21} and u_{32} need not be computed. The parameters computed are listed.

$$
\begin{equation*}
u_{12}=\frac{+6.872 E+10 S+1.000 E+09 S^{3}}{+1.000 E+18+3.000 E+15 S+1.002 E+12 S^{2}+3.000 E+06 S^{3}+1.000 E+00 S^{4}} \tag{2.41}
\end{equation*}
$$

Let the denominator of u_{12} be equal to $u_{\text {den }}$ then

$$
\begin{aligned}
& u_{12}=\frac{+6.872 \mathrm{E}+10 \mathrm{~S}+1.000 \mathrm{E}+09 \mathrm{~S}^{3}}{u_{\mathrm{den}}} \\
& \mathrm{u}_{13}=\mathrm{U}_{31}=\frac{1.000 \mathrm{E}+21+1.000 \mathrm{E}+18 \mathrm{~S}+1.000 \mathrm{E}+12 \mathrm{~S}^{2}}{u_{\mathrm{den}}} \\
& \mathrm{u}_{22}=\frac{1.000 \mathrm{E}+15 \mathrm{~S}+3.000 \mathrm{E}+12 \mathrm{~S}^{2}+1.001 \mathrm{E}+09 \mathrm{~S}^{3}+1.000 \mathrm{E}+3 \mathrm{~S}^{4}}{u_{\mathrm{den}}}
\end{aligned}
$$

$$
u_{23}=U_{32}=\frac{-1.000 \mathrm{E}+12 \mathrm{~S}^{2}}{u_{\mathrm{den}}}
$$

$$
u_{33}=\frac{2.000 \mathrm{E}+21+1.001 \mathrm{E}+18 \mathrm{~S}+3.000 \mathrm{E}+12 \mathrm{~S}^{2}+1.000 \mathrm{E}+06 \mathrm{~S}^{3}}{u_{\mathrm{den}}}(2.45)
$$

$$
t_{11}=\frac{1.000 E+06+1.002 \mathrm{E}+03 \mathrm{~S}+3.000 \mathrm{E}-03 \mathrm{~S}^{2}+1.000 \mathrm{E}-09 \mathrm{~S}^{3}}{1.000 \mathrm{E}+03+2.002 \mathrm{E}+00 \mathrm{~S}+5.000 \mathrm{E}-06 \mathrm{~S}^{2}+1.000 \mathrm{E}-12 \mathrm{~S}^{3}}
$$

Let the denominator of t_{11} to be equal to $t_{\text {den }}$ then

$$
\begin{align*}
& t_{11}=\frac{1.000 E+06+1.002 \mathrm{E}+03 \mathrm{~S}+3.000 \mathrm{E}-03 \mathrm{~S}^{2}+1.000 \mathrm{E}-09 \mathrm{~S}^{3}}{t_{\text {den }}} \tag{2.46}\\
& t_{12}=T_{21}=\frac{-1.000 \mathrm{E}-09 S^{3}}{t_{\text {den }}} \tag{2.47}\\
& t_{13}=\frac{1.000 \mathrm{E}+03 \mathrm{~S}+2.000 \mathrm{E}-03 \mathrm{~S}^{2}}{t_{\text {den }}} \tag{2.48}\\
& t_{22}=\frac{1.000 \mathrm{E}+00 \mathrm{~S}+2.00 \mathrm{E}-03 \mathrm{~S}^{2}+3.000 \mathrm{E}-09 \mathrm{~S}^{3}}{t_{\text {den }}} \tag{2.49}\\
& t_{23}=t_{32}=\frac{1.000 \mathrm{E}-09 S^{3}}{t_{\text {den }}} \tag{2.50}
\end{align*}
$$

Substatuting the appropriate matrices elements of (2.3.7) and (2.38) into (2.29) the transfer impedance Z_{21} is computed

$$
Z_{21}=Z_{b a}=\left|T_{31} \quad T_{32}\right|\left[\left|\begin{array}{ll}
\mathrm{U}_{22} & \mathrm{U}_{23} \tag{2.51}\\
\mathrm{U}_{32} & \mathrm{U}_{33}
\end{array}\right|+\left|\begin{array}{ll}
\mathrm{T}_{11} & \mathrm{~T}_{12} \\
\mathrm{~T}_{21} & \mathrm{~T}_{22}
\end{array}\right|\right]^{-1}\left|\begin{array}{l}
\mathrm{U}_{21} \\
\mathrm{U}_{31}
\end{array}\right|
$$

A computer program was written in Fortran IV to solve Equation (2.51), the result is
$Z_{21}=\frac{+1.3+4 \mathrm{E}+38 \mathrm{~S}^{2}+1.001 \mathrm{E}+39 \mathrm{~S}^{3}+5.010 \mathrm{E}+36 \mathrm{~S}^{4}++.036 \mathrm{E}+33 \mathrm{~S}^{5}}{+2.000 \mathrm{E}+48 \mathrm{~S}^{0}+1.301 \mathrm{E}+46 \mathrm{~S}^{1}+3.009 \mathrm{E}+43 \mathrm{~S}^{2}+3.026 \mathrm{E}+40 \mathrm{~S}^{3}+1.333 \mathrm{E}+3+\mathrm{S}^{4}}$ $\frac{+2.052 \mathrm{E}+30 \mathrm{~S}^{6}+2.414 \mathrm{E}+25 \mathrm{~S}^{+}+2.086 \mathrm{E}+21 \mathrm{~S}^{8}+1.313 \mathrm{E}+16 \mathrm{~S}^{9}}{+2.189 \mathrm{E}+33 \mathrm{~S}^{5}+4.298 \mathrm{E}+28 \mathrm{~S}^{6}+2.299 \mathrm{E} 24 \mathrm{~S}^{+}+2.59+\mathrm{E}+19 \mathrm{~S}^{8}+1.206 \mathrm{E}+14 \mathrm{~S}^{9}}$ $\frac{+2.908 \mathrm{E}+10 \mathrm{~S}^{10}+2.602 \mathrm{E}+04 \mathrm{~S}^{11}+9.002 \mathrm{E}-03 \mathrm{~S}^{12}+1.000 \mathrm{E}-09 \mathrm{~S}^{13}}{+2 .++3 \mathrm{E}+08 \mathrm{~S}^{10}+3.286 \mathrm{E}+02 \mathrm{~S}^{11}+1.931 \mathrm{E}-04 \mathrm{~S}^{12}+5.201 \mathrm{E}-11 \mathrm{~S}^{13}+5.000 \mathrm{E}-18 \mathrm{~S}^{14}}$ (2.52)

Also Z_{21} was computed directly for network Z by means of NASAP-70. This result is

$$
\begin{align*}
Z_{21}= & \frac{-7.885 \mathrm{E} 04 \mathrm{~S}^{2}+1.001 \mathrm{E} 09 \mathrm{~S}^{3}+3.001 \mathrm{E} 03 \mathrm{~S}^{4}}{2.000 \mathrm{E} 18+3.008 \mathrm{E} 15 \mathrm{~S}+1.021 \mathrm{E} 12 \mathrm{~S}^{2}+1.204 \mathrm{E} 07 \mathrm{~S}^{3}} \\
& \frac{+1.002 \mathrm{E} 00 \mathrm{~S}^{5}+1.000 \mathrm{E}-06 \mathrm{~S}^{6}}{}
\end{aligned} \begin{aligned}
& +1.037 \mathrm{E} 03 \mathrm{~S}^{4}+7.031 \mathrm{E}-03 \mathrm{~S}^{5}+1.201 \mathrm{E}-08 \mathrm{~S}^{6}+5.000 \mathrm{E}-15 \mathrm{~S}^{7} \tag{2.53}
\end{align*}
$$

The frequency response of Equations (2.52) and (2.53) was plotted as shown in Figure 2.40. A comparison of the two curves of Figure 2.40 gives an indication of the relative error between the two methods for computing Z_{21}. The peak at the upper frequency range of the curve for (2.52) is a result of solving each of the two networks separately and then combining these results to obtain the solution for the interconnected networks. One possible explanation for this is loss of significance error which can occur when two numbers of similar magnitudes are added.

Figure 240 Frequency Response of Laemmel

A cascade connection example illustrates how the computation time increases as the number of cascaded stages increases. The curcuit for each stage is shown in Figure 2.41.

The desired transfer function, $I_{\text {out }} / I_{\text {in }}$, can be calculated using NASAP-70. This was done first for one stage, then an identical stage was connected in cascade with this first stage to form a two stage amplifier. A coupling capacitor was placed between the collector of the first stage and the base of the second stage to provide DC 1solation. NASAP-70 was again used to compute the transfer function $I_{\text {out }} / I_{1 n}$, where $I_{\text {out }}$ is the current through the collector resistor of the last stage. This process was continued until five stages had been cascaded. The results, which were calculated by an IBM 360 computer are plotted in Figure 2. 42.

Figure 241 A Single Stage Amplifier

Figure 242 Results of Cascading Amplifier Stages

From this curve it can be seen that the computer time required increases rapidly as the number of cascaded stages is increased.

Calculations were made to preduct the approximate theoretical time requared to compute the desired transfer function when the cascaded stages are interconnected by the Cascade Parameter method. It was assumed that 1.1 seconds of CPU tume was required to compute each parameter. The CPU time required to multiply the matrices of the individual stages was neglected.

If two stages were cascaded the resultant overall matrix would be
$\left|\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right|=\left|\begin{array}{ll}\mathrm{A}_{1} & \mathrm{~B}_{1} \\ \mathrm{C}_{1} & \mathrm{D}_{1}\end{array}\right| \quad\left|\begin{array}{ll}\mathrm{A}_{2} & \mathrm{~B}_{2} \\ \mathrm{C}_{2} & \mathrm{D}_{2}\end{array}\right|$

The desired parameter $1 \mathrm{~s}, \mathrm{D}=\mathrm{B}_{2} \mathrm{C}_{1}+\mathrm{D}_{1} \mathrm{D}_{2}$ To compute D , only $\mathrm{B}_{2}, \mathrm{C}_{1}, \mathrm{D}_{1}$, and D_{2} need to be calculated. Hence, the total assumed time requared to compute D is $4 X 1.1=4.4$ seconds. The D parameter for three, four and fuve cascaded stages was computed in a sumilar manner. These theoretacal computation times are plotted in Figure 2.42. It is evident that if more than four stages are cascaded, then a definite time savings will result if the desired transfer function is computed by the Cascade Parameter method. In the preceding example, the transfer function $I_{\text {out }} / I_{\text {in }}$ was computed, whereas the parameter D is defined as, $D=-I_{1 n} / I_{\text {out }} \mid V_{\text {out }}=0$. However, the parameter D can be computed and then inverted to give the desired transfer function.

2.7 Computational Errors

This section is concerned with the computational errors associated with NASAP-70. The impact and effect of errors at individual stages of computation are given, and in some cases recommendations regarding their minimization are also included.

2.7.1 Flowgraph Algorithm Errors

If the flowgraph algorithm and application of the Shannon-Happ formula were implemented utilizing a symbolic, or tagging approach no errors would be introduced into the derived transfer function. The NASAP-70
program discussed here performs all operations on numerical data. Thus, the constraint of digital computing introduces errors. Definition of these errors and how they relate to NASAP-70 follows. Input/ Output Errors ${ }^{16}$

Circuit parameters are input to NASAP-70 in decimal floating point notation. Binary arithmetic units require that the input data be converted to floating point notation compatible with the machine. Errors are introduced in program working data because there is no one-to-one correspondence between fractions of different radicies when operations are restricted to a finite wordlength. The magnitude of the error 1 is dependent on machine hardware and the algorithm used to perform the conversion.

After required calculations are completed, the internal binary results are converted back to decimal notation. The conversion effects only the last significant digit of each coefficient and is quite minor. Also, conversion is not performed when further operations are carried out in the transfer function. For these reasons, no attempt is made here to analyze these errors.

An example of actual input/output errors (IBM $360 / 75$) is shown in Figure 2. 43.

Figure 243
Round-off Error
Round-off errors result directly from the finite wordlength of the machine Errors can occur after both additive and multiplicative operations. The severe additive type errors are called significance loss, and will be described later

Multaplyıng two numbers, each with n significant dıgits yields a product significant to 2 n places. To store the product it is rounded to n significant digits. Wilkinson ${ }^{17}$ has shown that in a binary rounding system the floating point computation, $F \ell\left(X_{1}, X_{2} \ldots X_{n}\right)$, produces the error bound E,

$$
\begin{equation*}
|E| \leq(n-1) 2^{-t}+\frac{(n-1)(n-2) 2^{-2 t}}{2!}+\ldots \tag{2-54}
\end{equation*}
$$

where

$$
F \ell\left(X_{1}, X_{2}, \ldots X_{n}\right)=X_{1} \cdot X_{2} \ldots X_{n}(1+E)
$$

When computing high order loops, the flowgraph technique requires a number of consecutive multiplications. The round-off errors introduced can contribute significantly to the noise contained in the coefficients of a computed transfer functions. Relation (2-54) shows that increasing the wordlength, t, results in a decreasing error ratio, E. It is proposed that double precision arithmetic be utilized in carrying out all required flowgraph multiplications. The round-off noise is located in the lower order digits. In most cases, results of multiplicative operations can be guaranteed to the significance of input data.

An example of round-off error is shown in Figure 2.44. The errors are totally attributed to round-off error because (1) Component values were selected such that the binary equivalent of the input data was exact,
(2) Number of calculations and element values indicate no significant loss could have taken place.

Figure 244

Output requested. $I_{I} / V_{I}=T$

$$
\mathrm{T}_{\text {True }}=\mathrm{I}_{\mathrm{I}} / \mathrm{V}_{\mathrm{I}}=1 / 3
$$

$$
\mathrm{T}_{\text {NASAP }}=\frac{1}{3+\left[\frac{2 \times 10^{-5}}{3 \mathrm{~S}^{2}+0.667 \mathrm{~S}}+3709 \times 10^{-2}\right]}
$$

Loss of significance errors occur during floating point addation operations involving two numbers of opposite sign. The maximum error, E, resulting from the floating point addition $X+Y$ is bounded by

$$
|\mathrm{E}| \leqq\left(1 \frac{1}{2}\right) 2^{-\mathrm{t}}
$$

where

$$
F \ell(X+Y)=(X+Y)(1+E)
$$

The error impact is largely dependent on the magnitude and polarity of the parameters involved, and the order in which computations are carried out. Two situations demonstrate the extent of significance loss. First consider a simple floating point addition of two numbers of opposite sign but comparable magnitudes. The resulting sum is located in the low order positions, the same locations affected by conversion and round-off errors. When the sum is left-shift normalized, the true precision of the result is disguised. The second case involves a set of repeated additions where the order of calculation can introduce loss of significance.

Significance loss errors can occur in the calculations associated with the flowgraph technique. Circuits containing elements with values covering a wide range are especially prone. The table below presents three ways in which significance loss can be detected, controlled or eliminated

METHOD	PURPOSE
Compare results of normalized and non-normalized arithmetic	Detection
Time scaling	Minımization or Elimination
Optimum tree	Minimization or

The first approach employs a two pass system with the first pass utilizing regular floating point arithmetic. ${ }^{18}$ During the second pass, the arithmetic is changed such that sums are not left-shift normalized. When the number is subsequently required in another calculation, the appropriate number of zeros (necessary to allgn the two operands) are shifted into the least significant bit positions. This scheme defines a lower bound for the calculation. The results of the two passes are examined and significance loss has occurred if these numbers are not equivalent. The significance of the calculation is considered to be equal to the number of digits which are ıdentical. The calculation of Figure 2.43 is not prone to significance loss,

$$
\begin{aligned}
& T=\left(\frac{V_{1}}{V_{R_{5}}}\right)_{\text {normalized }}=\frac{1.00025}{1.00000 S^{3}+2.00000 S^{2}+2.00050 S+1.00025} \\
& T=\left(\frac{V_{1}}{V_{R_{5}}}\right)_{\text {unnormalızed }}=\frac{1.00025}{1.00000 S^{3}+2.00000 S^{2}+2.00050 S+1.00025}
\end{aligned}
$$

Figure 2.45 is a problem vulnerable to significance loss as is demonstrated below

$$
\begin{aligned}
T & =\left(\frac{V_{I}}{I_{I}}\right)_{\text {normalızed }} \\
& =\frac{2.04000 \times 10^{-11_{S}} S^{2}+1.10709 \times 10^{-1} \mathrm{~S}+7.19903 \times 10^{7}}{2.04000 \times 10^{-13} \mathrm{~S}^{2}+767740 \times 10^{-4} \mathrm{~S}+1.16400 \times 10^{4}} \\
T & =\left(\frac{V_{I}}{I_{I}}\right)_{\text {unnormalized }} \\
& =\frac{2.04000 \times 10^{-1 I_{S}} S^{2}+1.10709 \times 10^{-1} \mathrm{~S}+7.19903 \times 10^{7}}{2.04000 \times 10^{-13} \mathrm{~S}^{2}+7.67827 \times 10^{-4} \mathrm{~S}+1.16640 \times 10^{4}}
\end{aligned}
$$

Figure 2.46 shows how the span of element magnitudes in Figure 2.45 changes as the time scale is decreased. The particular transfer function was computed and checked for significance loss at the various time scales. The results of the technique although inconclusive, tend to show that time scaling in one technique to combat significance loss. ${ }^{16}$

Figure 245

Figure 246

Figure 247

Another way of reducing significance loss in the computation of Figure 2.45 is to select an optimal tree. An optimal tree is defined as the tree which, if selected, displays to the program the minimum variance between the magnitudes of the imput data. The results of optimal tree selection are plotted above.

Different input trees generally result in varying computational orders. The above definition can be used as a means for reducing computational errors, although the method itself is not foolproof The third data point in Figure 2.47
is assumed to result from a favorable computational order for the particular tree selected and, contradictory to the definition of an optimum tree, a comparably good transfer function was calculated.

Error Prediction ${ }^{16}$
It was shown that the errors associated wath transfer function coefficients are related directly to the number of loops of all orders in the flowgraph and the number and range of computations required for each loop. It is desirable to obtain a measure of these parameters before an attempt is made to derive a particular transfer function. Given the flowgraph model described by Figure 2.48 , it can be shown that there exists, $F_{n}=1 / \sqrt{5}$ $\left[\left(1+\sqrt{5 / 2)}{ }^{n+2}-(1-\sqrt{5 / 2)}]^{n+2}\right.\right.$ loops of all orders, where $n=2 m-1$ (the number of passive elements minus one) and $F_{n}=$ Fibonacci number of order n.

Figure 248
If flowgraph loops of all orders are assumed to have numerical values of the same magnitude, then the equation below is an estumate of the maximum round-off error contained in a calculated transfer function coefficlent

$$
\frac{|\Delta \Sigma(n)|}{|\Sigma(n)|} \approx \frac{2^{-t}}{F_{n}^{2}}\left[\sum_{N=1}^{N_{\max }} \frac{(n-N+1)!}{N^{1}(n-2 N+1) \mid}(N K-1)\right]
$$

where

1. $\Sigma(n)$ is the sum of all loop values of all orders
2. K is the number of circuit elements in a particular first order loop ($=2$ for the specific model)
3. $N_{\max }=n+1 / 2$ if n is odd $N_{\text {max }}=n / 2$ if n is even.

In an attempt to predict errors for those circuits which do not exactly correspond to the flowgraph model, Figure 2.49 has been drawn for various values of K. Experience has shown that for practical problems, a good average value of K lies between 2 and 3 .

Figure 249

2.7.2 Impact of Coefficient Errors on AC Analysıs

The NASAP version utilizes a straight forward technique in deriving the AC Bode plot The programs produce a frequency response of the form

$$
F(s)=\frac{N(s)}{D(s)}=\frac{\sum_{1=0}^{p} a_{1} s^{1}}{\sum_{j=0}^{q} b_{j} s^{j}}
$$

The computed coefficients, a_{I} and b_{J}, can be expressed as,

$$
\begin{aligned}
& a_{1}=a_{1}^{T}+\Delta a_{1} \\
& b_{j}=b_{j}^{T}+\Delta b_{j}
\end{aligned}
$$

where a_{I} and b_{J} represent the accumulated coefficient errors a_{I} and b_{1}^{T} are the true coefficients, and $F(s)$ as

$$
F(s)=F^{T}(s)+\Delta F(s)=\frac{N^{T}(s)}{D^{T}(s)}+\Delta F(s)
$$

If $F(s)$ is assumed to be a function of its coefficients a, b for any s, then since ${ }^{19}$

$$
f\left(a^{T}+\Delta a, b^{T}+\Delta b\right) \approx f\left(a^{T}, b^{T}\right)+\left.\frac{\partial f}{\partial a}\right|_{f^{T}} \Delta a+\left.\frac{\partial f}{\partial b}\right|_{f^{T}} \Delta b
$$

for $\Delta a \ll a$

$$
\Delta b \ll b
$$

it can be shown that

$$
\Delta F(s)=\sum_{1=0}^{p} \frac{\Delta a_{1}}{D^{T}(s)} s^{1}-\sum_{j=0}^{p} \frac{F^{T}(s)}{D^{T}(s)} \Delta b_{j} s^{J}
$$

The computational errors in $F(s)$ are approximated from an initial estimate of coefficient errors by substituting $D(s)$ and $F(s)$ for $D^{T}(s)$ and $F^{T}(s)$. These substitutions become quite laborious for functions which are a ratio of two high order polynomials. An alternate approach is taken.

Coefficient errors are not likely to exceed 15 percent of the true coefficient values (this statement is predicated on the assumption that any "large" problems have been partitioned and the steps have been taken to avold severe significance loss). By randomly perturbating the transfer function coefficient not more than ± 15 percent and plotting the frequency response curves, the results of the above can be simulated. A band which
most probably contains the true response curve will result. For example, the frequency response curve of Figure 2.50 can be obtained from the carcuit shown in Figure 2. 43.

Figure 250

273 Transient Response Errors

Errors contained in a final time domain solution after application of the Fast Fourier Transform can be attributed to original coefficient errors and algorithm errors.

Given the results of Section 2.7.2

$$
\begin{aligned}
f(t) & =\overline{\mathcal{J}}[F(s)]=\overline{\mathcal{J}}\left[F^{\mathrm{T}}(\mathrm{~s})+\Delta F(s)\right] \\
& =\overline{\mathcal{J}}\left[F^{T}(s)\right]+\overline{\mathcal{J}}[\Delta F(s)] \\
& =\mathrm{f}^{\mathrm{T}}(\mathrm{t})+\Delta f(\mathrm{t})
\end{aligned}
$$

Since the errors due to coefficient deviations are simply an additive function to the time response, an initial approximation of these errors can be transformed directly into an estimate of time response errors.

The digital implementation of the Fast Fourier Transform introduces round-off, discretization and band limiting errors.

Gentleman and Sande ${ }^{20}$ have described the Fast Fourier Transform round-off error found in a digital environment in terms of the ratio of the Euclidian norm of the error sequence to the Euclidian norm of the input data sequence. Using the Fast Fourler Transform yield an upper bound for the associated Euclidian norm of

$$
\mathrm{R} \leqq 1.06 \sqrt{\mathrm{~N}} \mathrm{~K}(2 \mathrm{n})^{3 / 2} 2^{-\mathrm{b}}
$$

where N is the number of discrete steps taken, $n=N$ (for NASAP-70 $n=2$, $\mathrm{k}=12$), and b equals the number of bits in the calculation mantissa.

Figure 2.51 shows how discretization and band limiting errors affect the results of a Fast Fourier Transformation. For each curve, the function $F(s)=s / s+\omega$, was inverted. Discretization errors are demonstrated by the more noisey ' o ' curve. Band lamating errors are shown by the poor initial points of both curves.

It should be noted that the errors resulting from coefficient errors dominate those introduced by the Fast Fourier algorithm.

Based upon the error analysis of a typical circuit analysis program such as NASAP-70 the user must be aware of the computational aspects of the algorithms before the results can be considered reliable.

Figure 251

イəuәриəđәр әчъ јо

sәрои pǔ sәчวuexq јо иотұวәu

(q) $\mathcal{\varepsilon}$ әлпริน

(a)

CIRCUIT DIAGRAM
(1)

(c)

ORIENTED GRAPH (G)

(b)

LINEAR GRAPH

(d)

TREE (T)

Figure 32

REFERENCES

1. Desoer, C., Kuh, E.S., "Basıc Circuit Theory," McGraw-Hill, 1966.
2. Seshu, S., Reed, M. B., Lınear Graphs and Electrıcal Networks, Adduson - Wesley, 1961.
3. DiStefano, J., Stubberud, A., Williams, I., Theory and Problems of Feedback and Control Systems, Schaum Publıshing Co. 1967.
4. Potash, H., McNamee, L. P., "Application of Unilateral and Graph Techniques to Analysis of Linear Circuits, " Proceedings of 23rd ACM National Conference, Las Vegas, Nevada, 1968, pp. 367-378.
5. McNamee, L. P., and Potash, J., "A User's Guide and Programmers Manual for NASAP, "Report No. 68-38, August 1968.
6. Gaertner Research Incorporated, "Coding Instructions for NASAP 69/I, " Revision No. 1, Contract No. NAS 12-663, Stamford, Conn.
7. Moe, M. L., Schwartz, John T., "The Applıcation of NASAP to the Design of Biomedical Instrumentation Circuits, " Denver Research Institute Report DRI \#2535, University of Denver, January 1970.
8. Carpenter, R. M., "Computer-Oriented Sensitivity and Tabrance Technıques, " Course Notes Automated Circuit Analysis, UCLA, April 3-7, 1967.
9. Haag, K.W., Weber, E.W., "Designers Manual for Computer-Aided Design of Communication Circuits, "Department of Electrical Engineering, Illinois Instatute of Technology, December 1969.
10. Haag, K. W., "NASAP Analysis of Nonlınear DC Circuits, " Seventh Allerton Conference on Circuit and System Theory, Universaty of Illino1s, October 8-10, 1969, pp. 905-914.
11. Wilson, M., McNamee, L., "Considerations for Solving Large Scale Circuit Problems Utilizing NASAP-70," Midwest Circuit Theory Symposium, Minneapolis, Minnesota, May 1970.
12. Wilson, M. L., "An Investigation of Methods for the Interconnection of n-Port Networks, " Master's Thesis, UCLA, 1969.
13. Laemmel, A.E., "Scattering Matrix Formulation of Microwave Networks," Proceedings of the Symposium on Modern Network Synthesis (Audio to Microwaves), April 1952, pp. 259-276.
14. Huelsman, L. Q., Circuits, Matrices, and Linear Vector Spaces, McGraw-Hill, 1963.
15. Murti, V. G. K., and K. Thalasiraman, "Parallel Connection of n-Port Networks," IEEE Proceedings, Vol. 55, No. 7, July 1967, pp. 1216-1217.
16. Sesar, D., "On the Errors Associated with a Digital Implementation of the Flowgraph Approach to Circuit Design/Analysis, " M. S. Thesis, University of Calıfornia, Los Angeles, June 1969.
17. Wilkinson, J. H., Rounding Errors in Algebraic Processes, PrenticeHall, Inc., Englewood Cliffs, N. J., 1963.
18. Ashenhurst, R. L. and Metropolis, N., "Unnormalized Floating Point Arithmetic, " Journal of the Association for Computing Machinery, Vol. 6, No. 3, July 1959, pp. 415-428.
19. Fischer, M. M., "The Effect of Instrumentation Errors on Basic Oxygen Furnace Control, " Presented at Instrument Society of America, 17th Annual Conference, October 1967.
20. Gentleman, W. M and Sande, G , "Fast Fourier Transforms for Fun and Profit," Proceeding AFIPS Fall Joint Computer Conference, Volume 29, Washington, D.C., 1966, pp. 563-578.

CHAPTER 3

THEORETICAL FOUNDATIONS

Fundamental to any meaningful discussion of a computer-aided circuit analysis/design program is the systematic treatment of the basic concepts behind it As shown in Figure 3 1, the theoretical treatment for NASAP can be separated into the disciplines of linear graph theory, flowgraph theory, sensitivity analysis, and the relevant numerical techniques and supporting computer algorithms.

Each discipline plays a distinctive role in the operation of the program Linear graph theory is employed as a convenient mathematical tool to bridge the gap between the circuit designer and the computer A computer subroutine then transforms the linear graph description of a circuit into flowgraph terms forming the basis of the computer algorithms for subsequent output requests The transfer function, the princıpal output request of NASAP -70 , is computed from the flowgraph description by means of the Shannon-Happ formula, the other user requests are based upon the transfer function formulation.

As shown in Figure 3 1, the description of each discipline in NASAP is taken in the order of implementation thus the sections are numbered accordingly

31 Linear Graph Theory

The initial step in the formulation of the flowgraph relations is the identıfication of circuit elements in topological terms. Since this requires some background in linear graph theory, a few definitions and some basic concepts of how they pertain to circuit theory should be stated first A more elaborate treatment of graph theory can be found in a number of textbooks A complete exposition can be found in Kuh and Desoer ${ }^{1}$

The essential constituents of a linear graph are branches and nodes Each branch, symbolized by a line, represents a physical element of the system from which it is abstracted with its electrical properties A node in

Figure 31
that a hinged linear graph of Figure 34 violates the cut-set definition at the "hinge" and thus circuits of this type should be avoided or separated into two problems

In simple terms a loop is defined as a collection of branches which form a closed path (ignoring the direction of flow in the branches) A more formal definition can be stated a set of n nodes $A\left(A_{1} \ldots-A_{n}\right)$ and a set of n branches $B\left(B_{1}--B_{n}\right)$ which are connected constitutes a loop in a graph G if A is in G and B is in G, and each branch in B is incident to two nodes in A and each node in A has two branches in B incıdent to it The branches 1-2, 3-2, 4-3, 4-1 form a loop as shown in Figure 35 Note that a loop is defined Independent of the direction of the arrows.

If a subgraph G^{\prime} of a graph G can be selected such that it consists of only branches and all nodes of G, is connected, and contains no loops, then the subgraph G^{1} is called a tree ($G^{1}=T$) (See Figure 3 2(d)) The branches of a tree are called tree branches or just branches, and those branches in G but not in T are name links

A number of fundamental properties concerning trees are now stated without proof $1,2,3$ If a connected graph G has n nodes and b branches, then

1. The Tree has $(n-1)$ tree branches and ($b-n+1$) lanks,

2 A unique path exists along the tree between any two nodes (neglecting the direction of the arrows if it is an oriented graph),
3. Fundamental loops (tie sets) can be formed by taking each link wath the unique path in the tree that exists between the two nodes of the link,

4 Fundamental cut sets can be formed by grouping the set of connected links about a tree branch thus forming ($n-1$) cut sets,
5. The cut set relations form a complementary set to the tie set relation (in matrix notation one is the transpose of the other),
6 Cut set and tie set relations can be expressed unllaterally. Branch currents can be expressed as a function of link currents and link voltages as a function of branch voltages

LINEAR GRAPH BEFORE CUT

Figure 33

Figure 34

(4)

Figure 35

32 Transformation of a Linear Graph to a Flowgraph Disjoint Current and Voltage Relationships

Algorithms must provide for the computer a means of producing a consistent set of determinable variables To a circuit designer this usually means eather applying Kırchhoff1 s voltage law in conjunction with the impedance relationshaps (Ohm's law) or Kirchhoff' s current law in conjunction with the admıttance relatıonships. Another approach has been advocated (orıginally by Kirchhoff himself) and is used in this manual ${ }^{4,5}$ Basically it requires that Kırchhoff' s current law be applied first, then Kırchhoff' s voltage law, and finally Ohm^{1} s law and dependencies

The first step in the procedure requires that all circuit elements, active or passive, dependent or independent, be divided into two groups of current type or voltage-type elements Naturally, a voltage source will remain a voltage type element, and a current source will remain a current-type element Passive elements, which are bilateral in nature, will be replaced by either a voltage-type or current-type element (i.e , replace Ohm's law $I=V / Z$ by eather $I \leftarrow V / A$ or $V \leftarrow I * Z)$, the cholce being somewhat arbitrary and subject to the conditions that Kırchhofft s two laws have to be applied independently (Some guidelines will be presented in the example problem of section 3 3) It should be emphasized that by assigning a voltage or current type element in place of a passive element, the bilateral characteristic is replaced by a unilateral relation

In the following selection process, Kirchhofft s laws will be applied to two sets of disjoint circuit relations. Tree-link partitioning is accomplished by using a tree structure T in a graph G, where the voltage-current equations are separated into two complimentary sets. The graph G contains as its branches all the circuit elements. The arrow direction corresponds to the direction of assigned current flow. The branches of a tree T (Figure 3. 2(d)) are selected to be the voltage elements. The remaining elements (links in T) are chosen to be current elements. For this selection, a voltage at any point
can be calculated as a tunction of voltage－type elements only．currentisañā

1a indenendent of valtagentyme plementa and imnedances．

 ，a function of voltage－type elements does not render，a voltage across，thesemelements
 Ne viュルしゃ a itar cfatamont ian hamailo ngmonning tho mupont twno elpmonts Namply，
the current expresped as a function of current－type elements does not render the current through current－type elements constant
 known varıable and the current，as an unknown variable，then the applications

 reiations＂Ine unknown varıabies in，appisation ot hirchiluills baws are the known relations of Ohm＇s law and the dependenry relationships．

In summary，the NASAP algorathms make use of the following
1 A tree T in graph G divides the elements into two disjoint sets，
2 A tree，T in，graph G allows writing of（ $n-1$ ），independent current equations of one set（voltage）in terms of the other（current）by writing current equations for any（ $n-1$ ）out of（ n ）nodes，
3 By Gaussian elimination ${ }^{6}$ one obtains（ $n-1$ ）cut set equations These equations can be expressed as unilateral current relations， （this will be elaborated in the example），

4 Since a cut set and tie set are complementary，one obtains Kirch－ hoff＇s voltage equations in a unılateral form as a complement of the unilateral current relations，

5 Current-voltage relations can be made functionally dependent by a set of unilateral elements provided that for each element one of the quantities (current or voltage) is known and the second quantity (voltage or current) is unknown These are exactly the conditions that the two disjount current-voltage sets provide.

3. 3 Flowgraph Theory Shannon-Happ Formula

For a set of linear relations that satisfy consistency criteria (to be explained later) there exists a formula by which the solution can be obtained in a noniterative substitution and does not require stability criteria for each relation This formula was originally developed by Claude Shannon while investigating the functional operation of an analog computer ${ }^{7}$ (Essentially the same formula was rediscovered by S. Mason in 1952^{8})* Shannon's Formula is an analytic expression for calculating the gain of an interconnected set of amplifiers in an analog computing network W. W. Happ generalized Shannon's work for topologically closed systems. ${ }^{9}$ The Shannon-Happ Formula is valıd in deriving transfer functions, sensitivities, and error functions For the particular use intended for this formula, the sensitivity factor H is set equal to zero

Flowgraph Notation

Before the Shannon-Happ Formula can be defined explicitly, it is necessary to define the basic concepts of flowgraph for which the equation was derived ${ }^{10,11}$ The fundamental terms of a flowgraph, namely, node, transmittance, and loop, and how they interact can best be described by example Consider the equations,

$$
\begin{aligned}
& a_{11} x_{1}+a_{22} x_{2}+x_{1}=x_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+c_{2}=x_{2}
\end{aligned}
$$

and the corresponding flowgraph shown in Figure 36

[^2]

Figure 36

Each node represents a variable, thus x_{1} and x_{2} are variables and c_{1} and c_{2} are considered constant inputs The nodes c_{1} and c_{2} are called independent nodes. If the arrows leading from c_{1} or c_{2} were reversed, these nodes would be dependent nodes

A transmittance is a value assigned to the directed path between two nodes The node at which the directed line begins is called the origin node, whereas the node at the recelving end is the target node The transmittance relates the origin node variable Therefore, in reading the flowgraph, the functional relationship of a variable is the summation of the product of respective incoming transmittances with their node variables This can be verified by writing out the equation associated with the flowgraph (Figure 3 6) and the original equations Note that a flowgraph transmittance function such as

wall be written as $\mathrm{A} \leftarrow \mathrm{b} * \mathrm{C}$ on a programming sheet
A directed loop is defined as a closed path consisting of a sequence of transmattances taken in the direction of the arrow The sequence must be
taken such that no node 1 s traversed more than once in the closed path. The value of a directed loop is the product of the transmittances forming the directed loop In the example, three directed loops exist, $\left(a_{12}, a_{21}\right),\left(a_{11}\right)$, $\left(a_{22}\right)$. (Note that loop in a flowgraph does depend upon direction whereas in linear graph theory this was not required)

Distinct types of loops must be defined in the Shannon-Happ Formula
(a) a first-order loop is a simple directed loop as defined above
(b) an Nth-order loop is composed of N disjoint first order loops (none of the nodes are common between loops) The value of an Nth order loop is the product of the N first-order loop values comprising the Nth-order loop In the example, only one secondorder loop combination exists, namely, ($a_{11} \quad a_{22}$)
(c) a zeroth-order loop is by definition equal to a value one and has no flowgraph significance It is a mathematical convenience employed in the Shannon-Happ Formula

Shannon-Happ Formula

If $L(0)$ is the value of the zeroth-order loop (always equals one) and $L(\mathbb{N})$ is the sum of the values of all the loops whose order $1 s \mathrm{~N}$, the ShannonHapp formula can be expressed as

$$
H=L(0)-L(1)+\cdots+(-1)^{N} L(\mathbb{N})=0
$$

which can be written in expanded form ${ }^{12}$

$$
H=1+\sum_{r=1}^{N} \sum_{i=1}^{R} L_{1}(r)(-1)^{r}=0
$$

where $R=$ the number of r-order loops in the system and $N=$ the order of the highest loop in the system.

3.4 Transfer Function Formulation

The circuit shown in Figure 3.7 is used to illustrate the circuit analysis technıques. The AC model of this circuit using only linear elements is
shown in Figure 3.8. Note that an extra current source has been inserted at the output (across L). This element can be viewed as a voltmeter as described in section 2.

Figure 37

Figure 38 (All Transıstors Modelıng Parameters Are Represented by Lower Case Letters)

For the circuit in Figure 3 7, the output voltage as taken across the inductor L. Since the voltage across L is one of the variables, the output voltage, $V_{\text {out }}$, can be expressed directly, that $1 s, V_{\text {out }} \leftarrow V_{L}$ By adding the output current source ($I<0$) in Figure 3 8, provision has been made for a general method of solution

After the equivalent carcuit is constructed, its corresponding directed linear graph must be drawn with the assigned current direction in the circuat elements In the linear graph G one selects a tree structure T which must contain all voltage sources (dependent or independent) If the voltage sources form a loop, the circuit's definition is ambiguous and hence cannot be solved Assuming that the voltage sources do not form a loop, passive elements must be added to complete the tree To this end, some of the passive devices are made voltage-type elements and thus provide the remaining constituents for the tree (See Figure 3 9). Finally, the current sources and the rest of the

Figure 39.
passıve elements form lınks (This operation constitutes the particular selection of elther a voltage or current relation for each passive element That

Is $V \leftarrow 1 * z$ or $I \leftarrow v / z \quad$ The next step requires one to obtain the current at the branches (voltage-type elements) as a function of the currents in the links (current-type elements). This entails writing the current equations for ($n-1$) out of n nodes of T. Then, the current in each branch is found as a function of link currents only by the Gaussian elimination process. By finding branch current as a function of link currents one forms the ($n-1$) cut sets.

The current equations are written by setting the branch currents on the left-hand side of the equals sign and the link currents on the right-hand side For Figure 3 9, the node current equations can be written as

Node $5 \quad I_{r_{1}} \quad=\quad I_{C_{1}}$
Node 4 $\quad \mathrm{I}_{\mathrm{r}_{0}} \quad=\quad-\mathrm{I}_{\beta} \quad+\mathrm{I}_{\mathrm{R}_{2}}$
Node 3 $\quad \mathrm{II}_{r_{1}}-\mathrm{I}_{r_{0}} \mathrm{I}_{\mathrm{R}_{3}} \quad=\quad \mathrm{I}_{\beta} \quad{ }^{-\mathrm{I}_{\mathrm{C}}}$
Node 2

$$
I_{L}=
$$

$$
\mathrm{I}_{0} \quad-\mathrm{I}_{\mathrm{R}_{2}}
$$

In compact matrix notation

$$
\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{V_{1 n}} \\
I_{r_{1}} \\
I_{r_{0}} \\
I_{R_{3}} \\
I_{L}
\end{array}\right]=\left[\begin{array}{cccccc}
-1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{r_{1}} \\
I_{C_{1}} \\
I_{\beta} \\
I_{C_{2}} \\
I_{0} \\
I_{R_{2}}
\end{array}\right]
$$

or $A * I_{T}=B * I_{L} \quad$ where

A is an $(n-1) *(n-1)$ matrix $((n-1)$ is the number of branches of the tree $)$, $I_{T}{ }^{15}$ a column vector of n branch currents, B is an ($n-1 \%(m)$ matrix ($m=b-m+1$ is the number of links), I_{L} is a column vector of m link currents

After matrix A is diagonalized, performing the same operations on B as an A, the current equations take the form

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{V_{1 n}} \\
I_{r_{I}} \\
I_{r_{0}} \\
I_{r_{3}} \\
I_{L}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{r_{1}} \\
I_{C_{1}} \\
I_{\beta} \\
I_{C_{2}} \\
I_{0} \\
I_{R_{2}}
\end{array}\right]
$$

Note that the Gaussian elimination is performed on a set of integers, $(+1,0,-1)$ and will not entail any loss of significance or introduce any trancation errors

Following the Gaussian elımination that transforms the current equations into a unlateral set, the flowgraph can be constructed The first step is forming the current flowgraph relations as shown in the lower part of Figure 310 In the dagram (Figure 3.10), two flowgraph nodes are assigned to each element The bottom nodes correspond to the currents in the elements and the top nodes correspond the voltage across the elements

Figure 310

The flowgraph voltage relations are constructed by an imaging method based on the current relations The rules for this technique are

1 Consider two elements for which there exists current transmittance connecting two current nodes Form a transmittance connecting the two corresponding voltage nodes The direction of the voltage transmittance arrow is the reverse of the corresponding current transmittance

2 If one element is passive and the other is active, the sign attached to the voltage transmittance is the same as the corresponding current transmittance The sign is reversed if both elements are the same type, that is, both passive or both active The use of the umaging technique is a consequence of the fact that disjoint sets of current and voltage also form complementary sets since they are complementary cut and tie sets (The difference in the sign reversal between active and passive elements is due to the fact that conventionally used Kurchhoff's equations are not written in a complementary form, that is, currents are summed to zero ($I_{1}+I_{2}+I_{n}=0$) whlle voltages are summed to a nonzero quantity ($\left.V_{1}+V_{2}+. V_{m}=E\right)$ Also Kırchhoff originally stated them in a complementary form

After Kırchhoffis current law and Kırchhoffis voltage law have been applied, the current-voltage relations and dependencies and requested transfer
function are determined by making the input dependent on the output by the relation [Input $\leftarrow P *$ Output]. This forms a closed flowgraph. The forward transfer function $T=1 / P$ can then be arrived at since the total gain $P \mathfrak{r} T=1$ as evaluated by use of the Shannon-Happ Formula (for P unknown) This evaluation can be done by separation of products containing P and those terms which do not contain P since no higher powers of P than P^{1} can occur.

A transfer function can be evaluated only as a function of a free variable (it cannot be found as a function of a variable which was already set as a determınable varıable) The free varıables are defined as. (1) the current in the independent current source and (2) the voltage across an independent voltage source. The transmittance P will cause one of the free variables to become a determinable variable (that 1 s , it can be included in the evaluation of the Shannon Happ Formula) The rest of the free variables will be set to zero for the evaluation of the function A comparison between Figures 310 and 3.11 will indicate how this is accomplished Note that the current-voltage relations in passive elements are taken as impedances for branches and admittances for links

Figure 311

It is important to emphasize the uniqueness of transformations achieved by the algorithm presented herein and its advantages over techniques which are based on solutions of a set of equations This means that from the representations such as that presented in Figure 311 one can reconstruct the original system, thus showing that the algorithmic procedure described above does not incur information loss *

The transfer function $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$ is calculated by use of the ShannonHapp Formula In the present example there are nine first-order loops, which are summarized with their node sequence and loop transmittances in Table 31

The higher-order loops are unions of first-order loops that do not intersect and the loop value is the product of the corresponding first-order loop values. Loop substitution into the Shannon-Happ Formula, and the setting of $H=0$, followed by solving for $T=1 / P$ yields the-requested transfer function,

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=T \leftarrow\left\{\frac{L_{8}}{P}\left(1-L_{2}\right)+\frac{L_{9}}{P}\right\} /\left\{1-\left(L_{1}+L_{2}+L_{3}+L_{4}+L_{5}+L_{6}+L_{7}\right)\right. \\
&+\left(L_{1} L_{2}+L_{1} L_{4}+L_{1} L_{5}+L_{1} L_{6}+L_{2} L_{5}+L_{2} L_{6}+L_{3} L_{5}+L_{3} L_{6}\right) \\
&\left.-\left(L_{1} L_{2} L_{5}+L_{1} L_{2} L_{6}\right)\right\} \\
&=-\left\{\left(\frac{\beta C_{1} L_{r_{0}} C_{2} R_{3}}{R_{2}}\right) S^{3}+\left(\frac{\beta C_{1} L_{0}}{R_{2}}-\frac{C_{1} L_{2} R_{3}}{R_{2}}\right) S^{2}\right\} / \\
&+\left\{\frac{C_{1} C_{2} r_{1} R_{3} r_{o}}{R_{2}}\right) S^{2}+\left(C_{1} r_{1}+C_{2} R_{3}+C_{1} R_{3}+\frac{L_{1}}{R_{2}}-\frac{\beta C_{1} r_{0} R_{3}}{R_{2}} L_{2} R_{2}\right. \\
& R_{2}+\left(C_{1} C_{2} r_{1} R_{3}+\frac{C_{1} L_{1}}{R_{2}}+\frac{C_{2} L R_{3}}{R_{2}}+\frac{C_{1} L_{2} R_{3}}{R_{2}}\right. \\
&\left.\left.+\frac{C_{1} r_{1} R_{3}}{R_{2}}+\frac{C_{1} r_{1} r_{o}}{R_{2}}+\frac{C_{2} r_{0} R_{3}}{R_{2}}+\frac{C_{1} r_{0} R_{3}}{R_{2}}\right) S+\left(1+\frac{R_{3}}{R_{2}}+\frac{r_{0}}{R_{2}}\right)\right\}
\end{aligned}
$$

Although the proof is rather involved (thus not presented here), note that the information necessary to reconstruct the original circuit is given by the flowgraph and by preserving the I_{T} and I_{L} vectors in the arrangement of the flowgraph nodes

The solution $T=1 / \mathrm{P}$ is obtained by placing the loops containing P and their products in the numerator and those devoid of P in the denominator

Since the only arxthmetic in the entire algorithm is used in calcuiating the transfer function performed at the end of the algorithm and essentrally is the sum of products, one can control the error and make the solution as accurate as desired Furthermore, comparison between values of loops is

TABLE 3.1

Loop Number	Node Sequence	Transmission
L_{1}	$\mathrm{V}_{\mathrm{C}_{1}} \mathrm{I}_{\mathrm{C}_{1}} \mathrm{Ir}_{\mathrm{r}_{1}} \mathrm{~V}_{\mathrm{r}_{1}}$	$-\mathrm{C}_{1} \mathrm{ra}_{1} \mathrm{~S}$
L_{2}	$\mathrm{V}_{\mathrm{C}_{2}} \mathrm{I}_{\mathrm{C}_{2}} \mathrm{I}_{\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{R}_{3}}$	$-\mathrm{C}_{2} \mathrm{R}_{3} \mathrm{~S}$
L_{3}	$\mathrm{V}_{\mathrm{C}_{1}} \mathrm{I}_{\mathrm{C}_{1}} \mathrm{I}_{\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{R}_{3}}$	$-\mathrm{C}_{1} \mathrm{R}_{3} \mathrm{~S}$
L_{4}	$\mathrm{V}_{\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{R}_{2}} \mathrm{I}_{\mathrm{R}_{2}} \mathrm{I}_{\mathrm{R}_{3}}$	$-\mathrm{R}_{3} / \mathrm{R}_{2}$
L_{5}	$\mathrm{V}_{\mathrm{r}_{0}} \mathrm{~V}_{\mathrm{R}_{2}} \mathrm{I}_{\mathrm{R}} \mathrm{I}^{\mathrm{I}_{0}}$	$\frac{-r_{o}}{R_{2}}$
L_{6}	$\mathrm{V}_{\mathrm{R}} \mathrm{I}_{\mathrm{R}_{2}} \mathrm{I}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}}$	$-\frac{\mathrm{LS}}{\mathrm{R}_{2}}$
L_{7}	$\mathrm{I}_{r_{1}} \mathrm{I}_{\beta} \mathrm{I}_{r_{0}} \mathrm{~V}_{\mathrm{r}_{0}} \mathrm{~V}_{\mathrm{r}_{2}} \mathrm{I}_{r_{2}} \mathrm{I}_{\mathrm{r}_{3}} \mathrm{~V}_{\mathrm{r}_{3}} \mathrm{~V}_{\mathrm{C}_{1}} \mathrm{I}_{\mathrm{C}_{1}}$	$\frac{-\beta C_{1} r_{0} R_{3} S}{R_{2}}$
L_{8}	$V_{1 n} V_{C_{1}} I_{C_{1}} I_{r_{1}} I_{\beta} I_{r_{0}} V_{r_{0}} V_{R_{2}} I_{R_{2}} I_{L} V_{L} V_{I_{0}}$	$-\mathrm{P}\left(\frac{\beta C_{1} L^{2} r_{0}}{R_{2}} S^{2}\right)$
L_{9}	$\mathrm{V}_{1 \mathrm{n}} \mathrm{V}_{\mathrm{C}_{1}} \mathrm{I}_{\mathrm{C}_{1}} \mathrm{I}_{\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{R}_{2}} \mathrm{I}_{\mathrm{R}_{2}} \mathrm{I}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}} \mathrm{V}_{\mathrm{I}_{0}}$	$P\left(\frac{C_{1} L^{L R} 3}{R_{2}} S^{2}\right)$

indicative of the significance of each element in the transfer function and is helpful in omitting the elements which have a negligible effect on the final transfer function

3.5

Sensitivities Concepts
There are three basic sensutivity algorithms employed in NASAP-70. These are parameter sensitivity, worst case (tolerance) analysis, and pole sensitivity. A description of each follows.

3.5.1 Parameter Sensitivity ${ }^{13}$

In section 3.4, the transfer function $T=\frac{1}{P}$ was obtained by keeping track of the loops that contaned P and those devold of P, and forming the ratio of the two expressions. As shown below, the somewhat similar tagging technique in the computer algorithms can produce the sensitivity of the transfer function to changes in a circuit parameter

Consider the system of Figure 312 where X is the input or excitation and Y is the output or response If the input and output are connected by a transmittance P, then the transfer function can be expressed in terms of P since $P=\frac{x}{y}=\frac{1}{T} \quad$ This represents a closed system for which the input and output are dependent upon each other The Shannon-Happ Formula states that the topology equation $H(T)$ must equal zero, thus

$$
\mathrm{H}(\mathrm{~T})=\mathrm{H}(\overline{\mathrm{~T}})+\mathrm{TH}\left(\mathrm{~T}^{\mathrm{y}}\right)=0
$$

where $H\left(T^{\prime}\right)=\frac{d H}{d T}=$ the portion of H containing T linearly and indicated in the computer algorithm by a tag of $\mathrm{T}=1$, and

$$
\mathrm{H}(\overline{\mathrm{~T}})+\mathrm{H}(\mathrm{~T}=0)=\text { the portion of } \mathrm{H} \text { devoid of } \mathrm{T}
$$

and indicated in the computer algorithm by a tag of $T=0$
To compute the sensitivity function, consider a circuit that contains a component Q and sustains a desired performance specification T, the transfer function it is always possible to formulate a closed system containing the two parameters T and Q linearly The topology equation $H=0$ is a constraint on the system from which the unknown T is calculated

If the topology equation H is a function of two parameters T and Q, then $H(T, Q)=H(\bar{T}, \bar{Q})+T H\left(T^{\prime}, \bar{Q}\right)+Q H\left(\bar{T}, Q^{\prime}\right)+T Q H\left(T^{\prime}, Q^{\prime}\right)$

Figure 312
where the coefficients of T and Q are defined as l'aylor series coefficients and the terms of the topology equation $H(T, Q)$ are defined as follows

$$
\begin{aligned}
& H(\bar{T}, \bar{Q})=H(T=0, Q=0)=H(0,0) \\
& H\left(T^{1}, \bar{Q}\right)=H(T=1, Q=0)=H(1,0) \\
& H\left(\bar{T}, Q^{1}\right)=H(T=0, Q=1)=H(0,1) \\
& H\left(T^{1}, Q^{1}\right)=H(T=1, Q=1)=H(1,1)
\end{aligned}
$$

All of these quantities refer to partial sums of the topology equation which can be tagged and identified in the computer program.

A topological derivation of sensitivity is obtained by taking the total derıvation of $H(T, Q)$ above.

$$
\begin{aligned}
\mathrm{dH}(T, \mathrm{Q}) & =\left\{\mathrm{H}\left(\mathrm{~T}^{\mathrm{y}}, \overline{\mathrm{Q}}\right)+\mathrm{QH}\left(\mathrm{~T}^{\prime}, \mathrm{Q}^{\prime}\right)\right\} \mathrm{dT} \\
& +\left\{H\left(\bar{T}, \mathrm{Q}^{\prime}\right)+\mathrm{TH}\left(\mathrm{~T}^{\prime}, Q^{\prime}\right)\right\} \mathrm{dQ}=0
\end{aligned}
$$

or

$$
\frac{d T}{d Q}=-\frac{H\left(\bar{T}, Q^{\prime}\right)+T H\left(T^{\prime}, Q^{\prime}\right)}{-H\left(T^{\prime}, \bar{Q}\right)+Q H\left(T^{\prime}, Q^{\prime}\right)}
$$

since

$$
\begin{aligned}
& H(T, Q)=\left\{H(\bar{T}, \bar{Q})+H\left(\bar{T}, Q^{\prime}\right)\right\} \\
& +T\left\{H\left(T^{\prime}, \bar{Q}\right)+H\left(T^{\mathfrak{t}}, Q^{\prime}\right)\right\}=0
\end{aligned}
$$

and

$$
\begin{aligned}
H(T, Q) & =\left\{H(\bar{T}, \bar{Q})+H\left(T^{\mathfrak{y}}, \bar{Q}\right)\right\} \\
& \left.+Q \mid H\left(\bar{T}, Q^{p}\right)+H\left(T^{v}, Q^{p}\right)\right\}=0
\end{aligned}
$$

therefore,

The parameter sensitivity is defined by

$$
S_{Q}^{T}=\frac{d \log T}{d \log Q}=\frac{\frac{d T}{T}}{\frac{d Q}{Q}}
$$

or,

$$
=-\frac{H\left(T^{\prime}, \bar{Q}\right)+H(\bar{T}, \bar{Q})}{H(\bar{T}, \bar{Q})+H\left(\bar{T}, Q^{\prime}\right)}
$$

3.5.2 Worst Case (Tolerance) Analysis ${ }^{13}$

The sensitivaty techniques outlıned in section 3.5 .1 may be used to perform a worst case tolerance analysis on all components of the circuit. Assume that a given circuit specification P can be specified as a function of n parameters $Q_{1}, Q_{2}-\cdots Q_{n}$,

$$
P=f\left(Q_{1}, Q_{2}, \ldots Q_{n}\right)
$$

Then for small changes in the parameter, the statistical tolerance T_{P} of P is defined as

$$
T_{P}=\left[\left(\frac{\partial P}{\partial Q_{1}} Q_{1}\right)^{2}+\cdots+\left(\frac{\partial P}{\partial Q_{n}} Q_{n}\right)^{2}\right]^{1 / 2}
$$

T_{P} is a measure of the deviation of P from its mean value due to deviations of the components from their respective mean values.

Using the definition of sensitivity T_{P} can be expressed in a more suitable form for utilization of the tagging technique as
$\frac{T_{P}}{P}=\sum_{i=1}^{n}\left[S_{Q_{n}}^{P} \frac{d Q_{n}}{Q_{n}}\right]^{2}$
where $\frac{T_{P}}{P}$ is the functional tolerance.
The sensitivity of P with respect to each parameter Q may be calculated as before, then substituted into the $\frac{T_{P}}{P}$ expression to derive the tolerance.
3.5.3 Root Sensitivaty ${ }^{14}$

When a parameter of a system changes, the locations of the poles will also change. Root sensativity is defined as a measure of the amount of change a root undergoes, given a percent change in some system parameter.

The following analysis assumes that (1) the system 1 s linear and time invarient, and (2) the transfer function is obtainable and can be expressed by the form

$$
T(S)=\frac{A(S)+K B(S)}{C(S)+K D(S)}
$$

Here, $A(S), B(S), C(S)$, and $D(S)$ are polynomial in S and K is a system parameters for which the sensitivity is desired.

For differential changes in the parameter K, there will be differential changes in the roots of the characteristic equation, $C(S)+K D(S)$. The definition of root sensitavity employed in NASAP-70 considers one system parameter, K, and one pole of the transfer function S_{1}, and is defined as

$$
S_{K}^{S_{1}}=\frac{d S_{I}}{d K} K
$$

If the transfer function of the system is given above for $T(S)$, then the root sensitivity can be found by evaluating the residue of the transfer function at the poles of the transfer function, or

$$
S_{K}^{S_{1}}=\left.\frac{-K D(S)}{\frac{\partial}{\partial S}[C(S)+K D(S)]}\right|_{S=S_{1}}
$$

Here S_{1} is a pole described in the unperturbated system. This operation is performed in the program with simple tagging technqiue, just as in the parameter sensitivity case.

3.5.4 Sample Calculations

Given the following circuit, the following parameter sensitivity, worst case, and pole sensitive calculations are made.

NASAP

V1	1	2	1
R1	2	3	10
C1	3	1	4 UF
R2	2	1	100
END			

$$
\mathrm{VC} 1 / \mathrm{VV} 1
$$

LOOP 1 contains R1, C1, P
has value of $-2.5 \times 10^{4} S^{-1}$
LOOP 2 contains R1, C1
ZERO ORDER LOOP
has value
$2.5 \times 10^{4} \mathrm{~S}^{-1}$
has value 1

Parameter Sensitivity
$H\left(P^{1}\right)=-2.5 \times 10^{4} \mathrm{~S}^{-1}$
$H(\bar{P})=2.5 \times 10^{4} \mathrm{~S}^{-1}+1$
$H(\bar{P}, \overline{R I})=1$
$H\left(P^{\prime}, \bar{C}_{1}\right)=0$
$H(\bar{P}, \overline{\mathrm{C} 1})=1$
$H\left(P^{\prime}, \bar{R}_{1}\right)=0$
$H(\bar{P}, \overline{R 2})=2.5 \times 10^{4} \mathrm{~S}^{-1}+1 \mathrm{H}\left(\mathrm{P}^{\prime}, \overline{\mathrm{R} 2}\right)=-2.5 \times 10^{4} \mathrm{~S}^{-1}$

$$
\begin{aligned}
& S_{Q}^{P}=\frac{H\left(P^{\mathrm{t}}, \bar{Q}\right)}{H\left(P^{\prime}\right)}-\frac{H(\bar{P}, \bar{Q})}{H(\bar{Q})} \\
& S_{R 1}^{P}=\frac{0}{-2.5 \times 10^{4} \mathrm{~S}^{-1}}-\frac{1}{2.5 \times 10^{4} \mathrm{~S}^{-1}+1}=-\frac{1}{2.5 \times 10^{4} \mathrm{~S}^{-1}+1}
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{C} 1}^{\mathrm{P}}=\frac{0}{-2.5 \times 10^{4} \mathrm{~S}^{-1}}-\frac{1}{2.5 \times 10^{4} \mathrm{~S}^{-1}+1}=\frac{-1}{2.5 \times 10^{4} \mathrm{~S}^{-1}+1}
$$

$$
S_{R 2}^{P}=\frac{-2.5 \times 10^{4} S^{-1}}{-2.5 \times 10^{4} S^{-1}}-\frac{2.5 \times 10^{4} \mathrm{~S}^{-1}+1}{2.5 \times 10^{4} \mathrm{~S}^{-1}+1}=
$$

$$
\frac{-6.25 \times 10^{8} \mathrm{~S}^{-2}-2.5 \times 10^{4} \mathrm{~S}^{-1}+6.25 \times 10^{8} \mathrm{~S}^{-2}+2.5 \times 10^{4} \mathrm{~S}^{-1}}{-6.25 \times 10^{8} \mathrm{~S}^{-2}-2.5 \times 10^{4} \mathrm{~S}^{-1}}=
$$

$$
\frac{0}{-6.25 \times 10^{8} \mathrm{~S}^{-2}-2.5 \times 10^{4} \mathrm{~S}^{-1}}
$$

TRANSFER FUNCTION $=\frac{-\mathrm{H}\left(\mathrm{P}^{\mathrm{t}}\right)}{\mathrm{H}(\overline{\mathrm{P}})}=\frac{2.5 \times 10^{4} \mathrm{~S}^{-1}}{2.5 \times 10^{4} \mathrm{~S}^{-1}+1}$
Pole Sensituvaty
POLE $\quad 2.5 \times 10^{4}+S=0$

$$
S_{1}=-2.5 \times 10^{4}
$$

Pole Sensitıvity $=\left.\frac{-H\left(\bar{P}, Q^{\prime}\right)}{\frac{\partial}{\partial \bar{S}}[H(\bar{P})]}\right|_{S=S_{I}}$
$\frac{\partial}{\partial S}[H(\bar{P})]=-2.5 \times 10^{4} S^{-2}$
$H\left(\bar{P}, R I^{1}\right)=2.5 \times 10^{4} S^{-1}$
$H\left(\overline{\mathrm{P}}, \mathrm{C} 1^{1}\right)=2.5 \times 10^{4} \mathrm{~S}^{-1}$
$H\left(\bar{P}, R 2^{\prime}\right)=0$
Pole Sensitivity to $R 1=\frac{-2.5 \times 10^{4} S_{1}^{-1}}{-2.5 \times 10^{4} S_{1}^{-2}}=S_{1}=-2.5 \times 10^{4}$

Pole Sensitivaty to $\mathrm{C} 1=\frac{-2.5 \times 10^{4} \mathrm{~S}_{1}^{-1}}{-2.5 \times 10^{4} \mathrm{~S}_{1}^{-2}}=\mathrm{S}_{1}=-2.5 \times 10^{4}$

WORST CASE Analysis

$(T P / P)^{2}=\sum_{1=1}^{n}\left(S_{Q_{1}}^{P} \frac{d Q 1}{Q_{1}}\right)^{2}$
$\frac{\mathrm{dR} 1}{\mathrm{R} 1}=\frac{\mathrm{dC} 1}{\mathrm{C} 1}=\frac{\mathrm{dC} 2}{\mathrm{C} 2}=.1$
$(\mathrm{TP} / \mathrm{P})^{2}=\frac{(-1)^{2}(.01)}{\left(2.5 \times 10^{4} \mathrm{~S}^{-1}+1\right)^{2}}+\frac{(-1)^{2}(.01)}{\left(2.5 \times 10^{4} \mathrm{~S}^{-1}+1\right)^{2}}+$
$+\frac{(0)^{2}(.01)}{\left(-6.25 \times 10^{8} \mathrm{~S}^{-2}-2.5 \times 10^{4} \mathrm{~S}^{-1}\right)^{2}}$
$=\frac{.02}{\left(2.5 \times 10^{4} \mathrm{~S}^{-1}+1\right)^{2}}+\frac{0}{\left(2.5 \times 10^{4} \mathrm{~S}^{-1}+1\right)^{2}\left(-2.5 \times 10^{4} \mathrm{~S}^{-1}\right)}=$ $=\frac{.02\left(-2.5 \times 10^{4} \mathrm{~S}^{-1}\right)^{2}+0}{\left(2.5 \times 10^{4} \mathrm{~S}^{-1}+1\right)^{2}\left(-2.5 \times 10^{4} \mathrm{~S}^{-1}\right)^{2}}=$ $=\frac{1.25 \times 10^{7} \mathrm{~S}^{-2}}{3.90625 \times 10^{17} \mathrm{~S}^{-4}+3.125 \times 10^{13} \mathrm{~S}^{-3}+625 \times 10^{8} \mathrm{~S}^{-2}}$

3.6 The Svoboda Method for Computing Roots of Polynomials

Overview of the Algorithm The flow of control among the various logical routines of the algorithm is depicted in Figure 3.13. After obtaining the input data, the Scanning Routine systematically steps over the Unit Circle evaluating the reduced polynomial at five points on each step. When a criterion for the possible existence of a root at any step is fulfilled, a transfer is made to the Home-in-Routine. The Home-in-Routine approximates the root as closely as possible and then transfers to the Root Examination Routine. Using the Round-off Routine, the Root Examination Routine

Figure 313 Flow of Control in Svoboda Algorithm
eather rejects the root or refines it (by means of the Home-in-Routine again) and outputs it. Control then passes back to the Scanning Routine which either contınues scanning or stops because the required number of roots has been obtained. When a scan is completed, if the maximum number of scans has not yet been reached, the Inversion Routine gains control to "invert" the polynomial, before returning to the Scanning Routine which continues to scan. A detailed discussion of each element of the algorithm follows.

The Scanning Routine The main routine in the Algorithm is the Scanning Routine which moves across the Unit Circle as shown in Figure 3.14. The real and imaginery axes between the ranges $(-1,0),(1,0)$ and $(0,-1),(0,1)$ are divided into sixteenths. The Scanning Routme uses the Polynomial

Figure 314 The Five Point Scan
Evaluation Routine to find five points at each step in the scan, the central point and four points one sixteenth above, below, to the left and to the right of the central point. A test is then performed to see if this point may be near a root. The criteria for transferring to the Home-in-Routine to examıne a possible root more closely are

1. The value at the central point must be less than the value of any of the four surrounding points.
2. The five points must not be equal in value.

If these criteria are not met, the scan is incremented by one sixteenth and the scanning process is resumed. Scanning is performed from left to right and from bottom to top. When a scan has been completed, that 15, when the point (1,0) has been evaluated, a check is performed to see if the number of scans has exceeded an upper limat. If not, a transfer is made to the Inversion Routine (described below) whach performs the inversion of the polynomial and then returns control to the Scanning Routme.

The maximum number of scans allowable is twice the number of roots in the polynomial. Since at least one root must be obtained after each pass of both the "real" polynomial and the "inverted" polynomial (requiring a total of two scans), a number of scans no more than twice the number of roots should be required for the algorithm to work properly. (Usually, considerably fewer scans are required because several roots may be found on any one pass). If this number is exceeded, however, the routine stops automatically.

The problem of evaluating the circumference of the Unit Circle twice (once on a "real" scan and once on an "inverted" scan) is solved by taking two precautions. Firstly, all points evaluated in a "real" scan must be within the Unit Circle, while an "inverted" scan is permitted to violate the boundary of the carcumference slightly. This precaution alone, however, is not sufficient to avoid a duplication of roots which lie close to the boundary, therefore, in the Root Examination Routine a check is performed to see if the root under consideration has appeared previously in another scan. This second precaution prevents roots which have been found once by a "real" scan and once by an "Inverted" scan from appearing twice.

Polynomial Calculation The Polynomial Calculation Routine uses Horner's Technique to evaluate the polynomial complex value from the coefficients. Basically, Horner's Technique is the terative evaluation of the expression

$$
F_{1+1}=\left(F_{1}+a_{1}\right) \cdot x \quad 1 \leqq 1 \leqq n
$$

with $F_{1}=(0,0)$ and $F_{n+1}=F_{n}+a_{n+1}$ the final value, and a_{1} is the 1^{1} th coefficient in the polynomial

$$
P(x)=a_{1} x^{n}+a_{2} x^{n-1}+\cdots+a_{n} x+a_{n+1}
$$

Thus the final value is cumulatively built up in F. If necessary, the complex value $F 1$ divided by previously found roots to form a reduced polynomial value

$$
F=\frac{P(x)}{\left(R_{1}-x\right)\left(R_{2}-x\right) \cdots\left(R_{m}-x\right)}
$$

where m is the number of roots found previously. In order to avoid overflow, the absolute value of any of the factors $\left(R_{1}-x\right)$ is not allowed to be less than 10^{-60}. The final step is to obtain the residual (the complex absolute value) of F.

$$
H=\sqrt{\left([\operatorname{Re}(F)]^{2}+[\operatorname{Im}(F)]^{2}\right.}
$$

The residual is computed for four or five points (the Home-inRoutine does not requare the central point to be evaluated each time) on each entry to the Calculation Routine. It is these four or five values (H) which are used by the Scanning and Home-in-Routines as the polynomial values at the test points.

Polynomial Inversion In order to obtain all the roots of the polynomal

$$
P(x)=a_{1} x^{n}+a_{2} x^{n-1}+\cdots+a_{n} x+a_{n+1}
$$

by scanning the complex plane within the Unit Circle, at some point a new polynomial is formed from the original one by reversing the order of the coefficients. The roots of this new polynomial are the recıprocals of the roots of the original polynomial, thus effectively bringing inside the Unit Circle all the roots which were previously outside. The Inverted Polynomial

$$
P^{\prime}(y)=a_{n+1} y^{n}+a_{n} y^{n-1}+\cdots+a_{2} y+a_{1}
$$

If $P(r)=0$, it is easy to show that

$$
P(r)=1 / r^{n} P(r)=P^{r}(1 / r)
$$

Therefore $y=1 / r 1$ a root of the new polynomial $p^{\prime \prime}$.
Thus, in order to obtain all the roots of a polynomial, the program must deal effectively with two kinds of roots, "real" and "inverted", and must obtain the reciprocal of "inverted" roots before writing them on the output. The Polynomial Inversion routine, simply reverses the order of the coefficients, sets a program varıable to point to either the "real" or "ınverted" techniques, and returns control to the main program.

Homeing-In Once five points have been obtained which fulfill the craterion for root examination, the homing-in procedure subdivides the distance between the central point and one of the outside points into sixteenths and, using the central points as a starting value, employs the Polynomial Evaluation Routine to compute four new outside test points. These new four points and the central point are then examıned for the one having the smallest residual which becomes the central point for a new five point test. If this new central point is the same as the previous central point, the scale 1 s subdivided into sixteenths as before so that the five point test becomes progressively more refined. At each subdivision, a new level of significance is obtained (each significant digit being a Hexadecimal digit because the scale factor is 16). This process of "homeing-in" is continued until either

1. The required number of digits of accuracy is reached or,
2. The residuals of the five points do not differ by a significant amount.

In case 2, the resolution of the computing method and system has been reached and the remaining significant digits, if any, are filled wath zeroes. This represents a Stopping Criterion which is independent of any formula for found-off error, ${ }^{15}$ but depends only on the previously mentioned resolution.

Each time a new step is taken in the Home-in-Routine, three checks are made. Firstly, if the central point should happen to be the origin (0,0), the scale is expanded (subdivided by sixteenths), this allows for roots which may range over large orders of magnitude. Secondly, if more than sixteen steps should be taken in one direction at the same level of significance the level of significance is dropped so that larger (coarser) steps may be taken. Finally, a check is performed to ensure that the routine does not stray too far out of the Unit Circle. This safeguards against the possibility that the original location presented to the Home-in-Routine was not in the vicinity of a root, in which case it could easily wander outside the Unit Circle. If this condition should be detected, the Home-in is aborted and control is returned to the Scanning Routine.

If either case 1 or case 2 occurs, the Home-in-Routine has reached a successful completion and transfers control to the Root Examination Routine. Root Eixamination Procedures The Root Examination Routine first checks to see if the root just found came from the original polynomial coefficients or from a reduced polynomial. If the polynomial was a reduced one, the value of the root can be regarded merely as an approximation. The Home-inRoutme is therefore called again to repeat the latter part of the home-in procedure this time using the original polynomial and using the approximate root as a starting value. This technique ensures that every root is found from the ormginal polynomial and that its accuracy does not depend on the accuracy with which previous roots were found.

After the final root value is obtained, a second check is made, this time on its residual. If the residual is greater than a certain value, the root is considered unreliable and is discarded. If this should occur, control is transferred back to the Scanning Routine. The maximum value of the residual is chosen arbitrarily to be one half the value of a_{n+1}, the constant coefficient in the polynomial.

Having passed these tests, the root value is rounded-off in the Round-off Routine (which is not discussed here because it has no bearing on the actual rootfinding algorithm). If the root is "inverted", its reciprocal is found using floating point division, and this value, after being rounded-off again, becomes the root value. A third check is then performed on the root to see if it has been found on a previous pass. (This check was mentioned previously in connection with the Unit Circle Boundary). If both real and imaginary parts fall within one significant digit of a root found on a different type of pass ("real"), it is rejected as a root but is nevertheless entered, in the same way as acceptable roots, in the list of roots used to form a reduced polynomial. (This prevents ats being found again). If the root is not rejected, it is converted form its internal hexadecimal representation to decimal, rounded-off again, and is written on the output.

A final check is made to see if the required number of roots has been obtained. If not, control is returned to the Scanning Routine, otherwise the algorathm terminates.

NOTES

1. In writing this algorithm, it was intended to produce a technique for finding successive roots from the original polynomial and thus eliminate the mutual interdependence of these roots and convergence problems which are commonly found in other methods, (e. g. , Newton-Raphson, Muller). ${ }^{16-19}$ However, in the course of investigating the behavior of the algorithmin was discovered that even widely dispersed roots affected the behavior of the polynomial "surface" over a wide range, and it therefore became necessary to use a reduced polynomial as a first approximation to elmmate this interference. Nevertheless, since the final rootis always obtained from the original unreduced coefficients, the orıgınal algorithm has been effectively retained.
2. Since most major computing machines in this country are based on some multiple of binary arithmetic (and, in particular, hexadecimal arithmetic), a step size of sixteenths was used as the basis for the algorithm. On decimal based machines, it is likely that the algorithm would prove more effective if tenths were to be used.
3. Although no organized test of the algorithm has been performed as yet, it has performed well over a wide class of applications. In particular, 34 of the 36 roots of the 36 th degree polynomial given in reference 19 were found to 5 significant digits in Single Precision Arithmetic within 60 seconds on an IBM 360/91.
3.7 A C. Analysis-Bode Plot ${ }^{20-21}$

At this stage of the program, with the transfer function available as

$$
T=\frac{b_{0} S^{m}+b_{1} s^{m-1}+\cdots+b_{m}}{a_{0} S^{m}+a_{1} s^{m-1}+\cdots+a_{n}}
$$

where all the coefficients, a_{1} and b_{1}, are known, the $A C$ response is calculated by setting $S=j \omega$ and simplifying the expression to a linear combination of real and maginary terms

$$
T=A(\omega)+J B(\omega)
$$

The magnitude of T and the angle $\theta(\omega)$ are computed according to the equations,

$$
|T(j \omega)|=\sqrt{A^{2}(\omega)+B^{2}(\omega)}
$$

and

$$
\theta(\omega)=\tan ^{-1} \frac{B(\omega)}{A(\omega)}
$$

Now if ω is made to vary, then for each value of ω the $|T(j \omega)|$ and $\theta(\omega)$ can be obtained over the frequency range of interest and thus can be made avallable for plotting. One commonly employed plot is $|T(\jmath \omega)|$ and $\theta(\omega)$ versus either $\log _{10} \omega$ or ω of Figure 3.15. Another graph, a Bode plot, (see Figure 3 16) consists of the $|T(\jmath \omega)|$ in decibel units and $\theta(\omega)$ in degrees versus the $\log _{10} \omega$, taken over the frequency range specıfied by the user

Figure 316

With the complex arithmetic capability of FORTRAN IV, the desired computation can easily be carried out in NASAP-70.

3.8 Transient Response

The transient response routine in NASAP-70 derives its theoretical basis from Fast Fourier Transform methods for the numerical inversion of Laplace Transform. Although the techniques described here follow along the approach presented by Dubner and Abate, ${ }^{22}$ it was, however, developed independently at UCLA.

Theory The inverse $f(t)$ of a Laplace Transform $F(s)$ is given by the formula

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j^{\infty}} F(s) e^{s t} d S \tag{3.1}
\end{equation*}
$$

If $F(s)$ is a quotient of polynomials, with all coefficients real, i. e.,

$$
\begin{equation*}
F(s)=\frac{\sum_{1=0}^{K} a_{i} s^{1}}{\sum_{i=0}^{n} b_{1} s^{1}} \tag{3.2}
\end{equation*}
$$

then $f(t)$ is real, and

$$
\begin{equation*}
f(t)=\frac{e^{\sigma t}}{\pi} \int_{0}^{\infty} F(\sigma+j \omega) e^{j \omega t} d \omega \tag{array}
\end{equation*}
$$

For the $\mathrm{F}(\mathrm{s})$ which are rational, 1. e., have $\mathrm{K}>\mathrm{n}$ in Equation (3.2), it is apparent that Equation (3 3) can be evaluated by a gradrature rule for a specific t, since $\operatorname{Lim}_{S \rightarrow \infty} F(s)=0$. However, if $K>n$, a long division can be performed on $F(s)$, to yield

$$
\begin{equation*}
F(S)=C_{K-\ell} S^{K-\ell}+C_{K-\ell-1} S^{K-\ell-1}+\cdots+C_{0}+R(S) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
R(S)=\frac{\sum_{1=0} d_{1} S^{I}}{\sum_{j=0} b_{j} S^{J}} \tag{3.5}
\end{equation*}
$$

All terms of (3.4) represent mpulses of varying degrees and can easily be inverted. The only concern is the inversion of $R(S)$.

Inversion of Equation (3.3) by the trapezoidal rules, gives

$$
\begin{align*}
f(t) & \approx \Delta w\left\{\frac{\operatorname{Re}\{F(\sigma)\}}{2 \pi}\right. \\
& \left.+\frac{e^{\sigma t}}{\pi} \sum_{K=1}^{\infty} F(\sigma+\jmath K \Delta w) e^{\jmath k \Delta \omega t}\right\} \tag{3.6}
\end{align*}
$$

where ω is an appropriately chosen sampling interval, and σ is chosen so that the integration path is to the right of all singularities. Since $\lim _{S \rightarrow \infty} F(S)=0$, an upper limit ν can be chosen for the summation such that $F(\sigma+j \Delta \omega \mathrm{k})$ is small for $K>n$. Thus

$$
\begin{align*}
& f(t) \approx \Delta \omega\left\{\frac{\operatorname{Re}\{F(\sigma)\}}{2 \pi}+\right. \\
& \left.\frac{e^{o t}}{\pi} \sum_{K=1}^{n} F(\sigma+j k \Delta \omega) e^{j k \Delta \omega t}\right\} \tag{array}
\end{align*}
$$

(It should be noted that Equation (3 7) is the same expression obtained by Dubner and Abate, ${ }^{22}$ except that the present derivation did not consider that when $f(t)$ is known to be real and nonzero for $t \geqq 0$ only, then

$$
\begin{equation*}
\left.f(t)=\frac{2 e^{\sigma t}}{\pi} \int_{0}^{\infty} \operatorname{Re}\{F(\sigma t) \omega)\right\} \cos (\omega t) d \omega \tag{3.8}
\end{equation*}
$$

Note that if $f(t)$ is obtaned from the trapezoidal rule for m different values of t, a total of mN calculations (evaluations of the term appearing
under the summation) are required. For small m, no difficulty exists, but if m is large, the machine time could be excessive.

This difficulty is overcome by the use of the Fast Fourier Transform (FFT). 23, 24 The discrete Fourler Transform pair

$$
\begin{align*}
& X(K)=\Delta t \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{n K}{N}} \tag{3.8a}\\
& x(n)=\frac{\Delta \omega}{2 \pi} \sum_{K=0}^{N-1} X(K) e^{\frac{2 \pi n K}{N}}
\end{align*}
$$

can be evaluated using the $F F F T$ with less than $N \log _{2} N$ calculations if N is chosen so that $N=2^{\delta}$, where δ is a positive integer.

In Equation (3 7), if the following definitions are adopted

$$
Z_{K}= \begin{cases}\frac{\operatorname{Re}\{F(\sigma)\}}{2} & K=0 \\ \operatorname{Re}\{F(\sigma+j \Delta \omega K\} & K>0\end{cases}
$$

and the summation limit is raised to $N-1$, where N is the smallest integral power of 2 greater than ν, then,
$f(t) \approx \frac{\Delta \omega e^{\sigma t}}{\pi} \sum_{K=0}^{N-1} Z_{K} e^{j K \Delta \omega t}$
If it is required that $f(t)$ is evaluated only at integral multiples of some time interval Δt, then $f(t)$ can be defined by.

$$
\begin{align*}
& f(n \Delta t) \approx \frac{\Delta \omega e^{\sigma n \Delta t}}{\pi} \sum_{K=0}^{N-1} Z_{K} e^{j \mathrm{JK} \Delta \omega n \Delta t} \tag{3.10}\\
& \text { for } n=0,1,2, \ldots \\
& \text { Now, if } \Delta t \Delta \omega=\frac{2 \pi}{N} \text { is introduced, Equation (3.10) becomes }
\end{align*}
$$

$$
\begin{equation*}
f(n \Delta t) \approx \frac{\Delta \omega e^{\sigma n \Delta t}}{\pi} \sum_{K=0}^{N-1} Z_{K} e^{j 2 \pi \frac{n K}{N}} \tag{3.11}
\end{equation*}
$$

It is apparent that the form of Equation (3.11) is compatble with Equation (3 8b). It should be noted that the summation in (3.11), considered as a function of n, is perıodic, and that $f(n \Delta t)$ given by (3.11) is an oscillating exponential with period $N \Delta t$, since

$$
\begin{equation*}
f[(\mathrm{Ntn}) \Delta \mathrm{t}] \approx \frac{\Delta \omega \mathrm{e}^{\sigma(\mathrm{N}+\mathrm{n}) \Delta t}}{\pi} \sum_{\mathrm{K}=0}^{\mathrm{N}-1} Z_{\mathrm{K}} \mathrm{e}^{\mathrm{j} 2 \pi \frac{(\mathrm{n}+\mathrm{N}) \mathrm{K}}{\mathrm{~N}}} \tag{3.12}
\end{equation*}
$$

but,

$$
\begin{align*}
& e^{j 2 \pi \frac{(n+N) K}{N}}=e^{j 2 \pi K} e^{j 2 \pi \frac{n K}{N}} \\
&=e^{j 2 \pi \frac{n K}{N}} \\
& f[(N+n) \Delta t]=e^{\sigma N \Delta t} f(n \Delta t) \tag{array}
\end{align*}
$$

Since (3.13) cannot, in general, be true a check of the valıdity of Equation (3.11) must be made.

