A Reproduced Copy OF

$N 71-36573$

Reproduced for NASA
by the

NASA Scientific and Technical Information Facility

PROJECT TECHNICAL REPORT		
	EEADY-STATE ATTITUDE CONTROL PROPULSION SYSTENS OTPUTER PROGRAM DOCUMENTATION AND USER'S MANURL VOLUME I MSC/TRU TASK 705-1	-
NAS 9-816\%		June, 1971
	Prepared for VATIONAL PERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS	

$$
=-\quad .
$$

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER HOUSTON, TEXAS

Prepared by
P. F. Thompson
R. C. Turley

Propulsion Systems' Section Chemical and liechamical Systems Section

Chemical and Mechanical Systems Department
Page

1. INTRODUCTION 1
2. PROGRAM DESCRIPIION 3
2.1 Program Definition 3
2.2 Method of Solution 3
3. USERS INFORMATION 5
3.1 Input Description 5
3.1.1 Solution of Non-Linear Equations 5
3.1.1.1 Solution Normal Usage IFIN $=0$ 5
3.1.1.2 Solution Using Finishing Technique IFIN $\neq 0$ 8
3.1.2 General Input 8
3.1.3 Systems Components 12
3.1.4 Constraints 13
3.1.5 Pressure Boundaries 13
3.1. 6 Junction Input 14
3.1.7 Valve/Orifice. 14
3.1.8 Mono/Bi-propellant Combustors 14
3.1.9 PIPL Gas Line 16
3.1. 10 Heat Exchanger 17
3.1.11 Tank 18
3.1.12 TURBOP Turbopump 20
3.1.13 PREG Pressure Regulator 20
3.1.14 Feedback Constrannts 20
3.2 Output Description 21
3.3 Typical Deck Set-up 21
4. SUBROUTINES 27
4.1 OUTPRC 33
4.2 BDCINT 38
4.3 CDDATA 40
4.4 DP 2R 46
4.5 R2DP 47
4.6 PACK 48
4.7 SQZB 51
4.8 TRWLOD 54
4.9 PIPL/PIPLL 59
4.10 HEATEX 62

TABLE OF CONTENTS (Continued)

Page

4.11 ADIAB . 65
4. 12 CMON . 68
4.13 CHAM/TURBOP . 71
4.14 ISOTH . 76
5. NOMENCLATURE . 79
6. RETERENCES . 85

 gredciding page blank sot fllmed

SUBROUITNE FLOW CHARISS

Page

1. ACPS General Flowchart 30
2. GATHER 31
3. OUTPRC 32
4. BCDINT 39
5. CDDATA 45
6. PACK 50
7. SQZB 53
8. TRNLOD 57
9. PIPL 61
10. HEATEX 64
11. ADIAB 67
12. CMON 70
13. CHAM/TURBOP 74
14. ISOTH 77FIGURES
15. ACPS Demonstration Case 22

1.0 INTRODUCTION

The purpose of this document is to provide the user with a manual containing all information necessary to operate the steady-State Attitude Control Propulsion System Computer Program (SSACPS). The SSACPS was developed as a general computer simulation model capable of modeling a large variety of attitude control propulsion systems (ACPS). This model has been developed under MSC/TRW Task 705-1 along with the ACPS Transient Computer Program.

The SSACPS was developed with the capability to simulate operation of ACPS components connected in a large variety of configurations. The components are connected within the program by the user, using data required to define initial and operating conditions. The component models consist of gas generators, combustors (monopropellant and bi-propellant), lines (adiabatic, isothermal, and heat transfer with friction-liquid/gas), heat exchangers, junctions, regulators, pressure boundaries, and liquid and gas valves. The system model uses hydrogen and oxygen properties from detailed NBS property subroutines. The data are input through the numerical input subroutine TRWLOD and the system equations are solved by the nonlinear equation solver, TRW BEGS. The constraint equations for each component set and the state variables are selected by the user. This allows a great deal of flexibility in solving for either fluid state points or component dimensions.

This document is comprised of two volumes and is to be used as a supplement to the Engineer's Manual, (Reference 1). Volume I contains the user's and programmer's information and Volume II (Reference 2) contains a copy of the program listing. Reference 1 contains more detailed information on each compo- . nent model. The SSACPS was developed for use on MSC's UNIVAC 1108 computer.

2.0 PROGRAM DESCRIPTION

2.1 Program Definztion

The SSACPS is a flexible steady-state attitude control propulsion simulation computer program. The program consists of engineering equations simulating the fluid states using properties of hydrogen and oxygen. The combustor gases are modeled using curve fit data. ACPS components are available for combination in any type of ACPS simulation.

The SSACPS program is stored on a PCF tape which contains the entire program. The program includes subroutines which model individual components, thermodynamic property data, a nonlinear equation solver, and a set of driver subroutines.

TRWLOD (card input) input is used to enter the component data and system configuration. TRWLOD $1 s$ described in Section 4.8 and the descrıption of the card inputs is presented in Section 3.1.3.

2.2 Method of Solution

The theory and mathematical derivations for this program are described in Reference 1.

3.0 USERS INFORMATION

The following sections present detailed descriptions of the types of input data and its format.

3.1 Input Description

3.1.1 Solution of NonIinear Equations: Input

For normal usage $\operatorname{IFIN}=0$. IFIN $\neq 0$ means that the finishing procedure only is to be executed. The purpose of this procedure is to examine the function F in a neighborhood of a given point X_{o}, where, presumably, $F\left(X_{0}\right)$ is a minimum. This is accomplished by perturbing each component of X_{o} by plus and minus small amounts, evaluating the corresponding functions, and printing all information as output vaa the system output tape. The routine was designed such that BEGS may be called with IFIN=0, and then mmediately called again with IFIN 70 without changing any other parameters. This procedure allows the user to test the solution just obtained.

The parameters are defined in Section 3.1.1 for the normal usage option (IFIN=0), and in Section 3.1.2 for the finishing procedure. For either option the parameters $H, B \emptyset U N D S, J V E C T R$, and EPSLIN may be zero upon entry; "reasonable" values will then be substituted by the program.

Printout of information concerning any difficulties encountered by the program in solving the equations can be obtained by setting EPSLIN<0. 3.1.1.1 Solution Normal Usage (IFIN=0)

STATE $\quad=$ State varıables $X_{\lambda}\left(X_{1} \ldots X_{m}\right)$ used in non linear equation solver; first value input is the name of the variable, second and third values are the location of the variables, and the fourth value is the users starting guess. (State output is the program solution)

Example:

$$
\begin{aligned}
& \text { STATE }=W D \emptyset T G, 1,1,5 ., \text { AREAT, } 1,1, .3 \\
& \text { flowrate WD } W \text { TG, Iine } 1 \text {, node } 1, \text { Ist guess } \\
& 5.1 b m / s e c, \text { area throat, combustor } 1 \text {, Dumy } \\
& \text { value } 1 \text {, Ist guess. } 3 \text { square inches. }
\end{aligned}
$$

The following list presents the state variables used in the non-linear equation solver:

WDOTG (II, JJ)	Flowrate, Line II, node JJ	$1 \mathrm{bm} / \mathrm{sec}$
$\mathrm{MACH}(I I, J J)$	Mach number, line II, node JJ	-
PG (II, JJ)	Pressure, line II, node JJ	$1 \mathrm{bm} / \mathrm{in}^{2}$
XK (I)	Area of value I times discharge coefficient	in^{2}
PRE (I)	Discharge pressure of regulation I	$1 \mathrm{bm} / \mathrm{in}^{2}$
DIALI (II)	Diameter, Iine II	in ${ }^{2}$
TIEMP (II , JJ)	Temperature, line II, node JJ	deg-R
THITEMP (II, JJ)	Total temperature, line II, node JJ	deg-R
PGPBL (I)	Pressure at Pressure Boundary I	$1 \mathrm{bm} / \mathrm{in}^{2}$
$\operatorname{ARTNJ}(I, I I)$	Area Injector, Combustor I, line II	$i n^{2}$
PCI (I)	Combustor (I), Chamber pressure	$1 \mathrm{bm} / \mathrm{in}^{2}$
AREAT (I)	Area throat Combustor I	.in ${ }^{2}$
THRT (I)	Thrust Combustor I	1 bf
PDELP (I)	Pressure rise through turbopump (I)	psia
LENGTH (I)	Length heat exchange tubes	in
$\mathrm{RI}(\mathrm{I})$	Inner radius of concentric heat exchanger tubes	in
$R \emptyset(\mathrm{I})$	Outer radius of concentric heat exchanger tubes	in
HR (I)	Hydraulic radius	in
P(I)	Accumulator Pressure	$1 \mathrm{bm} / \mathrm{in}^{2}$
H	$\left(h_{1}, \ldots, h_{M}\right)$ [input] is a vector of perturbat for the initial function evaluations. If h $h_{i}=.01\left(x_{j}\right)$ will be automatically substatut $h_{i}=.001$ will be substituted instead. H [output] is set to $(0,0, \ldots, 0)$.	$\begin{aligned} & \text { s on X } \\ & 0, \text { then } \\ & \text { if } x_{1}= \end{aligned}$

IBNDS

BØUNDS

B \emptyset UNDS
II
N
MAXIT
IDER

JVECTR

EPSLN

BL $\emptyset \mathrm{CK}$

ITERS
[input] is zero if the solution to the linear least squares solution by (LEGS) is to be unconstrained.

IBNDS is nonzero if the least square solution is to be constrained by the use of BøUNDS (described below). The recommended usage here is IBNDS $7^{\circ} 0$, for the routine will evaluate $B \emptyset U N D S$ and if too small, will increase its values to a size where they have no effect.
($b_{I}, \ldots, b_{N A}$) [input] is the vector of constraints for bounding the least squares solution (IBNDS). If any $b_{i}=0$, then $b_{i}=10$ will be automatically substituted.
[output] is set to $(0,0, \ldots, 0)$.
[input] is the number of variables.
[input] is the number of functions.
[input] is the maximum number of iterations allowable.
[input] is zero for the secant method. IDER is nonzero if the user computes the matrix of partial
derivatıves in Component Subrountines.l
$\left(j_{1}, \ldots, j_{M}\right)$ [input] is a vector of integers, which allow the user to hold fixed a particular combination of the variables. If $j_{i} \neq 0, x_{i}$ will be disregarded in the iterative procedure, but will be present as input to FCøMP. If $j_{i}=0, x_{i}$ is taken to be a true variable and is solved for.
[input] is a convergence test. The routine will exit if the following test is passed:
where $\varepsilon=$

$$
\begin{array}{r}
\left|\Delta x_{i}\right|<\varepsilon\left|x_{i}\right|, i=1, M \\
\begin{cases}|E P S L N| & \text { if EPSLN } \neq 0 \\
10^{-5} & \text { if EPSLN }=0\end{cases}
\end{array}
$$

Here Δx_{i} is the newly computed correction to the current i-th component of the iterant. If EPSLN <0 a message is printed out to indicate an unsuccessful secant iteration. See Step E in the Appendix.
is a FORTRAN vector used for temporary storage. The DIMENSION of this vector must be at least $(3 M+4)(M+1)$ $+N(2 M+1)$.
[output] the magnitude of ITERS is the actual number of iterations completed before returning to the calling program. If ITERS = MAXIT, the "solution" should be regarded with suspicion. If ITERS is negative, iteration was terminated due to inability to find suitable function values.