If the substitutions $n \Delta t=t$ and $K \Delta \omega=\omega$ are made in the inverse transforn relation of Equation (3 3) and the upper limat of integration is reduced to $\omega_{o}=N \Delta \omega$, then

$$
\begin{equation*}
f(n \Delta t)=\frac{e^{\sigma n \Delta t}}{\pi} \int_{0}^{N} F(\sigma+j k \Delta \omega) e^{\jmath K \Delta \omega t} \Delta \omega d K \tag{3.14}
\end{equation*}
$$

Inserting the condition $\Delta t \Delta \omega=\frac{2 \pi}{N}$ yields

$$
\begin{equation*}
f(n \Delta t)=\frac{\Delta \omega e^{\sigma n \Delta t}}{\pi} \int_{0}^{\infty} F(\sigma+j K \Delta \omega) e^{\frac{j 2 \pi n K}{N}} d K \tag{array}
\end{equation*}
$$

The trapezoidal approximation of Equation (3 15) is

$$
\begin{align*}
& f(n \Delta t) \approx \frac{\Delta \omega e^{\sigma n \Delta t}}{\pi}\left\{\frac{1}{2} \operatorname{Re}\{F(\sigma)\}+\right. \\
& \left.\sum_{K=1}^{N-1} F(\sigma+\jmath K \Delta \omega) e^{\jmath 2 \pi \frac{n K}{N}}+\frac{1}{2} \operatorname{Re}\{F(\sigma+\jmath \mathrm{N} \Delta \omega)\}\right\} \tag{3.16}
\end{align*}
$$

Since it is assumed that $F(\sigma+j N \Delta \omega)$ is small, this term can be elıminated from Equation (3.16), thus making it identical with Equation (3 11), as expected. Additionally, the validaty of the approximation of Equation (315) by Equation (3.16) should be checked. It is a well known rule in quadrative evaluation of integrals that the summation rapidly becomes maccurate when the sampling interval is made larger than one half the wavelength of the highest frequency component of the integrand. If it is assumed $F(\sigma+j \omega)$ has a frequency spectrum with all its components having a wavelength much greater than $\Delta \omega$, then the highest frequency in the integrand of Equation (3.15) will be $\frac{n}{N}$. The sampling interval in Equation (3.11) $=1$, thus the wavelength must be $\frac{N}{n} \geq 2$ and forcing the range of $0 \leq n \leq \frac{N}{2}$ on Equation (311). This is the same result used by Dubner and Abate. ${ }^{2}$ It will be shown later that it is necessary to further restrict n so that $0 \leq n<\frac{N}{4}$.

It is necessary to find a value of the parameter and for which (3.11) will be valid. The method employed in NASAP-70 involved repeated application of the Routh Stability criterion ${ }^{21}$ followed by a translation along the real axis.

The Routh criterion involved the construction of a matrix for the transfer function,

$$
F(S)=\frac{\sum_{1=0}^{K} a_{I} S^{1}}{\sum_{1=0}^{\ell} b_{1} S^{I}}
$$

The correspondang matrix $1 s^{*}$

$$
\begin{aligned}
& \mathrm{b}_{\ell} \quad \mathrm{b}_{\ell-2} \mathrm{~b}_{\ell-4} \cdots \cdot \cdot \\
& \mathrm{~b}_{\ell-1} \mathrm{~b}_{\ell-3} \mathrm{~b}_{\ell-5} \cdots \cdots \cdot \\
& d_{31} \quad d_{32} \quad d_{33} \cdots \cdot \cdot \\
& \mathrm{~d}_{41} \quad \mathrm{~d}_{42} \quad \mathrm{~d}_{43} \cdots \cdot \cdot \\
& \vdots \quad i \quad i
\end{aligned}
$$

The furst two rows are made up of the coefficients of the denominator polynomial. If ℓ is odd, the final element in the first row $1 s \mathrm{~b}_{1}$, the second row, b_{0}. If \& is even, the final element is b_{0} in the first row, and zero in the second. In either case, the rows have length $\left[\frac{\ell}{2}\right]+1$. The $d_{1 j}$ are evaluted by

$$
\begin{equation*}
d_{1 J}=\frac{d_{1-1,1} d_{1-2, J+1}-d_{1-2,1} d_{1-1, j+1}}{d_{1-1,1}} \tag{array}
\end{equation*}
$$

The meaning of $d_{1 j}$ for $I=1$ or 21 s obvious. The length of nonzero elements in each row decreases as the row number increases, until in the $(\ell+1)$ row, only $d_{\ell+1}$ is nonzero.

After the matrix is constructed, the first element in each row is examined. If all of them are positive, no singularities are to the right of the imaginary axis. If one or more is zero or negative, then there are one or more singularities with a positive real value. To test a particular σ_{0} to determine whether at is to the right of all the poles, $F(S)$ is shifted by σ_{o},

$$
\begin{equation*}
F\left(S+\sigma_{0}\right)=\frac{\sum_{1=0}^{K} A_{1}\left(S+\sigma_{0}\right)^{1}}{\sum_{1=0}^{\ell} b_{1}\left(S+\sigma_{0}\right)^{1}}, \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{1=0}^{\ell} b_{1}\left(S+\sigma_{0}\right)^{I}=\sum_{i=0}^{\ell} C_{1} S^{1} \tag{array}
\end{equation*}
$$

and

$$
C_{1}=\sum_{j=1}^{\ell} b_{1} \sigma_{0}^{J-1}\binom{J}{1}
$$

The Routh criterion can now be applied to C_{1}, and if it is stable, then σ_{o} can be used in Equaiton (311).

Although the theory is valid at this point, a number of practical problems remain. One of these appears when $F(S)$ contains a high order polynomial which does not go to zero until ω is very large. In these cases, it is possible for some of the calculations involved in obtaining sample values to fall outside the range of numbers representable in a particular machine. To avoid this difficulty, the frequency scaling property of the Laplace transform is used,

$$
\begin{equation*}
f(a t)=\frac{1}{a} \mathcal{L}^{-1}\left\{F\left(\frac{S}{a}\right)\right\} \tag{3.20}
\end{equation*}
$$

There also exists the inconvenience for users, resulting from the fact that the choi ce of $\Delta \omega$ files Δt. It would be much more convenient if Δt could be set to any desired value. To overcome this difficulty, a parameter selection procedure is used. Always setting $\Delta t=1$, gives $\Delta \omega=\frac{2 \pi}{N}$. If a user desires a time step different from one second, the transform $2 s$ frequency scaled according to Equation (3.20) by the time interval desired, 1.e., $a=\Delta t$.

Wath these changes, Equation (3.15) becomes

$$
\begin{equation*}
f(n a)=\frac{2 e^{n \sigma a}}{N a} \sum_{K=0}^{N-1} z_{K}^{1} e^{j 2 \pi \frac{n K}{N}} \tag{3.21}
\end{equation*}
$$

where $Z_{K}^{1}=\left\{\begin{array}{l}\frac{1}{2} \operatorname{Re}\left\{F^{I}(\sigma)\right\}, K=0 \\ F^{1}\left(\sigma+j 2 \pi \frac{K}{N} 0, K>0\right.\end{array}\right\}$
This change introduces ω complication, in that the setting of $\Delta w=\frac{2 \pi}{N}$ means $F(S)$ is sampled until $w=\frac{2 \pi}{a}$, regardless if it may be nonzero at this or higher values of w.
(Note that the choice of N no longer has any effect on the upper limit of the sampling. Increasing N merely causes more samples to be taken with the sampling interval, which is set once a is chosen.

The effect of this high frequency cut-off will vary, depending upon the particular transform being inverted. The cases where the error is the greatest, however, occur near those points at which $f(t)$ is discontinuous. In rational transforms, $f(t)$ is discontinuous only at the origin, if at all. (If the numerator polynomial is of one degree less than the denominator, there is a discontinuity at $f(0)$. If the dufference in degree is greater than one, $f(t)$ is continuous for all finite t. The usual effect of the high frequency cutoff error $1 s$ the "rounding of the corners" at $f(0)$.

A correction procedure can be applied when this error occurs. By carrying out a long division of $F(S)$, one obtains

$$
\begin{equation*}
F(S)=\sum_{i=1}^{q} \frac{C_{1}}{S^{2}}+R(S) \tag{3.22}
\end{equation*}
$$

Inversion of Equation (3 22) ylelds,

$$
\begin{equation*}
f(t)=\sum_{1=1}^{q} C_{1} \frac{t^{1-1}}{(1-1) \mid}+\mathcal{L}^{-1}\{R(S)\} \tag{3.23}
\end{equation*}
$$

Note Equation (3 23) is a power series expansion for $F(t)$ taken at $t=0$. In NASAP-70, c_{1} is evaluated with $q=50$ in Equation (3 22), followIng by Equation (3 23) to evaluate the first five time points. During the evaluation of Equation (3.23) a check is made to determine that a smooth series fit is achieved (if the higher order terms in the summation are insigmificantly small, then $\mathcal{L}^{-1}\{R(S)\}$ is not significant because it is $\mathrm{O}\left(\mathrm{t}^{\mathrm{q}+1}\right)$ near the origin). Also checked is the possibility that some of the terms of Equation (323) are $\gg f(t)$, if this is the case, there will be a loss of significance, and the error correction procedure 1 s by-passed. If it turns out that the series is well behaved, it is used in cases where $f(t)$ is continuous at the orıgin.

The theoretical foundations of NASAP just described cannot be considered extensive. But hopefully enough of the concepts have been presented to explain the underlying theme of NASAP. For those persons interested in more of an elaboration of the principle involved, they are encouraged to read the references shown at the end of the chapter.

REFERENCES

1. Kuh, E., Deoser, C., Basıc Circuit Theory, prelminary edition, McGraw-H1ll, 1966.
2. Busacker, R., Saaty, T., Finite Graphs and Networks An Introduction with Applications, McGraw-Hill, 1965.
3. Branın, Jr., F., "Machine Analysis of Networks and its Applications," IBM Data Systems Technical Report TR00855, March 30, 1962.
4. Kron, G., "A Set of Principles to Interconnect the Solutions of Physical Systems, " Journal Applıed Physics, Vo1. 24, pp. 965-980, 1953.
5. Kırchhoff, G., "Uber die Auflosung der Gleichungen, auf welche man bel der Untersuchungen der Linearen Verteılung Galvanishcer Strome gefuhrt ward, " Poggenforf Ann. Physik, Vol. 72, pp. 497-508, 1847, In English, Transcations Institute of Radio Engineers, Vol. CT-5, pp. 4-7, March 1958.
6. Fröberg, C. E., Introduction to Numerıcal Analysis, Addıson-Wesley, 1965.
7. Shannon, C.E., "The Theory and Design of Linear Differential Equation Machines," National Defense Research Committee, OSRD Report 411, January 1942.
8. Nason, S.J., "Feedback Theory Further Properties of Signal Flow Graphs, " Proceedings of IRE, Vol. 44, No. 7, pp. 920-926, July 1956.
9. Happ, W. W., "Flowgraph Technıques for Closed Systems," IEEE Transactions on Aerospace and Electronc System, Vol. AES-2, No. 3, pp. 252-264, May 1966.
10. Lorens, C.S., Flowgraphs, McGraw-Hill, 1964.
11. Robechaud, L. P., et al., Signal Flow Graphs and Applıcations, PrenticeHall, 1962.
12. Russell, E.C., Okrent, H., McNamee, L. P., "Instrumentation of a NASAP Subroutine, " IEEE Transactions on Education, Vol. E-12, pp. 243-250, December 1969.
13. Carpenter, R. M., "Computer-Oriented Sensitivity and Tolerance Technıques," Automated Curcuit Analysis Course Notes, UCLA, April 3-7, 1967.
14. Vattuone, E.S., Dorf, R., "Root Sensitıvity as a Design Criterion," First Asilomar Conference, pp. 287-290, November 1967.
15. Adams, A., "A Stopping Criterıon for Polynomial Root Finding," Communications of the ACM, pp. 655-658, 1967.
16. Ralston, A., Wılf, H. S., Mathematıcal Methods for Digital Computers, Vol. 1, Wiley, 1962.
17. Muller, D. E., "A Method for Solving Algebraic Equations Using an Automatic Computer, " Mathematics of Computation, formerly Mathematical Tables and Other Aids to Computation, pp. 208-215, 1956.
18. Nattemeier, A., "Roots of Polynomials by a Root-Squaring and Resultant Routine, "Commumicatıons of the ACM, pp. 779-782, 1968.
19. Henricı, P., Watkins, B. O., "Finding Zeros of a Polynomial by the Q-D Algorithms, " Communications of the ACM, pp. 570-574, 1965.
20. Nilsson, J. W., Introduction to Circuits, Instruments and Electronics, Harcourt, Brace, and World, 1968.
21. DiStefano III, J., Stubberud, A., Williams, I., Theory and Problems of Feedback and Control Systems, Schaum, 1967.
22. Dubner, H., Abote, J., "Numerıcal Inversion of LaPlace Transforms and the Finite Cosine Transform," JACM, Vol. 15, No. 1, pp. 115-123, January 1968.
23. Cooley, J.W., Tukey, J.W., "An Algorathm for the Machine Calculation of Complex Fourier Series, " Mathematics of Computation, pp. 297-301, April 1965.
24. Brıgham, E. O. Morrow, R. E., "The Fast Fourıer Transform," Spectrum, Vol. 4, No. 12, pp. 63-70, December 1967.

PART II A PROGRAMMERI S MANUAL

The Programmer's Guide consists of Chapters 4 and 5 and Appendix A. Chapter 4 describes the algorithms used in NASAP-70 and the general flow of control among the NASAP-70 routines. A user intending to make any modifications to his copy of NASAP should become familiar with that chapter. The Dictionaries in Appendix A are provided to aid in easy identification of the more important names in NASAP-70.

Chapter 5 is designed as a reference for the general user. In particular, the user's attention is directed to Sections 5.4 and 5.5 which should be read before any NASAP-70 problems are run on a computer which is not an IBIM 360. These sections describe some important modifications which may be required to make NASAP-70 operate properly on other computers.

Finally, Appendix A contains a program listing of NASAP-70 and Appendix C contains the output generated by sample problems.

CHAPTER 4

NASAP-70 PROGRAMMER'S GUIDE

4.0 Program Organızation
 4.1 General Description

The NASAP Circuit Analysis program is written entirely in Fortran IV-H. ${ }^{1}$ It is buılt around a basic program which produces a circuit tree from the user-supplied circuit data, and then uses this tree to evaluate the curcuit Transfer Function. Additional modules are supplied which accept a user-defined tree (in a dufferent data format), perform Sensitivity and Worst Case Analysis, produce Transient and Frequency Responses, find Poles and Zeroes of the Transfer Function, and perform automatic scaling on the input data.

Since NASAP-70 is written in Fortran IV, a user familiar with this language may add his own routines.

The flow of control in NASAP is shown in Figure 4.1. The Main Program first calls one of the three forms of Circuit Description Analysis. Each of these makes use of the Card Scanning Utilities. Then the Main Program can call (optionally) a Sensitivity Analysis routine if requested by the user. The Automatic Scaler may also be called at this point. The Transfer Function section is called to bulld the Flowgraph and compute the Transfer Function. The remaining sections, Sensitivities, Plotter, Rootfinder and the Transfer Function section again, may be called optionally. If more than one circuit description is supplied, any one of the Circuit Description Analysis routines may be called to restart the whole process.

Only one Circuit Description Analysis routine and the Transfer Function Section are absolutely required to be called during a NASAP-70 run. The remaming sections are called depending on the particular options selected by the user in his circuit data cards.

Figure 41 Flow of Control in NASAP-70

4.2 Algorithms and Dictionaries

In this section, the general algorithm of each subprogram is described. Instead of a statement by statement analysis of each routine, the algorithm is divided into a number of logical steps for the purpose of description. It is best to refer to a listing of the routine being studied while reading the algorathm description. (See Appendux A) The listing should be used to 1 dentify the source statements with the logical steps in the description.

For quick identification of the more important names in NASAP, a dictionary is supplied in Appendix A.

4.2.1 Main Program

The Main Program and Block Data subprogram serve to declare the more important program variables and to provide the flow of control among the modules of NASAP-70 based on the readmg of certain NASAP-70 control cards from the Input Data Set.

1. In the Block Data subprogram, three Common Blocks are initialized. Common Block GAG contains an array of 20 varlables which is mintialized to the Sensitivaty tags. These tag values are used in the Sensutivity analysis to identify flowgraph loops and the resulting Sensitivity functions with their corresponding circuit elements. Common block DATA contains an array of 32 variables which is mitialized to 32 alphameric characters. Common block X contains an array of ten variables which is initialized to ten numeric characters. Common blocks DATA and X are used by the card scanning utilities (ASCAN, BSCAN, etc.) and various other routines which examine the NASAP data cards.
2. Upon entry to the Main program the important program control variables are reset beginning with NE (Number of Circuit Elements) and ending with the array SENS (The 50 Sensitivity tags). The page heading is then printed.
3. A card is read and printed, Subroutine SHIFT is called to squeeze out embedded blanks and commas, NE (which currently serves as a heading card counter) is incremented, and the first four characters on the card are checked as follows.

- If they are NASA, NE is reset and Subroutine NASAP is called, followed by a transfer to step 4 below.
- If they are TREE, NE is reset and Subroutine READ is called, followed by a transfer to step 4 below.
- If they are CIRC, NE is reset, ITREE is set (to signal that a tree is to be built by Subroutine FINE) and Subroutine READ is called. Then, provided $E R R$, the terminal error flag, has not been set, Subroutine FINE is called, followed by a transfer to step 4 below.
- If they are STOP, control is returned to the system monitor.
- If none of these sets of characters appear, the card is assumed to be a title card. If NE is more than ten, a warning is printed, NE is reset and control returns to step 2 above to read another card.

4. Statement 3 checks the $E R R$ flag. If it is set, an error message is printed and control returns to Step 2 above where NASAP-70 is remitiatized. If it is reset, the checklist of elements is printed out so that the user may verify that his data were read correctly. Subroutine CALC is called to check tree legality and to create the current equations. If Subroutine CALC sets the ERR flag (e.g., due to an invalid tree), the error message is printed as before and NASAP-70 1s reinitialized. Otherwise, Subroutine SCALER is called to determine if the carcuit element values require scaling. If FACTOR is nonzero, then scaling was performed and the scale factor is printed out.
5. If TAG is set, then the user omitted an END card after the circuit description and therefore another card need not be read. Otherwise, a new card is read, Subroutine SHIFT is called and the following tests are made on the first four characters of this card

If they are SENS, Subroutine SENSIT is called (to analyze Sensitivity cards) and the next statement is skipped so that Subroutine WORST is not called.

If they are WORS, Subroutine WORST is called (to analyze Worst Case tolerance cards).
Subroutine GRAPH is then called to build the flowgraph (except for the unknown transmittance) which is then printed out. Subroutine REDUCE is called for each flowgraph transmittance to handle Sensitivaty tags. As a final step, preparatory to servicing Output requests, NPATH (the number of flowgraph transmittances) is incremented to include the unknown trans mittance, VPATH(NPATH) (its value) is set to 1.0, S(NPATH) (its tag) is set to 1000 , NTIMES (the number of words per block in the BITS array) is set based on 30 bits per word, INP (the Transfer Function request flag) is reset, finally $E R R$ is reset. By transferring to statement 10 , step 6 , which reads a new Output Request card, is avolded. Control goes to step 7.
6. The INP and ERR flags are reset, a new Output Request is read and Subroutine SHIFT is called.
7. Statement 10 prints the latest Output Request, calls and then analyzes the Output Request as follows

If the first three letters are END or the first two letters are EX, control goes to step 2 where NASAP is reinitialized.

If the first three letters are CIRC, TREE or NASA, it is assumed that the user omitted the END card after his Output Requests. Therefore control goes to statement 12 which prints an error message, the NASAP-70 heading, and then returns control to step 2 at a point just after a new card is read (because this card has already been read by accıdent).
If INP is 0, no Transfer Function request has yet been read so the next five tests are not performed.

If the first letter is V or I, this is a Transfer Function request,
therefore control goes to step 8 where the Transfer Function is formed.

If the first four letters are PLOT and ERR has not been set, Subroutine PLOT is called, and if ERR is still not set, Subroutine INVERT is called to perform the plotting. Finally ERR is reset. If the first four letters are ROOT and ERR has not been set, Subroutme ROOTS is called. Subroutine SHIFT is then called so that the succeeding test for a Pole Sensitivity Request will operate on a card of the form ROOTS, POLES.
If the first four letters are POLE and ERR has not been set, Subroutine POLSEN is called.

Control now returns to step 6 after an error message is printed for the cards beginning with SENS, WORS, or TOL.

At this point INP $=0$, which means that there has been no previous Transfer Function request. Hence, cards beginning with PLOT, ROOT, SENS, TOL or WORS are meaningless and if the current card is one of these, an error message is printed and control returns to step 6.
8. The card is now considered to be a Transfer Function request, consequently INP is set to signal that a Transfer Function request has been encountered. The number stored in NTIMES is printed and then Subroutine WHAT is called to analyze the Transfer Function request. If the ERR flag has been set, control goes to step 6 to search for another Output Request. Otherwise Subroutine INBIT is called to enter the unknown transmittance into the BITS array and then Subroutine LOOPS is called to solve for the Transfer (and Sensativaty) Functions.
9. The BITS, SMAX1 and SMIN1 arrays are reset before the Sensitivity Functions are entered. Subroutine ANSWER is called to print out the Transfer Function. If NSEN is 0, this means that no Sensitivity Functions are requested. Control then returns to step 6 (except INP and ERR are .
not reset), otherwise subroutine SENSC is called. If NWORST is not 0, Subroutine WORSTC is called to evaluate the Worst Case Function, and Subroutine ANSWER is called to print $1 t$. Finally, control returns to step 6 (except INP and ERR are not reset).

4.2.2 Circuit Descrıptıon Analysis

NASAP-70 offers three technıques of carcuit description analysis. The technique selected is determined by the heading card read by the Main program. All the techniques make use of the card scanning utilities which perform various operations on the card mage stored in an 80 word array in Common block A.

The User ${ }^{1}$ s Circuit Description may be supplied to NASAP-70 in one of three ways

1. As a circuit description wath a tree ${ }^{2}$ to be defined by the program for minimum computation time. This is the standard form of NASAP Input Data used in previous versions of the program. ${ }^{3}$ It is initiated by a card having the work NASAP.
2. As a circuit description with a tree to be defined by the program for optimum accuracy at a given frequency. This form of input data is new to NASAP. It is initıated by a card having the word CIRCUIT followed by a value in parentheses which represents a frequency in cycles per second.
3. As a circuit descrıption wath a user-defined tree. This option, like the CIRCUIT option, uses a new form of input data. It is initiated by a card having the word TREE.

The method of analyzing the Circuit Description Data associated with each of these forms of input is described below.

Card Scanning Utilnties

There are eight routines which constitute the card scanning utilities. Subroutines ASCAN (B, I, J), BSCAN(B, I, J) and CSCAN(B, I, J) scan the
card image in Common block A starting at column I until a special character ${ }^{-}$ (described below) is encountered. The character is placed in B and the number of the column just before this character is placed in J.

- Subroutine ASCAN scans for ($/-$) = blank.
- Subroutine BSCAN scans for U blank M K P O V I.
- Subroutine CSCAN scans for . E + - blank.
- Function $\operatorname{ISORT}(A)$ returns the fixed point numeric value of the character stored in A. If A is not numeric, FLAG is set.
- Subroutine MSG(A, I) prints a diagnostic.
- Subroutine NUMBER(N1, N2) stores the floating point value into $\operatorname{VPATH}(\mathrm{NE})$ of the number between columns N 1 and N2 inclusive, urrespective of the format in which this number is written. If there is an error in the number (e.g., an invalıd character), FLAG is set and the value entered into VPATH(NE) 15 unreliable. For instance, the following numbers are acceptable:

$$
-1 \quad .73-7 \quad 1 \mathrm{E} 2 \quad+0.0009
$$

but these are not acceptable
$-1 \mathrm{~A} \quad 7.3 \quad 1 \mathrm{~B} 2 \quad+.0009$
The algorithm of Subroutine NUMBER is now described in more detanl.

1. Upon entry, K (the column pointer) is set to $N 1$, and $\operatorname{VPATH}(\mathrm{NE})$ is set to 0. Provided K 1 s less than N2, control passes to step 3 to begin the analysis.
2. This is the error return. When this step gains control, a diagnostic is printed and control is returned to the calling routine.
3. A test is performed on the first character in the field. If it is a -, TAG is set. Subroutine CSCAN is called and if I already points to a special character this number must be less than 1 , so control passes to step 5.
4. The digits which form the part of the number greater than 1 are contained between columns I and J inclusive. This step (DO 3) enters them
into $\operatorname{VPATH}(\mathrm{NE})$. If FLAG is set for any digit, the error return (step 2) is gaven control.
5. If the end of the number field has been reached, control passes to step 7. If the next character is not the decimal point, control passes to step 6 which checks for an exponent. Otherwise the digits of the fractional part of the number are entered into VPATH(NE) (DO 7). If FLAG is set, step 2 gets control.
6. If the next character is the E of the exponent field, the column pointer is incremented. If $a-1 s$ found in the exponent field, EXPO is set. Subroutine BSCAN 1s called to obtain the limits of the exponent field. A diagnostic is pranted if this field contans more than two digats. The rightmost two digits are used to enter the exponent value into POW If EXPO has been set, the exponent is negative. Lastly, the value in VPATH(NE) is modified according to the value of the exponent.
7. If TAG has been set, the number was negative so the sign is reversed. Control then returns to the calling program.

- Subroutine SHIFT left adjusts all characters in Common Block A removing blanks and commas.
- Function SORT is the same as ISORT but returns a floating point value.

Subroutine NASAP

Subroutine NASAP decodes Carcuit Description cards which follow a NASAP heading card. If no error is detected before the END or OUTPUT card is reached, a tree is constructed (subject to the constraint of minimum First Order Loops). Each Circuit Description Card is in the following format

NAME ORIGIN TARGET VALUE UNITS(optional) DEPENDENCY(optıonal)

 The Data cards are described in more detail in Sec. 4.2. The algorithm detalls of Subroutine NASAP follow1. On entry, NE (the number of elements) is reset to 0 .
2. A new card is read mato Common block A and Subroutine ASCAN is called repeatedly until the first non-blank character is found. If this character is E or 0 , this is the end of the circuit description, so control passes to step 7 where the tree is bualt. Otherwse NE is incremented, the element name is padded wath blanks on the right and entered into the CARD array (which contains the names of all the circuit elements).
3. Subroutine ASCAN is called repeatedly to find the next non-blank character which is the start of the ORIGIN field. Function ISORT is used to enter the value of the origin node into the ORIGIN array. If FLAG is set, control transfers to step 6 which is the error return. A similar procedure $1 s$ used to enter the value of the TARGET node into the TARGET array.
4. Subroutine BSCAN is called repeatedly to find the next blank character or the first character of the UNITS field, followed by a call to Subroutine NUMBER to enter the value of the VALUE field into VPATH(NE). This value is multiplied by a factor depending on the next one or two nonblank characters (which constatute the UNITS field)•

U	10^{-6}	P 10^{-12}	
K	10^{3}	M 10^{6}	
MH	10^{-3}		

If the character is a V or I, the DEPENDENCY field is present so Subroutine ASCAN is used to extract the name of the dependency that is then entered into the DEP array (which contains the names of controlling elements). If a DEPENDENCY field is not present, a strıng of blank characters is entered into the DEP array.
5. GENER(NE) and TYPE(NE) are reset. If the first character of the element name is V or I, the element is actave requiring that GENER(NE) be set. If at is V, the element is a voltage source and is immediately required
to be in the tree, therefore TYPE(NE) is set. Finally, before transferring back to step 2 to read the next card, NNODES and INODE (the maximum and minmum node numbers appearing so far) are set.
6. (The error return). A diagnostic is printed, ERR is set and control is returned to the calling program.
7. Before building the tree, an array N is set up which initially contans the number of elements connected to each node $N(I)$. When $N(I)$ is 0 , node I has been connected to the tree. When $N(I)$ is negative, node I is currently being considered for entry into the tree.
8. The next free node having the highest number of elements connected to $1 t$ is selected for insertion into the tree. Its N entry is reset to 0 Then, all the nodes connected to this one via voltage sources are put under consideration, 1.e., $N(I)$ is made negative (DO 23). As long as \mathbb{M} is 1 addrtional nodes have to be considered, consequently step 8 is repeated untrl M is 0 .
9. Each passive element connected to this node is entered into the tree when the other node to which it is connected is not yet under consideration. At the same time, all the nodes connected to this new node via voltage sources are given consideration. (DO 26 and DO 31).
10. The N array is searched for the least value. If this 1 s 0 , all possible nodes have been entered into the tree, control returns to the calling program. Otherwise the node is tagged as being processed by subtracting 1000 from its N entry. Then control passes to step 8.

Subroutine NASAP does not perform any checks on the circuit described or the tree it builds (i.e., to see if all nodes are connected to the same tree). If the circuit supplied is valid, then the tree constructed from it will be valid also. If the circuit is mnvalid, the resulting tree is meaningless. All checking on both program and user constructed trees 1 s performed by Subroutine CALC while solving the current equations. If any invalidity is found, Subroutine CALC prints the appropriate diagnostics.

In general, the tree constructed by Subroutine NASAP produces the minimum number of First Order Loops, and therefore produces a transfer function in minimum computation time. This tree may be described briefly as the "bushiest" tree. For instance, for the circuit shown, two trees are given (solid lines represent the tree) both of which are valid. However, tree 2 is the "bushiest" and would probably result in fewest First Order Loops.

TREE 1

TREE 2

Figure 42
Subroutzne READ and Subroutine FINE
In response to reading a heading card beginning with either the word CIRCUIT or the word TREE, Subroutine READ is called to analyze Circuit Description Data. If the heading card was a CIRCUIT card, Subroutine FINE Is called to build a tree which results in optimum accuracy at the frequency shown on the CIRCUIT card. If the heading card was a TREE card, Subroutine FINE need not be called because it is assumed that the user has supplied the tree. The format of the circuit description data accepted by Subroutine READ is considerably different from that accepted by Subroutine NASAP. This is because Subroutine READ is designed for a user who has some knowledge of flowgraph theory whle Subroutine NASAP is designed for the user interested primarily in the Transfer Function rather than the method of analysis.

CIRCUIT cards have the form:
CIRCUIT (Frequency)
CIRCUIT and TREE circuit descraption cards have the form
NAME/DEPENDENCY (ORIGIN-TARGET) = VALUE UNITS
(note that DEPENDENCY and UNITS are optional quantities)
Circuit Descraption Data is described in detail in Sec. 4.2.

1. The first step in Subroutine READ is to reset a number of control variables. Then if this is a CIRCUIT card (TREE=1), the default frequency is set to 1.0 , and Subroutines ASCAN and NUMBER are called to scan the CIRCUIT card for the frequency enclosed in the parentheses, if the frequency cannot be found, the appropriate diagnostic is printed.
2. The next card is read and Subroutine SHTFT is called to elmminate blanks and commas. If the card is completely blank or if it starts with the letters PL, the appropriate diagnostic 1s printed and step 2 is performed again. If the card starts with END, control returns to the calling program. If there are more than 50 elements, the appropriate diagnostic is printed. The TYPE and GENER entries for this element are reset to 0 and the CARD and DEP entries are filled with blanks.
3. The following tests are performed on the first 2 characters in the card buffer (Common block A)
a. If the first character is E or J , an active source is assumed. Its GENER entry is set to 1 . If the first character is E, its TYPE entry is set to 1 also to indicate that it is part of the tree.
b. If the first character is R, L, C or D, and if the second letter is E, the TYPE entry is set to 1 . If the first letter is D, the GENER entry is set to 1 (to show this is a dependent source). Unless TREE is 1 (i.e., unless no user tree is supplied) and if the second letter is not E or J (branch or link) a diagnostic is printed and the second letter is set to J.
c. If the first letter is V or I, it is assumed that because the user omitted the END card from the circuit description the first Output Request
was read by mistake. Thus, TAG is set to 1 to show that the first Output Request is already in the buffer. A diagnostic is printed and control returns to the calling program.
d. If the first letter is P, it is assumed that a PLOT card has mistakenly been placed in the circuit description. Therefore, a diagnostic is printed and control passes to step 2 to read a new card.

If none of these tests is true, the first letter is set to R and processing proceeds as if test 2 were true.
4. Subroutine ASCAN is called to find the element name. If it is more than 12 characters long, a diagnostic is printed. In the case of an element whose furst letter is not D, if the first character after the name is not a left parenthesis, a diagnostic is printed and step 2 gains control to read a new card. In the case of an element having D as the first letter, a diagnostic is printed if a slash is not found after the element name. The element name is then entered into the CARD array. A check is performed of this new name against all the previous names in the CARD list (DO 17). If a match is found, a diagnostic is printed and the program attempts to replace the latest name wath another one based on the value of the counter NR. Up to 10 duplications of a name are allowed. If more than 10 have occurred, the ERR flag is set.
5. If this element is not a dependent element (i.e., the first character is not D), step 5 is not performed. Otherwise Subroutine ASCAN is called to extract the Dependency Name. If the character following the Dependency Name is not a left parenthesis, a diagnostic is printed and control passes to step 2 where a new card is read. If the first letter of the Dependency Name is not V or I, a default is assigned and a diagnostic is printed. The Dependency Name is then entered into the DEP array.
6. Subroutine ASCAN is called once to extract the Origin number which is then entered into the ORIGIN array and then again to obtain the Target number which is entered into the TARGET array. In either case, if an
error is detected (FLAG = 1) or if there are more than two digits in the Origin or Target fields, a diagnostic is printed and step 2 gains control to read a new card. If the Origin or Target number is 0 , a diagnostic is printed and the number is changed to 99. If the appropriate characters are not found after the Origin or Target nodes, diagnostics are printed.
7. Having reached this point an element is now entered permanently into the list of elements by merementing NE, the number of elements. NNODES and INODE, the maximum and minimum node numbers, respectively, are set. Subroutine BSCAN and NUMBER are then called to obtain the element value. The characters following the Value field are checked to determine if a Units field is present. If it is not the one (that is, if the next character is blank), then the value in VPATH is not modafied. Otherwse the value is multiplied according to the following units

PF:	10^{-12}	K.	10^{3}	MF	10^{-6}
M	10^{6}	$\mathrm{MH}:$	10^{-3}	$\mathrm{MMF}:$	10^{-12}
MMH.	10^{-6}				

Subroutine UNITS is called to write out the units detected. Then control is transferred to step 2 to read another card.

In general, Subroutine READ is fairly tolerant of mistakes in circuit descrıption data. Diagnostics are printed whenever reasonable and defaults are supplied whenever possible.

After Subroutine READ returns to the Main program, Subroutine FINE is called to build a tree, if the heading card was a CIRCUIT card (TREE = 1). Essentially, the logic of building this tree is to take the user supplied frequency (written on the CIRCUIT card) and to evaluate the impedance of inductive and capacitive elements according to,

$$
X_{c}=\left|\frac{1}{\jmath \omega c}\right| X_{L}=|j \omega L|
$$

All elements are then ordered by their impedance magnitudes and the tree is built from elements having the lowest impedance, since these elements have the closest approximation to the impedance of a voltage source (i.e., 0 ohms). The value 9.9×10^{30} is used to represent ∞ (1. e., the impedance of a current source).

1. The first step in Subroutine FINE is to evaluate the impedance of each element (DO 1) and to store it in the array Z. The elements are then reordered by increasing values of Z. (DO 4). The number of nodes in the curcuit is found, taking into account the possibility that they may not be numbered consecutively (DO 40).
2. All the TAGs are initially reset to 0 (to exclude all elements from the tree). The first element is then entered anto the tree immediately. Then the elements are added to the tree one by-one, each time checking that the added branches do not conform to closed loops (i.e., that it always remains a tree). As soon as all the nodes are connected, the ordered list of elements is printed and control returns to the calling program.

In this fashion, as many low impedance elements as possible are included in the tree according to the operating frequency defined by the user. This tree is more likely to result in a larger computation time and a. greater number of First Order Loops in the Flowgraph when the Transfer Function is calculated. This is offset, however, by increased accuracy in the Transfer Function.

4.2.3 The Transfer Function ${ }^{4}$

Evaluation of the Transfer Function involves calculation of the current equations for the circuit described employing the tree which has been supplied either by the user or derived by the program. From the current equations calculated by Subroutine CALC, Subroutine GRAPH builds the Flowgraph except for the closing transmittance. Each time a Transfer Function Request appears, Subroutine WHAT is called to obtain the closing
transmittance and Subroutine LOOPS is called to evaluate the Transfer Function from the loops in the flowgraph according to the Shannon-Happ formula. Finally, Subroutine ANSWER is called to normalize the Transfer Function and to print it.

The process of evaluating the Transfer Function involves the manipulation of individual bits in a word. The bit manıpulation words are stored in an array of 3000 words in Common block BITS. In addition, these words are handled in blocks of varying size depending on the current value of NTIMES. For instance, if NTIMES is three, the blocks consist of three words each. Furthermore, the various routines involved in calculating the Transfer Function address the array in BITS differently. In order to facilatate the addressing and manipulation of these words, a set of six Bit Manıpulation UtiInties are provided.

1. Subroutine EQUAL (I, J, N, NTIMES) performs operation N (see LOR, LOX, LSTOR) on the blocks of bits 1 dentified by I and J and puts the result into block I. The size of the blocks is given by NTIMES (the number of words per block) while dufferent addressing techniques are used depending on the signs of I, J and NTIMES
a. If NTIMES is positive and I, J are positive, then they refer to the $I^{\text {th }}$ and $J^{\text {th }}$ blocks in the BITS array.
b. If NTIMES is positive and I, J are negative, then they refer to the $I+100^{\text {th }}$ and $J+100^{\text {th }}$ blocks.
c. If NTIMES is negative and I, J are positive, then they refer to the $I^{\text {th }}$ and $J^{\text {th }}$ blocks from the high end of the BITS array.
d. If NTIMES is negative and I, J are negative, then they refer to the $I^{\text {th }}$ and $J^{\text {th }}$ blocks in the BITS array as in case a.
2. Function $\operatorname{LOR}(I, J)$ performs a full-word logical OR on I and J and puts the result in I.
3. Function LOX (I, J) performs a full word logical AND on I and J and subtracts the result from both I and J.
4. Function $\operatorname{LSTOR}(I, J)$ sets I equal to J.
5. Subroutine UNPAK(I, J, NN) takes the block of bits identified by I (according to the same scheme as Subroutine EQUAL) and searches them starting at bit 1 and proceeding as far as bit NN. When the first 1 bit is found, Function LOX is used to reset it to 0 and the position of this bit is returned in J. If no 1 bits are found, J gets the value 0 .
6. Subroutine INBIT(I, J, NTIMES) takes the block of bits identified by I (according to the same scheme as Subroutine EQUAL) and sets the bit in position J to 1 . If J is 0 , all the bits in block I are reset to 0 .

All the Bit Manipulation Utilities use only the low order 30 bits of a word. Thus on the IBNI 360, the settings of the two high order bits are 1gnored throughout the bit manipulations. Subroutine EQUAL uses Functions LOR, LOX and LSTOR to perform certain operations. For further information on Functions LOR and LOX see Sec. 4.4.

Subroutine CALC is called by the Main program after the Circuit Description Data has been successfully analyzed. CALC calculates the current equations using Kirchhoff's equations. At the same tame the valıdity of the tree is checked. If the tree should prove to be invalid, a diagnostic is printed, the ERR flag is set, and control returns to the Main program.

1. Upon entry to Subroutine CALC a page is skipped and NTIMES is set according to the number of elements in the circuit (NE). NTIMES is increased by 1 for every 30 elements, i.e., each bit represents 1 element. The arrays NEL (Number of elements at node I), NBR (number of branches at node I) and the LINKS array (the Bit manipulation array in Common block BITS) are reset to 0 . Then the NEL array is filled with the number of elements at each node, the NBR array is filled with the number of (tree) branches at each node, NB gets the number of branches in the tree, and by means of Subroutine INBIT, the LINKS array is set up as follows
(DO 1) Each block in the LINKS array represents a node. Each bit in the block represents an element not in the tree (1. e., a link). Blocks in the lower half of the array represent links leaving the node corresponding to that block. Blocks in the upper half of the LINKS array represent links arriving at the node corresponding to that block. Thus, each node has two entries in the LINKS array, one entry in the lower half of the array containing lanks darected away from the node, and one entry in the upper half of the array containing links directed towards the node. For example, If node 2 of a circuat has elements 1 and 2 directed away, element 1 being a voltage source (i.e., part of the tree), and element 3 directed towards, then block 2 of the LINKS array has bit 2 set while block $(2+100=102)$ has bit 3 set.
2. The next step is to set up the NS and NQ pointers for the BRANCH list while checking the valldity of the tree (DO 2). The BRANCH list ${ }^{5}$ contains the branches connected to each node, positive if the branch is directed towards, negative if the branch is directed away. NQ(I) points to the beginning of the list of branches for node I. For example, if node 1 has three branches and node 2 has two branches, then $N Q(1)=1$, $N Q(2)=4, N Q(3)=6$. The number of nodes, $N N$, is also counted at this time. If any node has no elements connected to $1 t$, the node numbering was not sequential so a warning is printed. If any node has only one element connected to it, the ERR flag is set.
3. The number of branches, NB, is checked against NN, the number of nodes. For a legal tree NB must be exactly equal to NN-1. If this is not true, an appropriate diagnostic is printed and the ERR flag is set. At this point, a test of the ERR flag is performed, if it has been set, control returns to the calling program. Otherwise, the BRANCH list is filled (DO 7) as described in step 2, using NS as a set of temporary pointers.
4. This step performs the actual solution of the current equations which are now contained in the BRANCH and LINKS arrays. Each node

In the circuit has associated with it a current equation. The object is to express the current in each branch in terms of the current in the circuat links. Since there is one less branch than the number of nodes, there is an independent equation for each node except one. Thus, the equations of nodes wath more than one branch are gradually reduced until each equation has only one branch. The solution is then complete.

The first step is to find a node with one branch (i.e., the first cut set) and the first node with more than one branch.

If none can be found, all the equations that could be reduced have already been reduced. If this is not every equation, the ERR flag is set, a diagnostic listing the nodes remaining to be reduced is printed, and control returns to the calling program. Otherwise, the remaining multibranch nodes are checked against the single branch node just found and Subroutine EQUAL is called' to either add or subtract the relevant equations (DO 26). The branch is removed from the list of branches at the multibranch node and when all reductions have been performed, the single node associated with this branch is reset (i.e., NBR is reset to 0) to show that all possible reductions with this branch have been performed. Step 4 is repeated until every equation has been reduced (NBR(I) are all less than or equal to 1).
5. The current equations are printed by searching the BRANCH list for non-empty entries (1.e., where $N Q(I) \neq N Q(I+1)$). When one is found, the branch is printed out along with the words from the LINKS array which constitute the current equation. For instance, the equation:

$$
I_{3}=I_{1}-I_{4}
$$

would be printed as

$$
\begin{array}{lll}
3 & 2 & 16
\end{array}
$$

This list is essentially for debugging purposes. After the current equations are printed, control is returned to the calling program.

The next step in Transfer Function evaluation is the construction of the Flowgraph. This is performed by Subroutine GRAPH which stores the Flowgraph is Common Block PATHS.
a. On receiving control, Subroutine GRAPH initially resets NPATH, the number of paths (or transmittances) in the flowgraph, to 0.
b. A Flowgraph transmittance is inserted for each element which Is not an independent source (DO 100). If the element is passive, then the transmittance represents an mpedance (if the element is a branch) or an admittance (if the element is a link). NPATH is incremented, the S entry is reset and LPATH is assigned. LPATH(I, 1) is the origin node of transmittance I, LPATH(I, 2) is its target node. Nodes with a number less than or equal to $N E$ are the current nodes, nodes between $N E+1$ and $2 \times N E$ are voltages nodes. Thus if element 3 is an mpedance, in a 10 element circuat its transmittance goes from node 3 to node 13 (i.e., the voltage node depends on the current node since $V=I R$) and there are 20 nodes in the Flowgraph. Admittances go from voltage to current nodes. A series of tests is performed on the element.
a. If it is a resistor branch, its VPATH value is unchanged, and its S value is 0 (Since it is not frequency dependent).
b. If the element is a resistor link, its admittance is $\frac{1}{\text { VPATH }}$.
c. If it is an inductor branch or capacitor link, its S value is 1 and its VPATH value is unchanged since $X_{c}=s L$ and $Y c=s C$.
d. If it is an inductor link or capacitor branch, its S value is -1 and its VPATH value is inverted since $Y_{L}=\frac{1}{S L}$ and $X_{c}=\frac{1}{S C}$.
3. If the element is a dependent source, a search of the list of element names in CARD is performed (DO 17) to find the name of the controlling element in DEP. If the element is not found, a diagnostic is printed and the element is treated as an independent source. Otherwise a transmittance is inserted from the voltage or current node of the controlling element (according to whether voltage or current dependence has been requested) to the voltage or current node of the dependent source (according to whether it is a voltage or current source).
4. Having completed the transmittances due to the elements, step 4 (DO 1) inserts the transmittances due to current and voltage equations. Although only the current relationships have been calculated, the voltage relationships may be easily obtaned from them by a simple rule If there is a current transmittance between two current nodes there is a corresponding voltage transmittance between the two corresponding voltage nodes. The direction of the voltage transmittance is opposite to that of the current transmittance. If it connects the nodes of two passive elements or two sources, its sign is opposite to that of the current transmittance.

, Figure 43
For example, given the current relationships of Flowgraph (Figure 4.3) the voltage relationships may be easily determined as shown in (b). These Filowgraphs represent the current equations

$$
I_{1}=I_{2} \quad I_{3}=-I_{2}
$$

This method is implemented by searching the BRANCH list for non-empty entries. For each non-empty entry, which represents a branch, Subroutine UNPAK is used to search the corresponding LINKS (alias LBITS) entries for 1 bits. The lower half is searched first for positive lınks, and when UNPAK returns 0 indicating there are no more 1 bits in the word, the search is switched to the upper half of LINKS which contains negative links.

The transmittances are inserted two at a time (1. e., both current and voltage transmittances are added simultaneously). The S value of these relationships is 0 since they are obviously not frequency dependent. The VPATH values are either +1 or -1 determined as described earlier.
5. Having completed the Flowgraph (except for the unknown trans mittance) control returns to the calling program.

The Flowgraph resides in Common block PATHS untrl a Transfer Function Request is read. Subroutine WHAT is called by the Main program to obtain the closing (unknown) transmittance by analyzing the Transfer Function Request which is in the form

TYPE NAME 1 / TYPE NAME 2
Subroutine WHAT makes use of the Card Scanning Utilities described in Sec. 4.2.2.

1. Upon receiving control, Subroutine WHAT copies the Flowgraph from its permanent storage in Common block PATHS into an array in Common block BITS (DO 18). Subroutine ASCAN is then called to find the slash which divides the Output field from the Input field. If none is found, the ERR flag is set, a diagnostic is printed and control returns to the calling program. Otherwise the CARD array is searched (DO 2) for the name in the Output field of the Transfer Function Request. If it is not found, a diagnostic is printed, the ERR flag is set, and control returns to the calling program.
2. If the first letter in the Output field (TYPE NAME 1) is not V or I, a diagnostic $1 s$ printed and defaults are assumed if the element is a branch the default is I (since a branch has independent current), for a link, V is assumed. The unknown transmittance is connected from the voltage or current node (according to the V or I) of the element in the Output field.
3. In a procedure similar to steps 1 and 2, Subroutine ASCAN is called to find the blank at the end of the Input field. If the blank cannot be
found, the error return is taken. Otherwise a search is made for the element name (DO 10), defaults are used for V or I, if necessary, and the transmittance $2 s$ connected to the voltage or current node of the element in TYPE NAME 2. Subroutine WHAT then returns control to the calling program.

Subroutine WHAT makes no check on the validity of the Transfer Function Request. Only syntax and the legality of the element names are checked. For example,

VR2/VV7 could be a valid request but
VR2/IV7 is not, because the voltage across V7 is an independent varıable but the current is not. The Transfer Function resulting from the second example will be 0 or meaningless.

After Subroutine WHAT has returned control and the Main program has inserted the Flowgraph in bit representation in Common block BITS using Subroutine INBIT (DO 18), Subroutine LOOPS ${ }^{6}$ gains control to perform the actual calculation of the Transfer Function from the flowgraph according to the Shannon-Happ formula-

$$
1-\Sigma \mathrm{L}_{1}+\Sigma \mathrm{L}_{2}-\Sigma \mathrm{L}_{3}+\cdots=0
$$

where the L_{1} represent the sums of the values of the loops of order i. A loop of order 1 (First Order Loop) is a Simple Directed Loop defined as a closed path consisting of a sequence of transmittances taken in the direction of the arrow. The sequence must be taken such that no node is traversed more than once in the closed path. The value of the directed loop is the product of the transmittances forming the directed loop. An $N^{t h}$ order loop is composed of N disjount First Order Loops, that is, none of which have any nodes in common. The value of an $N^{\text {th }}$ order loop is the product of the N First-Order Loop values comprising the $\mathrm{N}^{\text {th }}$ order loop.

In order to illustrate the operation of Subroutine LOOPS the example Flowgraph shown in Figure 4.4 is employed.

Figure 44
Note that the transmittances joining nodes 1 and 2, and nodes 6 and 7 have the same sign. This flowgraph is represented in the LPATH, VPATH and S arrays of Common block BITS, as shown

I	LPATH(I, 1)	LPATH (I, 2)	VPATH(I)	$\mathrm{S}(\mathrm{I})$
1	2	7	10	0
2	8	3	0.1	0
3	7	9	10	0
4	5	10	10	1
5	1	2	1	0
6	7	6	1	0
7	3	2	1	0
8	7	8	-1	0
9	3	4	1	0
10	9	5	1	0
11	1	6	1	0
12	10		1	
13	6			1

In addition, the information stored in the LPATH array is also stored in Common block BITS (array LOOP) in a different form.

I

3000
2999
2998
2997
2996
2995
2994
2993
2992
2991
2990
2989
2988

LOOP(I)

$$
2^{2}+2^{7}=132
$$

$$
2^{8}+2^{3}=264
$$

$$
2^{7}+2^{9}=640
$$

transmittance and each loop is contained in only 1 word.)

$$
2^{5}+2^{10}=1056
$$

$$
2^{1}+2^{2}=6
$$

$$
2^{7}+2^{6}=192
$$

$$
2^{3}+2^{2}=12
$$

$$
2^{7}+2^{8}=384
$$

$$
2^{3}+2^{4}=24
$$

$$
2^{9}+2^{8}=768
$$

$$
2^{1}+2^{5}=34
$$

$$
2^{10}+2^{6}=1088
$$

$$
2^{6}+2^{1}=66
$$

Subroutine LOOPS receives these data as input and using the Shannon-Happ formula, the Transfer Function is calculated and stored in the VN array in Common block CIRCIT. VN(I, 1) is the value of the coefficient of the ($I-5 I^{\text {th }}$) power of S in the denommator. VN(I, 2) is the negative of the value of the coefficient of the ($I-51^{\text {th }}$) power of S in the numerator. $\operatorname{SMAX}(J)$ and $\operatorname{SMIN}(J)$ are the highest and lowest powers of S in VN(I, J). For example, a Transfer Function such as $\frac{1}{1+2 S}$ would be stored as

$$
\begin{array}{llll}
\operatorname{SMAX}(1)=1 & \operatorname{SMIN}(1)=\operatorname{DO} & \operatorname{VN}(51,1)=1 & \operatorname{VN}(52,1)=2 \\
\operatorname{SMAX}(2)=0 & \operatorname{SMIN}(2)=0 & \operatorname{VN}(51,2)=-1 &
\end{array}
$$

The LOOP array is used in two ways: the low end is used to store First Order Loops and Higher Order Loops during evaluation; the high end is used to store the Flowgraph Transmittances. ${ }^{5}$ Thus, as data are
removed from the high end and transformed, it is reinserted into the low end. Other important variables used in Subroutine LOOPS are the arrays V and LS which contain the values and powers of S of flowgraph loops. These arrays are in Common block SPEED which is used elsewhere as workspace. Subroutine CLEAR is used to remove transmittances which have been marked deleted (1. e. , LPATH (I, 1) = 0) from the list of paths.

1. The first step in Subroutme LOOPS performs intialization by resetting important program variables to 0 . NN, the number of flowgraph nodes is set to $2 \times \mathrm{NE}$ (the number of elements) since each element has 2 nodes (voltage and current) in the flowgraph. NLOOP, the number of loops is reset to 0 . $\operatorname{VN}(51,1)$ is set to 1 ; this 1 s one 1 of the Shannon-Happ formula. The NODE(J) and COUNT(J) arrays (which contain the number of transmittances arriving at and leaving node J) are set up (DO 1).
2. The first step in the algorithm is the elimination of all nodes having only one transmittance directed away (1.e., COUNT = 1) since every transmittance entering this node must ultimately exit through the one leaving transmittance. This transmittance is attached to the end of each entering transmittance (DO 3) by changing the terminating node (LPATH(I, 2)) and calling Subroutine EQUAL to ${ }^{\prime}$ OR' in the bits common to both paths. The leaving transmittance is then deleted (LPATH(I, 1) $=0$). At this pount the data for the example flowgraph would appear as follows

LPATH(I, 1)	LPATH(I, 2)	VPATH(I)	$\mathrm{S}(\mathrm{I})$	LOOP(3001-I)
0	7	10	0	$2^{2}+2^{7}$
0	3	0.1	0	$2^{3}+2^{8}$
7	3	1	0	$2^{3}+2^{7}+2^{8}+2^{9}$
0	10	10	1	$2^{5}+2^{10}$
1	7	10	0	$2^{1}+2^{2}+2^{7}$
7	1	1	1000	$2^{1}+2^{6}+2^{7}$
3	7	10	0	$2^{2}+2^{3}+2^{7}$
7	3	-0.1	0	$2^{3}+2^{7}+2^{8}$

I	$\mathrm{LPATH}(\mathrm{I}, 1)$	$\mathrm{LPATH}(\mathrm{I}, 2)$	$\mathrm{VPATH}(\mathrm{I})$	$\mathrm{S}(\mathrm{I})$	$\mathrm{LOOP}(3000-\mathrm{I})$
9	3	4	1	0	$2^{3}+2^{4}$
10	0	3	0.1	0	$2^{3}+2^{8}+2^{9}$
11	1	1	10	1001	$2^{1}+2^{5}+2^{6}+2^{10}$
12	0	6	1	0	$2^{6}+2^{10}$
13	0	1	1	1000	$2^{1}+2^{6}$
		NPATH $=13$		$N L O O P=0$.	

3. A check is now performed (DO 6) for First Order Loops that may have been created. These are recognized by having identical LPATH entries (1..e., $\operatorname{LPATH}(\mathrm{I}, 1)=\operatorname{LPATH}(\mathrm{I}, 2)$, e. g., entry 11 above). Each time one 1 s found, it is stored in the lower half of the LOOP array by means of Subroutine EQUAL and its value is stored in V and LS. NLOOP is incremented. The LPATH entry is marked deleted and the loop is printed, (as a debugging aid). The DO 11 then marks all nodes which have only leaving or only arriving transmittances as deleted since they obviously cannot be contained in any loops. (Entry 9 in the example). Subroutine CLEAR is called to remove deleted entries. Now the data looks like this:

I	LPATH($\mathrm{I}, 1)$	LPATH(I, 2)	VPATH(I)	S(I)	LOOP(3001-I)
1	7	3	1	0	$2^{3}+2^{7}+2^{8}+2^{9}$
2	1	7	10	0	$2^{1}+2^{2}+2^{7}$
3	7	1	1	1000	$2^{1}+2^{6}+2^{7}$
4	3	7	10	0	$2^{2}+2^{3}+2^{7}$
5	7	3	-0.1	0	$2^{3}+2^{7}+2^{8}$
I	LOOP(1)	V (I)	LS(I)		
1	$2^{1}+2^{5}+2^{6}+2^{10}$	10	1001		
	$\mathrm{NPATH}=5$	NLOOP $=1$			

4. If the number of paths remaining (NPATH) is 0 , this step is not performed. Otherwise this step combines the remaining paths to generate more First Order Loops. The method is to combine path 1 with path 2 if possible. If this combination is a legal loop, it is stored in the low end of

LOOP. If it is a legal path, it is combined with path 3 and testing continues. If at is not a legal path, the combination 1 and 3 is tested. After the combination of 1 and NPATH has been tested, the procedure begins again with 2 and 3, 2 and 4 and so on until NPATH-1 and NPATH is reached. During this process all paths are kept in LPATH and the high end of LOOP ORDER(1) is the number of the current transmittance which is being tested against ORDER(2). The ORDER(I) contains the numbers of all the paths from 1 to I being tested. The testing consists of the following:
a. The beginning node of the first path is checked against the ending node of the second. If they are not the same, they cannot be combined (e.g., entries 1 and 3 in the example), so the test falls.
b. The two blocks in LOOP are ANDed and Subroutine UNPAK is called to find the nodes that are common to both.
c. If the ending node of the first path is not the same as the beginning node of the second, this cannot be a loop but it might be a new legal path so test is performed.
d. If N3 is non-zero, there are more than two nodes in common so this cannot be a legal combination - the test fails.
e. If the nodes in common (N1, N2) are the beginning and ending nodes of the two paths, this 1s a new First Order Loop. It is inserted by incrementing NLOOP and calling Subroutine EQUAL.
f. If more than one node is in common ($\mathrm{N} 2, \mathrm{~N} 3 \neq 0$), this cannot be a new legal path so the test falls. Otherwase Subroutine EQUAL is called to insert the new path and I is incremented so that testing will continue wath this latest path.
This step ends when ORDER(1), the pointer to the lowest level path, is pointing to NPATH, the last path.

In the example the following results are obtained from applying thése tests.
, a. 1 and 2 from a new legal path. This cannot be combined with ' 3 because node 7 is traversed twice. 1 and 4 however produce a new First Order Loop.
b. 2 and 3 form a new First Order Loop.
c. 3 and 4 form a new path. This new path cannot be combined wath 5 because node 7 is traversed twhee.
d. 4 and 5 form a new First Order Loop.

Now the data has been changed to First Order Loops.

I	$\operatorname{LOOP}(\mathrm{I})$	$\mathrm{V}(\mathrm{I})$	$\operatorname{LSS}(\mathrm{I})$	NLOOP $=4$
1	$2^{1}+2^{5}+2^{6}+2^{10}$	10	1001	
2	$2^{2}+2^{3}+2^{7}+2^{8}+2^{9}$	10	0	
3	$2^{1}+2^{2}+2^{6}+2^{7}$	10	1000	
4	$2^{2}+2^{3}+2^{7}+2^{8}$	-1	0	

These First Order Loops may be easuly verıfied by examining the Flowgraph. Notice that the order of the nodes in the loops is irrelevant for the purposes of the program.
5. The values of the First Order Loops are now entered (DO 25) into the Transfer Function array VN according to the Shannon-Happ formula. Tagged values (LS >500) have the tag of 1000 subtracted and are then entered into the numerator $\operatorname{VN}(I, 2)$ instead of the denominator $\operatorname{VN}(I, 1)$. The number of First Order Loops is then printed and the calculation of Higher Order Loops is ready to begin.
6. The procedure for the generation of Higher Order Loops is essentially the same as that for generating First Order Loops described in step 4; that 1s, loop 1 is compared with loop 2. If this creates a new Higher Order Loop, then the value of the new loop is entered into the VN array and it is checked against loop 3 for the possibility of a still higher order loop. When all combinations with loops 1 and 2 have been tried, combinations of 1 and 3 are tried, then 1 and 4 and so on until 1 and NLOOP. Processing then continues with 2 and 3, 2 and 4 and so on. As before, ORDER(1) points to the lowest level loop so that each time it is incremented it is written out, thus serving as a guide to how much
processing remains to be done. (Since this step is often the most time consuming part of the entire NASAP program, this information is very useful). As soon as ORDER(1) is equal to NLOOP, processing is complete and control returns to the calling program with the Transfer Function now in array VN. In the example, Higher Order Loop evaluation would proceed as follows
a. 1 and 2 form a Second Order Loop, its value is entered ($100 \mathrm{~S}^{1001}$) and it is checked against 3 (farlure, i. e., M1 $\neq 0$ because nodes 1, 2, 6, 7 are common to both) and 4 (fallure).

Then 1 is checked against 3 (farlure) and 4 (success, value $-10 \mathrm{~s}^{1001}$).
b. 2 and 3 fails, 2 and 4 fails.
c. 3 and 4 fails.

In several places, instead of manipulating entries in LOOP by means of Subroutine EQUAL, the manipulations are performed durectly in Subroutine LOOPS by means of the Equivalence array LOGIC (See Sec. 4.4). This is because in frequently executed statements the time required for execution of the subroutine linkage becomes significant. This is especially true in the ANDing of Higher Order Loops which can increase rapidly with the number of First Order Loops.

With the Transfer Function now in array VN, Subroutine ANSWER is called to format the raw form in VN, normalize it and print it out.

1. Upon entry Subroutine ANSWER writes the page heading on the output. Then VM, the array containing the Function after normalization, is created (DO 2).
2. The arrays NEXP (containing powers of S), AS and ASIGN (containing arithmetic signs) are created (DO 40).
3. The arrays are written out (except for zero coefficients) and the line dividing numerator and denominator is printed to the proper length.
4. Finally the factor after normalization is printed. (Also, as a debugging aid, the original VN array is printed). Control then returns to the calling program. This completes the description of the basic NASAP-70 Transfer Function algorithm. The routines described may be modified by the addition of other options (particularly the Sensitivity and Worst Case option). Nevertheless the basic algorithm remains the same.

4.2.4 Sensitivity and Worst Case

The Sensitivity and Worst Case option involves additions to the basic algorithm for finding the Transfer Function. The basic formulas used for evaluation of the Sensitivity Function, Worst Case Tolerance and Pole Sensitivity are•

FORMULAS USED ${ }^{7}$
SENSITIVITY FUNCTION

$$
\begin{aligned}
S_{Q}^{P} & =\frac{d(\operatorname{Ln} P)}{d(\operatorname{Ln} Q)}=\frac{H\left(P^{\prime}, \bar{Q}\right)}{H\left(P^{\prime}\right)}-\frac{H(\bar{P}, \bar{Q})}{H(\bar{P})} \\
& =\frac{H(\bar{P}) H\left(P^{\prime}, \bar{Q}\right)-\left(H\left(P^{\prime}\right) H(\bar{P}, \bar{Q})\right.}{H\left(P^{\prime}\right) H(\bar{P})}
\end{aligned}
$$

WORST CASE TOLERANCE
$T_{P}=\left[\left(\frac{\partial P}{\partial Q_{1}} Q_{1}\right)_{\text {or }}^{2}+\cdots+\left(\frac{\partial P}{\partial Q_{n}} Q_{n}\right)\right]^{1 / 2} \quad Q=$ circuit element value
$T P / P=\left[\sum_{1=1}^{n}\left(S_{Q_{1}} \frac{\mathrm{dQ}_{1}}{\mathrm{Q}_{1}}\right)^{2}\right]^{1 / 2}$ $P=$ dummy transmittance

$$
\begin{aligned}
& \frac{d S_{i}}{d Q} Q=\left.\frac{-K D(S)}{\frac{\partial}{\partial S}[C(S)+K D(S)]}\right|_{S=S_{i}} \\
& \text { where Transfer } F_{n}=\text { or } \\
& \frac{A(S)+K B(S)}{C(S)+K D(S)}, K=\text { circuit element value, and } \\
& S_{1}=\text { a pole } \\
& =\left.\frac{-Q H\left(\bar{P}, Q^{\prime}\right)}{\frac{\partial}{\partial S}[H(P)]}\right|_{S=S_{i}}
\end{aligned}
$$

In response to reading a card following the Circuit Description and before the first Output Requests section, beginning with the letters SENS, Subroutine SENSIT is called. If the card begins with WORS Subroutine WORST 1s called. Subroutine SENSIT and WORST make use of the Card Scanning Utilities described in Sec. 1.2.2.

Subroutine SENSIT processes Sensitivity Request cards which have the form:

SENS[ITIVITY] $=$ Element Name

1. Upon entry Subroutine SENSIT calls Subroutine ASCAN to find the equals sign. If one is not found, a diagnostic is printed and step 5 gains control to read a new card.
2. A search of the CARD array is performed (DO 4) in order to find the Element Name. If it is not found, a diagnostic is printed and step 5 gains control.
3. Otherwise the element is rejected with a diagnostic if it is an independent source, if more than 20 Sensitivity Requests have been made, or If it is another Sensitivity Request for the same element, and step 5 gains control.
4. Having passed all these tests the element is unserted in the list of Sensitivity Requests by incrementing NSEN, the number of Sensitivity

Requests and by assigning a TAG value to the SENS entry for this element. NSEN, SENS and TAG are in Common block GAG. SENS(I) contains the value of the sensitivity tag assigned to element I from the list of 20 tags, TAG. These tag values are used later to identify various loops during the evaluation of Higher Order Loops in Subroutine LOOPS, and Subroutine REDUCE.
5. A new cardis read and Subroutine SHIFT is called. If it is not a Sensituvity Request card control returns to the calling program. Otherwise the card is printed and step 1 regains control to contınue processing.

If Subroutine WORST is called, Sensitivity Requests are inserted for each valld request. Thus, if more than 20 Sensitivity Requests results NFLAG is set and the Worst Case Request is ignored.

1. Initially Sensitivity Requests are inserted for all valid elements (1.e., not independent sources) in the DO 1. This is done by inserting a TAG value in SENS(I) for element I.
2. If the number of Sensativaty Requests resulting is greater than 20, NFLAG, an error flag internal to Subroutine WORST, is set and a dragnostic is printed. Otherwise, NWORST, the flag which indicates the Worst Case option has been requested, is set, and the TOL(I) array which contains the Tolerance value for element I is intialized to 0.1 .
3. This step looks for cards of the form

$$
\text { TOL }=\text { Element Name }=\text { Value }
$$

A new card is read and Subroutine SHIFT is called. If the card begins wath TOL and NFLAG $\neq 1$ (which would indicate that Worst Case analysis has been aborted) then Subroutine ASCAN is called to find the element name which is checked against the list in CARD. If there is no matching element name a diagnostic is printed and step 3 is repeated. Otherwise Subroutine ASCAN and NUMBER are called to determine the Tolerance Value which is inserted in TOL(I) for element I. Then step 3 is repeated.

If NFLAG is 1, the Tolerance Cards are read in step 3 but no other action is taken.
4. If step 3 encounters a card not beginning with TOL and NFLAG is not 1, the table of Tolerance Values is printed. Control then returns to the calling program.

Once the Sensitivity Tags have been inserted in the SENS list then, as the Flowgraph is built by Subroutine GRAPH, the tags are inserted in the S array for each Flowgraph transmittance. Then, in order to write out the correct power of S for each Flowgraph transmittance, these tags must be temporarily removed. This is done by calling Subroutine REDUCE for each transmittance before it is printed by the Main program.

Subroutine REDUCE (I, J, K) removes the tags from the S or LS array. I is the entry in the S or LS array. J is the true power of S returned by Subroutine REDUCE after all the tags have been removed. K is set to 1 if the entry does not contain the dummy transmittance and to 2 if it does.

1. Upon entering Subroutine REDUCE, K is set to 1 and J is set to I. If no Sensitivity Requests were made (NSEN = 0) and step 3 gains control. 2. If Sensitivaty Requests were made, these tags are removed in the DO 1 loop. Since the Sensativity Tags start from 2000 and go up, and since it is necessary to remove the largest tags first, the DO 1 loop is executed from $L=21-$ NSEN to 20 and $21-\mathrm{L}$ is used as the index of the TAG array. For example, if two elements are tagged $M=21-2=19$ then L goes from 19 to 20 , i. e., $21-\mathrm{L}$ goes from 2 ro 1 . An entry contains a tag if the value (with all higher tags removed) is greater than the tag less 500. If it is greater, the tag is subtracted and the search continues.
2. J is checked for the presence of the unknown transmittance tag (1000). Thus if J is greater than 500,1000 is subtracted from J and K 1s set to 2.

Processing continues as normal until the steps in Subroutine LOOPS which insert values of First and Higher Order Loops into various arrays. The method of inserting values into VN, the Transfer Function array, has already been described (Sec. 4.2.3). The Sensitivity Functions now involve three additional arrays. VNOO, VNO1 and VN10 which represent $-H(\overline{\mathrm{P}}, \overline{\mathrm{Q}})$, $H(P, \bar{Q})$ and $-H(\bar{P}, Q)$ in the formulas described previously in this section. The insertion of these values is performed by DO 979 and DO 799 in Subroutine LOOPS. Subroutine REDUCE is called to extract the pertinent tags and the values are inserted in the correct Sensitivity Function arrays based on these tag values. Thus, when Subroutine LOOPS returns control, not only has the Transfer Function been inserted in VN, but also the Sensitivaty Functions have been entered into VNOO, VNOI andVN10.

After Subroutne LOOPS has returned and Subroutine ANSWER has printed out the Transfer Function, if NSEN is non-zero (indicating the presence of Sensitivity Functions) then Subroutine SENSC is called.

Subroutine SENSC forms the Sensitivity Functions from polynomials produced by Subroutine LOOPS. The Sensitivity Function is equal to

$$
\frac{H(\overline{\mathrm{P}}) H(\mathrm{P}, \overline{\mathrm{Q}})-\mathrm{H}(\mathrm{P}) \mathrm{H}(\overline{\mathrm{P}}, \overline{\mathrm{Q}})}{\mathrm{H}(\mathrm{P}) \mathrm{H}(\overline{\mathrm{P}})}
$$

where the H functions are stored as follows

$$
\begin{array}{llll}
H(\widetilde{P}) \cdot \operatorname{VN}(I, 1) & H(P, \bar{Q}): \operatorname{VNO}(I, J) \\
H(P): \operatorname{VN}(I, 2) & -H(\bar{P}, \bar{Q}) & \operatorname{VNOO}(I, J)
\end{array}
$$

J is the element whose sensitivity is being found.
In many cases, $H(P, \bar{Q})$ (VN01) is 0 in which case the Sensitivity Function reduces to

$$
\frac{-H(\overline{\mathrm{P}}, \overline{\mathrm{Q}})}{\mathrm{H}(\overline{\mathrm{P}})}
$$

1. Upon entry to Subroutine SENSC, the DO 305 loop is executed for each circuit element checking to see if it was tagged for sensitivity
(SENS $(I) \neq 0)$. If it was tagged the following steps are performed, otherwise the succeeding element is checked. When all the elements have been checked control returns to the calling program.
2. The DO 306 loop determines the sensitivity number of the element (II). Then the DO 701 loop checks the VNO1 array. If it is completely 0 , the simplified formula above may be used so VNSEN, the array containing the Sensitivity Function is filled with the appropriate coefficients (DO 703) and Subroutine ANSWER is called to print out VNSEN.
3. If VN01 is not completely 0, then the standard formula must be used to compute VNSEN. Thus Subroutine MULT is called once to multiply $\mathrm{VN}(\mathrm{I}, 1)$ and VNO1(I, II) and again to multiply VN(I, 2) and VNOO(I, II) and the results are added, (DO 702) to form the Sensitivity Function numerator. Then Subroutine MULT 1s called again to multiply VN(I, 1) and VN(I, 2) to form the denominator and then Subroutine ANSWER is called to print VNSEN.

Thus, upon termination of Subroutine SENSC, the information in VN, VN00, VN01 and VN10 has been converted to a set of Sensitivity Functions stored in VNSEN and VNOO, VN01 and VN10 are no longer needed. Subroutine SENSC (and also Subroutine WORSTC below) make use of Subroutine MULT(A, B, C, MINA, MAXA, MINB, MAXB). This Subroutine multiplies the two polynomials A, B and puts the result in C. MINA, MAXA and MINB, MAXB are the minimum and maximum powers in polynomials A and B. A, B, C are arrays of length 101 and the index is 51 plus the power of the term. Array C is reset to 0 before multiplication occurs.

After Subroutine SENSC returns control to the Main program, the information in VNSEN is copied from Common block BITS into Common block POLY. This is to release the area in BITS for use as a workspace for use in later routines (e.g., the Plotter). If NWORST is non-zero, a Worst Case has been requested so the Main program calls Subroutine WORSTC.

Subroutine WORSTC computes the square of the Worst Case Tolerance function from the Sensitivity Functions and Tolerances for the elements. This function becomes

$$
T_{P / P}=\left[\sum_{i=1}^{n}\left(S_{Q_{1}} \frac{d_{1}}{Q_{1}}\right)^{2}\right]^{1 / 2}
$$

The Sensitivity Function for an element can be in one of two forms,

$$
S_{Q_{1}}^{P}=\frac{A_{i}(s)}{H(\bar{P})} \quad \text { or } \quad S_{Q_{1}}^{P}=\frac{B_{1}(s)}{H(P) H(\bar{P})}
$$

whére $A(s)$ and $B(s)$ are polynomials in S. Therefore two separate sums are kept, one of $\left(A_{1}(s) \frac{d Q_{1}}{Q_{1}}\right)^{2}$ and one of $\left(B_{1}(s) \frac{d Q_{i}}{Q_{i}}\right)^{2}$ and these are combined and put with the proper denominator to produce the square of the function.

1. Upon entry Subroutine WORSTC checks each element to see if a Sensitivity Function exists for that element (DO 10). If a Sensitivity Function exists (SENS (I) $\neq 0$, then the Tolerance for that element (TOL) is squared and Subroutine MULT is called to square the Sensitivity Function numerator of that element (VNSEN(I, 2, J).
2. The denominator of the Sensitivaty Function is now checked (DO 20) to see if it is the same as the Transfer Function denominator. If it is, the squared tolerance (TOL1) and the squared Sensitivity Function numerator (VWORKN) need only be multiplied and added to VW1. If it is not, NDEM is set to 1 and the result of the product is put in VW2.
3. If NDEM is 0, the sumplified formula.

$$
\frac{\mathrm{VW} 1}{\mathrm{VN}(\mathrm{I}, 1)^{2}}
$$

may be used, so VWI is put into the numerator of VW(DO 40) and Subroutne $\mathbb{M} U L T$ is called to square $V N(I, 1)$ and enter it in the denominator,

VW(I, 1). If NDEM is non-zero, the standard formula

$$
\frac{\mathrm{VW} 2+\mathrm{VW} 1 \times \mathrm{VN}(\mathrm{I}, 2)^{2}}{\mathrm{VN}(\mathrm{I}, 2)^{2} \times \mathrm{VN}(\mathrm{I}, 1)^{2}}
$$

must be used. Thus Subroutine MULT is called once to square VN(I, 2) into VWORKN and again to multiply VWORKN and VW1 into the numerator of the Worst Case Function VW(I, 2). Then VW2 is added into the numerator (DO 31). Finally Subroutine MULT is called to multiply VN(I, 1) and VN(I, 2) into VWOKRN and again to square VWORKN into VW(I, 1), the Worst Case Function denominator.
4. The maximum and minmum powers of S in the Worst Case Functions are determined and control then returns to the calling program.

When Subroutine WORSTC returns control, the Main program calls Subroutine ANSWER to print out the Worst Case Function.

The last subprogram of the Sensitivity and Worst Case option is Subroutine POLSEN. This subroutine evaluates the sensitivities of the Poles of the Transfer Function (determined by Subroutine ROOTS described in Sec. 4.2.6) to variations in a circuit parameter. Subroutine POLSEN is called by the Main program when a card of the form

ROOTS, POLES

is read. Subroutine POLSEN then analyzes the roots found by the preceding call to Subroutine ROOTS.

1. If the Poles have not yet been found (NPOLES=0) or there is no Sensitivaty Request (NSEN=0), Subroutine POLSEN prints a diagnostic and returns to the calling program.
2. The derivative of the denominator of the Transfer Function is found (DO 5) and stored in VDERIV. This is evaluated at the Real and Imaginary parts of the Poles and is stored in C (Real) and D(Imaginary).
3. For each element, tagged for Sensativity Analysis, the numerator of the Root Sensitivity Function, $-Q H(\bar{P}, Q)$ (VN10) is evaluated at each Pole and then Real and Imaginary points are stored in X and Y. The Real and Imagınary parts of the Pole Sensitivity $X / C(L)$ and $Y / D(L)$ are evaluated and printed.
4. Subroutine Polsen then returns control to the calling program.

Two other routines, Subroutines PLOT and INVERT, of the Plotter also contain some code in connection with the Sensitivity and Worst Case option. These subprograms are described in the following Section 4.2.5.

4.2.5 The Plotter

NASAP-70 is equipped with extensive plotting capabilities for analysis of the Transfer Function and Sensitivity Functions. When a card beginning PLOT is encountered among the Output Requests, the Main program calls Subroutine PLOT to analyze this card and providing that the analysis of this card was successful (ERR $\neq 0$), Subroutine INVERT is called to initiate the plotting. If the plot card TYPE option is FREQ or REAL, ${ }^{9}$ the calculation of the points to be plotted is handled entirely within Subroutine INVERT. Any other TYPE option constitutes a call to the Fast Fourier Transform routines. After the points have been calculated, Subroutine PRTPLT writes out the plotted points. (BMOD and AMOD below are fixed and floating point names for the internal plotter option list).

1. Subroutine PLOT intially sets the BMOD list (the internal list of options) to -1 which indıcates that the option did not appear on the PLOT card. Subroutine ASCAN is called to find the Left Parenthesis of the PLOT card which should be of the form.

$$
\text { PLOT(Option = Value } / \text { Option = Value } / \text { Option }=\text { Value } . . \text {) }
$$

If a Left Parenthesis is not found Subroutine MSG is called to print a diagnostic. Subroutine ASCAN is called repeatedly until a Left Parenthesis or a Slash is found. If a Blank is found step 6 gains control to fill in
options which are required by the Plotter but were not specified by the user.
2. Subroutine ASCAN is called to find the equal sign. If an equal sign is not found, Subroutine IMSG is called to print a diagnostic. If a Blank or a Right Parenthesis is found, step 6 gains control. If a Slash is detected, step 2 is repeated. At this point, the Option field has been found.
3. Subroutine ASCAN is called to find the Value field. If the first 2 letters in the Option field are TY then BMOD(3) (known elsewhere as NTYPE), the internal code which tells the plotter which type of plot has been requested, is set according to the flrst 2 letters in the Value field•

| IMI | 0 | ST. 1 | EX | 2 | SI: 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PU | 4 | FR. 6 | SE | 7 | WO. 8 |

RE• 9
If this 1s the end of the PLOT card (B is a Blank or a Right Parenthesis), then step 6 gains control. Otherwise step 2 regains control to get the next Option.
4. If the first 2 letters of the Option field are EL, this option is connected with the Sensitivity and Worst Case Option. Thus, the CARD and SENS arrays are searched (DO 31 and DO 37) to match the element name in the Value field and obtain the Sensitivity Tag associated with $2 t$. If such a match cannot be obtained, a diagnostic is printed, the ERR flag is set and control returns to the calling program. Otherwise, if this is the end of the PLOT card then step 6 gains control, else step 2 regains control.
5. If this step is reached, the first 2 letters of the Option field are not TY or EL so the Value field contains a number. Hence, Subroutine NUMBER is called to find the number in the Value field. This number is anserted into the correct variable according to the first 2 letters in the Option field

ST STEP (AMOD(1), the interval between successive plot points)
TI TOTEE (AMOD(2), the interval between the first and last points plotted)

AM : AMP1 (AMOD(4), the positive portion of a pulse train)
BI AMP2 (AMOD(5), the negative portion of a pulse train)
$\mathrm{CO} \operatorname{FREQ1}\left(\operatorname{AMOD}(6)\right.$, a in e^{at})
CY FREQ1 (AMOD(6), fin $\operatorname{Sin} 2 \pi \mathrm{ft})$
FR FREQ1 (AMOD(6), starting point for frequency and real plots)
TO FREQ2 (AMOD(7), ending point for frequency and real plots)
WI • FREQ2 (AMOD(7), pulse width for a pulse train)
DE • NPLOT (BMOD(8), number of calculated points per printed point)
Then, if the end of the PLOT card has not been reached control returns to step 2.
6. This step completes user options which were not specified, with default values. If an option has not been specffied, BMOD is still -1. If BMOD(3) is more than 5 (1.e., not a Time Response) then these defaults are used:

FREQ1 (AMOD(6)) 1
FREQ2 (AMOD(7)) . 10^{6}
$\operatorname{STEP}(\operatorname{AMOD}(1)) \quad\left(\frac{\mathrm{FREQ2.01}}{\mathrm{FREQ1}}\right)$
If $\operatorname{BMOD}(3)$ (NTYPE) is less than 6 and then
If STEP and TOTEE (AMOD(1) and AMOD(2)) are both unspecified,
STEP . 01 TOTEE 1.0
STEP (AMOD(1)) TOTEE/100
TOTEE (AMOD(2)) . STEP X 100
NTYPE (BMOD(3)) • 0 (Impulse Response).
AMPI (AMOD(4)) 1.0
If AMP2 (AMOD(5)) was specıfied, AMP1 is biased accordingly.
FREQ1 (AMOD(6)) : 1.0
If FREQ2 (AMOD(7)) was specifled, NTYPE is set to 5 to indicate a Pulse Train.
7. In all cases, if $\mathrm{DEN}(\mathrm{BMOD}(8))$ was unspecified, it is set to 1. If $\operatorname{BMOD}(3)$ is 7 (Sensativity Plot), the arrays containing the numerator (A1) and denominator (B1) of the function to be plotted are filled with the correct Sensitivity Function (DO 50) and a heading is printed. If BMOD(3) is 8 (Worst Case Plot), the arrays are filled with the Worst Case Function and a heading is printed. For all other values of $\operatorname{BMOD}(3)$, the arrays A1 and BI are filled with the Transfer Function. Subroutine PLOT then returns control to the calling program.

Assuming the analysis of the PLOT card was successful (ERR $\neq 1$), Subroutine INVERT is called to initiate the plotting process.

1. Upon entry, Subroutine INVERT resets NFLAG (the remainder indicator) to 0 , sets STEP to 1 if it was negative, and evaluates NUMTI, the number of points to be plotted. Then, if a Time Response has been requested (NTYPE less than 6), Subroutine INPUT is called to evaluate the transform of the response. Then, in the case of a Time Response, the function to be plotted in A and B is checked. If it is too simple, a diagnostic is printed and the plot is aborted. If it is not rational, the numerator is divided by the denominator and the remainder of this division is used as the function to be plotted. A message to this effect is printed and NFLAG is set to 1 .
2. The function in A and B is printed and if NTYPE is less than 6 (a Time Response), the plot axes (ABSC and ORD) are marked 'TIME' and ${ }^{1}$ MAAG' and Subroutine SCALE, ROUTH, SAMPLE, FLIP and ADJUST are called to perform the Fast Fourier Transform. Control then returns to the callíng program.
3. In cases where a Time Response has not been requested (NTYPE greater than 5) a further test is made. If NTYPE is not 9 (a REAL plot), NUMTI is calculated for a logarithmic plot instead of a linear plot. Then the points are calculated (DO 4) and entered into the TEE, FCTN (and PH when NTYPE is not 9) arrays. For a REAL plot, the real part of Z,
(i.e., σ) is incremented in linear steps. Otherwise, the imaginary part of Z (i.e., jw) is incremented in logarithmic steps).
4. After the points have been calculated, ABSC and ORD are labelled ${ }^{1}$ FREQ' and 'MAG, and Subroutine PRTPLT is called to output the points. In the case of a REAL plot, the Phase must always be 0 so if NTYPE is 9, Subroutine INVERT returns control here. Otherwise, ORD is labelled 'PHA', FCTN is filled with the points from PH and Subroutine PRTPLT is called again before control returns to the calling program.

In the case of Time Response plots (NTYPE less than 6) Subroutine INPUT is called by Subroutine INVERT to evaluate the transform of the response-

1. Upon entry, Subroutine INPUT prints out the quantities associated with each type of plot according to NTYPE.
2. The Transform of the response is calculated as follows:

NTYPE $=0$ Impulse Response. No change is required since $F(J w)=1$.
1 Step Response. $F(J W)=\frac{1}{J W}$ so B, the denominator, is multiplied by Jw.
2 Exponential. $F(J W)=\frac{1}{J W-F R E Q 1}$, so B 1.5 multiplied by (JW-FREQ1)
3 Sine Wave. $F(\jmath w)=\frac{2 \pi \times F R E Q 1}{(j w)^{2}+(2 \pi \times F R E Q 1)^{2}}$ so B is multiplied by (jw) ${ }^{2}+(2 \pi \times F R E Q 1)^{2}$ and SCMAG is multiplied by ($2 \pi \times \mathrm{xFREQ} 1$).
4 Single Pulse. $F(j w)=\frac{1}{J w}\left(1-e^{-j w F R E Q 2)}\right.$ so B is multiplied by JW and the tags ISN and NTAY are set to indicate that the factor (1-e $\mathrm{e}^{-J W F R E Q 2}$) is to be included.
5 Pulse Train. $F(\jmath w)=\frac{1}{\jmath w}\left(1-e^{-j w F R E Q 2}\right) \frac{\left(e^{-j w F R E Q 1}\right)}{1-e^{-j w F R E Q 1}}$ so B is multiplied by $1 / \mathrm{JW}$ and the tags NTAY and ISN are set to show that the additional factors must be included later.
3. After the correct transform has been calculated, Subroutine INPUT returns control to the calling program.

Later on, Subroutine INVERT begins the Fast Fourier Transform, by calling Subroutine SCALE:

Subroutine SCALE simply readjusts the values of the Fourier Transform coefficients (in A and B) to avoid Floating Point Overflow. Control then returns to the calling program.

The next step in the Fast Fourier Transform is to call Subroutine ROUTH. Subroutine ROUTH uses Subroutine CALCR to find a path along which the integral

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} F(\sigma+j w) e^{(\sigma+j w) t} d w
$$

is to be evaluated. This path must lie to the right of any poles in the complex plane. As shown in Figure 4.5, Path 1 is not acceptable while Path 2 is acceptable. This is due to the fact that the Real Part of $S(=\sigma)$ must be negative in $e^{(\sigma+j w) t}$

Figure 45
in order for the integral to converge. The upper limit of 2π for the integral is sufficient because after Subroutine SCALE has readjusted the Transform coefficients, all the significant information has been pushed into this range.

1. Subroutine ROUTH uses an initial SIGMA value of 0.0 and calls Subroutine CALCR(LOGI) to see if all the poles lie to the left of the SIGMA value. Subroutine CALCR returns a LOG1 value of True if all the poles Iie to the left of SIGMA, otherwise, it returns False. Subroutine ROUTH increments the value of SIGMA until Subroutine CALCR returns True. Having found an acceptable value of SIGMA, control returns to the calling program.
2. Subroutine CALCR (LOG1) uses the Routh Stability Criterion to determine whether all poles lie to the left of the current value of SIGMA. If they do, the value returned in logical variable LOG1 is True, otherwise it is False. Upon entry, $D(T, J)$, the Routh Table, is reset to 0 (DO 242).
3. The Routh Table is then computed, and the first column ($D(1, J)$) is checked (DO 245). If any zero or negative values are found, LOG1 gets a value of False and control returns to the calling program.
4. Otherwise LOGI gets the value True, and control returns to the calling program.

Having found an acceptable SIGMA value, Subroutine INVERT calls Subrouting SAMPLE.

1. Subroutine SAMPLE computes the quantities $E(\sigma+j w)$ and $e^{(\sigma+j w)}$ which are stored in RSPNS(I) and EXCMP(I), respectively, (DO 130). As each point is evaluated, the flag ISN is tested to see if the transform requires any modification. (ISN was set by Subroutine INPUT as the Fourier Transform was calculated). Any modification required is performed by means of complex variable ZZ.
2. Subroutine SAMPLE then returns control to the calling program.

With the sample points now in RSPNS and EXCMP, Subroutine INVERT calls Subroutine FIIP, the heart of the Fast Fourier Transform. 1. Upon entry to Subroutine FLIP, the coefficients in the RSPNS array are reordered as prescribed by the Fast Fourier Transform technique (DO 106). ${ }^{10}$
2. The integral

$$
\int_{0}^{2 \pi} F(\sigma+j w) e^{j w t} d w
$$

is computed (DO 110 and DO 108) thus producing the output response samples in RSPNS.

Subroutine ADJUST is called to re-evaluate the first 5 sample points by means of a Taylor Series. The Taylor Serıes coefficients are computed by Subroutine TAYLOR and entered into the TERM array.

1. Upon entry Subroutine ADJUST enters the Time points into the TEE array and the output sample points into the FCTN array (DO 150).
2. If SIGMA is non-zero, each of the sample points in FCTN is multiplied by the $e^{\text {ot }}$ factor. (DO 153).
3. Subroutine TAYLOR is called to enter the Taylor Series coefficients into the TERM array.
4. If NTAY is non-zero, the Taylor Series coefficients are used to enter the first 5 output points into the FCTN array. If the series fails to converge at any one of the points (FNP(I) greater than 1000) the remaining points of the original 5 are not altered.
5. Subroutine PRTPLT is called to print and plot the data points. Control then returns to the calling program.

Subroutine TAYLOR uses the Transfer Function coefficients A(I) B(I) to obtain a Taylor Series.

1. The Taylor Series is computed term by term and entered into the TERM and POW array. (DO 214). If any term becomes too large (greater than 10^{60}), the Taylor Series is halted and NTAY is reset to zero.
2. Control returns to the calling program.

Subroutine PRTPLT prints and plots the points in the TEE and FCTN arrays, 1. Upon entry Subroutine PRTPLT writes out the points in TEE and FCTN in three columns. If NPLOT, the number of points to be plotted from the total number computed (the plot density), is zero, control returns to the calling program.
2. The maximum and minimum plot points are found (DHI, DLO). The points are plotted into the P array and printed out one at a time (DO 182) along with axis labelling for the TEE axis. Control then returns to the calling program.

4.2.6 Rootfinding

The Poles and Zeroes of the Transfer Function are evaluated by means of Subroutine ROOTS. This routine is called by the Main Program in response to reading an Output Request Card containing the word ROOTS.

Subroutine ROOTS is essentially a modified version of the Svoboda Polynomial Rootfinder. In this algorithm, the complex plane is searched for zeroes using a five point test. As a root is detected, the search step size is repeatedly decreased to $1 / 16$ of its previous value until the five points in the five point test do not yield significantly different results. Thus, the root is found to the maximum resolution available from the computer. The original polynomial is used for the final test while the reduced polynomial, having previously found roots divided out, is used for the coarse testing. This technique combines the ability to handle multiple roots while retaining the accuracy of the original unreduced polynomial. The scan is performed initially wathin the unit circle to obtain roots less than 1.0. The polynomial is then inverted to cause roots which were greater than 1.0 to fall within the unit circle. The five point test used by the algorithm is neather necessary nor sufficient to find all the roots of the polynomial, yet in practice, the algorithm has yielded remarkable results despite its non-rigorous mathematical foundation. The roots produced by this algorithm represent not only the root values themselves but also the
accuracy to which the roots were found, since every non-zero digit in the root 1 g guaranteed correct wathin the accuracy of the computer. This information is of considerable value when high order polynomials are being evaluated.

Figure 46 Flow of Control in Svoboda Algorithm

The flow of control among the various logical routines of the algorithm is depicted in Figure 4.6. After obtaining the input data, the Scanning Routine systematically steps over the Unit Circle evaluating the reduced polynomial (i. e., one having previously found roots divided out) at five points on each step. When a criterion for the possible existence of a root at any step is fulfilled, a transfer is made to the Home-in-Routine. Mathematically, this criterion is neither necessary nor sufficient for the existence of a root. The Home-in-Routine approximates the root as closely as possible and then transfers to the Root Examination Routine. Using the Round-off Routine, the Root Examination Routine either rejects the root or refines It (by means of the Home-in-Routine again) and outputs it. Since refinement always uses the original unreduced polynomial, and since it proceeds by successive significant digits, every non-zero digit printed is guaranteed correct within the accuracy of the computing system. Control then passes back to the Scanning Routine which either continues scanning or stops because the required number of roots has been obtaned. When a scan is completed, if the maximum number of scans has not yet been reached, the Inversion Routine gains control to "nnvert" the polynomial, before returning to the Scanning Routine which continues to scan. A detailed discussion of each element of the algorithm follows.

1. The 'Scanming Routine

The main routine in the Algorithm is the Scanning Routine which moves across the Unit Circle as shown in Figure 4. 7. The real and imaginary axes between the ranges $(-1,0),(1,0)$ and $(0,-1),(0,1)$ are divided into sixteenths. The Scanning Routine uses the Polynomial Evaluation Routine to find five points at each step in the scan, the central point and four points one sixteenth above, below, to the left and to the right of the central point. A test is then performed to see if this point is near a root. The criteria for transferring to the Home-in-Routine to examine a possible root more closely are.

1. The value at the central point must be less than the value of any of the four surrounding points.
2. The five points must not be equal in value.

Note that the criteria are mathematically insufficient to determine the existence of a root.

If these criteria are not met, the scan $1 s$ incremented by one sixteenth and the scanning process is resumed. Scanning is performed from left to right and from bottom to top.

Figure 47 The Five Point Scan

When a scan has been completed, that is, when the point (1,0) has been evaluated, a check is performed to see if the number of scans has exceeded an upper limit. If not, a transfer is made to the Inversion Routine (described below) which performs the inversion of the polynomial and then returns control to the Scanning Routine.

The maximum number of scans allowable is twice the number of roots in the polynomial. Since at least one root must be obtained after each pass of both the "real" polynomial and the "inverted" polynomial (requiring a total of two scans), a number of scans no more than twice the
number of roots not yet found should be required for the algorithm to work properly. (Usually, considerably fewer scans are required because several roots may be found on one pass). If this number is exceeded, however, the routine stops automatically.

The problem of evaluating the circumference of the Unit Carcle twice (once on a "real" scan and once on an "inverted" scan) is solved by taking two precautions. Firstly, all points evaluated in a "real" scan must be within the Unit Circle, while an "inverted" scan is permitted to violate the boundary of the circumference slightly. This precaution alone, however, is not sufficient to avoid a duplication of roots which lie close to the boundary, therefore, in the Root Examination Routine a check is performed to see if the root under consideration has appeared previously in another scan. This second precaution prevents roots which have been found once by a "real" scan and once by an "inverted" scan from appearing twice.

2. Polynomial Calculation

The Polynomial Calculation Routine uses Horner's Technıque to evaluate the polynomial complex value from the coefficients. Basically, Horner's Technique 1s the iterative evaluation of the expression

$$
F_{i+1}=\left(F_{1}+a_{1}\right) \cdot x \quad 1 \text { goes from } 1 \text { to } n
$$

with $F_{1}=(0,0)$ and $F_{n+1}=F_{n}+a_{n+1}$ the final value. a_{i} is the i th coefficient in the polynomial.

$$
P(x)=a_{1} x^{n}+a_{2} x^{n-1}+\cdots+a_{n} x+a_{n+1}
$$

Thus the final value is cumulatively built up in F. If necessary, the complex value (F) is divided by previously found roots to form a reduced polynomial value

$$
F=\frac{P(x)}{\left(R_{1}-x\right)\left(R_{2}-x\right) \ldots\left(R_{m}^{-x)}\right.}
$$

where m is the number of roots found previously. In order to avoid overflow, the absolute value of any of the factors ($R_{i}-x$) is not allowed to be
less than 10^{-60}. The final step is to obtain the residual (the complex absolute value) of F.
$H=\sqrt{\left([\operatorname{Re}(F)]^{2}+[\operatorname{Im}(F)]^{2}\right.}$
The residual is computed for four or five points (the Home-in-Routine does not require the central point to be evaluated each time) on each entry to the Calculation Routine. It is these four or five values (H) which are used by the Scanning and Home-in-Routines as the polynomial values at the test points.

3. Polynomal Inversion

In order to obtain all the roots of the polynomal

$$
P(x)=a_{1} x^{n}+a_{2} x^{n-1}+\cdots+a_{n} x+a_{n+1}
$$

by scanning the complex plane within the Unit Circle, at some point a new polynomial is formed from the original one by reversing the order of the coefficuents. The roots of this new polynomial are the reciprocals of the roots of the original polynomial, thus effectively bringing inside the Unit Circle all the roots which were previously outside. The Inverted Polynomial is

$$
P^{\prime}(y)=a_{n+1} y^{n}+a_{n} y^{n-1}+\cdots+a_{2} y+a_{1}
$$

If $P(r)=0$, it is easy to show that

$$
P(r)=1 / r^{n} P(r)=P^{\prime}(1 / r)
$$

Therefore, $y=1 / r 2 s$ a root of the new polynomial p^{\prime}.
Thus, in order to obtain all the roots of a polynomial, the program must deal effectively with two kinds of roots, "real" and "inverted, " and must obtain the reciprocal of "Inverted" roots before writing them on the output. The polynomial Inversion routine, simply reverses the order of the coefficients, sets a program variable to point to either the "real" or "inverted" techniques, and returns control to the main program.

4.

Horne-ing In

Once five' points have been obtaned which fulfill the criterion for root examination, the homing-in procedure subdivides the distance between the central point and one of the outside points into sixteenths and, using the central points as a starting value, employs the Polynomial Evaluation Routine to compute four new outside test points. These new four points and the central point are then examined for the one having the smallest residual which becomes the central point for a new five point test. If this new central point is the same as the previous central point, the scale is subdivided into sixteenths as before so that the five point test becomes progressively more refined. At each subdivision, a new level of significance is obtained (each significant digit being a Hexadecimal digit because the scale factor is 16). This process of "home-ing in" 2 s continued until either 1. The required number of digits of accuracy is reached or, 2. The residuals of the five points do not differ by a significant amount.

In case 2, the resolution of the computing method and system has been reached and the remaining significant digits, if any, are filled with zeroes. This represents a Stopping Criterion which is independent of any formula for round-off error, ${ }^{11,12}$ but depends only on the previously mentioned resolution.

Each time a new step is taken in the Home-in-Routine, three checks are made. Firstly, if the central point should happen to be the origin (0,0), the scale is expanded (subdivided by sixteenths), this allows for roots which may range over large orders of magnitude. Secondly, if more than sixteen steps should be taken in one direction at the same level of significance the level of significance is dropped so that larger (coarser) steps may be taken. Finally, a check is performed to ensure that the routine does not stray too far out of the Unit Circle. This safeguards against the possibility that the original location presented to the Home-in-Routine was not in the vicinaty
of a root, in which case it could easily wander outside the Unit Circle. If this condition should be detected, the Home-in is aborted and control is returned to the Scanning Routine.

If elther case 1 or case 2 occurs, the Home-in-Routine has reached a successful completion and transfers control to the Root Examination Routine.

5. Root Examination Procedures

The Root Examination Routine first checks to see if the root just found came from the original polynomial coefficients or from a reduced polynomial. If the polynomial was a reduced one, the value of the root can be regarded merely as an approximation. The Home-in-Routine is therefore called again to repeat the latter part of the home-in procedure this time using the original polynomial and using the approximate root as a starting value. This technique ensures that every root is found from the original polynomial and that its accuracy does not depend on the accuracy with which previous roots were found.

After the final root value is obtained, a second check is made, this time on its residual. If the residual is greater than a certan value, the root is considered unrelıable and is discarded. If this should occur, control is transferred back to the Scanning Routine. The maximum value of the residual 1 s chosen arbitrarily to be one half the value of a_{n+1}, the constant coefficient in the polynomial.

Having passed these tests, the root value is rounded-off in the Round-off Routine (which is not discussed here because it has no bearing on the actual rootfinding algorithm). If the root is "inverted" it's reciprocal is found using floating point division, and this value, after being rounded-off again, becomes the root value. A third check is then performed on the root to see if it has been found on a previous pass. (This check was mentioned previously in connection with the Unit Circle Boundary). If both real and imagınary parts fall within one significant digit of a root found on the other
type of pass ("real") it is rejected as a root but is nevertheless entered, in the same way as acceptable roots, in the list of roots used to form a reduced polynomial. (This prevents its being found again). If the root is not rejected, it is converted from its internal hexadecimal representation to decumal, rounded-off again, and is written on the output.

A final check is made to see if the required number of roots has been obtained. If not, control is returned to the Scanning Routine, otherwise the algorithm termmates.

Because the algorithm lacks a rigorous mathematical foundation, it cannot be guaranteed to find all the roots. However, every root detected 1s guaranteed accurate within the accuracy of the computing system, it is independent of the technique used to find the roots.

4.2.7 The Automatic Scaler

The Main program always calls the Automatic Scaler, Subroutine SCALER, before the Flowgraph is constructed. Subroutine SCALER exammes the element values in the VPATH list and if the range of exponents of Inductors and Capacitors is too large, the values are multiplied by 10 FACTOR where FACTOR is an integer which is determined so as to minimize the range of exponents. If no such FACTOR can be found, a warning is printed.

Since the element values are modified after scaling, the ${ }^{\prime} S^{\prime}$ symbol which appears in the Transfer Function must be reinterpreted. For example, if FACTOR is determined to be 3 , a capacitor of value ($10^{-3} \mathrm{~s}$) ${ }^{-1}$ becomes

$$
\left(10^{-3} \mathrm{~s} \times 10^{3}\right)^{-1}=(\mathrm{s})^{-1}
$$

thus the new s is 10^{-3} times the true s. Therefore, wherever 's' appears in the Transfer Function 10^{3} s must be substituted. Similarly, all the plots and roots obtained by operating on this scaled transfer function must be modified.

1. Upon entry to Subroutine SCALER, all elements containing s (1.e., inductors and capacitors) are checked (DO 1). The sum of their exponents is entered into D. At the same time, the sum of their exponents scaled by 10^{-1} is entered into $D L$ and the sum of their exponents scaled by 10 is entered into DR.
2. If D is less than 60 and FACTOR is 0 , no scaling need be done so Subroutine SCALER returns. Otherwise, D, DL, and DR are compared to see whether FACTOR should be incremented or decremented for minimum D. If D is not already minmum, FACTOR is adjusted and then control passes back to step 1 for another ateration. If D is already minimum, FACTOR is checked to see if it is still 0 . If it is, no scaling could be performed so a warning is printed and control returns to the calling program.
3. If FACTOR is non-zero, all the inductors and capacitors are multiplied by $10^{\text {FACTOR }}$ (DO 5). Control then returns to the calling program.

4.3 Modular Organization

NASAP-70 has been designed in order to facilitate easy insertion of additional routines and removal of supplied routines. Each module is called from the main routine. In general, three modifications are required-

1. The insertion or deletion of a Fortran CALL statement which transfers to the routines to be inserted or deleted.
2. The addition or removal of the routines themselves.
3. Using the Dictionary of Variables, conflicts in variable names may be eliminated in the case of insertions, and Common blocks and variables no longer required may be removed in the case of deletions.

If these steps are followed, users having a working knowledge of Fortran should have little difficulty adding new capabilities to their versions of NASAP-70.

4.3.1 Removal of Supplied Routines

Under certain circumstances it may be desirable to remove some of the routines supplied with NASAP-70 (e.g., in order to run in less than 32K words). For proper operation NASAP-70 requires only one of the circuit description analysis routines and the Transfer Function routines. Thus, the following modules may be removed:

Either Subroutine NASAP or Subroutine READ.
Subroutine FINE.
Sensutivities and Worst Case option.
Plotting package.
Rootfinder.
Automatic Scaler.
For instance, if the Sensitivities and Worst Case option is to be omatted, all the references to Subroutines SENSC, WORSTC, MULT, SENSIT, WORST, and POLSEN should be deleted, as well as those routines themselves. Finally, Common blocks POLY and WORST1 and references to their variables should be removed.

4.3.2 Addition of User Routines

A user who is familiar with the operation of NASAP-70 may desire to add some of his own options to the supplied program, e.g., for further analysis of the Transfer Function. If any scanning of card images is to be performed, it is wise to become acquainted with the card scanning utilities ASCAN, BSCAN, CSCAN, SHIFT, NUMBER, etc. If bit manipulation 15 to be performed the utillties LOR, LOX, UNPAK, etc., are available. Finally, if operations are to be performed on the Transfer or Sensitivity Functions, the method of storage of these data in the ' VN' arrays should be examined (4.2.3 and 4.2.4).

If NASAP-i 70 is used with the Overlay structure, all user-written routines should be called by the main program only. This will eliminate troubles due to calling routines not in core. In general, workspace is
available in the following Common blocks.
BITS 4095 Words
SPEED 2048 Words
This may not be true at all times, however, so the user should consult the Dictionary of Variables to ensure that he does not erase any useful data.:

REFERENCES

1. IBM System/360, Fortran IV Language, Systems Reference Library Form No. C28-6515-7.
2. Potash, H. and L. P. McNamee, Application of Unilateral Graph Techniques to Analysis of Linear Circuits, Proc. 23rd Natl. ACM Conf., 1968, pp. 367-368.
3. McNamee, L. P. and H. Potash, A User's Guide and Programming Manual for NASAP, UCLA Department of Engineering Report No. 68-38, August 1968.
4. Happ, W. W. , Flowgraph Techniques for Closed Systems, IEEE Transactions on Aerospace and Electronics Systems, Vol. AES -2, May 1966, pp. 252-264.
5. Knuth, D.C., The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley, 1968.
6. Russell, E. C., H. Okrent and L. P. McNamee, Instrumentation of a NASAP Subroutine, IEEE Transactions on Eduction, Vol. E-12, No. 4, December 1969, pp. 243-250.
7. Carpenter, R. M., "Computer-Orıented Sensitivity and Tolerance Techniques, "Course Notes Automated Circuit Anal ysis, UCLA, April 3-7, 1967.
8. Vattuone and Dorf, Root Sensituvity as a Design Criterion, Furst Asilomar Conference, November 1967, pp. 287-290.
9. Haag, K., "Designers Manual for Computer-Aided Design of Communication Circuits," Hlinois Instltute of Technology, Final Report Contract NAS12-2064, December 1969.
10. Knuth, D. E., The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-Wesley, 1969.
11. Muller, D. E., A Method for Solving Algebraic Equations Using an Automatic Computer, Mathematics of Computation (formerly Mathematical Tables and Other Aids to Computation), 1956, pp. 208-215.
12. Adams, A., A Stopping Criterion for Polynomial Root Finding, Communications of the ACM, Vol. 10, No. 10, October 1967, pp. 655-658.
13. IBM System / 360 Operating System, Fortran IV (G and H) Programmert s Guide, Systems Reference Library Form No. C28-6817-1.
14. IBM System/360 Operating System, Linkage Editor and Loader, Systems Reference Library Form No. C28-6538-7.

CHAPTER 5 SYSTEM REQUIREMENTS

5.0 Computer Requirements

NASAP-70 requires a computer with no less than a 32 K word memory to run, using the Overlay Structure in Section 5. 3. For some computers having unusually large System Monitors the supplied program may be too large anyway. If this should be the case, some of the supplied options may have to be removed or restricted, e.g., the Sensitivity option could be reduced to handlang fewer than 20 elements. This would decrease the size of Common block POLY. On computers with more than 32 K words, the Overlay Structure may be neglected entirely. This would not only simplify the loading procedure but also decrease running times.

NASAP-70 needs no additional scratch units other than a card reader and line printer.

5.1 Running a NASAP Problem from the Source Deck

NASAP-70 is distributed as a Fortran source deck. The program must be compiled and loaded in order to run any problems on it. If no changes are to be made, this process may be performed directly. In the case of a machine with a smaller memory, the user may wish to use the Overlay Structure described in Section 5. 3. When a user possesses a machine with a very limited memory, some modifications to the source deck may be necessary (e. g., Removal of some supplied routines, reduction of COMMON sizes). Guidelines for these changes are given in Section 4. 3. 2.

If a user possesses a machine which has a Fortran compiler which uses "backwarding addressing", (e.g., IBM 7094) he should ensure that all COMMON blocks are adjusted to the correct lengths as described in Section 5.5. Further, care should be taken to correct any problems with the Fortran AND function (Section 5.4).

Having made any necessary changes in the source deck, the program may be compiled and loaded. If the machine on which the program is to be run, is not IBM 360 compatible, it is strongly suggested that the sample problems be run and verified wath the solutions given before any large-size user problems are attempted.

Here is the IBM/360 control card deck for running NASAP from the source deck ${ }^{13,14}$
// NASAP JOB (Installation dependent data).
// STEP1 EXEC FORTHCLG, PARM. LKED=I XREF, LIST, OVLY'
// FORT.SYSIN DD*
Fortran Source Decks go here.

1*
//LKED. SYSIN DD *
INSERT MAIN
OVERLAY ONE
INSERT ASCAN, BSCAN, CSCAN, ISORT, MSG, NUMBER, SHIFT, SORT
OVERLAY TWO
INSERT NASAP, SENSIT, WORST
OVERLAY TWO
INSERT READ, UNITS
OVERLAY TWO
INSERT WHAT, PLOT
OVERLAY ONE
INSERT FINE, SCALER, POLSEN
OVERLAY ONE
INSERT EQUAL, LOR, LOX, LSTOP, UNPAK
OVERLAY THREE
INSERT CALC, INBIT, GRAPH
OVERLAY THREE
INSERT LOOPS, CLEAR, REDUCE
OVERLAY ONE
INSERT MULTT, SENSC, ANSWER, WORSTC.
OVERLAY ONE
INSERT INVERT
OVERLAY FOUR
INSERT INPUT, SAMPLE, FLIP
OVERLAY FOUR
INSERT ADJUST, TAYLOR, PRTPLT
OVERLAY FOUR
INSERT SCALE, ROUTH, CALCR
OVERLAY ONE

INSERT ROOTS
//GO.SYSIN DD*
User Problem Data Decks go here.
5.2 NASAP-70 Input Data

The input data consists of three sections

1. Title Cards (Optional)
2. Circuit Description
3. Sensitivity and Worst Case Section (Optional)
4. Output Requests.
5. Up to 10 Title Cards are allowed. They are printed in the output listing exactly as they are read.
6. The Circuat Description section may be in one of three forms depending on the format of the first card
a. NASAP
b. TREE
c. CIRCUIT (Operating Frequency)
a. For compatibility with other versions of NASAP, this heading card will cause the program to accept the circuit description in the form described in the previous NASAP User ${ }^{1}$ s Guide. This data format corresponds to the following conventions.

Each card contains one circuit element. The first letter describes the element and must be one of the following

V Voltage Source
I Current Source
C Capacitor
L Inductor
R Resistor.

Each of these letters may be followed by up to 11 alphanumeric characters to bring the total number of characters in the element name to not more than 12.

The card format is as follows.
NAIME ORIGIN TARGET VALUE UNITS (optional) DEPENDENCY (optional)
NAME refers to the previously described element name. ORIGIN and TARGET refer to the origin and target node numbers of the element. VALUE is the element value in any format. UNITS is optional and must be one of the following:

UF
PF
MH
UH
K
M
If UNITS is not specified, MKS units are assumed. DEPENDENCY is also optional and represents the name of some other element appearing in the circuit description, preceded by the letter V or I to denote dependency on voltage or current.

At least one blank must appear between each of the data fields on the card, otherwise the data is freefield. The last card in the circuit description must contain either the word OUTPUT or the word END.

This form of circuat description relieves the user of the need to organize the tree. Instead, the program automatically builds a tree which results in minimum computation time.
b. For a user-defined tree, a different input format is used. Following the TREE card are the circuit description cards. The last card in this section must be a card with the word END. The first 1 or 2 letters on each circuit description card must be one of the following:

> E Independent Voltage Source
> J Independent Current Source
> CE Capacitor Branch
> CJ Capacitor Link
> LE Inductor Branch
> LJ Inductor Link
> RE Resistor Branch
> RJ Resistor Link
> DE Dependent Voltage Source
> DJ Dependent Current Source
> Each of these may be followed by up to 10 or 11 alphanumeric characters to bring the total to not more than 12.
> The data card format is as follows
> NAME (ORIGIN - TARGET) = VALUE UNITS (Optional) or
> NAME/DEPENDENCY (Optional) (ORIGIN - TARGET) = VALUE UNITS (Optional)
> NAME refers to the element name described above. DEPENDENCY is one of the letters V or I to denote voltage or current dependence, followed by the name of the controlling element. ORIGIN and TARGET are the origin and target node numbers. VALUE is the element value. The optional UNITS field must be one of the following

MF
MMF
$P F$
MH
MMH
K
M
If the units are not specified, MKS units are assumed. All input cards are free-field. Blanks and/or commas may be used freely and are

Ignored by the program. All other punctuation must appear exactly as shown.
c. For a tree constructed for optimum accuracy at a specific frequency, the CIRCUIT card is used in conjunction with the operating frequency in cps enclosed in parentheses. The input data format is Identical with that used after a TREE card except for the format of Capacitor, Resistor and Inductor names where it is no longer possible to differentiate between branches and links

C Capacitor
R Resistor
L Inductor.
If no operating frequency is specified, a default of 1 cps is supplied.

3. SENSITIVITY INPUT REQUESTS

SENSITIVITY FUNCTION•

To obtain the sensitivity of the transfer function to a particular circuit element, a sensitivaty request card is required. These cards must immediately follow the 'END' or ' OUTPUT' cards termmating the circuit description. The format of the sensativity request card is as follows.
SENSITIVITY $={ }^{1}$ ELEMENT NAME,
or

SENS $={ }^{1}$ ELEMENT NAME ${ }^{1}$
where ' ELEMENT NAME' is the name of a circuit element.
Sensitivity request for independent voltage and current sources are ignored. Also, a maximum of twenty valid sensitivity requests may be processed for each circuit.

The sensitivity function (in terms of S) is printed in the same format as the transfer function.

WORST CASE ANALYSIS:

A worst case analysis can be provided for circuits of twenty elements or less (not counting independent voltage or current sources). To obtain this analysis, a card must be provided immediately after the ' END' or ' OUTPUT' cards terminating the input description in the following format

WORST

To obtain a worst case analysis, the tolerance of each element must be known. These values may be provided by 'TOLERANCE' cards which have the following format

TOL $=$: ELEMENT NAME' $=1$ VALUE'
where 'ELEMENT NAME' is the name of a circuit element, and 'VALUE' Is the relative tolerance $\left(\frac{\Delta Q}{Q}\right)$ for this element. If no 'TOLERANCE' card is provided for an element, a default value of . 1 (10%) is assumed for the tolerance.

As well as a function of S giving the square of the worst case tolerance, sensitivity functions for all the elements are also printed. Thus no 'SENSITIVITY' cards may be present when a' WORST' card follows the circuit description.
4. The Output Requests section may contain
a. Transfer Function requests
b. Plot requests. (optional)
c. Roots Requests. (optional).

Any number of Transfer Function requests may appear and any number of Plot requests may be included following a single Transfer Function request Only one Roots request may appear after each Transfer Function request. The last card in the Output Requests section must be a card containing either the word END or the word EXECUTE.
a. The Transfer Function requests have the following format

TYPE NAME 1 / TYPE NAME 2

where TYPE NAME is the name of an element which has appeared in the Circuit Description, preceded by the letter V or I to denote whether Voltage or Current is desured. TYPE NAME 2 must be an Independent Source.
b. The plot request is a single card of the following form:

PLOT (Option = Value $/$ Option = Value...)
The following options are available
1.

TYPE = IMPULSE	for impulse response
STEP	for a step function
SINE	for a sine wave input
EXPONENTIAL	for an exponential input
PULSE	for a pulse or pulse train
FREQUENCY	for a frequency response
SENS	for a sensituvity function plot
WORST	for a worst case function plot
REAL	for a transfer function plot with σ as the independent variable

2. AMPLITUDE = a number

- represents the magnitude of any of the waveforms.

3. BIAS $=$ a number
may be used only with PULSE to obtain a train of positive and negative pulses. It is combined with AMPLITUDE. e.g.,

AMPLITUDE $=10$
BIAS $=-2$

4. CONSTANT = a number
may be used only with EXPONENTIAL. It represents (a) in ($\mathrm{Ke}^{\mathrm{at}}$).
5. \quad FREQUENCY = a number (in Hz / s.)
may be used only with SINE to specify the frequency of the sine wave.
6. DENSITY = a number
to specify the number of calculated points per plotted point.
7. TIME = a number (in Secs.)
should always appear with a time response. It specifies the duration of the plot.
8. WIDTH = a number (in Secs.)
may be used only wath PULSE to specify the duration of a pulse.
9. CYCLE = a number (in Secs.)
may be used only wath PULSE to specify the time of 1 cycle.
e.g., WIDTH $=10$

CYCLE $=15$
gaves:

10. STEP = a number (in Secs.)
specifıes the time between individual calculated points. It may be used with any TYPE option.
11. $\quad \mathrm{FROM}=\mathrm{a}$ number, $\mathrm{TO}=\mathrm{a}$ number
specufies the beginning and ending points of a frequency response (= w/2 $/ 2$), sensitıvity, worst case or real plot. (= σ).
12. ELEMENT = an element name for which a sensitivity function has been requested may be used only with SENS to identify the sensitivity function to be plotted.

Only the first 2 letters of each word are used, therefore, AMI may be used as an abbreviation for AMPLITUDE, IM for IMPULSE, etc.

Since continuation cards are not allowed, all the options for any one plot request must appear on one card. Not all the options are required since defaults are provided, e. g. :

PLOT(TIME = 1) produces an IMPULSE response of 100 steps and of duration 1 sec .

Defaults

$$
\begin{aligned}
& \text { TYPE }=\text { IMPULSE } \\
& \text { TIME }=1 \text { sec. } \\
& \text { STEP }=.01 \\
& \text { AMPLITUDE }=1 \\
& \text { DENSITY }=1 \\
& \text { CONST }=1 \\
& \text { FREQ }=1
\end{aligned}
$$

The options may appear in any order on the Plot card. Inconsistent requests will be ignored, e. g. , TYPE $=$ IMPULSE,$~ F R E Q=2$ yields an Impulse response.
c. To obtain the roots of the numerator and denominator of the Transfer Function, a card with the word ROOTS must appear after the Transfer Function request.

The sensitivity of the poles of the transfer function may be obtained by adding the word 'POLES' to a 'ROOTS' card

ROOTS, POLES
The sensitivity of the Poles are produced for all elements for which a sensitivity request had been issued (or all elements if a ${ }^{\text {' WORST }}$ card was included).

Several complete problems may run at one time. To terminate the execution of NASAP, a card containing the word STOP is used. NASAP-70 can handle.

Up to 50 elements
Up to 50 circuit nodes
Up to 20 sensitivity requests
The circuit nodes should be numbered consecutively starting with 1 for best efficiency. This is not required, however. When more than 30 circuit elements are to be analyzed, the time required for the computation in Subroutine LOOPS begins to increase sharply. This effect is due to the presence of more than 2 words per block in Common Block BITS.

5.3 Overlay Organization

The recommended Overlay Structure is shown in Figure 5.1. This is not required for running NASAP but when included, it decreases the overall program size. However, the Overlay Structure is required to allow the program to fat into a computer with only a 32 K word memory.

Figure 51

5.4 The Fortran AND and OR Functions

NASAP-70 requires the ability to perform a full word AND and OR on fixed point word variables in Fortran. This has been accomplished on the IBM 360 by means of the Fortran Logical. AND. and. OR. functions. The fixed point variables are given Logical type aliases and the AND or OR is performed on these logical type names. For example

LOGICAL A, B, C
EQUIVALENCE (A, I) (B, J), (C, K)

- $\quad \mathrm{I}=12$
$J=20$
$\mathrm{C}=\mathrm{A} \cdot \mathrm{AND} \cdot \mathrm{B}$
would yield a value of 4 in K . On many other compilers a Logical type . AND. and. OR. does not operate on all the bits in the word. If NASAP-70 is complled on such a system it will give incorrect results.

On systems which do not have the full word Logical. AND. and. OR., often another function is available for the same task. If no such facility is provided, the user must write his own AND and OR functions in Assembler Language. In either case statements of the type

$$
\mathrm{C}=\mathrm{A} \cdot \mathrm{AND} \cdot \mathrm{~B}
$$

must be replaced by statements of the type
$K=\operatorname{IAND}(I, J)$
This logical. AND. and. OR. is used in the following subprograms
Subroutine LOOPS
Function LOR
Function LOX
These are the only routines which are affected by the logical type AND. and. OR. but the user must ensure that these changes have been made before he attempts to run any NASAP-70 problems on a machine which is not IBIM 360 compatible.

5. 5 Compatibility Among Various Computers

Apart from the Fortran Logical type. AND. and. OR. functions described in the previous section, there are other facts about the IBM 360 Fortran compilers which could be a source of trouble on other computers.

The oragins of Common Blocks on the IBM 360 are computed from the first variable in the block. On some compilers, however, the origin is computed from the last variable in the block, (e.g., IBM 7094). Thas allows occurrences of Common Blocks with the same name to have different lengths on the IBM 360. On compilers which compute the origin from the last variable (1. e. , "backward addressing") all the occurrences of the same Common Block must be adjusted to the same length (with dummy variables if necessary) before compilation.

The test of the index in a DO loop is performed at the bottom of the DO. Thus in the following group of statements, the DO is executed once.

$$
\begin{aligned}
& \mathrm{N} 1=3 \\
& \mathrm{~N} 2=2 \\
& \mathrm{DO} 1 \mathrm{I}=\mathrm{NI}, \mathrm{~N} 2
\end{aligned}
$$

Further, in the case of the abnormal termination of a DO loop, the index variable retains its most recent value. NASAP has been programmed to avoid these problems with DO statements but they are mentioned here nevertheless to illustrate the way in which the IBM Fortran compilers handle special DO conditions.

Finally, a zero value for the index of a Fortran Computed GO TO is not treated as an error. Instead, execution proceeds with the statement following the GO TO. For example

$$
\begin{aligned}
& N=0 \\
& \operatorname{GO} \operatorname{TO}(1,2), N \\
& N=2
\end{aligned}
$$

$$
1 \quad N=1-N
$$

would yield $N=6$.
NASAP-70 is designed for IBM 360 compatible computers therefore some modification will be required if it is to be run on computers which are not IBM 360 compatible.

APPENDIX A

A. 1 PROGRAM LISTING

A-1


```
    207 FEQ{AT(//1X, NNTIMES=1,I4)
    CALL WHAT
    IF(ERF.ES.1)GP TA 17
    n\cap1gI=1, dosTH
    CALL IIGIT(I,O,-ITIMES)
    CALL I* ЭIT(I,MPATH(I,1),-NTIMES)
18 CALL IN3IT(I,MPATH(I,2),mNTIMES)
    CFLL LSAPS
    00991=1;4040
99 *IT:(1)=0.0
    \ESBI=1,20
    SMAXi(I)=0
88 SAI'1(I)=0
    NSiIN=4INO(SMI-(11),SMI\(2))
    NSNAX=NAYO(SMA>(I),SMAX(Z))
    NSNAX=NAYO(SMA>(I),SMAX(Z))
    IF( SEM.EN.C)GO TA 14
    CALL SFVGT
    DE21I=1.4040
21 PRLY,I)=RITS(I)
    DP22I=1,50
    SN4xOD(I)=5MAX1(I)
22 5AInoc(I)=S!If1(I)
    JF{A,GOST,FG.O)GO TA 14
    CALL GORSTC
    CALL ANS\EH(VM,GMAX2,SMIN2,-1)
    G(2 TG 14
    FN)
    GUTPOUTINE ASCAN(R,I,N)
        H.F.9xCENT U.C.L.A.
    TFAL LFFT,MINUS
    C,OMMRA/つATA/AN`IR(7),SLASH,LEFT, RMEJ(&),BLANK, RLUS,MINUS,RIGHT, EQU UCLAZ390
    CON/{N*/A/A(80)
    JE1<=I,80
    J= < - 1
    a}=A(K
    IF(A(K).ER.LEFT)RETURN
    IF(A(K).E\cap.SLANH)RETURN
    IF(A(x).GQ.MINUSIRETURN
    IF(A(K).EO.RICHTIRFTIJN\
    IF(A(K)*EN, EDU)RETURN
    IF(A(V).ER.SLA'#K)RETURV
    2FTJEN
    EN
    S(MmOllTINE RSCAN(B,I,J)
    COW,fN/A/A (%O)
C
            U.F.3KPEAT
                J.C.L.A.
```



```
    of 1 3N/כATA/C,MT,ANGO(7),AV,FMED(3), Э,P,BMOD(O),BLANK,CMPD(4),
    1A4,N+NAK,FUPD(4),11
    DE{<=1,R\tilde{y}
    J=K~1
        Q=2(-)
        IF(F(K).Fr*U)FE゙T!J*
    UCLAZOSO
UCLAZ090
UCLA?100
2100
UCLAZ110
UCLAZ120
    UCLAZ130
UCLAC140
UCLA2150
UCLA2160
UCLA2170
    UCLAR180
    UCLA2180
    UCLA2200
    UCLAC190
    JCLAZE10
    UCLA2220
    CALL SFVGC
    JCLA2230
    UCLA2240
    OROT=1,4040 (1)
UCLAZ250
UCLA2260
21
UCLA2270
UCLA2280
UCLA2280
UCLAZ290
UCLA2300
UCLAZ310
UCLAZ320
UCLA2330
                            1967
C
    UCLA2330
UCLA2350
UCLLAZ360
UCL-A2360
UCLA2370
UCLA2380
    UCLA2390
    CON{AN/A/A(80)
    UCLA2410
JCLA2420
UCLA2430
    \square
UCLAZ450
    UCLA2460
    IF(A(K)•EEQPITHTIRFTUN\ UCLA2470
UCLA2470
UCLAZ490
UCLAZ490
UCLAL500
    UCLA2510
UCLA2520
UCLA2530
UCLA2540
UCLAZ550
UCLA2560
UCLA2570
UCLA2580
    UCLAQ590
UCLA2600
```



```
    JF(A(K)*EO.RLA"K)QRTURN JCLAZ610
    IF(A(K)\cdotEN.AM)RFTUSN
    UCLA2620
    IF(t(K).FE.AK)RETUNN
    UUCLA2630
    IF(A(K)\cdotER.0)PETUR,
    IF(A(K).EQ.AV) RETUFA.

```

 RFTU"N
 ENO
 SUGREUTINE CSCAV(B,I,J)
 H,F.9KRENT V.C.L.A
 CGMMSN/A/A(80)
 PEAL LEFT,MINUS
 CE MMAN/DATA/C,AI:AYOD(2),E,BMED(8),日,CMED(2),PNT,BLANK,PLUS,MIMUS
 D日1K:Is80
 J=K-1
 B=A(k)
 IF(A(K).EQ.PNT)RETINRN
 IF(A(K),E\cap.E)RETUR&
 IF(A(K), EQ.PLUS)RETURN
 IF(A(K)\cdotEO.MINUSIRFTURN
 1 IF(A(K).EQ.BLANKIRETURN
 RETJ:N
 FNO
 FUNCTION"ISARTTAS"-
 H.F.OKRENT U. U.C.L.A. 1967
 I\TEGER FLAG
 CQMM7N/FLAG/FLAG
 CEMMON/X/B(10)
 FLAG=0
 DE1I=1,10
 iSORT=I-1
 1 IF(A.EN.B(I))RETURV.-
 ISORT=0
 FLAG=1
 END - -- , -
 SUFSROUTINE MSG(A,I)
 H.F.9KRENT U.C.L.A. 1967 UCLAC990
 WRITE(6,200)I,A UCLA3000
 200
 FGRYAT(10X,'**** CmARACTER',I3,' WAS EXPECTED TG BE A ',A己,'. CARDUCLA3010
 1 If,NGRES.1) - UCLABO20
 RETURA - U - UCLA3030
 FiN UCLA3040
 SUBROLTI\E NUMBER(V1,N2)
 H,F.9KRENT U.C.L.A. 1967
 CaMMON/A/A(80)
 CEMMPN/DATA/AMAD(4),E,BMAD(11),PNT,BLANK,PLUS;MINUS,RIGHT,EQU
 real mivus
 INTEGER TAG,FLAG,E KPG,POW
 CgMM:N/FLAG/FLAG
 CPMMAN/CIRCIT/CMAD(802),NE UCLA3110
 CCMM\N/PATHS/LPATH(300,2),VPATH(300),S(300),NPATH UCLA3120
    ```

```

 IF(x.E-1)のGT: T: UCLA3670
 K=1
 men=Pat+(12*IE)KT(`(K)))
 IF(FIAGTEES.1)[n TG 4
    ```

```

 VFATH(`E)=V`AT\\\E)*(10.**PON)
 IF(TIG.EN.1)VFATH(, E)=-VPATH(NE)
 RETJFA
 EN
 SIJOSUTIME SHIFT(A)
 A.F.AKFEAT U.C.L.A.
 1 9 6 7
 DI*ENSIGNA(8L)
 CGMUNN/OATA/AMGO(17),BLANK,BMOD(7),COMNA
 <=0
 3P11=1,90
 J=I -K
 A(J)=A(1)
 IF(A(I).FR.BLAN人)K=x+1
 IF(A(I).EQ.COM-SA)K=K+1
 IF(r.FO.G)K=1
 A(81-K)=SLANK
 RETJ,N
 FAD
 FUNCTIEN SORT(A)
 4.F.9KRENT
 U.C.L.A.
 1967-
 SERT=1SSPT(A)
 RETJ:口
 ENO
 SUBROUTI\E *ASAF
 H.F.*KRENT U.C.L.A. 1969
 INTEGER TYOE,GENER
 I\TEGER FLAG,FRR,A2IGIN,TAPGET
 CこMMEN'PAT4S/LPATH(300,2),VPATH(300),S(300),FREQ
 CEMusN/A/A(90)
 CAMNON/CIFCIT/FARD(5G,12),TYPE(50),GENER(50),9RIGIV(50),TARGET(50)UCLA4010
 1,I JOUT,YUTPUT,'NE,S AX,SMIN UCLA4O20
 C(GMTN/DATA/C,AI,A &D(R),E,BMOD(4),AV,FYOD(3);A,P,CMOD(2), UCLA4030
 1RLAnK,
 1DNOD(4),AN,H,AK,EMOC(4),O
 CO'{AN/FLAG/FLAF
 Cg,1 LN/ELR/ERF
 CGMYNN/BITSNN(3OOO),DEP(50,13),NNADES,INEDE
 VE=?
 READ(5,10C)A
 WRITE(5,G00)A
 100 F9F,\&T(80A1)
1=1
CALL ASTAN(F,I,J)
IF(J.NF-I-1)GA T',
I=J+?
IF(I.CT.72)GOTH6
SNTY>
UCLA3680
UCLA3690
UCLA3700

```

UCLA3710 UCLA3720
UCLA3730
UCLA3740
UCLA3750
UCLA3760
UCLA3770
UCLA3780
UCLA3790
UCLA3800
UCLA3810
UCLA3820
UCLA3830
UCLA3840
UCLA3850
UCLA3860
UCLA3870
UCLA3880
UCLA3890
UCLA3900
UCLA3910
UCLA3920
UCLA3930
UCLA 3940
UCLA3950
UCLA3960
UCLA3970
UCLA3980
UCLA3990
UCLA4000
JUCLA4010
UCLA4030
UCLA 4040
UCLA 4050
UCLA4060
UCLA4070
UCLA4080
UCLA4090
UCLA 4100
UCLA4 110
UCLA4120
UCLA4 130
UCLA4140
UCLA4 150
UCLA4160
UCLA4 170
UCLA4180
UCLA4190
\begin{tabular}{|c|c|c|}
\hline \multirow{7}{*}{3} &  & UCLA4200 \\
\hline & IF（A（I）EEC： 0 ）Gr T9 17 & UCLA4210 \\
\hline & \(N E={ }^{\prime}\) & UCLA42CO \\
\hline & \(283 \mathrm{~K}=1\) 12 & UCLA4230 \\
\hline & \(L=1+K=1\) & UCLA4240 \\
\hline & \(C A R T)(N E, K)=A(L)\) & UCLA4250 \\
\hline & IF（L＇GTOJ）CARD（NE，K）＝BL－ANK（ & UCLA4260 \\
\hline 3 & CANTINUE & UCLA4270 \\
\hline & \(\mathrm{I}=\mathrm{J}_{+}=\) & UCLA4280 \\
\hline \multirow[t]{5}{*}{4} & CALL ASCAF＇（E，1，J） & UCLA4290 \\
\hline & IF\｛J．NE．I－1）Ge \(\mathrm{Tf}_{f} 5\) & UCLA4300 \\
\hline & \(I=J+2\) & UCL．A4310 \\
\hline & IF（I．GT•72）GE TG 6 & UCLA4320 \\
\hline & SA TG 4 & UCLA4330 \\
\hline \multirow[t]{5}{*}{5} & ARIGIN（NE） 5 ISART（A（J） & UCLA4340 \\
\hline & IF（FLAG•EQ－1）GE－ 66 & UCLA4350 \\
\hline & IF（J．NE．I）ORIGIN（NE）＝ORIGIN（NE）＋（ISART（A（I））\＃IO） & UCLA4360 \\
\hline & IF（FLAG．EQ－1）GE TS 6 & UCLA4370 \\
\hline & \(I=J+\%\) & UCLA4380 \\
\hline \multirow[t]{5}{*}{8} & CALL ASCAN（B， \(1, \mathrm{~J})\) & UCLA4390 \\
\hline & IF（J•NE．I－1）G月 TA 7 & UCLA4400 \\
\hline & \(1 \approx ل+2\) & UCLA4410 \\
\hline & IF（I，GT，72）GE TA 6 & UCLA4420 \\
\hline & GQ TQ 9 （ \({ }^{\text {a }}\) & UCLA4430 \\
\hline \multirow[t]{5}{*}{7} & TARGET（NE）＝IS ORT \(^{\text {（A }}\)（J）\()\) & UCLA4440 \\
\hline & IF（FLAG．EQ－1）GE TG 6 & UCLA4450 \\
\hline &  & UCLA4460 \\
\hline &  & UCLA4470 \\
\hline & \(1=J+2\) & UCLA4480 \\
\hline \multirow[t]{5}{*}{10} & CALL BSCAN（S，I＇J） & UCLA4490 \\
\hline & IF（V．NE：I－1）GE TO \({ }^{\text {a }}\) & UCLA4500 \\
\hline & IF（I，GT，72）GE TE 6 & UCLA4510 \\
\hline & \(I=, ~+2\) & UCLA4520 \\
\hline & Qote 10 & UCLA4530 \\
\hline \multirow[t]{2}{*}{9} & \(\mathrm{K}=7 \mathrm{C}\) & UCLA4540 \\
\hline & CALL NUMBER（I，J） & UCLA4550 \\
\hline \multirow[t]{6}{*}{14} & IF（ \(\mathrm{B} \cdot \mathrm{EO} \cdot \mathrm{BLANK}\) ）GO TA 11 & UCLA4560 \\
\hline & IF（S．ET•U）VPATH（NE）＝VPATH（NE）＊1．Em6 & UCLA4570 \\
\hline & IF（B．EJ．P）VPATH（NE）\(=\mathrm{VPATH}(\mathrm{NE}) * 1 . E-12\) & UCLA4580 \\
\hline & IF（B，EQ．AK）VPATH（NE）＝VPATH（NE）＊1．E3 & UCLA4590 \\
\hline & \(I F((E \cdot E) \cdot A M) \cdot A N D *(A(J+2) \cdot N E \cdot H)) V P A T H(N E)=V P A T H(N E) * 1 \cdot E 6\) & UCLA4600 \\
\hline &  & UCLA4610 \\
\hline \multirow[t]{3}{*}{11} & \(I=J+30\) & UCLA4620 \\
\hline &  & UCLA4630 \\
\hline & IF（I－GT－72）GE TO 12 & UCLA4640 \\
\hline \multirow[t]{2}{*}{13} & CALL BSCAN（B，IsJ） & UCLA4650 \\
\hline & G日 7014 & UCİA4660 \\
\hline \multirow[t]{5}{*}{16} & CALL ASCAN（B，I，K） & UCLA 4670 \\
\hline & \(1=K+2\) & UCLA4680 \\
\hline & IF（B．ES•BLANK）日e Tf 12 & UCLA4690 \\
\hline & IF（I．GT－72）GE TE 12 & UCLA4700 \\
\hline & GO TE 16 & UCLA4710 \\
\hline 12 & D6151＝1，13 & UCLA4720 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& L=I+J \\
& \operatorname{DEP}(: E, I)=A(L) \\
& I F(L \cdot G T \cdot K) D E P(N E, I)=B L A N K
\end{aligned}
\] & \begin{tabular}{l}
UCLA4730 \\
UCLA4740 \\
UCLA4750
\end{tabular} \\
\hline \multirow[t]{8}{*}{15} & Celdindue & UCLA4760 \\
\hline & \(\operatorname{GENEK}(\mathrm{NE})=0\) & UCLA4770 \\
\hline & TYPE(NE) \(=0\) & UCLA4780 \\
\hline &  & UCLA4790 \\
\hline & IF(CARD(NE, 1)-EQ. \(\triangle\) ITYPE(NE) \(=1\) & UCLA4800 \\
\hline & NNODES \(=\) YAXO(NNGDE, TARGET(NE), \(\operatorname{ORIGIN(NE))}\) & UCLA4810 \\
\hline &  & UCLA4820 \\
\hline & so TO 18 & UCLA4830 \\
\hline 17 &  & UCLA4840 \\
\hline \multirow[t]{5}{*}{32} & N(I) \({ }^{\circ}\) & UCLA4850 \\
\hline & D日19I=1, NE & UCLA4860 \\
\hline & \(J=9 \mathrm{RIGIN}(1)\) & UCLA4870 \\
\hline & \(\mathrm{J}(J)=\mathrm{N}(J)+1\) & UCLA4880 \\
\hline & \(J=\) TAR̈GET (I) & UCLA4890 \\
\hline \multirow[t]{3}{*}{19} & \(N(J)=\Lambda(J)+1\) & UCLA4900 \\
\hline & \(\mathrm{J}=0\) - -- & UCLA4910 \\
\hline & Deanl I IVEDE, NA- \%s & UCLA4920 \\
\hline 20 & J=MAXG(J,N(I)) & UCLA4930 \\
\hline \multirow[t]{2}{*}{28} & DPZ1Ix IVEDE, \({ }^{\text {N }}\) ES & UCL. 44940 \\
\hline & IF(J.EQ*N(I)) & UCLA4950 \\
\hline 21 & CRNTINUE & UCLA4960 \\
\hline \multirow[t]{9}{*}{22} & N(I): \({ }^{\circ}\) & UCLA4970 \\
\hline & \(\mathrm{M}=0\) & UCLA4980 \\
\hline & De23J=1, NE & UCLA4990 \\
\hline & IF (GEMER (J)*TYPE (J).EQ.0)GE TO 23 & UCLA5000 \\
\hline & K=ARIGIN(J) \({ }^{-1}\) & UCLA5010 \\
\hline & \(L=T A R G E T(J)\) & UCLA5020 \\
\hline & IF ( \(\left.{ }^{\prime}, \mathrm{K}\right) \cdot \mathrm{GT}\)-0) Ge T9 36" & UCLA5030 \\
\hline & IF (N(L), GT C C)M \(=1\) & UCLA5040 \\
\hline & \(N(L)=-I A B S(N(L))\) & UCLA5050 \\
\hline \multirow[t]{3}{*}{36} & IF(N(L.).GT.0)GE TO 23 & UCLA5060 \\
\hline & IF ( \(\mathrm{K}(\mathrm{K}) \cdot \mathrm{GT} \cdot 0) \mathrm{M}=1\) & UCLA5070 \\
\hline & \(N(K)=-I A B S(A(K))\) & UCLA5080 \\
\hline \multirow[t]{6}{*}{- 23} & CONTINUE - & UCLA5090 \\
\hline & IF (H.EV-1) GE TO 22 & UCLA5100 \\
\hline & De26J=1, NE & UCLA5110 \\
\hline & IF (GENER(J) + TYPE(J).NE.O)GE TO 26 & UCLA5120 \\
\hline & K=ORIGIV(J) & UCLA5130 \\
\hline & \(L=T A R G E T(J)\) & UCLA5140 \\
\hline \multirow[t]{4}{*}{} & IF (K.NE.I)GE T9 27 & UCLA5150 \\
\hline & IF(N(L),LE.0)G9 TO 27 & UCLA5160 \\
\hline & \(N(L)=-\begin{aligned} \\ (L)\end{aligned}\) & UCLA5170 \\
\hline & \(\mathrm{Ge}_{0} \mathrm{Ta}_{3} 34\) & UCLA5180 \\
\hline \multirow[t]{3}{*}{27} & IF (L.NE.I)GO TO 26 & UCLA5190 \\
\hline & JF(N(K).LE.0)GO TO 26 & UCLA5200 \\
\hline & \(N(X)=\) N(K) \(\cdots\) & UCLA5210 \\
\hline 34 & \(\operatorname{TYPE}(J)=1\) & UCLA5220 \\
\hline \multirow[t]{3}{*}{37} & \(\mathrm{M}=0\) & UCLAS230 \\
\hline & DE31J1 \(=1, N E\) & UCLA5240 \\
\hline & IF(TYPE(J1)+GENER(J1) - NE.2)GE TO 31 & UCLA5250 \\
\hline
\end{tabular}
\[
A-10
\]
```

 Y=今RIGJY(J\)
 L=TAFGFT(J1)
 IF(NH(K)*,(L).CT.O)迫 TE 31
 IF(N'(K).JE.0)G& TA 33
 IF(N(L).3T.C)M=1
 N(L)=-IABC(V!L))
 33 IF(^(L).GE.O)G\cap T& 31
 IF(N(K).GT.O)M=1
 V(K)=-I\mp@subsup{A}{}{*}, (N(N(K))
 31 CONT'NJF
 31 CONT,NGF
35 J=?
DNEGI=I\INE,NNODES
20 J='INC(J,N(I))
IF(J.E`.@), A Tヨ 30
[F(J.LT--1000)GA TO 28

```

```

24 \A2EI=IVgnE,NM=nES
2h CGNTINUE
JOTG 35
6 NGITE(6,2C1)J
201 FPQNAT(1 INPUT CEDJNG ERROR NEAR COLUMN 1,I3)
Errs=1
3 n
RETUKN
E\!
SU3FPUTIAE SENSIT
C
S* こRANDI U.C.L.A. }196
AFNCESSFS SENSITIVITY REQUESTS
INTEGER TA{,SENS
DlYE^SI3N SMIA(2),FMAX(2)
CAMMRN/A/A(SO)
C0MM^/CIRCIT/CARD(50,12),TYPE(50), GENER(50),ARIGIV(50),
*TARGET(50), INPL'T ,OUTPUT, NE,SMAX,SMIN
FGM {f+'/7ATA/AR Fr(4),E,BMAD(6),AS,CMAD(3),AN,DMND,BLANK,EMED(3),EQUUCLA5610
FfMM%N/3AG/TAG(20),NSEV,SENS(50)
CCMッのサ/FITS/LEITS(3000), JEP(50,13),NNODES,INODE UCLA5630
nATA LIVJT/ZO%/ UCLA5640
C
INITIALIZE
NE1=
WFlur (5,166)A
INS FER'mT('1',OOA1)
n Tr 1
IF औ~XT CAN` IS NAT SENSITIVITY CARD, RETURN
ב REAN(5,1,ONA
1075:2ッ T(\&:A1)
EALL SrIFT(A)
jF((A(1).NE.AS).ER.(A(C).NE,E),QR, (A(3).NE.AN).AR.(A(4).NE,AS))
* ?ET!!
-a;T-(n,E二の)A

```

```

 SRA' FFF EMIALS QIGN AFTER SENG
 UCLA5260
 UCLA5270
 UCLA5280
 UCLA5290
UCLA5300
3
UCLA5310
UCLA5330
UCLA5340
340
UCLA5350
UCLA5360
UCLA5370
UCLA5380
UCLA5390
UCLA5400
UCLA5410
UCLA5420
UCLA5430
UCLA5430
UCLA5450
UCLA5460
UCLA5470
UCLA5480
UCLA5490
UCLA5500
UCLA5510

```
```

 1 CALL ASCAN(8,1,J) UCLA5590
 IF (B.FS.FOU)GG TQ 3 UCLA5800
 WPITF(6,102)
 102 FERMAT (/10X,'**** EQUALS SIGN NET FOUND--REQUESST IGNARED.'
 ge TO 2
 C FIND CIRCUIT ELEMENT
3 K=J+2
L=K+11
Df 4 1=1,NE
D0 5 I I=k,L
I2=11-J-1
If (A(I1).NE.CARD(1,I2))GO TO 4
5 cevtiNuE
IF(GENER(I).EQ.0)GS TO G
IF(DEP(I,1)*NE.BLANK)GE TO 9
WRITE(6,105)
105 FGRMAT(/10X,'**** INVALID ELEMENT TYPE--REQUEST IGNGRED.'` _
G0 TO 2
C CHECK FOR TOE MANY REQUESTS UCLA5980
UCLA5970
9 NE1=ME1+1 - UCLA5990
IF(NE1.LE.LIMIT)GG TO 10 UCLAGOOD
WKITE(6,101) -- UCLAGO10
101 FGRMAT_(/10X,'**** TOE MANY SENSITIVITY REQUESTS-*REQUEST ITNORED.UCLAGO2O
*') UCLA6030
GB TO Z U UCLAGO4O
C CHECK FOR DUPLICATE REQUESTS UCLAGO5D
10 IF(SENS(I).EQ.O)GG TO 11 - UCLA6060
WRITE(6,104) - UCLAG070
104 FGRMAT(/10X,1**** JUPLICATE REQUEST*mREQUEST IGNORED.1) - UCLAG080
GO T日 2 UCLA6090
C INSERT SENSITIVITY TAGS - UCLAG100
11 NSEN=NSFN+1 UCLAG110
STNS(I)=TAG(NSEN) ... UCLAG120
GQ TO 2 - - UCLAG130
4 CONTINUE - UCLAG140
c
ELEMENT NOT FEUID IN CIRCUIT - -*- - - - UCLA6150
WRITE(6,103) UCLA6160
103 FORMAT (/10X,1**** SENSITIVITY REQUEST FOR UNKNOWN ELEMENT-=RF-UESUCLAG170
*T IGNOREO.'1
UCLA6180
Go TE 2
-- UCLA6190
END
SUBRQUTINE WGRST -- m-m - - UCLAGZ10
UCLA6200
C
S.GRANDI U.C.L.AA --" }1969\mathrm{ - UCLAG230
PROCESSES WBRST CASE REQUESTS UCLAG240
INTEGER TAG,SENS
UCLA6260
TIMEASION SMIN(2),GMAX(2)
CAMMSN/A/A(80)
COMMEN/CIRCIT/CARD(50,12),TYPE(50),GENER(50),日RIGIN(50),
*TARGET(50), INPUT,OUTPUT,NE
CQMMON/GAG/TAG(2O),NSEV,SENS(50) UCLAG31O
UCLA6300

```
A-12
```

 COMMON/RITS/LEITS(3000):DEP(50,13) UCLA6320
 CAMYAN/NORST1/NUERST,VW(101,2),TOL(50)}\mathrm{ UCLAG330
 COMMEN/DATA/AMOD(2),R,AL,E,BMOD(6),S,T,O,CMOD,AN,FMOD,BLANK, UCLAG340
 *DMOD'(3), EQU,EMOD(9),W
 COMMON/PATHS/LPATH(600),VPATH(300)
 dATA LIMIT/ZO/
 INITIALIZE
 NFLAG=0
 WRITE(6,100)A
 100 FERMAT('11,80A1)
 INSERT SENSITIVITY TAGS FOR ALL VALID ELEMENTS
 DA 1 }|=1,N
 IF(GENER(I)-EQ.O)Gg TO 2
 IF(DFP(1,1),NE.BLA\K)GG TO 2
 Ge TA 1
 2 NSEN=NSEN+1
 IF(NSEN•GT-LIMIT)GP TO 3
 SENS(I)=TAG(NSEN)
 1 CENTMNUE
 NW9RST=1
 Go TG 11
 tae Many elements
 3 NSEN=\SEN-1
 MRITE(6,101)
 101 FGRMAT(/10X,1**** TOQ MANY ELEMENTS FGR A WGRS̃T CASE ANALYSIS--REOUGLAG560
 *UEST IGNGRED')
 NFLAG=1
 go Te 10
 SET ALL TOLERANCES TO . I DEFAULT
 11 DO 4 I =1,NE
 4 TeL(I)=.1
 RFAL telERANCE CAROS
 10 PEAD,5,103)A
 103 FGR僤(80A1)
 CALL SHIFT(A)
 IF CARD NET TOLERANCE, RETURN
    ```

```

 WRITE(6,113)A
 113 FORMAT(' 1;80A1)
 IF(NFLAG.EG•1)GO TA 10
 CHECK FER ERUALS SIGN
 CALL ASCAN(B,1,J)
 IF(B.EN.EDU)GE T% -
 C BAD CARC
7 WRITE(6:102)
102 FGRMAT(/10X,1**** ERROR IN TOLERANCE CARD--IGNEREDI)
GE te 10
5 K=J+2
OFTAIN CIRCUIT ELEMENT
CALL ASCAN(B,K,J)
IF(J.En.K-1)GE Te 7
IF(B.NF,EQU)GO TO 7
6L=J-K+1

```
```

 IF(L\cdotGT-12)L=12 UCLAG850
 NE1=NE
 DE & I=1,NE1
 DO 3 II =1,L
 III I=II+K-1
 IF(CARD(I,II).NE,A(III))GE TA 8
 9 \text { Gentinue}
 C OETAIN TELERANCE VALUE
NE=vF+1
M=J+?
CALL ASCAN(B,N,N)
CALLL ASCAN(B,N,N)
TEL.I)=VPATH(NE)
NE=NE=1
GOTf10
8 CONTINUE
G8 TG7
TGIT
12 IF(AFLAG.EG.1)RETUZN
WRITE(6,120)
120 FORMATI//' ELE'AENT NAME',10X,1TOLERANCE //)
DE 13 I=1,NE
IF(SENS(I).EQ.O)GO TO 13
WFITE (6,121)(CAFO(1,J),J=1,12),TOL(I)
121 FORMAT (1X,12A1,11X,F7.4)
13 CONTINUE
RETURN
END
Subpgutine reaj

```

```

 ANALYSES FREE FIELD CIRCUIT DESCRIPTION CARDS UCLAF150
 INTEGER TPEE
 INTEGER TYPE,GENER
 INTEGER ERIGIN,TARJET
 INTEGER TAG,EPR,FLAG,OUTPUT
 RFAL LEFT,MINUS
 UCLA6860
 UCLA6870
 UCLA6880
 UCLA6890
 UCLA6900
 UCLA6910
 UCLA6920
UCLA6920
UCLA6930
UCLA6940
UCLA6950
UCLA6960
UCLA6970
JCLA6980
UCLA6990
UCLA7000
UCLA7010
UCLA7010
UCLA7020
C
UCLA7030
UCLA7040
UCLA7210
CEMYON/DATA/C,AI,R,AL,E,AJ,D,SLASH,LEFT,AV,F,AC,T,9,P,AN,PNT,BLANKUCLLA722O
1,PLUS,MINUS,RIGHT,EQU,AM,H,AK,COMMA,Y,AA ,AG,T,
CBMMPN/A/A(80)
UCLA7240
COMméN/TAG/TAG
* UCLAT250
CGHMON/ERR/ERR
UCLA7260
COMMON/X/AC(10)
UCLA7270
CAMMCN/FLAG/FLAG
UCLA7280
CQMMCN/BITS/LAFP(3000),DEP(50,13),NNODES,INODE UCLAT290
CAMMAN/CIRCIT/CARO(50,12),TYPE(50),GENER(50),ARIGIN(50),TARGET(5 UCLA7300
10), INPUT,QUTPUT,NE,SMAX,SMIN
UCLA7310
COMMBN/PATHS/LPATH(300,2),VPATH(300),S(300),FREQ UCLA7320
NE=0
HR=0
ERR=0
urla7330
UCLA7340
INDUT=O
UCLA7350
AUTPLT=0
UCLA7360
UCLA7370

```
```

 TAス=0 UCLA7380
 IF(TREE.EQ.O)CQ TG 2 UCLA7390
 48 TAEE=1 UCLA7400
 C EXTQACT FIRCUIT FREQUENCY UCLA7410
FK[J=1.S UCLA7420
CALL ASCAY(B,1,1)

```

```

 IF(B.EF.LEFT)OG TG 49
 CALL SS(LEFT,I+1)
 'EITE(f,2つ4)FREO
 224 FOR'AT(10X,1**** F=EGUENCY ASSUMED TO BE 1,E16.8)
 A^TO?
 49 I=I +r
 C/LL ASCAV(B,I,J)
    ```

```

 CALL ASCAN(5,J+つ,J)
 なe Te 51
 52 IF(E|NE.RI 3HT)CALL ISG(RIGHT,J+1)
 VE=1
 CALL NUMGEQ(I,J)
 FRE~= = PATH(A'E)
 2 NE=2
C BEGIV CIRCJTT OATA ANALYSIS
11 RTAD,5,1CO)A
\FITE(G) ZOOIA
100 Fer 1AT(%JA1)
200 FER,*AT(1X,S0A1)
GALL SHIFT(A)
IF(A(1).NE.ULA\K)G月 TO 44
WRITE(6,218)
219 FF'RAT(1כX,1**** YLANK CARD IS IGNORED.1)
Ge TP 11
C IF 'ENO OF CATA' IS ENCOUNTERED, END ANALYSIS
44 IF(()(1)-EQ*E).AND.(A(2).E(G.AN).AND.(A(3).EQ.D))RETURN
IF((A(1),NE,P),PQ.(A(2).NE,AL))GO TA 50
IIRITE(\&,C17)
217 FnRAAT(1CX,'**** PLGT CARD IGNERED.I)
9今 TO 11
50 IF゙(NF.LE.4口)GQ TO 23
|P!TE(\&,己己1) UCLA7780
UCLA7770
221 FSREAT(10X,'**** MIRE THAN 50 ELEMENTS NOT ALLEWED. ONLY THE FIRSTUCLAD79O
1 E? vILL BE USEO.'! UCLA>800
23 DEP(NE+1, 1)=BLANK UCLA7810
TY「E(NE+1)=9 UCLA7820
GE IE (*F+1)=0 UCLA7830
D945]=1:12
DEP}(NE+1,I+1)={LAN
C45 SA,N(AE+1,N)=ELANK
A7840
UCLA7850
C CFCR FIRCT IETTER FOR ELMENT TYPE UCLA7860
IF((A(1).E`.E).NR.(A(1).EQ.AJ))GQ TQ 4 UCLA7880
IE((f(1).F'.R).A\&.(A(1).EQ.AL).OR.(A(1).EQ.C).ER.(A(1).EQ.D))GATE5UCLA7890
IF((A(1).ET.AV).AR.(A(1).EQ.AI))GE TOG UCLA7900

```
```

 IF(A(1).EO.P)GS TB 53 UCLA7910
 WRITE(6:220) UCLA7920
 220 FGRMAT(10X,1**** ELEMEVT TYPE (FIRST CHARACTER) CANNOT BE IDENTIFIUCLAT93O
 1ED. DEFAULT VALUE IS R.') UCLA7940
 A(1)=R
 GOTE 5
 6 WFITE(6,203) UCLA7970
 UCLA7950
 UCLA7960
 Z03 FERMAT (10X,1**** ELEMENT TYPE CANNOT BE IDENTIFIED. IIEND OF DATAIUCLAT98O
 1' CARD ASSUMED TO ЗE MISSING.'/14X, 'ABEVE CARD BECGNES FIRST GUTPUUCLA7990
 ZT RE\UEST.') UCLA8000
 TAG=1
 RETUPN
 53 WRITE(6,223) UCL,A8O3O
 UCl.A8010
 223 FgRMAT (1GX,'**** PLGT REQUESTS MUST FOLLOW THE CGRRESPGNDING GUTPUUCLA8040
 1T REGUEST.'/10X,' PLOT REQUEST IGNERED AND DEFAULT PLOT ASSUMEUCLAgO5O
 20.1)
 GO TO 11
 C
 IF(A(1)}E=G\cdotE)TYPE(NE+1)=
 GENER(NE+1)=1
 GA TE 7
 5 IF (A(1),EQ,D)GENER (NE+1)=1
 IF(A(Z).EG.E)GG TA &
 IF(T=EE.EO.1)GO T'S 7
 IF(A(2).EC.AJ)GE TA 7
 ,NRITE(6,204)
 # TYPE CANNOT BE IDENTIFIED AS BRANCH
 IN IMPE CANNET BE IDENTIFIED AS BRANCH ER LIUCLA8170
 1VK. DEFAULT VALUE IS J(LINK):') UCLA8180
 A(?)=AJ UCLAB190
 G0 TE 7 UCLA8200
 8YPE(NE+1)=1 UCLA8210
 7 CALL ASCAM(B,1,I) UCLA822O
 IF(I.GT.12)NRITE(G,205)(A(N),N=1,12) UCLA8230
 205 FPRMAT{10X,1**** ELEMENT NAME IITH MORE THAN T2 CHARACTERS HAS BEEUCLABC4O
 IN TRUNCATED TE 1,1つA1) UCLA8250
 IF(A 1).EQ.D)GO T9 9 UCLA8260
 IF(R.EO.LEFT)GG TY 10 UCLA8270
 CALL MSG(LEFT,I+1) UCLA8280
 GGTG 11 UCLA8290
 OEP(NE+1,1)=LEFT UCLA8300
 IF(9.ES.SLASH)GS TG 10 UCLA8310
 IF(B.EO.LEFT)G''TA 12 UCLA8320
 CALL MSG(SLASF,I+I) UCLA8330
 G0 Te 11
 UCLA8340
 12 WFITE(6,206) UCLA8350
 206 FORMAT}(10X,'**** ELEMENT HAS ILLEGAL DEPENDENCY. ASSUMED TG BE SELUCLA8360
 1F DEPENDENT:') UCLA8370
 DEP (NE + 1,1)=PNT
 INSERT NAME IN LIST AND PAD WITH BLANKS UCLA8390
 IF(I,GT.12)I=12 UCLA8400
 Dか13J=1,I
 CARD(NE+1,J)=A(J) UCLA8415
 UCLA8420
 UCLA8430
    ```
```

 14 IF(NE.EQ.O)GO TO 16 UCIAR440
 DA17J=1,NE UCLA8450
 DE1gK=1,12
 IF(CAFD(J,K),NE.CARD(NE+1,K))GQ TG 17
 18 CONTINUE
 NR=', R+1
 IF(NP.GT.10)ERR=1
 DE1OK=3,11
 19 CARD(NE+1,K)=CAMMA
CARD(NE+1,12)=AC(NR)
WPITE(G,PO7)(CARD(NE+1,K),K=1,12)
UCLA8460
UCLA8470
207 FORMAT(10X, ***** DIPLICATE NAME ENCOUNTERED. PROGRAM ASSIGNS THE
1AME T,12A1/10X,1**** WARNING=*RESULTS ARE UNRELIABLE.I) UCLA8560
GB TG 16
17 CENTINUE
16 IF(A,1).NE.D)G3 TB 20
IF(DEP(NE+1,1).EQ.PNT)NO TO 20
C INSERT DEPENDENCY NAME
I=I+2
CALL ASCAN(B,I,J)
M=1
IF(B.E?.LEFT)G0 TO 21
CALL MSG(LEFT,J+1)
Ge TB 11
21 IF((A(I).EN*AV).OR.(A(1),EQ.AI))GO TO 15

```

```

 IF (A(\hat{C)}EQQ*AJ) DEP(, E+1,1)=A1
 WRITE(6, 219)DEP(NE+1,1)
 ** DEFENDENCY TYPE (FIRST LETTER BF DEPENDENCY NAMEJUCLA8720
 1 IS ILLEGAL. PRAGRAM ASSIGNS ',A1)
 M=2
 IF(JmI+M.ST•13)J=13+1-M
 D822K=I,J
 N=K-1+N,
 22 DED (NE+1,N)=A(K)
 24 I=J
 I=I+2
 CALL ASCAN(S,I,J)
 IF(J*LT•I)J=I
 E,TRACT ERIGIV NQDE
 IF(J-I.LF.1)G日 Tf 26
 27 WRITE(6,208)
 208 FGRYAT(10X,'**** MaRE THAN 99 NODES NOT ALLOWED. CARD IGNOREDI)
 G0 Tr 11
 26 ORIGIN(NE+1)=ISART(A(J))
IF(FLAG.EO.1)GE TO 29
IF(J-NE+I)ORIGIN(NE+1)=ORIGIN(NE+1)+(10*IS日RT(A(I)))
IF(FLAG.EO.O)GE TO 28
29 URITF(6,209)
209 FQRYAT(1OX,:**** ILLEGAL CHARACTER IN QRIGIN NUMBER, CARD IGNGREDIUCLAS93O
1)
G@ TO 11
28 IF(OPIGIN(NE+1).NE.O)GO TO 4S
UCLA8940