The SSACPS input is used in a way which defines the selected system. Each component is defined in the SYSCOM array. This array defines the order in which the program calculations will proceed. For example, calling SYSCOM=TANK, 1, PIPILL, 4, PBL, 3 would set up an ordered three-component connection of a tank, liquid line and a constant pressure boundary. Each component must have all of the inlet connections defined by input prior to calling the component in the array SYSCOM. For example, before calling combustor 1 , the following system setup must be set by input: SYSTEM $=$

PIPL, 1, PTPL, 2, CHAM,1. This represents the connection of pipes 1 and 2 to combustor 1. Prior to calling a turbopump the following information must be set by input: SYSCOM=PIPLL, 1, PIPL, 2, PIPL, 3, TURBOP, 1, PIPL, 4 . This turbopump input identifies a liquid line PIPLL at the inlet to the pump and PIPL 2 and 3 as the gas lines input to the gas generator (GG, modeled as one of the combustors, (HAM). Note that the GG is automatically connected to the turbine inlet of the turbopump. The order of the component selection is also the order which the calculation in the program will proceed. Both the Individual components and their connections must be defined in detail.

The required inputs for each component are defined in Sections 3.1.4 through 3.1.15. The state variable (STATE), and functional constraints (FUNCI), defined in Section 3.1.2 are used in the program input. The state variables (STATE) are the unknowns in the system and the functional constraints (FUNCT) are the constraint equations used by the nonlinear equation solver to obtain a solution. An example of the input used to define the state variables are as follows:

$$
\operatorname{STATE}=\operatorname{ARINJ}, 1,1, .9, \operatorname{ARINJ}, 1,2, .8 \text { AREAT }, 1,1.3
$$

The first value ARINJ represents the area of the injector in chamber 1 , line 1 and the first guess used in the program value is 0.9 inches ${ }^{2}$. ARINJ is the area of the injector connected to chamber I and line 2 . AREAT is the area of the throat of chamber 1 , the second value of 1 is a dummy value necessary for input only and the initial guess for the throat area is 3. inches ${ }^{2}$. The associated functional constraints to go with the state variables defined above as follows:

$$
\text { FUNCT }=\text { CONCT, } 1, \quad \text { CONCI, } 2, \quad \text { CONCI }, 3
$$

The first constraint, CONCT 1 , is the injector area constraint for line 1 in the first combustor; CONCT 2, is the injector area constraint for line 2 combustor 1; and CONCT 3 is the throat area, chamber pressure or thrust constraints for combustor 1. Proper selection requires that the number of constraints match the number of state variables. A sample input case is presented in Section 3.2

The following represents the description of data cards for TRILOD input package.

Input of Numerical Data may assume the following forms in columns 1-72;
(a) User defined argument name $=$ constant
(b) User defined array name $=$ set of constants (separated by commas)
(c) User defined argument = subscript, set of constants (separated by commas) or

User defined argument, subscript $=$ set of constants (separated by commas)
(d) User defined array name = dimension of variable, subscript, set of constants (separated by commas).

The dimension should appear between slashes and indicate the number of rows in a two-dimensional array or the number of rows and columns in a three-dimensional array. The dimension and subscripts must follow the equal sign.
(e) User defined array name $=\mathrm{nRV}$ (value V to be repeated n times)
(f) User defined argument name $=$ hollerith characters (alphanumeric only, first alphabetic)
(g) User defined argument name $=$ 'hollerith characters' (limited by apostrophes)
(h) User defined argument name $=$ octal constant

Any combination of the eight types of data input described above may be used in a data set. Data items must be separated by commas. The end of a data set is signified by ENDCAS. An exponential input format may be used, e.g., $A=1$. E-15. If the decimal point is omitted and E, D, or sign appears in the value the number will be converted, assuming the decimal point is to the right of the last numerical character (in the base number). An absence of a decimal point, an E, a D, or an imbedded sign signifies an integer value. An asterısk following the data causes scanning of that data card to stop, permitting comments to be placed after the value. The scan of a card also terminates if an error is detected.

Data may be represented on Numerical Data cards in any of the following forms:

IA $=123 *$ THIS IS A COMMENT
$\mathrm{X}=1.23 \mathrm{El}, 2.9$
$X(2)=2.9$, (1) 123-1
$\mathrm{D} \quad=/ 5 /(2,3), 17.1^{*}$ (where D is dimensioned ($5, \mathrm{n}$), and 17.1 is to be stored in $D(2,3)$)

D $\quad=/ 5,3 /(2,2,3), 17.1 *$ (where D is dimensioned ($5,3, \mathrm{n}$) and 17.1 is to be stored in $D(2,2,3)$)
$\mathrm{DX}=1.23 \mathrm{D} 4$
$\mathrm{DX}=123 \mathrm{D} 2$
$\mathrm{DX}=1.23 \mathrm{D}+04$
A $=3 R 14.1,4 R 2 *$ (fields to be repreated may be real, integer, double precision, hollerith, or octal)

ICON $=\emptyset 040045000000$
ICON $=\emptyset 040045 *$ (twelve digit word is filled with six zeros
to the right)
$A \quad=A B C D^{*}$ (one word is filled with the four characters
followed by two blanks)
$\mathrm{A} \quad=\quad \mathrm{bb}(\mathrm{ABCD}) \mathrm{bb}$ ' (two words as follows; $\mathrm{bb}(\mathrm{ABS}$ and D$) \mathrm{bbbb})$

FUNCT Functions array (2,N) Stored column-wise as name and subscript

SYSCøM Component configuration input. The first value is the name of the system component, the second value is the number of the component.

Total number of system components in Syscom.
3.1.3 System Components. The following is a list of system component modules avallable in this program for compilation into any desired attitude control propulsion system:

PBL	Pressure Boundary (6 press boundaries)
PIPL	Gas pipe line with friction and heat transfer (30 Iines maximum including PIPLL, ADIAB, ISOTH lines)
PIPLL	Liquid pipe line
ADIAB	Gas adiabatic pipe
ISOTH	Gas isothermal pipe
JUNCL	Junction (6 junctions)
CHAM	Bi propellant combustor or gas generator (6 combustors) including (CMON)
CMON	Mono propellant combustor
TANKD	Accumulator or storage tank (5 tanks)
TURBOP	Turbopump (5 turbopumps)
VALVL	Liquid valve (20 valves including VALVG)
VALVG	Gas valve
PREG	Pressure regulator (10 regs)
FEEDB	Feedback constraint subroutine (5 values)
HEATX	Heat Exchanger (5 each)

3.1.4 Constraints

The constraints (F) are incorporated in the system component models and are utilized by the nonlinear equation solver to obtain the smallest constraint such that $\|\mathrm{F}\|^{2}$ is a minimum.

Symbol	Description	Dimensions
PB(I)	Pressure boundary constraint	6
JUN(I)	Flowrate at junction const raint	6
$\operatorname{CONCT}(\mathrm{I}, \mathrm{J})$	Combustor oxidizer flowrate constraint ($1, J$) Combustor fuel flowrate constraint ($2, J$) Combustor chamber pressure constraint ($3, J$)) 3,6
POWC(I)	Turbopump power balance constraint (pump power $=$ turbine power)	5
WTGC(I)	Turbine flowrate constraint (turbine flow $=$ gas generator flow)	5
FBWC (I)	Feedback flowrate constraint	6
FBPC (I)	Feedback pressure constraint	6
FBTC (I)	Feedback temperature constraint	6
тНøС (I)	Heat exchanger outlet temperature constraint	5
CGGTC (1)	Chamber (GG) combustion temeprature constraint to heat exchanger	6
CGTANK (I)	Gas inlet pressure constraint to tank	5
$\operatorname{CPJU}(I, J)$	Jiinction inlet lines pressure constraints	10,5
CLTANK (I)	Inlet liquid pressure constraint to tank	5
3.1.5 PBL Pressure Boundary (Reference 1, Section 3.4.3.2)		
Symbol	Description U	Units
PBL (I)	System component name for pressure boundary I	
IEND (I)	END to which pressure boundary I is connected ($1=$ upstream, 2 -downstream)	
IPB (I)	Tells which line is connected to pressure boundary I	

Symbol	Description	Units	Dim.
PGPBL (I)	Pressure at pressure boundary	PSIA	6
TT (I)	Switch for total temperature input to PBM ($=1$ Input total temperature $=2$ Input fluid temperature		6
TTTEMP (II,JJ)	Static temperature	${ }^{\circ} \mathrm{R}$	20,30
TTTEMP (II, JJ)	Total temperature	${ }^{0} \mathrm{R}$	20,30
$P B(I)$	Pressure boundary downstream constraint		6
3.1.6 Junction input (Reference 1, Section 3.4.7)			
Symbol	Description		ions
JUNCL (I)	System component name for junction I		
$\operatorname{JUN}(\mathrm{I})$	Flowrate constraint in junction subroutine		
NLINJU(I)	Number of pipes at the Ith junction		
$\operatorname{IJUNC}(I, J)$	Array which denotes connection to junction of J lines, upstream lines must be input first positive and the downstream lines negative		
3.1.7 Valve/Orifice (Reference 1, Section 3.4.5)			
Symbol	Description	Units	Dim.
VALIVG (I)	System component name gas valve I		20
VALVL (I)	System component name Iiquid valve I		20
VAD (I)	Line to which downstream end of valve is connected		20
VAI (I)	Line to which upstream end of valve is connected		20
XK (I)	Discharge coefficient times area of valve	In^{2}	20
3.1.8 Mono/Bi-Propellant Combustors (Reference 1, Section 3.4.11)			
Symbol	Description	Units	Dim.
AREAT (I)	Chamber Throat Area	IN**2	6
ARINJ (I)	Area Injector	IN $2 * 2$	6,2
PCI (2)	Chamber Pressure constraint	PSIA	6

Symbol	Description	Units	Dimensions
AJ (I)	Switch for input PDROP (AJ=1, Input PDROP)		6
PDROP (1)	Pressure drop across injector PSIA	PSIA	6
NCHAM (I)	Number of chambers		6
$\operatorname{ICHAM}(\mathrm{I}, \mathrm{N})$	Number of lines connected to the nth inlet of combustor I		6,2
CV(I, J)	Injector discharge coefficient		6,2
THRT	Engine Thrust constraint	1 bf	6
PA'TM	Atmospheric pressure	PSIA	1
	Mono-Propellant Only		
CMON(I)	System component name for monopropellant combustor I		
CTV	Constraint equation switch for combustor:		. 1
	$=1$ Specific Impulse constraint $=2$ Chamber measure constraint $=3$ Thrust constraint)		
LAMDA (1)	Divergence nozzle coefficient		6
$\operatorname{CDC}(\mathrm{I}, \mathrm{J})$	Chamber flowrate discharge coefficient		6,2
ISPI (I)	Specific impulse constraint	sec	6
AREAE (I)	Area exit chamber	in**2	6
	Bi-Propellant Only		
CHAM (I)	System component name for bi-propella combustor I		
NCOEF	Number of coefficients in curve fits for propulsion parameters		1
MW2 (I)	Molecular weight coefficients in curve fit equation combustor	Deg. R	4
TC2 (1)	Temperature coefficients in curve fit equation		4

Symbol	Description	Units	Dim.
CP2 (I)	Specific heat coefficients in curve fit equation	,	4
CS2 ($)^{\text {) }}$	CSTAR coefficients in curve fit equation	$\mathrm{ft} / \mathrm{sec}$	4
IS2(I)	ISP coefficients in curve fit equation	sec	4
$\operatorname{CONCT}(1, I)$	Thruster (I) flowrate, $\dot{\text { w }}_{0}$, constraint equation	sec	3,6
$\operatorname{CONCT}(2, I)$	Thruster (I) flowrate, \dot{w}_{f}, constraint equation	sec	3,6
$\operatorname{CONCT}(3, I)$	Pc, thrust constraint equation	sec	3,6
3.1.9 PIPL Gas Line (Reference 1, Section 3.4.1)			
Symbol	Description	Units	Dim.
$\operatorname{ADIAB}(\mathrm{I})$	System component name adiabatic line I		30
PIPL (1)	System component name gas line I		30
PIPLL (I)	System component name liquid line I I		30
ISOTH (I)	System component name isothermal line I		30
ALPHA (II)	Angle line (II) makes with horizontal	Deg.	30
TH (II)	Wall thickness of line (II)	n.	4,20,30
NPIPL	Number of lines		1
DIALO (II)	Outside diameter line II	n.	30
GEE	Acceleration due to gravity	$\mathrm{ft} / \mathrm{sec}^{2}$	1
HNPR	Exponent on Prandtl number for line inner wall film coeffncient		1
HNRE	Exponent on Reynolds number for line inner wall film coefficient equation		1
HOEX	Exponent on Prandtl+Grashof numbers for line outer film coefficient (stored 0.25)		1
TENV	Temperature of environment	Deg. R	1
WTHCON(I)	Wall thermal conductivity	$\frac{\mathrm{BTU}}{\mathrm{ft-hror}}$	30
XLENGL(I)	Length of the Ith line	In.	30

Counter Flow Heat Exchanger

Symbol	Description	Units	Dim.
P (I)	Pitch distance between tubes center to center	In	5
ARFL (I)	Flow area cross section of heat exchanger outer tube	IN ${ }^{2}$	5
NT (I)	Number of tube wraps		5
DTB (I)	Diameter of tube bundle	In	5
HRS (I)	Switch for hydraulic input radius ($=1$ input, $=0$ calculated in program)		5
$\operatorname{HR}(\mathrm{I})$	Hydraulic radius		5
KLT (I)	Loss for entrance, bends, and discharge coefficient		5
LT (I)	Length of inner tube	In	5
LS (I)	Heat exchanger shell length	In	5
DHYO (I)	Hydraulic dia for crossflow helicoil heat exchanger		5
DSI (I)	Diameter of heat exchanger shell total heat transfer for crossflo exchanger	side) at	
	* ${ }^{\text {PParallel }}$ or Crossflow Heat Exchan		
Symbol	- Description	Units	Dimensions
LENGTH (I)	Heat exchanger length	In	5
RI (I)	Inner tube radius	In	5
RO(I)	Outer tube radius	In	5
THICK (I)	Wall thickness of inner tube	In	.5
3.1.11 Tank (Reference 1 , Section 3.4.3)			
TANKD (I)	Svstem component name for accumulators/tanks I		
TIMEND	Time to end program	sec	1

Symbol	Description	Units D	Dimensions
DELT	Time increment	1.0 sec	1
WD $¢$ TG (II,JJ)	Inlet liquid flowrate	$1 \mathrm{bm} / \mathrm{sec}$	30,20
WDФTG(II, JJ)	Outlet liquid flowrate	$\mathrm{lbm} / \mathrm{sec}$	30,20
LDMI (I)	Number of lines, connected to tank gas inlet'		5
LDMO (I)	Number of lines, connected to tank gas outlet		5
LDWI (I)	Number of lines, connected to tank liquid inlet		5
LDWO (I)	Number of lines connected to tank liquid outlet		5
AVENT (1)	Relief valve flow area	in^{2}	5
CP1 (I)	Specific heat C_{p} - species 1	$\mathrm{B} / 1 \mathrm{bm}-{ }^{\circ} \mathrm{R}$	5
CP 2 (I)	Specific heat C_{p} - species 2	B/lbm- ${ }^{\text {o }}$ R	5
R1 (I)	Gas constant 1 - species 1	$\mathrm{B} / 1 \mathrm{bm}-{ }^{\circ} \mathrm{R}$	5
R2 (I)	Gas constant 2 - species 2	$\mathrm{B} / 1 \mathrm{bm}-{ }^{\circ} \mathrm{R}$	5
PVENT (1)	Relief valve vent pressure	Psia	5
$P(I)$	Initial tank pressure	Psia	5
TTANK (1)	Initzal tank temperature	${ }^{\circ} \mathrm{R}$	5
TIN (1)	Inlet gas temperature-species 2	${ }^{\circ} \mathrm{R}$	5
TIME	Time	sec	1
VTANK (I)	Tank volume	ft^{3}	5
WOL(I)	Initial mass of fluid	1 lbm	5
WDøTG(II, JJ)	Inlet gas flowrate line II, node JJ	1bm/sec	30,20
WDØTG(II, 1)	Outlet gas flowrate line II, node JJ	$\mathrm{lbm} / \mathrm{sec}$	30,20
DQIN (I)	Heat rate into tank	Btu/sec	5

Symbol	Description U	Units Dim	Dimensions
TURBOP(I)	System component name for the turbopump I		5
AREAT (I)	Area of turbine inlet throat (Same as GG throat) turbopump I.	$i n^{2}$	6
CEF1, CEF2 (${ }^{\text {) }}$	Coefficients on turbine efficiency curve		
RPMD (I)	Pump RPM at design speed	$\mathrm{rev} / \mathrm{min}$	in
IPUMI (1)	Line connected to pump inlet		5
IPUM ϕ (I)	Line connected to pump outlet		5
DIAD (I)	Diameter pump design	in	5
DIAP (I)	Diameter pump actual	in	5
DIAT (I)	Diameter turbine	in	5
GR (I)	Pump to turbine gear ration		5
ATR(I)	Area turbine inlet	in ${ }^{2}$	5
ATD (I)	Area turbine discharge	in ${ }^{2}$	5
KTD (I)	Discharge coefficient turbine		5
KTI (I)	Discharge coefficient turbine inlet		5
3.1.13 PREG Pressure Regulator (Reference 1, Section 3.4.3.2)			
Symbol	Description U	Units Dime	Dimensions
PREG(I)	System component name		10
PRIN (I)	Line connected to regulator inlet		10
PROU (I)	Line connected to regulator outlet		10
PRE (I)	Regulator pressure discharge	psia	10
3.1.14 Feedback Constraints (Reference 1, Section 3.4.18)			
Symbol	Description	Units Dim	Dimensions
$\operatorname{FEEDB}(\mathrm{I})$	System component name		6
FBD (I)	Line connected to feedback subroutine downstream (flow going into feedback)		6

Symbol	Description	Units.
WFB(I)	Line connected upstream	
FBWC(I)	Flowrate feedback constraint equation	6
FBPC(I)	Pressure feedback constraint equation	$\ddots 6$
FBTC(I)	Temperature feedback constraint equation	6

3.2 Output Description

The output description is given in the output processor subroutine, Section 4.1.

3.3. Typical Deck Set-up

A typical ACPS model (Figure 1) was formulated to exercise all the program options. The hydrogen $\left(\mathrm{H}_{2}\right)$ side of the ACPS was modeled in detail, and the oxygen $\left(\mathrm{O}_{2}\right)$ side was simulated as constant pressure boundaries. The system consists of a liquid hydrogen $\left(\mathrm{LH}_{2}\right)$ storage tank feeding a turbopump assembly. The turbopump increases the LH_{2} pressure to 1421 psia and transmits the LH_{2} to the heat exchanger which vaporizes the propellant. The heat exchanger and turbopump are driven by separate gas generators (gas-gas) which are operated in the feedback mode obtaining propellants from downstream of the heat exchanger. The heat exchanger also feeds an accumulator and three thrusters. The following listing represents a typical set of card input and represents the schematic as shown in Figure 1.