```
```

 UFITE(6.222) UCLA8970
 222 FPRMAT(10X,'**** NgDE 0 NOT ALLGWED. }99\mathrm{ SUBSTYTUTED.,/10X, '**** WAUCLA8980
 1RNING--RESULTS ARE UNRELIABLE*I) UCLA8990
 UCLA9000
 IF(B.EQ.MINUS)GO TO 25
 CALL MSG(MINUS,J+1) UCLASO2O
 G0 Te 11
 C ETRACT TARGET NADE
25 I=J+2
CALL ASCAN(B,I;J)
IF(J.LT.I)J=I
IF(J-I.ST.1)GE TA \#7
TARGET(NE+1)=ISOQT(A(J))
IF(FLAG.EN.1)CS TO 30
IF(J.NE,I)TARGET(NE+1)=TARGET(NE+1)+(10*ISORT(A(I)))
IF(FLAG.EO.O)GS TG 31
30 WRITE(6,211)
211 FgRMAT(10X,'**** ILLEGAL CHARACTER IN TARGET NUMBEP. CARD IGNAREDIUCLAG140
1)
GQ TO 11
1 IF(TARGFT(NE+1).NE.OIG日 TA 47
WRITE(6,222)
TARGET(NE+1)=99
210 FERMAT(1OX,1**** MISSIVG RIGHT PARENTHESIS INSFRTED BY PREGRAM, I)

```

```

 212 FORMAT(10X,1**** 1, =1' FOLLOWING RIGHT PARENTHESIS IS MISSING BUT
 1HAS REEN INSEFTED BY PROGRAM.''
 I= J+,
 IF(B,EN.BLANK)T=J+1
 IF(A(J+2)\cdotER.FOU)I=J+3
 CARD IS NH% GUFFICIENTLY IN ORDER FBR CONSIDERATION
 NE=ME+1
 NNGD=S= &AXO(BRIGIN(NE),TARGET(NE),NNEDES)
 |NODE=MINO(ORIGIN(VE),TARGET (NE),IVODE)
 E TRACT MUMERICAL VALUE
 CALL BSCAN (B,I,J)
 CALL NUMEER(I,J)
 K=2
 IF((B.EO.BLANK).OR,(B.EQ.AI).OR•(B,EQ.O))GO TA 33
 IF(S.NE.P)GE TG 24
 K=-12
 CALL UNITS('PF')
 Ge TE 33
 34 IF(B.NE,AK)GO TO 35
K=3
CALL UNITS('K')
GO TO 33
35 B=A(J+2)
IF(B,NE.F)的 TO 36
K==S
CALL UNITS(IMF')
GE TS 33

```
            IF( (B.NE.BLANK).AND.(B.NE.AI).AND.(B.NE.E))GE TO 32
            CALL UNITC(MI)
                                    UCLA9520
    3 OTO 33
    IF (E.NE.H) Ge TE 37
    \(\mathrm{K}=-3\)
    CALL UNITS(MM1)
    so TE 33
37 IF(₹•NE•AM)G日 TE 33
    GIA \((J+z)\)
IF \(5, N F \cdot F) 69\) TS 38
    MEA (J+そ)
IF \(5, N F \cdot F) 69\) TO 38
    \(K=-12\)
    CALL UNITS('MmFI)
    Ge TO 33
    IF ( \(\mathrm{B}, \mathrm{NE} \cdot \mathrm{H}\) ) GO TA 33
    K=m 6
    CALL UNITS('MNHI)
\(33 \mathrm{VPATH}(N E)=\mathrm{VPATH}\left(\mathrm{N}^{\prime} E\right) *(10 \cdot * * K)\)
    ga \(\mathrm{t} 日 11\)
    EvD
    SUBREUTINE UNITS(A)
    H.F.GKRENT U.C.L.A. 1967
    WRITE \((6,200)\) A
C
    200
    FgRYAT (10x,' \(\$ \$ 3 \$\) UNITS ARE \(1, A 4)\)
        PETUSA
    510
    SUBREUTINE PHAT
                    H.F.SKRENT
DFCPDES
H.F.SKRENT
DFCPDFS
INTEGER S
INTPCER \(\quad 1967\)

H.F.SKRENT
DFCPDFS
INTEGER S
INTPCER \(\quad 1967\)
C
C
H.F.SKRENT
DFCPDFS
INTEGER S
INTPCER \(\quad 1967\)
H.F.SKRENT
DFCPDFS
INTEGER S
INTPCER \(\quad 1967\)
    INTECER TYPE
    InTEGER TAG,ERP
    UCLA9530
32
    UCLA9540
    K=-
    UCLA9550
    UCL A9560
    UCLA9570
UCLA9580
    UCLA9590
UCLA9600
    UCLA9600
    UCLA9610
    UCLA9620
    UCLA9630
UCLA9640
UCLA9650
    UCLA9660
UCLA9670
UCLA9680
UCLA9690
UCLA9700
UCLA9710
UCLA9710
UCLA9720
    CQMMAN/TAG/TAG
UCLA9730
UCLA9740
UCLA9750
C
    CQMMAN/EKR/ERP
UCLA9760
UCLA9770
UCLA9770
UCLA9780
    CAMMAM/A/A(20)
    UCLA9790
UCLA9800
C
UCLA9800
UCLA9810
    UCLA9820
    UR/A(EO) UCLA9830
    CQMMAN/OATHS/JSAVE(1201) - UCLA9850
    COMMSN/CIRCIT/CARD (50,12),VN(202),NE UCLA9860
    UCLA9830
    REAL LFFT
    CRMMAN/OATA/C, AI,R,AL,E,AJ,D,SLASH,LEFT, AV,AMCD(7), BLANK
    UCLA9870
    UCLA9880
    COMMEN/VTIMES/ATIMES
    CQMMGN/VTIMES/ATIMES
CEMMON/SITSALEITS \((3 C 00), L P A T H(3 C 0,2), V P A T H(300), S(300), N P A T H, ~ U C L A 9890 ~\)
UCLA9890
    1SMED (99), TYPE(50)
    DIMER SION SSAVE(1201)
    UCLA9900
    UCLA9910
    EGUIVALENCE (LPATH(1,1),ISAVE(1))
    UCLA9920
    UCLA9930
    DO181=1,1201
    UCLA9930
    ISAVE(I) =JSAVE(I)
    UCLA9950
18 ISAVE(I)=JSAVE(I)
    SET STARTI.y PEINTER
    UCLA9960
    \(I=2\) STARTIrG PGINTER
    \(\mathrm{I}=2\)
    UCLA9960
UCLA9970

    IF ( \((B \cdot E O \cdot F) \cdot \theta R \cdot(B \cdot 5 Q \cdot C) \cdot \theta R \cdot(B \cdot E Q \cdot A L) \cdot \theta R \cdot(B \cdot E Q \cdot E), B R \cdot(B \cdot E Q \cdot A J) \cdot \theta R \cdot(U C L A 9990\)
\(c\)
    1B.EO.D) I I = 1
    UCLA9980
UCLA9990
UCL 10000
    LAEK FGR THE SLASH
CALLASCAN(B,I,J) UCL10010
    CALL ASCAN(B,I,J)
UCL 10020
A-19

A-20

```

 IF(TYPE(N).EQ.O)B=AI
 WFITE(6,205)B
 UCL10560
 UCL10570
 205
 Fermat(10X,1**** Ivput element has illegal dependevcy type, Prograucli0580
 IM ASSIGNS 1,A1,' .')
 UCL10590
 Go T0 15
 14 IF (A (I-1),EQ.AV)LPATH(NPATH,2)=N+NE
 IF(A(I-I),EQ,AI)LPATH(NPATH,Z)=N
 IF(LFATH(NPATH,2)\cdotEQ.O)GO TO 16
 RETU&N
 END
 SUBrOUTINE PLET
 H.F.OKRENT ... U.C.L.A. }196
 INTEGEF ERR
 INTEGER SMAX,SMIN,GAG,SMAX1,SMIN1,SENS,SMAX2,SMIN2,BMOD(8),S
 REAL LEFT,MINUS
 DIMENSIAA SMIN(2),SMAX(2)
 CEMMEN/CIRCIT/CARD (50,12),VN(101,2),NE,SMAX,SMIN
 CEMMGN/GAG/GAG(2足,NSEV,SENS(50)
 COMMON/NORST1/NWORST,VW(101,2),TOL(50),SMAX2,SMIN2
 CGMMgN/DATA/AC,AI,R,AL,E,AJ,D,SLASH,LEFT,AV,F,AS,T,A,P,CMED(2),
 1BLA'JK,PLUS,MINUS,RIGHT, EGU,AM,H,AK,CBMMA,Y,AA,X,U,AB,W
 CEMMAN/SPEED/F2(2048)
 CEMMGN/PATHS/LPATH(600),VPATH(300),S(300), NDATH
 COMNON/A/A(80)
 COMMGN/POLY/VNSEN(101,2,20),VNOO(2020),SMAX1(20),SM[N1(20)
 CQMMfN/BITS/F1(4n96),
 SB1(50),C(50),NXFR,A1(50),NXTT, AMOD(8),
 SB1(50),C(50),NXFR,A1(50),NXTI,AMOD(8),
 2T1,T,,T3,DMAD(8)
 CAMMON/ERR/ERR
 FGUIVALENCE (AMAD(\overline{1),BMOD(1))}
 11=0
 I2=0
 NE1=NE
 NE=\PATH+1
 DE1I=1,s
 BMOC(I)=-1
 I=1
 CALL ASCAN(B,I,I)
 IF(B,NE.LEFT)CALL MSG(LEFT,I+1)
 IF(E.EQ.BLANK)GE TA ?
 IF((B.EY.SLASH).OR.(B.EQ.LEFT))GO TO 3
 CALL ASCAN(B,I+2,I)
 GO Tf4
 CALL ASCAN(B,I+2,J)
 IF(g.NE.EQU)CALLL MSG(EQU,J+1)
 IF((B.EQ.BLANK).GR.(B,EQ,RIGHT))G0 T0 2
 IF(B.NE.SLASH)GO TS 12
 I = J+2
 ge Te 3
 12 K=J+2 ASCAN(B,K_L)
IF(B.NE•NINUS)GE TO 7

```

```

 J=I+1}\mathrm{ UCL11610
 DE11I=J.50 UCL11620
 A1(I)=0.0 UCL11630
 11 F1(I)=0.0 UCL11640
25NE=拢1
RETIJFN
20 M=L-J-1
IF(Y:GT,12)M=12
DA 3i M2=1,NE1
De 30 M1=1,M
IF(CARD(M2,M1)\cdotNE:A(J+1+M1))GO TO 31
30 CONTINUE
I 1=42
G0 T0 35
31 CANTINUE
99 WRITE(6:100) (*)
100 FORMAT(/10X,':**** IMVALID REQUEST FGR SENSITIIVITY GR WORST CASE PLUCLI1770
*日T-=IGNGRED.')
ERR=1
30 TS 25
35 IF(SENS(11)-NE.O)Gg T\& 36
G日 T0 99
36 OO 37 N=1,NSEN
IF(SINS(II).NE.GAG(N))GO TO 37
12=N
38 TO 9
37 CgNtiNUE
21 IF(17.EQ.0)GO T9 99
I=SMAX1(12)*SMIN1(I2)+1
De 50 J=1,1
K=50+SM1N1(I2)+J
A1(J)=V\SEN(K,2,I2)
50 B1(J)=VNSEN(K,1,I2)
J=1+1
D0 51 I=J,50
A1(I) =0.0
UCL11650
UCL11660
UCL11670
UCL11680
UCL11690
UCL11700
UCL11710
UCL11720
UCL11730
UCL11740
UCL11750
UCL11780
UCL11790
UCL11800
UCL11810
UCL11820
UCL11830
UCL11840
UCL11850
UCL11860
UCL11870
UCL11880
UCL11890
UCL11900
UCL11910
UCL11920
UCL11930
UCL11940
A1/R=0.0.0
51 B1(1)=0.0
VRITE(6,101)(CARD(T1,1),I=1,12)
UCL11950
UCL11960
101 FGRMAT('11,'SFNSITIVITY WITH RESPECT TE ',12AÖ)
go te 25
22 IF(NGRST.EQ.O)GQ TO 99
I=SM4X2-SMIN2+1
DO 40 J=1,I
K=50+5MINz+J
A1(J)=VN(K,2)
40 B1(J)=VN(K,1)
J=I+1
De 41 I=\,50
A1(I)=0.0
41 BI(J)=0.0
WRITE(6,102)
102 FBR44T('11,10X,'WGRST CASE TOLERANCE')
Gg TQ 25 (a)
UCL11970
UCL11980
UCL11990
UCL12000
UCL12010
O-2+
<=50SMIN2+1

```

```

UCL12040
UCL12050
UCL12060
UCL12070
UCL12080
UCL12090
UCL.12100
UCL.12110
UCL12120
UCL12120

```
```

 END
 UCL12140
 UCL12150
 UCL12160
 UCL12170
 UCL12180
 UCL12190
 UCL12200
 INTEGER BLANK
 CBMMEN/CIRCIT/CARD(50,12),TAG(50), GENER(50),日RIGIN(50),TARGET(50 UCL12210
 1), INPUT, OUTPUT,NE
 UCL12220
 COMMON/RATHS/OCARD (50,12),VPATH(300),Z(100),8Z(100),0日RIGN(50),
 UCL12230
 1日TARGT(50),W
 CAMMAN/BITS/LE日P(3000),DEP(50,13),NNEDES,INODE,LINE(132),INDIC(50)UCL12250
 1,0DUM(50),NUMB(50),NINDIC(100),LJUNK(18),OGENER(50),JUNK(48),0VPATUCL12260
 1H(300)
 UCL12270
 CAMMON/DATA/C,AI,R,AL,E,AJ,D,SLASH,LEFT,AV,F,A'S,T,O,P,AN,PNT,BLANKUCL12280
 1.PLUS,MINUS,RIGHT,EQU,AM,H,AK,COMMA UCL12290
 COMMON/X/B(10)
 WRITE(6.99)W W
 99 FORMAT(//2X,'W=I,EIE.4) ~ F
 C CALCULATING THE RESISTANCE, IM BHMS, OF THE ELEMENTS, UCLI2330
9.9*10**30 STAYS FAR INFINITY. UCL12340
J=1 - T=1,NE
IF(ICARD(I,N).EQ.E)Z(I)=0.
IF(CARD(I,J).EQ.AJ)Z(I)=9.9E30 UCL12380
UCL12360
IF(CARD(I,J)*EQ.C)Z(I)=1./(VPATH(I)*W) UCL12390
IF(CARD(I,J).EN.AL)Z(I)=VPATH(I)*W UCL.12400
IF(CARD(I,J).EQ.R)Z(I)=VPATH(I) UCL12410
IF(CARD(I,J).EQ.D)SO TO 2 . NCL12420
GB TE 1 -...........
2=2 IF(CARD(I,J).EQ.E)Z(I):0.
IF(CARD(!)U).ES.E)Z(I):O.-UCL12450
IF(CARD(I,J).EQ.AJ)Z(1)=9:9E30 UCL12460
J=1
1 CONTINUE - - - - - - UCL 12480
C ARRANGING THE ELEMEVTS IN A SEQUENCE OF INCREASING RESISTANCEUCL12490
C V VALUE.-- -- -.- - - .- n UCL12500
DO I=1,NE UCL12510
De 4, J=1,NE- - UCL12520
IF(Z(1)=Z(J))3,3,4 _........... UCL12530
3 DUMMYzZ(J) " * - - - - UCL12540
Z(J)=Z(I)

```


```

 DUM=0RIGIN(J) UCL{2580
 GRIGIN(J)=GRIGIN(I) _ _ . _ UCL.12590
 ARIGIN(I)=DUM"- - - - - UCL12600
    ```

```

- -... DOMETARGET(J)
TARGET (J)=TARGET (I)
TARGET(I)=DGM
ETARGT(J)=TARGET(J)
_.____- - _ -...
UCL12630
UCL12640
UCL12650
UCL12660

```
```

 SENER(J)=\operatorname{GNER}(I)
 GEMER(I)=KDUMMY
 AGENER(J)=GENER(J)
 ADUMMY=VPATH(J)
 VPATH(J)=VPATH(I)
 VPATH(I)=ADUMMY
 GVPATH(J)=VPATH(J)
 DRUY=DEP(J.13)
 DEP(j,13)=DEP(1,13;
 DEP(I,13)=DRUM
 OO }4\quadN=1,1
 DRUM#DEP(J,N)
 DEP(J,N)=DEP(1,NT
 DEP(I,N)=DRUM
 DEEM=CARD (J,N)
 CARD (J,N)=CARD(I,N)
 CARD(I,N)=DEEM
 ACARD (J,N =CARD (J,v)
 CONTINUE
 De 70 I=1,NE
 70 VPATH(I)=QVPATHZI)-\cdots-- -
 C DETERYINING HOW MANY NODES THERE ARE IN THE CIRCUIT.
J=1
DO 40 I= 2,50,?
N=1-1
NIVOIC(N)=08RIGN(J)
NINDIC(I)=0TARGT(J) - - -
J*J+1
IF(J,GT.NE)GOTG*47**-
40 CONTINUE
47 NUMIND=1
NUMB;1)=NINDIC(1)
NUMB(2)=NINDIC(2)
J=2
42 De 41 I=3,NUMIND
NTAG=1
DE 44 N=1,J
IF(NINDIC(I).EQ.NUMB(N))NTAG=O
44 CANTINUE
IF(NTAG.EQ.1)GO TS 45
4% CONTINUE
GO TQ 46
45 J=J+1
NUMB(J)=NINDIC(I)
GO TA 42
C H6TEFMMNANOJ
C
HETERMINING THE ELEMENTS THAT FERM TREE. I.E. HAVING TAG i
DE T I=1,50
IMDIC(I)=0
9 TAS(I)=0
[NDIC(1)=AORIGN(1)
ITDIC(2)=PTARGT(1)
T43(1)=1

```

UCL12670
UCL 12680
UCL 12690
UCL 12700
UCL 12710
UCL 12720
UCL12730
UCL 12740
UCL 12750
UCL 12760
UCL 12770
UCL12780
UCL 12790
UCL 12800
UCL 12810
UCL12820
UCL12830
UCL 12840
UCL 12850
UCL 12860
UCL 12870
UCL 12880
UCL12890
UCL 12900
UCL12910
UCL 12920
UCL12930
UCL12940
UCL12950
UCL 12960
UCL 12970
UCL12980
UCL12990
UCL 13000
UCL. 13010
UCL 13020
UCL13030
UCL 13040
UCL13050
UCL13060
UCL. 13070
UCL 13080
UCL 13090
UCL13100
UCL13110
UCL13120
UCL 13130
UCL 13140
UCL13150
UCL13160
UCL 13170
UCL 13180
UEL13190
```

 13 L=3
 15 I=2
 16 J=1
 1 7 \text { IF(OQRIGN(I)•EQ.INSIC(J))GE TO 10}
 IF(ETARGT(I).EQ.INDIC(J))GO TO 11
 J= J+1
 IF(J.GT.50)GO TQ 20
 G& TE 17
 20 I= I+1
 S8 TG 16
 10 GDJM(I)=0TARGT(I)
 Ge TO }1
 1i ADUM(I)=0日RIGN(I)
18 IF(T,G(I).EQ.1)G\& Te 34
IF(INDIC(L))33,32,33
32 IF(L.GT.NUMNOD)CO TO 12
TAG(I)=1
INDIC(L)=80UM(I)
Ge Te 13
33DE 3i NN=1,50
IF(INDIC(NN).EQ.O)SO TO 30
31 CentinuF
Gg TO }3
30 LeNM
ge TO 32
34 I= I+1
SO Te 16
12 WRITE (6,100)
100 FARMAT(//1 THE TREE IS FGRMED BY
3G 11//1
JCLI3490
WRITE(6,101) UCL. }1350
101 FBRMAT(' ELEMENT NUMBER',5X,'ELEMENT NAMEI,5X,IGRIGIN NEDE',5X,TUCL13510
1TARGET NGDE'SX,'VALUE(OHMS)',13X,'TAG',12X,'GENER') UCL13520
DE 7 I=1,132 UCL 13530
7LINE(1)=BLANK
DO 8 I=1,120
8 LINE(I)=MINUS
WPITE(6,104)(LINE(I),1=1,120)
104 FORMAT(1201),INE(T),1=1,120)
FGRMAT(120A1)
DA I=1,NE UC113590
WRITE(6,102)I,(0CAマD(I,J),J=1,12),0日RIGN(I),日TARGT(I), ӨZ(I),TAG(I)UCL13600
1,GGENER(I) UCL.13610
102 FORMAT(7X,I2,17X,12A1,6X,12,15X,I2,10X,E15,8,13X,11,15X,11) UCL-13620
5 COVTINUE
RETURN
END
SUBRGUTINE SCALER
UCLA 1969
INTEGER FACTAR ,FACTAR UCL13680
CBMMEN/EKR/ERR,FACTAR
CEMM9N/CIPCIT/CARD (50,12), BM9D(202),NE
UCL13690
CGMMEN/PATHS/LPATH(600),VPATH(300),S(300),NPATH UCL13700
CgMMEN/PATHS/LPATH(600),VPATH(300),S(300),NPATH UCL.13710

```

    \(D=0\).
    UCL 13740
    \(\begin{array}{ll}O L=0 . & \text { UCL } 13750\end{array}\)
    DF: 0 ,
    DE1I=1,NE UCL 13770
    UCL13760
    \(\operatorname{IF}((\operatorname{CAPD}(1,1) \cdot N E, A C) \cdot A N D \cdot(\operatorname{CARD}(I, 1) \cdot N E, A L)) G \theta T \theta 1 \quad\) UCL 13780
    IF (VFATH (I) EEC.O.) SQ TH 1
    UCL 13790
    \(A=A L F G 1 O(A B S(V P A T H(I)))\)
    UCL 13800
    \(\eta=「+A B S(A+F L \theta A T(F A C T Q R))\)
    UCL 13810
    \(D L=D L+A 3 S(A+F L Q A T(F A C T Y R-1))\)
    UCL 13820
    TR \(=D R+A S S(A+F L G A T(F A C T G R+1))\)
    UCL 13830
    UCL 13830
1 CEVTINUE
    IF ( (D.LT. \(6 C \cdot) \cdot A N D \cdot(F A C T \theta R \cdot E Q \cdot O)) R E T U R N\)
    UCL 13840
    UCL 13850
    IF (DL.LT.D)GO TA 3
IF (DR.LT.D) GO TG 4
    UCL 13860
    IF (FACTOR.EQ.OIGS TO 6
    DESI¥1, NE
    IF ( \(C A R D(I, 1) \cdot N E \cdot A C) \cdot A N D=(C A R D(I, 1) \cdot N E \cdot A L)) G \theta\) TO 5
    UCL 13880
    VDATH(I) =VPATH(I)* (10***FACTOR)
    UCL 13900
    CONTINUE
    UCL 13910
    UCL 13920
\(\begin{array}{ll}5 & \text { CONTINU } \\ 7 & \text { RETURN }\end{array}\)
300 NRITE \((6,200)\)
CL 13930
200
    FeRMAT (10X, \(1 * * * *\) THE RANGE 日F ELEMENT VALUES IS TO日 LARGE TA BE SCUCL 3950

        GA TE 7
    UCL 13970
    3 D=VL
    FACTAR=FACTBR=1*
    UCL 13980
    UCL13990
    GE TV? UCL 14000
    \(D=3 R\)
    FACTAR \(=\) FACTER \(_{\text {A }} 1\)
    UCL 14010
    UCL 14020
    GE TE 8
    END
    END SUBOUTINE POLSEN
    UCL. 14030
    UCL. 14040
\(c\)
\(c\)
\(c\)
\(\begin{array}{lll}C & \text { S.GRANDI U.C.L.A. } 1969 & \text { UCL } 14060 \\ C & \text { UOMPUTE THE SENSITIVITES OF THE POLES AF THE TRANSFER FUNCTION UCL } 14070 \\ C\end{array}\)
UCL. 14050
UCL 14060
UCL 14070
    INTEGER SENS,GAG UCL14090
    UCL 14100
    INTEGEP SMIN, SMAX,SMIN1,SMAXI,SMINO1,SMAXO1,SMINOO,SMAXOO,SMINIO2,
    *SNAX:O
    UCL 141110
    CAMPLEX PALE
    CEMMGN/PGLY/VNO1 (101,20), VNOO(101,20), VN10(101,20), SMAX01(20),
    UCL 14130
    *STINC1(20), SMAXOO(20),SMINOO(20),SMAX10(20),SMIN10(20)
    UCL. 14140
    UCL 14150

UCL 14160
    COMMFN/CIFCIT/CARD (50,12),VN(101,2),NE,SMAX,SMIN UCL14170
    \(\begin{array}{ll}C O M M E N / G A G / G A G(2 \div), N S E N, S E N S(50) & \text { UCL } 14180 \\ \text { DIMENSIGN SMqN(2),SMAX(2) } & \text { UCL } 14190\end{array}\)
UCL 14180
    DIMENSIGY VDERTV(1)1), A(50), E(50),C(50), D(50)
UCL 14190
UCL14200
RETIRN IF RSATS OR SENSITIVITY FCN NET PREVIOUSLY FAUND
\(C\)
    UCL 14210
    IF (MPALES.NF•O, AHD.NSEN.NE O OIGO TE 1
UCL 14220
    URITE (E, 100)
UCL14230
100 F032AT (/10X, \(1 * * * *\) ROETS AND/AR SENSITIVITY REQUEST NOT PREVIEUSLY UCL 14240
    *MADF -DTLE SENSITIVITY REQUEST IGNGRED.1) UCL14250
```

 RETURN UCL14260
 TAKF DERIV. AF DENOMINATOR OF TRANSFER FUNCTIGN UCL14270
 1 II=SMIN(1)+51
 j \hat{c}=\operatorname{sin}AX(1)+51
 UCLI4280
 UCL14290
 DE 5I=11,12
 5VDERIV(I-1) (I-51)*VN(II,1)
 UCL.14300
 UCL14310
 evaluate It at the poles
 UCL14320
 De, 7 K=1,50
 C(K)=0.0
 7D(K)=0.0
 DO 6 L=1, NPBLES
 A(L)=REAL(PALF(L))
 B(L)=AIMAG(POLE(L))
 DO 6 K=11,I2
 IF(A(L)-E习.O)GS TS 60
 C(L)=VDERIV (K-1)*A(L)**(K-52)+C(L)
 60 IF(R(L),EQ.0)Ge T9 6
 n(L)=VDERIV (K-1)*B(L)**(K=52)+D(L)
 6 \text { CONTINUE}
 FIND SENSITIVITY FCNS FOR ALL SPECIFIED ELEMENTS
 D9 2 I=1,NE
 IF(SENS(1).EQ.O)GA TO 2
 D9 3 J=1,NSEN
 IF(SENG(I).EN.GAG(J))GE TO 4
 3 Continje
 4 WRITE (6,101)(CARD (1,K),K=1,12)
 101 FGRMAT('1SENSITIVITY OF POLES TO 1,12A1///)
 WRITE (6,102)
 102 FARMAT(15X,'POLES',24X,'SENSITIVITYI//9X,IREAL',10X,1IMAGI,14X,1REL
 *AL',彳亍CX,IIMAG'/1
 fvaluate NUMERATER of RO日T SENSITIVITY FCN AT THE PGLES
 DE z L=I_NPBLES
 X=0
 Y=0
 I1=SMIN1O(J)+51
 I2=SMAX10(J)+51
 De iT K=11,I2
 IF(A(L).EQ.O)Gg T0 110
 X=\alpha+V\10 (K,J)*A(L)**(K=51)
 110 IF(B(L)-EQ.0)GO TO 11
 Y=Y+VN10 (K,J)*B(L)**(K-51)
 11 CONTINUE
 OBTAIN ANSWERS (PREVENTING ZERODIVIDE)
 IF(C(L),NE.O)GE TO 12
 P=0
 GO TQ 23 UCL.14700
 12 P=X/C(L) - _ . . UCL14710
 12 IF(D(LI.NE.O)GO TA 13 UCL14720
    ```

```

 O=0
 G0 Te 14
 UCL14730
 UCL14740
 UCLL14750
 13 Q=Y/D(L)
 14 WRITE(6,103)A(L),B(L),P,Q
 103 FGRMAT (6X,1PE11.4,3X,1PE11.4,6X,1PE11,4,3X,1PE11,4)
 UCL14760
UCL14770
UCL }1478

```

2 cevtinue
RETURA
ENJ
SUBREUTINE EQUAL (I;J,N,NTIMES)
H.F.SKRENT U.C.L.A.

CGMMEN/BITS/K (3000)
IF (NTIMES.GT.O)GG TA 2
IF (I:LT•O)II=(IABS (I)-1)*IABS(NTIMES)
\(\{F(J \cdot L T \cdot 0) J 1=(\operatorname{IABS}(J)=1) * I A B S(N T I M E S\}\)
IF (I.GT.OSII = 300 \({ }^{\circ}+(\) NTIMES*I)
IF (J.GT.O) \(J 1=3000+(\) NTIMES*J)
GOTE 3
\(12=-1\)
\(Ј て=-1\)
IF \((1, L T \cdot 0) 12=99\)
IF(J.LT.0) J" \(=99\)
I1 =NTIMES* (IABS(I) +I2)
\(\mathrm{J}_{1}=\mathrm{NTIMES} *(\operatorname{IAES}(\mathrm{~J})+J Z)\)
N1=IABS(MTIMES)
DE1H=2N1
\(M 1=I 1+M\)
\(V_{2}=\sqrt{2} 1+M\)
L =V (K (M1),K (M2))
RETURN
END
FUNETIEN LGR(I, J)
H.F.OKRENT
U.C.L.A. 1967

LOGICAL KIMI
EQUIVALENCE \((K 1, K),(L 1, L)\)
LAR=0
\(K=1\)
\(L=J\)
K \(1=K 1 \cdot \theta R \cdot L 1\)
I = K
RETURN
ENO
FINETIGN LOX(T,J)
H.F.9KRENT

U•C.L.A.
LoGICAL K1:L \(1, \mathrm{Mi}\)
EQUIVALENCE \(\left(K_{1}, K\right),(L 1, L),\left(M_{1}, M\right)\)
\(\operatorname{LaX}=0\)
\(K=1\)
\(L=J\)
\(11=K 1 \cdot A N D . L 1\)
\(J=J-M\)
\(I=I-M\)
RETIFN
FND
FUNCTIAN IST日R (I, J)
H.F. AKRENT

LSTER=0
\(I=J\)
RETDRN

UCL-14790
UCL 14800
UCL14810
UCL 14820
UCL 14830
UCL 14840
UCL 14850
UCL14860
UCL 14870
UCLI 14880
UCL 14890
UCL14900
UCL14910
UCL 14920
UCL 14930
UCL 14940
UCL14950
UCL 14960
UCL14970 UCL 14980 UCL 14990 UCL 15000
UCL 15010
UCL15020
UCL 15030
UCL 15040
UCL 15050
UCL 15060
UCL. 15070
UCL. 15080
UCL 15090
UCL15100
UCL 15110
UCL15120
UCL 15130
UCL 15140
UCL 15150
UCL15160
UCL15170
UCL. 15180
UCL15190
UCL15200
UCL 15210
UCL 15220
UCL 15230
UCL 15240
UCL 15250
UCL 15260
UCL 15270
UCL 15280
UCL 15290
UCL 15300
UCL15310

```

C
SUBRQUTINE UNPA (I J.NN) U.E.L.A.-.
COMMEN/BITS/L(マール, (1)
COMMON/NTIMES/ TVIES
K=-1
II=NTIMES*(IABS (I) +K)
DOSM=1,NTIMES
Na!I+M
_CONIINUE
J=0
RETURN

```

```

 -
 N
 M=1
 IF(N2GT.NN)GE TO }
 IF(N1.LE-30)GETO 5
 M=M+1
 N1=N1*30-----------------------
 5. Mq=I1+M
    ```

```

 K=Lex(L (M1),J)
 IF(J.EQ-O)GETO I
 NaN+1
    ```

```

 GO TO 6 UCL15590
    ```


```

 ENDDE
 END
 SUBr0UTINE CALC
 C

```

```

 EVALUATES CURRENT EQUATIONS BY BIT MANIPULATION UCL15640
 INTEGER "TARGET, ERIGINTYYPE,BRANCH*
 INTEGER ERR UCL15670
 COMMGN/NTIMES/NTIMES
 UCL15670
 EXTERNAL LOX,LOR
 COMMON/ERRJERR
 COMMON/CIRCIT/CARD(50,12),TYPE(50),GENER(50)IORIGIN(50),TARGET(5
 10'%,INPUY,GUTPUT,NE
 O)
 COMMON/BITS/LINKS(500),BRANCH(20Q),NQ(100),NEL(100);NBR(1000),NS(10UCL15730
 IO);AMOD(1900),DEP(50,13),NNGOES,INEDE (100),NEL(100),NBR(100),NS(10UCL15730
 WRITE(6.199) (DE (50.13)ONNOES2.
 WRITE(6,199)
 UCL15750
 199
 c NT IMESE((NE=1)/30)+1
FQRMÄT(}
NQ(INQDE)=1
UCL15780
NB=0
NN=O
DO3OI=INODE,NNEDES
NEL(I)=O
UCL15800
UCL15810
UCL15820
UCL15830
UCL15840

```

```

 BRANCH(L)=-I
 L=NS(K)
 BRANCF'(L)=1
 NS(J)=NS(J)+1
 NS(K)=NS(K)+1
 7 CONTNUF
JNODE =INODE+1
25 K=0
J=0
C SEARCH FER THE FIRST CUT-SET AND EQUATION
Dg2zI=JNgDE,NNGDES
IF((%-EO.0)-AND•(NSR(I)-EQ.I))J=I
IF((K.EQ.0).AND.(NSR(I)\cdotGT.1))K=I
IF((K.NE,O).AND.(J.NE.0))GE TO 24
22 CONTINUE
if NENE is FgUND, SOLUTION is COMPLETE
IF(K.EQ.O)GO TO 23
ERR=1
WRITE(64207)
207 FERMAT(10x,1**** SOLUUTION IS IMP日SSIBLE DUE TO A LOOP CONCERNING
1HE FOLLOWING NSDES-1)
DE6I= JNGDE,NNODES
6 IF(NER(I).NE.0)WRITE (6,208)I
208 FORMAT(85X,I3)
RETURN
24 N3=NO(J)
DO2GI=K,NNODES
IF(NBR(I).LE.1)GO TE 26
L=NBR(I)
N5=NQ(I)+L-1
DE8M=1,L
N4=NO(I)+M-1
IF(IABS(BRANCH(N3)).NE,IABS(9RANCH(N4)))GE TO 8
N1=1
N2=-1
IF(faRANCH(N3)*ERAVCH(N4)):LT•O)GE TO 13
N1=-1
N2=1
13 CALL EQUAL(I,J*N1,LOR,NTIMES)
CALL EQUAL(-I,U*N2,LQR,NTIMES)
CALL EQUAL(1,-1,LEX,NTIMES)
BRANCH(N4)=BRANCH(N5)
NBR(I)=NBR(I)-1
G8 TE 26
8 CENTINUE
26 CENTINUE
NGR(J)=0.
GA TO 25
23 DE1OI=JNADE,NNEDES
IF(NO(I).EQ.NG(I+1))G0 T0 10
J=NQ(I)
K=NTIMES*(I-1)
M=NTIMES*(I+99)
UCL16380
UCL16390
UCL16400
UCL16410
UCL16420
UCL16430
JCL.16440
UNL16450
!rL16460
~irL16470
UCL16480
urL16490
UCL16500
UCL16510
UCL16520
UCL16530
UCL. }1654
UCL16550
UCL16560
TUCL16570
UCL16580
UCL16590
UCL16600
UCL16610
UCL16620
UCL16630
UCL16640
UCL16650
UCL16660
UCL16670
UCL16680
UCL16690
UCL16700
UCL16710
UCL16720
UCL16730
UCL16740
UCL16750
UCL,16760
UCL.16770
UCL16780
UCL16790
UCL16800
UCL16810
UCL16820
UCL16830
UCL16840
UCL 16850
UCL16860
UCL16870
UCL16880
UCL16890
UCL16900

```
A-32
```

 WRITE(6,201)I,BRANCH(J))(LINKS(K+L),LINKS(M+L),LF1,NTIMES) UCL16910
 201 WRITE(6,201)I,BRANCH(J),(LINKS(K+L),LINKS(M+L),L=1,NTIMES)
 10 CENTINUE
 RETURN
 END
 SUBROUTINE INBIT(I,J,NTIMES)
 H.F.OKRENT U.C.L.A. }196
 COMMON/BITS/K(3000)
 N=,\hat{1}
 L=J
 IF(I,LT-0)N=99
 M=(NTIMES*(IABS(I) +N)) +1
 IF(NTIMES.LT*O)M=3DNO1-(IABS(NTIMES)*I)
 IF(J.EQ.0)GO TO 3
 IF{L:LE:30)GO TO 1`
 L=L-30
 M=M+1
 GO FO 2
 K(M)=K(M)+(2**L) \cdots\cdots
 RETURN
 M=M-1
 N=IABS(NTIMES)
 DO+L=1,N
 4 (DOHL=1,N
4\quad K(M+I)=0
END
SUBROUTINE GRAPH
H.F.OKRENT FLEWGRAPH.L.A. DATA 1967
COMMON/DATA/C,AI,R,AL,E,AJ,D,AMOD(2),AV,BMOD(6),PNT,BLANK
INTEGER SENS
INTEGER BRANCH,ADDR
INTEGER GENER,S
INTEGER TYPE,TYP
DIMENSION BRANCH(200), ADDR(100)
DIMENSION BRANCH(200),ADDR(100)
COMMEN/BITS/LBITS(3000),DEP(50,13),NNADES,INQDE,XMOD(648),TYP(50)
COMMEN/GITS/LBITS(3000),DEP(50,13),NNADES,INQDE,XMOD(648),TYP(50)
10), INPUT, QUTPUT, VE
CGMMON/DATHS/LPATH(300,2),VPATH(300),S(300),NPATH
EQUIVALENCE (LBITS(501),BRANCH(1)),(LBITS(701),ADDR(1))
NPATH=0
De 1\hat{NO I=1,NE}
TYP(I)=TYPE(I)
S(NPATH+1)=0
VPATH(NPATH+1)=VPATH(I)
IF(DEP(I,1).NE.BLANK)GO TO 11
IF(GENER(I)PEO.1)GG TA 100
INSERT PATHS DUE
TO IMPEDANCES
NPATH=NPATK+1
LPATH(NPATH,1)=1
LPATH(NPATH,2)=I+NE
IF(TYPE(I).FQ.1)GO TO 12
UCL16920
UCL16930
C.
LM
UCL16940
UCL16950
UCL16960
UCL16970
UCL16980
UCL16990
UCL17000
UCL17010
UCL17020
UCL \$7030
UCL17040
UCL17050
UCL17060
UCL17070
UCL17070
M(M)=K(M)+(2**L) -- - UCL17090
1
UCL17100
UCL17110
UCL17120
UCL17130
UCL17140
UCL17150
UCL17160
UCL17170
C
UCL17170
UCL. 169101967967
UCL16930
U.C.L.A.
*
UCL17080
MCL17110
UCL17190
UCL17200
UCL17210
UCL17220
UCL17230
UCL17240
UCL17250
UCL17250
UCL17260
UCL17270
UCL17280
UCL17290
UCL{7290
UCL17310
UCL17320
UCL17330
UCL17330
UCL17350
UCL17360
UCL17360
UCL17370
C
UCL17390
UCL17400
UCL17410
UCL17420
UCL17430

```

```

 LPATH(NPATH,2)=J+NE
 VFATH(NPATH)=X
 IF(GENER(X)\cdotEQ.GENER(J))VPATH(NPATH)=*X
 S(VPATH-1)=0
 S(NPATH)=0
 GA TA 4
 V=-N
 x=-1.
 T0 TeG
1 CONTINUE
RETURN
FND
SUBROUTINE LOEPS

```

```

 LOGICAL LPGIC(3000),LOGIC1 UCL18120
 INTEGER SMIN,SMAX,GMIN1,SMAX1,SMINO1,SMAXOI,SMINOO,SMAXOO,SMIN1O, UCL.18130
 *SMAX1C
 INTEGER GAG,COUNT(IOO),FLAG,S,SENS,QRDER UCL18150
 EXTERNAL LYR,LSTGR
 rE^MMSN/GAG/GAG(2n),NSEV,SENS(50)
 CFMMNN/PGLY/VNJ1(121,20),VNOO(101,20),VN10(101,20),5MAXO1(20),
 *SMI.NO1(20),SMAXOつ(20),SMINOO(20),SMAX10(20),SMIN10(20)
 CEMMON/CIRCIT/CARD(50,12),VV(101,2),NE,SMAX,SMIN UCL18210
 TEMMAN/SPEED/V (1,ION),LS(1000),NLQAP UCL1822O
 CAMMFA/NTIMES/MTIMFS
 CEMM&N/GITS/LEGP(3NGO),LPATH(300, 2),VPATH(300),S(300),NPATH, BRDER(UCL18240
 1100),N(Q)E(1CO)
 COMMAN/FLAG/FLAG
 OIMENSIGA SMIN(2),SMAX(2)
 DIMENSIGN VMO1(\hat{cOLG),VYOO(2020),VM10(2020)}
 DIMENSIGNVM(2J2)
 EGUIVALENCE (VNO1(1,1),VMO1(1)),
 *(VNO_(1,1),VMOJ(1)),(VN1O(1,1),VM10(1))
 E@UTVALENCE (LצBP(1),LOGIC(1)),(LOGIC1,M1)
 EQUIVALENCE (ORDER(1),COUNT(1)),(VN(1,1),VM(i)) UCL 18330
    ```

```

 300 FARMAT(/1X,ITHE UNKNOWN TRANSMITTAVCE GOES FRQM NODE1,I3,1 TEI,I3)
 C
 INITIALISE
 NN=2*NE
 DORI=1,VN
 NGDE (I)=0
 CEWNT (I) =0
 D010I=1.202
 VM(I)=C.0
 \etae 99 I=1,2220
 VNO!(I)=0.0
 VNOO(I)=0.0
 79 vN 10(I)=0.0
 DA 2% I = 1,22
 GMAX 1(I)=0
 SNIN二1(I)=C
 UCL17970
 UCL17980
 UCL17990
 5
UCL18000
UCL 18010
UCL18020
UCL18030
UCL18040
UCL18060
SUBRYUTINE LOEPG UCL18080
UCL18090
C
UCL18230
(UCL18240
UCL18250
UCL 18260
UCL18270
UCL18270
UCL.18280
UCL18290
UCL18300
UUCL18310
$\mathrm{VM}(\mathrm{I})=0.0$
)e $99 \quad I=1,2220$
VNJI(I) $=0.0$
$V^{N} 00(I)=0.0$

```


A-36


```

 2 7
 D日C55=1,NLOAP
 UCL19560
 IF(NSEN.EQ.O)GO T- :80
 J=LS(I)
 K8=21-NSEN
 D0 979 K9=K8,2G
 LeC=21-Kg
 IF(J.GT.GAG(LOC) -500)G0 TE 998
 CALL REDUCE (J, -, <2)
 IF(r2.EQ.2)GO T 8j0
 VNOO(K3+51,L0C)=VN30(K3+51,LAC)+V(I)
 SMAXOO(LEC)=MA, (SMAXOO(LOC),K3)
 SMINOC(LAC)=MI O(SMINOO(LOC),K3)
 GE TO }97
 800
 VNO1(K3+51,LOC)=VN01(K3+51,LOC)-V(I)
 SMAXO1(LOC)=MAXO(SMAXO1(L0C),K3)
 SMINO1(LAC)=MINO(SMINOI(LOC),K3)
 GO TE }97
 998 J=J-GAG(LGC)
 CALL REDUCE (\,k3,K2)
 IF(K2,EO.2)GO TO 979
 VN10(K3+51,LAC)=VN10(K3+51,L0C)+V(1)
 SMAX1O(LEC)=MAXO(SMAX1O(LOC),K3)
 SMINLO(LEC)=MINO(SYIN1O(LOC),K3)
 979 CONTINUE
 280 JaLS,I)
 CALL REDUCE (J,KgsK)
 SMAX(K)=MAXO(SMAX(K),Kg)
 SMIN(K)=MINO(SMIN(K),Kg)
 VN(K9+51,K)=VN(K9+51,S)=V(I)
 25 Centinue
 OBTAIN HIGHER ORDER LOOP VALUES
 C
14 I=
WRITE(6,990)NL-0OP
990 FGRMAT(1 NG OF FIRST ORDER LG0PS=1,13)
0RDER(1)=1
17 GROER(I+1)=\operatorname{ARDER(I)}
c CHECK FOR MORE FIRST ORDER LOQPS
IF(1-EQ•1)NRITE(6,999)昭的(1)
IF(0RDER(1),GE•NLEOP)RETURN
GRDER(I+1)=0RDER (I+1)+1
IF(0RDEQ(I+1).LENNLOOP)GO TG 18
I=I-1
ge Te 16
18 IF(I,LE:O)G0 TO 24
N=0RDER(I)
M=0RDER(I+1)
L=NLABP+I
IF(I,GT.1)N*L-1
I1=NTIMES*(L*1)
J1 =NTIMES*(M-1)
K1=NTIMES*(N-1)
DO10IMM=1,NTIMES

```

UCL 19560
UCL 19570 UCL 19580 UCL 19590 UCL 19600 UCL19610 UCL 19620 UCL 19630 UCL 19640 UCL 19650 UCL19660 UCL19670 UCL 19680 UCL 19690 UCL 19700 UCL 19710 UCL 19720 UCL19730 UCL19740 UCL 19750 UCL19760 UCL 19770 UCL19780 UCL19790 UCL 19800 UCL 19810 UCL19820 UCLI 19830 UCL 19840 UCL 19850 UCL 19860 UCL 19870 UCL 19880 UCL19890 UCL． 19900 UCL19910 UCL 19920 UCL 19930 UCL 19940 UCL 19950 UCL19960
UCL19970
UCL 19980
UCL． 19990
UCL 20000
UCL 20010
UCL 20020
UCL20030
UCL 20040
UCL 20050
UCL20060
UCL20070
UCL20080
```

 LAGIC1=LAGIC(J1+MM)*AND.LEGIC(K1*MM)
 IF(N1.NE.O)GO TO 1s
 C STER THE LBOP OF ORDER I+T
701 LOGIC(I1+MN)=L9GIC(J1+MM).OR.LOGIC(K1+MM)}\mathrm{ UCL20120
V(L)=V(V)*V(M)
LS(L)=LS(N)+LS(M)
IF(VSEI-ER.O)GA TA 281
J=LE,L)
K8=21-1 SEN
09 799 K9= <8,20
LEC=21-<9
IF(J,GT.GAS(LSC) -500)G9 TO 798
CALL REDUCE(J,<3,K2)
IF(r2.EO.2)OS T0 850
VNOO(K3+51,LAC)=VN90(K3+51*LOC)=(V(L)*((-1)**(I+1)))
SM AOC(LAC)=MAAC(SNAXOO(LAC),K3)
SMINOC(LOC)=MINO(SNINOO(LOC),K3)
se T6 799
850 VNO1(K3+51,LOC)=VN21(K3+51,L0C)+(V(L)*((-1)**(I+1)))
SMAXO1(LAC)=MAXO(SMAXO1(LBC),K3)
SNIV2I(LSC)=MIVO(S1INO1(LOC),K3)
G@ TG 799
798 J=J=GAB(LAC)
CALL REDUCE(J, イタ, K2)
IF(K2.EV.2)OQ TO 709
VA10(K3+51,L日C)=VN10(K3+51,L0C)-(V(L)*((*1)**(I+1)))
SNAX1O(LAC)=MAXO(S4AXIO(LOC),K3)
SFAXIO(LAC)=MAXO(S4AX1O(L, CO) SK)
799 CONTINUE
281 J=LS,L)
CALL REDUCE(J,K9,K)
SMAX(K)=MAXO(SMAX(K),Kg)
SMIM(K)=MIVO(SMIN(<),Kg)
VN(Kg+51,K)=VN(Kg+51,K)+(V(L)*((-1)**(I+1)))
24 I= I+I
ge to 17
E\
Subrautiam CLEAR
H.F.OKPENT U.C.L.A. 1967
IATEGERS
EXTERNAL LSTOR
COMMON/NTIMES/NTTMES
N=0
DEII=1,NPATH
IF(LPATd(I,1),EЭ•0)GG TO 1
N}=\textrm{N}+
LPATH(N,1)=\operatorname{LPATH}(1,1)
LPATH(N,C)=LPATH(I,2)
CALL ENUAL(N,I,LSTGR, -NTIMES)
VFATH(I)=VPATH(I)
S(V)=S(I)
CANTINUE
UCL20090
UCL20100
UCL20110
UCL20120
UCL20130
UCL20140
UCL20150
UCL20150
UCL20170
UCL20180
UCL20190
UCL20200
UCL20200
UCL20210
UCL20220
UCL20230
UCL20240
UCL20250
UCL20260
UCL20270
UCL20280
UCL20290
UCL20300
UCL20310
UCL20320
UCL20330
UCL20340
UCL20350
UCL20360
UCL20370
UCL20370
UCL20380
UCL20390
UCL20400
UCL,20410
UCL20420
UCL20430
UCL.20440
UCL20450
UCL20460
UCL20460
UCL20470
UCL20480
UCL20490
UCL20500
UCL20510
UCL20510
UCL20520
UCL20530
UCL20540
UCL20550
UCL20560
UCL20570
UCL20570
UCL20590
UCL20590
1
UCL20600
UCL20610

```
```

 NPATH=\ UCL20620
 qETURA
 EN2
 SUOROUTIVE REDUCE(I,J,K)
 S. GRANOI U.C.L.4. 1969
 INTEgER tag
 CEM,1<N/GAG/TAG(20),NSEN,SENS(50)
 K=1
 J=1
 IF(YSEN.EQ.O)GO TO 2
 M=?I-NSEN
 DE :L=M,20
 IF(J.GT•TAG(21-L)-500)J=J-TAG(`1-L)
 1 CEvTINUE
 2 IF(J.LT.500)RETUPN
 J=J=1C00
 K=?
 RETURN
 END
 SU3pRUTINE MULT(A,2,C, MMINA,NMAXA,NMINB,NMAXB,
 S* GRANDI U.C.L.A. 1969
 quLTIPLIES TWE DOLYvOMIAL.S
 DIMENSION A(101),B(101),C(101)
 ZERE ANSWER
 OE 1 I=1,1C1
 1 C(I)=0.0
 LIMITS EF MULTIPLICATION
 IMIMA= MINA+51
 IMA XA=NMAXA+51
 IMI, AB=NMINS+51
 IMAXB=NMAXB+51
 NULTIPLY
 DG 2 I=INI NA,IMAXA
 DE z J=IMINB,IMAXB
 2 ((I+J*51)=C(I+J-51)+A(I)*B(J)
 RETURN
 FN)
 \
 SUBROUTINE SENSC UCL20990
 C GOGRANDI U.C.L.A. 1969
C GOGRANDI U.C.L.A. 1969
INTEGEP GAC,SENS
INTESEP SMIN,SMAX,SMIN1,SMAX1,SMINO1,SMAXO1,SMINOO,SMAX00,SMIN1O,
*SMAX`O
DIMENSION SMIN(2),SMAX(2)
DIME SIEN G(101)'S(101)
CQMMON/GAG/GAG(20),NSEN,SENS(50)
COMYON/AITS/VNSEN(101,2,20),SMAX1(20),SMIN1(20)
COMMFN/PELY/VNC1(101,20),VNOO(101,20),VN10(101,20),5MAXO1(20),
*SMIVO1(20),SMAXOO(20),SMINOO(20),SMAXIO(20),SMIN1O(20)
COMMgN/CIRCIT/CA-D(50,12),VN(101,2),NE,SMAX,SMIN
DA 3.5 I1=1,NF
IF(SENS(II).EQ.O)G的 TO 305
DE 3%6 II =1,NGEN
UCL20630
UCL20640
UCL20650
UCL20660
UCL20660
UCL20670
UCL20680
UCL20690
UCL20700
UCL20710
UCL20720
UCL20730
UCL20740
UCL20750
UCL20760
UCL20770
UCL20780
UCL20790
UCL20800

```

```

C
C
UCL20810
UCL20820
UCL20830
UCL20840
UCL20850
UCL20860
UCL20870
UCL20880
UCL20890
UCL20900
UCL20910
UCL20920
UCL20930
UCL20940
UCL20950
UCL20960
UCL20970
UCL20980
UCL21000
UCL21010
UCL21020
UCL21030
UCL21040
UCL21050
UCL21060
UCL21070
UCL21080
UCL21090
UCL21090
UCL21120
II=1,NGEN (UCL21130
UCL21130

```

```

 306 CENTINUE
 C CHECK FER \̌ZRR VNNO1
307 DE 701 I=1,101
701 CONTINUE
Go Te 720
C NGN ZERG VNOI
710 CALL MULT(VN(1,1):VNO1(1;II);G;SMIN(1),SMAX(1),SMINO1(II);
*Smax01(II))
CALL MULT(VN(1,2),VNOO(1,II),B,SMIN(2),SMAX(2),SMINOO(II),
*SMAyOO(II))
DG 7C2 I=1,101
702 VNSEN(I,2,[I)=G(I)+B(I)
CALL MULT(VN(1,1),VN(1,2),VNSEN(1,1,II),SMIN(1),SMAX(1),SMIN(2),
*SMAX(2))
SMIN1(II) =MINO(SMIN(1)+SMIN(2),SMIN(1)+SMINDI'(II),SMIN(2)*
*SMINOO(II))
SMAX1(II)=MAXO(SMAX(1)+SMAX(2);SMAX(1)+SMAXOİ111),SMAX(2)+
*SmaxOO(II))
GO TE 800
C ZERE VNOI
720 De 703 I=1,101
VNSEN(I,Z,[1)=VNOO(I,II)
703 VNSEN(I,1,1I)=VN(I,I)
SMIV1(II)=MINO(SMIVOO(II),SMIN(1))
SMAXI(II)=MAXO(SMAXOO(II),SMAX(1))
800 CALL ANSWER(VNSEN(1,1,II),SMAXI(II),SMINI(II);II)
305 CONTINUE
RETUFN
END
SUSROUTINE ANSWER(VN,SMAX,SMIN,ITAG)
C DAVID PALETZ U.C.L.A. 1967
DIMENSIGN VN(101,2)
CGMMON/CIPCIT/CARD(50,12)
CAMMON/SPEED/NEXPS(100,2),AS(100,2),ASIGN(100,2),LINE(132),NUM(50,UUCL21500
13),JUNK(119)
INTEGER BLANK,SMAX,SMIN,ASIGN,PLUS,MINUS,AS,GINE
CEMMAN/DATA/AM9D(11),NS,BMBD(5),BLANK,PLUS,MINUS
COMMEN/X/IDEC(10)
COMMON/BITS/F1(4096),VM(101,2)
DE1I:1,100
AS (I;1)=NS
1 AS (I, 2)=NS
C
L=51+5M1A
K=SMAX-SMIN+1
C SKID A PAGE AND WRITE HEADING
IF(ITAG.EQ.0)WRITE (6,201)
201 FORMAT('1','TRANSFER FUNCTIONT//)
IF(ITAG.EO,-1)NRITE (6,220)
220 FGRMAT('11,ISGUARE OF WORST CASE TOLERANCEI//)
IF (ITAG.GT,0)WPITE (6,210)(CARD(ITAG,J), \=1,12)

```
                A -41
                    NOT
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{\(c^{210}\)} & FGRMAT (!1', 'SENSITIVITY TO 1,12A1//) & UCL-21680 \\
\hline & SETtiNg the rijmerator if j=2 and the denoyinator when & \[
J=1 \text { UCL } 21690
\] \\
\hline & \(J=2\) & UCL21700 \\
\hline c & FAN IS THE NUMERATOR FACTOR, FAD IS THE DENOMINATOR FACTOR & UCL21710 \\
\hline 11 & \(K K=5 \overline{1}+S^{M} A X\) & UCL21720 \\
\hline 3 & 1F(VN(KK, J) NE - O.) GO TO 7 & UCL21730 \\
\hline & "K=くK=1 & UCL21740 \\
\hline & Ge to 3 & UCL21750 \\
\hline \multirow[t]{10}{*}{7} & IF (J.ET. 2 FAN=VN(KK, J) & UCL21760 \\
\hline & IF (J.EQ, 1) FAD \(=V A(K \prec, J)\) & UCL21770 \\
\hline & De21 \(=1\), & UCL21780 \\
\hline & ASIGP (I,J) \(=\) PLUS & UCL21790 \\
\hline & \(\operatorname{VEXPS}(1, \mathrm{~J})=\mathrm{I}-1\) & UCL21800 \\
\hline & \(V \times(I, J)=V N(L, J)\) & UCL. 21810 \\
\hline &  & UCL21820 \\
\hline &  & UCL21830 \\
\hline & JF(J.En.1)VM(1, J) V VM(1,J)/FAD & UCL21840 \\
\hline &  & UCL21850 \\
\hline \multirow[t]{6}{*}{\(4 \begin{array}{r}4 \\ 6 \\ 6\end{array}\)} & \(\operatorname{VM}(1, J)=-\operatorname{VM}(1, J)\) & UCL21860 \\
\hline & ASIGN(I, J) =MIMUS & UCL21870 \\
\hline & Ge \(\mathrm{T}^{\circ} 5\) & UCL21880 \\
\hline & \(\operatorname{VEXPS}(1, \mathrm{~J})=0\) & UCL21890 \\
\hline & AS (I, J) = BLANK & UCL21900 \\
\hline & \(L=L+1\) & UCL21910 \\
\hline \multirow[t]{11}{*}{5} & CPNTINUE & UCL21920 \\
\hline & \(\operatorname{IF}(A S I G N(1, J) \cdot E Q \cdot P L U S) A S I G N(1, J)=B L A N K\) & UCL21930 \\
\hline & AS \((1, J)=5 L\) AAK & UCL21940 \\
\hline & De 4 C N \(=1, \mathrm{~K}\) & UCL21950 \\
\hline & IF (NEXPS (N,J) -GE. 10) Ge Te 41 & UCL21960 \\
\hline & LEXPS \(=\) NEYPS(N,J) 1 & UCL 21970 \\
\hline & NUX \((N, 3)=10 E C(L E X P S)\) & UCL21980 \\
\hline & IF (LFXPS .EG. 1 , \(\theta\) (R. LEXPS .FQ, 2) NUM (N,3) =BLANK & UCL21990 \\
\hline & \(\operatorname{NUM}(\mathrm{N}, 2)=\mathrm{BLANK}\) & UCL22000 \\
\hline & NUM(Ne1) = BLANK & UCL22010 \\
\hline & ge Te 42 & UCL22020 \\
\hline \multirow[t]{7}{*}{41} & IF (NEXPS (N,J) . GE. 100) GO T® 42 & UCL 22030 \\
\hline & IARG \(=\operatorname{AEXFS}(\mathrm{N}, \mathrm{J}) / 10\) & UCL22040 \\
\hline & LEXPS \(=\) NEXPS \((N, ل)-10 * I A R G\) & UCL22050 \\
\hline & NUM(A)3) \(=1\) DEC(L5:PS+1) & UCL22060 \\
\hline & NUM ( 1,2\()=\operatorname{IDEC}(14 R G+1)\) & UCL22070 \\
\hline & \(\operatorname{NUM}(\mathrm{n}, 1)=8 \mathrm{LANK}\) & UCL22080 \\
\hline & GE TO 40 & UCL22090 \\
\hline \multirow[t]{7}{*}{42} & IARG \({ }^{\text {NEXPS }}(\mathrm{N}, \mathrm{J}) / 102\) & UCL22100 \\
\hline & LEXPS=NEXPS (N, J) - 10 O*IARG & UCL22110 \\
\hline & LEXPS \(=\) LEXPS/10 & UCL22120 \\
\hline & LEXPS2 \(=\) LEXPS-10*LEXPS 1 & UCL22130 \\
\hline &  & UCL22140 \\
\hline &  & UCL22150 \\
\hline &  & UCL-22160 \\
\hline 40 & Cevtinue & UCL22170 \\
\hline & NBES:1 & UCL22180 \\
\hline 8 & NEND \(=\) NPEG +7 & UCL22190 \\
\hline & IF (NEND.GF.K)AG TA 9 & UCL.22200 \\
\hline
\end{tabular}
```

 WRITE(6,_02)((NUM(1,I),I=1,3),M=NBEG,NEND)
 202
 FgR:AAT(1HO,8(11X,3A1))
 N2ITE(f,204)((ASITM,(I,J), VM(I,J),AS(I,J)),I=NBEG,NEVD)
 204 FARMAT(1H,8(A1,1PE10.3,A1,2X))
 NRES=* 2EG+8
 3日 Ti R
 9 IENDK
 ARITE (6,2OZ)((NUM(Y,I),I=1,3),M=NBEG,NEND)
 AQITE(6,\tilde{c口4)((ASIG`(I,J),VM(I,J),AS(I,J)),I=NBEG,NEND)}
 IF(J.EO.1)GO TO 10
 C NEITING THE DIvISION LINE
IF(K,GE. \delta)GE TO 13
LEND=K
TETET4
13 LEND:8
14 LTOTAL=LENO*14
De 15 I=1,132
15 LIVE(1)=2LANK
OE 16 1=1,LTOTAL
16 LINE(i)=MINUS
NRITE(6,203)(LINE(I),I=1,LTOTAL)
203
FgRMAT(/132A1/)
L=5i+SMIN
K=SMAX-SMIN+1
J=1
go TO 11
FACT IS THE FUNCTION FACTOR
10 FACT=FAN/FAD
Writs(6,2Cn)FACT
205 FGRMAT(//1 THE FUNETION FACTOR = 1,3X,1PE10,3///)
NRITE(6,209)VN
209 FER1AT(1X,1P1CE13.5)
RETJPN
EN()
SUBROUTINE WORSTC
S. GRANDI H.C.L.A. }196
calculates herst case tolerance
IHTEGER SE\S,S*AXR,SMIN2,SMAX1,SMIN1,SMIN,SMAX
CAMMGM/NARST 1/ Wh RET,VA(101,2),TOL(50),SMAX2,SMIV2
CPYMGA/GAG/GAG(20), NSEN,GENS(50)
C2M,9N/BITS/VNSE'(101,2,20),SMAX1(20),SMIN1(20)
C
JIMENSIGN VWERKN,171),VW1(101),VW2(101),SMIN(2),SMAX(2)
I*ITIALIZE
I =5`1\(1)+51
I
NDEY=0
MAX1=0
MIv1=0
MAXR=C
N1v2=C

```

UCL22210
UCL22220
UCL22230
UCL 22240
UCL22250
UCL22260
URL22270
UCL22280
UCL22290
UCL22300
UCL22310
UCL22320
UCL22330
UCL.223340
UCL22350
UCL22360
UCL22370
UCL22380
UCL22390
UCL22400
UCL22410
UCL22420
UCL22430
UCL22440
UCL22450
UCL22460
UCL22470
UCL22480
UCL22490
UCL22500 UCL22510 UCL22520 UCL22530 UCL 22540 UCL 22550 UCL22560 UCL22570 UCL22580 UCL22590 UCL22600 UCL22610 UCL22620 UCL22630 UCL 22640 UCL22650 UCL22660 UCL22670 UCL22680 UCL22690 UCL22700 UCL22710 UCL22720
UCL 22730
```

 DQ i I = 1,101 (I)=0.0 UCL22740
 VM1(I)=0.0
 VW2(I)=0.0
 VW(1,1)=0.0
 UCL22750
 UCL22760
 1 VW(1, E)=0.C
 OETAIN SENSITIVITY SENSITIVITY FCNS FOR ALİ VALID ELEMENTS
 NSEN1=0
 DA ic K=1, NE
 IF(SENS(K).EO-0)SO TA 10
 SOUARE THE TALEPANCE
 TOL1=TOL(K)*TOL(K)
 NSEN1=NSEN1+1
 SGUAQE SENSITIVITY FUNCTION
 CALL NULT(VNSEN(1,?,NSEN1),VNSEN(1,2,VSEN1),VWORKN,
 VMMI =S'\IN1(NSEM1)+SMIV1(NSEV1) UCL22880
 W.MAX=SMAX1(NSEN11)+SMAXI(NSEV1)
 L=51+NNMIN
 M=51+NA MAX
 FINE TYPE OF DENQM
 J1=4INO(SMIN1(NSENj)+51,II)
 JE=WaXO(SMAX1(NSEN1)+51,I1)
 D日 20 J= J1, J2
 IF(V (J.1).NE.VNSEV(J,1,NSEN1))GO T0 21
 20 CONTINUE
 DENOM SAME AS TRANSFER FUNCTION
 00 11 J=L,M
 11VW1(J)=ViN1(J)+TAL1*VWERKN(J)
 *AK1=MAXO(YAXI,RINMAX)
 MIN1=MINO(MIN1,NNMIN)
 GE T3 10
 OFNGY NOT SAME AS TRAVSFER FCN
 21 IF(NDEM,NE.1)NDEM=1
 DE 1, J=L,M
 12 VwC(J)=VW2(J)+TOL1*VWORKN(J)
 MAXZ=MAXO(MAXZ,NNM4X)
 MIVE=MIVO(1IN2,NVYIN)
 10 CENTINUE
 GET FLNCTIEN
 IF(NDEM.EO.O)GO T9 30
 GOTH TYPES PRFSENT
 CALL M!MLT(VN(1,2),VN(1,2),VW9RKN,SMIN(2),SMAX(2),SMIN(2),SMAX(2))
 N1 =SMIN(2) +SMIN(2)
 N2=SMAX(2)+SMAX(2)
 CALL MULT(V1, VW&RKN,VW(1,2),MIN1,MAXX1,N1,N2)
 De 31 I=1,101
 31 VW(I,2)=VW(1,2)+VW2(1)
 CALL MULT(VN(1,1),VN(1,2),VNGRKN,SMIN(1),SMAX}(1),SMIN(2),SMAX(2)
 SMIN2=SMIN(1)+SMIN(2)
 , UCL23200
 UCL.23220
 SMAX2=SMAX(1)+SMAX(2)
 UCL23230
 CALL MULT(VHARKN,VMERKN,VW(1,1),SMIN2,SMAX2,SMIN2,SMAX2) UCL23240
 GMIN2=S{INP+SMIN2
 UCL23240
 SMAXZ=S4AX2+SMAX2
 UCL23260

```


```

UCL23800 UCL23810 UCL23820 UCL. 23830 UCL23840 UCL23850 UCL23860 UCL23870 UCL23880 UCL23890 UCL23900 UCL23910 UCL23920 UCL23930 UCL23940 UCL23950 UCL 23960 UCL23970 UCL23980 UCL23990 UCL24000 UCL24010 UCL24020 UCL24030 UCL24040 UCL 24050 UCL24060 UCL24070 UCL24080 UCL 24090 UCL24100 UCL24110 UCL24120 UCL24130 UCL24140 UCL24150 UCL24160 UCL24170 UCL24180 UCL24190 UCL24200 UCL24210 UCL24220 UCL24230 UCLE4240 UCL. 24250 UCL 24260 UCL24270 UCL 24280 UCL 24285 UCL24286 UCL24287
UCL24288

```
            CAYMGN/[3ITS/F1(4C36), B(50), C(50),NXFR, A(50), NXTT, STEP, TOTEE,

    1HMFF, ATJTI,NF (11),NR (11),MGR,MORNUM,NTAY,ISN,SCMAG,SCFREQ,SIGMA,
    2T 1 , T二, T3, OMED ( 6 ), ASSC, SR
310 FOR"AT (iH1, 1OX, ISPECIFIED INPUT IS - - - i)
216 FARHAT (2CX, IMPULSE, STRENGTH = 1, 1PE12.5). - UCL24690
\(317 \mathrm{FPRMAT}(2(X, I S T E P\), MAGVITUDE \(=1\), IPEI2.5), \(\quad\) UCL24700

    2, 1PE12.S) \(191 N E\), MANAITUDE \(=1,1\) PE12.5, \(5 \times 2,1 F R E Q U E N C Y=1\),

    \(\hat{c} 1\) PEIT. \(5, ~ \mathrm{HZ}\).'
321 FAREAT (2, \(3, ~ I F I N I T E\) PULSE, MAGNITUDE \(=1,1\) IPE12.5, 5X, IDURATION

UCL24290
UCL 24295
UCL 24300
UCL24310
UCL24330
UCL24340
UCL24350
UCL24360
UCL24370
UCL24380
UCL 24390
UCL24400
UCL24410
UCL24420
UCL24430
UCL24440
UCL24450
UCL24460
UCL24461
UCL 24462
UCL24463
UCL24464
UCL24465
UCL24470
UCL゙24480
UCL24490
UCL 24500
UCL24510
UCL24515
UCL24520
UCL 24530
UCE24540
UCL24550
UCL24560
UCL24570
UCL24580
UCL24590
UCL 24600
UCL24610
UCL 24620
UCL 24630
UCL24640
UCL24650
UCL24660
UCL 24670
UCL24680
UCL24700



UCL24720
UCL 24730
UCL-24740
321 FARTAT (20x, IFINITE PULSE, MAGNITUDE \(=\) ', IPE12.5, 5X, IDURATION UCL 24750

A -47
```

 2= 1, 1PE12.5, ' SEC.'1
 UCL24760
 322 FOQMAT (2OX, 1DLLSE TRAIN, WAVELENGTH = ', 1PE12.5, , SEC.', 5X,
 UCL24770
 2IPULSE DURATION = ', 1PE12.5, ' SEC.1/33X, ITETAL MAG. = 1, 1PE12.UCL24780
 35, L, X, 1BACKGRGUND = 1, 1PE12.5) UCL24790
 WRITE(6, 310)
 GO TE (311, 312, 313, 314, 315), NTYPE UCL24810
 WRITE (6, 316) AMP1 UCLL24820
 G9 Te 320
 311 WRITE (6, 317) AMP1
 GQ TO 320
 312 URITE (6, 318) AMPI, FREG1
 G0 TA 320
 313 WRITE (6, 319) AMP1, FRE@1
 60 TG 320
 314 WRITE (5, 321) AMP1, FREQ1
 G0 TE 320
 315 WRITE (6, 322) FREQ1, FREQ2, AMP1, AMP2
 320 ISV = 1
 NTAY = 1
 SCYAG = AMP1
 GE T5 (305, 301, 303, 305, 305), NTYPE
 300 RETURN
 301 DA 302 I = 1, 48
 302 B(50-I) = B(49-1) - B(50-1)*FREQ1
 B(1) = - (1)*FPEQ1
 RETURN
 303 IF (FREQ1 .LE. 0.0) FREQ1= 1.0
AMEGK = FREQ1*6.2831853
AMGSQ = GMEGA**E
SCMAG = SCMAG*OMEGA
DG 304 I = 1, 49
304B(51-1)=E(49-1) +B(51-I)*OMGSQ
B(1) = B(1)*0MGSQ
B(2) = B(2)*0NGSQ
RETJRN
305 De 3~6 I = 1, 48
306 B(50-I)= B(49-1)
B(1) = 0.0
IF (FRES1 .LE. 0.0) FRE\1= 1.0
T1 = FPEQ1
IF (NTYPE-4) 308, 307, 309
307 1SN = 2
IF (T1 -LE. 5*STEP) NTAY = 0
308 RETURN
309 ISN = 3
T3 = AMP2/AMP1
IF FRE32.LE. 0.0 •日R. FREQ2 .GE. FREQ1) FREQ2 = 0.5*FREQ1 UCL25220
Tz = FREQ2
IF (T2 -LE. 5*STEP) NTAY = 0
RETURN
END
sugroutine Sample
C A. R. TYPRILL, UCLA, 6/21/68

```
A -48
```

 CSMPLEY*& RSPIS(2048), EXCMP(1⿹\zh2624), SPEW(50); s, SUMNM, SUMDN
 CE4DLEX*S ZAWIC, ZZ, Z1
 DOJRLE DRECISIQN X, Y
 COMMON/GITS/RCPNS ,B(50),C(50),NXFR,A(50),NXTI,STEP,TGTEE,
 ANTYPE,A":P1,AMP2,FREQ1,FREQ2,NPLOT,
 INUMF`,NUMTI,NF(1T),NR(11),MOR,MERNUM,NTAY,ISN;SCMAT,SCFREQ,SIGMA,
 2T1,T2,T3,DM9D(6),AESC,ORD
 CEMMON/SPEED/EXCMP
 X = 6.2831853071795860+00/FLAAT(NUMFR)
 Y = 0.00+00
 SPAW(1) = (1.0,0.0)
 00 130 I = 1, AUMFR
 S = CMPLX(SIGMA, SVGL(Y))
 IF (1 - NF(1)) 134, 134, 133
 134 7ENIF = CMPLX(0.0, SNGL(Y))
 EXCMP(I) = CEXP(ZO*IE)
 133 Y = X + Y
 SUMNM=(0.0,0.0)
 SUMON = (0,0,0.0)
 DS 131 J = 2, MeR
 131 SPSM(J) = SPOW(J-1)*S
 132 SUMDN = B(J)*SPON(J) + SUMDN
IF (ISN-2) 135, 176, 137
135 ZZ = (1.0, 0.0)
G0 TO 130
136 ZZ = 1.0 - CEXP(-T1*S/SCFREO)
g8 TO 130
137 Z1 = CEXF(-T1*S/SCFREQ)
ZZ = (1.0 + (T3-1.0)*CEXP(-T2*S/SCFREQ)-T3*Z1)/(1.0 = Z1)
130 RSPNS(I) = SUNNMM*Z7/SUMDN
RSPNS(1)=RSPNS(1)/2.0
RETUFN
ENO
SUBREUTINE FLIP
CPMFLEX FSPNS(2048), EXCMP(1024), Z
DgUELE PFECISIGI, X,Y
CEYH(ON/3ITS/RSPNS',B(50),C(50),NXFR,A(50),NXTI,STEP,TOTEE,
ANTYPF,AMP1,AMP2,FREQ1,FREQZ,NPLET,
1NUMFR,NUMTI,NF(1F),NR(11),MOR,MORNUM,NTAY,ISN,SCMAG,SCFREQ,SIGMA,
2T1,T2,T3,DMED(6),AÖSG,9RD
CEMMON/SPEED/EXCMP
136 F0RFAT (//// 20X, ISIGMA =1, 1PE12.5)
SISACT = SIGMA/SCFREQ
NFITE (o, 136) SIGACT
102
NXH = "XFR/2
O6 10% L = 1, NXH
NFA}=\textrm{NF}(L
NOIF=NR(L) - NFG
NFFE=VF(L + 1)
De 106 K = 1, MFO
UCL-25290 UCL 25300
UCL25310
UCL25320
UCL25330
UCL 25340
UCL25350
UCL25360
UCL25370
UCL25380
UCL 25390
UCL. 25400
UCL25410
UCL25420
134 7ENIF $=\operatorname{CMPLX}(0.0, \operatorname{SNGL}(Y))$
UCL 25430
$\operatorname{EXCMP}(I)=\operatorname{CEXP}(Z O \times I E) \quad$ UCL25440
$133 Y=X+Y$
UCL25450
SUM NM $=(0.0,0.0)$
UCL25460
UCL25470
$J=2, \mathrm{MeR}$
UCL25480

```
```

 DE 132 J= 1, MgR
    ```
    DE 132 J= 1, MgR
    SUMNM = A(J)*SPOW(J) + SUMNM
    SUMNM = A(J)*SPOW(J) + SUMNM
De \(132 \mathrm{~J}=1\), MgR
SUMAM \(=A(J) *\) SPOW (J) + SUMNM
132 SUMDN \(=6(J) *\) SPON \((J)+\) SUMDN
```

```
UCL25490
UCL. 25500
IF (ISA-2) 135, 136, 137
UCL25510
\(135 \mathrm{ZZ}=(1.0,0.0)\)
GO Ti 130
UCL25520
UCL25530
UCL25540
\(136 Z 2=1.0-\operatorname{CEXP}\left(-T_{1} * S / S C F R E(0)\right.\)
G8 T 180
UCL25550
\(137 \mathrm{Z}_{1}=\operatorname{CEXF}(-\mathrm{T} 1 * \mathrm{~S} / \mathrm{SCFREQ})\)
UCL25560
UCL25570
UCL25580
UCL 25590
UCL25600
UCL. 25610
UCL. 25620
UCL25630
UCL25640
```

```
C A. F, TYPRILL, UCLA, 6/21/68
```

C A. F, TYPRILL, UCLA, 6/21/68
C A. F, TYPRILL, UCLA, 6/21/68
UCL 25650

```
```

CPMPLEX FSPVS(2048), EXCYP(1024), Z
DAVELE PRECISIGH, X, Y
UCL 25660
UCL25670
UCL 25680
UCL25690
UCL 25700
UCL 25710
UCL 25720
(/// 2NX) ISIGMA =1, 1PE12•5)
UCL25730
UCL25740
UCL25750
102
$3610 \mathrm{~L}=1, \mathrm{NXH}$
UCL25760
UCL25770
NOIF $=$ VR(L) -NFG
UCL 25780
$N E F E=N F(L+1)$
$D e 106 \quad K=1, N F$
UCL25790
UCL25800
UCL25810

```
```

 JuMP = (K-1)*2*NR(L)
 10500 106 J = NFO, NDIF, N2FG
 JI=J +JUMP
 JF = JI + NDIF
 00:106 I = 1, NFO
 JII= JI+I
 JJF = JF + I
 Z = OSPNS(NJI)
 RSPAS(J.JI) = RSPNS(JJF)
 106
DO 110 L = = ', NXTj
NFE=NF(L)
NFE =NR(L)
DE }110\textrm{K}=1, NR
JI = (K-1)*NF(L+i)
JF=JI+NFO
DO 110 J = 1, NFO
\I = JI + J
JJF =JF + J
Z = ESPNS(JJF)*EXCMP((J-1)*NRE + 1)
RSPNS(JJF)= RSPNS(JJI) - Z
110 RSPNS(JJI) = RSFNS(JJI) + 2
D0 1%
NFG=NF(3-K)
DO 108 J=1, NFF --
JI=(J-1) *NR(I)
JF=(J-1)*VR(2)
DE 108 I = 1, NUMTI
JJl = JI + I
108 RSPNS(JF+I) = RSPNS(JJI) + RSPNS(JJI+NUMTI)*EXCMP((I-1)*NFE + 1)
RETURN
ENS
SUBROUTINE ADJUST
C
A. R. TYRRILL, UCLA; 6/21/68
COMPLEX RSPNS(2048)
DIMENSIGN FNP(4)
COMMON/BITS/RSPNS,FACTL(50),TERM(50),NXFR,POW(50),NXT1,STEP,
BTOTEE,NTYPE,AMP1,AMP2,FREQ1,FREQ2,NPL,OT,
INUMFR,NUMTI,NF(11),NR(11),MOR,MORNUM,NTAY,ISN,SCMAG,SCFREQ,SIGMA,
2T1,T2,T3,OMOD(6),ABSC,ORD
COMMON/SPEED/FCTN(512),TEE(512)
DL'N: 2.O*SCMAG/,SCFREQ*FLOAT (NUMFR))
DE 150 I = 1; NUMT:
TEE(I) = (FLQAT(I-1))*SCFRREQ
150 FCTM(I) = DLW*(REAL(RSPNS(IS))
IF (SIGMA) 151, 153, 151.
151 SGQ = SIGMA/SCFREQ
DO í2 I = 2, NUMTI
152 FCTN゙(I) =- FCTN(I)*EXP(SGQ*TEE(I))
153 CALL TAYLOR
DLW = SCMAG/SCFREQ
FCTV(1) = TERM(2)*DLW
* IF (NTAY) - 156, 15s, 159- - UCL26330

```
```

 159 FACTL्(2) = 1.0 UCL26350
 QE 1,4 1 = 3,50 UCL26360
 154 FACTL(I) = FACTL(I-1)*(I-2)*0.25
 Dg 1a5 l = 2, 50
 155 TERY(I) = TERM(I)/FACTL(I)
 D0 157 1 = 1, 4
 FNP(I) = 0.0 UCL26410
 PoN(2) = 1.0 UCL26420
 DE 158 J=2,50 UCL26430
 FMP(I) = FNP(I) + TERM(J)*POW(J) UCL26440
 IF (FNP(I) GT, 1.EE+03) GO TO 156 UCL26450
 158 PeN(J+1) = PQh(J)*I*0.25 UCL26460
 157 FCTM(1+1) = FNP(F)*DLW - ICL26470
 156 CALL PRTPLT
 RETURA
 ENO
 suargutine taylar
 UCL.26490
 UCL26500
 UCL26510
 C A, R. TYRRILL, UCLA, 6/21/68 UCL26520
CSYMEN/BITS/C(5C),AMOD(4046),B(50),TERM(50),NYFR,A(50),NXTI,STEP,
XTOTEE,
ANTYDE,AMP1,AYF2,FREG1,FREQ2,NPLOT,
1NUIFR,NUMTI,NF(1Y),NR(11),MOR,MQRNUM,NTAY,ISN,SCMAT,SCFREQ,SIGMA,
2T1,T2,T3,DMAD(5),ARSC,ORD
DO 217 I = 1, MOR
217C(I) = A(I)
217 MOROIF = MAR - MPRNUM
210 De 214 1 = 1, 5n
TEQ{(1)=0.0
IF (MEFDIF-I) 213, 212, 212 UCL26630
213 TERA(I) = C(MER)/B(NGR)
213 IFR(ARS(TERM(1)) - \T. 1.OE+60) GE TO 218
DO 216 J = 1, MOR
216C(J)=C(J)- TEQM(I)*B(J)
212 De 215 J=1, NOR
212 DJ 215 JAR = = J
215C(JJ+1)=C(JJ)
214C(1)=0.0
RETUPA
218 NTAY = 0
RETURN
END
SUBRPUTINE PRTPLT
C A, R, TYRRILL, UCLA, 6/21/68
DIPEVSIAN SYMREL(5)
CQ,NNAN/SPEFD/FCT:(512),TEE(512),P(132),OHI,DLE,DGP
CEMNOR/3ITS/F1(409夕), B(50),C(50),NXFR,A(50),NXTI,STEP,TOTEE,
ANTYFE,AMP1,AMF2,FREG1,FREQ2,NPLET,
1'NUMFR,NUN,TI,NF(1'1),NR(I1),NGR,MORNUM,NTAY,ISN,SCMAG,SCFREQ,SIGMA, UCL-26820
2T1,T2,T3,0MED(6),AFSC,SRD
DATA SYMBEL/' 1,1.','X','O',1'/
175 FARNAT (1PE10.3, 122A1) UCL26850
UCL26530
UCL26540
UCL26550
UCL26560
UCL26560
UCL26580
UCL26590
UCL26600
UCL26620
UCL26630
UCLL26640
UCL26650
UCL26660
UCL26670
UCL26670
UCL26680
UCL26690
UCL26700
UCL26710
UCL26720
UCL26720
UCL26730
UCL26740
UCL26750
UCL26760
UCL26770
UCL26780
UCL26800
UCL26800
UCL26820
UCL26830
UCL26840
181 FGRY4T (/////10X, 16HGREATEST VALUE =, 1PE13.5, 10X, 14HL\&WEST VALUCL26860
PUE =, 1PE13.5, 10X, 10HIIITEPVAL =, 1PE13.5 /////
UCL26870

```
```