Figure 1. ACPS Demonstration Case

＊U UNCTIONS
NLINJU $=$ 5：4，4 4
IJWNC $=/ 10 /(1,1), 19,(1,2),=20^{\prime}:(1,3) ;=24,(1,4), 01,(1,5),=24 ;$
$(2, q), 2,(2,2), a 3,(3,2),=5,(2,4),-7$,
$\sim(3,1): 9,(3,2),=10,(3,3): 956(3,4):-144$

\＃
\＃\＃LINES
＂た
XLENGI．＝15．，15．，20：，0．1．201，
$0,1,20,0,1,5,0,5,0 \%$ $0,1,5,0,5,1,5,0,0,1$, 20．12．0．15：15：19．150 5．0．10．， $5, C, 15: 10,1$ $5,0,5,0,15:$
EMIS＝28RO．37\％
EMIS（16）：2R．2907＊
LIALO $=6,183.0511,88108,1,86$
$1,0,1: 8: 1,8,3,85,5: 6$,
1．8．1．8：1．8．1．8．1．80．
6．1．6．1．6．1，6．1．6．1．19．
$1.936 .1 .936 .1,0576,6: 1: 1,9360$
1．936：1．e576：6．1＊
TH $=28 R 0.25$
NCDEL＝15Rz：2R2．11F3＊
NPIPL $=28 \#$
GEE $=0_{8} \overline{0}_{4}$
HNPR $=0.4 \%$
HNRE ： 0.8%
HOEX $=0.25 \%$
TENV＝6CO．
NPLINF $=8 \mathrm{FR} 2,7 \mathrm{R} 1,7 \mathrm{~F} 2: 1,3 \mathrm{R} 2,1,2 \mathrm{~m}$

$(9,1), 15 i 99,(10,1), 5,33^{\prime}(12,1), 5,33,(14,1), 5,33 \Rightarrow$

KGAS $=48.2013 .77215 *$
$K A=281.395$ に
$\#$
a PRESSURF ROUNLAFIES
\＃\＃FPRL $=550: 580.14 C 0$ \＃
APBL $=3 \sharp$
IPB $=9.23 .27$＊
IEAD $=1,1,1$ ；
莫

4
VTANK $=20.1200$ ．
WOL $=0.12000$.
TLIG $=$ C． 45 ．
CF1 $=25.2 .45$ 年
$\mathrm{CP}_{2}: .25: 3.45$ \％
R1 ：2F．993\＃

```
PVENT = 2 \(\quad\) RR:9e3
AVENT = \(2 \mathrm{R} \mathrm{O}_{\mathrm{o}}\) "
DGIN \(=2 F O\).
LOMI \(=\hat{2}, \bar{C}_{3}\)
LDWO \(=\) Cis6
\(P(2)=52,4\)
TTANK = 50C..45.
3
F* HEAT EYChartaER
TYPE \(=2:\)
LI = 3
\(\mathrm{LC}=1 *\)
\(X I=1: 4\)
\(X G=1, \%\)
THEC \(=500\).
HEOI \(=017\) *
HEDO \(=18 \%\)
hGil = 2 H
\(\mathrm{RI}=3, *\)
\(\mathrm{KC}=4.34 \mathrm{~m}\)
THICK \(=0.05 \%\)
*
THREOFGP
\(\begin{aligned} & \text { CEF2 } \\ & \text { CEF }\end{aligned}=5.6\).
\(\mathrm{FPMD}=50000\).
IPUMI \(=16\) \%
IPLMO \(=17\) *
\(G R=1 . \quad\) :
CIAD = 1: *
LIAP \(=1: *\)
CIAT \(=\frac{1}{2} 4.83\)
ATl \(=C, \hat{6} 6\) a
\(A T D=10 . \quad *\)
\(K T D=1\) *
\(K T 1=1: \quad\) :
\(\mathrm{WTHCOH}=30 \mathrm{~F} 9.41 \%\)
* *
* FRFSSURE FEGULATOF
FRE \(=550.8204 .14001 \%\)
PRIN \(=1,20.24 *\)
PROU \(=2,21,25 *\)
*
G* FEENEACK LOOFS (PRESSURESFLOKRATE FIXEU THE REFORE FBHC /FBPC NOT
** FEQUfRED FBTE ONbY:
FP! \(=25.21\) a
\(\mathrm{FBD}=26.22 *\)
```



```
RFLAG \(=7.4\)
ENDCAS
```


4.0 SUBROUTINES

This section contains a list of the subroutines utilized in the SSACPS program and a detailed discussion on the more complicated subroutines. Descriptions of the remaining subroutines may be obtained from the program Iisting.

Subroutine names and purpose follow:

ADIAB	Adiabatic gas line
BEGS	Nonlinear equation solver
BETA	Interpolation
BDCINT	Hollerith to integer conversion subroutine
BPROPG	Calculates the gas properties at saturated conditions
BPROPL	Calculates the liquid properties at saturated conditions

CDDATA Data Record Processing
CHAM/TURB $\emptyset P \quad$ Bi-propellant combustor or turbopump
CHOICE Chooses heat exchanger configuration and calculation method

CMON Monopropellant combustor
CWALL Thermal conductivity of wall
DP2R Double precision to Real Conversion Function
FCOMP1 Heat transfer with friction
Mach number differential equation solved by NewtonRaphson iteration

FCOMP2 Isothermal pressure boundary differential equation by Newton-Raphson iteration

FCOMP3 Adiabatic Mach number differential equation solved by Newton-Raphson iteration

FEEDB Feedback constraints
GATHER Gathers routines in order to create system as input by user.

HEATEX Heat exchanger calculations

HEATX	Connects input parameters and line comnections to heat exchangers
INITAL	Tank initialization
INTEG	Integration
INTER2	Interpolation
INTERP	Interpolation
TSOTH	Isothermal gas line
Junce	Junction
LEGS	Single or double precision solution of an overdetermined system of Iinear equations
NUSLET	Nusselt number
OUTPRC	Output processor
PAGK	Character packing subroutine
PBL	Pres̃sure boundary
PERFOR	Computes dimensions
PIPL/PIPLL	Gas or liquid line with heat transfer and frction
Preg	Pressure regulator
R2DP	Real to double precision conversion junction
SQZB	Blank Deletion Subroutine
SSPIPE	Main program driver
TAND	Tank driver
TANK	Tank/accumulator
TRWLOD	Numerical Data Input Subroutine
VALVG	Gas valve
VALVL	Liquid valve
WRITE	Writes output from heat exchanger

PROPERTY SUBROUTINES

Symbol
BLK2

BPROPG
BPROPL

HPTCV

HPTD
HPTCP

HPTTC

HPTV

H2OH2

LATENT

PROPTY

PTHEAT

SAT

THERM

TPOCB1

TPOCB2

Description

Initializes tables for use by PTHEAT
Calculates saturated gas properties (oxygen and hydrogen)
Calculates saturated liquid properties (oxygen and hydrogen)

Computes the specific heat of hydrogen at constant volume

Computes density of hydrogen from NBS data
Computes specific heat for hydrogen at constant pressure

Computes thermal conductivity for hydrogen from NBS data

Computes viscosity of hydrogen from NBS data
Calculates fluid properties of gas generator products ($\mathrm{O}_{2} / \mathrm{H}_{2}$ combustion)

Calculates saturated gas and liquid enthalpjes (hydrogen and oxygen)

Thermodynamic property lookups (density, viscosity, heat capacity, thermal conductivity, Prandtl Number)

Computes specific heat of hydrogen at constant pressure or volume (NBS data)

Calculates the saturation temperature for hydrogen and oxygen

Computes thermodynamic properties of oxygen

Initializes Weber's themodynamic properties of oxygen Initializes Roder's thermodynamic properties of oxygen

Flowcharts 1 and 2 represent generalized flow charts of the SSACPS program logic showing the subroutine calling sequence.

Program Driver (SSPIPE)

Flowchart 1. ACPS General Flowchart

Flowchart 3. Flowchart for Subroutine OUTPRC

4.1 OUTPRC

Output Processor Subroutine

Purpose

The OUTPRC subroutine generates printed output at case termination for each of the user specified system component subroutines. Usage

Calling Sequence

ØUTPRC
Name
Common Inputs Definition Units Dimensions
$\operatorname{AREAI}(I, J) \quad$ Inside line cross section area
in $^{2} \quad 6,2$

AREAT (I)
$\operatorname{ARINJ}(I, J)$
Area of the combustor throat
Area of combustor injectors
in $^{2} \quad 6$ (line I, node J)
$\operatorname{ATD}(\mathrm{I})$
ATI (I)
Area, turbine discharge
in $^{2} \quad 5$

Area, Turbine Inlet
$i n^{2}$
5

CDC (I) \quad| Discharge coefficient of the mono- |
| :--- |
| propellant combustor injector |

CF(I) Thrust coefficient . -
CP (I) Specific heat at constant pressure $\quad \frac{\mathrm{BRU}}{1 \mathrm{~b}-{ }^{\circ} \mathrm{R}}$
$\operatorname{CSTAR}(\mathrm{I}) \quad$ Characteristic exhaust velocity $\mathrm{ft} / \mathrm{sec} 6$
CV(I) Discharge coefficient of the bi- - 6 propellant combustor injector

CVEL (I)
Isentropic spouting velocity
ft/sec 5
DIALI (I) Inside diameter of line in 30
DIAT (I) Diameter of turbine in 5
DMVENT (I)
DQIN (I)
Gas Flowrate through the vent $1 \mathrm{bm} / \mathrm{sec} 5$
Heat into the accumulator/tank
$\mathrm{BTU} / \mathrm{sec} 5$
ETAT(I)
Turbine efficiency

Name
Common Inputs

FRL (I)
GR(I)
HI (I)
$H \phi(I)$
$\operatorname{HRAD}(\mathrm{I})$

ICHAM (I)
IEND (I)
$\operatorname{IPB}(I)$

IPUMI (I)
IPUND (I)
ISP (I)
KTHER(I)
KTI (I)
LAMDA (I)
LDMI (I)
LDMD (I)
LDWI

LDWW (I)

MACH (II, JJ)
MEX (I)
MR (I)
MWC (I)

Definition
Friction
Units Dimensions

- 30

Pump to turbine gear ratio
Heat' transfer coefficient, inside tube of the heat exchanger

Heat transfer coefficient, outside tube of the heat exchanger
Equivalent heat transfer coefficient due to radiation

Number of the line connected to the nth -
$\frac{-\operatorname{BTU}}{\text { in }^{2} \sec ^{\circ} R} 5$ $\frac{\mathrm{BTU}}{\mathrm{in}^{2} \sec ^{\circ} \mathrm{R}} 5$
$\frac{\mathrm{BTU}}{\sec ^{\circ} \mathrm{R}} 5$ inlet of combustor (I)

End to which pressure boundary (I)

- 6 is connected

Used to identify which line is
$-\quad 6$ connected to pressure boundary I

Line connected to pump inlet

- 5

Line connected to pump outlet

- $\quad 5$

Specific impulse of chamber (I)
Fluid conductivity line II
$\frac{1 b_{f}-\mathrm{sec}}{1 \mathrm{bm}} 6$
$\frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{ft}^{\circ} \mathrm{F}} 30$
Total loss coefficient (liquid line) - 30
Nozzle divergence coefficient

- 6

Line connected to gas inlet to tank - 5
Inne connected to gas outlet from tank - 5
Number of lines connected to liquid

- $\quad 5$ inlet to tank

Number of lines connected to liquid

- 5 outlet to tank

Mach number pipe II node JJ - 20,30
Chamber Mach number at exit

- 6

Mixture ratio

- $\quad 6$

Molecular weight of combustor combustion $\frac{1 \mathrm{~b}}{1 \mathrm{bbole}}{ }^{\mathrm{mol}}$ products

Name			
Common Inputs	Definition	Units	Dimensions
NLINJU(I)	Number of lines at junction (I)	- .	10
NODEL (I)	Nodes in line I	-	30
$\mathrm{NPR}(\mathrm{I}, \mathrm{J})$	Prandtl number, line I, node J	-	30,2
NRE (I, J)	Reynolds number of line I, node J	-	30,2
NSYS	Number system components	-	1
P(I)	Pressure in tank I	psia	5
PCI (I)	Combustor chamber pressure (I)	psia	5
PCN(I)	Monopropellant combustor chamber pressure	psia	5
PdELP (I)	Pressure rise across turbopump	psia	5
PDR \quad P (I)	Pressure drop across injector	psia	5
$\mathrm{PE}(\mathrm{I})$	Pressure at the exit of the conbustor	psia	5
$\mathrm{PG}(\mathrm{I}, \mathrm{J})$	Pressure line I, node J	psia	30,20
PGPBL (I)	Pressure at pressure boundary	psia	6
PGT ($1, J$)	Total pressure line I, node J	$\begin{aligned} & \text { psia } \\ & \text { ft-Ib }_{f} \end{aligned}$	30,20
PøWP (I)	Turbopump power	$\frac{f}{\mathrm{sec}_{\mathrm{t}}-1 \mathrm{f}}$	6
PめWT (I)	Turbine power		6
PPI (1)	Pressure into turbopump	psia	5
PP¢ (I)	Pressure out of turbopump	psia	5
PRIN (I)	Line connected to pump inlet	-	5
PROU(I)	Line connected to pump outlet	-	5
PTI (1)	Turbine inlet pressure	psia	5
PT ϕ (I)	Turbine outlet pressure	psia	5
PWめ(I)	Coefficients used to describe the pump pressure rise/flowrate relationship for turbopump I	-	4

Name

Common Inputs	Definition	Units Di	Dimensions
WøL (I)	Weight of fluid in accumulator	1 bm	5
WP (I)	Flowrate through pump	$1 \mathrm{bm} / \mathrm{sec}$	5
WT (I)	Flowrate through turbine	$1 \mathrm{bm} / \mathrm{sec}$	5
WIHCON (II, J)	Flund thermal conductivity, line II, node JJ	$\frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{R}}$	R 30,2
XK (I)	Discharge coefficient times the area of the valve	in ${ }^{2}$	20
XLENGL (I)	Length of each section of pipe	in *	1
Subroutines Us			

WRITE

Subroutane OUTPRC is shown in Flowchart 3, page 32 .
4.2 BDCINT

Hollerith-to-Integer Conversion Subroutine

Purpose

BCDINT computes an integer from an input array, in which each word consists of one left-justified hollerith character, 0 through 9 or a blank, with the remaining 5 characters being hollerith blanks.

Usage
Calling Sequence
BCDINT NCOL, INT, N
Input
$\frac{\text { Arguin }}{\text { NCOL }}$

N
1
Output
INT
$\mathrm{N} \quad 1$

Definition
Array in which all words contain one left-justified BCD character. The remaining five characters of each word are blank

The number of words in NCOL
An integer corresponding to the BCD characters of NCOL

The number of non-blank words in NCOL

Restrictions

Each word of NCOL must contain one of the BCD characters 0 to 9 or a blank left-justified with the remaining 5 characters also blank.

Subroutines Used
SQZB
Method
BCDINT first calls SQZB to adjust the non-blank words of NCOL to the front. Then each word of NCOL is compared to each of the integers 0 through 9 in BCD code. When a match is found, the value to be returned (INT) is increased appropriately. If a non-valid character is found, the value of N is returned negative, in which case the magnitude of N indicates the digit in error.

Subroutine BDCINT is shown in Flowchart 4, page 39.

Flowchart 4. Flowchart for Subroutine BCDINT

4.3 CDDATA

Data Record Processing Subroutine
Purpose
CDDATA reads an eighty character record in two parts. The first 72 characters may contain variable names, subscripts, data and other information while the remaining eight characters are available for sequencing or other user identification information.

Usage
CDDATA is called by TRNLOD for each input record. The record is read and resolved into the various fields, variable names, subscripts, control information, and individual data items. These fields are examined and categorized and loaded into a buffer (KRBF) with identifiers for use by TRWLDD. Numerous error checks are performed as the record is processed.

Calling Sequence

CDDATA.
Input/Output
AIl input and output is through common.

Record Format

The records acceptable to CDDATA are free form in that the information may be in colums 1-72. Columns $73-80$ may be used for sequencing or for miscellaneous information which $1 s$ only read in and printed out on the user specified output unit.

All columns between two separators comprise a field. A separator may be an equal sign, a comma, an asterisk, a slash, a parenthesis, an R preceded by an integer, or apostrophes enclosing BCD characters. Blanks are permissible within all fields. An asterisk ($\%$) except after an apostrophe for enclosing $B C D$ characters terminates the scan, and speeds processing of the record.

Data information may be continued from one record to the next record by omitting the symbol name with storage of the information
continuing in the next consecutive cell. Data may be input for any location of a dimensioned variable (one-, two, or three-dimensional array) by designating the subscript in parenthesis for a single dimensioned array $(A=(3), 10.0)$, by designating the number of rows between slashes followed by the subscript for a two-dimensional array ($B=/ 3 /(3,3)$, 10.9), or by designating the number of rows and columns between'slashes followed by the subscript for a threedimensional array $(C=/ 3,2 /(2,2,3), 9.99)$. A threedimensional array is the largest accepted by subroutine CDDATA.

A BCD word preceding an equal sign (\Rightarrow) is a symbol, and al1 succeeding information is considered data for this symbol until the next symbol is encountered. Octal integers are input as $\emptyset 123456700000$, where the number must be preceded by the letter \emptyset and is stored from left to right as read.

The values of all symbols are stored in the buffer in the same format in which they appear in the record, i.e., BCD , integer, real, octal, or double precision. More than one symbol and its associated value(s) may appear in each record, i.e. $X=3.0, B=(2), 3.2, I=4 *$.

Error/Action Messages

"ILIEGAL USE OF CHARACTER \qquad IN OR AFTER COLUMN \qquad ${ }^{11}$ This message is written when an illegal character is located in any of the various fields. A few of the possible errors are as follows:
a digit larger than 7 in an octal number, two
periods in a real number, and a period in an
exponent.

Restrictions

CDDATA will not store information in arrays having more than three dimensions.

Subroutines/Functions Used
BCDINI, PACK, SQZB

Method
CDDATA reads a record using a $72 \mathrm{~A} 1, \mathrm{~A}, \mathrm{~A}, \mathrm{~A}$ format, prints this record image if requested, and processes the various fields while storing the information in a buffer to be returned to Subroutine TRWLOD. CDDATA scans the record until a field separator is located according to the separator of the field contents. The field and group type flags are defined as follows:

20

30

40

Symbol followed by an equal sign (6 characters or Iess)

Single precision word (real)

Single precision word (integer)
Double prectsion word
$B C D$ strang preceded by an apostrophe

BCD string not preceded by an apostrophe
Octal integer
Definition
Dimension group
Subscript group

Repeat group

The group type will always contain a field type 3, i.e., 23, 33, or 43, representing a dimension, subscript, or repeat integer, respectively.

When the type flag has been determined and the field processed, the type flag followed by the processed field is stored in the buffer. The procedure is repeated for all fields in the record until reaching an asterisk (*) or column 73, at which time a zero is stored in the next buffer cell signifying the end of the data. The number of buffer cells used for this record is stored in the buffer cell 109. The buffer has a storage capacity of 108 cells.

Each symbol requires three buffer cells, one for the type flag, one for the field (symbol name), and one for the symbol storage address. Each
double precision number used three buffer cells, one for the type flag and two for the field (value). Each BCD field uses two buffer cells plus the number of buffer cells (six record columns per cell) needed for the field ($B C D$ string) ; one for the type flag, one indicating the number of $B C D$ words in the field, and the rest for the field. All the other fields only require two buffer cells, one for the type flag and one for the field.

When a symbol is located, the table KSYMB is searched for this symbol, and if found, the address corresponding to the symbol is extracted from the table and stored in the buffer. If this symbol does not exist in the table $\mathrm{KSYMB}_{\text {s }}$ it is an illegal input signified by a zero in the storage address cell of the buffer for this symbol.