 183 FOQMAT (10X, 122A1) UCL26880
 191 FGRyAT (4(1PE16.3, 1PE16.5))
 194 FgP 'AT(///// 4(10X, A4, 11X, A4,3X)/)
WRITE(6,194)(AZSC,ERD,I=1,4)
NF9=, UNTI/4
07 190 1 = 1, NFF
J=NF\&}+
J=NFG +J
190 WRITE (6, 191) TEE(I), FCTN(I); TEE(J), FCTN(J), TEE(JJ), FCTN(JJ)UCL26950
2, TEE(NFG+JJ), FCTN(NFG+JJ) UCL26970
IF (NPLOT \&LE. O) RETURN
OHI= 0.O
DLS = DHI
DP 176 I = 1, NUMTI
IF(FCTN(I) ©GT. DHI) DHI = FCTN(I)
IF(FCTA(I) •LT, DLO) DLS = FCTN(I)
776 CONTINUE
\GF=(0HI - DLB)/115.0
\GF=(0HI - DLB)/115.0
IF (<ZERQ-11) 177, 177, 178
173 IF (132-KZERO) 177, 177.179 UCL27080
177 KZERG = 1
177 DO 12C I=11, 132
180 P(I) = SYMBEL(2)
WRITE (6, 1\&1) DHI, DL0, DGP
WRITE (6, 181) DHI, DLG, DGP
LL=C CH I = 1, NUMTI, NPIOT
DQ 182 I = 1, NUMT1, NPLOT
K=((FCTN(1) - OLa)/DGP) + 14,5
189 P(k) = SYMBOL(3)
IF (LL) 171, 171, 170
170 WRITE (5, 183) (P(J), J=11, 132)
LL=LL_-1
GB TA 172
171 WRITE (6, 175) TEE(I), (P(J), J= 11, 132)
LL=9
172 09 184 J = 10, 132
184P(J)=SYMROL(1)
IF (LL) 185, 1:85, 188
185 Te 1re II = 1,3
P(11+11) = SYMge (2)
P(K7ERA}+11)=5YMB\rhoL(2
P(KLERE-II)= SY~BgL(2)
186 P(132-1I) = SYMEAL(2)
188P(132)=
188P(132)=SYMBEL(5)
182 P(11) = SYMBOL(5)
WRITTC(6,183)(SYMEOL(2),1=11,132)
RETHRN
END
Slgrautine scale
C A. R. TYRRILL, UCLA, 6/21/68
COMMEN/BITS/F1(4096),B(50),C(50),NXFR,A(50),NXITI,STEP,TOTEE,
ANTYPE,AMP1,AMP2,EREQ1,FREQ2,NPLET,
UCL26890
UCL26900
UCL26910
UCL26920
UCL26930
UCL26940
UCL26950
UCL26970
UCL26980
UCL26990
UCL27000
UCL27010
- UCL27020
UCL27030
UCL27020
UCL27040
UCL27050
UCL27060
UCL27070
UCL27080
UCL27090
UCL27100
UCL27120
UCL27130
UCL27140
UCL27150
UCL27160
UCL27170
UCL27180
UCL27190
UCL27190
UCL27210
UCL27220
UCL27230
UCL27240
UCL27250
UCL27260
UCL27260
UCL27280
UCL27290
UCL27300
UCL27310
UCL27320
UCL27330
RETHRN
UCL27330
UCL27350
R TYRRIL SCALE
UCL27360
C. A. R. TYRRILL, UCLA, 6/21/68
UCL 27370
UCL27380
COMMEN/BITS/F1(4096), $B(50), C(50), N X F R, A(50), N X T I, S T E P, T \theta T E E$,
ANTYPE, AMP 1, AMP2, $-R E Q 1, F R E Q 2, N P L \theta^{T}$,
UCL 27390
UCL27400

```
```

 -- 1NÜMFR,NUMTI,NF(11):NR(11),MOR,MORNUM,NTAY,ISN;-SCMAG,SCFREQ:SIGMA,
 2T1,T戸̈,T3,DMOD(6),AESC,ORD
 UCL27410
UCL27420
IF (SCFREQ*1.0) 231, 232, 231
231 DO 233 I = 1, m%Le
231 D0 233 I = 1, MrLe
D0 233 J = 1, I
A(MOR-I) = A(MER-I)\#\#SCFREO
233 B(MgF-1)=B(MOR-I)\#SSFRREQ
232 ScMAG = 1.C/B(MER)
DO 234 I = 1, MOR
234 S(1)}= B(I)*SCMAG-
SSMAG= SCMAG*A(MORNUM)
SCMAG = SCMAG*A(MORNUM)
235 A(I) = A(I)/A(MORNUM)
RETURN
END
SUSROUTINE ROUTH
A. R. TYRRILL, UCLA, 6/21/68
GOGICAL LQGI
COMMON/BITS/BINA(50,50),D(26,50),AMOD(296)
1
1. ,B(50),C(50),NXFR,A(50),N\overline{TI,STEP,TOTEE,}
ANTYPE,AMP , AMP2,FREO1,FREQ2,NPLOT,
INUMFR,NUMTI,NF(IT),NR(11),MOR,MERNUM,NTAY,ISN,SCMAG,SCFREQ,SIGMA,
2T1,T2,T3,DMOD(6),ABSC,ORD
D0 230 J = 1, MOR
BINE(1,N) =1:0
BINE(1,N) =1:0

```


```

 DO 231 J=I, MOR
 231 BING(I,J) = BINE(I-1,J-1) + BINO(I,J=1) UCL27710
SIGTOY = 0.005*NF(13-NXFR)
SIGMA =0.0
232 CALL CALCR(LOGG1)
232 CALL CALCR(LOG1)
SISMA = SIGMA + SISTRY
* Ge Te 232
233 SIGTRY = (-0.1)*S1GTRY
SHIFT = 0.0035*NF(13*NXFR)
234 SIGMA = SIGMA + SIGTRY
CALL CALCR(LOG1)
IF (SIGMA+SHIFT) 236, 236, 235
235 IF (LOG1) GQ TQ"234 -
235 IF (LGA = SIGMA + SHIFT
RETURN
236 SIGMA = 0.0 . ..
RETURN
END
SUBROUTINE CALCR (LAGI)---
C A. R, TYRRILL, UCLA, 6/21/68
LOGICAL LQG1
CQMMON/BITS/BINe(50,50),D(26,50),SIGGOW(50),AMOD(246)
1
,B(50),C(50),NXFR,A(50),N\overline{XTI,STEP,TOTEE,}
UCL27430
MRL0 = MAR -
UCL27440
UCL27450
UC}2747
UCL27470
UCL27480
UCL27480
UCL27490
UCL27500
UCL27510
UCL27520
UCL27520
UCL27540
UCL27540
UCL27560
UCL27570
UCL27580
UCL27590
UCL27600
UCL27610
UCL27620
UCL27630
UCL27640
UCL
UCL27650
UCL27660
UCL27670
UCL27680
UCLL27690
UCL27700
UCL27710
UCL27720
UCL27720
UCL27740
UCL27750
UCL27760
UCL27770
234 CALL CALCP(LOG1) SGTRY
UCL27780
UCL27780
UCL27790
UCL27800
UCL27810

```

```

UCL27820
UCL27830
UCL27840
END NOUTINE CALCR (LAGT)--- UCL27880
UCL27860
UCL27870
UCL27890
UCL27900
1)
UCL27910
UCL27920
UCL.27930

```
```

 ANTYPE,AMP1,AMP2,FREQ1,FREQ2,NPLET, UCL27940
 1 NUMFR,NUMTI,NF(1\overline{1}),NR(11),MOR,MORNUM,NTAY,ISN,SCMAG,SCFREQ,SIGMA, UCL27950
 2T1,T2,T3,DMOD(6),ABSC,ORD
 LOG1 = -TRUE.
 IF (SIGMA L.T. 1.OE*O4 *AND. SIGMA .GT, =1.OENO4) SIGMA = 0.0
 SIGP&W(1) = SIGMA
 DQ 240 I = 2, MgR
 240 SIGPOW(I) = SIGPOW(I-1)*SIGPOW(1)
 C(MQR) = B(MER)
 MRLE = MOR - 1
 DO 248 I = 1, MPLQ
 C(I) = B(I)
 II=I +1
 DE 241 J = II, MOR
 T=E(J)*BINO(I,J)*SIGPOV(J-I)
 241C(1)=C(I) +T
 IF (C(1)) 247, 247, 248
 248 CENTINUE
 MH=MGR/C + 1
 DO 242 I = 1, MH
 DO 242 J = 1, MOR
 242D(1, 1)=0.0
 MH = (MOR + 1)/2
 DO 243 I = 1, MH
 243 D(I,1) = C(M0R*2*(I-1))
 MH=MAR/2
 DO 244 I = 1, MH
 244D(1,2)=C(MOR+1-2*I)
 DQ 245 J = 3, MOR
 DE 246 I = 1, MH
 246D(I, i) = (D(1,J-1)*D(I+1,J-2)-D(1,J-2)*D(I+1,J-1))/D(1,J=1)
 IF (D(1,J)) 247, 247, 245
 245 CONTINUE
 RETURN
 247 LEG1 = FALSE.
RETURN
END
H.F.OKRENT
SVOBODA POLYNOMIAL ROQTFINDER 1969
COMPLEX*16Q
OIMENSIYN SMIN(2),3MAX(2)
INTEGER SMAX,SMI*
COMPLEX D(50,2)
REAL A(50),C,YMA,,YMIN,XMAX,XMIN,H(5),E
DIMENSION N1(5),NRT(50,3,2),IN(2),JN(2)
COMPLEX P,T,E(50);S,SN,SS,SW,SE,F,FN,FS,FE,FW,V(5),W(5)
REAL r,GN,GS,G,,GE
CGMDLEX POLE
CQMMqN/OATA/DATA(17):BLANK
CeMMgN/A/CHAR(80)
UCL28430
CAMMON/SPEED/FOLE (5O),NPOLES,DUM,S,SN,SS,SW,SE,F,FN,FS,FW,FE,G,GN,UCL28440
{GS,GN,GE,E,D,A,N1,NRT,IN,NN,C,B
COMMAN/CIRCIT/ CARD(600),VN(101,2).NE,SMAX,SMIN UCL28460

```
```

 EOUIVALENCE (G,H(1)),(F,V(1)),(S,W(1)) UCL28470
 NFOL=S=0
 UCL28480
 OQ25*9=1,2
 V#SMAX(VO)-SMIN(N9)+1
 NG=SMIN(NO)+51
 N7=SNAX(N'q)+51
 DA4OI=NG,N7
 IF(VN(I,Ng)\cdotNE.D.EO)GE TO 1
 4 0 ~ C O N T I N U E ~
G日 T0 25
1 NG=I
D05?!=N6,N7
J=N7+N6-I
IF(VN(J,NG)\cdotNE:O.EO)GO TO 53
52 CO'ITINUE
G8 TQ 25
53 N7=J
N=N7-N6+1
IF(N-LE.1)GE TG 25
MxN-1
WRITE (6,203)M
203 FERIIAT(111,46X,1*** SVGBADA POLYNAMIAL, REETFINDER ***1,32X, *H.F.OKUCL28680
1RE'JT'/116X,'JAN. 1969'//10X, 'PQLYNOMIAL 林DEGREE',I4,1 -w'//) UCL28690
J!(1)=0
JN(2)=0
N8=0
IN(1)=0
IN(2)=0
NDASS=0
J=(N/6)+1
K=0
094II=1*J
L=MIvO(N,K+5)
NRITE(E,2OZ)(NZ,N2=K,L)
202 FARMAT(1X,6I22)
WRITE(6,206)(VN(N6+N2)N9),N2=K,L)
206 FERYAT(S(E2O.10,1 Y')/)
41 K=K+6
WRITE(6,204)
204 FGRMAT (/4X,'ACCURACY QEQUESTED -- 6 SIGNIFICANT FIGURESI//45X, IREAUCLL28860
1L PART IMAGINARY PART EXPONENTI) UCL-28870
WRITE(6,205) UCL28880
205 FQRMAT(4\tilde{CX,45('.'')) UCL28890}
O-O,EO
DOCI=1,V
J=V7+1-I
A(I)=VN(J,N9)
45 L=1 = CMPLX(A(1):0.ع0)

```


```

 MMI'N=-SDFT(ABS(1-ES-(XMIN**2)))-6.25E-2
 MMI'N=-5\FT(ABS(1-E9-(XMIN**2)))-6.25E-2
    ```

\begin{tabular}{|c|c|c|}
\hline \multirow[b]{4}{*}{C．．．} & SS \(=\) CMPLX（ FLOAT（NQ）＊C，FLOAT（NI NXX）＊C） & UCL29450 \\
\hline & Sk＝CMPLX（ FLOAT（NF－NX）＊C，FLEAT（NI）＊C） & UCL29460 \\
\hline & \(S E=C M P L X(F L O A T(N F+N X) * C, F L \theta A T(N I) * C)\) & UCL29470 \\
\hline & eravch to the calculation routine． & UCL29471 \\
\hline & \(\mathrm{N}_{4}=\) ？ & UCL29480 \\
\hline & G日 T0 33 & UCL29490 \\
\hline 322 & FORMAT（1x，4E20．8） & UCL29500 \\
\hline \multirow[t]{3}{*}{10} & \(E=A N I \wedge 1(H(1), H(2), H(3), H(4), H(5)\) ） & UCL29510 \\
\hline & 20111＝1，5 & UCL29520 \\
\hline & IF（E，EG．H（I））Gs re 12 & UCL29530 \\
\hline \multirow[t]{2}{*}{11} & CPNTINUE & UCL29540 \\
\hline & WRITE（6，303） & UCL29550 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 303 \\
& 12
\end{aligned}
\]} & FeRYAT（ ERR日R1） & UCLL29560 \\
\hline & \(60 \mathrm{TE}(13,17,20,22,23), 1\) & UCL29570 \\
\hline c．．． & If THE DESIPE ACCURACY has been reached，exit the hemenin & UCL29571 \\
\hline \multirow[t]{2}{*}{C．．．} & ROUTIAE． & UCL29572 \\
\hline & IF（J．GE，6）GO TA 15 & UCL29580 \\
\hline \multirow{2}{*}{13} & \(j=J+1\) & UCL29590 \\
\hline & Ge TA 16 & UCL29600 \\
\hline \multirow[t]{2}{*}{17} & \(N \mathrm{I}=\mathrm{NI}+\mathrm{NX}\) & UCL29610 \\
\hline & G日 T0 21 & UCL29620 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 20 \\
& 21
\end{aligned}
\]} & \(\mathrm{NI}=\mathrm{NI}-\mathrm{NX}\) & UCL29630 \\
\hline &  & UCL29640 \\
\hline & GB TO 14 & UCL29650 \\
\hline \multirow[t]{2}{*}{22} & NR＝AR－NX & UCL29660 \\
\hline & ge Ta 28 & UCL29670 \\
\hline 23 & \(\cdots \mathrm{A}=\mathrm{NR}+N \mathrm{C}\) & UCL． 29680 \\
\hline 28 & IF（（J．NE．1）AND．（M8O（NR，NX＊16）．EQ．O））J＝J－1 & UCL29690 \\
\hline \multirow[t]{4}{*}{14} & S＝A（I） & UCL29700 \\
\hline & \(\mathrm{G}=\mathrm{H}(\mathrm{I})\) & UCL29710 \\
\hline & IF（ CAES（S）．GT•2．EDIGE TO 46 & UCL29720 \\
\hline & G8 T0 32 & UCL29730 \\
\hline \multirow[t]{3}{*}{C．
15
C．} &  & UCL29731 \\
\hline & IF（ ITAG．EQ－0）GE TA 43 & UCL 29740 \\
\hline & CHECK THE LAST FEW STEPS，BUT THIS Time hithout dividing out & UCL29741 \\
\hline \multirow[t]{4}{*}{C．．．} & ThE RagTS． & UCL29742 \\
\hline & NTAG： 0 & UCL 29750 \\
\hline & \(F=(0, E 0,0 . E 0)\) & UCL29760 \\
\hline & De501＝1，M & UCL29770 \\
\hline \multirow[t]{6}{*}{50} & \(F=(F+8(1)) * S\) & UCL29780 \\
\hline & \(F=F+B(N)\) & UCL29790 \\
\hline & \(G=C A B S(F)\) & UCL29800 \\
\hline & D0491＝1．7 & UCL29810 \\
\hline & \(J=4 A \times 0(7-1,2)\) & UCL29820 \\
\hline &  & UCL29830 \\
\hline \multirow[t]{4}{*}{49
43} & continue & UCL 29840 \\
\hline & NTAS \({ }_{\text {m }} \mathrm{I}^{11}(L)\) & UCL29850 \\
\hline & IF（G．GE．CABS（P）／2．0EO）GA TQ 46 & UCL． 29860 \\
\hline & \(K=L\) & UCL29870 \\
\hline & \(\mathrm{N} 2=16\) & UCL29880 \\
\hline \multirow[t]{3}{*}{29} &  & UCL29890 \\
\hline & IF（YGO（NR，N2）－GE，N2／2）NR＝NR＋N2 & UCL 29900 \\
\hline & If（Mm，\((N R, N 2) \cdot L E \cdot(-N 2 / 2)) N R=N R=N 2\) & UCL29910 \\
\hline
\end{tabular}
```

 IF(MOD(NITNZ).GE.NZ/2)NI=NI +N2 UCLZ9920
 IF(YOD(NR,N2)\cdotLE.(-N2/2))NR=NR-N2 UCL29930
 NR=MR/N2
 NI=NI/N2
 NEXP=NEXP+1
 Go Te 29
 34 IF(K-EQ.1)GE TO 35
C=(FLEAT (NR)**2)+(FLBAT(NI)**2)
E=(FLOAT (NR)/C)*0.72057594037927936E17
C=(FLOAT(NI)/C)*C•72057594037927936E17
NEXO =-NEXP
K=1
51 IF((ABS(E)\cdotLE.0.268435456E9).AND.(ABS(C).LE.O.268435456E9))GETA
E=E/16.
C=C/16.
NEXP=NEXP +1
GQ TO 51
42 NR=E
NI=C
Ge T0 29
UCL29940
UCL29950
UCL29960
UCL29970
UCL29980
UCL29990
UCL30000
UCL30010
UCL30020
UCL30030
42UCL30040
UCL30050
UCL30060
UCL 30070
UCL.30080
UCL30090
UCL30100
UCL30110

```

```

 35 IF(J.GE.7)GG TE 24 UCL30120
 K=N2**(7-J)
 IF(MЭD(NR,K):GE,K/2)NR=NR+K
 UCL30130
 IF (MOD(NI,K),GE.K/Z)NI=NI +K
 UCL30150
 IF(MOD(NI,K).LE.(-K/2))NI=NI-K UCL30170
 NR=NR-M9D(NR,K) UCL.30180
 NI=NI~MOD(NI,K) UCL30190
 RETURN TO THE PROPER POINT.
 UCL30191
 IF(I1,LT.0)GG TG 37
 IF(NREOT.EO-O)OQ TS 18
 K=3-L
 38 DE39I=1,NROET
 IF(NET(I,3,K):NE:NEXP)GE TO 39
 Ki=IABS(VR-NRT(I,1,K))/(16**(7mJ))
 K2=IABG(NI -NRT (I, 2,K))/(16**(7-J))
 IF((K1.LT.2).AND.(K2.LT-2))GE TB 5
 39 CONTINUE
 18 JN(Li=JN(L)+1
K=\N(L)
NRT(K,1,L)=NR
NRT(K,Z,L)=NI
NRT (K,3,L) =NEXP
PFRFORM THE CON, IERSION FR日M HEX TO DECIMAL.
N3=NI
C=FLAAT(NR)*(16.**(NEXP-7))
E=FLEAT(NI)*(1G***(NEXP-7))
NEXP.AL'GG1O(AMAA1(ABS(C),ABS(E)))
NR=C*(10.**(7-NEXP))

```

```

 M-M(10•**(7-PEXP)) UCL30390
 M=-M _ . . UCL30400
 N2=10 UCL30410
    ```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{C．} & \(K=1\) ERANCh TO THE RRUND－OFF RQUTINE AGAIN． & \[
\begin{aligned}
& \text { UCL } 30420 \\
& \text { UCL } 30421
\end{aligned}
\] \\
\hline & G日 TE 29 \％ & UCL 30430 \\
\hline \multirow[t]{4}{*}{37} & \(y=-\mathrm{m}\) & UCL30440 \\
\hline & Q \(=\) DCNPLX（DFLOAT（NR）＊1，D－6，DFLOAT（NI）＊1•D－6） & UCL30450 \\
\hline & \(K=\triangle E X P-1\) & UCL30460 \\
\hline & WRITE（6，200）\({ }^{\text {a }}\) K & UCL30470 \\
\hline 200 & FGRM4T（40X，2F 15．9，111） & UCL30480 \\
\hline \multirow[t]{4}{*}{c} & InSERT Piles in Commen black & UCL． 30490 \\
\hline & IF（NG＊NE．1）G日 TO 5 & UCL30500 \\
\hline & VPTLES \(=\) VPALES +1 & UCL30510 \\
\hline & POLE（ \(\\) P9LES \()=0 *(10, * * K)\) & UCL 30520 \\
\hline 5 & IF（J）（1）＋Jへ（2）．LT－以）G8 Tg 44 & UCL30530 \\
\hline 36 & \(\operatorname{NRITE}(6,205)\) & UCL30540 \\
\hline & Ge TO 25 & UCL30550 \\
\hline \multirow[t]{3}{*}{44} & \(\operatorname{IN}(\mathrm{L})=\mathrm{IN}(\mathrm{L})+1\) & UCL30560 \\
\hline & \(\mathrm{J}=\mathrm{J} N(\mathrm{~L})\) & UCL． 30570 \\
\hline & \(D(J, 1)=S\) & UCL30580 \\
\hline \multirow[t]{6}{*}{C．．． 46} & côntinue the scin． & UCL30581 \\
\hline & IF（YMJA．GE．YMAX）GE TE 6 & UCL30590 \\
\hline & KI＝KI＋1 & UCL 30600 \\
\hline & YMIN＝KI＊6．25E－2 & UCL30610 \\
\hline & IF（L．EQ．1） 6 E TE 7 & UCL30620 \\
\hline & IF（YMJN．LT．YMAX）GO TO 7 & UCL30630 \\
\hline \multirow[t]{4}{*}{6} & \(K P=K F+1\) & UCL30640 \\
\hline & XMIN：KP＊6，25E－？ & UCL30650 \\
\hline &  & UCL30660 \\
\hline & IF（XMIN．LE．1．EO）GO TE 8 & UCL30670 \\
\hline C．．． & this pass is fivisheo． & UCL30671 \\
\hline & NDASS＝VPASS +1 & UCL30680 \\
\hline C．．． & CHECK if tee many passes have been performed． & UCL30681 \\
\hline &  & UCL30690 \\
\hline \multirow[t]{7}{*}{} & ．．．THE INVERSION ReUTINE．．．．．．．．．．．．．．．．．．．．．．．．．． & －UCL30691 \\
\hline & \(L=3-L\) & UCL30700 \\
\hline & K＝ \(\mathrm{N} / \mathrm{C}\) & UCL30710 \\
\hline & De30I＝1，K & UCL30720 \\
\hline & T＝3（I） & UCL30730 \\
\hline & \(\mathrm{J}=\mathrm{V}-\mathrm{I}+1\) & UCL30740 \\
\hline & \(B(I)=B(J)\) & UCL30750 \\
\hline 30 & \(\underline{Q}(\mathrm{~J})=\mathrm{T}\) & UCL 30760 \\
\hline \multirow[t]{3}{*}{C．．．} & BaCK Te THE SCANAINS ROUTINE & UCL30761 \\
\hline &  & UCL30770 \\
\hline & Gote 45 & UCL 30780 \\
\hline \multirow[t]{2}{*}{25} & covtinue & UCL30790 \\
\hline & De991＝1．5 & UCL30800 \\
\hline \multirow[t]{3}{*}{99} & \((\) PAR， 1\()=\) ELANK & UCL30810 \\
\hline & RETUFN & UCL 30820 \\
\hline & Fin & UCL 30830 \\
\hline ＊Stap & ＊C & \\
\hline
\end{tabular}

\section*{A. 2 NASAP-70 DICTIONARY}
\begin{tabular}{|c|c|}
\hline A. 2.1 & es \\
\hline A(I) & \begin{tabular}{l}
In Common A. \\
An array of 80 elements containing the 80 characters of the most recently read data card.
\end{tabular} \\
\hline A(I) & In Common BITS. An allas for AI(I). \\
\hline A(I) & In Subroutine ROOTS. The coefficients of the polynomial being evaluated. \\
\hline A(I) & In Subroutine POLSEN. The real part of the It th pole. \\
\hline ABSC & In Common BITS. The abscissa label for Subroutine PRTPLT. \\
\hline \(\operatorname{ADDR}(\mathrm{I})\) & In Common BITS. An alias for \(\mathrm{NQ}(\mathrm{I})\) used in Subroutine GRAPF. \\
\hline AMOD(I) & In Common BITS. The list of plot control variables STEP to NPLOT. \\
\hline AMP1 & In Common BITS. The positive portion of a pulse train. \\
\hline AMP2 & In Common BITS. The negative portion of a pulse train. \\
\hline AS(I, J) & In Subroutine ANSWER. Alphanumeric array of \(S^{\prime} s\) used in printing Transfer and Sensitivity Functions. \\
\hline ASIGN (I, J) & In Subroutine ANSWER. Alphanumeric array of signs used in printing Transfer and Sensitivity Functions. \\
\hline A1(I) & In Common BITS. Numerator of function to be plotted. The coefficient of \(\mathrm{S}^{\mathrm{I}-1}\). \\
\hline B(I) & In Subroutine POLSEN. The magmary part of the \(\mathrm{I}^{1}\) th pole. \\
\hline B(I) & In Common BITS An allas of B1(I). \\
\hline \(B(\mathrm{I})\) & In Subroutine ROOTS. A Complex type array of the polynomial coefficients. \\
\hline BITS(I) & In Common BITS. Array of words used in logical bit manıpulations. \\
\hline BINO(I) & In Common BITS. A list of Binomial Coefficients used in Subroutmes ROUTH and CALCR. \\
\hline B MOD(I) & In Subroutine PLOT. An integer type alias for AMOD(I). \\
\hline B RANCH( I\()\) & In Common BITS. The list of branches connected to each circuit node. Used in Subroutines CALC and GRAPH. \\
\hline B 1(I) & In Common BITS. Denominator of function to be plotted. The coefficient of \(\mathrm{S}^{\mathrm{I}-1}\). \\
\hline C(I) & In Subroutine POLSEN. The derivative of the Transfer Function Denominator evaluated at the real part of the \(I^{\prime}\) th pole. \\
\hline C(I) & In Common BITS. An alias for POW(I). \\
\hline CA(I) & In Subroutine INVERT. A Complex type alias for \(A 1(J)\) with \(C A(1)\) the coefficient of the highest power of \(S\). \\
\hline \(\mathrm{CB}(\mathrm{I})\) & In Subroutne INVERT. A Complex type allas for B I(J) with \(C B(1)\) the coefficient of the highest power of \(S\). \\
\hline CARD(I, J) & In Common CIRCIT. Array containing the \(J\) characters of the I' th element name. \\
\hline CONST & In Subroutine INVERT. The quotient resulting when the numerator of the transform is divided by the denominator. \\
\hline COUNT(I) & In Subroutine LOOPS. The number of transmittances leaving flowgraph node I. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline D(I) & In Subroutine POLSEN. The derivative of the Transfer Function Denominator evaluated at the imaginary part of the I' th pole. \\
\hline \(\mathrm{D}(\mathrm{I}, \mathrm{J})\) & In Common BITS. The Routh Table built by Subroutine CALCR. \\
\hline \(D(I, J)\) & In Subroutine ROOTS. List of roots used for forming the reduced Polynomial. \\
\hline D & In Subroutine SCALER. The sum of the element value exponents scaled by FACTOR. \\
\hline DEP(I, J) & In Common BITS. Array containing the \(J\) characters of the name of the element controlling the \(I\) th element. \\
\hline DGP & In Subroutine PRTPLT. The ordinate interval. \\
\hline DHI & In Subroutine PRTPLT. The maximum ordinate value. \\
\hline DL & In Subroutine SCALER. The sum of the element value exponents scaled by FACTOR-1. \\
\hline DLO & In Subroutine PRTPLT. The minimum ordinate value. \\
\hline DR & In Subroutine SCALER. The sum of the element value exponents scaled by FACTOR+1. \\
\hline ERR & In Common ERR. \(=1\) when a serious error is detected. \(=0\) otherwise. \\
\hline EXCMP(I) & In Common SPEED. Contains the e \(\left({ }^{\sigma+3 W}\right)\) points calculated by Subroutine SAMPLE. \\
\hline EXPO & In Subroutine NUMBER. = 1 when the exponent is negative. \(=0\) otherwase. \\
\hline FACT & In Subroutine ANSWER. The normalizing factor of the Transfer or Sensitivity Function. \\
\hline FACT(I) & In Common BITS. Used in computing Taylor Series coefficients. \\
\hline FACTOR & In Common ERR. Contains the Scaling Factor determined by Subroutine SCALER. \\
\hline FAD & In Subroutine ANSWER. The normalizing factor of the function denominator. \\
\hline \(\operatorname{FCTN}(\mathrm{I})\) & In Common SPEED. The ordinate points for Subroutine PRTPLT. \\
\hline FAN & In Subroutine ANSWER. The normalizing factor of the function numerator. \\
\hline F, FE, FN, FS, FW & In Subroutine ROOTS. The function values at the five points of the five point test \\
\hline FLAG & In Common FLAG. = 1 when Function ISORT falls to convert a numeric character its value. \(=0\) otherwise. \\
\hline FNP(I) & In Subroutine ADJUST. Used in computing the Taylor Series corrections to the first five plot points. \\
\hline FREQ & In Common PATHS. The frequency used by Subroutine FINE to build a circuit tree. \\
\hline FREQ1 & In Common BITS. a in \(e^{\text {at, }} \mathrm{f}\) in \(\operatorname{Sin} 2^{\pi \mathrm{ft}}\), starting point for frequency plots. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FREQ2 & In Common BITS. Pulse width in a pulse train, ending point for frequency plots. \\
\hline GAG(I) & In Common GAG. Contains the list of values to be used as Sensitivity Tags. \\
\hline GENER(I) & In Common CIRCIT. = 0 if the \(I\) th element is passive. \(=1\) of the \(I\) th element is active. \\
\hline INDIC(I) & In Subroutine FINE. Used during circuit tree building. \\
\hline IN(I) & In Subroutine ROOTS. Number of discontinuities found on a type I pass. \\
\hline INODE & In Common BITS. The lowest node number in the circuit. \\
\hline INP & In Main Program. = 1 when a Transfer Function Request has been read. \(=0\) otherwise \\
\hline ISN & In Common BITS. \(=2\) for a pulse response. \(=3\) for a pulse train response. = 1 otherwise. \\
\hline ITAG & In Subroutine ANSWER. = - 1 for a Worst Case Function. \(=0\) for a Transfer Function. Else, Sensatavaty Function for element number ITAG. \\
\hline ITREE & In Common TREE. \(=1\) when Subroutine FINE is to be called to build a tree. \(=0\) otherwise. \\
\hline JN( & In Subroutine ROOTS. Number of roots found on a type I pass. \\
\hline KI & In Subroutine ROOTS. Counter for the Imaginary axis. \\
\hline KR & In Subroutine ROOTS. Counter for the Real axis. \\
\hline KZERO & In Subroutine PRTPLT. The location of the zero axis on the print line. \\
\hline LIMIT & In Subroutine SENSIT, WORST. The maximum number of Sensitivity Requests that can be handled. \\
\hline LINE(I) & In Subroutine FINE. Used for output formatting. \\
\hline LINE(I) & In Subroutine ANSWER. Used for printing the dividing line. \\
\hline LINKS(I) & In Common BITS. Area for logical bit manipulations during evaluation of current equations in Subroutine CALC. \\
\hline \({ }^{\text {L LOGIC(I) }}\) & In Common BITS. A Logical Type alias for LOOP(I). Used in Subroutine LOOPS. \\
\hline LOGIC1 & In Subroutine LOOPS. A Logical type alias for M1. \\
\hline LOG1 & In Subroutines ROUTH and CALCR. = TRUE if the current SIGMA value lies to the right of all poles in the complex plane. = FALSE otherwise. \\
\hline LOOP( I ) & In Common BITS. Area for logical bit mampulations during flowgraph loop evaluation. \\
\hline LPATH(I, J) & In Common BITS, PATHS. LPATH(I, 1) is the origin node of the \(I^{\prime}\) th flowgraph transmittance. LPATH(I, 2) is the target node of the \(I^{\prime}\) th flowgraph transmittance. \\
\hline LS(I) & In Common SPEED. Contains the S value and tags of the \(I^{\prime}\) th loop in the flowgraph. \\
\hline MOR & In Common BITS. Number of coefficients in the transform denominator. \\
\hline MORNUM & In Common BITS. Number of coefficients in the Transfrom numerator. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline M & In the Main Program. An alıas for LPATH( \(\mathrm{I}, \mathrm{J})\). \\
\hline MRIMAX & In Subroutine INVERT. Number of coefficients in the transfor \\
\hline M1 & In Subroutine LOOPS. Used during Higher Order Loop evaluation. \\
\hline N(I) & In Subroutine NASAP. Used during circuit tree buildıng. \\
\hline NB & In Subroutine CALC. Number of branches in the curcuit tree. \\
\hline NBR (I) & In Subroutine CALC. Number of branches at circuit node I. \\
\hline NDEM & In Subroutine WORST. = 0 if the simplified formula can be used. \(=1\) for the standard formula. \\
\hline NE & In Common CIRCUIT. Number of elements in the carcuit. \\
\hline NEL(1) & In Subroutine CALC. Number of elements at circuit node I. \\
\hline NEXP & In Subroutine ROOTS. The magnification factor for homing-in \\
\hline NEXPS( & In Subroutine ANSWER. Array containing powers of S. \\
\hline NFLAG & In Subroutine WORST. = 1 when Worst Case analysis has been aborted. \(=0\) otherwise. \\
\hline NFLAG & In Subroutine INVERT. = 1 when the transform is not rational. \\
\hline NI & In Subroutine ROOTS. The hexadecimal imaginary part of the root. \\
\hline NINDIC(I) & In Subroutine FiNE. Used during circuit tree building. \\
\hline NLOOP & In Common SPEED. Number of loops in the flowgraph. \\
\hline N & In Subroutine LOOPS. Number of nodes in the circuit. \\
\hline N & In Subroutine CALC. Number of nodes in the circuit. \\
\hline NNODES & In Common BITS. The highest node number in the circuit. \\
\hline NODE(I) & In Subroutine LOOPS. The number of flowgraph transmittances arriving at flowgraph node I. \\
\hline NPATH & In Common PATHS. Number of transmittances in the flowgraph. \\
\hline NPLOT & In Common BITS. Number of calculated points per printed point. \\
\hline NPOLES & In Common SPEED. Number of poles in the Transfer Function. \\
\hline NQ(I) & In Common BITS. The beginning of the list of branches for node I in the BRANCH array. Used in Subroutine CALC. \\
\hline NR & In Subroutine ROOTS. The hexadecimal real part of the root. \\
\hline NR & In Subroutine READ. Number of duplicate elements names. \\
\hline NRT( \(\mathrm{I}, \mathrm{J}, \mathrm{K}\) ) & In Subroutine ROOTS. The hexadecimal list of roots. \\
\hline NS(I) & In Subroutine CALC. Initially the same as NQ(I). Used during the calculation of the current equations. \\
\hline NSEN & In Common GAG. Number of elements tagged for Sensitivity Analysis. \\
\hline NTAY & In Common BITS. = 1 if a Taylor Series is to be used to compute the farst five plot points. \(=0\) otherwise. \\
\hline NTIMES & In Common NTIMES. Number of words per block to be used in logical bit manipulation in Common BITS. \\
\hline \(\operatorname{NUM}(\mathrm{I}, \mathrm{J})\) & In Subroutine ANSWER. Alphanumeric array of S exponents. \\
\hline NUMB(I) & In Subroutine FINE. Used during tree buılding. \\
\hline NUMNOD & In Subroutine FINE. Number of circuit nodes. \\
\hline NUMFR & In Common BITS. Number of points along the w axis. \\
\hline NUMETI & In Common BITS. Number of calculated points in the plot. \\
\hline NWORST & In Common WORST1. = 1 if a Worst Case analysis is to be performed. \(=0\) otherwise. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NX & In Subroutine ROOTS. The step size of the Home-in routine. \\
\hline N1 & In Subroutine LOOPS. The first node in a Higher Order Path. Detected by Subroutine UNPAK. \\
\hline N2 & In Subroutine LOOPS The second node in a Higher Order \\
\hline & Path. Detected by Subroutine UNPAK. \\
\hline N3 & In Subroutine LOOPS. The third node in a Higher Order Path. Detected by Subroutine UNPAK. \\
\hline OCARD(I, J) & In Subroutine FINE. The ordered CARD array. \\
\hline OGENER(I) & In Subroutine FINE. The ordered GENER array. \\
\hline OORIGIN(I) & In Subroutine FINE. The ordered ORIGIN array. \\
\hline ORD & In Common BITS. The ordinate label for Subroutine PRTPLT. \\
\hline ORDER(I) & In Subroutine LOOPS. A pointer to the location of the I' th order loop or transmittance in the LOOP area. \\
\hline ORIGIN(I) & In Common CIRCIT. Origin circuit node of the I' th element. \\
\hline OTARGT(I) & In Subroutine FINE. The ordered TARGET array. \\
\hline OVPATH(I) & In Subroutine FINE. The ordered VPATH array. \\
\hline OZ (I) & In Subroutine FINE. The ordered \(Z\) array \\
\hline \(\mathrm{P}(\mathrm{I})\) & In Subroutine PRTPLT. Used to format the print line during plotting. \\
\hline P & In Subroutine POLSEN. The Real part of the Pole Sensituvity. \\
\hline \(\mathrm{PH}(\mathrm{I})\) & In Subroutine INVERT. Array of phase points in a frequency plot. \\
\hline POLE(I) & In Common SPEED. The I' th pole of the Transfer Function, a Complex number \\
\hline POW & In Subroutine NUMBER Used to hold the exponent value. \\
\hline POW(1) & In Common BITS. Part of the Taylor Series computed by Subroutine TAYLOR. \\
\hline Q & In Subroutine POLSEN. The Imaginary part of the Pole Sensitivity. \\
\hline RSPNS(I) & In Common BITS. The points \(F(\sigma+j w)\) computed by Subroutine SAMPLE. The work array for the Fast Fourier Transform in Subroutine FLIP. \\
\hline S, SE, SN, SS, SW & In Subroutine ROOTS. The five points of the five point test. \\
\hline S(I) & In Common BITS, PATHS. Contains the \(S\) value and tags of the It th flowgraph transmittance. \\
\hline SCFREQ & In Common BITS. The frequency scale factor. \\
\hline SCMAG & In Common BITS. The amplitude scale factor. \\
\hline SENS(I) & In Common GAG. Numerical Sensitivity Tag for the It th element. \\
\hline SIGMA & In Common BITS. The real part of S , the complex frequency. \\
\hline SIGPOW(I) & In Subroutine CAILCR An array of powers of SIGMA \(\sigma^{I}\). \\
\hline
\end{tabular}

SMAX (I) In Common CIRCIT. SMAX(1). Highest s power in Transfer function Denominator, VN(I, 1). SMAXX(2) Highest s power in Transfer Function Numerator, VN(I, 2).
SMAX00(J) In Common POLY. Highest \(s\) power in \(-H(\bar{P}, \bar{Q})\), VN00( \(T, J)\), for the \(J\) th element.
SMAX01(J) In Common POLY. Highest \(s\) power in \(H\left(P^{\prime}, \bar{Q}\right)\) VNOI \((I, J)\), for the \(\mathrm{J}^{\mathrm{t}}\) th element.
SMAXI(K) In Common BITS, POLY. Highest \(s\) power in Sensitivity Function for \(K^{\prime}\) th element, VNSEN( \(I, J, K\) ).
\(\operatorname{SMAX10}(J)\) In Common POLY. Highest \(s\) power in \(-H\left(\bar{P}, Q^{i}\right)\), VN10 \((I, J)\), for the \(J\) th element.
SMAX2 In Common WORST1. Highest \(s\) power in Worst Case Function, VW(I, J).
\(\operatorname{SMIN}(\mathrm{I}) \quad\) In Common CIRCIT. SMIN(1) Lowest \(s\) power in Transfer Function Denominator, VN(I, 1). SMIIN(2), Lowest \(s\) power in Transfer Function Numerator, VN(I, 2).
SIMINOO(J) In Common POLY. Lowest \(s\) power in \(-H(\bar{P}, \bar{Q})\), VNOO(I, J), for the \(J^{\prime}\) th element.
SNIIN01(J), In Common POLY. Lowest \(s\) power in \(H\left(P^{\prime}, \bar{Q}\right)\) VNO1(I, J), for the \(J^{\prime}\) th element.
SMIN1(K) In Common BITS, POLY. Lowest \(s\) power in Sensitivity Function for \(K^{\prime}\) th element, VNSEN(I, J, K).
SMIN10(J) In Common POLY. Lowest s power in \(-H\left(\bar{P}, Q^{\prime}\right), V N 10(I, J)\), for the \(J^{\prime}\) th element.
SIMIN2 In Common WORST1. Lowest \(s\) power in Worst Case Function, VW(I, J).
STEP In Common BITS. The interval between successive plot points.
SPOW(I) In Subroutine SAMPLE. The value of \(\mathrm{S}^{\mathrm{I}-1}\).
TAG In Common TAG. A utility flag used by the Main Program.
TAG In Subroutine NUMBER. = 1 when the number is negative. = 0 otherwise.
TARGET(I) In Common CIRCIT. Target carcuit node of the I' th element.
TAG(I) In Common GAG. An alias for GAG(I).
TAG(I) In Subroutine FINE. An allas for the TYPE array.
TEE(I) In Common SPEED. The abscissa points for Subroutine PRTPLT.
TERM(I) In Common BITS. The coefficients of the Taylor Serles computed by Subroutine TAYLOR.
TOL(I) In Common WORST1. Tolerance value for the \(I^{\prime}\) th element.
TOTEE In Common BITS. The interval between the first and last points plotted.
TREE In Common TREE. = 1 when Subroutine FINE is to be called to build a circuit tree. \(=0\) otherwise.
TYP(I) In Subroutine GRAPH. An alias for TYPE(I).
TYPE(I) In Common CIRCIT. \(=0\) if the \(I^{\prime}\) th element is a Current Source (Link). = 1 if the It th element is a Voltage Source (Branck.
\begin{tabular}{|c|c|}
\hline T1, T2, T3 & In Common BITS. Coefficients for the pulse response Transforms. \\
\hline V(I) & In Common SPEED. The value of the I' th loop in the flowgraph. \\
\hline VDER1V(I) & In Subroutine POLSEN. The symbolic derivative of the Transfer Function Denominator. I=51+ power of s. \\
\hline VM \((1, J)\) & In Subroutine ANSWER The Function after normalization. \\
\hline VN( \(\mathrm{I}, \mathrm{J}\) ) & In Common CIRCIT. VN(I, 1) Transfer Function Denominator. VN(I, 2) Negative Transfer Function Numerator. \(\mathrm{I}=51+\) power of s . \\
\hline VNSEN(I, J, K) & In Common BITS, POLY. Sensitivity Function of \(K^{1}\) th element. \(J=1\) for Denominator, \(J=2\) for Numerator. \(\mathrm{I}=51+\) power of s . \\
\hline VPATH( I ) & In Common BITS, PATHS. Value of the I' th flowgraph transmittance. \\
\hline VNOO(I, J) & In Common POLY. \(-\mathrm{H}(\overline{\mathrm{P}}, \overline{\mathrm{Q}})\) for the J th element. \(\mathrm{I}=51+\) power of \(s\). \\
\hline VN01(I, J) & In Common POLY. \(H\left(P^{\prime}, \bar{Q}\right)\) for the \(J\) th element. I=51+ power of S. \\
\hline VN10(I, J) & In Common POLY. \(-\mathrm{H}\left(\overline{\mathrm{P}}, \mathrm{Q}^{\prime}\right)\) for the \(J^{\prime}\) th element. \(\mathrm{I}=51+\) power of S . \\
\hline VPATH( \({ }^{\text {( }}\) & In Common PATHS. Value of the II th flowgraph trans mittance. \\
\hline VW(I, J) & In Common WORST1. Square of the Worst Case Function. I=51+ power of \(s . J=1\) for Denomınator, \(J=2\) for Numerator. \\
\hline W & In Subroutine FINE. An alias for FREQ. \\
\hline X & In Subroutine POLSEN. The Numerator of the Real part of the Pole Sensitivity Function, -QH( \(\bar{P}, Q)\) or VNiO(I, J) evaluated at a pole. \\
\hline Y & In Subroutine POLSEN. The Numerator of the Imagnary part of the Pole Sensitivity Function, \(-\mathrm{QH}(\overline{\mathrm{P}}, \mathrm{Q})\) or VN10(I, J) evaluated at a pole. \\
\hline Z(I) & In Subroutine FINE. The impedance of the It th element. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A. 2.2 & Dictionary of Subprograms \\
\hline ADJUST & In the Plotter. Re-evaluates the first 5 sample points via a Taylor Series. \\
\hline ANSWER & In the Transfer Function package. Prints Transfer and Sensitivity Functions normalized and formatted. \\
\hline ASCAN & A Card Scanning Utility. Scans for certain characters. \\
\hline BLOCK DATA & Part of the Main Program. Inıtıalızes Common Blocks DATA, \(X\) and GAG. \\
\hline BSCAN & A Card Scanning Utilaty. Scans for certain characters. \\
\hline CALC & In the Transfer Function Package. Evaluates current equations from the carcuit tree. \\
\hline CALCR & In the Plotter. Uses the Routh Stability Criterion to determine if the current SIGMA value is acceptable. \\
\hline CLEAR & In the Transfer Function package. Removes transmittances in the Flowgraph which have been marked deleted. \\
\hline CSCAN & A Card Scanning Utılıty. Scans for certain characters. \\
\hline EQUAL & A Bit Mampulation Utılity. Performs various operations on blocks of word in Common Block BITS. \\
\hline FINE & A Circuit Description Analysis routine. Builds a circuit tree for a user-specified frequency. \\
\hline FLIP & In the Plotter. Computes the Fast Fourier Transform coefficients. \\
\hline GRAPH & In the Transfer Function package. Builds the Flowgraph except for the unknown transmittance. \\
\hline INBIT & A Bat Manıpulation Utility. Sets bits in blocks of words in Common Block BITS. \\
\hline INPUT & In the Plotter. Evaluates the transform of the response. \\
\hline INVERT & In the Plotter. Controls the execution of the Plot Request. \\
\hline ISORT & A Card Scannıng Utılity. Converts numeric characters to fixed binary values. \\
\hline LOOPS & In the Transfer Function package. Computes Transfer and Sensitivaty Functions from the Flowgraph, via the Shannon-Happ formula. \\
\hline LOR & A Bit Manpulation Utility. Performs ' OR' \(n \mathrm{ng}\). \\
\hline LOX & A Bit Manipulation Utility. Performs 'AND' ing and subtracts the result from the arguments. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline LSTOR & A Bit Manipulation Utility. Copies one word into another. \\
\hline MAIN & The Main Program. Controls execution of NASAP-70. \\
\hline MSG & A Caxd Scanning Utalıty. Prints a diagnostic. \\
\hline MULT & In the Sensitivities and Worst Case package. Multiplies polynomials. \\
\hline NASAP & A Circuit Descraption Analysis Routine. Interprets the standard form of curcuit descraption data and builds a circuit tree for minamum computation time. \\
\hline NUMBER & A Card Scanning Utility. Converts alphanumerıc representation of numbers into floating point values. \\
\hline PLOT & In the Plotter. Interprets Plot Request Cards. \\
\hline POLSEN & In the Sensitivities and Worst Case package. Computes Pole sensitivities. \\
\hline PRTPLT & In the Plotter. Prints and plots the calculated response points. \\
\hline READ & A Circuit Description Analysis routine. Interprets the special form of circuit description data. \\
\hline REDUCE & In the Sensitivities and Worst Case package. Decodes tags from the \(S\) or LS arrays. \\
\hline ROOTS & The Rootfinder. Finds poles and zeroes of the Transfer Function. \\
\hline ROUTH & In the Plotter. Finds an acceptable SIGMA value. \\
\hline SAMPLE & In the Plotter. Computes the initial Fast Fourier Transform points. \\
\hline SCALE & In the Plotter. Scales the Fast Fourier Transform coefficients. \\
\hline SCALER & The Automatic Scaler. Re-adjusts, if necessary, curcuit data values to avoid floating overflow. \\
\hline SENSC & In the Sensitivities and Worst Case package. Computes Sensitivity Functions. \\
\hline SENSIT & In the Sensitivities and Worst Case package. Interprets Sensitivity Request Cards. \\
\hline SHIFT & A Card Scanning Utility. Eliminates blanks and commas. \\
\hline SORT & A Card Scanning Utility. Converts numeric characters to floating binary values. \\
\hline TAYLOR & In the Plotter. Computes Taylor Series coefficients. \\
\hline UNITS & A Circuit Descruption Analysis routine. Prınts a message. \\
\hline
\end{tabular}

UNPAK A Bit Manıpulation Utılıty. Removes bits from blocks in Common block BITS.

WHAT In the Transfer Function package. Interprets Transfer Function Request cards.

WORST In the Sensitıvities and Worst Case package. Interprets Tolerance Cards.

WORSTC In the Sensitivities and Worst Case Package. Computes the Worst Case function.
A.2.3 Dictionary of Common Blocks

A The Card Buffer. Contains the last card read.
BITS The area for bit manipulations. Also used to hold the Fast Fourier Transform coefficients.

CIRCIT Contains data compled from the circuit description.
DATA Contains alphameric characters.
ERR Contains the Error flag and scaling factor.
FLAG Contains a utılity flag.
GAG Contains Sensitıvity Tags.
NTIMES Contains the number of words per block in BITS.
PATHS Contains the Flowgraph paths.
POLY Contains polynomials used to compute Sensitivity and Worst Case Functions.

SPEED Contains Flowgraph loops. Also used by the plotter.
TAG Contains a utility flag.
TREE Contains the switch for building a tree for user-supplied frequency.

WORST1 Contains data for Worst Case Analysis.
\(X \quad\) Contains numeric characters.
In the interest of saving space, some Common Blocks (especially
BITS) are used for various purposes at different times.

\section*{APPENDIX B}

\section*{MODELS FOR COMPUTER AIDED CIRCUIT DESIGN/ANALYSIS PROGRAMS: PART I. COMMON TRANSISTOR MODELS, A SURVEY}

\author{
By Donnamaie E. Meyerhoff \(\dagger\)
}

\section*{INTRODUCTION}

The analysis of circuits by computer depends upon the ability of the analyst to appropriately simulate device performance by a model consisting of the recognized parameters of the CAD program being utilized. The analyst must work with a lumped model of the device in question if he is to remain within the limits of a CAD program, and he must also select appropriate approximations to be made in the representation of the device behavior. These approximations must be such that they simplify analysis while maintaining an acceptable level of validity in the resuits 1,2
A. model is a mathematical entity with precise definitions of its variables and their relationships. It is never completely equivalent to the physical device, rather, the behavior of the model approximates that of the physical device. \({ }^{2}\) The development of a semiconductor model requires: (1) formulation of the ideal voltage-current equations and definition of the topology of the model, (2) modification for actual device performance, (3) invention of techniques for measurement from which model parameters may be extracted, (4) the extraction of those parameters \({ }^{3}\)

An ideal model will (1) incorporate parameters either measurable or derivable, as from a manufacturer's data sheet, \({ }^{*}\) (2) involve param eters acceptable to the given CAD program (facılitating analysis), (3) be sufficiently simplified to be comprehensive, to promote invention and design, and to be economical, (4) be complex enough to assure a tolerable degree of accuracy in the simulation of device performance over the operating

\footnotetext{
\({ }^{\dagger}\) Northrop Corporate Laboratories, this work was prepared while the author was with TRW Systems Group, Callfornia
*Used with discretion
}
range desired. \(1,2,4,5\) The less complicated the model, the more restricted its range of application

The primary concern of the circuit analyst is with the characterization of the external behavior of the device (functional modeling) without detailed simulation of internal processes (physical modeling) although an understanding of the internal processes must be assumed. \({ }^{2}\)

The selection of an appropriate model and its parameter values to correspond to given device operating conditions (temperature, biasing, load, etc.) for the circuit under consideration is the critical step in analysis, wath or without computer assistance as the model finally selected will be the limiting factor in the degree of accuracy of the results 5,6

The followng discussion is concerned with transistor models and their representation in present general purpose CAD programs. Diodes are more easily represented and are omitted here for brevity

Transistors were selected to demonstrate CAD program modeling because the majority of circuit analysis is still primarily concerned with them, and because their models are presently the primary building block of Integrated Circuit modeling. It should be emphasized that there is no single transistor model capable of simulating all regions of operation for all applications, a model this capable would be prohıbitively complex

This description of modeling is divided into two sections• (1) small signal (linear, incremental) models, and (2) large signal (nonlınear) models. The models are not derived here, the reader is referred to the appropriate references for the derivations.

SMAALL SIGNAL MODELS
A small signal is defined as an AC signal significantly smaller in peak to peak amplitude than the DC bias upon which it is superimposed. Small signal transistor models are intended to simulate the behavior of a. transistor at a specific operating point in the linear region of operation

The transistor model is constructed of parameters that remain relatively constant over the voltage and current swings encountered. These parameters are then assumed constant for the analysis.

The small signal models are not versatile, large signal swings may not be accurately analyzed (due to the lack of parameter variation and the linearity of the model), saturation and cut off are not represented. The model is valid only in the active region. \({ }^{8}\) Although it is limited in its application, the small sagnal model provides a straightforward method for simulating transistor performance when the operating restrictions have been satisfied.

A family of small signal models composed of \(h, y, z\), and \(r\) parameters (see for examples References 7 to 10 ) exists for the user and the most commonly applied models are given here. The input formats for the models for the CAD programs which accept them are also presented. The common emitter configuration is used in most cases to facılitate comparison.

Low Frequency Models. The two commonly used configurations are the Hybrıd and the Tee using \(h\) and \(r\) parameters respectively.


1 Figure B 1 Hybrid Model

The Hybrid Model is considered the best model for small signal representation because (1) the \(h\) parameters are real numbers at low frequencies, (2) the parameters may be easily obtained by measurement when required or from the device static characteristic curves, (3) if the \(h\) parameter of one configuration is available, the conversion to another configuration is relatively simple The Hybrid Model is valid for any configuration at low frequencies, for a device operating in the active region \({ }^{8}\)


Figure B 2 Tee Model Equivalent Alternate of the Hybrid Model

Program Models. SCEPTRE has a prestored hybrid model for small signail analysis. The program accepts the voltage generator (EA) described as a function of the voltage across ho (R2 in the diagram below) and the current generator (JB) described as a function of the current through hi (RI below). \({ }^{11}\)


Figure B 3 SCEPTRE Representation - Hybrid Model (Prestored)

If the Tee model is preferred, SCEPTRE will accept a user-description for that model without requiring modifications in the representation. ECAP, however, will not accept a nonlinear dependency and requires the conversion of the hybrıd model voltage generator into a DC bias and some resistance such that the branch* resulting is a linear approximation of the performance of the original generator. The current source is dependent linearly on the current through RI and it is not modified. \({ }^{12}\)


Figure B 4 ECAP Representation - Hybrid Model

\footnotetext{
* branch - one impedance with or without a source between two nodes, ECAP requires a "dummy" impedance in parallel with an I source, and in series with a V source, 1 K is used.
}

High Frequency Models \(\left[F \ll \frac{2 D_{b}}{w^{2}}\right]\) The two most commonly used configurations are the Hybrıd-Pı (Figure B-5) and the Modified-Tee (Figure B-6). Their parameters are not frequency dependent and most manufacturers provide data for one of them.

a Analytical Hybrid Pt

b Reduced Hybrid \(\mathrm{P}_{1}\)

Figure B 5 Hybrid PI

This carcult is known to gave results in excellent agreement with experiment in the range dc to limiting frequency of the device, that frequency where the gain is significantly reduced and operation is no longer validly assumed Innear

The reduced version of the circuit is justified when source or load impedances or other factors or uncertanties swamp the effects of various parameters Parameters \(r_{b^{\prime}} c\) and \(r_{c e}\) are considered approximate opens in Figure \(B-5 b, C_{b^{\prime}} e^{,} C_{b^{\prime} c}\) are lumped and include \(C_{T}{ }^{8}\)

The Modıfied Model is generally used for common base circuits, and is limited in transient response analysis in range of operating biases and bandwidth \({ }^{9,13}\) The Simplified Tee uses one base resistance, and \(r_{c}\) is an approximate open


Figure B 6 Modified Tee

Program Models ECAP will accept the Hybrid-Pi in either form, although the reduced version is the most commonly used. The current dependency is linear and the elements must be single valued.


Figure B 7 ECAP - Hybrid PI

SCEPTRE has no prestored Hybrıd-P1 but the user may enter a model which describes the current generator as a function of \(I_{r b} e^{\prime}\), and which is not restricted to single valued elements

There are numerous other small signal models, the ones presented above are the most commonly applied to small signal analysis. There are more complex circuits for device simulation at higher operating frequencies and for noise analysis

\section*{LARGE SIGNAL MODELS}

A large signal is defined as an AC signal with a peak to peak amplitude that exceeds the DC bias upon which it is superimposed Large signal transistor models are intended to sumulate the behavior of a transistor when its operation encompasses more than one region of operation, or when its operation enters the nonlinear portion of the device characteristics

There are four regions of operation for a transistor (See References 13-17.) They are.
I. Cut-off Region Collector current cut-off or collector voltage saturation, both junctions are reverse biased, only small reverse saturation currents flow across the junctions
\[
\mathrm{I}_{\mathrm{e}}<0 \quad \mathrm{~V}_{\mathrm{EB}} \ll-\frac{\mathrm{kT}}{\mathrm{q}} \quad \mathrm{~V}_{\mathrm{CB}} \ll-\frac{\mathrm{kT}}{\mathrm{q}}
\]

The transistor behaves as an open (nonconducting) switch
I. Normal Active Region Emitter junction forward biased, collector junction reverse biased, \(0<I_{e}<-\frac{I_{C}}{\alpha}\)
\[
V_{C B} \ll-\frac{k T}{q}
\]
III. Saturation Region. Collector current saturation or collector voltage cut off, both junctions carry a forward bias, \(I_{e}<-\frac{I_{C}}{\alpha}\)
the voltages across the junctions are in the millıvolt range. The transistor behaves as a closed (conducting) switch.
IV. Inverse Active Region. Emitter reverse biased, collector for ward biased, similar to normal active with emitter and collector interchanged, low reverse current gain.

Large signal operation for transistors includes power applıcations and switching (an extreme case where the device goes rapidly from Region III to Region I and vice versa, and generally includes the first three regions of operation. \({ }^{14}\)

Small signal models dealt only with Region II The parameters were assumed to remain constant and operation was approximately linear Large slgnal modeling is complicated by the variation of parameter values with changes in voltage and current, the thermal and power limitations that must be accounted for, and the nonlinear behavior of the device. \({ }^{7,9}\)

There are three primary models used for large signal analysis (1) the Beaufoy -Sparkes Charge Control model; (2) the Ebers-Moll model, (3) the Linvill-Lumped model

In their paper "Comparison of Large Signal Models for Junction Transistors, \({ }^{4}\) Hamılton et al, had the following conclusions about the three models.

First, the three models are all described by two first order ordinary differential equations. The main difference in the equations is in the dependent variables. The same four measurements provide the values for parameters for Ebers -Moll and the Beaufoy-Sparkes models and determine the characteristics equation of the Lumped model. (Table B-I shows parameter conversion for \#1 and \#2, and Figure B-14 demonstrates equation similarity for \#2 and \#3)

Second, although each model is derived by means of approximations made at different stages of the theoretical development, the final overall
degree of approximation is the same. The models have the same natural frequencies and give the same results for transient problems. Therefore, as far as numerical results are concerned, the three models are equivalent.

Last, the Charge Control model is considered more cumbersome in application that the Ebers-Moll model, the Lumped model is considered the most general in development approach.

The Ebers-Moll Model. The well-known Ebers-Moll equations for device operation are given below. They are valıd for any transistor in low level injection, regardless of shape, which has neglıgible voltage drop everywhere but the junctions. They are also valid for a graded base region device. \({ }^{18}\)

The Ebers-Moll model for Regions I, and II is based on these equations of 1 deal device operation. To more closely approximate actual device per formance resistances \(r_{b}, r_{e l}, r_{c l}\) must be added. The model is completed for high frequency by adding \(\mathrm{C}_{\mathrm{be}}, \mathrm{C}_{\mathrm{bc}}\)

Program Models: Two CAD programs have prestored versions of the Ebers -Moll model for the first three regions of operation, NET-1, and SCEPTRE The Ebers-Moll based model 1 s the only model available with NET-1 for circuit analysis, and it requires all of its parameters be prestored for each device prior to its use in analysis, a requirement that has been found to be too restrictive.

SCEPTRE uses a more flexible prestored Ebers -Moll model. The user must have access to \(\mathrm{I}_{\mathrm{CO}}, \mathrm{I}_{\mathrm{EO}}, \theta_{\mathrm{N}}, \theta_{\mathrm{I}}\), to describe \(\mathrm{J}_{1}\) and \(J_{2}\) (current generators) or may enter tables of laboratory measurement data. \(R_{b b}\) and \(R_{c c}\) may be omitted from separate representation when measurements are used since they are included in the values for \(J_{1}\) and \(J_{2}\). If \(\alpha_{I} \sim 0\), JA may be omitted.
a) IDEALIZED EQUATIONS
\(I_{E}=\frac{I_{\mathrm{EO}}}{1-\alpha_{\mathrm{N}} \alpha_{I}}\left(e^{\lambda \mathrm{V}_{\mathrm{EB}}}-1\right)+\frac{\alpha_{I} \mathrm{I}_{\mathrm{CO}}}{1-\alpha_{\mathrm{N}} \alpha_{\mathrm{I}}}\left(e^{\lambda \mathrm{V}_{\mathrm{CB}}}-1\right)\)
\(I_{C}=\frac{\alpha_{N}{ }_{\mathrm{N}} \mathrm{EO}}{1-\alpha_{\mathrm{n}} \alpha_{\mathrm{I}}} \quad\left(e^{\lambda \mathrm{V}_{\mathrm{EB}}}-1\right)-\frac{\mathrm{I}_{\mathrm{CO}}}{1-\alpha_{\mathrm{N}} \alpha_{\mathrm{I}}}\left(e^{\lambda \mathrm{V}} \mathrm{CB}-1\right)\)
\(I_{B}=-I_{C}-I_{E}\)
\(\alpha_{\mathrm{N}} \mathrm{I}_{\mathrm{EO}}=\alpha_{\mathrm{I}} \mathrm{I}_{\mathrm{CO}}\)
recıprocity requirement
\(\lambda=\frac{q}{\eta \mathrm{KT}} \quad \eta=1 \quad\) valid when the transition region has no effect \(\eta \sim 1\) for germanıum, \(\eta \sim 2\) for silicon, \(1 \leqq \eta \leqq 3\)
b) IDEALIZED MODELS

TERMINAL CURRENT CONTROL

\section*{TERMINAL VOLTAGE CONTROL}

\[
\begin{aligned}
& I_{C S}=\frac{I_{C O}}{1-\alpha_{N} \alpha_{I}} \\
& I_{E S}=\frac{I_{E O}}{1-\alpha_{N} \alpha_{I}} \\
& I_{F}=I_{E S}\left(e^{q V_{E B} / \mathrm{KT}^{2}}-1\right) \\
& I_{R}=I_{C S}\left(e^{q V_{C B} / K T}-1\right)
\end{aligned}
\]

Figure B 8 Ebers-Moll Equations and Idealized Models (PNP)


Figure B 9 Ebers - Moll Madel for Regıons I, II, Hıgh Frequency


Figure B 10 NET - 1 Transistor Model

\[
\begin{aligned}
& J A=\alpha_{1} J 1 \\
& J B=\alpha_{N} J 2 \\
& J 1=I_{\mathrm{EO}}\left(e^{\theta_{\mathrm{N}} \mathrm{~V}_{\mathrm{B}^{\prime} \mathrm{E}}-1}\right) \\
& \mathrm{J} 2=I_{\mathrm{CO}}\left(e^{\theta_{\mathrm{I}} \mathrm{~V}_{\mathrm{B}^{\prime} \mathrm{C}}-1}\right) \\
& \text { where } \quad \theta=\frac{\mathrm{q}}{\eta \mathrm{KT}}
\end{aligned}
\]

Figure B 11 SCEPTRE Prestored Model

Charge Control Model. The concepts of charge control may be briefly summarized as (1) the base charge ( \(q B\) ) may be defined uniquely by the past behavior of the base current, (2) the collector current is proportional to the base charge, is controlled by the base charge. \({ }^{18}\) The active region model and its equations are given in Figure B-12 \(17,20,21\)

The similarity of the charge control model and more familiar parameters is seen by the relations
\[
\tau_{\mathrm{BF}} \approx \frac{\mathrm{~h}_{\mathrm{fe}}}{\omega_{\mathrm{T}}}=\frac{1}{\omega_{\beta}} \quad h_{\mathrm{fe}} \approx \frac{\tau_{\mathrm{BF}}}{\tau_{\mathrm{F}}} \quad \text { (Forward Injection) }
\]
\[
\begin{aligned}
& \text { ( }
\end{aligned}
\]
\[
\begin{aligned}
& { }^{l_{b}}=\frac{q_{B}}{T_{B F}}+\dot{q}_{B}-C_{b^{1} e} \frac{e}{d t}-C_{b^{\prime} c} \frac{c}{d t}-I_{C O} \\
& T_{F} \approx \frac{q_{B}}{{ }_{c}{ }^{-1} \mathrm{CO}} \\
& I_{c}=\frac{q_{B}}{\tau_{F}}+C_{b^{\prime} c} \frac{d V_{c}}{d t}+I_{C O} \\
& i_{e}=q_{B}\left(\frac{1}{\tau_{F}}+\frac{1}{\tau_{B F}}\right)+q_{B}+C_{b^{\prime} e} \frac{d V e}{d t}
\end{aligned}
\]

Figure B 12 Charge Control Model and Equations (NPN Device)

The similarity of the charge control model and more famıliar parameters is seen by the relations
\[
\tau_{\mathrm{BF}} \approx \frac{\mathrm{~h}_{\mathrm{Fe}}}{\omega_{\mathrm{T}}}=\frac{1}{\omega_{\beta}} \quad \mathrm{h}_{\mathrm{fe}} \approx \frac{\tau_{\mathrm{BF}}}{\tau_{F}}
\]

Program Models: CIRCUS includes a radiation ~pulse current generator In its prestored charge control model. \({ }^{22}\) CIRCUS requires that the user define 13 single valued parameters and 4 parameters that are single valued or tabled. The program equations are
\[
\begin{aligned}
& C_{b e}=\frac{\alpha_{I}}{\left(\theta_{1}-V_{b e}\right)^{N_{1}}}+\theta_{N} T_{C N}\left(I_{N}+I_{e s}\right) \\
& C_{b c}=\frac{\alpha_{N}}{\left(\theta_{2}-V_{b c}\right)^{N_{2}}}+\theta_{I} T_{C I}\left(I_{I}+I_{C S}\right) \\
& I_{b e}=\left(\frac{1}{\beta N}+1\right) I_{N}-I_{I} I_{b c}=-I_{N}+\left(\frac{1}{\beta I}+1\right) I_{I} \\
& I_{N}=I_{e S}\left(e^{\theta_{N} V_{b e}}-1\right) \quad I_{I}=I_{C S}\left(e^{\theta_{I} V_{b c}}-1\right) \\
& \beta_{\mathrm{N}}, \mathrm{~T}_{\mathrm{CN}}=\mathrm{f}\left(\mathrm{I}_{\mathrm{N}}\right) \quad \beta_{\mathrm{I}}, \mathrm{~T}_{\mathrm{CI}}=\mathrm{f}\left(\mathrm{I}_{\mathrm{I}}\right)
\end{aligned}
\]
\(\mathrm{N}_{1}, \mathrm{~N}_{2}\) are proportionallty constants
These parameters may be converted to Ebers-Moll parameters
TABLE B-1
CHARGE CONTROL TO EBERS-MOLL CONVERSION RELATIONS
Charge-Control Ebers-Moll Charge-Control Ebers-Moll
\(\mathrm{I}_{\mathrm{es}}\)
\(\frac{\alpha_{\mathrm{N}} \mathrm{I}_{\mathrm{es}}}{1-\alpha_{\mathrm{N}} \alpha_{\mathrm{I}}}\)
\(\mathrm{T}_{\mathrm{CI}} \quad \frac{10^{-9}}{2 \pi \alpha_{\mathrm{I}} \mathrm{F}_{\mathrm{I}}}\)
\(I_{c s} \quad \frac{\alpha_{I} I_{\mathrm{CS}}}{1-\alpha_{\mathrm{N}} \alpha_{\mathrm{I}}}\)
\(\theta_{\mathrm{N}}\)
\(\frac{38.9(298)}{M_{e}(T+273)}=\frac{q}{M_{e} \mathrm{KT}}\)
\(\mathrm{T}_{\mathrm{CN}}\)
\(\frac{10^{-9}}{2 \pi \alpha_{N} F_{N}}\)
\(\theta_{\text {I }}\)
\(\frac{389(298)}{M_{e}(T+273)}=\frac{q}{M_{c}{ }_{c} T}\)

Other parameters correspond directly.

induced pulse-currents

Figure B 13 CIRCUS Prestored Charge Control Model - NPN22

The Linvill Lumped Model The Linvill model uses Iumped elements to represent paths through which charge wall flow in a transistor, the rate and amount of this charge-flow being governed by hole and electron concentrations and voltage The lumped elements are given in terms of length dimensions and electrical constants. A reduced lumped daffusion model for a transistor is given in Figure B-14 1, 23-25


Figure B 14 Linvill's Two Lump Transistor Model

Equations Showing Parallel to Ebers-Moll Model:
\[
\begin{aligned}
& +\frac{\alpha_{N^{-I}} \mathrm{CO}^{1-\alpha_{N} \alpha_{I}}}{1}\left(\mathrm{e}^{\mathrm{V}_{\mathrm{c}} / \mathrm{M}_{\mathrm{c}}{ }^{\theta}}-1\right)+\frac{d}{d t}\left(\mathrm{C}_{\mathrm{je}} \mathrm{~V}_{\mathrm{e}}\right) \\
& I_{c}=\frac{-I_{C O}}{1-\alpha_{N} \alpha_{I}}\left(e^{V_{c} / M_{c} \theta}-1\right)-T_{I} \frac{d}{d t}\left[\frac{I_{C O}}{1-\alpha_{N} \alpha_{I}} \quad\left(e^{\mathrm{V}_{c} / M_{c} \theta}-1\right)\right] \\
& +\frac{\alpha_{N} I_{E O}}{1-\alpha_{N} \alpha_{I}}\left(e^{V^{/ M} e^{\theta}}-1\right)+\frac{d}{d t}\left(C_{J C} V_{c}\right)
\end{aligned}
\]
where:
\[
I_{E O} \triangleq-p_{n}\left(G_{r 1}+\alpha_{I} G_{r 2}\right) \quad I_{C O} \triangleq-p_{n}\left(G_{r 2}+\alpha_{N} G_{r 1}\right)
\]
\(T_{N} \triangleq \frac{\mathrm{Ch}_{1}}{\mathrm{G}_{\mathrm{d}}+\mathrm{G}_{\mathrm{r} 1}} \quad \mathrm{~T}_{\mathrm{I}} \triangleq \frac{\mathrm{Ch}_{2}}{\mathrm{C}_{\mathrm{d}}+\mathrm{G}_{\mathrm{r} 2}} \quad \alpha_{\mathrm{N}} \triangleq \frac{\mathrm{G}_{\mathrm{d}}}{\mathrm{G}_{\mathrm{r} 1}+\mathrm{G}_{\mathrm{d}}} \quad \alpha_{\mathrm{I}} \triangleq \frac{\mathrm{G}_{\mathrm{d}}}{\mathrm{G}_{\mathrm{r} 2}+\mathrm{G}_{\mathrm{d}}}\)
\(G_{d} \quad\) diffusion current generator
\(G_{r 1}, G_{r 2}\) recombination centers
\(\begin{array}{ll}\mathrm{Ch}_{1}, \mathrm{Ch}_{2} & \text { storance } \\ \mathrm{P}_{c c}, \mathrm{P}_{\mathrm{ce}} & \text { excess holes in collector, emitter, } \mathrm{P}_{\mathrm{cx}} \triangleq \mathrm{p}_{\mathrm{n}}\left(e^{\mathrm{V}_{\mathrm{x}} / \mathrm{M}_{\mathrm{x}} \theta^{\prime}}-1\right)\end{array}\)
Program Models A version of the Linvill model has been developed for use as the prestored model for the TRAC program. \({ }^{26}\) The model and its parameters are shown in Figure B-15 The model is dependent on past values of \(V_{c b}, V_{e b},\left(V_{c b}{ }^{3-1}=V_{C}^{1}, V_{e b}^{J-1}=V_{E}^{1}\right.\) for the \(j^{\text {th }}\) step \()\)

\[
R_{C}=\frac{m_{c} \theta\left(1-\alpha_{N} \alpha_{R}\right)}{I_{c o}\left(e^{\left.v_{c} / m_{c} \theta\right)}\right.}
\]
\[
R_{E}=\frac{m_{e} \theta\left(1-\alpha_{N} \alpha_{R}\right)}{I_{c o}\left(e^{V E} / m e \theta\right)}
\]
\[
I_{C}=\frac{\left(e^{\mathrm{vC}^{\prime} / \mathrm{mc}}-1\right) \mathrm{I}_{\mathrm{CO}}}{1-\alpha_{N^{\alpha} R}}
\]
\[
\mathrm{I}_{\mathrm{E}}=\frac{\mathrm{I}_{\mathrm{EB}}}{1-\alpha_{\mathrm{N}} \alpha_{\mathrm{R}}} \quad\left(\mathrm{e}^{\mathrm{ve}^{\mathrm{t}} / \mathrm{me}}-1\right)
\]
\(I_{p p e}(t), I_{p p c}(t)=\) radıation ınduced pulse currents

Figure B 15 TRAC Model - Prestored Lumped Model-NPN

\section*{SUMMARY}

The most commonly used small signal models, the Modıfied Tee and the Hybrid- \(\mathrm{P}_{1}\), have been presented with a description of the CAD programs that accept them. The three large signal models have also been briefly presented with a discussion of the CAD programs that have incorporated them.

The Hybrid-Pi is suitable for AC and small signal transient analysis and is the most effectively used model for ECAP

Large signal analysis requires a degree of complexity ECAP cannot accept without a loss of efficiency and accuracy. NET-1 attempted analysis with only a complex Ebers-Moll model with extensive data requirements and this has been found severely restrictive. TRAC has attempted analysis with only a complex version of the Linvill model and has met the same restrictions. CIRCUS attempts analysis with a charge-controlled model with less stringent requirements, is more effective but is also restricted. Some piece-wise linear modelıng may be effected but this is generally cumbersome, especially without a dependent current source

SCEPTRE is the first major program to combıne the features of the prestored models and the flexibility of the user-derived models SCEPTRE is capable of both small and large signal analysis with its prestored models

It should be reemphasized that there is no single model capable of all analysis since such a model would be cumbersome and overly complex for any given analysıs just as there is no ideal CAD program to perform analysis. The selections of the model and the program are both determined from considerations of the application of the device, the avallability of parameter data and the accuracy requirements of the solution among others.

Table B-II presents a summary of some major CAD programs and the models included in this paper, Table B-III is a summary of symbols applied throughout the text.

TABLE B-II
PROGRAMI MODELING CAPABILITIES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Program & NASAP & ECAP & SCEPTRE & CIRCUS & TRAC & NET-1 & PREDICT \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{Model: Small Signal}} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{Low Frequency} \\
\hline Hybrıd & \(E\) & E & P & N & N & N & E \\
\hline Tee & E & E & E & N & N & N & E \\
\hline \multicolumn{8}{|l|}{High Frequency} \\
\hline Hybrıd-Pı & E & E & E & N & N & N & E \\
\hline Modıfied Tee & E & E & E & N & N & N & E \\
\hline \multicolumn{8}{|l|}{Large Signal} \\
\hline Charge Control & D & D & E & P & N & N & E \\
\hline Ebers-Moll & D & D & P & D & N & P & E \\
\hline Linvill Lumped & D & D & E & D & P & N & E \\
\hline
\end{tabular}

Key
E Engineer Derıved
P Prestored Model
D Inefficient, difficult
N Not acceptable

\section*{TABLE B-III}

\section*{KEY TO SYMBOLS USED IN TEXT}

A manufacturer's data sheet typically contains information on \(I_{c o}\), \(\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}, \mathrm{V}_{\mathrm{BE}(\text { sat })}, \mathrm{h}_{\mathrm{F}^{\prime} \mathrm{E}}\) (Beta), \(\mathrm{C}_{\mathrm{ob}}\) and \(\mathrm{f}_{\mathrm{T}}\), as well as stress limits for the device. Many also include the small signal parameters \(h_{r e}, h_{i e}, h_{o e}\), \(h_{\text {fe }}\) (AC amplification). Based on this information and the knowledge of what load current is desired (small signal operating point or large signal - maximum stress on the device) the designer/analyst must derive the parameter values (or functions of values) for the selected device.

The following is a tabulation of the symbols used in this paper and their definitions Those parameters necessary for analysis include the generally applied approximation for their computation.
\begin{tabular}{|c|c|}
\hline \(B, B^{\prime} ; b, b^{\prime}\) & Base terminal, suffix-parameter related to base characterıstics \\
\hline C, \(\mathrm{C}^{\mathbf{1}}, \mathrm{c}, \mathrm{c}^{\prime}\) & Collector terminal, suffix-parameter related to collector characteristics \\
\hline \(C_{b^{\prime}}\) & Capacity from base internal point to collector, generally labeled \(\mathrm{C}_{\mathrm{ob}}\) on data sheet \\
\hline \(C_{b^{\prime}}\) e & Capacity from base internal point to emitter
\[
\mathrm{C}_{\mathrm{b}^{\prime} \mathrm{e}} \approx \frac{1}{\mathrm{~W}_{\mathrm{T}^{\mathrm{r}}}} \approx \frac{\mathrm{~g}_{\mathrm{m}}}{2 \pi f_{\mathrm{T}}}
\] \\
\hline \(\mathrm{C}_{\mathrm{c}}, \mathrm{C}_{e}\) & Collector, emıtter capacıty - large signal symbol \\
\hline \[
\begin{aligned}
& \mathrm{C}_{\mathrm{ge}} \text { or } \mathrm{C}_{\mathrm{de}} \\
& \left(\mathrm{C}_{\mathrm{sc}} \text { or } \mathrm{C}_{\mathrm{dc}}\right)
\end{aligned}
\] & Dıffusion capacity of emitter, collector, corresponds to \(C_{b^{\prime}}, C_{b^{\prime} c}\) \\
\hline \(\mathrm{C}_{\mathrm{T}}\) & Transition capacity, \(\mathrm{C}_{\mathrm{T}} \ll \mathrm{C}_{\mathrm{b}^{\prime} \mathrm{e}}\) and \(\therefore\) generally omitted \\
\hline \(E, E^{1}, e, e^{1}\) & Emitter terminal, suffix-parameter related to base characteristics \\
\hline \(\mathrm{f}_{\alpha}\) & Alpha cut off frequency, \(\mathrm{f}_{\alpha} \approx \beta_{\mathrm{o}} \mathrm{f}_{\beta} \approx \mathrm{f}_{\mathrm{T}}\) \\
\hline \(\mathrm{f}_{\beta}\) & Beta cut off frequency \\
\hline \({ }^{\text {f }}\) T & Current gain - bandwidth product \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(g_{m}\) & Transconductance, \(g_{m}=\frac{\alpha_{N}}{r_{e}}, \quad g_{m}=\frac{h_{f e}}{1+h_{e}}\), for germanium, room temp. \(h_{f e} \gg I_{E}\) in ma, \(g_{m} \approx\) \\
\hline & \[
\frac{\mathrm{I}_{\mathrm{e}}}{26} \mathrm{ma}
\] \\
\hline \(h_{1}\) & Input impedance, small signal, \(\left.\approx \frac{\Delta V_{\text {In }}}{\Delta t_{\text {In }}}\right|_{\Delta V_{o u t}}=0\) \\
\hline \(\mathrm{h}_{r}\) & Feedback voltage ration, small signal, \\
\hline & \[
\left.\frac{\Delta V_{\text {in }}}{\Delta V_{\text {out }}}\right|_{\Delta i_{1 n}}=0
\] \\
\hline \(\mathrm{h}_{\mathfrak{f}}\) & Current transfer ratio, small signal, \(\left.\frac{\Delta_{i^{\prime}}}{\Delta_{i_{\text {in }}}}\right|_{V_{\text {out }}}=0\) \\
\hline & \(\beta \approx \mathrm{h}_{\mathrm{fe}}\) \\
\hline \(\mathrm{h}_{0}\) & Output admıttance, small signal, \(\left.\frac{\Delta_{\imath_{\text {out }}}}{\Delta_{V_{\text {out }}}}\right|_{\Delta_{\text {In }}}=0\) \\
\hline \(I_{\text {co }}\) & Collector to Base saturation current when \(\mathrm{I}_{\mathrm{E}}=0\) \\
\hline \(I_{\text {Eo }}\)
K & Emitter to Base saturation current when \(I_{c}=0\) Boltrmann's Constant (8 \(6310^{-5} \mathrm{ev} /{ }^{\circ} \mathrm{K}\) \\
\hline \(\mathrm{M}_{\mathrm{E},} \mathrm{M}_{\mathrm{c}}\) & Emitter, collector proportionality constants ( \(1 \leqq \mathbb{M}_{\mathrm{x}} \leqq 3\) ) (emission constant) \\
\hline n & Electron density \\
\hline p & Hole density \\
\hline q & Electron charge ( \(16 \times 10^{-19}\) coulomb) \\
\hline \(\mathrm{q}_{B}\) & Control charge in base region \\
\hline \(\mathrm{r}_{\mathrm{b}^{1}}, \mathrm{v}_{\mathrm{b}}{ }^{\prime \prime}, \mathrm{r}_{\mathrm{b}}\) & Components of \(r_{\mathrm{bb}^{1}}\), base resistance generally \(\mathrm{r}_{\mathrm{b} b^{1}} \approx 0\) compared to curcuit components ( \(r_{b b^{\prime}}=h_{1 e}-r_{b^{\prime} e}\) ) \\
\hline \(r_{b}\) & Small signal base resistance, Tee configuration,
\[
r_{b} \approx h_{2}-\frac{h_{f} h_{r}}{h_{o}}
\] \\
\hline
\end{tabular}


Resistance-base internal point to collector, generally very large, appears as an open to a CAD program.. generally omitted, \(r_{b^{\prime} c}=\frac{r_{b^{\prime}} e}{h_{r e}}=\frac{1}{g_{b^{\prime} c}}\)

Resistance-base internal point to emitter, \(r_{b^{\prime}} e^{\approx(\beta+1) r} r_{e}\) Collector resistance \(\approx \frac{1}{h_{0}}\), also appears as an open generally omitted
Emitter resistance, \(\approx \frac{h_{r}}{h_{o}} \approx \frac{k T}{q_{e}}\) at \(27^{\circ} \mathrm{C}, \frac{\mathrm{kT}}{\mathrm{q}}=26 \mathrm{mv}\)
Base store
Absolute temperature - \({ }^{\circ}\) Kelvin
Electron-volt equivalent of temperature, \(V_{T}=\frac{k T}{q}\)
Inverted current gain
Normal current gain
Low frequency \(\alpha_{N}\)
Inverted Beta \(\approx \frac{\alpha_{I}}{1-\alpha_{I}}\)
Normal Beta \(\approx \frac{\alpha_{N}}{1-\alpha_{N}}\)
Current gain at edge of saturation
\(\frac{\mathrm{q}}{\eta \mathrm{kT}}\) symbol for simplafication (also \(\theta\) ), \(\lambda=\frac{1}{\eta \mathrm{~V}_{\mathrm{T}}}\) Parameter accounting for recombination of carriers in the junction transition region, dependent on material \(1 \leqq \eta \leqq 3 \quad \eta \approx 1\) for germanium \(\eta \approx 2\) for salıcon

Junction voltages \(\left(V_{b^{\prime}} e, V_{b^{\prime} c}\right)\)
Alpha cut off frequency, radians
\(\omega_{T}\)
\({ }^{T} \mathrm{BH}\)
\({ }^{T}{ }_{F}\)
\(\sim \frac{{ }^{\omega}}{1.2}=2 \pi \lambda_{\mathrm{T}}\) current gain bandwidth product
Base charge time constant
Collector charge control time constant
Typical Values of \(h\) parameters \({ }^{8}\)
(common Emitter Configuration)
\begin{tabular}{ll}
\(h_{\text {Ie }}\) & 1,100 \\
\(h_{\text {re }}\) & \(2.5 \times 10^{-4}\) \\
\(h_{\text {fe }}\) & 50 \\
\(1 / h_{\text {oe }}\) & 40 K
\end{tabular}

\section*{BIBLIOGRAPHY}
1. John G. Linvill, "Lumped Models of Transistors and Diodes," Proc IEEE, Vol. 46, (June 1958), pp 1141-1152.
2. John G. Lanvill, Models of Transıstors and Diodes, New York, McGraw Hill Book Co. , Inc., 1963
3. Marvin E Daniel, "Development of Mathematıcal Models of Semıconductor Devices for Computer Aıded Circuit.Analysis, " Proc IEEE, Vol. 55, No. 11, (1966), pp. 1913-1920.
4. D.T. Hamilton, F.A. Lindholm, J.A. Narod, "Comparıson of Large Signal Models for Junction Transistors, " Proc. IEEE, Vol 52, (March 1964), pp. 239-248.
5. John J. Sparkes, "Device Modeling," IEEE Trans., Vol. ED-14, (May 1967), pp. 229-232.
6. Cyrus O. Harbourt, "Doing a Model-Job, " Electronıcs, Jan 23, 1967, pp. 82-87.
7. John Franklın Pıerce, Transıstor Circuit Theory and Design, Ohıo: Charles E. Merrill Books, Inc., 1963
8. Jacob Millman, Herbert Taub; Pulse, Digital, and Switching Wave forms, New York: McGraw Hill Book Co. , 1965.
9. Maurıce W. Joyce, Kenneth K Clarke, Transıstor Circuit Analysis, Calıfornıa Addıson Wesley Publıshing Co., Inc. 1961.
10. Franklin C Fitchen, Transistor Circuit Analysis and Design, New York D. Van Nostrand Co , Inc , 1960.

11 Harry W. Mathers, et al , Automated Digital Computer Program for Determining Responses of Electronic Circuits to Transient Nuclear Radiation (SCEPTRE), Vol. 1 and Vol. 2, New York: IBM, Feb. 1967.
12. (Staff), 7090/94 ECAP Level No. 3, The Service Bureau Corp., H20-0170-1, 1966.
13. John L. Moll, "Large-Signal Transient Response of Junction Transistors," Proc. IEEE, Vol. 42, (Dec. 1954) pp. 1773-1784.
14. J.J. Ebers, John L. Moll, "Large-Signal Behavior of Junction Transıstors, " Proc. IEEE, Vol. 43, (Dec. 1955), pp. 1761-1772
15. R. Beaufoy, J. J. Sparkes, "The Junction Transistor as a Charge Controlled Device, " AT\&T Journal, Vol XIII, 1957, pp 310-327.
16. A Eugene Anderson, "Transıstors in Switching Circuits," Proc IEEE, Vol. 40, (Nov. 1952), pp. 1541-1548.
17. Randall, W. Jensen, "Charge Control Transıstor Model for the IBM Electronic Circuit Analysis Program, " IEEE Trans., Vol. CT-13, Dec. 1956, pp. 428-437.
18. P.E. Gray, et al., Physical Electronics and Circuit Models of TranSlstors, New York• John Wıley \& Sons, Inc., 1964, (Vol 2 of SEEC Series).
19. Allan F Malmberg, et al., Net-1 Network Analysis Program 7090/94 Version, New Mexico U. of Calıf., Aug. 1964
20. K G. Ashar, H N. Ghosh, A. W Aldrıdge, L J Patterson, "Transient Analysis and Device Characterızation of ACP Circuits, " IBM Journal, July 1963, pp 207-223.
21. J.J. Sparkes, "A Study of the Charge Control Parameters of Transistors," Proc. IEEE, Vol. 49, (Oct. 1960), pp. 1695-1704
22. L. P. Millıman, W A Massena, R H Dıckhaut, CIRCUS A Digital Computer Program for Transient Analysis of Electromic Circuits User's Guide, Washington The Boeing Co., Jan 1967.
23. Robert N. Beatie, "A Lumped Model Analysis of Noise in Semiconductor Devices," IEEE Trans, Vol. ED-6, (April 1957), pp. 133-140
24. J.F. Gibbons, D A Linden, "Lumped-Model Analysis of Space Charge Widenıng, " Proc IEEE, Vol 49, (Oct. 1960), p. 920
25. M P Beddoes, "Linvill's Lumped Models and the Simplified Model," Proc. IEEE, Vol 54, (May 1965), pp. 552-554
26. G T. Kleiner, G. Kınoshita, and E.D Johnson, "Simulation and Verıfication of Transient Nuclear Radiation Effects on Semiconductor Electronics, " IEEE Trans. Vol NS-11, (1964), pp. 82-104

\section*{ADDITIONAL REFERENCES}
L.J. Gıacoletto, "Study of P-N-P Alloy Junction Transistor from D-C through Medium Frequencies, " RCA Review, Vol XV, No. 1, 1954, pp. 506-562.
J. M. Early, "Design Theory of Junction Transistors, " Bell System Technical Journal, Vol. XXXII, No. 6, 1953, pp. 1271-1312.
R.L. Pritchard, "Electric-Network Representation of Transistors - A Survey, " IEEE Trans., Vol CT-3, March 1956, pp. 5-21
R. H. F. Lloyd, "A Simpler Transistor Model," Proc IEEE, Vol. 54, (May 1965), pp. 527-528.
A. N. Baker, "Charge Analysis of Transistor Operation, "Proc IEEE, Vol. 49, (May 1960), pp. 949-950.

Campbell L. Searle, et al., Elementary Circuit Properties of Translstors, New York• John Wıley \& Sons, Inc., 1964, (Vol 3 of SEEC Series)

\section*{PART II. TRANSISTOR MODELS FOR HOSTILE (WEAPON) ENVIRONIMENT EFFECTS}

\section*{INTRODUCTION}

The present concern of circuit specialists, both designers and analysts, has been the degradation of systems upon exposure to nuclear radiation, specifically that resulting from the detonation of a weapon.

The mability of system shielding to be effective for all radiations makes \(2 t\) necessary to design and analyze for the generation of radiationinduced transient and permanent effects in semiconductor devices. There is no laboratory procedure capable of providing either the mixture or the intensity of the radiations produced in a real weapon environment, which may consist of any mixture of photons, charged particles or neutrons As a result, it becomes necessary to turn to the computer. Several computer circuit analysis programs, such as SCEPTRE, CIRCUS, and TRAC, have been developed specifically for the analysis of transient radiation effects on carcuits.

The purposes of this paper are (1) to describe the first order radiation effects in semiconductor material in terms of the weapon environment, (2) to describe the physical interactions which produce the altered device behavior, and (3) to discuss the computer program models available for the analysis of an exposed device. The discussion is primarily in terms of bipolar transistors. Because of the practical complexity of a discussion of a weapon or space radiation environment, such a discussion is not attempted here.

\section*{THE FIRST ORDER EFFECTS}

Radıations consist of high energy photons such as gamma rays and energetic particles such as neutrons, electrons and fission fragments.

The effects initiated by the high energy photons are primarily transient ionzation and excitation of the absorbing material. The effects initiated by the energetıc partıcles, specıfıcally neutrons, are primarily localızed bulk
displacements, disruptions of the crystal lattice structure along the particle path Because of the obvious complexity of a simultaneous discussion of each radiation expected in an incident environment, the two classes of radiation will be discussed separately.

\section*{IONIZATION}

The ionization effects of a pure photon environment result from the interaction of the photons and the atomic electrons of the absorbing material. The photon-atomic electron interaction produces charged particles which in turn produce ionization through further interactions.

The three primary photon-atomic electron interaction processes are \({ }^{1,2}\)
1. The Photoelectric Effect The inelastic collision of a photon and an atomic electron, the photon energy is absorbed by the electron which is ejected from the atom if the photon energy exceeds the binding energy of the electron. The extent of the photoelectric interaction is dependent on both the photon energy and the atomic number of the absorbing material and is most important at low photon energies for materials of high atomic number
2. The Compton Effect The elastic collision of a photon and an atomic electron of the absorbing material in which part of the photon energy is transferred to the electron, both the electron and a reduced-energy photon are scattered. The Compton effect is most important in an energy range between 100 KeV and 4 MeV and is more sigmificant for materials with a high atomic number
3. Pair-Production The interaction of the electric field of the atomic nucleus (or the field of an atomic electron) and a photon in which the photon energy (when Eis \(>102 \mathrm{MeV}\) ) is absorbed in the formation of an electron-positron pair The positron is rapidly annihilated by an
electron with the interaction resulting in the production of two lower-energy photons. Pair-production is most important for high photon energies and is especially important for heavy elements it is the major reaction process for high energies

The result of each of these three major interaction processes is the production of one or more secondary electrons. The Boulomb interaction of these electrons produces additional ionization and excitation. Successive generation of the interactions ceases when low energy electrons are produced which do not have sufficient energy to continue the production of ionization or excatation. These last-order electrons will lose energy by elastic scatterings untal they are eather captured or thermalized
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
photon- \\
atom \(\qquad\) \\
interactions
\end{tabular}} & \[
\begin{aligned}
& \text { secondary } / \text { excitation } \rightarrow \text { low order } \\
& \text { electron } \\
& \text { production }
\end{aligned}
\] \\
\hline & Coulomb interaction and successively generated interactions \\
\hline & Interactions Produced in a Photon Envaronment \\
\hline
\end{tabular}

Ionization is also created by energetic particles. The ionızation effects of a prımary beam of charged particles (electrons, positrons) are identical to the ionization effects of the secondary electrons produced by photon irradiations. Heavy charged particles (protons, fission fragments) create ionızation along the primary particle path of such a high intensuty that electronpositron charge recombination occurs rapidly. The net effect of the heavy particles is less than the effect of an equivalent, more uniformly distributed energy deposition \({ }^{3}\)

Neutrons are heavy uncharged particles that produce ionization only through secondary processes. Neutron ionization effects are a function of neutron energy. The mportant neutron interaction processes are elastic scattering - a collision of a neutron and a nucleus with transfer of
kinetic energy, and (2) melastic scattering - a collision of a high energy neutron and a nucleus with conversion of some of the neutron kinetic energy into excitation energy in the struck nucleus. The excited nucleus returns to its stable state by emıtting the excess energy as a photon 1,2

Ionization produces primarily transient effects in the incident material, displacement produces primarily permanent effects

DISPLACEMENT

For the typical energetic neutrons produced in nuclear reactions, the production of atomic displacements is the principal interaction process through which neutron energy is dissipated. Displacement effects are the result of defects in the crystal lattice structure that introduce addational energy states in the energy band gap. These defects behave either as additional recombination centers, which can produce a reduction in minority carrier lifetime or they can alter the impurity concentration of the affected material, which can produce alterations in the physical properties of the material Large defect clusters result from a neutron interaction in which a large amount of the neutron kinetic energy is transferred to a single atom. \({ }^{4}\)

Ionization and displacement defects can produce significant alterations in the electrical behavior of the affected material.

\section*{MANIFESTATION OF THE EFFECTS}

The most significant result of the three primary photon-interaction processes is the production of free electron-hole pairs. The number of electron-hole pairs created in semiconductor material is proportional to the amount of energy absorbed from the radıation environment The differences between the exposure and absorbed radiation environments can be a complex function of the equilibrium radiation environment at the specimen. The complex prediction of carrier generation rate may be simplified by considering the energy deposition to be uniform throughout the geometry of the device if the incident particle or photon energy exceeds 200 KeV For photon or electron irradiation between 1 to 5 MeV , the absorbed dose is essentially identical to the exposure dose \({ }^{3}\)

Radiation induced carrier generation in the bulk semiconductor will increase the minority and majority carrier densities.
\[
\begin{equation*}
\Delta \mathrm{n}=\Delta \mathrm{p}=\mathrm{g}_{\mathrm{o}} \dot{\gamma}(\mathrm{t}) \tag{B-1}
\end{equation*}
\]

The change in majority and minority carriers is seen to be equal and therefore the relative effect on minority carrier density 1 s greater The minority carrier density increase results in the junction photocurrents and secondary photocurrents in diodes and transistors.

Displacement damage in the bulk semiconductor introduces a number of recombination centers, which is generally assumed to be proportional to the integrated neutron flux. The primary result is the reduction of minority carrier lifetime. \({ }^{(4)}\)
\[
\begin{equation*}
\frac{1}{\tau_{F}}=\frac{1}{\tau_{o}}+\frac{\Phi}{\mathrm{K}} \tag{B-2}
\end{equation*}
\]
where \(\quad \tau_{F}{ }^{\text {is }}\) the new lifetime
\(\tau_{0}\) is the initial lifetime
K is the lifetime damage constant
\(\Phi\) is the integrated neutron flux
In terms of device performance, the reduction in minority carrier lifetime produces a transient reduction in the forward gain of a transistor that is not completely recovered. The damage value of Beta for a sungle radiation pulse may be obtained from the Messenger-Spratt Equation. \({ }^{4}\)
\[
\begin{equation*}
\frac{1}{\beta_{F}}=\frac{1}{\beta_{o}}+\frac{0.194}{f_{\alpha}} \frac{\Phi}{K} \tag{B-3}
\end{equation*}
\]

The detailed analysis of displacement damage in transistors is complicated by the variation of the common emitter current gain \((\beta)\) wath the injection level.

\section*{THE PHYSICAL DESCRIPTION}

In semiconductor material, electrical currents are the result of the motion of either holes or electrons and are associated with two independent mechanisms (1) Drıft motion, the result of charged particles being acted upon by an electric field, and (2) Diffusion, the result of the tendency of carriers to diffuse from regions of high charge concentration to regions of low concentration. The net current density is the sum of the drift and diffusion component currents. \({ }^{5}\)

Carrier density that is greater than the equilibrium carrier density is termed excess carrier density. Excess carriers can be introduced by electrical, optical, thermal or radiation injection mechanisms Excess carriers are opposed by the recombination process (mutual annihilation) by which holes and electrons are removed from circulation as charge car riers. The net rate of recombination of excess holes and electrons is approximately
\[
\begin{array}{ll}
\therefore \text {-type } & \text { Rate }=\frac{P_{(x)}-P_{0}}{\tau_{\rho}}=\frac{P_{n(x)}^{\prime}}{\tau_{p}} \\
\text { p-type } & \text { Rate }=\frac{n_{(x)}-n_{0}}{\tau_{n}}=\frac{n_{p(x)}^{\prime}}{\tau_{n}} \tag{B-5}
\end{array}
\]
for one dimensional, conductive, extrinsic, homogeneous material operating with a low injection rate.

The carrier generation rate by external mechanisms, g, has been shown to be \(g=g_{o} \dot{\gamma}(t)\) for ionizing radiation, where \(\gamma(t)\) is the exposure in radians.

The continuity of current requires
\[
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{-1}{q A} \frac{\partial^{1} p}{\partial x}-\frac{\left(p_{n(x)}^{\prime}\right)}{T_{p}}+g_{o} \gamma(t) \tag{B-6}
\end{equation*}
\]
n-type:
\[
\begin{equation*}
\frac{\partial n}{\partial t}=\frac{1}{q A} \frac{\partial I n}{\partial x}-\frac{\left(p_{n(x)}^{\prime}\right)}{\tau}+g_{o} \gamma(t) \tag{B-7}
\end{equation*}
\]

The equations of current flow are.
\[
\begin{equation*}
J_{\text {holes }}=q \mu_{p} p(x) E-q D_{p} \frac{\partial p}{\mu x} \tag{B-8}
\end{equation*}
\]
n-type
\[
\begin{gather*}
J_{\text {electrons }}=q \mu_{n} n(x) E+q D_{n} \frac{\partial n}{\partial x}  \tag{B-9}\\
\text { Drıft } \quad \text { Dıffusion } \\
I=A\left(J_{\text {holes }}+J_{\text {electrons }}\right) \tag{B-10}
\end{gather*}
\]
and the presence of the electric field requires the application of Gauss' Law.
\[
\begin{equation*}
\frac{\partial E}{\partial x^{-}}=\rho(x)=\frac{q}{\epsilon}\left[N_{d}(x)-N_{a}(x)+p(x)-n(x)\right] \tag{B-11}
\end{equation*}
\]

The terminal relationships of a device may be derived from these equations. \({ }^{5}\) To demonstrate briefly the relationship of the physical behavior and the transistor models avaılable for computer aıded analysis, the equations of an 1deal diode and an 1deal PNP transistor are included Because of the complexity of the equations, worst case steady state conditions are primarily discussed.

\section*{AN IDEAL DIODE}

The current appearing at the terminals of this device will be related to the internal redistribution of the carriers upon application of a bias potential. The following analysis is based on an abrupt junction device composed of homogeneous \(n\)-type and p-type material with a transition or space charge layer surrounding the junction of width \(W .{ }^{6}\)

For forward bias, assuming carrier flow by diffusion only
\[
\begin{equation*}
\text { n-type } J_{n}(o)=\frac{q D_{n} P_{n o}}{L_{n}}\left(e^{q v / K T}-1\right)=\frac{q D_{n} p_{n(o)}^{\prime}}{L_{n}} \tag{B-12}
\end{equation*}
\]
sine \(I=A\left(J_{h}(0)+J_{e}(0)\right)\), substituting \(L n=\sqrt{D_{n} \tau_{n}}\) and including similar expressions for the electrons
\[
\begin{align*}
I_{d l o d e ~ f o r w a r d ~} & =A q\left(\frac{L_{n} p_{n o}}{\tau_{n}}+\frac{L_{p} n_{p o}}{\tau_{p}}\right)\left(e^{q v / K T}-1\right)  \tag{B-13}\\
& =I_{s}\left(e^{q v / D T}-1\right) \tag{B-14}
\end{align*}
\]

Adding the effects of the space charge region contribution to reverse current, for reverse bias
\[
\begin{aligned}
I_{\text {diode reverse }} & =A q\left(\frac{L_{n} p_{n o}}{\tau_{n}}+\frac{L_{p} n_{p o}}{T_{p}}+\frac{W_{n 1}}{\tau_{o}}\right) \\
& =I_{s}
\end{aligned}
\]

In a steady state ionizing radiation environment where the carrier generation is increased by \(g_{o} \quad \gamma(t)\) the equation for reverse bias becomes \({ }^{(3)}\)
\[
\begin{equation*}
I_{d}=A q\left[\operatorname{Ln}\left(\frac{P_{n o}}{\tau_{n}}+g_{o} \gamma(t)\right)+L_{p}\left(\frac{n_{p o}}{\tau_{p}}+g_{o} \gamma(t)\right)+W\left(\frac{n_{1}}{\tau_{o}}+g_{o} \dot{\gamma}^{\prime}(t)\right)\right] \tag{B-16}
\end{equation*}
\]

The equilibrium diode photocurrent can be seen to be
\[
\begin{equation*}
I_{d p p}=\operatorname{Aq} \operatorname{go}(\dot{\gamma})\left[L_{\mathrm{n}}+\mathrm{L}_{\mathrm{p}}+\mathrm{W}\right] \tag{B-17}
\end{equation*}
\]

For pulsed transient photoresponse, the complexity of the equation is considerably increased

A step function
\[
\begin{equation*}
\text { response } \quad I_{d p}(t)=A q\left[L_{n} \operatorname{erf}\left(\frac{t}{\tau_{n}}\right)^{\frac{1}{2}}+W u(t)\right] \tag{B-18}
\end{equation*}
\]

Figure B-16 diagrams the mınority-carrier concentrations for forward and reverse bias, demonstrating the increase in minority carrier density


Figure B 16 P-N Junction Ideal Diode \((1,2,3)^{1}\)
as a result of ionizing radiation absorption Figure B-16c diagrams the alterations of a diode \(V\)-I characterıstic A current generator \(1_{d} p p(t)\) placed across the junction in parallel with the high frequency model of the device has proven satisfactory as a first-order approximation model. THE TRANSISTOR MODELS

There are three large signal nonlinear models (1) Ebers-Moll, the Beaufoy-Sparkes Charge Control, and (3) the Linvill Lumped Model, that have been modified for radiation effect computer analysis

EBERS-MOLL
A reversed biased ideal PNP transistor wath abrupt junctions, \(W_{\text {base }}<\) \(L_{\text {base }}\) that is extrinsic and homogeneous in all three regions and that is operating with a low injection level is diagramed in Figure B-17 For the cut -off mode \(V_{E B} \ll-\frac{K T}{q}, V_{C B} \ll-\frac{K T}{q}\), bias conditions are \({ }^{3}\)
\[
\begin{align*}
& I_{C}=q A_{j c}\left[L_{c} \frac{n_{c o}}{\tau_{n c}}+\frac{W_{b}}{2} \frac{p_{b o}}{\tau_{p b}}+x_{c} \frac{n_{z}}{\tau_{o c}}\right]  \tag{B-19}\\
& I_{E}=q A_{j e}\left[L_{e} \frac{n_{e o}}{\tau_{n e}}+\frac{W_{b}}{2} \frac{p_{b o}}{\tau_{p b}}+x_{e} \frac{n_{1}}{\tau_{o e}}\right]  \tag{B-20}\\
& \quad \text { electron hole } \quad \begin{array}{l}
\text { space-charge } \\
\text { region }
\end{array} \\
& I_{B}=-I_{E}-I_{C}
\end{align*}
\]

When ionizing radiation effects are included the equation for equilibrium effects (steady state) are
\[
\begin{align*}
I_{c} & =q A j c\left[L_{c}\left(\frac{n_{c o}}{\tau_{n c}}+g_{o}(\dot{\gamma})\right)+\frac{W b}{2}\left(\frac{p_{b o}}{\tau_{p b}}+g_{o}(\gamma)\right)+x_{c}\left(\frac{n_{1}}{\tau_{o c}}+g_{o}(\dot{\gamma})\right)\right] \\
& =I_{c}+I_{p p c} \tag{B-22}
\end{align*}
\]


MINORITY CONCENTRATIONS IN THE ACTIVE MODE - PNP
\[
\begin{array}{ll}
P_{b^{\prime}}(0)=P b_{0}\left(e^{\frac{q V_{E B}}{K T}}-1\right) & n_{e}^{\prime}(0)=n_{e 0}\left(e^{\frac{q V_{E B}}{K T}}-1\right) \\
P_{b^{\prime}}(w)=P b_{0}\left(e^{\frac{q V_{C B}}{K T}}-1\right) & n_{c}^{\prime}(0)=n_{c o}\left(e^{q V_{C B} / K T}-1\right)
\end{array}
\]
\({ }^{\text {r Figure }} \mathbf{B} 17\) PNP Ideal Transistor Minority Carrier Concentrations
\[
\begin{align*}
I_{E}^{\prime} & =q \operatorname{Aje}\left[L e\left(\frac{n_{e o}}{\tau_{n e}}+g o(\gamma)\right)+\frac{W b}{2}\left(\frac{P_{b o}}{\tau_{p b}}+g o(\tilde{\gamma})\right)+x_{e}\left(\frac{n_{1}}{\tau_{o e}}+g o(\gamma)\right)\right] \\
& =I_{E}+I_{p p e}  \tag{B-23}\\
I_{B}^{\prime} & =-I_{c}^{\prime}-I_{E}^{\prime} \tag{B-24}
\end{align*}
\]

Similar to the diode approximation, current generators representing \(I_{p p e}\) and \(l_{\text {ppc }}\) placed across the junctions of a transistor high frequency nonlinear model provide a satisfactory furst order approximation model.

A nonlinear model (capable of cutoff-active-saturation representation) is necessary because the photocurrents could be sufficient to turn on the device. The photocurrent generators generally replace the \({ }^{I} \mathrm{CO}^{\prime}{ }^{I} \mathrm{EO}\) leakage current generators in the nonlinear models The equations for active region operation may be derived by assuming all current is from diffusion and neglecting the space charge layer carrier generation and recombination, then
\[
\begin{align*}
& I_{E}=q A_{j e}\left[-D_{b} \frac{d P_{b}^{\prime}(o)}{d x}-D_{e} \frac{d n_{e}^{\prime}(o)}{d x}\right]  \tag{B-25}\\
& I_{c}=q A_{j c}\left[+D_{b} \frac{d P_{b}^{\prime}(w)}{d x}-D_{c} \frac{d n_{c}^{\prime}(0)}{d x}\right] \tag{B-26}
\end{align*}
\]

Since \(P_{b}^{\prime}(0), n_{e}^{\prime}(0) n_{c}^{\prime}(0) P_{b}^{\prime}(w)\) are linearly dependent upon \(\left(e^{q V} E B / K T\right.\) and \(\left(e^{q V_{C B} / K T}-1\right)\) the form of the classic Ebers-Moll equations is readily verıfied
\[
\begin{align*}
& I_{E}=I_{E S}\left(e^{\frac{q V_{E B}}{K T}}-1\right)-\alpha_{R} I_{C S}\left(e^{\frac{q V_{C B}}{K T}}-1\right)  \tag{B-27}\\
& I_{C}=-\alpha_{F} I_{E S}\left(e^{\frac{q V_{E B}}{K T}}-1\right)+I_{C S}\left(e^{\frac{q V_{C B}}{K T}}-1\right)  \tag{B-28}\\
& I_{B}=-I_{E}-I_{C} \tag{B-29}
\end{align*}
\]

From the cutoff condition
\[
\begin{equation*}
I_{E}{ }^{\prime} \text { off }=-\left(1-\alpha_{F}\right) I_{E S}+1 \text { ppe } \tag{B-30}
\end{equation*}
\]
cutoff-
\[
\begin{equation*}
I_{C^{\prime} \text { off }}^{\prime}=-\left(1-\alpha_{R}\right) I_{\mathrm{CS}}+1_{\mathrm{ppc}} \tag{B-31}
\end{equation*}
\]

Using the same procedure, the equations for general operation under radiation exposure may be developed
\[
\begin{align*}
& I_{E}(\dot{\gamma})=I_{E}+I_{p p e}(\dot{\gamma})  \tag{B-32}\\
& I_{C}(\gamma)=I_{C}+I_{p p c}(\gamma) \tag{B-33}
\end{align*}
\]

The photocurrent effects on the device and circuit are compounded by multiplication of the photocurrent. The secondary photocurrent so produced could damage the device if it is sufficiently large.

Figure B-18a diagrams the Ebers-Moll PNP Transistor model and modifications to include the junction capacitance, bulk resistance and the photocurrent generators, B-18b shows the version incorporated in the SCEPTRE program

CHARGE, CONTROI
The characterization of the ideal transistor described above is in terms of excess minority carriers An alternate description is in terms of minoritycarrier charge density distribution Figure B-19 is a diagram of charge density distribution for the active region of operation The total distribution for the four regions of operation is also shown. This is a direct relationship between this internal charge distribution and the operating region 5

Assuming the ideal device for simplicity and recombination processes occur only in the base and are defined by a uniformly constant lifetime \(\tau_{B}\), for steady state conditions the stored excess minority carrier charge ( \(+q_{B}\) ) and the equal majority carrier charge ( \(-q_{B}\) ) are maintained by the base current \(I_{B}, I_{B}\) is defined as a sustaining current which supplies majority electrons at a rate equal to their loss due to recombination in the base. For transient operation, the stored base charge changes with time

(a) EBERS-MOLL DEVICE MODEL (NPN)
(TERMINAL VOLTAGE CONTROL)

NOTE• 'ppc \(\left.(t) \gg\right|_{\text {Pppe }}(t)\) generally

(b) SCEPTRE EBERS - MOLL MODEL (PNP)
(TLRMINAL CURRENT CONTROL)

Figure B 18 The Ebers-Moll First-Order Approxımation to \(\gamma\) Effects

(a) MINORITY CARRIER CONCENTRATIONS IN THE BASE FOR THE FOUR REGIONS OF OPERATION

(b) MINORITY CARRIER CONCENTRATIONS IN THE SATURATION REGION

Figure B 19 Excess Minority Carrier Concentrations in the Base Region (PNP)
\[
\begin{equation*}
{ }^{1}{ }_{B}=-\left(\frac{q_{B}}{\tau_{B}} \quad+\frac{d q_{B}}{d t}\right) \tag{B-34}
\end{equation*}
\]
maintaining charging
The stored base charge is composed of forward and reverse components of stored minority carrier charge as shown in Figure 4
\[
\begin{equation*}
q_{B}=q_{F}+q_{R} \tag{B-35}
\end{equation*}
\]

Therefore
\[
\begin{equation*}
I_{B}=-\left(\frac{q_{E}}{\tau_{B F}}+\frac{d q_{F}}{d t}\right)-\left(\frac{q_{R}}{\tau_{B R}}+\frac{d q_{R}}{d t}\right) \tag{B-36}
\end{equation*}
\]

By assuming that the base charge is limited to relatively slow variations, \({ }^{1} c\) and \({ }^{2}\) may be defined. For DC steady state, forward injection only.
\[
\begin{equation*}
I_{c}=-\frac{\beta_{F} q_{F}}{\tau_{B F}}=-\frac{q_{F}}{\tau_{F}} \tag{B-37}
\end{equation*}
\]

For slow variations in \(q_{B},{ }_{c} \approx I_{C}\) and
\[
\begin{equation*}
I_{e}=-I_{c}-I_{b}=q_{F}\left(\frac{1}{\tau_{B F}}-\frac{1}{\tau_{F}}\right)+\frac{d q_{F}}{d t} \tag{B-38}
\end{equation*}
\]

Similar equations can be written for reverse injection \(\left(I_{E}=-\frac{q_{R}}{\tau_{R}}\right)\) and the total expression for terminal currents of an ideal device become
\[
\begin{align*}
& I_{c}=-\frac{q_{F}}{\tau_{F}}+q_{R}\left(\frac{1}{\tau_{R}}+\frac{1}{\tau_{B R}}\right)+\frac{d q_{R}}{d t}  \tag{B-39}\\
& I_{e}=q_{F}\left(\frac{1}{\tau_{F}}+\frac{1}{\tau_{B F}}\right)+\frac{d q_{F}}{d t}-\frac{q_{R}}{\tau_{R}}  \tag{B-40}\\
& { }^{I_{B}}=I_{c}-I_{e} \tag{B-41}
\end{align*}
\]
(To include saturation, an increase in the base charge is represented by \(\frac{q_{B S}}{\tau_{B S}}\) and \(\frac{\mathrm{dq}_{B S}}{d t}\) in parallel with \(\left.\frac{q_{F}}{\tau_{B S}} \frac{d q_{F}}{d t}\right)\)

Leakage currents \({ }^{1} \mathrm{EO}^{\prime}{ }^{1} \mathrm{CO}\) are included and space charge layer charge storage is represented by the terms \(c_{b} e^{\frac{d V_{e b}}{d t}}\) and \(C_{o b} \frac{d V_{c b}}{d t}\) In the complete model as shown in Figure B-20 CIRCUS incorporates the charge control model as ats radaation model and represents the photocurrents by current generators placed in parallel with \(I_{E O}{ }^{1} \mathrm{CO}\) exactly as represented in the Ebers-Moll model \({ }^{8}\) The CIRCUS model and its equations are shown in Figure B-21.

THE LUMPED MODEL
The third approach to describing device behavior is the Linvill approach of lumped modeling. The sumplest model is the 2 -lump model shown in Figure 7. The model is based on a description of excess minority carrier behavior similar to the Ebers-Moll approach. The model shown has parameter definitions that correspond to the charge-control model parameters Terminal equations for the ideal device are
\[
\begin{aligned}
& { }_{c}=-H_{D} p_{b^{\prime}}(0)+\left(H_{D}+H_{C R}\right) p_{b^{\prime}}(w)+S_{R} \frac{d p_{b^{\prime}}(w)}{d t}+C_{V C} \frac{d V_{C B}}{d t}-1_{E O} \\
& I_{e}=-H_{D} p_{b^{\prime}}(w)+\left(H_{D}+H_{C F}\right) p_{b^{\prime}}(0)+S_{F} \frac{d p_{b^{\prime}}(o)}{d t}+C_{v e} \frac{d V_{E B}}{d t}-I_{C O} \\
& I_{b}=-I_{c}-l_{e}
\end{aligned}
\]
where the space charge layer charge storage is represented as well as the leakage currents. The radiation version replaces \({ }^{1} \mathrm{EO}^{\prime}{ }^{1} \mathrm{CO}\) with \({ }^{1} \mathrm{ppe}\), \({ }^{I} \mathrm{ppc}\) as in the other models. TRAC employs the Linvill model for analysis and the TRAC representation is given in Figure B-22 \({ }^{9}\)

\section*{CONCLUSIONS}

The three program models discussed are first-order approximations for representation of ionizing radiation effects. The three models use identical approaches to the representation of the junction photocurrents \({ }^{1} \mathrm{ppe}\), \({ }^{1} \mathrm{ppc}\)

\[
q_{B F} \triangleq Q_{B F}\left(e^{\frac{q V_{e}}{n K T}}-1\right)
\]
\[
q_{B R} \triangleq Q_{B R}\left(e^{\frac{q v_{c}}{n K T}}-1\right)
\]
\[
r_{E}=0 .
\]
\[
V_{E}=I_{B} r_{b}+V_{e}
\]
\[
V_{C}={ }^{1} C r_{c}-V_{c}+V_{e}
\]
\[
{ }^{I_{C}}=\frac{-q_{F}}{\tau_{F}}+q_{R}\left(\frac{1}{\tau_{R}}+\frac{1}{\tau_{B R}}\right)+\frac{\mathrm{dq}_{R}}{d t}+C_{o b} \frac{d V_{c}}{d t}-{ }^{1} \mathrm{CO}
\]
\[
{ }_{I_{E}}=q_{F}\left(\frac{1}{\tau_{B F}}+\frac{1}{\tau_{F}}\right)+\frac{d q_{F}}{d t}-\frac{q_{R}}{\tau_{R}}+C_{b i e} \frac{d V_{e}}{d t}-I_{E O}
\]
\[
{ }^{1} B=-I_{C}{ }^{-1} E
\]

Figure B 20 PNP Charge-Control Model for Normal and Inverse Operation



Terminal Currents
\[
\begin{aligned}
& { }^{I_{C}}(\dot{\gamma})=-H_{D} P_{b}^{\prime}(o)+\left(H_{D}+H_{C R}\right) P_{b}^{\prime}(w)+S_{R} \frac{d P_{b}^{\prime}(w)}{d t}+C_{V C} \frac{d V}{d t}-I_{p p e} \\
& { }^{I_{E}}(\dot{\gamma})=-H_{D} P_{b}^{\prime}(w)+\left(H_{D}+H_{C F}\right) P_{b}^{\prime}(o)+S_{F} \frac{d P_{b}^{\prime}(o)}{d t}+C_{V E} \frac{d V}{d t}-I_{p p c} \\
& { }^{1}{ }_{B}(\gamma)=-I_{C}(\gamma)-1_{E}(\gamma) \\
& q_{F}=S_{F} P_{b}^{\prime}(0) \\
& \text { For analysis without }{ }^{1} \mathrm{ppe}^{\text {, }} \mathrm{ppc} \\
& q_{R}=S_{R} P_{b}^{\prime}(w) \\
& P_{b}^{\prime}(o)=P_{b o}\left(e^{q V} e^{\operatorname{lnKT}}-1\right) \\
& P_{b}^{\prime}(w)=P_{b o}\left(e^{q V_{c} / n K T}-1\right)
\end{aligned}
\]

Figure B 22 Linvill Two-Lump Model - PNP Including Radiation Pulse Currents


DEFINE:
\[
\begin{aligned}
& \alpha_{E}=\frac{\mathrm{H}_{\mathrm{D}}}{\mathrm{H}_{\mathrm{D}}+\mathrm{H}_{\mathrm{CF}}} \quad \alpha_{\mathrm{R}}=\frac{\mathrm{H}_{\mathrm{D}}}{\mathrm{H}_{\mathrm{D}}+\mathrm{H}_{\mathrm{CR}}} \\
& \mathrm{I}_{\mathrm{EO}}=-\mathrm{P}_{\mathrm{bo}}\left(\mathrm{H}_{\mathrm{CF}}+\alpha_{\mathrm{R}} \mathrm{H}_{\mathrm{CR}}\right) \mathrm{I}_{\mathrm{CO}}=-\mathrm{P}_{\mathrm{bo}}\left(\mathrm{H}_{\mathrm{CR}}+\alpha_{\mathrm{F}} \mathrm{H}_{\mathrm{CF}}\right) \\
& T_{F}=\frac{S_{E}}{H_{C F}+H_{D}} \quad T_{R}=\frac{S_{B}}{H_{C R}+H_{D}} \\
& { }^{1} E=\frac{I_{E O}}{1-\alpha_{F} \alpha_{R}}\left(e^{\theta} e^{V_{E}}-1\right)-T_{F} \frac{d}{d t}\left[\frac{I_{E O}}{1-\alpha_{F} \alpha_{R}}\left(e^{\theta} e^{V_{E}}-1\right)\right] \\
& +\frac{\alpha_{R} I_{C O}}{1-\alpha_{F} \alpha_{R}}\left(e^{\theta_{c} V_{C}}-1\right)+C_{j e} \frac{d V_{E}}{d t}-I_{p p e}(t) \\
& { }^{1} C=\frac{-I_{C O}}{1-\alpha_{F} \alpha_{R}}\left(e^{\theta_{C} V_{C}}{ }_{-1}\right)-T_{R} \frac{d}{d t}\left[\frac{I_{C O}}{1-\alpha_{F} \alpha_{B}}\left(e^{\theta_{C} V_{C}}-1\right)\right]
\end{aligned}
\]
\[
\begin{aligned}
& { }^{1} B=-{ }^{1} E{ }^{-1} C
\end{aligned}
\]

THEN:

Figure B 23 TRAC Representation of the Linvill Two-Lump Model - PNP Including Radiation Photocurrents (prestored)

The variations of Beta with time, injection level and radiation exposure for a given device is complex. A general approach has evolved because most programs require the Beta be either single valued or expressed as a function of current in a simple table Beta is first computed for the injection level and other ' normal' operating conditions. A degraded Beta for the given flux level is computed from Equation (3) and then degraded by a factor of 2 or 3 to provide a worst-case analysis (The actual transient loss may be this great or greater with a recovery of Beta to ats damage value \(\beta_{F}\) dependent upon the device and its exposure ) This approximate analysis is sufficient to indicate the presence of difficulties in the circuit under analysis.

SCEPTRE allows the programming of Beta as a function (equation or tabled expression) and CIRCUS allows a table (Beta \(N=F\left(I_{n}\right)\) ) The more elaborate expressions for Beta are justıfied when sufficient laboratory data exists to warrant the increased computer computation time.

\section*{TABLE OF SYMBOLS}

A
\(C_{j c}, C_{j e}\)
\(C_{V C}, C_{V E}\)


E
go
\(\mathrm{H}_{\mathrm{CF}}, \mathrm{H}_{\mathrm{CR}}\) \(\mathrm{H}_{\mathrm{D}}\)
\(I_{C O}, I_{E O}\)
\(I_{C S}{ }^{I} \mathrm{ES}_{\mathrm{E}}\)
\({ }^{I}\) S
\(J\)
K
\(\mathrm{K}, \mathrm{k}\)
L
\(\mathrm{N}_{\mathrm{a}}\left(\mathrm{N}_{\mathrm{d}}\right)\)
\(n(p)\)
\(\eta^{\prime}\left(p^{\prime}\right)\)
\(\eta_{1}\)
q
\({ }^{q}\) B
\(q_{V E}, q_{V C}\)
\(r_{B^{\prime}} r_{E^{\prime}} r_{C}\) T

W
\(\mathrm{x}, \mathrm{x}^{1}, \mathrm{x}^{11}\)
junction area ( \(\mathrm{J}_{\mathrm{jc}}, \mathrm{A}_{\mathrm{je}}, \mathrm{A}_{\text {base }}\) )
incremental capacitance of the junction
nonlinear charge store of the junction
charge-carrier duffusion constant ( \(e, p\) for electrons in \(p\)-material, e, b, c for a transistor to denote emitter, base or collector)
electric field
carrier generation rate at equilibirum
forward and reverse combination parameter of the Linvill model
the diffusance parameter of the Linvill model
the collector and emitter junction saturation current (opposite junction open)
the collector and emitter junction saturation current (opposite junction shorted)

Saturation current of an ideal diode electric current density
damage constant
Boltzmann' s Constant
Charge carrier diffusion length (see D)
accepter (donor impurity concentration
electron (hole) concentration
excess electron (hole) concentration
intrinsic carrier concentration
magnitude of the electronic charge
total excess minority carrier charge stored in the case
\(q_{B}=q_{F}+q_{R}\) (forward and reverse components)
junction space charge layer charge (at \(\mathrm{V}_{\mathrm{g}}=0\) )
large signal bulk resistances
absolute temperature
Width of the base region
longitudinal coordinate in one dimensional transistor model
\begin{tabular}{ll}
\(\alpha_{F}\left(\alpha_{R}\right)\) & \begin{tabular}{l} 
large signal forward (reverse) injection common base short \\
circuit gain
\end{tabular} \\
\(\beta_{F}\left(\beta_{R}\right)\) & \begin{tabular}{l} 
large signal forward (reverse) injection common emitter short \\
circuit current gain
\end{tabular} \\
\(\gamma(t)\) & \begin{tabular}{l} 
lonizing radiation \\
neutron flux
\end{tabular} \\
\(\epsilon\) & \begin{tabular}{l} 
dielectric permittivity
\end{tabular} \\
\(\eta\) & base width modulation factor \\
\(\mu\) & charge carrier mobility \\
\(\rho\) & space charge concentration \\
\(\tau\) & \begin{tabular}{l} 
lifetime of excess charge carriers \\
\(\theta\)
\end{tabular}
\end{tabular}

\section*{BIBLIOGRAPHY}
1. Samuel Glasstone, ed , The Effects of Nuclear Weapons, Washington, D. C. - United States Atomic Energy Commission, 1962
2. Samuel Glasstone, Alexander Sesonske, Nuclear Reactor Engineering, New Jersey D. Van Nostrand Company, Inc , 1967.
3. James \(P\) Raymond, Radiation Effects on Semiconductors, The University of Calıfornia at Los Angeles Extension Course Notes 9-20, September 1968.
4. Frank Ların, Radiation Effects in Semiconductor Devices, New York John Whley and Sons, Inc. , 1968
5. Paul E. Gray, et al., Physical Electronics and Circuit Models of Transistors, Semiconductor Electronics Education Committee, Vol 2, New York John Wiley and Sons, Inc., 1964.
6. Campbell L. Searle, et al., Elementary Circuit Properties of Transistors, Semiconductor Electronics Education Committee, Vol. 3, New York: John Wiley and Sons, Inc , 1964.

7 Harry W. Mathers, et al., Automated Digital Computer Program for Determining Responses of Electronic Circuits to Transient Nuclear Radiation (SCEPTRE), Vol 1 and Vol. 2, New York. IBM, Feb. 1967.
8. L. P Milliman, W A. Massena, R. H. Dickhaut, CIRCUS A Digital Computer Program for Transient Analysis of Electronic Circuits User's Guide, Washington The Boeing Co , Jan. 1967
9. G T. Kleiner, G. Henoshita, and E D Johnson, "Simulation and Verıfication of Transient Nuclear Radiation Effects on Semıconductor Electronic IEEE Trans, Vol NS-11, (1964), pp. 82-104.

\section*{APPENDIX C \\ CURRENT CODING EXAMPLES}

Example 1: (Taken from the report, "The Application of NASAP to the Design of Biomedical Instrumentation Circuits," written by M. L. Moe and J. T. Schwartz, Denver Research Institute, University of Denver, January 1970).

Gıven: The Equivalent Circuit Diagram of a Telemetry Transmitter


Figure C 1 Telemetry Transmitter Circuit


Figure C 2 Equivalent Circuit of Telemetry Transmitter for NASAP Analysis

Input Codes;
NASAP Input Code
NASAP PROBLEM TELEMETER
\(\begin{array}{llll}\text { I1 } & 1 & 2 & 1.0\end{array}\)
C1 12 100UF
R1 1220 K
C2 23 2UF
R2 23100
R3 \(1 \begin{array}{lll} & 3 & 220\end{array}\)
L1 410.25
C3 24 2:OUF
C43 1 47UF
C5 34 10UF
12430.3 IR2

OUTPUT
WORST CASE
Il1/II1
\(\operatorname{PLOT}(T Y=F R / F R=80 / T O=126)\)
PLOT (TY=RE/FR=0/TO=100)
ROOTS, POLES
END
PLOT (TY=SE/FR=80/TO=126/EL=DJ1)
\(\mathrm{PLOT}(\mathrm{TY}=\mathrm{SE} / \mathrm{FR}=80 / \mathrm{TO}=126 / \mathrm{EL}=\mathrm{CJ} 3\) )
PLOT (TY=SE/FR=80/TO=126/EL=LE3)
\(\operatorname{PLOT}(T Y=S E / F R=80 / T O=126 / E L=K E 3\) )
EXECUTE
TREE NASAP PROBLEM TELEMETER
\(J 1(1-2)=1.0\)
CJ1(1-2) \(=100 \mathrm{MF}\)
RE1(1-2) \(=20 \mathrm{~K}\)
\(\mathrm{CJ} 2(2-3)=2 \mathrm{MF}\)
RJ2 \(2(2-3)=100\)
\(\operatorname{RE} 3(1-3)=220\)
\(\operatorname{LE1}(4-1)=0.25\)
CJ3(1-4)=LOMF
CE4(3-1) \(=47 \mathrm{MF}\)
CJ5(3-4) \(=10 \mathrm{MF}\)
DJ2/IRJ2 (4-3) \(=0.3\)
END
WORST CASE
I11/II1
\(\operatorname{PLOT}(\mathrm{TY}=\mathrm{FR} / \mathrm{FR}=80) / \mathrm{TO}=126\) )
\(\operatorname{PLOT}(T Y=R E / F R=0 / T O=100)\)
ROOTS, POLES
END
```