Examples

$$
\begin{gathered}
\text { Data record } Y=/ 5 /(1,2) 29.4,(2,3) 100.9,1.2,7.6 * \\
\text { Buffer }
\end{gathered}
$$

```
KRBF(1) = 1
\[
=\mathrm{Y}
\]
```

$$
=
$$

\qquad
$=23$

$$
=5
$$

$$
=33
$$

$$
=1
$$

$$
=33
$$

$$
=2
$$

$$
=2
$$

$$
=9.4
$$

$$
=33
$$

$$
=2
$$

$$
=33
$$

$$
=3
$$

$$
=2
$$

$$
=100.9 \quad . \text { Field (value of } Y(2,3) \text {) }
$$

$$
=2 \quad \text { Type (real) }
$$

$$
=1.2 \quad \text { Field (vaIue of } Y(3,3) \text {) }
$$

$$
=2 \quad \text { Type (real) }
$$

Buffer Definition
$\operatorname{KRBF}(21)=7.6 \quad$ Field (value of $Y(4,3)$) $\operatorname{KRBF}(22)=0 \quad$ Type (end of record)

Number of buffer cells used for this record

Data record $\mathrm{X}=123$., THIS IS NOT A SYMBOL, 012, 1.D5*

	Buffer	Definition
$\mathrm{KRBF}(1)$	$=1$	Type (symbol)
	$=\mathrm{X}$	Field (symbol name)
	$=$	Address of symbol
	$=2$	Type (real)
	$=123$.	Field (value of $\mathrm{X}(\mathrm{I})$)
	$=6$	Type (BCD string not preceded by an apostrophe)
	$=4$	Field (number of BCD words)
	$=$ THIS I	Field (value of $\mathrm{X}(2)$)
	$=\mathrm{S} \mathrm{NOT}$	Field (value of $\mathrm{X}(3)$)
	= A SYMB	Field (value of X(4))
	$=\mathrm{OL}$	Field (value of $\mathrm{X}(5)$)
	$=7$	Type (octal)
	$=120000000000_{8}$	Field (value of $\mathrm{X}(6)$)
	$=4$	Type (double precision)
	$\left.=\begin{array}{l}= \\ =\end{array}\right\}$	$\left.\left.\begin{array}{l} \text { Field } \\ \text { Field } \end{array}\right\} \quad \text { (value of } X(7) \text { and } x(7)+1\right)$
$\operatorname{KRBF}(17)$	$=0$	Type (end of record)
$\operatorname{KRBF}(109)$	$=17$	Number of buffer cells used for this record

A functional flowchart of this subroutine is shown in Flowchart 5, page 45.

Flowchart 5. Flowchart for Subroutine CDDATA
4.4 DP2R

Double Precision to Real Conversion Function

Purpose

DP2R converts a double precision number stored in a type real variable to a real number.

Functional Description
DP2R calls the intrinsic function SNGL to perform the conversion from double precision to a real number.

Usage
Calling Sequence
DP2R X

Input

Argument	Dimension	Definltion
X	1	Value to be converted to real number
Output	-	
Argument	Dimension	Definition
DP2R	1	Converted value
Error/Action Messages		

None

Restrictions
None

4.5 R2DP

Real to Double Precision Convertion Function

Purpose

R2DP converts a real number to double precision to be stored in a type real variable.

Functional Description
R2DP calls the intrinsic function DBLE to perform the conversion from real to double precision.

Usage
Calling Sequence
R2DP X

Input

4.6 PACK

Character Packing Subroutine

Purpose

This subroutine packs BCD characters (one character per word) into an array of six $B C D$ characters per word.

Usage
Calling Sequence
PACK NGARD, LWORD, N

Input

Argument	Dimension	Definition
NCARD	N	An array in which all words have one left-justified BCD character. The remaining five characters per word are blanks.
N	1	The number of words in NCARD
Output		
Argument	Dimension	Definition
LWORD	$\left[\frac{N+5}{6}\right]$, where	An array with six $B C D$ characters. per word obtained by packing the input array NCARD
	[] designated "greatest int	

N
1
The number of words in LWORD
Error/Action Messages
None
Restrictions

None
Subroutines/Functions Used
None

Method

PACK moves and combines BCD characters using bit manipulation and logical functions. The technique used to perform this function in the routine allows the subroutine to remain compatible for use on both the UNIVAC 1108 and the IBM 7094 computers. The following example shows a typical use of PACK: let NCARD be the eight word array (one left-justified $B C D$ character per word) "EXAMPLES" (i.e., NCARD = Ebbbbb, Xbbbbb,etc.), on output, $\operatorname{LWORD}(1)=$ EXAMPL and $\operatorname{LWORD}(2)=$ ESbbbb. N should be input equal to 8, and it will be returned equal to 2 . NCARD is not restricted to alphabetic characters but may contain any alphanumeric characters.

A flow chart indicating the logic used in Subroutine PACK is shown in Flowchart 6, page 50.

Flowchart 6. Flowchart for Subroutine PACK
4.7 SOZB

Blank Deletion Subroutine

Purpose

The input language or numerical input may (in certain places), contain blanks which must be removed prior to processing. SQZB is called for this purpose.

Usage
Calling Sequence
SQZB NCOL, N

Input

Argument	Dimension	Definition
NCOL	N	An array in which each word must be either all blanks or contain at least one non-blank BCD character
N	1	The number of words in the array NCOL

Output
Argument Dimension

NCOL

N

Error/Action Messages

None

Definition

If all the words of the NCOL array initially contained blanks or if all the words of the NCOL array contained at least one non-blank $B C D$ character, then the $\mathbb{N C O L}$ array is unchanged. If, however, there is a muxture of the two, then the output NCOL array will have non-blank words at the beginning of the array and the remaining words of the array filled with blanks. See example in Method.

The number of non-blank words in the array NCOL

Restrictions

None
Subroutines/Functions Used
None
Method
SQZB removes blanks from unpacked (one character per word) arrays of variable length. Non-blank words are left-justified in the array and the remaining words are blanked.

Example
Let the input array NCOL be ten words long with each word containing one BCD character (1eft-justified with blank fill): b, b, S, A, M, b, P, L, b, E (where " b " represents a blank). On return from SQZB the array NCOL will be: $\mathrm{S}, \mathrm{A}, \mathrm{M}, \mathrm{P}, \mathrm{L}, \mathrm{E}_{5} \mathrm{~b}, \mathrm{~b}, \mathrm{~b}, \mathrm{~b}$, one character per word, with $\mathrm{N}=6$.

A functional flowchart of this subroutine is shown in Flowchart 7, page 53.

Flowchart 7. Flowchart of Subroutine SQZB

4.8 TRINLOD

Numerical Data Input Subroutine

Purpose

TRWLOD is an input control routine which takes data contained by a buffer and stores the value (s) of each variable in specified core location(s).

Usage
Calling Sequence
TRVLOD IIN, IØUT, K
Input

Argument	Dimension	Definition
IIN	1	Input BGD tape unit
IめUT	1	Øutput unit for record images.
	.	Suppress output if equal to 0.

Output
Argument Dimension
K
1

Definition

Error flag $=2$, indicates an error

Error/Action Messages

1) "ERROR IN SUBSCRIPT (SEE BUFFER WORD \qquad $)^{\prime \prime}$

This error message is written for any of the following subscript errors. The type flag from the buffer designates that a dimension integer is specified when the dimension has already been defined, the column subscript is being used without the number of rows having been specified, or the third subscript is being used without the number of columns being specified.
2) "INCORRECT DATA TYPE. NO CONVERSION POSSIBLE.
\qquad WAS EXPECTED, \qquad FOUND ON CARD (SEE BUFTFER WORD \qquad .) ${ }^{11}$ This message is written when the type of the given value
is not consistent with the specifications in bits 18-20 of the address word NADR and the value cannot be converted without changing its value.
3)
" \qquad IS AN ILLEGAL SYMBOL"

This message is written when the variable name in the " buffer is not a legal symbol.
4) "Illegal data card contained in buffer"

This message is written when the type flag is greater than 7, a symbol has not been defined ($J=0$) and the first buffer cell contains a value other than a 1 ; i.e., the first data card is a continuation card, or when non-integer subscript, dimension, or repetition values have been used.
5) "ERROR INVOLVING REPETITION OF DATA FIELD (SEE BUFFER WORD \qquad This message is written when either a negative or zero number of repetitions have been requested or repetition of à non-repeatable field is indicated; i.e., symbol name, subscript, etc.

Subroutines Used

CDDATA

Functions Used

DP 2R, R2DP
Method
TRWLOD calls Subroutine CDDATA to process a data record and returns the information contained by a buffer. TRWLOD processes this information storing the value (s) in the location(s) specified according to the given subscript (s) (If any). TRWLOD checks the type of the value in the buffer with the type specified for each varıable, and if the types are not compatible, the value is converted providing the conversion can be accomplished without altering the values. For instance, integers will be converted to real numbers and real numbers converted to integers when conversion does not cause truncation of the fractional part.

If the type flag from the buffer designates that a symbol is in the next buffer location, the symbol is stored in the variable "NAME." The buffer cell (stored in "NADR") following the symbol has the storage address in bits 21-35 and the type (real, integer, BCD, octal, etc.) of the value(s) expected in bits $18-20$ (stored in "LL"). If the storage address is zero and the symbol is not "ENDCAS," this is an illegal symbol, and error message number 3 is written. If the symbol was "ENDCAS," control is returned to the calling subroutine.

A type flag equal to a two, three, four, five, six, or seven (type real, integer, double precision, $B C D$ characters limited by apostrophes, $B C D$ characters, or octal, respectively) designates the type of the value In the next buffer cell. If this type does not agree with "LL," the value is converted, if possible, without changing its value, e.g., integer to real; otherwise, error message number 2 is written. For any value being converted, the message "INPUT VALUE ___ CONVERTED TO ____ is written. If the type flag is the same as the value of "LL," "LL" is equal to zero, or if the value has been converted, the value is stored according to its subscripts (if any). A type flag equal to 1 causes error message number 4 to be wratten.

A type flag of 33 or 23 (type subscript integer or dimension integer, respectively) designates a subscript or dimension information is contained in the next buffer cell. When receiving subscript or dimension information, the subscript or dimension is determined, and if not correctly specified, error message number 1 is written.

A type flag of 43 (repeat integer) signified repetition of the following field is to take place the number of times specified in the next buffer location (location following the 43).

If "LL" is equal to zero, the values are stored as they are input without any conversion. A type flag equal to zero in the buffer indicates that all the information in the buffer has been processed.

After any error message is written, the buffer is dumped for use in diagnosing the error.

A functional flowchart of this subroutine is shown in Flowchart 8, page 57.

Flowchart 8. Flowchart for Subroutine TRWLOD

Flowchart 8, Flowchart for Subroutine TRWLOD (Continued)

4.9 PIPL/PIPLL

Fluid line subroutine simulating heat transfer and friction.

Purpose

Subroutine PIPL calculates the gas line properties and PIPLL calculates liquid line fluid properties that result from flowing through a line having heat transfer and fruction.