$\mathrm{PLOT}(\mathrm{TY}=\mathrm{SE} / \mathrm{FR}=80 / \mathrm{TO}=126 / \mathrm{EL}=\mathrm{DJ} 3$)
PLOT (TY $=\mathrm{SE} / \mathrm{FR}=80 / \mathrm{TO}=126 / \mathrm{EL}=\mathrm{CJ} 3$)
PLOT (TY=SE/FR=80/TO=126/EL=LE3)
PLOT (TY=SE/FR=80/TO=126/EL=KE3)
CIRC(1E6) NASAP PROBLEM TELEMETER
$J 1(1-2)=1.0$
C1 1 (1-2) $=100 \mathrm{MF}$
R1(1-=) $=20 \mathrm{~K}$
$\mathrm{C} 2(2-3)=2 \mathrm{MF}$
$R 2(2-3)=100$
$R 3(1-3)=220$
$L 1(4-1)=0.25$
C3 (2-4) $=2.0 \mathrm{MF}$
C4(3-1) $=47 \mathrm{MF}$
C5 (3-4) $=10 \mathrm{MF}$
DJ2/IR2 $(4-3)=03$
END
WORST CASE
IL1/III
$\mathrm{PLOT}(\mathrm{TY}=\mathrm{FR} / \mathrm{FR}=80 / \mathrm{TO}=126$)
$\mathrm{PLOT}(\mathrm{TY}=\mathrm{RE} / \mathrm{FR}=0 / \mathrm{TO}=100)$
ROOTS, POLES
END
PLOT (TY=SE/FR=80/TO=126/EL=CJ1)
PLOT (TY $=\mathrm{SE} / \mathrm{FR}=80 / \mathrm{TO}=126 / \mathrm{EL}=\mathrm{EJ} 3$)
$\mathrm{PLOT}(\mathrm{TY}=\mathrm{SE} / \mathrm{FR}=80 / \mathrm{TO}=126 / \mathrm{EL}=\mathrm{LE} 1)$
$\mathrm{PLOT}(\mathrm{TY}=\mathrm{SE} / \mathrm{FR}=80 / \mathrm{TO}=126 / \mathrm{EL}=\mathrm{KE} 3$)
EXECUTE
STOP

```

\section*{****NASAP****}

NETHORK ANALYSIS AND sYStems applicaticn paccran THIS VERSICN has develgiet at ucta engro eepto

NaSAP prCblem telemeter
I1121。C
C1 12 loCUF
R1 12 20K
C2 23 2UF
\(\begin{array}{llll}\text { R2 } & 2 & 3 & 100 \\ \text { R3 } & 1 & 3 & 220\end{array}\)
11,120
C3 410025
\(\begin{array}{llll}\mathrm{C} & 2 & 4 & 20 \mathrm{CuF} \\ \mathrm{C} & 3 & 1 & 47 \mathrm{UF}\end{array}\)
\(\begin{array}{llll}C 4 & 1 & 47 \mathrm{VF} \\ \mathrm{C} 5 & 3 & 4 & 10 U F\end{array}\)
\(\begin{array}{llll}\mathrm{C} 5 & 3 & 4 & 10 U F \\ 12 & 4 & 3 & \mathrm{Co} 3 \\ \mathrm{IR}\end{array}\)
IV 243
\(\Omega\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ELEMENT NUMBER & ELEMENT MAME & LEPENDENCY (IF AAY) & CRIGIN NODE & target nade & value & TAG & GENER \\
\hline 1 & 11. & & 1 & 2 & 1.00000000E 00 & 0 & 1 \\
\hline 2 & Cl & & 1 & 2 & \(9.95999320 \mathrm{E}-05\) & 1 & 0 \\
\hline 3 & R1 & & 1 & 2 & 2.00000000E 04 & 0 & 0 \\
\hline 4 & C 2 & & 2 & 3 & 1.99999886E-C6 & 0 & 0 \\
\hline 5 & R2 & & 2 & 3 & 1.00000000E 02 & 0 & 0 \\
\hline 6 & R3 & & 1 & 3 & 2.200000COE O2 & 1 & 0 \\
\hline 7 & L1 & & 4 & 1 & 2.49999881E-01 & 1 & 0 \\
\hline 8 & C3 & & 2 & 4 & \(1099999886 \mathrm{E}-\mathrm{CS}\) & 0 & 0 \\
\hline 9 & C4 & & 3 & 1 & 4069999650E-05 & 0 & 0 \\
\hline 10 & C5 & & 3 & 4 & S.99999429E-06 & 0 & 0 \\
\hline 11 & 12 & IR2 & 4 & 3 & 2.99999893E-01 & 0 & 1 \\
\hline 2 & 2304 & 10 & & & & & \\
\hline 3 & 61536 & 2096 & & & & & \\
\hline 4 & -7 2C48 & 1280 & & & & & \\
\hline
\end{tabular}

\section*{WORSTCASE}

ELEMENT NAME TCLERANCE



\section*{IL1/II1}

NTIMES \(=1\)
THE UNKNCWN TRANSMITTANCE COES FRCM NODE 7 TO 1
24588 5999
\(1180224 \quad 288001\)
\(3057108 \quad 746003\)
\(3089892 \quad 754002\)
\(786816 \quad 192002\)
\(3057108 \quad 146003\)
\(3 C 89892 \quad 754002\)
\(3091940 \quad 1778002\).
\(236044 \varepsilon-576002\)
2600180 - 1658002
ع62628 1234001 .
2559200 \(\quad 1 \in 48002\)
\(1 C 2654 \varepsilon \quad 1274002\)
239732 . 1C82000
23052541587000
759421042995
Z39862 1083000

1987521072000
\(40980 \quad 10000\)
23768458000
23768458000
\begin{tabular}{rr}
2270422 & 555001 \\
73764 & 17999
\end{tabular}
\(2303206 \quad 563000\)

532740 130000
\(532870 \quad 1 \equiv 1000\)
2229312544001
16392040001
\(196704 \quad 48000\)

NO. OF FIRST ORDER LOOPS \(=29\)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
```

TRANSFER FUNCTICN

```
\(50881 E 04+40282 E C 1 S-10000 E 005^{2}+000+000\)
\(20948 E C S+105 C S E C E S+30 \operatorname{CS4ECSS}{ }^{2}+30850 E 02 S^{3}+10000 E 00 S^{4}\)
THE FLACTIGN FACTCR \(=-80780 E 63\)
\(?\)
\(\infty\)

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
0.0
000
0.0
000
0.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\[
0.0
\]} \\
\hline & 0.0 \\
\hline & 000 \\
\hline & 2001930E 02 \\
\hline & 000 \\
\hline & 000 \\
\hline & 0.0 \\
\hline & 0.0 \\
\hline & Do 0 \\
\hline & 0.0 \\
\hline & 000 \\
\hline & 0.0 \\
\hline & 0.0 \\
\hline & 000 \\
\hline & 000 \\
\hline & 0.0 \\
\hline & 0.0 \\
\hline & 000 \\
\hline & 0.0 \\
\hline
\end{tabular}
sensitivity to cl
\[
0.0 \quad+10154 E C Q S+30 \varepsilon \varepsilon 2 E C 5 S^{2}+20^{c} 69 E 02 S^{3}+1.000 E 00 S^{4}
\]


THE FUNCTICN FACTOR \(=-S_{0} \in T 1 E-C 1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 000 & 0.0 & 0.0 & CoC & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & CoC & 0.0 & 000 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & COO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.01930E 02 \\
\hline 5021768 O & 1.38103E-02 & \(1032138 \mathrm{E}-\mathrm{C} 5\) & 3045773E-C8 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline C. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Co & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0 O 0 & 0.0 & CO 0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline Col & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 000 \\
\hline 000 & 0.0 & 0.0 & CaO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & -3.8600CE OC & \(-1.29800 E-C 2\) & -c.92ccaE-06 & -3034399E-08 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline Go 0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & CoC & \(0 . \mathrm{C}\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TC RI
\(-10140 E 13-40329 E 10 S+606536 C S^{2}+20765 E 05 S^{3}+20533 E 02 S^{4}+20000 E 00 S^{5}+0.0\)
\(-20913 E 14-10504 E 13 S-40298 E 10 S^{2}+90575 E 07 S^{3}+20841 E 05 S{ }^{4}+30422 E 02 S^{5}+10000 E 00 S{ }^{6}\) THE FUNCTICN FACTCR \(=40836 E-C 2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \(\stackrel{\sim}{6}\) & 0.0 & 0.0 & 000 & 0.0 & 000 & 0.0 & & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0 & 0.0 & 0.0 & 0.0 & \(C_{0} 0\) & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 000 & \(\mathrm{Co}_{0}\) & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 3.05790 E 03 & 1.57855E 02 \\
\hline & \(4051192 \mathrm{E}-01\) & -1.00514E-03 & -2058241E-66 & \(-305925 \in E-C 9\) & -10¢4576E-11 & 000 & - & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & Coo & 0.0 & CoO & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & COO & 000 & 0.0 & & 000 & 0.0 & D.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 000 \\
\hline & 000 & Co 0 & 0.0 & C.O & 000 & 0.0 & & 000 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & Coo & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 000 & 0.0 & 0.0 & 5.78994E OL \\
\hline & 2019757E-01 & -3.52979E-04 & -1040こ97E-06 & -1.286CEE-09 & -5007683E-12 & 0.0 & & 000 & 0.0 & 000 & 0. 0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & O. 0 & 000 & 0.0 & 0.0 & 000 & 0.0 & & 0.0 & 000 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 000 & COO & 0.0 & 0.0 & & 0.0 & 000 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TC C2
```