Usage
Calling sequence:
PIPL II

Input:
$\frac{\text { Argument }}{\text { II }} \quad \frac{\text { Dimension }}{1} \quad \frac{\text { Definition }}{\text { Gas line number }}$

Entry Point
PIPL II
Output:

Argument	Dimension	Definition	
II	1	Liquid line number	
Name Common Variables	Dimension	Name Common Variables	Dimension
ALPHA	30	FRL	30,20
AREAI	30	GC	1
AREAK	30	GEE	1
AREA \varnothing	30	HI	30,2
CP	30	HNPR	1.
DIALI	30	HNRE	1
DIAL¢	30	Нø	30,2
EMIS	30	HøEX	1
FB	1	HR	5

PIPL/PIPLL

Name Common Variables	Dimension	Name Common Variables	Dimension
HRAD	30,2	PI	1
HRS	5	RFLAG	1
KA	2	RGAS	2
KLT	5	RHøG	30,20
KTHER	30	RHøL	3
LENGTH	5	TENV	1
MACH	30,20	TTEMP	30,20
NGR	30,2	TTTEMP	30,20
N $¢ \mathrm{DEL}$	20	TWALL	30,2
NPLINE	30	UA \emptyset	30,2
NPR	30,2	VEL	30,2
NRE	30,2	VISC	30
PG	30,20	WD\$TG	30,20
PGT	30,20	WTHCON	30

Subroutines/Functions used

$\emptyset \mathrm{PTCP}, \phi \mathrm{PTCV}, \emptyset P T T C, \emptyset P T V, \mathrm{HPTCP}, \mathrm{HPTCV}, \mathrm{HPTTC} \mathrm{HPTV},, \emptyset \mathrm{PTD}, \mathrm{HPTD}, ~ F C \emptyset M P 1$

Flowchart 9, page 61, shows the logic used in Subroutines PIPL/PIPLL.

Flowchart 9. Flowchart for Subroutine PIPL/PIPLL

4.10 HEATEX

Heat Exchanger Subroutine
Purpose
This subroutine calculates the heat exchanger outlet conditzons given the fluid inlet conditions. The heat exchanger calculations are automatically performed at twenty (20) segments along the heat exchanger. Usage

Calling Sequence
HEATEX LN,LI,L $\phi, T I 1, T \not \subset 1, T I 2, T \phi 2, P I 1, P \phi 1, P I 2, P \phi 2, W D I, W D \phi, Q T, X I 1, X \not \subset 1$
Input

Argument	Dimension
LN	1
LI	1
L \emptyset	1
TII	1
TøI	1
PI1	I
P $\emptyset 1$	1
WDI	1
WD \emptyset	I
XI1	1
X $\emptyset 1$	1

Qutput
Axgument Dimension TI2 1

тø2 1
PI2 1
Pø2 I
Q'
1

Name Common Variables	Dimension	Name Common Variables	Dimension
ARFL	5	PHI1	1
CPI	21	PHI2	1
CP \emptyset	21	PHI 3	1.
DHY \varnothing	5	PI	21
DIST	21	Pø	21
DSI	5	PRI	21
DTB	5	PRø	21
FD	5	Q	21
FN	5	QUALI	21
HE	21	QUALø	21
HI	21	REI	21
Hø	21	REø	21
HW	21	RI	5
KI	21	R 6	5
Kø	21	SUI	21
KW	21	Svø	21
LENGTH	5	THICK	5
LT	5	TI	21
MUI	21	T \varnothing	21
MU \emptyset	21	TWI	21
NT	5	TWめ	21
P	5	TYPE	5

Subroutines／Functions Used

PRøPTY，SAT，LATENT，BPRめPL，BPRめPG，NUSLET，CIFALL

Flowchart 10，page 64，shows the logic used in HEATEX．

Flowchart 10. Flowchart for Subroutine HEATEX

4.11 ADIAB

Adiabatic Gas Line Subroutine
Purpose

The purpose of this subroutine is to calculate fluid properties in a Inne where no heat is transferred.

Usage

Calling Sequence

ADIAB II
Input
Argument Dimension
II 1
CP 30
DIALI 30
FB 1
FRL 30, 20
GC 1
KA 2
MACH 30, 20
Name Conmon
Variables Dimension
NPLINE 30
NRE 30, 2
PG 30, 20
PGT 30, 20
RFLAG 1
RGAS 2
RHめG 30, 20
TTEMP 30, 20
TTTEMP 30, 20
VEL 30, 2
VISC 30
WDDTG 30, 20
XLENGITH 30

Subroutines/Functions Used
$\emptyset \mathrm{PTCP}, \emptyset \mathrm{PTCV}, \emptyset P T V, ~ H P T C P, ~ H P T C V, ~ H P T V, ~ F C \emptyset M P 3$
Flowchart 11, page 67, shows the logic used in Subroutine ADIAB.

Flowchart 11. Flow Chart for Subroutine $A D I A B$

4.12 CNON

Monopropellant Combustion Subroutine
Purpose
The purpose of this routine is to calculate the combustion parameter for a monopropellant combustor assuming a constant ratio of specific heats. Usage

Calling Sequence

CMON I

Input

Argument	Dimension		
I	1		
Name Common Variables	Dimension	Name Common Variables	Dimension
AJ	1	N $¢$ DEL	20
AREAE	6	NPLINE	30
AREAT	6	PATM	1
ARINJ	6, 2	PCI	6
CDC	6	PCN	6, 2
CTW	1	PDRWP	6
CV	6, 2	PE	6
GC	1	PG	30, 20
ICHAM	6, 2	PGI	30, 20
ICM $¢ \mathrm{~N}$	1	RGAS	2
ISP	6	RFLAG	1
ISPI	6	THRT	6
KA	2	tTEMP	30, 20
LAMDA	6	TTTEMP	30, 20
MEX	6	WD\$TG	30, 20
NCHAM	1	WN¢ Z	6

Subroutines/Functions Used

 OPTCP, OPTCV, HPTCP, HPTCVFlowchart 12, page 70 , shows the logic used in Subroutine CMON.

4.13 CHAM/TURB $\emptyset P$

Bi-propellant Combustor and Turbopump Subroutines
Purpose
The bi-propellant combustor models either a $\mathrm{JO}_{2} / \mathrm{H}_{2}$ gas generator or a $\mathrm{LO}_{2} / \mathrm{H}_{2}$ combustor. The combustor performance data is calculated based on curve fit data input as a function of mixture ratio for the propellants combining anto the combustor. The combustor can operate as a gas generator and therefore be connected to either the turbopump or the heat exchanger model. The turbopump model simulates a pump connected through a gear box driven by a gas turbine.

Usage
Calling Sequence
CHAM I
Input
Argument - Dimension
I 1

Entry Point

TURB \emptyset P I
Input
Argument Dimension

I

Name Conmon Variables	Dimension	Name Common Variables	Dimension
AJ	1	С $¢ \mathrm{NCT}$	3,6
AREAT	6	CP	30
ARINJ	6,2	CPCX	6
ATD	5	CP2	5
ATI	5	CSTAR	6
CEF1	5	CS2	4
CEF2	5	CV	6,2
CF	6	cVEL	1

Name Common Variables	Dimension	Name Common Variables	Dimension
DIAD	- 5	PøWT	5
DIAP	5	PøW1	5
DIAT	5	РøW2	5
ETAT	1	P¢W3	5
FB	1	PPI	5
GC	1	PP¢	5
GR	5	PTI	5
ICHAM	6,2	PUW	5
IPUMI	5	PWø	5
IPUM $¢$	5	PWI	5
ISP	6	PW2	5
ISPT	6	R	1
IS2	4	RFLAG	1
KA	2	RGAS	2
KTD	5	RHDL	3
KTI	5	RPMD	5
MR	6	RPMT	5
MWC	6	TC	
MW2	4	TC2	4
NC¢EF	1	THRT	6
N \emptyset DEL	20.	TTEMP	30, 20
NPIIINE	30	TTT	5
PCI	6	TT \varnothing	5
PDELP	5	TTTEMP	30, 20
PDRQP	- 6	U	1
PG	30,20	WDøTG	30, 20
PGT	30,20	WN\%Z	6
PMR	6	WP	5
PøWC	5	WT	5
PめWO	5	WTGC	5
P $\emptyset \mathrm{WP}$	5		

Subroutines/Functions Used

ØPTCP, ØPTCV, HPTCP, HPTCV
Flowchart 13, page 74, shows the logic used in Subroutine CHAM/TURB \emptyset P.

Flowchart 13. Flowchart for Subroutine CHAM

4.14 IS \quad TH

Isothermal Gas Line Subroutine
Purpose
This subroutine simulates an isothermal gas line and determines downstream fluid conditions.

Usage
Calling Sequence
IS \emptyset TH II
Input
Argument Dimension
II I
Name Common

Variables \quad| Name Common |
| :--- |
| Variables |$\underline{\text { Dimensionsion }}$

CP	30	PGT	30,20
DIALI	30	RFLAG	1
FB	I	RGAS	2
FRL	30,20	RHDG	30,20
GC	1	TTEMP	30,20
KA	2	TTTEMP	30,20
MACH	30,20	VEL	30,2
NPLINE	30	VISC	30
NRE	30,2	WDDTG	30,20
PG	30,20	XLENGI	30

Subroutines/Eunctions Used
$\emptyset \mathrm{PTCP}, \emptyset \mathrm{PTLP}, \emptyset \mathrm{PTV}, \mathrm{HPTCP}, \mathrm{HPTCV}, \mathrm{HPTV}, ~ F С \varnothing \mathrm{MP} 2$
Flowchart 14, page 77, shows the logic used for the Subroutine ISOTH.