0.0 +40905E 11S + 20154E 10S 2 + 20266E 08S 3 +40656E 05S 4 +50740E 02S 5 + 10000E 00S 6

```
\(-20913 E 14-10504 E 13 S-40258 E 10 S^{2}+90575 E \mathrm{CDS}{ }^{3}+20842 E 05 S+30422 E 02 S+10000 E 00 S\)

THE FUNCTICN FACTOR \(=-1017 E E-C 1\)
\(?\)
\(\stackrel{a}{-}\)
\(\stackrel{-}{-}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 000 & 0.0 & 0.0 & Col 0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 6.0 & Coo & 000 & 000 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & Goo & 0.0 & 0.0 & 0.0 & 0.0 & t & 0.0 & 0.0 \\
\hline 020 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \(30.05790 E 03\) & 1.57855E C2 \\
\hline 4051192E-01 & \(-1.00514 \mathrm{E}-03\) & -2.98241E-06 & -305925tE-C9 & -10C4C76E-11 & O. 0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 000 & 0.0 & 0.0 & & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 000 & G.0 & 000 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline \(6006506 \mathrm{E}-01\) & 2066325E-02 & 2. \(20-68 \mathrm{E}-04\) & 5.75787E-C7 & 70.09774E~20 & \(1.23657 E-12\) & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0. 0 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 600 & 00 C & 000 & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline 0.0 & 000 & & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TO R2
\(3_{0} 543 E C 9+70898 E \operatorname{CgS}+10207 E 08 S^{2}+40279 E 05 S^{3}+30403 E 02 S^{4}+10000 E 00 S^{5}+0.0\)
\(-20913 E 14-10504 E 13 S-40298 E 10 S^{2}+90 E 75 E C 7 S^{3}+20841 E 05 S^{4}+30422 E 02 S+10000 E 00 S{ }^{5}\)

THE FUNCTICN FACTCR \(=40033 E\) C2
\(?\)
1
\(N\)
\(N\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & 000 & 0.0 & CoC & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 000 \\
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & & 0.0 \\
\hline 0.0 & \({ }^{1} \mathrm{CoO}\) & 0.0 & 0.0 & 000 & 000 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.05790E & 03 & 1.57855E 02 \\
\hline 4051192E-01 & -1.00514E-03 & -2.98こ41E-C6 & -3.59256E-09 & -1.0.4576E-11 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 000 & 00 & 0.0 & Coo & 000 & 0.0 & 000 & 000 & 000 & & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 0.0 & 000 & 0.0 & COC & 0.0 & 0.0 & 0.0 & 000 & 0.0 & & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & & 000 \\
\hline 0.0 & 0.0 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & 000 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & & -1.50000E 01 \\
\hline -3.34397E O1 & -5.53508E-01 & -1.81177E-03 & -1.44092E-C6 & -4023382E-09 & 000 & 000 & 0.0 & 0.0 & & 0.0 \\
\hline 0.0 & 000 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 000 & 0.0 & 0.0 & Goo & 0.0 & 0.0 & 000 & 0.0 & 0.0 & & 0.0 \\
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 000 & 0.0 & & 0.0 \\
\hline 000 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 000 & 0.0 & & 000 \\
\hline 000 & 0.0 & & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TO R3

\(-20913 E 14-10504 E 13 S-40298 E 10 S^{2}+90575 E 07 S^{3}+20841 E 05 S S^{4}+30422 E 02 S^{5}+10000 E 00 S{ }^{6}\)

THE FUNCTICN FACTCR \(=-204 C 7 E C 1\)
\(Q\)
\(\vdots\)
\(\stackrel{1}{\omega}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & CoO & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Col & 0.0 & 0.0 \\
\hline 4051192E－01 & －1．00514E－03 & －2098241E－06 & －3．5925te－Cs & －1．C4 \({ }^{\circ} 76 E-11\) & 0.0 \\
\hline \(0 \% \mathrm{C}\) & 0.0 & CoO & CoO & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoC & 00 C & 000 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & COO & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & COO & 000 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & C．O & 0.0 & 0.0 \\
\hline 00 & 000 & 0.0 & CO 0 & 0.0 & 0.0 \\
\hline 10くむら85E 02 & 3017453E－CI & 3041535E－C4 & 8．26763E－C7 & 2052646E－10 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & CoO & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Co 0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & Coo & 0.0 & 000 \\
\hline 000 & 0.0 & 0.0 & 0.0 & \(0 . \mathrm{C}\) & 0.0 \\
\hline 0.0 & 000 & & & & \\
\hline
\end{tabular}
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
\begin{tabular}{|c|c|}
\hline 0.0 & 0.0 \\
\hline 0.0 & 0．0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 3.05790 E 03 & 1．57855E 02 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 000 & 0.0 \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 4028994 El \\
\hline 000 & 000 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline
\end{tabular}
sensitivity tc ll


THE FUNCTICN FACTOR \(=\) 1.OCCE CO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Coo & 0.0 & 000 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 000 & 0.0 & \(0 . \mathrm{C}\) & 0.0 & 000 & 0.0 & 3.05790 E 03 & 1.57855E 02 \\
\hline 4051192E-01 & -1.00514E-03 & -2.98241E-06 & -305925tE-09 & -10.c4c76E-11 & 0.0 & 0.0 & 0.0 & C.O & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoC & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & Coo & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0 O & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & + 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 90.59837E-03 & 4003572E-04 & \(1011226 E-C 6\) & -3055256E-C9 & -1.C4G76E-11 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0,0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & CO 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TO C3


THE FUACTICN FACTOR \(=-6.494 E-6 I\)


SENS ITIVITY TC C4

\(-20913 E 14-10504 E 12 S-40 \angle G 8 E 10 S^{2}+90575 E 07 S^{3}+20841 E 05 S S^{4}+30422 E 02 S+10000 E 00 S S^{5}\)

THE FUNCTICN FACTCR \(=\quad \overline{2} 48 G E-C 1\)
\(Q\)
\(\vdots\)
\(\stackrel{\rightharpoonup}{\infty}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.0 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 400 & CoC & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & C. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4051192E~01 & -1.00514E-63 & -2098241E-06 & -3059256E-09 & \(-1.044^{\text {c }} 76 \mathrm{E}-11\) & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & CoC & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 000 & CoC & CoO & 0.0 & 0.0 & 0.0 \\
\hline 000 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & Coc & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0,0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 000 & 0.0 & 006 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & Co 0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline -4043573E-01 & -1.26133E OC & -3.28245E-03 & -3a53147E-C6 & - E.54810E-09 & -2.61237E-12 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & CoC & 0.0 & 0.0 & 0.0 \\
\hline \(0 \% 0\) & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & COO & 0.0 & 000 & 0.0 & 0.0 \\
\hline 000 & 000 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline 3.05790 E 03 & 2057855E 02 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline
\end{tabular}

\section*{SENSITIVITY TC CS}

the functicn factor \(=\) 5oElee-gi
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\bigcirc\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline \(\stackrel{1}{\square}\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \(\xrightarrow{\sim}\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.C5790E 03 & 1.57855E 02 \\
\hline & \(4051192 \mathrm{E}-01\) & -1.00514E-03 & -2.58241E-06 & \(-3.59256 E-C S\) & -1.C4576E-11 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & G.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 2.90575E 01 & 1.23599E 00 & 3.76431E-03 & \(4.3841 . C E-06\) & \(5.96848 \mathrm{E}-09\) & -5.78707E-12 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & G.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline & 0.0 & 0.0 & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TO I2

\(-20913 E 14-10504 E 13 S-402 C 8 E 10 S^{2}+50575 E 07 S^{3}+20841 E 05 S{ }^{4}+30422 E 02 S^{5}+10 C 0 C E 00 S{ }^{6}\)

THE FUNCTICN FACTCR \(=\) SoG23E C2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\bigcirc\) & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \(\stackrel{\sim}{\sim}\) & 000 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \(\infty\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.05790103 & 1.57855E 02 \\
\hline & \(4051192 \mathrm{E}-01\) & -1.00514E-03 & -2098く41E-06 & -305925 EE-CS & -1.c4c76E-11 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & Co 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & Co 0 & 0.0 & CoC & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & CO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & OOC & 0.0 & c.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & C. C & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 000 & O.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -3.04800E 03 \\
\hline & -1.66603E 02 & -1095485E OC & -4.69G70E-03 & -4098C8CE-C6 & -1.0.4167E-08 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & \(0 . \mathrm{C}\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 600 & \(0 . \mathrm{C}\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & Coc & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & & & & & & & & \\
\hline
\end{tabular}

\section*{SQUARE CF WORSt CASE TCLERANCE}





THE FUNCTICN FACTCR \(=2.737 E-C 2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 9.35074 E 06 & 9.65411 E 05 & 2.76777E 04 & 10362S9E 02 \\
\hline -1031999E-01 & -1.87057E-03 & -2.87938E-06 & -5.60605E-10 & cot4391E-12 & 4.25322E-14 & 7.55230E-17 & 7.54268E-20 & 1010201E-22 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & C. C & 0.0 & 000 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 00 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0,0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 9.29569E 04 & 1.02711E 04 & 7.00740E 02 \\
\hline 90782E3E 00 & 9064322E-02 & 4015129E-04 & \(1004222 \mathrm{E}-06\) & 2.19438E-09 & 3.22763E-12 & 3.01305E-15 & 3051513E-18 & Lo79595E-21 & 3.01593E-24 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & COO & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & C.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & O.O & 0.0 - & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & & & & & & & & \\
\hline
\end{tabular}

THE TRANSFCRM OF THE RESPONSE IS－－－
\begin{tabular}{c} 
EXP。 OF \(S\) \\
\hdashline 0 \\
1 \\
2 \\
3 \\
4
\end{tabular}

\section*{NUMER。 CGEFFS。 \\ \(-3.0000 C E\) C1
\(-1.25597 E-02\) \\ \(-1.255 \subset 7 E-02\) \\ 3．0355SE－04 \\ 000}
1.01930 E 02
5.21768 E 00
\(1.38103 \mathrm{E}-02\)
\(1.33138 \mathrm{E}-05\)
\(1.38103 \mathrm{E}-02\)
\(1.23138 \mathrm{E}-05\)
3．45773E－C8
\begin{tabular}{|c|c|}
\hline FREQ & MAC \\
\hline 80000E 01 & 7011011E－02 \\
\hline 8．036E 01 & 7．22272E－02 \\
\hline 80073E 01 & 7．3404CE－02 \\
\hline 8.110 El & 7．46347E－02 \\
\hline \(80147 E 01\) & 7．59231E－C2 \\
\hline 80184 E 01 & 7．72731E－02 \\
\hline 8． \(221 E 01\) & 708689GE－02 \\
\hline 80．258E 01 & 8．01756E－02 \\
\hline Bo296E 01 & 8．17384E－02 \\
\hline 8．334E 01 & 8．33828E－02 \\
\hline 8．372E 01 & 8051154E－C2 \\
\hline 8.410 E 01 & 8069432E－02 \\
\hline 8.448 E 01 & 8． \(28741 E-02\) \\
\hline 8．487E 01 & 90C9169E－C2 \\
\hline 80525 E 01 & 90308 CEE －G2 \\
\hline 80．564E 01 & 9．53774E－02 \\
\hline 8．603E 01 & 9078190E－02 \\
\hline 80，642E CI & 1．00419E－01 \\
\hline 8．682E 01 & 1003193E－01 \\
\hline 80721E 01 & 1．06160Em 01 \\
\hline 80761E 01 & 1009339E－01 \\
\hline 80801E 01 & 1．127E3E－Cl \\
\hline 80．841E 01 & 20164E1E～01 \\
\hline 88881 El & 1020402E－01 \\
\hline 80921E 01 & 1024702E－01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{FREQ} \\
\hline \(8.5 \in 2 E\) & 01 \\
\hline \(9.003 E\) & 01 \\
\hline \(90.644 E\) & 01 \\
\hline 90085 E & 01 \\
\hline \(9.126 E\) & 01 \\
\hline 9.168 E & 01 \\
\hline So210E & 01 \\
\hline \(9.251 E\) & C1 \\
\hline \(9.294 E\) & 01 \\
\hline 9．336E & 01 \\
\hline 9.378 E & 01 \\
\hline 9.421 E & 01 \\
\hline \(90464 E\) & 01 \\
\hline \(9.5 C 7 E\) & 01 \\
\hline 9．5s0E & 01 \\
\hline 90554 E & 01 \\
\hline 90637 E & 01 \\
\hline 9.681 E & 01 \\
\hline 9.725 E & 01 \\
\hline 9.770 E & 01 \\
\hline Gocl4E & 01 \\
\hline So\＆59E & 01 \\
\hline \(9.904 E\) & 01 \\
\hline 9．949E & 01 \\
\hline 905¢4E & \\
\hline
\end{tabular}

\section*{NAG}

1．2c375E－01
1． \(34472 \mathrm{E}-01\)
\(1.4 \mathrm{CC} 50 \mathrm{E}-01\)
1．46179E－01
\(1062549 E-01\)
\(1.604 E 1 E-01\)
\(10604 \in 1 E-01\)
\(1068845 E-01\)
\(1068845 \mathrm{E}-01\)
1． 182 E E12E－01 1．89S12E－01 2．01055E－01 2015030E－01 2021279E－01 2． \(504 \mathrm{C} 2 \mathrm{E}-01\) 2073244E－01 3．00594E－01 3．79281E－01 \(3079281 E-01\)
\(4.37 \mathrm{C} 28 \mathrm{E}-01\) 4a \(37 \mathrm{C} 28 \mathrm{E}-01\)
5． \(16501 \mathrm{E}-01\) \(6.32803 \mathrm{E}-01\) 8． \(15243 \mathrm{E}-01\) 1．16445E 00 2．04072E 00 \(8.4 C 556 E 00\) 3．SO501E 00
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{FREQ} & MAG \\
\hline 1．004E & 02 & \(1.57465 E 00\) \\
\hline 1．009E & 02 & 9．82326E－01 \\
\hline 10013E & 02 & \(7.11794 \mathrm{E}-01\) \\
\hline 1.018 E & 02 & 5．56839E－01 \\
\hline 1.022 E & 02 & \(4056448 \mathrm{E}-01\) \\
\hline \(1.027 E\) & 02 & 3．86102E－01 \\
\hline 1.032 E & 02 & 3．34095E－01 \\
\hline 1.036 E & c2 & 2．94064E－01 \\
\hline 1．041E & 02 & 2．62310E－01 \\
\hline \(1.046 E\) & 02 & 2．36511E－01 \\
\hline 1．051E & 02 & 2．15134E－01 \\
\hline 1.055 E & 02 & 1．97132E－01 \\
\hline \(1.060 E\) & 02 & \(1.81769 \mathrm{E}-01\) \\
\hline 1.065 E & 02 & \(2.68502 \mathrm{E}-01\) \\
\hline 1.070 E & 02 & 1.56932 E －Gl \\
\hline 1.075 E & 02 & \(1.46751 \mathrm{E}-01\) \\
\hline 2．080E & 02 & 1．37725E－01 \\
\hline 1.085 E & 02 & 1．29669E－01 \\
\hline 1.689 E & 02 & 1．22436E－01 \\
\hline \(1.094 E\) & 02 & 1.15905 Em 01 \\
\hline 1．099E & 02 & 1．09979E－01 \\
\hline \(1.104 E\) & 02 & \(1.04578 \mathrm{E}-01\) \\
\hline \(1.109 E\) & 02 & 9．96354E－02 \\
\hline 1.115 E & 02 & \(9.50964 \mathrm{E}-02\) \\
\hline 1．120E & 02 & 9．09121E－02 \\
\hline
\end{tabular}

FREQ
\(1.125 E 02\)
\(1.130 E 02\) \(1.130 E 02\)
\(1.135 E 02\) \(1 \circ 135 E 02\) 1.140 E \(1.145 E 02\) lol51E 02 \(10156 E 02\) 10161E 02 \(1.166 E 02\) \(1.172 E 02\) 1．177E 02 10182E 02 10188 E 02 1．193E 02 1．199E 02 \(2.204 E 02\) 1．209E 02 I．215E 02 1．220E 02 1．226E 02 I．232E 02 1．237E 02 1．243E 02 1．249E 02 1．254E 02

MAG
8．70447E－02 8．34591E－02 Bo \(34591 \mathrm{E}-02\) 8001249E－02 7．41151E－C2 7．41151E－C2 7． \(13971 E-02\) 6． \(88478 \mathrm{E}-02\) \(6.64507 E-02\) \(6.41941 \mathrm{E}-02\) \(6.20653 E-02\) 6．00545E－02 5． \(81514 \mathrm{E}-02\) \(5063485 \mathrm{E}-02\) \(5046378 \mathrm{E}-02\) 5． \(30126 E-02\) 5． \(14664 \mathrm{E}-02\) \(4099940 \mathrm{E}-02\) \(4085906 \mathrm{E}-02\) \(4072508 \mathrm{E}-02\) \(4059712 \mathrm{E}-02\) 4047475E－02 4०35762E－02 4． 24541 E－C2 \(4013783 \mathrm{E}-02\) 4003457E－02

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & freq & \multicolumn{2}{|l|}{pha} & \multicolumn{2}{|l|}{freq} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{freg} & \multicolumn{2}{|l|}{PHA} \\
\hline & 80000E 02 & 4017 ¢S9E & & Bocte & & 30 23326 E & & 1.004 E & & -1.45079E & & 1.125 E & & -1048157E & \\
\hline & 80036 E 01 & 4016588 E & 01 & 90003 E & 01 & 30 81568 E & & 10009E & & -1045179E & & 10130 E & & -1048279E & 02 \\
\hline & 80073 E 01 & 4015178 E & 01 & 90044 E & 01 & 3o \(6 C \in 13 \mathrm{E}\) & 01 & 1.013 E & 02 & -1.45294E & 02 & 1.135 E & & -1.48400 & 02 \\
\hline & 80110 O & 4013771 E & 01 & 90685 & 01 & 3.79261E & 01 & 1.018 E & & -1.45416E & 02 & 1.140 E & & -1.48522E & 02 \\
\hline & Bo147E 01 & 4012365 E & 01 & \(9012 \in E\) & 01 & 3.77512 E & 01 & 1.022E & & -1.45539E & & 1.145 E & & -1.48643E & 02 \\
\hline & 80184 E 01 & \(40100^{6} 1 \mathrm{E}\) & 01 & 90168 E & 01 & 3.76565 E & & 1.027 E & & -1.45664E & 02 & 1.151 E & & \(-1.48764 \mathrm{E}\) & 02 \\
\hline & 80221 El & \(40 \mathrm{C955CE}\) & 01 & 9.210 E & 01 & 3075222E & 01 & 1.032 E & & -1.45789E & 02 & 10156E & & -1.48884E & 02 \\
\hline & 80258 El & 40 C8159E & 01 & 90251 E & 01 & 3073882E & & 1.036 E & & -1.45916E & & 1.161 E & & -1.49005E & 02 \\
\hline & 80296 Ol & 40 C 6761 E & 01 & 9.294 E & 01 & 3.72542 E & 01 & 1.041 E & & -1.46041E & & 1.166 E & & \(-1.49125 \mathrm{E}\) & \\
\hline & 80334 E 01 & 40 C 5365 E & 01 & \(90336 E\) & 01 & 3.71209 E & 01 & 1.046 E & & -1.46167E & & 1.172 E & & -1.49244E & \\
\hline & 80372 E 01 & 40.03571 E & 01 & 90378 E & 01 & \(306 \subset\) ¢78E & 01 & 1.051 E & & -1.46293E & & 1.177 E & & -1.49364E & 02 \\
\hline 1 & \(80410 E 01\)
\(80448 E 01\) & 40 C 2579 E
400190 E & \({ }_{01}^{01}\) & 90421 E & 01 & \(306 E 549 \mathrm{E}\) & \({ }^{01}\) & 1.055 E & & \(-1.46419 \mathrm{E}\) & 02 & 1.182 E & & -1049483E & 02 \\
\hline N & 8.487801 & 3.99802E & & 90564E & & 3067909 & & 10060 E & & -1.46545E & & 1.188 E & & -1.49601E & 2 \\
\hline & \(80525 E 01\) & 30¢8417E & & 90550 E & 01 & 3065909E & & \({ }_{1}^{100655}\) & & - 1046670 E & \[
02
\] & \({ }^{10193 E}\) & & - 10499720 E & 02 \\
\hline & 80564501 & 30¢7034E & 01 & 90554 E & 01 & 30632861 & 01 & 1.075 E & & -10446921E & & 101904 & & -1049838E & \\
\hline & 80603 El & 3. \(C 5652 \mathrm{E}\) & c1 & \(9_{0} 667 \mathrm{E}\) & 01 & 3061587 E & 01 & 1.080 E & & -1047045E & & 10204 E & & -1049956E & \\
\hline & 80642 E 01 & 3054273E & & \(9.681 E\) & 01 & 3066693 E & & 1.085 E & & -1047170E & 02 & 10215 & & -10 50073E & \\
\hline & 80682 E 01 & 3.92896E & & \(9.725 E\) & & 3.55418E & & 1.099 E & & \(-1047294 \mathrm{E}\) & 02 & 10220 E & & -1050190E & \\
\hline & 80721 El & 3091EこえE & & 9.770 E & 01 & 3.58161 E & 01 & 1.094 E & & \(-1047418 \mathrm{E}\) & & 10226 E & & -1050307E & \\
\hline & 8.761 E 01 & 3.90149 E & & 50814 E & 01 & 3.56942E & 01 & 1.099 E & & -1047542E & 02 & 1.0232 E & & -1050424E & \\
\hline & 8.801501 & 3.98781E & & ¢.859E & & 3055813 E & & 10104 E & & \(-1047666 \mathrm{E}\) & & \(1.232{ }^{\text {c }}\) & & -1050540E & \\
\hline & 8.841 E 01 & 3087413 E & & 90964 E & & 3.54447E & 01 & 1.109 E & & \(-1.47789 \mathrm{E}\) & & 10234 & & -1050656E & \\
\hline & 89881501 & 3. 86048 E & 01 & 9.949 E & 01 & 3.56879E & 01 & 1.115 E & 2 & \(-1.47912 \mathrm{E}\) & 02 & 1.249 E & & -1050886E & \\
\hline & 80921 El & 30 E4686E & & 90954 E & & -1.45068E & & 1.120 E & & -1.48034E & & 1.254 E & & -1.51001E & \\
\hline
\end{tabular}


\section*{PLOT \((T Y=R E / F R=0 / T C=100)\)}


ENTRY POINT \(=\) C121C518
Standard fixup taken, executign centinuing

THE TRANSFCgM OF THE RESPONSE IS - - -
\begin{tabular}{|c|c|c|}
\hline EXP。 of S & NUMER。 CGEFFSo & DEACNO COEFFS \\
\hline 0 & -3.00000E 01 & 1.01930E 02 \\
\hline 1 & -1.25s57E-02 & 5.21768 E 00 \\
\hline 2 & 3.035cce-04 & 1.38103E-02 \\
\hline 3 & 0.0 & 1.33138E-05 \\
\hline 4 & 0.0 & 3.45773E-C8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FREQ & MAG \\
\hline 000 & -2094219E-01 \\
\hline 1.047E 00 & -2.79430E-01 \\
\hline 2.094E 00 & -2065scse-01 \\
\hline 3.141E 00 & -2.535i5E-01 \\
\hline 4o189E 00 & -2042278E-01 \\
\hline 50236E 00 & -2.318S1E-01 \\
\hline 60283E 00 & -2022310E-01 \\
\hline 7033GE 00 & -2.13443E-Cl \\
\hline 8. 377 E OC & -2.05214E-01 \\
\hline \(90424 E 00\) & -1.97555E-01 \\
\hline 10047E 01 & -10904C9E-02 \\
\hline 1.152E 01 & -1.83726E-C1 \\
\hline 1.257E 01 & -1.77462E-01 \\
\hline 1.361E 01 & -1.71578E-C1 \\
\hline 10466E 01 & -1066C42E-01 \\
\hline \(10571 E 01\) & -1.6C823E-01 \\
\hline 10675 E 01 & -1.558S4E-01 \\
\hline 1.780E 01 & -1051231E-01 \\
\hline 1.885E 01 & -1046814E-01 \\
\hline 10990E 01 & -1.42623E-Cl \\
\hline 2.094E 01 & -1.38642E-01 \\
\hline 20109E OI & -1034855E-Cl \\
\hline & -1.31247 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FREQ & MAG \\
\hline 204CEE O1 & -1.27807E-01 \\
\hline 20513E 01 & -1. 24523 E -01 \\
\hline 20t1eE 01 & -1.21384E-01 \\
\hline 2.723E 01 & -1.18381E-01 \\
\hline 20827E 02 & -1.15506E-01 \\
\hline 20932E 01 & -1.12749E-01 \\
\hline 3.037E 01 & -1.10104E-01 \\
\hline 3.141E 01 & -1.07565E-01 \\
\hline 3. 24 EE 01 & -10CS124E-01 \\
\hline 3.351E O1 & -1.02777E-01 \\
\hline 3.45tE 01 & -1.CO518E-01 \\
\hline \(3.560 E 01\) & -9083412E-02 \\
\hline 306ESE 01 & -9, \(62433 \mathrm{E}-02\) \\
\hline 3.77CE 01 & -9.42156E-02 \\
\hline 3.8T4E 01 & -9022663E-02 \\
\hline 3.S79E 01 & -9.03757E-02 \\
\hline 40084E 01 & -80 f5562E-02 \\
\hline 40189E 01 & -8067530E-02 \\
\hline 40293 E 01 & -8.50869E-02 \\
\hline 40358 E 01 & -8.34354E-02 \\
\hline 405 C 3 E 01 & -8.18354E-02 \\
\hline 406C7E OL & -8.02E50E-02 \\
\hline 40712 E O1 & -7. 87815E-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FREQ & nag \\
\hline 4.817E 01 & -7.73230E-02 \\
\hline 40922 El & -7.59075E-02 \\
\hline 5.026 El & -7.45330E-02 \\
\hline 5.131E O1 & -7.31978E-02 \\
\hline S.236E O1 & -7.19002E-02 \\
\hline 5.340E 01 & -7.06385E-02 \\
\hline \(50445 E 01\) & -6094113E-02 \\
\hline 5.550E 01 & -6082172E-02 \\
\hline 5.654 E 01 & -6.70549E-02 \\
\hline \(5.759 E 01\) & -6.59230E-02 \\
\hline 5.864E 01 & -6.48204E-02 \\
\hline 5.969E 01 & -6.37460E-02 \\
\hline 6.073 El & -6.26985E-02 \\
\hline \(6.179 E\) O1 & -6.16772E-02 \\
\hline 60283 E 01 & -6.06809E-02 \\
\hline 6.387E 01 & -5.97088E-02 \\
\hline 60492 El & -5.87599E-02 \\
\hline \(60597 E 01\) & -5.78334E-02 \\
\hline 6.702E 01 & -5.69285E-02 \\
\hline 6.806E 01 & -5.60445E-02 \\
\hline 60911E 01 & -5.51806E-62 \\
\hline 7.OL6E OI & -5.43362E-02 \\
\hline 7.120E 01 & -5.35106E-0 \\
\hline
\end{tabular}


MAG
-5. \(27031 E-02\) \(-5.19132 \mathrm{E}-02\) \(-5019132 \mathrm{E}-02\) -5.03838E-02 -4096432E-02 -4089181E-02 \(-4082078 E-02\) -4. \(75120 \mathrm{E}-02\) \(-4068303 E-02\) \(-4.61621 \mathrm{EM-02}\) \(-4.58649 \mathrm{E}-02\) -4042351E-02 \(-4042351 E-02\)
\(-4036174 E-02\) \(-4036174 \mathrm{E}-02\)
\(-4030114 \mathrm{E}-02\) \(-4.24168 \mathrm{E}-02\) \(-4018332 \mathrm{E}-02\) \(-4012604 \mathrm{E}-02\)
\(-4006980 \mathrm{E}-02\) \(-4006980 \mathrm{E}-02\)
\(-4001458 \mathrm{E}-02\) \(-4001458 \mathrm{EE}-02\)
\(-3096035 \mathrm{E}-02\) -3.96035E-02 \(-3.90708 \mathrm{E}-02\) \(-3085474 \mathrm{E}-02\)



SENSITIVITY OF POLES TO C1
fGLES
\begin{tabular}{cc} 
REAL & INAC \\
\(-306441 E C 2\) & \(00 G\) \\
\(700000 \mathrm{E}-03\) & \(602601 E 02\) \\
\(7000 \mathrm{COE}-\mathrm{C3}\) & -602601 E 02 \\
-200642 El & 0.0
\end{tabular}

SENSITIVITY

\section*{REAL}

IMAG
－608345E O1 000
7．00C6E－03－501438E 01 7．00C6E－03－405882E 01 －105S17E O1 0．0
sensitivity of poles tc rl
fOLES
REAL IMAG
\begin{tabular}{|c|c|}
\hline －3．6441E C2 & 0.0 \\
\hline 7． \(0000 \mathrm{E}-03\) & 602E01E 02 \\
\hline 7．00C0E－03 & －602601E 02 \\
\hline －200642E C1 & 0.0 \\
\hline
\end{tabular}

SENSITIVITY
REAL
IMAG
－9．37TミE－02 0．0 1．3254E－C4－2．7139E－01 \(\begin{array}{cc}1.3254 \mathrm{E}-\mathrm{C4} & -108254 \mathrm{E}-01 \\ -3.8556 \mathrm{E}-\mathrm{Cl} & 0.0\end{array}\)

SENSITIVITY OF PDLES TO C2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{foles} \\
\hline REAL & IMAG \\
\hline －306441E C2 & 0.0 \\
\hline 7．00COE－C3 & 6．2601E 02 \\
\hline 7．0000E－03 & －6．2601E 02 \\
\hline －200642E Cl & 0.0 \\
\hline
\end{tabular}

SENSITIVITY
\begin{tabular}{cc} 
REAL & IMAG \\
\(108731 E 01\) & 000 \\
\(907225 \mathrm{E}-09\) & \(-103517 E \quad 01\) \\
\(907225 \mathrm{E}-09\) & \(203180 E \quad 01\) \\
\(205619 E-02\) & 0.0
\end{tabular}

SENSITIVITY OF POLES TO R2

PCLES
\begin{tabular}{|c|c|}
\hline REAL & IMAC \\
\hline －3．6441E C2 & C． 0 \\
\hline 7．0000E－G3 & 602601E 02 \\
\hline 7．00C0E－C3 & －6．2601E 02 \\
\hline 2.0642 ECl & 0.0 \\
\hline
\end{tabular}

SENSITIVITY OF POLES TO RZ

POLES
REAL
\begin{tabular}{rll}
\(-306441 E ~ C 2\) & \(00 G\) & \\
\(7000 C 0 E-C 3\) & \(602601 E\) & 02 \\
\(7.0000 E-03\) & \(-602601 E\) & 02 \\
\(-2.0642 E C 1\) & 0.0 &
\end{tabular}

SENSITIVITY
REAL
IMAG
－209972E C2 0．0 \(609677 \mathrm{E}-03\)－102029E 02 605677E－63－200787E 02 －3．2SERE 00 0．0

SENSITIVITY
REAL
IMAG
6．2044E 01 0． 0 1．0021E－04－3． \(5429 E 02\) 1．0021E－C4 203こ29E 02 1．6ヶ71E 01 0．O
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{foles} \\
\hline REAL & INAG \\
\hline －306441E C2 & 0.0 \\
\hline 7．0000E－C3 & 6．2601E 02 \\
\hline 7．COCOE－C3 & －6．2601E 02 \\
\hline －200642E CI & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{SENSITIVITY} \\
\hline REAL & IMAG \\
\hline 1．27E2E CC & 00 C \\
\hline 1．C770E－12 & －1．gelite 02 \\
\hline I。G77CE－12 & 9．2333E 01 \\
\hline －5047C7E－C3 & 000 \\
\hline
\end{tabular}

SENSITIVITY OF POLES TC C3
frles
\begin{tabular}{|c|c|}
\hline REAL & IMAG \\
\hline －3． \(6441 \mathrm{EC2}\) & 0.0 \\
\hline 7．0000E－63 & \(6.2601 E 02\) \\
\hline 700000E－03 & －602601E C2 \\
\hline \(-20042 \mathrm{ECl}\) & 0.0 \\
\hline
\end{tabular}

SENSITIVITY OF POLES TO C4

\section*{FGLES}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{foles} \\
\hline REAL & IMAG \\
\hline －3．6441E C2 & 0.0 \\
\hline 700000E－C3 & 6．2601E 02 \\
\hline 700000E－63 & －602601E 02 \\
\hline －200642E Cl & 0.0 \\
\hline
\end{tabular}

SENSITIVITY OF PGLES TO C5

\section*{pCLES}

REAL
\begin{tabular}{rc}
\(-306441 E 02\) & \(0 . C\) \\
\(7.0000 \mathrm{E}-03\) & 602601 E 02 \\
\(7 \circ 0000 \mathrm{E}-03\) & -602601 E \\
-200642 ECD & \(0 . C\)
\end{tabular}

SENSITIVITY CF PCLES TO 12

\section*{fCLES}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{fcles} \\
\hline REAL & IMAG \\
\hline －30 G441E C2 & 0.0 \\
\hline 7．COCOE－C3 & \(602601 E 02\) \\
\hline 7．00C0E－03 & －602601E 02 \\
\hline －200t42E CI & 0.0 \\
\hline
\end{tabular}

SENSITIVITY
REAL INAG

I．8455E OC
3．7113E－C
3．7113E－08
3．1672E－C1

00 C
－4。 \(2 \equiv 17 E 01\)
2．2019E 01 0.0

SENSITIVITY
REAL
inag
\[
203379 F 07
\]

2．3379E C2
000
40555SEEC7－2．3906E 02 4o SGESE－C7 3．2770E 02 \(3.6222 E\) 0.0

\section*{SENSITIVITY}

REAL INAG

40C428E 01 0. 1。063CE－G7－108541E 02 1．0EECE－C7 1．1450E 02 7。EE47E－C1 0．0

\section*{SENSITIVITY}

REAL IMAG
\begin{tabular}{|c|c|}
\hline －4．27ごE 01 & 0.0 \\
\hline 2．2çtE－G5 & －1．2323E 01 \\
\hline 2．25¢6E－¢5 & －202735E O1 \\
\hline 209686E 00 & Co 0 \\
\hline
\end{tabular}

\section*{The transferm \({ }^{-}\)of tre response is ---}



\section*{NAC}
\(8.73 \mathrm{CE} 2 \mathrm{E}-01\) \(8.71585 \mathrm{E}-01\) 8.6ร936E-01 \(8.68090 \mathrm{E}-01\) \(8 \circ \in \in C 18 E-01\) 8.63683E-01 8.61039E-01 8.58C32E-01 8.54584E-01 8.5C619E-01 \(8.45598 \mathrm{E}-01\) 8.4C575E-01 8. 34142 E -01 8. \(2 \in 4 \mathrm{C} 3 \mathrm{E}-01\) 8.16917E-01 -OC5CSOE-01 7. \(85946 \mathrm{E}-01\) 7.69501E-01 7042214E-01 7.01560E-01 6. 3 E253E-01 5. \(14543 \mathrm{E}-01\) 2. 10613E-01 2.045s9E 00 2.30366E 00
\begin{tabular}{|c|c|}
\hline 1.004 E & 02 \\
\hline 1.0095 & 02 \\
\hline 1.013 E & 02 \\
\hline 1.018E & 02 \\
\hline \(1.022 E\) & 02 \\
\hline 1.027 E & 02 \\
\hline 1.032 E & 02 \\
\hline \(1.036 E\) & 02 \\
\hline \(1.041 E\) & 02 \\
\hline 1.046 E & 02 \\
\hline 1.051 E & 02 \\
\hline 1.055E & 02 \\
\hline 1.060 E & 02 \\
\hline 1.065E & 02 \\
\hline 1.070 E & 02 \\
\hline 1.075 E & 02 \\
\hline 1.080E & 02 \\
\hline 1.085E & 02 \\
\hline Loc89E & 02 \\
\hline 1.094E & 02 \\
\hline 2.099E & 02 \\
\hline \(2.104 E\) & 02 \\
\hline 2ol09E & 02 \\
\hline \(1.115 E\) & 02 \\
\hline 1.120E & 02 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \\
\hline \\
\hline 2335E \\
\hline .08824E \\
\hline 6370E \\
\hline .04565E \\
\hline .03181E \\
\hline 2089E \\
\hline -01206E \\
\hline O480E \\
\hline . 98722 E \\
\hline 3579 \\
\hline 9166 \\
\hline . 853 \\
\hline 203 \\
\hline 911 \\
\hline 。 7653 \\
\hline 424 \\
\hline -72203E \\
\hline 0371E- \\
\hline -68722E-01 \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

FREQ
3.125E 02 1.130E 02 1.130E 1.135 E 02 1.140E 02 \(1.145 E 02\) 1. 151 E 02 \(1.156 E 02\) 1.161E 02 1.166E 02 1.172 E 02 1.177E 02 1.182 E 02 2.188E 02 1.193E 02 1.199E 02 1.204 E 02 1.209E 02 -215E 02 L. 220E 02 1.226E 02 1.232E 02 1.237E 02 1.243E 02 1.24SE 02 1.254E 02

\section*{MAG}
\(9.63554 \mathrm{E}-01\) 9.62539E-01 9.61613E-01 \(9060764 \mathrm{E}-01\) So59987E-01 \(9059272 \mathrm{E}-01\) \(9058615 \mathrm{E}-01\) \(9058010 \mathrm{E}-01\) 9. 57455E-01 \(9056945 \mathrm{E}-01\) 9056471E-01 \(9056036 \mathrm{E}-01\) 9.55635E-01 9.55264E-01 9054922E-01 9.54610E-01 9. \(54319 \mathrm{E}-01\) 9.54051E-01 \(9053805 \mathrm{E}-01\) 9053580E-01 9.53372E-01 9.53180E-01 \(9053004 \mathrm{E}-01\) 9.52846E-01 9052699E-01
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{FREG} & \multicolumn{2}{|l|}{PrA} & \multicolumn{2}{|l|}{freq} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} \\
\hline & 8.000 E & 01 & -1.72こ81E & 02 & 809E2E & 01 & -1.72977E & 02 & 1.004 E & 02 & -1.72113E & 02 & 1.125 E & & -1.73742E & 02 \\
\hline & 8.036E & 01 & -1.72403E & c 2 & 90003 E & 01 & -1.73005E & 02 & \(1.009 E\) & 02 & -1.72459E & 02 & 1.130E & & -1.73767E & 02 \\
\hline & 80 Cl 3 E & 01 & -1.72425E & 02 & 9.044 E & 01 & -1.73034E & 02 & 1.013 E & 02 & \(-1.72669 \mathrm{E}\) & 02 & 1.135 E & & -1.737S1E & 02 \\
\hline & 8.110 E & 01 & - Io 72447 E & 02 & 900 ¢ EE & 01 & -1.73664E & 02 & 1.028 E & 02 & -1.72815E & 02 & 1.140 E & & -1.73815E & 02 \\
\hline & 80147 E & 01 & -1.7247CE & 02 & 90126 E & 01 & -1.73C54E & 02 & 10022 E & 02 & -1.72923E & 02 & 1.145 E & & \(-1.73839 \mathrm{E}\) & 02 \\
\hline & 80184 E & 01 & -1.72492E & 02 & Sol68E & 01 & -1.73126E & 02 & \(3.027 E\) & 02 & -1.73009E & 02 & 1.151 E & & -1.73863E & 02 \\
\hline & 80221 E & 01 & -1.72514E & 02 & Sozloe & 01 & -1.73159E & 02 & 1.032 E & 02 & -1.73080E & 02 & \(1.156 E\) & & -1.73887E & 02 \\
\hline & 80258 E & 01 & -1.72537E & 02 & 90251 E & 01 & -1.73193E & 02 & 1.036 E & 02 & -1.73141E & 02 & 1.161E & & -1.73910E & 02 \\
\hline & 80296 E & 01 & -1072559E & C2 & \(9.294 E\) & 01 & -1.73230E & 02 & \(1.041 E\) & 02 & -1.73195E & 02 & 10166 E & & -1.73933E & 02 \\
\hline & 80334 E & 01 & -1.72582E & 02 & \(90336 E\) & 01 & -1.73269E & 02 & 10046 E & 02 & -1.73243E & 02 & 1.172E & & -1.73956E & 02 \\
\hline & 80372 E & 01 & -1.72605E & 02 & 90378 E & 01 & -1.73311E & 02 & 1.051 E & 02 & \(-1.73286 \mathrm{E}\) & 02 & 1.177 E & & -1.73979E & 02 \\
\hline \multirow[t]{14}{*}{\(Q\)
\(\omega\)
\(\omega\)} & 80410 E & 01 & -1.72628E & 02 & 90421 E & 01 & -1.73357E & 02 & 1.055E & 02 & -1.73326E & 02 & 1.182 E & & -1.74002E & 02 \\
\hline & 80448 E & 01 & -1. 72652 E & C2 & 90464 E & 01 & -1.734C7E & 02 & 1.060 E & 02 & -1.73364E & 02 & 1.188E & & -1.74024E & 02 \\
\hline & 80487 E & 01 & -1.726TEE & C2 & \(905 C 7 E\) & 01 & -1.73464E & 02 & \(1.065 E\) & 02 & -1.73400E & 02 & 1.193E & & -1.74047E & 02 \\
\hline & 8 B 525 E & 01 & -1.7269SE & 02 & So550E & 01 & -1. 73530 E & 02 & 1.070E & 02 & -1.73433E & 02 & 1.199E & & \(-1.74069 \mathrm{E}\) & 02 \\
\hline & 80564E & 01 & -1.72722E & 02 & \(9.594 E\) & 01 &  & 02 & 1.075 E & 02 & -1.73466E & 02 & 1.204 E & & -1.74091E & 02 \\
\hline & 80603 E & 01 & -1072746E & 02 & \(90627 E\) & 01 & -1.73703E & 02 & 1.080 E & 02 & -1.73497E & 02 & 1.209E & & -1.74114E & 02 \\
\hline & 80642 E & 01 & -1.72771E & 02 & 90681 E & Cl & -1.73828E & 02 & 1.085 E & 02 & -1.73527E & 02 & 1.215E & & -1.74135E & 02 \\
\hline & 80682 E & 01 & -1072795E & 02 & 9.725 E & 01 & -1.74001E & 02 & 1.C89E & 02 & -1.73555E & 02 & 1.220E & & -1.74157E & c2 \\
\hline & 80721 E & 01 & -1.7282CE & 02 & 9.770 E & 01 & -1.074267E & 02 & 1.094E & 02 & -1.73584E & & 1.226E & & -1.74179E & 02 \\
\hline & \(80761 E\) & 01 & -1.72845E & 02 & So 814 E & 01 & -1.74748E & 02 & 1.099 E & 02 & -1.73611E & 02 & 1.232 E & & -1.74201E & 02 \\
\hline & 88801 E & 01 & -1.72871E & 02 & S. 855 E & 01 & -1.75943E & 02 & 1.104E & 02 & -1073638E & 02 & 1.237E & & -1.74222E & 02 \\
\hline & 88841 E & 01 & -1.72857E & 02 & \(905 C 4 E\) & 01 & 1074562 E & 02 & Lol09E & & -3. 73665 E & 02 & \(1.243 E\) & & -1074244E & 02 \\
\hline & Bo881E & 01 & -1.72923E & 02 & 9.949 E & 01 & 1.21490E & 01 & 1.115 E & 02 & \(-1.73691 E\) & 02 & 1.2498 & & -1.74265E & 02 \\
\hline & \(80.921 E\) & & -1.72550E & 02 & 90954 E & 01 & -1.71442E & 02 & 1.120 E & 02 & -1.73716E & 02 & 1.254 E & & -1.74287E & \\
\hline
\end{tabular}


The TRANSFCRN CF TRE RESFCNSE IS ---
\begin{tabular}{|c|c|c|}
\hline EXP。 OF \(S\) & NUMERO CCEFFSo & CENCN。 COEFFSo \\
\hline 0 & -3.C48CCE 03 & 3.65790 E 03 \\
\hline 1 & -1066603E 02 & 1.57855 E 02 \\
\hline 2 & -1.954E5E 00 & \(4051192 \mathrm{E}-01\) \\
\hline 3 & -4069C70E-03 & -1.00514E-03 \\
\hline 4 & -409858CE-06 & -2058241E-06 \\
\hline 5 & -1.04167E-08 & -3059256E-09 \\
\hline 6 & 0.0 & -1004976E-11 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline FREQ & NAG & FREO & MAG \\
\hline 1.004E 02 & 2.43963E 00 & 1.125E 02 & 1.06082E 00 \\
\hline 1.009E 02 & 1.38988 E 00 & 1.130 E 02 & \(1.06186 E 00\) \\
\hline 1.013E 02 & 2.02433E 00 & 10135 E 02 & 1.06260E 00 \\
\hline \(1.018 \mathrm{O} ~ 02\) & 9.00377E-01 & 1.140E 02 & 1.06306 E 00 \\
\hline 10022E 62 & 8.70761E-01 & 10145E 02 & 1.06327E 00 \\
\hline \(1.027 E 02\) & 8.7t410E-01 & 1.151E 02 & 1.06325E 00 \\
\hline 1.032E 02 & 8093983E-01 & 1.15EE 02 & I. 06302 E 00 \\
\hline 1.036E 02 & 9.14457E-01 & \(1.161 E 02\) & 1.06260E 00 \\
\hline 1.041E 02 & \(9.34405 \mathrm{E}-01\) & 1.166 E 02 & 1.06199E 00 \\
\hline 1.046 E 02 & \(9052633 \mathrm{E}-01\) & 1.172E 02 & 1.06123E 00 \\
\hline 1.0051 C 02 & \(9068835 \mathrm{E}-01\) & 1.177E 02 & \(1.06031 E 00\) \\
\hline 1.055E 02 & 9.83041E-01 & 1.182E 02 & L. 05926 E 0 \\
\hline 1.060E 02 & \(9.95413 \mathrm{E}-01\) & 10188 E 02 & 1.05807E 00 \\
\hline 1.065 E 02 & 1.00615E 00 & 1.193 E 02 & 1.05677E 00 \\
\hline \(1.0700^{02}\) & 1.01546 E 00 & 10199E 02 & 1.05535 E 00 \\
\hline 1.075 E 02 & 1.02351E 00 & 1.204E 02 & 1.05384 E 00 \\
\hline L.080E 02 & \(1.03045 E 00\) & 1.209 E 02 & 1.05222E 00 \\
\hline 10085E 02 & 1.03644E 00 & 1.215 E 02 & 1.05052E 00 \\
\hline 10G89E 02 & 1004158 E 00 & 1.220E 02 & 1.04873E 00 \\
\hline 1.094 E 02 & 1.04598E 00 & \(1.226 E 02\) & \(1.04686 E 00\) \\
\hline 1.099E 02 & 1.04972E 00 & 1.232E 02 & 1.04492E 00 \\
\hline 1.104502 & 1.05287E 00 & \(1.237 E 02\) & 1.04291E 00 \\
\hline 10109 E 0 & \(1.05551 E 00\) & \(1.243 E 02\) & 1.04084E 00 \\
\hline 1.115 E O2 & 1.05768 E 00 & 1.249E 02 & 1.03870E 00 \\
\hline lol20e 02 & 2.05944E 00 & 1.254E 02 & 1.03651E 00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{FREQ \({ }^{\text {- }}\)} & PHA & & \multicolumn{2}{|l|}{FREQ} & PrA & & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} \\
\hline & 8. 000 E & 01 & -9.93251E & C1 & 8. St2E & C1 & -905C851E & 01 & 1.004 E & 02 & 1.44277E & 02 & 10125 E & 02 & -1。06240E & 02 \\
\hline & 8.036E & 01 & -9092117E & O1 & 90003E & 01 & -9.47981E & 01 & 1.009E & 02 & 1.62369E & 02 & 1.130E & 02 & -1.05920E & 02 \\
\hline & 8. C73E & 01 & -9090557E & C1 & So 044E & 01 & -9044873E & 01 & 1.013 E & 02 & -1.78023E & 02 & 10135 E & 02 & -1005621E & 02 \\
\hline & 8.110 E & 01 & -90\&く773E & 01 & 90 CESE & 01 & -9041544E & 01 & 1.018 E & 02 & -1.60860E & 02 & 1.140 E & 02 & -1.05342E & 02 \\
\hline & 8. 147 E & 01 & -9088560E & 01 & \(90186 E\) & 01 & -9027ct4E & 01 & 10022E & 02 & -1047925E & 02 & 1.145 E & 02 & -1.05081E & 02 \\
\hline & 8.184E & 01 & -9087319E & 01 & 9.168 E & 01 & -9.34C57E & 01 & 1.027 E & 02 & -1.38692E & 02 & 10151 E & 02 & -1.04834E & 02 \\
\hline & 80, 221 E & 01 & -9066044E & 01 & 90210E & 01 & -So2SSC3E & 01 & 1.032E & 02 & -2.32083E & 02 & 10156 E & 02 & -1.04602E & 02 \\
\hline & 8. 258 E & 01 & -9.84737E & 01 & 90251E & 01 & -9025332E & 01 & 1.036E & 02 & -1.27227E & 02 & \(1.161 E\) & 02 & -1.04383E & 02 \\
\hline & 8.296E & 01 & -S.83393E & 01 & \(9.254 E\) & 01 & -9.20324E & 01 & 1.041 E & 02 & -1.23554E & 02 & 1.166 E & 02 & -1.04175E & c2 \\
\hline & 8.334E & 01 & -9082010E & 01 & \(9.336 E\) & 01 & -9.14806E & 01 & 10046 E & 02 & -1.20697E & 02 & 10172 E & 02 & -1.03978E & 02 \\
\hline & 8. 372 E & 01 & -90 EC5EEE & 01 & C. 378 E & 01 & -90C8687E & 01 & 20051E & 02 & -1.18418E & 02 & 10177E & 02 & -1.037SOE & 02 \\
\hline  & 8.410 E & 01 & -9a7S117E & 01 & So421E & 01 & -9001854E & 01 & 1.055 E & 02 & -1.16562E & 02 & 1.182 E & 02 & -1.03611E & 02 \\
\hline \(\stackrel{\omega}{\omega}\) & 80448 E & 01 & -So77599E & 01 & 9.464 E & 02 & -8.c4169E & 01 & 1.060E & 02 & -1.15021E & 02 & 10188 E & 02 & -1.03439E & 02 \\
\hline 07 & 8.487 E & 01 & - So 76028 E & 01 & 905 C7E & 01 & -8.85444E & 01 & 1.065E & 02 & -1.13722E & 02 & 10193 E & 02 & -1.03276E & C2 \\
\hline & 8. 525 E & 01 & -So 74401 E & 01 & Go 550E & 01 & -8075446E & 01 & 1.070 E & 02 & -1012612E & 02 & 1.199E & 02 & -1.03119E & 02 \\
\hline & 8. 564 E & 01 & -9072713E & 01 & 90544 L & 01 & -8063862E & 01 & 1.075 E & 02 & -1.11651E & 02 & 1.204 E & 02 & -1.02968E & 02 \\
\hline & 8.603 E & 01 & -907C957E & C1 &  & 01 & -8050276E & 01 & 1.080E & 02 & -1.10811E & 02 & 10209E & 02 & -1.02823E & 02 \\
\hline & 8.642 E & 01 & -9065129E & 01 & \(90681 E\) & 01 & -8.34102E & 01 & 1.085E & 02 & -1.10070E & 02 & 1.215E & 02 & -1.02684E & 02 \\
\hline & 8.682 E & 01 & -9.67223E & 01 & Go725E & 01 & -8.14533E & 01 & 1.089 E & 02 & -1.09411E & 02 & Lo220E & 02 & -1.02550E & C2 \\
\hline & 80721E & 01 & -9065228E & 01 & 9.770 E & 01 & \(-70 c \mathrm{C} 54 \mathrm{E}\) & 01 & 1.094E & 02 & -I.08820E & 02 & 1.226E & 02 & -1.02420E & 02 \\
\hline & 80761 F & 01 & -9063139E & 01 & 9.814 E & 01 & -7.59932E & 01 & 1.099E & 02 & -1.68287E & 02 & 1.232E & 02 & -1.02295E & 02 \\
\hline & 88801 E & 01 & -9.60946E & 01 & SoES9E & 01 & -7.20476E & 01 & 1.104 E & 02 & -1.07804E & 02 & 1.237E & 02 & -1.02174E & 02 \\
\hline & 80841E & 01 & -So58638E & 01 & 9.904 E & 01 & -60677C5E & 01 & 1.l09E & 02 & -1.07362E & 02 & 1. 243 E & 02 & -1.02056E & 02 \\
\hline & B.881E & 01 & -9.56202E & 01 & 9.949 E & 01 & -5.927C5E & 01 & \(1.115 E\) & 02 & -1006958E & 02 & 1.249 E & 02 & -1.01942E & 02 \\
\hline & Bo 921E & 01 & -9053625E & 01 & 90954E & 01 & 1030155E & 02 & 1.120E & 02 & -1.06585E & 02 & 1.254 E & 02 & -1001832E & 02 \\
\hline
\end{tabular}


SENSITIVITY WITH RESPECT TO C3

THE TRANSFCRN OF THE RESPONSE IS－－－
\begin{tabular}{|c|c|c|}
\hline EXPo JF S & NUMER。 CLEFFSo & DEACN CGEFFS \\
\hline 0 & 0.0 & \(30 C 5790 \mathrm{E} 03\) \\
\hline 1 & 1001ESCE 01 & 1．57855E 02 \\
\hline 2 & \(404 \mathrm{CO} 36 \mathrm{E}-01\) & \(4051192 \mathrm{E}-01\) \\
\hline 3 & 2048142E－03 & －1。00514E－03 \\
\hline 4 & \(40762 \mathrm{CSE}-06\) & －2098241E－06 \\
\hline 5 & \(504088 \mathrm{EE}-09\) & －3．59256E－09 \\
\hline \(\epsilon\) & \(6.81754 \mathrm{E}-12\) & －1．04976E－11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FREQ & MAC & FREQ & NAG \\
\hline 8，000E 01 & 9．52167E－01 & \(88.662 E 01\) & 1．44752E 00 \\
\hline 8．036E 01 & 1．00243E 00 & 9．003E 01 & 104を684E 00 \\
\hline \(8.073 E \mathrm{Cl}\) & 1001205E 00 & 90044E 01 & 1052939E 00 \\
\hline 80110 El & 1．02207E 00 & \(9 . C E E E 01\) & lo57612E 00 \\
\hline \(80147 E 01\) & lo032E2E CO & \(90126 E 01\) & 10t2768E 00 \\
\hline \(80184 E 01\) & 1004341500 & \(9.168 E 01\) & 1068485E 00 \\
\hline 80221E 01 & 1．05475E 00 & 90210 Cl & 1．74865E 00 \\
\hline 80258 E 01 & 1．0666SE 00 & \(9.251 E 01\) & 1．92026E 00 \\
\hline \(8.296 E 01\) & 1．C7915E 00 & 9．2¢4E 01 & 1．S0125E 00 \\
\hline 8．334E 01 & 10CSE215 00 & \(90336 E 1\) & 1．SS256E 00 \\
\hline 8．372E C1 & 1．10592E 00 & 9.378 El & 2．CSS80E 00 \\
\hline ＇80410E 01 & 1012034E 00 & 90421501 & 2．22333E 00 \\
\hline 80448 El & 1．13552E 00 & 90464 El & 2036873E 00 \\
\hline 80487 E O1 & 101515ミE 00 & 9．5C7E 01 & 2054243E 00 \\
\hline \(80525 E\) OI & 1．16844E 00 & \(9.550 E 01\) & 2．7E355E 00 \\
\hline 8．564E 01 & 1.18634 E 00 & \(9.5 C 4 E 01\) & 3.01558 E 00 \\
\hline 80603 E 01 & 1020532E 00 & \(90627 E 01\) & 3．34539E 00 \\
\hline 80642 El & 1022548E 00 & 90681 ECl & 3.78919 EO \\
\hline 80682 E 01 & 10246S5E 00 & 90725 EL & 4．3C469E 00 \\
\hline \(80721 E 01\) & 1．26SESE OC & 9.770 E O1 & \(5.28114 E 00\) \\
\hline \(8.761 E 01\) & 1．25434E 00 & 90814 E 01 & 6．7C283E 00 \\
\hline 80801E 01 & 1.32060 E 00 & So85se ol & 9035157E 00 \\
\hline 80841501 & 10348E3E 00 & \(9 \% 9 C 4 E C L\) & 10tC225E OL \\
\hline \(88881 E 01\) & 1．37928E 00 & \(90549 E 01\) & \(6046326 E 01\) \\
\hline 80921E 01 & 1041220 E 00 & 90994 OL & 20¢3580E 01 \\
\hline
\end{tabular}


MAG
1． 15754 E 01 7.05730 E 00 409ヶ485E OO 3．81481E 00 3.05132 E 00 \(2.51739 E 00\) 2．12368E 00 2012368E 1082166 E 1.58307 E 00 1.39028 E 0 1．23159E 00 1.09904 E 00 \(9087030 \mathrm{E}-01\) 80 S1470E－01 8．09341E－01 7． \(38331 \mathrm{E}-01\) \(6.76691 \mathrm{E}-01\) 6．23037E～01 5． \(76277 \mathrm{E}-01\) \(5.35528 \mathrm{E}-01\) 5．00068E－01 4069304E－01 \(4042729 \mathrm{E}-01\) \(4019915 \mathrm{E}-01\) 4000479E－01

FREQ
1.125 E 02 1．130E 02 lo135E 02 1．140E 02 10145E 02 1．151E 02 1．156E 02 1．161E 02 Iol6EE 02 1.172 E 02 \(1.172 E\)
\(1.177 E\) 1．182E 02 \(10182 E 02\)
\(10188 E 02\) 1．193E 02 2．199E 02 2．294E 02 \(1.209 E 02\) \(10215 E 02\) \(10215 E\)
\(10220 E\) \(10220 E 02\)
\(10226 E 02\) \(1.232 E 02\) \(1.237 E\)
1.23 \(1.243 E 02\) 1.249 E 02
1.254 E 02

MAG
3． \(84051 E-G 1\) 3．70437E－01 3．59235E－01 3．50224E－01 3． \(43154 \mathrm{E}-01\) 3．37800E－01 3．33950E－01 3． \(31406 \mathrm{E}-01\) 3． \(29995 \mathrm{E}-01\) 3．29552E－01 3．29936E－01 3．31020E－01 3． \(32689 \mathrm{E}-01\) 3． 3484 EE～G1 3．37412E－01 3．40307E－01 3．43469E－01 3． \(46845 \mathrm{E}-01\) 3．50391E－01 3． \(54067 \mathrm{E}-01\) \(3.57839 \mathrm{E}-01\) 3．61681E－01 3．65569E－01 \(3069483 \mathrm{E}-01\)
\(3.73409 \mathrm{E}-01\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & FREQ & PHA & freq & PHA & FREQ & PHA & freq & PHA \\
\hline & 80000E 01 & 1. 56058 E 02 & \(80962 E 01\) & 1.64618E 02 & 1.004 E 02 & 1.67151E 00 & 1.125 E 02 & 6015355E 01 \\
\hline & 8.036E 01 & 1056336 E 02 & \(9.003 E 01\) & 1.65063 E 02 & 1.009E 02 & 2.84100E 00 & 1.130E 02 & 6053606E 01 \\
\hline & 80073E 01 & 1.5661EE 02 & 9.044 El & 10655I9E 02 & 1.013 E 02 & \(4005537 E 00\) & \(1.135 E 02\) & 6.91708 El \\
\hline & 8.110 E 01 & \(1.56904 E 02\) & 90085E O1 & 1065588 E 02 & 1.018 E 02 & 5.32990E 00 & 1.140 E 02 & 7.29337E 01 \\
\hline & 80147 E 01 & 1.57194 E 02 & \(90126 E 01\) & lott471E 02 & 1.022E 02 & 6.67316E 00 & 1.145 E 02 & 7066230E 01 \\
\hline & 8.184 E 01 & 1.57488E 02 & 9.168 E 01 & 1.66967E 02 & 1.027 E 02 & 8.09246E 00 & 1.151 E 02 & 80.02135E 01 \\
\hline & \(8.221 E 01\) & 1.57787 E 02 & So2l0E Ol & 1.67478E 02 & 2.032E 02 & \(9.59361 E 00\) & 1.156E 02 & 8.36835 E 02 \\
\hline & 8.258E 01 & 1.58090E 02 & \(9.251 E 01\) & 1.680 C 5 E 02 & 1.036 E 02 & 1.11846 E O1. & lolgie 02 & \(8.70195 E 01\) \\
\hline & \(80296 E 01\) & 1.59398E 02 & 90294501 & 1.68549E 02 & 1.041E 02 & \(1.28723 E 01{ }^{-}\) & 1.266 E 02 & 9002080E O1 \\
\hline & Bo334E 01 & 1058710E O2 & \(90336 E 01\) & 1.6911le 02 & 1.046 E 02 & 1.46637E OL & 1.172E 02 & 9.32433 E O1 \\
\hline & 80372 El & 1055028 E 02 & 90378 E 01 & 1.66 c91E 02 & 1.051E 02 & 1.65667E 01 & 1.177 E 02 & 9.61214 E 01 \\
\hline & 80410E 01 & 1.55352E 02 & \(90421 E 01\) & 1.70292E 02 & 1.055 E C2 & L. 85893 E 01 & 1.182 E 02 & 9088437 El \\
\hline \(\omega\) & 80448 El & 1.55681E 02 & \(90464 E 01\) & 1.7C914E 02 & 1.060E 02 & 2.07388E 01 & 1.188 E 02 & 1.01412 E 02 \\
\hline \(\bigcirc\) & 80487 E 01 & 1060016 E 02 & \(90507 E 01\) & 1.71559E 02 & \(2.065 \mathrm{C}^{2} 02\) & 2.30235E 01 & \(1.193 E 02\) & 1003832 E 02 \\
\hline & 80525E 01 & 1.60357 E 02 & 90550E O1 & 1.72228E 02 & 1.070E 02 & 2.54497E 01 & 1.199E 02 & 1.06109E 02 \\
\hline & 80564E 01 & 1.60705502 & 90594 El & 1.72s24E 02 & \(1.075 E^{02}\) & 2.80246E 01 & 1.204 E 02 & 1.08251E 02 \\
\hline & 8.603 El & 1. G1059E C2 & \(90637 E 01\) & 1073648 E 02 & 1.080E 02 & 3007523E 01 & lo209E 02 & 1010264 E 02 \\
\hline & 80642 El & \(1061421 E 02\) & 90681 El & 1.74402E 02 & 1.085 E 02 & 3.36355E O1 & 1.215 E 02 & \(1.12157 E 02\) \\
\hline & 80622E O1 & 1061750E C2 & 9.725 E 01 & 1.75189E 02 & 1.089E 02 & 3.66746E O1 & 1.220E 02 & 1.13938E 02 \\
\hline & 80721E O1 & 1062167 E 02 & \(9.770 \mathrm{Ol}^{\text {O }}\) & 1.7E012E 02 & 1.094 E 02 & 3098667E 01 & \(1.226 E 02\) & 1.15614E 02 \\
\hline & 8.761 E 01 & 1.62552E C2 & 90814 E 01 & 1.76876E 02 & 1.099 E 02 & 4032047 E 01 & 1.232 E 02 & 1.17192E 02 \\
\hline & 8o80le 01 & 1. 62946 E 02 & \(9.859 E 01\) & 1.77786E 02 & 1.104 E 02 & \(4066776 E 01\) & \(1.237 E 02\) & 1.18679 E O2 \\
\hline & 80841E 01 & 1.63349 E 02 & 90904 El & 1.78766E 02 & 1.109E 02 & 5.02698 E O1 & 1.243E 02 & 1.20083E 02 \\
\hline & \(80881 E 01\) & 1063762 E 02 & \(90949 E 01\) & -107¢928E 02 & 1.115E 02 & 5.39604 E 01 & 1.249 E 02 & 1.21408E O2 \\
\hline & 8.921 El & 1064185 E 02 & 90954 OL & \(406 ¢ 364 E-01\) & 1.120E 02 & 5.77256 E 01 & 1.254 E 02 & 1.22662E 02 \\
\hline
\end{tabular}
greatest value \(=1.78766 \mathrm{E} 02\)


SENSITIVITY WITH RESPECT TC LI


\begin{tabular}{|c|c|c|c|}
\hline MAG & & \multicolumn{2}{|l|}{FREQ} \\
\hline 1．80688E & 00 & \(8.9 \in 2 E\) & 01 \\
\hline 1085412 E & 00 & 9．003 & 01 \\
\hline 1．SC343E & 00 & 9.044 E & 01 \\
\hline 1.95495 E & 00 & 90CEE & 01 \\
\hline 2．00883E & 00 & 9.126 & c1 \\
\hline 20 CtE 23 E & 00 & 9.168 & 01 \\
\hline 2．12433E & 00 & 90210 & 01 \\
\hline 2．18633E & 00 & 9.251 & 01 \\
\hline 2．25144E & 00 & 90254 & 01 \\
\hline \(2.31991 E\) & 00 & 90336 & 01 \\
\hline 2．39199E & 00 & 9．3781 & 01 \\
\hline 2046746E & 00 & 904211 & 01 \\
\hline 2．54817E & 00 & 9.464 & 01 \\
\hline 2． 6 E2StE & 00 & \(9.5 C 7\) & 01 \\
\hline 2。72272E & 00 & 9055 C & 01 \\
\hline 2．81793E & 00 & \(9.554 E\) & 01 \\
\hline 2．915C7E & 00 & 9.637 & 01 \\
\hline 3．02672E & 00 & So6E1 & CI \\
\hline 3．14153E & 00 & 9.725 & 01 \\
\hline 3．26423E & 00 & 9.770 & 01 \\
\hline 3035564E & 00 & 90814 & 01 \\
\hline 3．53671E & 00 & So． 859 & 01 \\
\hline 3．6\＆E56E & 00 & 90944 & 01 \\
\hline 3．E5248E & 00 & 90949 & 01 \\
\hline 4002953 E & 00 & 9055 & \\
\hline
\end{tabular}

MAG 4042279 E 00 \(4043279 E 00\) 4066267 E 00 \(4091523 E 00\) \(50194 G 4500\) 5050ここ2E 00 5． 84846 E 00 6023556 E 00 6ot7418E 00 7017365E 0 7074836E 00 \(8041649 E 00\) 9．20265E 00 1001415 E 01 lo12821E 01 1．26571E 01 1．44588E 01 1．6E714E 01 \(2001362 E 01\) 204c135E 01 3025717E 01 4ot \(8339 E 0\) 8०27423E 01 \(3044344 E\)
\(1061451 E 02\)

FREQ
 1．120E 02

MAG
6057436 E 01 6057436 E O1
4014178 E O1 ． 14178 E 01 3003057 E 01 2039413E OI －58173E O1 ． 69275 E OI \(047909 E 01\) － 31463 E 01 －18414E 01 1．07812E 01 －90262E 00 SO 52272 E 00 －52110E 00 7.98563 E 00 \(7050985 E 00\) 6.71588 E 00 \(6071588 E 00\) 6.38844 E 00 \(6009078 E 00\) \(5082199 E 00\) \(5057805 E 00\) ． \(35569 E 00\) － 65200 \(4079281 E 00\)
．\(F\) FREQ 10125 E 02 \(.130 E 02\) －135E 02 －140E 02 0145 E 02 － 151 E 02 .156 E 02 ．161E 02 \(0166 E 02\) \(.172 E 02\) ． 182 E 02 1．188E 02 193E 02 199E 02 1．199E 02 1．204E 02 －209E 02 \(1.220 E 02\) 1．220E 02 1022 EE 02 1.237502 \(10237 E 02\) \(1.243 E ~\)
1.249
102 \(1.254 E 02\)

MAG
\(4063346 E 00\) 4．48566E 00 4034820 E 00 \(4034820 E 00\) \(4022009 E 00\) \(4010035 E 00\) 3．98822E 00 3． 88302 E 00 \(3078408 E 00\)
\(30690 S 1 E 00\) \(3.69091 E 00\) 3.60298 E 00 \(3.51992 E 00\) \(3.44129 E 00\) 3036676E 00 3． 29603 E 00 3． 22882 E 00 3． \(16485 E 00\) 3． 10392 E 00 \(3.04583 E 00\)
\(2.99036 E 00\) 2．99036E 00 2．93736E 00 \(2.88666 E 00\) 2．83811E 00 2．79160E 00 2．74698E 00

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{FREQ} & PHA & & \multicolumn{2}{|l|}{FREQ} & Pr'A & \multicolumn{2}{|l|}{FREQ} & PHA & \multicolumn{2}{|l|}{FREQ} & PHA \\
\hline & \(8.000 E\) & 01 & 1.798CEE & c 2 & \(8.9 \in 2 E\) & 01 & 1.7c856E 02 & 1.004E & 02 & -1.95429E-01 & 1.125E & 02 & -8.99090E-02 \\
\hline & 8.036E & 01 & 1.798 C 8 E & 02 & 9.003E & 01 & 1.79858E 02 & 1.009E & 02 & -1.63555E-01 & 1.130 E & 02 & -8.87521E-02 \\
\hline & 8.0735 & 01 & 1.79811E & 02 & 9.044E & 01 & 1.7C860E 02 & 1.013 E & 02 & -1.48256E-01 & 1.135 E & 02 & -8075768E-02 \\
\hline & 8. 110 E & 01 & 1.79813 E & 02 & 9.085 E & 02 & 1.7çt2E 02 & 1.018 E & 02 & -1.38999E-01 & 1.140 E & 02 & -8064330E-02 \\
\hline & 8.147E & 01 & 1.79815 E & 02 & 9.12tE & C1 & 1.7cet3E 02 & 1.022 E & 02 & -1.32524E-01 & 1.145 E & 02 & -8053314E-02 \\
\hline & 8,184E & 01 & 1.79817 E & 02 & 9.168E & 01 & 1.7c\&E5E 02 & 1.027 E & 02 & -1.27E23E-01 & 1.151E & 02 & -8042231E-02 \\
\hline & 8,221E & 01 & 1.79819 E & 02 & 90210 E & 01 & 1.7¢867E 02 & Io032E & 02 & -1.23769E-01 & 1.15tE & 02 & -8.31641E-02 \\
\hline & 8.258 E & 01 & 1079821E & 62 & 90251 E & 01 & 1.7c870E 02 & 1.036 E & 02 & -2.20480E-01 & 1.161E & 02 & -8.20624E-02 \\
\hline & 80296 E & 02 & 1c79823E & 02 & \(90294 E\) & 01 & 1.7c¢72E 02 & 1.041 E & 02 & -1.17607E-01 & \(1.166 E\) & 02 & -8.10410E-02 \\
\hline & \(8.334 E\) & 01 & Io75825E & 02 & \(90336 E\) & 01 & 1.7¢874E 02 & 1.046E & 02 & -1.15127E-01 & 1.172E & 02 & -8.00000E-02 \\
\hline & 8.372 E & 01 & 1.79827E & 02 & 9.37 EE & 01 & 1.7CE76E 02 & 1.051E & 02 & -1.12834E-C1 & 1.177E & 02 & -7.89902E-02 \\
\hline & 8.410 E & 01 & Lo79829E & 02 & \(9.421 E\) & 01 & 107c878E 02 & 1.055 E & 02 & -1.10650E-01 & 1.182E & 02 & -7.79770E-02 \\
\hline + & 80448 E & 01 & 1 c 798 ELE & C2 & \(90464 E\) & 01 & 1.7ce81E 02 & 1.060E & 02 & -1.08804E-01 & 10188 E & 02 & -7.70124E-02 \\
\hline \(\omega\) & \(8.487 E\) & 01 & 1.79833E & 02 & 90507 E & 01 & 1.79883E 02 & 1.065E & 02 & -1.06949E-01 & 1.193 E & 02 & -7.60295E-02 \\
\hline & \(80525 E\) & 01 & 1 c 79835 E & 02 & 90550 E & 01 & 1.7c\&EEE 02 & 1.070E & 02 & -1.05274E-01 & \(1.199 E\) & 02 & -7.50936E-02 \\
\hline & \(8.564 E\) & 01 & 1079837 E & 02 & \(9.554 E\) & 01 & 1.79890E 02 & 1.075 E & 02 & -1.03586E-01 & 1.204 E & 02 & -7.41185E-02 \\
\hline & 8.603 E & 01 & 1075835 E & 02 & Sot \(37 E\) & 01 & 1.75853E 02 & I.C80E & 02 & -1.02031E-01 & \(1.209 E\) & 02 & -7.32120E-02 \\
\hline & 80642 E & 01 & 1079841 E & 02 & 90681 E & 01 & 1-79898E 02 & 1.085E & 02 & -1.00549E-01 & 1.215E & 02 & -7.23273E-02 \\
\hline & 80682 E & 01 & 1.79842 E & C2 & \(907 E\) EE & 01 & 1.79903E 02 & 1.089 E & 02 & -9.90711E-02 & 1.220E & 02 & -7014133E-02 \\
\hline & 80721E & 01 & 1079844 E & C2 & 9.770 E & 01 & 1.75910E 02 & 1.094 E & 02 & -9075906E-02 & \(10226 E\) & 02 & -7005210E-02 \\
\hline & 8.761 E & 02 & 1.79846E & 02 & So 814 E & 01 & 1.7¢S21E 02 & 1.099E & 02 & -9.62740E-02 & 1.232 E & 02 & -6.96591E-02 \\
\hline & 8.801 E & 01 & 1.79848 E & 02 & Go859E & 01 & 1.75941E 02 & 1.104 E & 02 & -9.49544E-02 & \(1.237 E\) & 02 & -6.87708E-02 \\
\hline & \(8.841 E\) & 01 & 1.7SE50E & 02 & 9.904E & 01 & 1.7CG87E 02 & 1.109E & 02 & -9036335E-C2 & 1.243 E & 02 & -6.79095E-02 \\
\hline & 8.881 E & 01 & 1079852 E & 02 & 90949E & 01 & -1.7c686E 02 & 1.115 E & 02 & -9.23357E-02 & 1.249 E & 02 & -6.70989E-02 \\
\hline & 8.921E & 01 & 1.79E54E & 02 & 90954 E & 01 & -3.16724E-01 & 1.120E & 02 & -9.11362E-02 & 1.254E & 02 & -6.62280E-02 \\
\hline
\end{tabular}


SENSITIVITY WITH RESPECT TO R
\begin{tabular}{|c|c|c|}
\hline EXP。 OF S & NUMER。 CCEFFSo & DEACM。 COEFFS。 \\
\hline 0 & 4．28S54E 01 & 3．C5790E 03 \\
\hline 1 & 1．219EEE C2 & 1．57855E 02 \\
\hline 2 & 3017453E－01 & 4．E1192E－01 \\
\hline 3 & 3041535E－C4 & －1000514E－03 \\
\hline 4 & 8．267C3E－C7 & －2098241E－06 \\
\hline 5 & 2．52646E－10 & －3．59256E－09 \\
\hline 6 & 0.0 & －1．C4976E－11 \\
\hline
\end{tabular}


\begin{tabular}{|c|}
\hline FREQ \\
\hline O．StzE O1 \\
\hline －CG3E \\
\hline ．044E \\
\hline －CEsE \\
\hline －126E \\
\hline GEE \\
\hline －210E \\
\hline －251E \\
\hline 254E \\
\hline 26 \\
\hline 378 E \\
\hline －421E \\
\hline 64 E \\
\hline C7E \\
\hline 550 E \\
\hline －5¢4E \\
\hline － 6 \％ 7 E \\
\hline \(0681 E\) \\
\hline －725E \\
\hline ． 770 E \\
\hline Go814E \\
\hline \％\％EcE \\
\hline －SC4E \\
\hline E 01 \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NAC & FREQ \\
\hline 2．27433E－01 & 100C4E 02 \\
\hline 2028767E－01 & 10009E 02 \\
\hline 2．3C4C4E－01 & 1．013 C2 \\
\hline 2．32351E－01 & L．018E C2 \\
\hline 203478¢E－01 & lo022E C2 \\
\hline 2．37670E－01 & 1.027 E 02 \\
\hline 2041128E－01 & 10032E 02 \\
\hline 2045276E－01 & 1．036E 02 \\
\hline 2．5C262E－01 & 1．04IE 02 \\
\hline 2ast275E－01 & 1.046 EC \\
\hline 20t35t3E－01 & 1．051E 02 \\
\hline 2．i2458E－01 & I。055E 02 \\
\hline 2．83410E－01 & 1.060 E 02 \\
\hline 2．c7054E－01 & 1.065 E 02 \\
\hline 3014255E－01 & 1.070 E G2 \\
\hline 3．36482E－01 & 1．075E 02 \\
\hline 3．65701E－01 & 1．080E 02 \\
\hline 4．C5383E－01 & 10085 E 02 \\
\hline \(4.61521 \mathrm{E}-01\) & 1．C89E 02 \\
\hline 50456＇6E－01 & 1．094E 02 \\
\hline 6． \(63450 \mathrm{E}-01\) & 1．099E 02 \\
\hline 9．44290E－01 & 1．104E 02 \\
\hline 106CSCOE 00 & 1．109E 02 \\
\hline \(6048621 E 00\) & 10115E 02 \\
\hline 2．¢6041E 00 & 1．120E 02 \\
\hline
\end{tabular}

NAG
\begin{tabular}{|c|c|}
\hline 1.17984 E 00 & 1．125E 02 \\
\hline 7．31661E－01 & \(10130 E 02\) \\
\hline 5．30090E－01 & 1．135E 02 \\
\hline 4017057E－01 & Lol40E 02 \\
\hline 3045718E－01 & Iol45E 02 \\
\hline 2097246E－01 & 10151E 02 \\
\hline 2062628E－01 & 10156E 02 \\
\hline 2．36961E－01 & 1016le 02 \\
\hline 2．17382E－01 & 1．166E 02 \\
\hline 2002105E－01 & 1．172E 02 \\
\hline \(1089947 \mathrm{E}-01\) & 1.177 E 02 \\
\hline 1080107E－01 & 10182E 02 \\
\hline \(1.72021 \mathrm{E}-01\) & 1．188E 02 \\
\hline L．65285E－01 & \(1.193 E 02\) \\
\hline 1059602E－01 & 1．199E 02 \\
\hline 1．54748E－01 & 1.204 E 02 \\
\hline 1．50558E－C1 & 1．209E 02 \\
\hline 1．46901E－01 & \(1.215 E 02\) \\
\hline 1．43679E－01 & 1．220E 02 \\
\hline \(1.40812 \mathrm{E}-01\) & 1．226E 02 \\
\hline 1．38239E－01 & 1．232E 02 \\
\hline \(1.35909 \mathrm{E}-01\) & 1．237E 02 \\
\hline \(1.33783 \mathrm{E}-01\) & 1.243 E 02 \\
\hline 1．31829E－01 & 1．249E 02 \\
\hline 1．30020E－01 & 1.254 E 02 \\
\hline
\end{tabular}

MAG
1．28336E－01 1．26757E－01 1．26757E－01 Io \(25270 \mathrm{E}-\mathrm{Cl}\) lo23862E－01 \(1.22523 E-01\) 1。21243E \(\rightarrow 01\) 1．20017E－01 \(1018837 \mathrm{E}-01\) L． \(17699 \mathrm{E}-01\) \(1.16597 \mathrm{E}-01\) 1． \(1.5528 \mathrm{E}-01\) 1．14488E－01 1． \(13475 \mathrm{E}-01\) 1． \(12485 \mathrm{E}-01\) 1． \(11518 \mathrm{E}-01\) 1．10570E－01 1．09641E－01 1．08729E－01 \(1.07832 \mathrm{E}-01\) \(1006949 \mathrm{E}-01\) \(1.06080 \mathrm{E}-01\) \(1005237 \mathrm{E}-01\) \(1.04379 \mathrm{E}-01\) \(1003545 \mathrm{E}-01\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & FREG & Pha & FREQ & PrA & FREQ & PHA & FREQ & PHA \\
\hline & 8 COOOE 01 & -8076C58E 00 & 80 Stze Cl & -10cezile 01 & 1.004E 02 & 1.03004E 02 & 1.125E 02 & 3.81297E 01 \\
\hline & 8.036E 01 & -9000115E 00 & 90003 E OL & -20c6726E 01 & 1.009E 02 & 9087059E 01 & lol30e 02 & 3072148 ECl \\
\hline & 8.C73E 01 & -9.24275E 00 & SoC44E 01 & -2.15820E 01 & 1.013E 02 & 9.43829 El & 1.135E 02 & 306359 GE O1 \\
\hline & 80110 El & -9049504E 00 & 90.85 El & -2.25546E 01 & 1.018 E 02 & 9000972E 01 & 1.140E 02 & 3055607E 01 \\
\hline & 8.147E 01 & - Goi5e57e 00 & 90126E 01 & -2035961E 01 & 1.022E 02 & 8.58995E OL & 1.145E 02 & 3048122E 01 \\
\hline & 8o184E 01 & -1000340E O1 & 90168E 01 & -2047129E 01 & \(1.027 E 02\) & 8018335E Ol & lolsle 02 & 3.41107E 01 \\
\hline & 8.221E 01 & -1.03221E 01 & \(90210 E 01\) & -205c124E 01 & 1.032E 02 & 7.79355E 01 & 10156E 02 & 3.34525E 01 \\
\hline & 80258 E 01 & -1006238E OI & 90251E 01 & -2.72020E OL & 1.036E 02 & 7o42290E 01 & 1.161E 02 & 3028342 E 01 \\
\hline & 80296E OI & -1009357E 01 & \(90254 E 01\) & -2.E5SCEE 01 & 1.041E 02 & 7.07314E 01 & 1.166E 02 & 3.22530E 01 \\
\hline & 8.334E 01 & -1.12710E 01 & 9.336 E 01 & -3.0C872E 01 & 1.046E 02 & 6074517E 01 & 10172E 02 & 3.17059 E 01 \\
\hline & \(8.372 E 01\) & -1.16184E 01 & Sozife 01 & -3.17C28E 01 & 1.051E 02 & 6043907E 01 & 1.177E 02 & 3.11908E 01 \\
\hline \(\Omega\) & Bo4iOE 01 & -1019833E 01 & \(90421 E\) O1 & -3.34477E 01 & 10055 E 02 & 6.15445 E 01 & 10182E 02 & 3007051E 01 \\
\hline 1 & 80448E O2 & -1.23667E 01 & So4t4E 01 & -3053334E 01 & \(1.080 E 02\) & 5.89052E O1 & 10188 E 02 & 3002470 E 01 \\
\hline \(\stackrel{\sim}{\sim}\) & 20487E 01 & -1.27699E 01 & 9.567E 01 & -3073732E 01 & 1.065 E 02 & 5064624 El & 10193E 02 & 2.98144E 01 \\
\hline & 80525E 01 & -1.31942E C1 & 90550 El & \(-30<57 C 5 E 01\) & 1.070 E 02 & 5042041 E Ol & 10199E 02 & 2094058E 01 \\
\hline & 80564 E 01 & -1036413E 01 & So5s4E 01 & -4015652E 01 & 1.075 E 02 & 5.21171 El & 1.204 E 02 & 2090194E 01 \\
\hline & a.603E 01 & -1041128E O1 & 9063 PE O1 & -4045419E 01 & 1.080E 02 & 5.01887 E O1 & 10209E 02 & 2086541E 01 \\
\hline & 80642 El & -1046105E 01 & 90681 El & -4073214E 01 & L.085E 02 & 4084066 E 01 & 1.215 E 02 & 2083083E O2 \\
\hline & 80682 E 01 & -1051366E 01 & 9.725 El & -5.03114E 01 & 1.C89E 02 & 4067587 E Ol & 1.220 E 02 & 2.79808E 01 \\
\hline & 8.721E 01 & -1056928E 01 & \(90770 E 01\) & -5035174E 01 & 1.094E 02 & 4052336 E 01 & 1.226 E 02 & 2.76707E 01 \\
\hline & 80761E 01 & -1.62820E 01 & 90814 El & -5065377E 01 & 1.099E 02 & 4038207 E O1 & 1.232 E 02 & 2.73767E O1 \\
\hline & 8,801E 01 & -106C064E 01 & Gocsse 01 & -60C5619E 01 & 1.104 E 02 & 4025105E 01 & 10237E 02 & 2.70980E 01 \\
\hline & \(80841 E 01\) & -10756S3E 01 & \(905 C 4 E 01\) & -6043584E O1 & 1.109E 02 & 4012939E O1 & 1.243E 02 & 2068337E Ol \\
\hline & 8.881E 01 & -1.82736E 01 & 90S49E 01 & -6. 6 C513E 01 & 1.115 E 02 & 4.01631 E 01 & 1.249 E 02 & 2.65829 E Ol \\
\hline & 80921E 01 & -1090228E 01 & 90984E 01 & 1.07154E 62 & 1.120E 02 & 3.91104E 01 & 1.254E 02 & 2063450 E O1 \\
\hline
\end{tabular}


\section*{****NASAP****}

NETWORK ANALYSIS ANC SYSTENS APPLICATICN PRCGRAM
this version has developed at ucla engro lepto

TREE NASAP PROBLEM TELEMETER
J1 (1-2) \(=100\)
CJI (1-2) \(=100 \mathrm{MF}\)
\$ \(\$ \$ \$\) UNITS ARE MF
RE1(1-2)=20K
\$\$\$\$ UNITS AREK
\(\$ \$ \$ \$\) UNITS ARE NF
\(R J 2(2-3)=1 C 0\)
RE3 \((1-3)=220\)
LE1(4-1)=Co25
CJ3(2-4) \(=2\) 。OMF
J4(3-1) \(\$ \$ \$ \$\) UNITS ARE NF
(3-1) \(=47 \mathrm{MF}\)
\$\$\$\$ LNITS ARE MF
C-49
CJ5 (3-4) \(=10 \mathrm{MF}\)
\$\$\$\$ L'AITS ARE MF
0J2/IRJ2(4-3) \(=\mathrm{C}\) 。3
END
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ELEMENT NUMBER & ELENENT & \AME & CEPENDENGY (IF ANY) & ORIGIN NODE & TARGET NODE & & Value & TAG & GENER \\
\hline 1 & \(J 1\) & & & 1 & 2 & & 1.00000000E 00 & 0 & 1 \\
\hline 2 & CJ1 & & & 1 & 2 & & S. 99999320E-05 & 0 & 0 \\
\hline 3 & RE1 & & & 1 & - 2 & & 2.00000000E 04 & 1 & 0 \\
\hline 4 & CJ2 & & & 2 & 3 & & 1.99999886E-06 & 0 & 0 \\
\hline 5 & RJ2 & & & 2 & 3 & & 1.00000000E 02 & 0 & 0 \\
\hline 6 & RE3 & & & 1 & 3 & & 2. 20000000 E 02 & 1 & 0 \\
\hline 7 & LE1 & & & 4 & 1 & & 2049999881E-01 & 1 & 0 \\
\hline 8 & CJ3 & & & 2 & 4 & & 1.99999886E-C6 & 0 & 0 \\
\hline 9 & C. 14 & & & 3 & 1 & & 4.69999650E-C5 & 0 & 0 \\
\hline 10 & C. 55 & & & 3 & 4 & & Go 99999429E-06 & 0 & 0 \\
\hline 11 & DJ2 & & IRJ2 & 4 & 3 & , & 2.99999893E-01 & 0 & 1 \\
\hline 2 & 3 & 304 & 6 & & & & & & \\
\hline 3 & 6 & 1536 & 2056 & & & & & & \\
\hline 4 & -7 & 2C48 & 1280 & & & & & & \\
\hline
\end{tabular}

WORSTCASE
\begin{tabular}{lc} 
ELEMENT NAME & TOLERANCE \\
CJI & \\
RE1 & Co 1000 \\
CJ2 & 0.1000 \\
RJ2 & 0.1000 \\
RE3 & 0.1000 \\
LE1 & Co 1000 \\
CJ3 & 001000 \\
CJ4 & 0.1000 \\
CJ5 & C. 1000 \\
DJ2 & 0.1000 \\
\end{tabular}


\section*{ILEI/IJl}

NTIMES= 1
THE UAKNOWN TRANSMITTANCE GOES FRGM NODE 7 TO \(1^{-}\) 245886001
\begin{tabular}{ll}
1180224 & 288001 \\
3065304 & 748004 \\
3098088 & 750003 \\
786816 & 192002 \\
3065304 & -748004 \\
3098088 & 756003
\end{tabular}
3100136 . 1780003
2360448 . 576002
\(2608376 \quad 1660003\)
\begin{tabular}{ll}
870824 & 1236002 \\
2559200 & 1648002
\end{tabular}
1 C34744 1276003
\begin{tabular}{rr}
247928 & 1084001 \\
2313450 & 1589001 \\
84138 & 1045000 \\
\(248 C 58\) & 1685001 \\
198752 & 1672000
\end{tabular}
4917612001
\(245880 \quad 60001\)
24588060001
2278618557002
8156020000

2211402565001
54C§36 132001
\(541066 \quad 133001\)
2229312544001
16392040001
19670448000

NO. OF FIRST CFOER LOEPS \(=29\)
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
\(2 \epsilon\)
27
28
25

TRANSFER FUNCTICA

So881E C4 + 40282E CIS - 1.00CE 00S \({ }^{2}+0.0\)
\(+\mathrm{CoO}\)
\(20948 E C 5+20505 E 085+30 \operatorname{cs4EC5S} 5^{2}+3065 C E 025^{3}+10000 E 00 S\)
THE FUKCTICN FACTCR \(=-8_{0}\) T8CE 63
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline O. 0 & \(\mathrm{Co}_{0} 0\) & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 000 & C. 0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & CO 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & CoO & 0.C & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 O 0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2.C3E6CE 02 & 1.04354 ECl & 2.76くら7E-02 & 2.66273E-65 & 6.91544E-08 & 0.0 & 0.0 & C. 0 & 0.0 & 0.0 \\
\hline Ca 0 & 000 & 0.0 & Coo & 9.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline CoG & 000 & 0.0 & Cos & CaC & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 000 & 000 & 0,0 & CoO & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & C. 0 & \(0 . \mathrm{C}\) & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline Co 0 & 0.0 & 0.0 & CoO & 0.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & Coo & C. 0 & Coc & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 600000s 01 & 2.595ctec-02 & - & Coc & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Coo & 0.0 & 0.0 & 0.0 & 0 C & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & -0 0 & 0.0 & C. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & C.O & 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TC CJI
```

000-40141E 13S - 4033CE 10S + + 60947E 07S 3 +20766E 05S 4 + 20541E 02S + + 10000E 00S 6

```
\(-20913 E 14-10504 E 13 S-40298 E 10 S^{2}+50575 E 07 S^{3}+20841 E 05 S^{4}+30422 E 02 S^{5}+10000 E 00 S{ }^{6}\) THE FUACTION FACTCR \(=\) SOGT1E-C1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Lo22316E 04 & \(6031421 E 02\) & 108c477E 00 & -4.02057E-03 & -1019296E-05 & -1.43701E-08 & -4019904E-11 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 000 & Col & 0.0 & \(0 \sim 0\) & 000 & 0.0 & 000 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & Coo & 0.0 & c.0 & C 00 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline CoO & 0.0 & 0.0 & COO & 0.6 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 000 & 0.0 & CO & 0.0 & 000 & 0.0 & 000 & 0.0 \\
\hline \(0 . \mathrm{C}\) & 000 & 0.0 & Col & 0.0 & 0.0 & 0.0 & Go 0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 4063198 E 02 & 1.75831E 00 & -2.82103E-03 & -1。12337E-05 & -1003200E-08 & -4006092E-11 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 6.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & & & & & & & \\
\hline
\end{tabular}
00000000000000000000
0.00000000000000000000

SEASITIVITY TO REL
\[
10154 \mathrm{E} 08+30882 \mathrm{E} \mathrm{C5S}+20569 \mathrm{E} \mathrm{O2S}^{2}+10000 E 00 \mathrm{~S}^{3}+0.0^{-}
\]


THE FUACTION FACTOR \(=-4.836 E-C 1\)

C-54


SEASITIVITY TO CJ2
\(000+409 C 5 E 11 S+20154 E 10 S^{2}+20266 E 08 S^{2}+40656 E 05 S S^{4}+50740 E 02 S+20000 E 00 S\)
\(-20913 E 14-1.504 E 13 S-40258 E 10 S^{2}+90575 E C 7 S^{3}+20841 E 05 S^{4}+30422 E 02 S+1.000 E 00 S{ }^{6}\)

THE FUNCTICN FACTCR \(=-1.17 E E-C 1\)
\begin{tabular}{|c|c|}
\hline 0.0 & 000 \\
\hline 0.0 & 0.0 \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 000 & 0.0 \\
\hline 1.22316E 04 & \(6.31421 E 02\) \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 000 & 000 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline 000 & 000 , \\
\hline 000 & 000 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline 0.0 & 0.0 \\
\hline Co 0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 0.0 & 0.0 \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline CoO & 0.0 \\
\hline CoO & 0.0 \\
\hline -4.02057E-03 & -1.15296E-05 \\
\hline 0.0 & 0.0 \\
\hline G.O & 0.0 \\
\hline 0.0 & 0.0 \\
\hline COO & 0.0 \\
\hline 0.0 & 000 \\
\hline 0.0 & 0.0 \\
\hline Col & 0.0 \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 1.06530E-01 & 1.12107E-03 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline CoO & 000 \\
\hline C.O & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 000 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 \\
\hline -1.43701E-08 & -4019904t-11 & 000 & 0.0 \\
\hline 000 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 000 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2.30314E-06 & 2.83914E-09 & \(4094632 \mathrm{E}-12\) & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 \\
\hline
\end{tabular}

SENSITIVITY TO RJ2

\(-20913 E 14-10504 E 13 S-40298 E 10 S^{2}+50575 E 07 S^{3}+20841 E 05 S+30422 E 02 S+1.000 E 00 S S^{5}\)

THE FUNCTICN FACTOR \(=40\) CヨミE C2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.0 & 0.0 & 0.0 & Coo & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & Co0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1022316E 04 & 6.31421 E 02 & 2.80477E 00 & -4.02057E-03 & -1.19296E-05 & -1.43701E-08 & -4.19904E-11 & 000 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & 0.0 & Col & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 00.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & -6. COOOOE 01 & -1.33759E 02 & -2.214C3E 00 & -7.24708E-03 & -5.76366E-06 & -1.69352E-08 & 0.0 \\
\hline 000 & 0.0 & 0.0 & Coo & 0.0 & 000 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & coo & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 & 000 & CoO & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline 000 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 000 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & O. 0 \\
\hline
\end{tabular}

SENSITIVITY TO RE3

\(-20513 E 14-10504 E 13 S-40298 E 10 S^{2}+90575 E 07 S^{3}+20841 E 055^{4}+30422 E 02 S+10000 E 00 S{ }^{5}\) THE FUACTICN FACTCR \(=-204 C 7 E 01\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & O. 0 & CoO & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1022316E 04 & \(6.31421 E 02\) & 1080477E 00 & -4002057E-03 & -1.15296E-05 & -1.43701E-08 & -4019904E-11 & 0.0 \\
\hline 000 & 0.0 & 0.0 & Co 0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & CO & 0.0 & 0.0 & 000 \\
\hline 000 & D. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & \(0 \cdot \mathrm{C}\) & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 00 C & 1071602E 02 & 4087441502 & 1.26981E 00 & 1.36613E-03 & 3.30681E-06 & 1001059E-09 & 0.0 \\
\hline 000 & 000 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & C. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & C.O & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TC LEI


THE FUNCTICN FACTOR \(=1.000 E 00\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & 0.0 & 0.0 & CO 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 1022316E 04 & 6031421E 02 & 108C477E 00 & -4002057F-03 & -1.15296E-05 & -1.43701E-08 & -4.19904E-11 & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & C 0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & \(3.83959 \mathrm{E}-02\) & 1061428E-03 & 4045302E-06 & -1.437C1E-08 & -4019504E-11 & 0.0 \\
\hline 0.0 & 000 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 000 & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
000
0.0
0.0
0.0
}

SENSitivity to cju

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\Omega\) & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \(\stackrel{\square}{0}\) & 000 & 0.0 & 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \(\infty\) & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 1.22316E 04 & 6031421E 02 & 1.80477E 00 & -4002057E-03 & -1.19296E-05 & -1.43701E-08 & -4019904E-11 & 000 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 000 & 0.0 & COO & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 000 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & C.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 4.C7400E 01 & 1.76014 E 00 & Sos2565E-03 & \(1.90483 \mathrm{E}-05\) & 2.16353E-08 & 2.72701E-11 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & Co 0 & 0.0 & 00 & 0.0 & 000 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TC CJ4
```

000 +10658E 11S + 40828E 11S + +10257E 09S + +10352E 06S + + 30272E 03S + +10000E 00S

```


THE FUNCTICN FACTOR \(=20489 E-61\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 000 & 0.0 & 000 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & 0.0 & \(0 . \mathrm{C}\) & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1022316 E 04 & 6031421 E 02 & 1.8C477E 00 & -4002057E-03 & -1019296E-05 & -2.43701E-08 & -4019904E-11 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & Goo & CoO & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & -1.77417E 00 & -5.04530E 00 & -1.21298E-02 & -1041258E-05 & -3041923E-08 & -1.04494E-11 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & C.0 & Cos & 0.6 & 0.0 & 0.0 & 000 & 0.0 \\
\hline 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 000 & 0.0 & & & & & & & \\
\hline
\end{tabular}

SENSITIVITY TO CJ5
\[
0.0-50021 E 12 S-20136 E 11 S^{2}-60539 E C 8 S^{3}-70576 E 05 S^{4}-10021 E 03 S^{5}+10000 E 00 S
\]
\(-20513 E 14-10504 E 13 S-40298 E 10 S^{2}+90575 E 07 S^{3}+20841 E 05 S+30422 E 02 S^{5}+10000 E 00 S{ }^{4}\) THE FUNCTICN FACTER \(=50513 E-C 1\)
\begin{tabular}{|c|c|c|}
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & CoO & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 \\
\hline 1.22316E 04 & 6.31421E 02 & 10.8C477E 00 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 000 & C00 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 00,0 & 1016230E 02 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline \(0 \cdot 0\) & 000 & \\
\hline
\end{tabular}
\begin{tabular}{lc}
0.0 & 0.0 \\
\(C 00\) & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
\(-4002057 E-C 3\) & \(-1015296 \mathrm{E}-05\) \\
0.0 & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
\(C 00\) & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
\(40943 C 7 E\) & 00 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0 \\
0.0 & 0.0
\end{tabular}
000
000
000
000
000
\(-1043701 E-08\)
000
000
000
000
000
000
000
000
000
\(1075366 E-05\)
000
000
0.0
000
\begin{tabular}{|c|c|c|}
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 000 & 0.0 \\
\hline 0.0 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline -4.19904E-11 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 2.36339E-08 & -2.31482E-11 & 0.0 \\
\hline 000 & 000 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 000 \\
\hline 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}


SENSITIVITY TO DJ2
\(20526 E 12+20599 E 10 S+10 \varepsilon 77 E 08 S^{2}+40503 E 05 S^{3}+40790 E 02 S^{4}+10000 E 00 S^{5}+000\)
\(-20513 E 14-10504 E 13 S-40258 E 10 S^{2}+90575 E 07 S^{3}+20841 E 05 S^{4}+30422 E 02 S^{5}+10 C 00 E 00 S{ }^{6}\)

THE FUNCTION FACTCR \(=9.923 E 02\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\Omega\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0 & 000 & 0.0 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline N & 0.0 & 0.0 & 0.0 & C.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline & 0.0 & 0.0 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline & 0.0 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 1.22316E 04 & 6031421E 02 & 1.80477 E 00 & -4.02057E-03 & -1.15296E-05 & -1043701E-08 & -4019904E-11 & 000 & 0.0 & 0.0 \\
\hline & 0.0 & 000 & 0.0 & Coo & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 000 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 000 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & CoO & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0,0 & 0.0 & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & C 00 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & -1021920E 04 & -6066412E 02 & -7.81540E 00 & -10¢7628E-02 & -1099590E-05 & -4.16667E-08 & 0.0 & 0.0 & 0.0 \\
\hline & 000 & 0.0 & 0.0 & 0.0 & 0.0 & 000 & 000 & 0.0 & 0.0 & 000 \\
\hline & 0.0 & 0.0 & 0.0 & Col & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & & & & & & & & \\
\hline
\end{tabular}



ItE TRANSFGRM OF THE RESPONSE IS ---
\begin{tabular}{|c|c|c|}
\hline EXPo OF S & NUMER \({ }^{\text {d }}\) COEFFSo & BENCM. COEFFSo \\
\hline 0 & -6.000CCE 01 & 2.03860E 02 \\
\hline 1 & -2.59¢96E-02 & \(1.04354 E 01\) \\
\hline 2 & 6.07199E-04 & 2.762C7E-02 \\
\hline 3 & 0.0 & 2066273E-05 \\
\hline 4 & 0.0 & 6.51544E-08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FREQ & & MAG & \multicolumn{2}{|l|}{FREQ} \\
\hline B.OOOE & 01 & 7.11CO5E-02 & 8. 962 E & 01 \\
\hline 8.036E & 01 & 7.22266E-02 & 9.003 E & 01 \\
\hline 80.073E & 01 & 7. \(34032 \mathrm{E}-02\) & 9.044 E & 01 \\
\hline 8.110 E & 01 & 704t340E-02 & 9.085 & 01 \\
\hline \(80147 E\) & 01 & 7059224E-02 & 9.126 E & Cl \\
\hline 8.184 E & 01 & 7.72722E-02 & 9.1681 & 01 \\
\hline 8. 221 E & 01 & 7.8688 \({ }^{\text {ce-02 }}\) & So 210 E & 01 \\
\hline 80258E & 01 & 8001747E-02 & 9.2E1E & 01 \\
\hline \(8.296 E\) & 01 & 8.17375E-02 & 9.254 E & 01 \\
\hline 80.334E & 01 & \(8033818 \mathrm{E}-02\) & 9.3 36 E & 01 \\
\hline 8. \(372 E\) & 01 & 8051145E-C2 & 9.3785 & 01 \\
\hline 8.410 E & 01 & 8069422E-02 & 9.421 E & 01 \\
\hline ¢。448E & 01 & 8. \(8873 \mathrm{CE}-02\) & \(9.464 E\) & 01 \\
\hline 80487E & 01 & \(9009156 \mathrm{E}-\mathrm{CL}^{2}\) & \(905 C 7\) & 01 \\
\hline \(80525 E\) & 01 & 9.307¢4E-C2 & 9.550 E & 01 \\
\hline 8.564E & 01 & \(9.53760 \mathrm{E}-02\) & 90554 E & 01 \\
\hline 80603 E & 01 & So \(78175 \mathrm{E}-02\) & 90637 E & 01 \\
\hline 8.642E & 01 & 1.00417E-01 & 90681 E & 01 \\
\hline 8.682 E & 01 & I.03192E-01 & 9.725 & 01 \\
\hline \(8.721 E\) & 01 & 1.06158E-G1 & 9.7701 & 01 \\
\hline \(8.761 E\) & 01 & 1009337E-01 & So 814 E & 01 \\
\hline 80801 E & 01 & 1012751E-01 & So859E & 01 \\
\hline 80.841E & 01 & 1016428E-01 & 9.9545 & 01 \\
\hline 80881 E & 01 & 1.203SSE-01 & S.949E & 01 \\
\hline 80921 E & 01 & 1.24700E-01 & 9.954E & 01 \\
\hline
\end{tabular}
\begin{tabular}{ccc} 
MAG & \multicolumn{2}{c}{ FREQ }
\end{tabular} MAG

FREQ
10125 E 02 10130E 02 1.135E 02 \(1.140 E 02\) \(10140 E 02\) 1.145E 02 \(1.151 E 02\) 1.156E 02 lol61E 02 \(1.166 E 02\) \(10172 E 02\)
\(1.177 E\)
02 lol 1018 CL 1ol82E C2 1.188E 02 10150 \(10299 E 02\) 1.204E 02 1.20SE 02 \(1.215 E 02\) \(10220 E 02\) l.22tE 02
I.232E 02 \(1.232 E\)
\(1.237 E 02\) \(1.243 E 02\) 1.249E 02 1.254 E 02

MAG
8.70464E-02 \(8.34607 \mathrm{E}-02\) 8.01263E-02 7. \(70192 \mathrm{E}-02\) 7. \(71192 \mathrm{E}-02\) \(7.41163 E-02\)
\(7.13983 E-02\) 6.13983E-02 \(6088488 \mathrm{E}-02\) \(6064518 \mathrm{E}-02\) 6. \(41952 \mathrm{E}-\mathrm{GL}\) 6020662E-C2 6000553E-02 5. \(81523 \mathrm{E}-02\) \(5.63493 \mathrm{E}-02\) 5. \(46385 \mathrm{E}-02\) 50 30134E~02 5. \(14670 \mathrm{E}-\mathrm{G2}\) \(4099946 \mathrm{E}-02\) \(4085912 \mathrm{E}-02\) \(4072514 \mathrm{E}-02\) \(4059717 \mathrm{E}-02\) \(4047480 \mathrm{E}-02\) 4. \(35766 \mathrm{E}-02\) 4. \(24546 E-02\) 4. \(13787 E-02\) 4003461E-02

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & freg & \multicolumn{2}{|l|}{pra} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PrA} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & FREQ & \multicolumn{2}{|l|}{PHA} \\
\hline & 8. 000 F 01 & 4018002 E & & 8ost 2 E & & 3. \(¢ 3 ミ 31 \mathrm{E}\) & & 1.004 E & & -2.45088E & & 1.125E 02 & -1.48157E & \\
\hline & 80036 E 01 & 4016591 E & 01 & \(90003 E\) & & 3081574 E & & 1.009 E & & -1.45184E & & 1.130 E 02 & -1.48279E & 02 \\
\hline & 80073 E 01 & 4015181 E & 01 & 9.044 E & & 3oECtige & & 1.013 E & 02 & -1.45298E & 02 & \(1.135 E 02\) & \(-1.48401 \mathrm{E}\) & 02 \\
\hline & \(801100^{01}\) & 4.13773 E & 01 & 90685 & 01 & \(3.7 c 268 \mathrm{E}\) & & 1.018 E & 02 & -1.45419E & 02 & 1.140 E 02 & -1.48522E & 02 \\
\hline & 80147 E 01 & \(4012367 E\) & 01 & So 126 E & 01 & 3037918 E & & 1.022 E & & -1045542E & 02 & 1.145 E 02 & -1048644E & \\
\hline & Bo 184 EL & 4010964 E & 01 & 90168 E & 01 & 30.76572E & & 1.027 E & & -1.45666E & & \(1.151 E 02\) & -1048764E & \\
\hline & 8\%2215 01 & \(40 C 9562 E\) & Cl & 90.110 E & 01 & 3.75229 E & 01 & 1.032 E & 02 & -1.45791E & 02 & 1.156 E 02 & -1048885E & \\
\hline & 80258E 01 & \(40 C 81636\) & 01 & 90251 E & 01 & 3.73889 E & & 1.036 E & 02 & -1.45917E & & \(1.161 E 02\) & -1049005E & \\
\hline & عo296E 01 & 40067645 & 01 & So 254 E & & 3072552 E & & 1.041 E & & -1.46043E & 02 & \(1.166 E^{02}\) & -1. 49125 E & \\
\hline & 8.334E 01 & 40.55368 E & 01 & So336E & 01 & 30712195 & & 1.046 E & & \(-1.46169 \mathrm{E}\) & & 1.172 E 02 & \(-1.49245 \mathrm{E}\) & \\
\hline & 80372 E 01 & 4.03575 E & 01 & 9.378 E & & \(3.6 \subset 867 \mathrm{E}\) & & 1.051 E & 02 & -1.46295E & 02 & 1.177 E 02 & -1049364E & \\
\hline \(\bigcirc\) & 80410 E 01 & 4.02583 E & \({ }^{\text {c1 }}\) & 90421 E & 01 & 3068561 E & & 1.055 E & & -1.46420E & & 10182 E 02 & \(-1049483 \mathrm{E}\) & \\
\hline 8 & Bo448E 01 & 4001153 E & 01 & 90464 E & & 3067239 E & & 1.660 E & & -1046546E & & 1.188 E 02 & -1.49602E & \\
\hline \(\infty\) & 80487 El & \(30 ¢ 58 C 5 E\) & 01 & 90507 E & & 3065921 E & & 1.065 E & & -1.046671E & & 1.193 E 02 & -1.49720E & \\
\hline & Bo525E 01 & \(30<8420 E\) & 01 & Sos50E & & 30646 CE & & \(1.070{ }^{\text {d }}\) & 02 & -1.46796E & & 1.199502 & -1.49838E & \\
\hline & 80564 El & 3097037 E & 01 & 90554 E & & 3063303 E & & 1.075 E & 02 & -1.46921E & 02 & 1.204 E 02 & - 10499565 & \\
\hline & \(806 C 3 E 01\) & 3055656 E & 01 & 59637 E & & 3062066 E & & 1.080 E & & -1.47046E & & 1.209 E 02 & -1.50073E & \\
\hline & 80642 E 01 & 30 94277E & 01 & 90681 E & & 3066717 E & & 1.085 E & & -1.47171E & & 1.215 E 02 & - 2050191 E & \\
\hline & 80682 E 01 & 3.92900 E & 01 & 907255 & & 3.55444E & & 1.C89E & 02 & -1047295E & & 1.220 E 02 & -1.50307E & \\
\hline & 80721 El & \(3091526 E\) & C1 & 9.7701 & & 3.58196E & & 1.094 E & & \(-1.47419 \mathrm{E}\) & & 1.226E 02 & -1.50424E & \\
\hline & 80761 El & 3090154 E & C1 & 90814 E & & 3056587E & & 1.099E & & -1.47543E & & 1.232 E 02 & -1.50540E & \\
\hline & 30801E 01 & 3088785 & & So859E & & 3.5587CE & & 1.104 E & & -1047666E & 02 & \(1.237 E 02\) & -1.50656E & \\
\hline & 88841 El & 30.87418E & & SogC4E & & 3.55055 E & & 1.109 E & & -1.47789E & & 1.243 E 02 & -1.50771E & \\
\hline & Bo881E 01 & 3. 86054 E & 01 & Sos49E & & 3.573C7E & & 1.115 E & & -1.47912E & & 1.249 E 02 & -1.55887E & \\
\hline & 80921 El & 3084691 E & 01 & \(90 ¢ ¢ 4 E\) & & \(-1.45 C 88 \mathrm{E}\) & & 1.120 E & & \(-1.48035 \mathrm{E}\) & & 1.254E 02 & -1051002E & \\
\hline
\end{tabular}


PLOT（TY＝RE／FR＝0／TC＝100）
IHC210I IBCOM－PROGRAM IATERRUPT－IMPRECISE CLC PSN IS FF45004002234AE6
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline traceeack follcws－ & routine & ISN & REG。 14 & REG。 15 & REG。 0 & REGo 1 \\
\hline & flct & 01こ5 & 42く1049A & 0023401 C & 00000000 & 0021C9A4 \\
\hline & MAIN & & 00015472 & 01216E18 & 00000015 & 0023BFF8 \\
\hline
\end{tabular}

ENTRY PCINT \(=\) C121C518
staneard fixup taken ，executica ccntinuing

The transfcri of the resfense is－－－
\begin{tabular}{|c|c|c|}
\hline ExPo OF \(\$\) & NLMER C CEFFSS & CENCN。 COEFFS \\
\hline 0 & －6．COOCCE 01 & 2．C3860E 02 \\
\hline 1 & －2．55556E－02 & 1．04354E O1 \\
\hline 2 & 6．071ssE－C4 & 2076207E－02 \\
\hline 3 & 0.0 & 2066273E－05 \\
\hline 4 & 0.0 & 6．51544E－08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline FREQ & MAG & freg & NAC & FREQ & NAG & FREQ & Mag \\
\hline 000 & －2．94319E－01 & 204CEE 01 & －1．278C7E－01 & 40817 OL & －7．73230E－02 & 70225E 01 & －5．27031E－02 \\
\hline 10047E 00 & －2．79430E－01 & 20513E 01 & －1．24523E－01 & 40922 El & －7．59075E－02 & 7．330E 01 & －5．19132E－02 \\
\hline 20094E 00 & －2．659CSE－Cl & 20t1EE 01 & －1021384［－01 & 5．026E 01 & －7．49330E－02 & 7043 EE O1 & －5．11403E－02 \\
\hline 3．141E 00 & －2053575E－G1 & 20723E Ol & －1．18381E－01 & 5．131E 01 & －7．31978E－02 & 70539 E 01 & －5．03838E－02 \\
\hline 40189 O & －2042278E－01 & 20\＆2TE 01 & －1．155CEE－01 & 50236E 01 & －7．19001E－02 & 70544801 & －4096432E－02 \\
\hline \(5.236 E 00\) & －2031892F－G1 & 20922E Ol & －1．12749E－01 & 5.340 E 01 & －7．06385E－02 & 7.749 El & －4089181E－02 \\
\hline \(60283 E 00\) & －2022310E－01 & 3.037 El & －1．10104E－01 & 50445 E 01 & －6094IL3E－02 & 7．853E 01 & －4．82078E－02 \\
\hline 7．33CE 00 & －2．13443E－C1 & 3．141E 01 & －20 C7565E－01 & 50550E 01 & －6082172E－02 & 70958E 01 & －4．75120E－02 \\
\hline \(80377 E\) OC & －2．05214E－Cl & 3024tE 01 & －1．CE124E－01 & 50654 El & －6070549E－02 & 8.063 E 01 & －4068303E－02 \\
\hline 90424 EO & －1057555E－C1 & 3．351E O1 & －1002777E－01 & 5．759E 01 & －6．59230E－02 & 80168 El & －4061621E－02 \\
\hline 10047E GI & －10 ¢ 04C9E－01 & 30456E O1 & －1．00518E－01 & 5．864E 01 & －6．48205E－02 & 8．272E 01 & －4．55071 E－02 \\
\hline 1．152E 01 & －1083726E－Cl & 3．5ECE OL & －9． \(83412 \mathrm{E}-02\) & 5．969E 01 & －6．37460E－02 & 80377 E 01 & －4048649E－02 \\
\hline 10257F 01 & －1．77462E－01 & \(306 \in E E 01\) & －9062433E－02 & 6．073E 01 & －6．26986E－02 & 80482 El & －4042352E－02 \\
\hline 10361E 01 & －1．71578E－C1 & 3．770E 01 & －9．42196E－02 & 6.178 E 01 & －6．16773E－02 & \(8.586 E 01\) & －4．36174E－C2 \\
\hline 10466 E 01 & －1066042E－01 & 3．874E 01 & －9022t \(63 \mathrm{E}-02\) & 60283E 01 & －6006809E－02 & \(8.691 E 01\) & －4030114E－02 \\
\hline 10571E 01 & －1a60823E－01 & 3．579E 01 & －9aC3757E－02 & \(60387 E 01\) & －5a57088E－02 & \(8.796 E 01\) & －4024168E－02 \\
\hline 1．675E 01 & －1．55654E－01 & 40084 Ol & －8． \(55563 \mathrm{E}-02\) & 60492 EL & －5．87599E－02 & 8．901E 01 & －4018332E－02 \\
\hline 1．780E 01 & －1051221E－01 & \(4018 C^{\text {c }} 01\) & －8．67930E－02 & 6．597E 01 & －5．78334E－02 & 90005 E 01 & －4．12604E－02 \\
\hline 10885 El & －1046814E－01 & 40293E 01 & －8．5c670c－02 & 6．702E 01 & －5069285E－02 & Sollot 01 & －4006980E－02 \\
\hline 10990E 01 & －1．42623E－01 & 40348 CL & －8．34353E－02 & 6.806 E 01 & －5060445E－02 & 9.215 E 01 & －4．01458E－02 \\
\hline 20094E 01 & －1．38642E－01 & \(405 \mathrm{C3E} \mathrm{OL}\) & －8．18354E－02 & 60911E 01 & －5051806E－02 & 90319 El & －3．96035E－02 \\
\hline ？．199E 01 & －1．3485 5E－C1 & \(406 C 7 E 01\) & －8． \(\mathrm{C} 2849 \mathrm{E}-02\) & 70016E 01 & －5．43362E－02 & 9．424E 01 & －3．907C8E－62 \\
\hline \(20304 E 01\) & －1．31247E－C1 & 40712 Cl & －7．87815E－02 & 7．120E 01 & －5．35106E－02 & 90529E O1 & －3．85475E－02 \\
\hline
\end{tabular}


ROCTS,PQLES

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{foles} & \multicolumn{2}{|c|}{SENSITIVITY} \\
\hline REAL & IMAE & REAL & IMAG \\
\hline -30 E441E C2 & 000 & 60.9343E 0] & 0.0 \\
\hline \(8.0000 \mathrm{E}-03\) & 602601E 02 & -50 ¢18टE-03 & -2.Csile 02 \\
\hline \(8.0000 \mathrm{E}-63\) & -602601E 02 & -509182E-03 & 1.7Ec2e 02 \\
\hline -200642E C1 & 000 & 105sile Cl & 0.0 \\
\hline
\end{tabular}

\section*{SENSITIVITY OF POLES TG REI}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{fCLES} & \multicolumn{2}{|c|}{SENSITIVITY} \\
\hline REAL & IMAE & REAL & IMAG \\
\hline -3.6441E C2 & 0.0 & S. \(2617 \mathrm{E}-\mathrm{C} 2\) & 0.0 \\
\hline 8.0000E-C3 & 602601 E 02 & -1.9173E 01 & -204059E 02 \\
\hline 8.0000E-03 & -6.2601E 02 & -109173E CI & 104154 E 02 \\
\hline -2.0642E 01 & CoO & \(308550 \mathrm{E}-\mathrm{Cl}\) & 000 \\
\hline --m. & -- & -...- & - \\
\hline
\end{tabular}

SENSITIVITY OF PQLES TO CJ2

FCLES
\begin{tabular}{|c|c|}
\hline REAL & IMAE \\
\hline -3.6441E C2 & \(0 . \mathrm{G}\) \\
\hline 800000E-03 & S.2601E 02 \\
\hline \(8.0000 \mathrm{E}-\mathrm{C3}\) & -6.2601E 02 \\
\hline -2.0642E 01 & 00 C \\
\hline
\end{tabular}

SENSITIVITY
REAL
IMAG
1o8731E 01 O.C
\(-3.1010 E-C 5 \quad-802186 E 00\) -3.1010E-C5 1.7944E 01

SENSITIVITY OF POLES TG RJ2


SENSITIVITY
\begin{tabular}{cc} 
REAL & \multicolumn{1}{c}{ IMAG } \\
\(-2.997 \angle E ~ C 2\) & 0.0 \\
\(-1.9445 E ~ 01\) & \(-7.4025 E 01\) \\
\(-109445 E ~ 01\) & \(-106652 E 02\) \\
\(-3.2968 E ~ 00\) & 0.0
\end{tabular}

SENSITIVITY DF POLES TO RE3
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{POLES} \\
\hline REAL & INAG \\
\hline -306441E C2 & 0.0 \\
\hline \(8.0000 \mathrm{E}-03\) & \(6.2601 E 02\) \\
\hline 8.0000E-63 & -6.2601E 02 \\
\hline -200642E G1 &  \\
\hline
\end{tabular}

SENSITIVITY
REAL
6.2044E C1 0.0 -2.8C46E-01 -2.1EC3E 02 -2.8046E-01 io \(8059 E\) C2
fCLES
REAL
```

-3o\&441E C2 O.C
8.0000E-03 6.2601E 02
8000G0E-03 -602601E 02
-2o0642E G1 0.0

```

SENSITIVITY
\begin{tabular}{cc} 
REAL & \multicolumn{1}{c}{ INAG } \\
\(1.27 \varepsilon 4 E C C\) & 0.0 \\
\(-3.925 \varepsilon E-C G\) & \(-1.2 C 70 E\) \\
\(-3.925 \varepsilon E-C G\) & \(7.1477 E\) \\
\(-5.471 C E-C 3\) & 0.0
\end{tabular}
0.0
\(-1.2 C 70 E 02\)
7.1477 E 01

SENSITIVITY OF POLES TO CJ3

FGLES
REAL
\begin{tabular}{|c|c|}
\hline －306441E C2 & 0.0 \\
\hline \(80.0000 \mathrm{E}-63\) & \(6.2601 E \mathrm{c} 2\) \\
\hline 8．0000E－03 & －6．2601E 02 \\
\hline －200642E C1 & 0.0 \\
\hline
\end{tabular}

SENSITIVITY
REAL
1．8455E 0C 0．0 －2．1同こ7E－04－206E57E 01 －101837E－C4 lo \(_{0} 7046 \mathrm{E} 01\) 3．1672E－01

DoC

SENSITIVITY OF POLES TG CJ4
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{PCLES} & \multicolumn{2}{|c|}{SENSITIVITY} \\
\hline REAL & IMAG & REAL & IMAE \\
\hline －30．6441E C2 & CoO & 2033i9E 02 & 0.0 \\
\hline 800000E－03 & 6．2601E 02 & －1059こ4E－03 & －1．4712E 02 \\
\hline 8．COCOE－03 & －6．2601E 02 & －1．5S34E－03 & 20．5368E 02 \\
\hline －200642E C1 & 000 & 30622 E CC & 0.0 \\
\hline
\end{tabular}

SENSITIVITY OF POLES TO CJ5
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{pCLES} & \multicolumn{2}{|c|}{SEASITIVITY} \\
\hline REAL & inae & REAL & INAG \\
\hline －30．6441E C2 & 0.0 & －402723E 01 & 00 C \\
\hline 8．0000E－C3 & \(6.2601 E 02\) & －60427tE－02 & －705835E 00 \\
\hline 8．0000E－03 & －S02601E 02 & －60427EE－C2 & －1．75sce 01 \\
\hline －200642E GI & Co 0 & 2．Scete 00 & 0.0 \\
\hline
\end{tabular}

PCLES
REAL IMAG
\begin{tabular}{rc}
\(-3.6441 \mathrm{E} \mathrm{C2}\) & 0.0 \\
\(8.0000 \mathrm{E}-03\) & \(6.2 \in 01 \mathrm{E}\) \\
802 \\
\(80000 \mathrm{E}-03\) & -602601 E \\
-200642 E C1 & 0.0
\end{tabular}

SENSITIVITY OF POLES TO DJZ

PCLES

SENSITIVITY
REAL IMAG
40042EE 01 0．0
\(-3.39 \mathrm{C} 2 \mathrm{E}-\mathrm{C} 4\)－1．1410E 02
－3．3902E－C4 808546E 01
7．6547E－G1 0．0

SENSITIVITY WITH RESPECT TC CJI

THE TRANSFCRM OF TFE RESPONSE IS－－－
\begin{tabular}{|c|c|c|}
\hline EXPo OF \(S\) & NUMER C CEEFFSo & CENEN。 COEFFSO \\
\hline 0 & 0.0 & 1．22316E 04 \\
\hline 1 & 40631 cgE 02 & \(6_{0} 21421 E 02\) \\
\hline 2 & 1．758こ1E 00 & 1．80477E 00 \\
\hline 3 & －2．82103E－03 & －4002057E－03 \\
\hline 4 & －1．12337E－05 & －1．19256E－05 \\
\hline 5 & －1．03200E－CE & －1．43701E－08 \\
\hline 6 & －4006Cs2E－11 & －4019904E－11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FREQ & MAC & FREQ \\
\hline Bodoot 01 & 8． 85258 EE －01 & 80962 El \\
\hline 80036E 01 & 80E52C8E－01 & 90CC3E 01 \\
\hline 80073 El & 8． 8514 CE －01 & 90044 EL \\
\hline 80110 El & 8． \(85052 \mathrm{E}-01\) & 90C85E 01 \\
\hline 8．147E 01 & 80 E4942E－01 & 9012EE 01 \\
\hline 80184 E 01 & E． \(84809 \mathrm{E}-01\) & 90168 E 01 \\
\hline \(80221 E 01\) & 8．846EEE－CI & 90210 El \\
\hline 80258 E 01 & 80．64469E－01 & 902E1E 01 \\
\hline 8．296E 01 & E． \(24259 \mathrm{E}-01\) & \(902 C 4 E O 1\) \\
\hline 80334E O1 & 8．84C17E－01 & 9．336E 01 \\
\hline 80372E 01 & 8． \(83744 \mathrm{E}-\mathrm{Cl}\) & 9.378 El \\
\hline 8.410 E 01 & 8o \(23436 \mathrm{EFO1}\) & 90421 El \\
\hline 8．448E 01 & \＆。と3C89E－01 & 90464 El \\
\hline \(80487 E 01\) & 8082703E－01 & 905C7E 01 \\
\hline 8．525E 01 & 8082273E－01 & \(9.55 C E O L\) \\
\hline 80564E 01 & 8．81755E－01 & \(90554 E 01\) \\
\hline 8.603 E 01 & 8．81264E－01 & G．637E OL \\
\hline 80.642 E 01 & 8．8C677E－C1 & 90681E 01 \\
\hline 8．682E OI & \＆。80027E－01 & So725E 01 \\
\hline \(80721 E \mathrm{Cl}\) & 8．793C8E－01 & 9．770E 01 \\
\hline 90761E 01 & 8078512E－G1 & So814E 01 \\
\hline 80801E 01 & 8077632E－01 & GoE5ce Ol \\
\hline 8.841 E 01 & 8．76659E－C1 & 9.904 El \\
\hline 80881E 01 & \(8.75581 \mathrm{E}-\mathrm{Cl}\) & Sos4SE OL \\
\hline \(80921 E 01\) & 8．74385E－01 & \(905 ¢ 4 E 01\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NAG & \multicolumn{2}{|l|}{FREQ} \\
\hline 8．73C57E－01 & 2.004 E & 02 \\
\hline 8．71578E～01 & 1.009 E & 02 \\
\hline 806S525E－01 & 1．013E & 02 \\
\hline \(8068 \mathrm{Cl} 3 \mathrm{E}-01\) & 1.018 E & 02 \\
\hline 806EC12E－01 & \(1.022 E\) & 02 \\
\hline 8063677E－01 & \(1.027 E\) & 02 \\
\hline \(8061032 \mathrm{E}-01\) & 1.032 E & 02 \\
\hline 8．58C25E－01 & 1.036 E & 02 \\
\hline 8．54579E－01 & 1.041 E & 02 \\
\hline \(8.506 C 8 E-01\) & 1.046 E & 02 \\
\hline 8045985E－01 & 1.051 E & 02 \\
\hline 804C568E－01 & 1.055 E & 02 \\
\hline 8．34134E－01 & 1.060 E & 02 \\
\hline 8．2638EE－01 & 1．065E & 02 \\
\hline 8．16912E－01 & 1.070 E & 02 \\
\hline 8．C5C8OE－01 & 1.075 E & 02 \\
\hline 7．89928E－01 & \(1.080 E\) & 02 \\
\hline 7．69850E－01 & \(1.085 E\) & 02 \\
\hline 7．42201E－01 & 1．C89E & 02 \\
\hline 7．01561E－01 & 1.094 E & 02 \\
\hline \(6036254 E-01\) & \(1.099 E\) & 02 \\
\hline 5.14 E71E－01 & \(1.104 E\) & 02 \\
\hline 2．10826E－01 & lol09E & 02 \\
\hline 2．C4210E 00 & 1.115 E & 02 \\
\hline 2．3C479E 00 & L． 120 E & 02 \\
\hline
\end{tabular}

MAG


FREQ
\begin{tabular}{|c|c|}
\hline 1．125E 02 & 9063559E－01 \\
\hline 10130E 02 & 9062545E－01 \\
\hline 10135E 02 & 9061616E－01 \\
\hline 10140 E 02 & 9060767E－01 \\
\hline 20145E 02 & S．59990E－01 \\
\hline 10151 E 02 & 9．59274E－01 \\
\hline 10156ㄷ 02 & 9058618E－01 \\
\hline 10161E 02 & 9．58015E－01 \\
\hline 10166E 02 & 9．57460E－01 \\
\hline La172E 02 & So56947E－01 \\
\hline 10177E 02 & \(9.56474 \mathrm{E}-01\) \\
\hline 10182E 02 & \(9.56039 \mathrm{E}-01\) \\
\hline Lal8ge 02 & 9．55638E－01 \\
\hline 1．193E 02 & 9．55268E－01 \\
\hline 2．199E 02 & 9．54927E－01 \\
\hline 1．204E 02 & So 54612E－01 \\
\hline 1．209E 02 & 9．54321E－01 \\
\hline 10215E 02 & \(9.54054 \mathrm{E}-\mathrm{Cl}\) \\
\hline 10220 E 02 & 9．53807E－01 \\
\hline 1．22tE 02 & 9．53580E－01 \\
\hline 1．232E 02 & 9053373E－01 \\
\hline 1．237E 02 & 9．53182E－01 \\
\hline lo243E 02 & 9．53008E－01 \\
\hline 1．249E 02 & 9052849E－OI \\
\hline 1．254E 02 & 9052702E－01 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PrA} & FFEQ & Pra & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} \\
\hline & 8.000 E & 01 & 70， 61846 E & 00 & 8．g E 2E 01 & 7．02242E 00 & 1．004E & 02 & 7.88587 E & 00 & 10125E & 02 & 6.25863 E & 00 \\
\hline & 8.036 E & 01 & 7．59053E & 00 & 9.003 EL & \(6.59440 E 00\) & L．009E & 02 & 7054165 E & 00 & lal30E & 02 & 6.23376 E & 00 \\
\hline & 80 C73E & 01. & 7057457E & CO & 9．044E 01 & \(6056564 E 00\) & 1.013 E & 02 & 7032122E & 00 & 1． 135 E & 02 & \(6.20915 E\) & 00 \\
\hline & 8.110 E & 01 & 7055245E & 00 & 90CESE Cl & 6053598E 00 & 1．018E & 02 & \(7018594 E\) & 00 & 10140 E & 02 & \(6018487 E\) & 00 \\
\hline & 8．147E & 01 & 7053027 E & 00 & \(90126 E 01\) & 60SC545E 00 & 1.022 E & 02 & 7007748E & 00 & \(1.145 E\) & 02 & 6． 16081 E & 00 \\
\hline & 8.184 E & 01 & \(705 c 7^{c} \in \mathrm{E}\) & 00 & \(9016 E E 01\) & 60¢7375E 00 & 10027E & 02 & \(6099101 E\) & 00 & 1．151E & 02 & \(6.13702 E\) & 00 \\
\hline & 8． 221 E & 01 & 7．48555E & 00 & 92210 E 01 & \(6084071 E 00\) & 1.032 E & 02 & 6092006 E & 00 & 1.156 E & 02 & 6011348 E & 00 \\
\hline & 3.258 E & 01 & 704630 CE & 00 & \(90251 E C 1\) & 60 EC6CGE 00 & 1．036E & 02 & 6.85921 E & 00 & 1.161 E & 02 & 6.09006 E & 00 \\
\hline & 8． 296 E & 01 & 7．44034E & 00 & 9०294E 01 & 6076C47E 00 & \(1.041 E\) & 02 & 6.80586 E & 00 & 1.166 E & 02 & \(6.06690 E\) & 00 \\
\hline & 80334 E & 01 & 7041753 E & 00 & \(90336 E 01\) & \(60.33 C 57 E 00\) & 1．046E & 02 & 6075791 E & 00 & 1．172E & 02 & 6004386 E & 00 \\
\hline \multirow[t]{15}{*}{\[
\]} & 8． 372 E & 01 & 7．3¢46CE & 00 & \(9.378 E 01\) & 606EES9E 00 & 1.051 E & 02 & 6.71432 E & 00 & 20177 E & 02 & 6．02094E & 00 \\
\hline & 80410 E & 01 & 7．37152E & 00 & \(90421 E C 1\) & 60642 S2E 00 & 1.055 E & C2 & \(6067391 E\) & 00 & 10182 E & 02 & 5099826E & 00 \\
\hline & 8.448 E & 01 & 7．34824E & 00 & \(90464 E 01\) & 605¢2ミ1E 00 & 1．060E & 02 & 0.63639 E & 00 & 10188 E & 02 & 50975695 & 00 \\
\hline & 8.487 E & 01 & 70， 2483 E & 00 & 905C7E 01 & \(6053541 E 00\) & 1.065 E & 02 & \(6060091 E\) & 00 & 10193E & 02 & 5095327 E & 00 \\
\hline & 80．525E & 01 & 7．30120E & 00 & 90550 E 01 & to46c88E 00 & 10， 670 E & 02 & 6056714 E & 00 & 1．199E & 02 & 5.93094 E & 00 \\
\hline & 80．564E & 01 & 7027738E & 00 & GO5C4E 01 & 6．39190E 00 & \(1.075 E\) & 02 & 6053476E & co & 1.204 E & 02 & 5.90874 E & 00 \\
\hline & 8．603E & 01 & 7．25329E & 00 & \(906 ミ 7 \mathrm{ECL}\) & \(6.25553 E 00\) & 1.080 E & 02 & 6．50382E & 00 & \(1.209 E\) & 02 & 5088666E & 00 \\
\hline & Bo642E & 02 & 702290 CE & 00 & \(90681 E 01\) & 6.17085 E 00 & 1.085 E & 02 & 6047383 E & co & 1．215E & 02 & 5．86469E & 00 \\
\hline & 8．682E & 01 & 7．2044EE & 00 & 90725 EGI & 5．9¢727E 00 & 1.089 E & 02 & 6.44474 E & 00 & 1．220E & 02 & 5．84279E & 00 \\
\hline & 8o721E & 01 & 7017C60E & 00 & 9077 CE Ol & \(5.731 C 6 E 00\) & 1．094E & 02 & 6041643 E & 00 & \(10226 E\) & 02 & 5082102 E & 00 \\
\hline & 80761E & 01 & 7．15441E & 00 & 9.814 E 01 & 5．24777E 00 & 1.099 E & 02 & 6.38887 E & 00 & 1．232E & 02 & 5．79938E & 00 \\
\hline & 88801 E & 01 & 7012¢¢5E & 00 & Soc59E 01 & 4004860 E 00 & 1.104 E & 02 & 6．36198E & 00 & 10237 E & 02 & 5077775E & 00 \\
\hline & 80．841E & 01 & 7．10301E & 00 & \(909 C 4 E C 1\) & －5．C758CE 00 & \(1.109 E\) & 02 & 6.33544 E & 00 & 1.243 E & 02 & 5．75629E & 00 \\
\hline & 80．881E & 01 & 7．07664E & 00 & 90949E 01 & －1．67772E 02 & 10115 E & 02 & 6030950 E & 00 & \(1.245 E\) & 02 & 5．73489E & 00 \\
\hline & 80921E & 01 & 7．04与E5E & 00 & 90954 OL & 8.54 CCEE 00 & 1.120 E & 02 & 6.28390 E & 00 & 10254 E & 02 & 5． 71350 E & 00 \\
\hline
\end{tabular}

SENSITIVITY WITH RESPECT TC DJ2
\begin{tabular}{|c|c|c|}
\hline EXPO OF S & NUMER。 COEFFS。 & CEACN。 COEFFSo \\
\hline 0 & －1．2192CE C4 & 1.22316 E 04 \\
\hline 1 & －6ott4laE 02 & \(6021421 E 02\) \\
\hline 2 & －7．8194CE 00 & 1．80477E 00 \\
\hline 3 & －1。87E28E－62 & －4．C2C57E－03 \\
\hline 4 & －1．9959CE－C5 & －1．19256E－05 \\
\hline 5 & －4016667E－08 & －1．43701E－08 \\
\hline 6 & 000 & －4019904E－11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FREQ & & NAG & & \multicolumn{2}{|l|}{FREG} \\
\hline 8.000 E & 01 & 1－54CC4E & 00 & 80962 E & 01 \\
\hline 8.036 E & 01 & 1053886E & 00 & 90003 E & 0 \\
\hline 8.073 E & CI & 1053775E & c C & 9.044 E & 01 \\
\hline 8.110 E & 01 & 1053671t & 00 & 90 CEEE & 01 \\
\hline 8，147E & 01 & Lo 53574 E & 00 & 90126 E & 0 \\
\hline 8.184 E & 01 & 1． 534 EE & 00 & 901688 & 01 \\
\hline \(8.221 E\) & 01 & 10534CEE & 00 & 9.210 E & 01 \\
\hline \＆ 2528 E & 01 & 1053336E & 00 & 90251 L & 01 \\
\hline 80296 E & 01 & 10 53277 E & 40 & 90244 L & 01 \\
\hline \(8.334 E\) & 01 & 105323CE & 00 & 90336 E & 0 \\
\hline 8.372 E & Cl & \(1053155 E\) & CC & 9.378 E & 01 \\
\hline 80410 E & 01 & 1053174 E & 00 & 90421 E & 01 \\
\hline 8.448 E & 01 & 1053168E & 00 & 90464 E & 01 \\
\hline B0487E & 01 & 1053178E & 00 & 90567 E & 01 \\
\hline 80525 E & 01 & 1053207 E & 00 & 90550 E & Cl \\
\hline 8.564 E & 01 & 10E3256E & CO & So5C4E & 01 \\
\hline B，603E & 01 & 1053328 E & 00 & \(90637 E\) & C1 \\
\hline 80642 E & 01 & 1053424 E & 00 & 9.681 E & 01 \\
\hline 80682 E & 01 & Lo 53546E & 00 & \(9.725 E\) & 01 \\
\hline \(8.721 E\) & 01 & 1053659 E & 00 & \(9.770 E\) & C1 \\
\hline 8.761 E & 01 & 1053886 E & 00 & 9.814 E & 01 \\
\hline 8.8015 & 01 & 1054110 E & 00 & Gocsce & 01 \\
\hline 8.841 E & 01 & 1054377 E & 00 & 909 CLE & 01 \\
\hline 80881 E & 01 & 1054tSlE & 00 & 9.949 E & 01 \\
\hline
\end{tabular}

\section*{NAC}

1055487E 00 55S85E 00 1． 55485 E 00 1．5E564E 00 1057234E 00 1．EE0l2E 00 1．5\＆916E 00 1．5c568E 00 ．61198E 00 lot \(2 t 4 C E 00\) 1． \(64343 E 00\) 1． \(6 \in 3 \in E E 00\) 1．68752E 00 － \(71730 E 00\) \(1.15338 E 00\) 1．75838E 00 10 \(65566 E 00\) 1．93041E 00 \(2002133 E 00\) 2． 17364 E 00 2． \(38702 E 00\) \(2.73773 E 00\) 3．4C735E 00 5.1344 EE 00 7．055c7E 00

FREQ
1．004E 02 1.0009 E 1．009E 02 \(10013 E 02\) 1.018 E 02 1．022E 02 ．0027E C2 \(1.032 E 02\) 1．036E 02 1．041E 02 ．046E 02 1．051E 02 \(1.055 E 62\) 1．060E 02 1．065E 02 \(.070 E\) C2 1.075 E C2 \(1 . C 80 E\)
1.085 E ．0085E C2 1．089E 02 \(10094 E 02\) \(.099 E 02\) \(.104 E 02\) \(1.109 E 02\) 10120E 02

MAG
2044042E 00 1．390096 00 1．02435E 00 1.02435 E OC \(900334 \mathrm{E}-01\) \(8.70700 \mathrm{E}-01\) 8． \(76156 \mathrm{E}-01\) 80 \(93934 \mathrm{E}-01\) \(9.14408 \mathrm{E}-01\) \(9034367 \mathrm{E}-01\) \(9052597 E-01\) \(9.83009 \mathrm{E}-01\) 9．83009E－01 \(9095384 E-01\) 200613E 00 －01544E 00 ．02349E 00 1．03043E 00 1．03642E 00 1.04157 E 00 ．04596E 00 1．C4970E 00 1.05286 E CO －C5550E 00 \(1.05767 E 00\)
\(1.05943 E 00\)

FREG
1.125 E 02 1．130E 0 －130E 02 10135E 02 \(.140 E 02\) \(.145 E 02\) ．151E 02 1．156E 02 \(.161 E 02\) －166E 02 －172E C2 \(10177 E 02\) 1．182［ 02 \(1.188 E 02\) \(10193 E 02\) \(0199 E 02\) \(.204 E 02\) lo209E 02 1．215E 02 \(10220 E 02\) －22EE 02 1．232E 02 1．237E 02 1．243E 02 \(10249 E ~\)
\(1.254 E\)

MAG
1．06081E 00 1．06185E 00 1．06259E 00 1006259E 00 1.06305 E 00 1．06326E 00 1．06324E 00 \(1.06301 E 00\) 1．06259E CO 1．061G9E 00 1．06122E 00 1．06030E CO 1．05925E 00 1。05807E 00 1005535 E 00 1005535E 00 1005383E CC 1．05221E 00 \(1.05051 E 00\) 1．04872E CO 1.04685 E GO \(1.04491 E\) G0 \(1 . \operatorname{C4250E} 00\) \(1.04083 E 00\) l．03870E CO

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FFEQ} & \multicolumn{2}{|l|}{Pra} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} \\
\hline & 8. OCOE & 01 & -9053250E & 01 & \(80 ¢ 62 E\) & 01 & -9.5C8S0E & 01 & 1.0045 & 02 & 1044258 E & C2 & \(1.125 E\) & 02 & -1.06240E & 02 \\
\hline & \(80036 E\) & 01 & -9052116E & 01 & SoOC3E & 01 & -9.47980E & 01 & 1.009E & 02 & 2062350 E & C2 & 1.130 E & 02 & \(-1.05920 \mathrm{E}\) & 02 \\
\hline & 8.073E & 01 & -90 SCS57E & 01 & Soc44E & 01 & -9044E73E & C1 & 1.013E & 02 & -1078038E & 02 & 10135 E & 02 & -1.05621E & 02 \\
\hline & 8.110 E & 01 & -90\&c772E & 01 & 90ce5E & 01 & -9041544E & 01 & 1.018 E & 02 & -1.6C871E & 02 & 1.140 E & 02 & -1.05342E & 02 \\
\hline & 8. 147 E & 01 & \(-Q_{0}\) \& \(25 \in C E\) & C1 & 9012tE & 01 & -9037564E & 01 & 1.022 E & 02 & -1047933E & 02 & 1.145E & 02 & -1.05081E & 02 \\
\hline & 80184 E & 01 & -90 E7318E & 01 & 9.168E & 01 & -9034057E & 01 & 1.027E & 02 & -1038698E & 02 & 10151 E & 02 & -1.04835E & 02 \\
\hline & 8.221E & 01 & -Coc6044E & 01 & \(9.21 C E\) & 01 & -9025SC3E & 01 & 10022E & 02 & -1. 32086 E & 02 & 20156E & 02 & -1.04603E & 02 \\
\hline & 8.258 E & 01 & -9084736E & 01 & 90251 E & 01 & -9025332E & 01 & 1.036 E & 02 & -1027230E & 02 & 1.161 E & 02 & -1004383E & 02 \\
\hline & 8. 296 E & 01 & -9083353E & 01 & 902S4E & 01 & -9020こ24E & 01 & 1.041 E & 02 & -1023556E & 02 & \(10166 E\) & 02 & \(-1.04175 \mathrm{E}\) & 02 \\
\hline & 8.3345 & 01 & -9082010E & 01 & 90336 E & 01 & -9.148C5E & 01 & 1.046 E & 02 & -1.20699E & 02 & 1.172 E & 02 & \(-1.03978 \mathrm{E}\) & 02 \\
\hline & 80372 E & 01 & -9.805E5E & 01 & So37EE & CI & -Socete6E & 01 & 1.051 E & 02 & -1018420E & 02 & 1.177E & 02 & -1.03790E & 02 \\
\hline \(\Omega\) & 8.410 E & 01 & -9079116E & 01 & 90421 E & 01 & -9.01855E & 01 & 1.055E & 02 & -1016563E & 02 & 1.182 E & 02 & -1.03611E & 02 \\
\hline \(\xrightarrow{1}\) & 80448 E & 01 & -9077598E & 01 & 90464 E & 01 & -80 64168 E & 01 & 1.060E & 02 & -1.15022E & 02 & 1.188 E & 02 & -1.03439E & 02 \\
\hline 0 & \(8.487 E\) & 01 & -9076028E & 01 & 905C7E & 01 & -8.85444E & 01 & 1.065 E & 02 & -1013723E & 02 & 1.193 E & 02 & -1.03276E & 02 \\
\hline & 8. 525 E & 01 & -90744CCE & 01 & \(9.550 E\) & 01 & -8.75446E & 01 & 1.070 E & 02 & -1012612E & 02 & 10199E & 02 & -1.03119E & 02 \\
\hline & 80 564E & 01 & -9。72712E & 01 & Go5S4E & 01 & -8063862E & 01 & 1.075E & 02 & -IoII651E & 02 & 1.204 E & 02 & -1.02968E & 02 \\
\hline & 80603 E & 01 & -9070957E & C1 & Sot 27 E & 01 & -805C27EE & 01 & \(1 . C B C E\) & 02 & -1010811E & 02 & 1.209E & 02 & -1.02823E & 02 \\
\hline & 80642 E & 01 & -9069129E & Cl & 90681 E & 01 & -8.34102E & 01 & 1.085 E & 02 & -1. 10070 E & 02 & 1.215 E & 02 & -1.02684E & 02 \\
\hline & 8.682 E & 01 & -9067222E & 01 & \(90725 E\) & 01 & -8014536E & 01 & 10C89E & 02 & -1.09411E & 02 & 1.220 E & 02 & -1.02550E & C2 \\
\hline & \(80721 E\) & 01 & -Sot5228E & 01 & 9077 CE & 01 & -70 SC3SEF & 01 & \(1.094 E\) & 02 & -10C8821E & 02 & \(1.226 E\) & 02 & -1.02420E & 02 \\
\hline & \(8.761 E\) & 01 & -90632 29 E & 01 & 50814 E & 01 & -7.5SSE1E & 01 & \(1.099 E\) & 02 & -1.08288E & 02 & 1.232E & 02 & -1.02255E & 02 \\
\hline & 8.801E & 01 & -9060945E & 01 & SOEESE & C1 & -7.20461E & 01 & 1.104 E & 02 & -1.07804E & 02 & 1.237 E & 02 & -1.02174E & 02 \\
\hline & Bo841E & 01 & -9058637E & 01 & 9.904 E & 01 & -6.67669E & 01 & 10109E & 02 & -1007363E & 02 & 1.243E & 02 & -1.02056E & 02 \\
\hline & 8.881E & 01 & -90.EE201E & 01 & SoG49E & 01 & -5092356E & 01 & 2.115E & 02 & -1006958E & 02 & 10249 E & 02 & -1.01943E & 02 \\
\hline & 80921 E & 01 & -9053624E & 01 & 90SC4E & 01 & 1030125 E & 02 & 1.120E & 02 & \(-1006585 \mathrm{E}\) & 02 & 1.254E & 02 & -1.01832E & 02 \\
\hline
\end{tabular}

SENSITIVITY WITH RESPECT TC CJ3

THE TRANSFCRM OF TIE RESFCNSE IS－－－
\begin{tabular}{c} 
EXP。OF \(S\) \\
\hdashline 0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{tabular}
\begin{tabular}{|c|c|}
\hline NUMER。 CCEFFSo & CENCNo COEFFSo \\
\hline 0.0 & 1．22316E 04 \\
\hline 40C74CCE 01 & 6．31421E 02 \\
\hline 1．76014E 00 & 1．80477E 00 \\
\hline 9092565E－03 & －4．02057E－03 \\
\hline 1090483E－C5 & －1．192C6E－05 \\
\hline 2016353E－C8 & －1．43701E－08 \\
\hline 2．72701E－11 & －4．19904E－11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FREQ & NAG & FREQ \\
\hline BoOOOE 01 & 9093158E－C1 & 80．562t 01 \\
\hline 80036E 01 & 1.00242 E 00 & 90003E 01 \\
\hline \(80 . C 73 E C l\) & \(1.012 \mathrm{C4E} 00\) & 90044 El \\
\hline 8．110E 01 & 10022CEE 00 & 9006SE CI \\
\hline 80147E 01 & \(1.03251 E C 0\) & 90126［ 01 \\
\hline \(80184 E 01\) & 1． 0434 CE 00 & 90168 Cl \\
\hline 8．221E 01 & 1．0547EE 00 & 90210E 01 \\
\hline \(8.258 E \mathrm{Cl}\) & 10C6668E 00 & 9．251E 01 \\
\hline 8．296E 01 & 10C7914E 00 & 90294E 01 \\
\hline 8．334E 01 & 10CS22CE 00 & \(90336 E 01\) \\
\hline 80372 Cl & \(1010591 E C 0\) & 90378E 01 \\
\hline 8.410 E 01 & 1.12033500 & \(90421 E 01\) \\
\hline 80448 E 01 & 1．13551E 00 & 90464 Cl \\
\hline 80487 El & 1015152E 00 & 905C7E 01 \\
\hline 80525 E 01 & 1．16843E 00 & SO550E C1 \\
\hline 8．564E 01 & 2018633 E 0 & \(90544 E 01\) \\
\hline 8.603 El & 1．20530E 00 & 90 ¢37E 01 \\
\hline 80642 E 01 & 1．22546E 00 & 9.681 El \\
\hline 80682 E 01 & 1．24tGミE 00 & \(9.725 E 01\) \\
\hline 8．721E 01 & 1026993E 00 & 9077CE 01 \\
\hline 80761 E 01 & 1029432E 00 & 90814E 01 \\
\hline Bo802E 01 & 1． 2 205EE 00 & Soc59E 01 \\
\hline \(88841 E 01\) & 1．34881E 00 & \(905 C 4 E 01\) \\
\hline 80881E 01 & 1.37925 E 00 & SO949E 01 \\
\hline 80921 O 0 & 1．41217E 00 & 90 ¢¢ムE 01 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{E 0} \\
\hline ． 004 & 02 \\
\hline ． 009 & 02 \\
\hline ． 013 & 02 \\
\hline ．018E & 02 \\
\hline ．022E & 02 \\
\hline ．027E & 02 \\
\hline 032E & 02 \\
\hline OC36E & 02 \\
\hline 041 & 02 \\
\hline 046 & c2 \\
\hline －051E & 02 \\
\hline 055E & 02 \\
\hline ．060E & 0 \\
\hline 065 & 0 \\
\hline ．070E & \\
\hline ．075E & C2 \\
\hline ．080E & 0 \\
\hline －085E & 02 \\
\hline ．089E & C2 \\
\hline ．094E & 02 \\
\hline ．099E & 02 \\
\hline ．104E & 02 \\
\hline 09E & 02 \\
\hline 15 E & C \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1．15788E 01 & 10125 E 02 \\
\hline 7．05857E 00 & 1.130 E 02 \\
\hline 4．95556E 00 & 10135 E 02 \\
\hline 3081518 E 0 & 10140 E 02 \\
\hline 3．05155E 00 & 10145E 02 \\
\hline 2.51755 E 00 & 1．151E 02 \\
\hline 2．12381E 00 & 10156 E 02 \\
\hline 1．82174E 00 & 10161E 02 \\
\hline \(1.58314 E 00\) & 1．166E 02 \\
\hline 1．39033E 00 & 1．172E 02 \\
\hline 1.23163 E 00 & 10177E 02 \\
\hline 1.09906 E 00 & 10182 E 02 \\
\hline 9087C51E－01 & lol88E 02 \\
\hline 8．91485E－01 & 1．193E 02 \\
\hline 8．09354E－01 & 1．199E 02 \\
\hline 7．38338E－01 & \(1.204 E 02\) \\
\hline 6．76694E－01 & 1．209E 02 \\
\hline 6．23040E－01 & 1．215E 02 \\
\hline 5．76280E－01 & \(1.220 E 02\) \\
\hline 5．35528E－01 & 1．226E 02 \\
\hline 5．00C69E－01 & 1．232E 02 \\
\hline 4．69302E－01 & 1．237E 02 \\
\hline \(4042725 \mathrm{E}-01\) & 10243E 02 \\
\hline 4019912E－01 & 1．249E 02 \\
\hline 4000476E－01 & 1．254E 02 \\
\hline
\end{tabular}

MAG
3．84085E－01 \(3.70435 \mathrm{E}-01\) 3． 59231 E －G1 3050220E－01 3．43151E－01 ． \(377 \mathrm{S6E}-02\) \(3.33946 \mathrm{E}-01\) 3．31402E－01 3．29991E－01 3．29549E－01 3． 29933 Em 01 3．31017E－01 3． \(32688 \mathrm{E}-01\) 3． \(34846 \mathrm{E}-01\) 3．37409E－01 3．40305E－01 \(3.43468 \mathrm{E}-01\) \(3.46844 \mathrm{E}-01\) 3． 503 G1E－01 3．54067E－01 3．57838E－01 \(3.61681 \mathrm{E}-01\) 3． \(6556 \mathrm{GE}-01\) \(3.69484 \mathrm{E}-01\)
\(3.73408 \mathrm{E}-01\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{P + A} & \multicolumn{2}{|l|}{FREQ} & PrA & \multicolumn{2}{|l|}{FREQ} & \multicolumn{2}{|l|}{PHA} & \multicolumn{2}{|l|}{FREG} & \multicolumn{2}{|l|}{PHA} \\
\hline & 8,000E & 01 & 1056058E & 02 & BoSt \(5 E\) & 01 & Io \(\in 4 \in 18 \mathrm{C} 02\) & L. 004 E & 02 & late 334 E & 00 & 1.125E & 02 & 6. 15347 E & 01 \\
\hline & 8.036E & 01 & I. 56336 E & 02 & 900CEE & 01 & 1.65CE3E 02 & 1.009E & 02 & 2.83499 E & 00 & 1.130E & 02 & 6.53602 E & 01 \\
\hline & \(80 \mathrm{C73E}\) & 01 & \(1056 \in 18 E\) & C2 & So044E & 01 & 10t551GE 02 & 1.013 E & 02 & 4005106 E & 00 & \(10135 E\) & 02 & \(6.917 \mathrm{G4E}\) & 01 \\
\hline & \(8.110 E\) & 01 & 1.565C4E & 02 & 90085E & 01 & 1.65988E 02 & 1.0 Cl 18 E & 02 & \(5.32634 E\) & 00 & 1.140 E & 02 & 7.29336E & 01 \\
\hline & 8.147E & 01 & \(1057154 E\) & 02 & 9.126 E & 01 & lotetile 02 & \(1.022 E\) & 02 & \(6.67005 E\) & co & 10145 E & 02 & 7.66228E & C1 \\
\hline & 8.184 E & 01 & 1057488E & 02 & 90168 E & 01 & 1.66S67E 02 & 1.027 E & 02 & 8.C8932E & 00 & 10151E & 02 & 8.02134 E & 01 \\
\hline & \(80221 E\) & 01 & 1057786 E & 02 & 9021CE & 01 & loti47EE 02 & 10032 E & C2 & 9059104 E & 00 & 10156 E & 02 & 8. 36836 E & C1 \\
\hline & \&o258E & 01 & 1.58CSOE & 02 & 902 E1E & 01 & 1.68CC5E 02 & 1.036E & 02 & 1.11822E & 01 & Lol6le & 02 & 80701 SEE & 01 \\
\hline & 80290 E & 01 & 1058397E & 02 & \(90294 E\) & 01 & 10GEE4SE 02 & 1.041 E & 02 & \(1028701 E\) & 01 & 10166 E & 02 & 9.02080E & 01 \\
\hline & 80334 E & 01 & 1.5871 GE & 02 & 9.336 E & 01 & 1otsille 02 & 1.04 EE & 02 & \(1.46615 E\) & 01 & 10172 E & 02 & 9.32435 E & 01 \\
\hline & 80372 E & 01 & 1.59028E & C2 & 9.378 E & C1 & 1-6 \(6^{c} \in 51 \mathrm{E}\) O2 & 10051E & 02 & 1.65647E & 01 & 1.177 E & 02 & 9061215 E & 01 \\
\hline \[
\Omega
\] & 8.410 E & 01 & 10593 E 2 E & C2 & \(90421 E\) & 01 & 1.70292E 02 & 1.055 E & 02 & 1.85872E & 01 & 1.182 E & 02 & 9.88440 E & 01 \\
\hline \[
\dot{\infty}
\] & 80448 E & 01 & 1.5SECIE & C2 & Go4t \(4 E\) & 01 & \(1.7 C 914 \mathrm{E} 02\) & 1.060E & C2 & 20.07370 E & G1 & 10188E & 02 & 1001413 E & C2 \\
\hline \(\omega\) & \(8.487 E\) & 01 & 1.60016E & C2 & 905C7E & 01 & 1.7155SE 02 & \(1.065 E\) & 02 & 2.30218 E & 01 & 10193 E & 02 & 1.03832 E & 02 \\
\hline & 8. 525 E & 01 & \(1060357 E\) & C2 & So \(550 E\) & C1 & 107222sE 02 & 1.070 E & 02 & 2.54481E & 01 & 10109 E & 02 & 1.06109 E & 02 \\
\hline & 8.564E & 01 & 1.6G7CSE & C 2 & 90594 E & 01 & 1.72525E 02 & \(1.075 E\) & 02 & 2.80229E & 01 & \(1.204 E\) & 02 & 1.08251 E & C2 \\
\hline & 80,603E & 01 & \(1061059 E\) & 02 & 90 EスコE & C1 & 1. 13649 E 02 & 1.080 E & 02 & 3007506E & 01 & 1.209E & 02 & \(1010265 E\) & 02 \\
\hline & 8. 642 E & c1 & \(1061421 E\) & 02 & \(9.681 E\) & 01 & 1.744C4E 02 & 1.085 E & 02 & 3036340E & 01 & 1.215 E & 02 & 1012158 E & 02 \\
\hline & 80682 E & Cl & 10617cot & \(6 ?\) & \(9.725 E\) & C1 & 1०IEISIE 02 & I.C89E & 02 & 3066732E & 01 & \(1.220 E\) & 02 & 1.13939E & 02 \\
\hline & \(8.721 E\) & 01 & 1062167 E & 02 & So 77 CF & 01 & 1.7EC15E 02 & 10094 E & 02 & 3098653E & 01 & 10226E & 02 & 1.15614 E & 02 \\
\hline & 8.761 E & C1 & 1062552E & C2 & So814E & 01 & 107687 GE 02 & I.C99E & 02 & \(4032036 E\) & 01 & 1.232 E & 02 & 1.17152 E & 02 \\
\hline & 80801 E & 01 & \(1062946 E\) & 02 & SoESEE & C1 & 2.777¢1E 02 & 10104 E & 02 & 4066766E & 01 & 1.237 E & 02 & 1018680 E & 02 \\
\hline & 8.8415 & 01 & \(1063349 E\) & 02 & \(90964 E\) & 01 & 107ETTEE 02 & 101 CgE & 02 & 5002689 E & 01 & 1.243 E & 02 & \(1.20083 E\) & 02 \\
\hline & 8. 881 E & 01 & 1063762E & 02 & SoS49E & 01 & -107C886E 02 & 10115E & 02 & 5.39597 E & 01 & \(1.249 E\) & 02 & 1.21409 E & 02 \\
\hline & 80921 F & 01 & 1064185E & 02 & 90994E & 01 & \(4048 \in 55 E-01\) & 1.120E & 02 & 5.77251E & 01 & 1.254E & 02 & 1.22662E & 02 \\
\hline
\end{tabular}


SENSITIVITY WITH RESPECT TC LEI

THE TRANSFCRM OF THE RESPCNSE IS ---
\begin{tabular}{ccc} 
EXPO OF S & NUMEROCCEFFSO & DENCNO COEFFSO \\
\hdashline 0 & 0.0 & \(1.22316 E 04\) \\
1 & 0.0 & \(6031421 E 02\) \\
2 & \(308395 S E-02\) & \(1.80477 E 00\) \\
3 & \(1.6142 \varepsilon E-03\) & \(-4.02057 E-03\) \\
4 & \(4045302 E-C 6\) & \(-1019256 E-05\) \\
5 & \(-10437 C 1 E-C 8\) & \(-1043701 E-08\) \\
6 & \(-40195 C 4 E-11\) & \(-4019904 E-11\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline MAG & - & \multicolumn{2}{|l|}{FREQ} \\
\hline 1.80686F & 00 & 80Stze & 01 \\
\hline 1.854G9E & 00 & 90003 E & 01 \\
\hline 1.5034 CE & 00 & 9.044 E & 01 \\
\hline 1. 95492 L & 00 & 90065 L & 01 \\
\hline 200088CE & 00 & 9.126 E & 01 \\
\hline 2.0652 CE & 00 & 9.168 E & 01 \\
\hline 2.12430E & 00 & 90210 E & 01 \\
\hline 2.18625E & 00 & 9.251E & 01 \\
\hline 2.25141E & 00 & 90254 E & 01 \\
\hline 2.31987E & 00 & 9.326 E & 01 \\
\hline 20391'5E & 00 & 9.378 E & 01 \\
\hline 2046752E & 00 & 9.421 E & C1 \\
\hline 2.54813E & 00 & 90464 E & 01 \\
\hline 20632SIE & 00 & 9.5C7E & 01 \\
\hline 2.72267E & 00 & 90550 E & 01 \\
\hline 2. \(21787 E\) & 00 & 90554E & 01 \\
\hline 2. 51902 E & 00 & 9.637 E & 01 \\
\hline \(3.0266 \in[\) & 00 & 9.681 E & 01 \\
\hline 3.14147 E & 00 & \(9.725 E\) & 01 \\
\hline 3.26416E & 00 & 9.770 E & 01 \\
\hline 3.35557E & 00 & 90814 E & 01 \\
\hline 3.536E 3 E & 00 & SoEScE & 01 \\
\hline 3.68848 E & 00 & 909C4E & 01 \\
\hline 3. \(¢ 524 \mathrm{CE}\) & 00 & G.949E & 01 \\
\hline 4.02984E & 00 & 90954 E & 01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{NAG} \\
\hline 022258E & \\
\hline . 4326 & 00 \\
\hline \(406 \in 255 \mathrm{E}\) & 00 \\
\hline 4.S1510E & 00 \\
\hline 5.19350E & 00 \\
\hline 5.50316E & 00 \\
\hline \& 4827 & 0 \\
\hline O23576E 0 & 00 \\
\hline 60673945 & 00 \\
\hline 7.17338E & 00 \\
\hline 48 C & 00 \\
\hline 8041613 E & 00 \\
\hline 9.20223E 0 & 00 \\
\hline 1.C141CE & \\
\hline 1.12814E & \\
\hline 1. 26963 E & \\
\hline 1.44c76E & 01 \\
\hline 1.687C0E & 01 \\
\hline 2.01343E & \\
\hline \(2.45166 E\) & 01 \\
\hline 3.25669E & 01 \\
\hline 40te240E & 01 \\
\hline . \(27105 E\) & \\
\hline 3.437¢4E & \\
\hline & \\
\hline
\end{tabular}

FREQ
\begin{tabular}{|c|c|}
\hline & \\
\hline . 00 & \\
\hline . 0 & 02 \\
\hline .018 & 02 \\
\hline 022 & 02 \\
\hline .027 & 02 \\
\hline 032 & 02 \\
\hline .036E & 02 \\
\hline . 041 E & 02 \\
\hline 246 & 02 \\
\hline 51 & 02 \\
\hline 055 & 0 \\
\hline .060E & 0 \\
\hline .065E & 02 \\
\hline .070E & 02 \\
\hline . 075 & C2 \\
\hline . 080 & 02 \\
\hline .085 & G2 \\
\hline -089E & 02 \\
\hline .094E & 02 \\
\hline 099E & 02 \\
\hline 04 & 02 \\
\hline 1095 & \\
\hline .115E & c2 \\
\hline 120 E & \\
\hline
\end{tabular}

MAG
\(6057633 E 01\) 4014254E O1 3.03101E 01 \(2.39437 E\) OI 1.g8190E Ol 1.69287E OL \(1.47919 E 01\) 1.31469E OI loI8420E 01 lo 07817E 01 9.90303 E 00 \(9016303 E 00\) 8.53138E 00 7.98588E 00 7.51008 E 00 7.09132E 00 \(6.72003 E 00\) 6.38859 E 00 6.09093E 00 5082210 E 00 5.57817E 00 5035580 E 00 \(5.15226 E 00\) \(4096529 E 00\) 4.79290E 00



MAG
4.63352E CO \(4.48574 E\) EO 4034826 E 00 \(4034826 E O O\)
\(4022014 E 00\) \(4022014 E 00\) 4010041E 00 3098827E 00 3.88307E 00 3.78412E 00 3.69095E 00 3.60302 E 00 3.51995E 00 \(3.44131 E 00\) 3. 36679 E 0 3. 29606 E 00 3.22885E 00 3.16487E 00 3. 10394 E 00 3.04585E 00 2.99038E 00 2.93738E 00 2.88668E 00 2.83813E 00 2.79161E 00 2.7470CE CO 2.70416E 00

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{FREQ} & Pha & & \multicolumn{2}{|l|}{FFEQ} & PHA & \multicolumn{2}{|l|}{FREQ} & PHA & FREQ & & PHA \\
\hline & 8.000 E & 01 & 1.798 CTE & & 8.SE2E & 01 & 1.75856E C2 & 1.004E & 02 & -2.02724E-01 & 1.125E & & -9.03177E-02 \\
\hline & 8.036 E & 01. & 1.79809E & 02 & 90003 E & 01 & 1.75858E 02 & 1.009E & 02 & -1.68681E-01 & 10130E & & -8.90664E-02 \\
\hline & 8.073 E & 01 & 1.79811 E & 02 & 9.044 E & 01 & 1. 7 çe 0 e 02 & 1.013 E & 02 & -1.51651E-01 & \(1.135 E\) & & -8.79326E-02 \\
\hline & 8.110E & 01 & 1.79813E & 02 & 90085 E & 01 & 107¢862E 02 & 1.018E & 02 & -1.41631E-01 & 1.140 E & & -8.67897E-02 \\
\hline & 8.147 E & 01 & 1.79815E & 02 & \(9012 \in E\) & 01 & 1.7c8t4E 02 & 1.022 E & 02 & -1.34740 E-01 & 1.145 E & & -8.56667E-02 \\
\hline & 80184 E & 01 & 1.79817 E & 02 & 90168 E & 01 & 1.7¢866E 02 & 2.027 E & 02 & -1.29776E-01 & LOI51E & & -8.45574E-02 \\
\hline & 83221 E & 01 & 1.75815E & 02 & So210E & 01 & 1.74868E 02 & 1.032E & 02 & -1.25441E-01 & \(1.156 E\) & & -80.34391E-02 \\
\hline & 8.258 E & 01 & 1.79821E & 02 & \(9.251 E\) & 01 & 1.75870E 02 & 1.036 E & 02 & -1.21969E-01 & 1.161E & 02 & -8.23924E-02 \\
\hline & 80296E & 01 & 1.79823E & 02 & So294E & 01 & 1.7ç73E 02 & 1-041E & 02 & -1018838E-01 & \(1.16 \in E\) & & -8.13072E-C2 \\
\hline & 8.334 E & 01 & 1.79825E & 02 & So \(336 E\) & 01 & 1.7¢875E 02 & 1.046 E & 02 & -1.16317E-01 & 1.172 E & & -8.02982E-02 \\
\hline & 80372E & 01 & 1.79827 E & 02 & So 378 E & 01 & 1.7c877E 02 & 1.051 E & 02 & -1.13863E-01 & 1.177E & & -7.92832E-02 \\
\hline & 80410 E & 01 & 1.79829E & 02 & \(90421 E\) & 01 & 1.79880E 02 & 1.055 E & 02 & -1.11750E-01 & 1.182 E & & -7.82904E-02 \\
\hline \(\stackrel{\infty}{\infty}\) & 8.448 E & 01 & 1.79831E & 02 & \(90464 E\) & 01 & 1.7ç8zE 02 & 1.060 E & 02 & -1009711E-01 & 1.188 E & & -7.72662E-02 \\
\hline \(\checkmark\) & 80487 E & 01 & 1079833E & 02 & \(905 C 7 E\) & G1 & 1.7c885E 02 & 1.065E & 02 & -1.C7730E-01 & \(1.193 E\) & 02 & -7.63029E-02 \\
\hline & 80525 E & 01 & 1.79835E & & So550E & 01 & 1.7c888E 02 & 1.070 E & 02 & -1.05946E-01 & \(1.159 E\) & & -7.53452E-C2 \\
\hline & 80564 E & 01 & 1.75837E & & SoES4E & 01 & 1.79891E 02 & 1.075 E & C2 & -1.04348E-01 & 1.204 E & & -7.44328E-02 \\
\hline & 8.603 E & 01 & 1.79839E & & 90637 E & 01 & 1.7c8¢5E 02 & 1.080E & 02 & -1002695E-01 & 1.209 E & & -7.35039E-02 \\
\hline & 8.642 E & 01 & 1.79841E & 02 & So681E & 01 & 1. 79900 E 02 & 1.085 E & 02 & -1.01147E-01 & 1.215E & 02 & -7. \(25805 \mathrm{E}-02\) \\
\hline & 8.682 E & 01 & 1.75843E & 02 & 9072 EE & 01 & 1.7996602 & 1.089E & C2 & -9.96634E-02 & 1.220E & 02 & -7.16563E-02 \\
\hline & \(8.721 E\) & 01 & 1079845 E & & 9.770 E & 01 & 1.79914E 02 & 1.094 E & 02 & -9.82193E-02 & \(1.226 E\) & & -7.07533E-02 \\
\hline & 8076le & 01 & 1.75847E & 02 & 9.814 E & 01 & 1.75S25E 02 & 1.099 E & 02 & -9.67665E-02 & 1.232 E & & -6098642E-02 \\
\hline & Bo801E & 01 & 1.7584SE & & So 859 E & 01 & \(1.79947 E 02\) & 1.104E & 02 & -9.53704E-02 & \(1.237 E\) & & -6.90120E-02 \\
\hline & 80841 E & 01 & 1.79851E & & 90964 E & 01 & 1.7S9¢7E 02 & \(1.109 E\) & 02 & -9.40755E-02 & 1.243 E & 02 & -6.81387E-02 \\
\hline & 8.881 E & 01 & 1.79853 E & 02 & 9 SCLSE & 01 & \(-1.75 t 44 E 02\) & \(1.115 E\) & 02 & -9.27687E-02 & 1.249 E & 02 & -6.72821E-02 \\
\hline & 8.921 E & 01 & 1079855 E & 02 & 90954 E & 01 & \(-3036544 \mathrm{E}-01\) & 1.120E & 02 & -9.14843E-02 & 1.254 E & & -6064654E-C2 \\
\hline
\end{tabular}


SENSITIVITY WITH RESFECT TC RE3

THE TRANSFCRM OF ThE RESPCNSE IS－－－
\begin{tabular}{|c|c|c|}
\hline EXP。 OF S & NUMER。 CCEFFSo & DEACNO COEFFSO \\
\hline 0 & 1．716CくE 02 & 2.22316 E 04 \\
\hline 1 & 4047S41E 02 & Eo21421E 02 \\
\hline 2 & 1．26581E 00 & 1．8C477E 00 \\
\hline 3 & 1． \(36 \in 12 \mathrm{E}-\mathrm{G} 3\) & －4．02057E－03 \\
\hline 4 & 3．30681E－C6 & －1．19296E－05 \\
\hline 5 & 1．01C5SE－C9 & －1．43701E－08 \\
\hline 6 & 0.0 & －4019904E－11 \\
\hline
\end{tabular}

\section*{freq}

BoCOOE 01
8．036E 01 80 C 73 E
 8ol47E O1 80184 E 01 \(80221 E 01\) 8．258E 01 80296E 01 80334 ECl 8． 372 E C1
8.410 E 01

80448 E 01
\(80448 \mathrm{E} ~\)
801
80487 E
01
80525 E 01
8.564 E 01
\(80603 E 01\)
8.642 E 01
\(8.682 E 01\)
8o721E 01
\(8 \circ 761 \mathrm{E} 01\)
8०761E OI
\(8 \circ 801 E ~ O I\)
Bo 841 E 01
8．881E OI

\section*{MAG}

2．35141E－01
2．34143E－01
2033174E－C1
20 \(32236 E-01\)
20 \(31330 \mathrm{E}-01\)
2． \(3046 \mathrm{CE}-01\)
2． \(25627 E-C 1\)
2． \(28834 \mathrm{~F}-01\)
2。28C82E－01
2． \(27378 \mathrm{E}-01\)
2． \(26723 \mathrm{E}-01\)
2． \(26122 \mathrm{E}-\mathrm{Cl}\)
2． \(25578 \mathrm{E}-01\)
2．25CS7E－G1
2．246E6E－01
2． 24 －49E－01
2．24CS5E－01
2023932E－C1
2． \(2386 \mathrm{GF}-\mathrm{Ol}\)
2． \(23918 \mathrm{E}-01\)
2．240G1F－01
2．24403E－01
2． \(24871 \mathrm{E}-\mathrm{Cl}\)
2026359E－C1

FREG
8．9tटE 01 90CO3E 01 Go044E O1 90CE5E O1 \(90126 E 01\) 9016EE 01 90210 E 01 90251 E 01 \(90254 E 01\) 90336 E 01 \(9.336 E 01\) Go421E 01 So421E Ol
So464E 01 905C7E 01 9055CE OI \(9055 C E\)
\(9.5 S 4 E ~ O 1\) \(9.654 E\)
\(9.637 E\) 9o6 \(37 E\)
9．681E 01 So725E 01 So77CE OI So814E 01 So \(85 S E\) \(9085 S E\)
\(90904 E\) Sos \(49 E\) O1 Sos4se
\(905 S 4 E\)
01

MAG
2．27422E－01 2．28766E－01 2．3C4C2E－01 2．\(\ddagger 2389 E-01\) 2． \(34787 \mathrm{E}-01\) 2． \(37668 \mathrm{E}-01\) 2041126E－61 2．4E274E－01 205C25sE－01 2． 5 6271E－01 2． 6355 GE－01 2072454E－01 2． 23405 E －01 2．c7C48E－01 3．14288E－01 3． \(26473 \mathrm{E}-01\) 3065685E－01 40CE366E－01 4．61457E－01 \(5045654 \mathrm{E}-01\) 6063379E－01 9．44129E－01 1． 60845 E 00 2066266 E 00
\begin{tabular}{|c|c|}
\hline \(100 C 4 E\) & 02 \\
\hline 1．009E & 02 \\
\hline 1.013 E & 02 \\
\hline 1．018 & 02 \\
\hline Lo022E & 02 \\
\hline \(1.027 E\) & 02 \\
\hline 1.032 E & 02 \\
\hline 1.030 E & 02 \\
\hline 1．041E & 0 \\
\hline ．046E & 02 \\
\hline 1.051 E & 02 \\
\hline 2．C55E & 02 \\
\hline ． 060 & 02 \\
\hline 1.065 E & 02 \\
\hline L．070E & 02 \\
\hline 1.075 E & 02 \\
\hline \(1.080 E\) & 02 \\
\hline \(1.085 E\) & 02 \\
\hline 1.089 E & 02 \\
\hline 1．094E & 02 \\
\hline 1.099 E & 02 \\
\hline \(1.104 E\) & 02 \\
\hline \(1.109 E\) & 02 \\
\hline ．115E & 02 \\
\hline 120E & \\
\hline
\end{tabular}

MAG
1.18025 E 00 7．31829E－01 5．30190E－01 \(4017117 \mathrm{E}-01\) 3．45760E－01 \(2.97278 \mathrm{E}-01\) 2．62654E－C1 2．36980E－01 \(2.17400 \mathrm{E}-01\) 2．02120E－01 1．89960E－01 1．80117E－01 1。720j0E－C1 1．65293E－C1 1。55609E－C1 1．54755E－01 1．50563E－01 1．46907E－01 1．43684E－01 \(1.40817 \mathrm{E}-01\) 1． \(38243 \mathrm{E}-01\) \(1.35913 \mathrm{E}-01\) 1．33786E－01 \(1.31832 \mathrm{E}-\mathrm{Cl}\)
\(1.30023 \mathrm{E}-\mathrm{Cl}\)

FREO
\begin{tabular}{|c|}
\hline \\
\hline 135E 02 \\
\hline \(140 E^{02}\) \\
\hline 145 \\
\hline 1518 \\
\hline 56 \\
\hline 16 \\
\hline 166 \\
\hline 1．172E 02 \\
\hline 177E \\
\hline 182 \\
\hline 188 \\
\hline ．193E \\
\hline L．199E 02 \\
\hline ． 204 E \\
\hline 209E \\
\hline ． 215 E \\
\hline －220E \\
\hline ．22EE 02 \\
\hline ．232E 02 \\
\hline ． 237 E \\
\hline \(43 E\) \\
\hline － \\
\hline \\
\hline
\end{tabular}

MAG
1．28338E－01 2． \(26760 \mathrm{E}-01\) 1． \(25272 \mathrm{E}-\mathrm{Gl}\) 1． \(23864 \mathrm{E}-01\) Io \(22525 \mathrm{E}-\mathrm{Cl}\) 1．21246E－01 1．20019E－01 1． \(18839 \mathrm{E}-0\) L． \(17701 \mathrm{E}-01\) 1．16598E－01 ． \(15529 \mathrm{E}-01\) \(1.14489 \mathrm{E}-0\) 1．13476E－01 1． \(12487 \mathrm{E}-01\) 1011520E－01 1． \(10572 \mathrm{E}-01\) ．09642E－01 1．08730E－01 1．07833E－01 1．06950E－01 ．06081E－01 1．05225E－01 \(1.04380 \mathrm{E}-01\) ．03546E－01 1．02722E－01

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & FREQ & PHA & freq & Pra & FREQ & PHA & FREQ & PHA \\
\hline & \(2_{\square} 000 \mathrm{E} 02\) & \(-\mathrm{E}_{0} 76\) ¢ 78 E 00 & 8.stat Ol & -10¢Ez12E 01 & 20004 E 02 & 1.02597E 02 & 10125E C2 & 3081304 E 01 \\
\hline & 8.036E 01 & -9000136E 00 & 90003501 & -2.ce726e 01 & 1.009 E 02 & 9087016E 01 & 1.130E 02 & 3072155E 01 \\
\hline & \(8 . C 73 E C 1\) & -90242cte 00 & 90044 E 01 & -2.15820e 01 & 1.013E 02 & 9043805E C1 & 1.135E 02 & \(3063607 E 01\) \\
\hline & 80110501 & -9049521E 00 & 90C85E 01 & -2025545E OL & lo018E 02 & 9000957E 01 & \(10240 E 02\) & 3055613E 01 \\
\hline & 8.147 F 01 & -9075875 00 & \(9012 t E 01\) & -2035stie 01 & 10022E 02 & 8058987E O1 & 10145 E 02 & 3048129 El \\
\hline & 8.184 E 01 & -10CO342E O1 & \(90168 E 01\) & -2.47129E 01 & 10027 E 02 & 8.18328E 01 & 10151E 02 & 3041113 E 01 \\
\hline & Bu221E 01 & \(-1003224 \mathrm{E} 02\) & 90210 EI & -205c123E 01 & 1.032E 02 & 7.79353E C1 & 10156 E 02 & 3.34532 ECl \\
\hline & 80258 E 01 & -10C624CE 01 & \(90251 E 01\) & -2072018E 01 & 1.036E 02 & \(7042291 E 01\) & 1.161E 02 & 3028348E 01 \\
\hline & B0 296E OL & -10cs3sce 01 & \(90294 E 01\) & -2.85sc4e 01 & \(1.041 E 02\) & 7007317E 01 & \(10166 E 02\) & 3.22536E 01 \\
\hline & 8.334 EOI & -1.012712E 01 & 90336 E 01 & -3.cc870E 01 & 1.046E 62 & \(6.74521 E 01\) & 1.172 E 02 & 3.17064E 01 \\
\hline & 8.372E 01 & - 1 c 16187 E O1 & 90378 El & -3.17C24E 01 & \(1.051 \mathrm{EC2}\) & 6043913 El & 1.177E 02 & 3.11913E 01 \\
\hline & 8.410 E OL & -1.19835E 01 & \(90421 E\) O1 & -3034471E 01 & 1.055E 02 & 6015450 E 01 & 1.182E 02 & 3.07056E 01 \\
\hline 6 & 8.448 E 01 & -1.236ESE 01 & 9.464 El & -305333CE 01 & 1.060 E 02 & 5085060 E 01 & 1.188E 02 & 3.02475E 01 \\
\hline \(\stackrel{-}{\square}\) & 80487 ECL & -1.27700e 0l & \(905 C 7 E 01\) & -3.73725E 01 & \(10 \mathrm{C65E} 02\) & 5064631E CI & 1.193E 02 & 2.98149E O1 \\
\hline & 80525E 01 & -10 \(31944 \mathrm{EC1}\) & 905EOE C1 & -3065785E 01 & 1.070 E 02 & 5042049E 01 & 10199E 02 & 2.94063E 01 \\
\hline & 80564 E 01 & -1.36415E O1 & 90554 E 01 & -401ctule 01 & 1.075 E 02 & 5.21178 El & 1.204 E 02 & 2.90199E 01 \\
\hline & 80603 E Ol & -1041131E O1 & \(906 E 7 E 01\) & -40454c8E O1 & 1.080E 02 & 5001895801 & 1.209 E 02 & 2086545E 01 \\
\hline & \(80642 E 01\) & -10461C7E 01 & 90681 El & -40731¢7E 01 & 1.085E 02 & 4.84074E Cl & 1.215 E 02 & 2.83087E O1 \\
\hline & 80682 E 01 & -1051367E O1 & 90725 El & -50C3C54E 01 & 1.C8GE 02 & 4067594 E 01 & 1.220E 02 & 2.79812E 01 \\
\hline & 80721E 01 & -1.56931E 01 & \(90770 E 01\) & -5.35143E 01 & \(10094 \mathrm{EC2}\) & 4052343 E O1 & \(1.226 E 02\) & 2.76711 E 01 \\
\hline & 8.761501 & -1.62822E 01 & Go 814E 01 & -506C340E 01 & \(1 . C 59 E 02\) & 4038215 E 01 & 1.232 E 02 & 2073771E 01 \\
\hline & 80801 EL & -1.69065E O1 & cotsce Ol & -60C5557E 01 & 1.104 E 02 & 4025113 E 01 & 1.237E 02 & 2070984E 01 \\
\hline & 80841 E 01 & -1.75694E O1 & 90904 El & -6043487E 01 & 1.109E 02 & \(4012947 E 03\) & 1.243 E 02 & 2068341 ECl \\
\hline & 8o881E 01 & -1082737E 01 & \(90949 E 01\) & -608C084E 01 & 1.115E 02 & 4001638 E 01 & Io249E 02 & 2065834E 01 \\
\hline & 80921E 01 & -10 S0229E 01 & 90954 Ol & 1.07134E 02 & 1.120E 02 & 3091111E 01 & 1.254 E 0 & 2063454 ECl \\
\hline
\end{tabular}


Example 2: Illustration of the (TYPE=REAL) Option (Taken from the Report, "Designed Manual for Computer~Aıded Design of Communication Circuits, " written by K. N. Haag, E. W. Weber, Illinois Institute of Technology, Chicago, Illinoís.

*****
NETKORK ANALYSIS AND SYSTENS APPLICATICN PRCGRAN THIS VERSICN WAS DEVELCEEE \(\triangle T\) UCLA ENGFO CEFIO


```


[^0]: *During World War II, Claude Shannon developed his formula. But because of wartime restrictions, his work was not published and was virtually unknown to the academic community. In 1952, Samuel Mason rediscovered the same formula.

[^1]: *This section has been taken from the work presented in references 9 and 10 .

[^2]: * Durang World War II Claude Shannon developed his formula Because of wartime restrictions, his work was not published, and was virtually unknown to the academic community In 1952, Samual Mason rediscovered the same formula.