Flowchart 14. Flowchart for Subroutine IS \varnothing TH

5.0 NOMENCLATURE

SYMBOLS	DESCRIPTION	UNITS
ARINJ	Oxidizer area injector	in ${ }^{2}$
ALPHA	Angle line makes with horizontal	deg
AREAI	Inside area of line	in ${ }^{2}$
AREAT (I)	Combustor throat area combustor I	
AREG(I)	Maximum area of regulator assuming sonic flow of regulator (I)	$i n^{2}$
$\operatorname{ATD}(\mathrm{I})$	Turbine duct diaxhage area	$i n^{2}$
AVENT (I)	Flow area vent valve tank (I)	in ${ }^{2}$
$\operatorname{CDC}(\mathrm{I}, \mathrm{J})$	Discharge coefficient through injector monopropellant	
CEFI (I)	Turbine efficiency coefficient curve	-
CEF2 (I)	Turbine efficiency coefficient curve	-
CP	Specific heat at constant pressure	BTU $/ 1 \mathrm{bm}-^{\circ} \mathrm{R}$
CPO, CPOG, CPI	Specific heat at constant pressure outside, gas, inside in heat exchanger	BTU/ $1 \mathrm{Lbm}-^{\circ} \mathrm{R}$
CP1, 2(I)	Specific heat at constant pressure of tank I	$\mathrm{BTU} / 1 \mathrm{bm} \mathrm{m}^{\circ} \mathrm{R}$
$\operatorname{CSTAR}(\mathrm{I})$	Characteristic exhaust velocity combustor I	$\mathrm{ft} / \mathrm{sec}$
CV	Specific heat at constant volume of tank I	$\mathrm{BTU} / 1 \mathrm{bm}-{ }^{\circ} \mathrm{R}$
$C V(I, J)$	Discharge coefficient through injector, bipropellant	
CVEL (I)	Isentropic spouting velocity of turbopump (I)	$f t / \mathrm{sec}$
DELXL (II)	Line segment (Iine II)	$f t$
DHYO	Hydraulic diameter of heat exchanger	$\begin{aligned} & \mathrm{Ibm} / \mathrm{in}- \\ & \mathrm{sec} \end{aligned}$
$\mathrm{DIAD}(\mathrm{I})$	Pump design diameter of turbopump (I)	In
DIALI, DIAL $(I I)$	Diameter line, inside, outside (line II)	in

SYMBOLS	DESCRIPTION	UNITS
DIAP (I)	Pump diameter of turbopump (I)	in
DIAT (I)	Turbine rotor diameter	in
DX	Length of heat exchanger	in
EMIS	Emissivity	-
ENTH, O, T, G, L	Enthalpy outside, inside, gas, liquid in heat exchanger	BTU/1bm
EP (I)	Pump efficiency of turbopump (I)	-
ETAT(I)	Turbine efficiency	-
FBPC(I)	Pressure constraint of junction (I)	-
FBWC(I)	Flowrate constraint of junction (I)	-
FFACTI, 0	Friction factor inside, outside in heat exchanger	-
FRL	Friction factor	-
GAM	Specific heat ratio $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{V}$	-
GC	32.174	$\begin{aligned} & 1 b m-f t / \\ & \sec ^{2} I b f \end{aligned}$
HE	Equivalent heat transfer coefficient in heat exchanger	$\begin{aligned} & \mathrm{BTU} / \mathrm{in}^{2}- \\ & \mathrm{o}_{\mathrm{R}}-\mathrm{hr} \end{aligned}$
HI	Inside film coefficient	$\begin{aligned} & \mathrm{BTU} / \mathrm{hr}- \\ & \mathrm{ft}^{2}-\mathrm{O}_{\mathrm{R}} \end{aligned}$
HI, O	Heat transfer coefficient inside, outside in heat exchanger	$\begin{aligned} & \mathrm{BTU} / \mathrm{in}^{2}- \\ & \mathrm{sec}^{-} \mathrm{O}_{\mathrm{R}} \end{aligned}$
Hø	Outside film coefficient	$\underset{\mathrm{OH}-\mathrm{hr}}{\mathrm{BTU} / \mathrm{ft}^{2}-}$
HR	Hydraulic Resistance	$\begin{aligned} & \sec ^{2} / \mathrm{ft}- \\ & \mathrm{in}^{2} \end{aligned}$
HRAD	Radiation heat transfer coefficient	$\begin{aligned} & \mathrm{BTU} / \mathrm{hr}-{ }_{\mathrm{o}} \\ & \mathrm{ft}^{2}-{ }^{2} \end{aligned}$

ISP (I)	Vacuum specific impulse combustor I	sec
K	Fluid thermal conductivity in heat exchanger	$\begin{aligned} & \mathrm{BTU} / \mathrm{in}^{\prime}- \\ & \mathrm{sec}^{-}{ }_{\mathrm{R}} \end{aligned}$
KA	Specific heat ratio	-
KAY	Ratio of specific heats combustor	-
KLT	Total loss coefficients; bends, contractions, etc.	-
$\operatorname{KTD}(\mathrm{I})$	Turbine discharge coefficients of turbopump (I)	-
KTHER	Fluid thermal conductivity	$\begin{aligned} & \mathrm{BTU} / \mathrm{sec}- \\ & \mathrm{ft}^{-\mathrm{O}_{\mathrm{R}}} \end{aligned}$
KTI (I)	Turbine inlet coefficient of turbopump(I)	-
MACH (II, JJ)	Mach number down pipe, line II, node JJ	${ }^{\circ} \mathrm{R}$
MARTO (I)	Martinelli parameter	-
MR(I)	Mixture ratio combustor I	1bm/sec
MUI	Viscosity fluid in heat exchanger	$\begin{aligned} & \mathrm{Ibm} / \mathrm{in}- \\ & \mathrm{sec} \end{aligned}$
NGR	Grashof number	-
NLINJU(I)	Number of inlet or outlet lines at junction (I)	-
NPR	Prandtl number	-
NRE	Reynolds number	-
P	Fluid pressure in heat exchanger	psia
P	Pressure in tank I	psia
$\mathrm{PB}(\mathrm{I})$	Pressure boundary constraint equation in the Ith pressure boundary	-
PCI (1)	Chamber pressure, combustor I	psia
PCORI, 0	Pressure drop correction for two phase flow, inside, outside in heat exchanger	-
PDROP ($1, \mathrm{~J}$)	Pressure drop through injector J, combustor I	psia

PG(II, JJ)	Pressure, line II, node JJ	psia
PG(II, JJ)	Pressure, line II, node JJ	psia
PHI1	Correction for two phase flow boiling in heat exchanger	-
PHI2	Entrance effects correction in heat exchanger	-
PHI3	Asymmetric heating correction in heat exchanger	-
PHI4	Surface roughness correction in heat exchanger	-
POW, $0,1,2,3$ (I)	Coefficients in pump power design curve	-
POWP (I)	Pump power of turbopump (I)	$\mathrm{ft}-\mathrm{-1bf} /$ sec
POWT (1)	Turbine power of turbopump (I)	$\begin{aligned} & \text { ft-1b£/ } \\ & \text { sec } \end{aligned}$
PRE (I)	Pressure regulator downstream of regulator I	psia
PWO, 1, 2, (I)	Coefficients in pump pressure design curve	-
Q	Heat flux in heat exchanger	$\begin{aligned} & \mathrm{BTU} / \mathrm{sec}- \\ & \mathrm{in}^{2} \end{aligned}$
R(I)	Gas constant in tank I	$\mathrm{B} / 1 \mathrm{~b}-{ }^{\circ} \mathrm{R}$
RGAS (I)	Gas constant in line	$\frac{f t-1 \mathrm{bm}_{m}}{1 \mathrm{bf}-{ }^{-}{ }^{\circ} \mathrm{R}}$
RHOG,RHOL (II, JJ)	Fluid density, gas, liquid (line II, node JJ)	$1 \mathrm{bm} / \mathrm{ft}{ }^{3}$
RHOL(I)	Density in tank I	$1 \mathrm{bm} / \mathrm{f} t^{3}$
RI, RO	Heat exchanger radius	in
RPMD (1)	Pump design speed	RPM
RPMP(I)	Pump speed of turbopump (I)	RPM
RPMT(I)	Turbine Speed	RPM
SVO, O,I,G,L	Specific volume outside, inside, gas, liquid in heat exchanger	$\mathrm{in}^{3} / \mathrm{Ibm}$

SVBAR	Change in specific volume average in heat exchanger	in $^{3} / 1 \mathrm{bm}$
T	Average gas temperature in tank	${ }^{\circ} \mathrm{R}$
TC(I)	Chamber temperature combustor I	${ }^{\circ} \mathrm{R}$
TENV	Temperature environment	${ }^{\circ} \mathrm{R}$
THICK	Wall thickness in heat exchanger	in
THRT (I)	Thrust, combustor I	1bf
TIME	Time	Sec
$\operatorname{TIN}(\mathrm{I})$	Gas inlet temperature in tank I	${ }^{\circ} \mathrm{R}$
TPI (I)	Pump inlet temperature of turbopump (I)	${ }^{\circ} \mathrm{R}$
$\operatorname{TP} \emptyset$ (I)	Pump discharge temperature of turbopump (I)	${ }^{\circ} \mathrm{R}$
TTEIS	Turbine isentropic discharge temperature of turbopump (I)	${ }^{\circ} \mathrm{R}$
TTEMP (II, JJ)	Static temperature fluid line II, node JJ	${ }^{\circ} \mathrm{R}$
TTI (I)	Turbine inlet temperature of turbopump (I)	${ }^{\circ} \mathrm{R}$
TTO (I)	Turbine discharge temperature of turbopump (I)	${ }^{\circ} \mathrm{R}$
TTTEEMP (II, JJ)	Total temperature stagnation fluid, line II, node JJ	${ }^{\circ} \mathrm{R}$
TWI, TWO	Discharge temperature in heat exchanger, inside, outside	${ }^{\circ} \mathrm{R}$
TWALL	Wall temperature	${ }^{\text {o }}$
UAØ	Overall heat transfer coefficient	${ }^{\circ} \frac{\mathrm{BTU} \mathrm{Sec}}{}$
VEL(II,JJ)	Velocity fluid, line II node JJ	$\mathrm{ft} / \mathrm{sec}$
VISC	Viscosity	$\begin{aligned} & I \mathrm{bm} / \mathrm{ft-} \\ & \mathrm{sec} \end{aligned}$
VTANK (I)	Volume of tank I	$f t^{3}$

W
W(I,I)
W(I, 2)
WD, WDøTG (II,JJ)
WGASI, WGAS \emptyset
WNØZ(I)
WOI(I)
WP (I)
WT (I)
XK (I)
$\alpha \quad$
0.1714×10^{8}

Flowrate
1bm/sec
Oxidizer flowrate combustor I $1 \mathrm{bm} / \mathrm{sec}$
Fuel flowrate combustor I
Flowrate, Iine II, node JJ
Flowrate in heat exchanger, inside, outside
Nozzle flowrate combustor I
Mass of liquid in tank (I)
Pump flowrate
Turbine flowrate
Cross sectional area of valve times valve discharge coefficient of valve I

Mass ratio, $m_{2} /\left(m_{1}+m_{2}\right)$
Stefan-Boltzmann constant
$1 \mathrm{bm} / \mathrm{sec}$ 1bm/sec $1 \mathrm{bm} / \mathrm{sec}$ $1 \mathrm{bm} / \mathrm{sec}$ 1 bm
$\mathrm{Ibm} / \mathrm{sec}$
$1 \mathrm{bm} / \mathrm{sec}$
in 2
-
$\frac{\mathrm{BTU}}{\mathrm{hr} \mathrm{ft}^{2} \mathrm{o}_{\mathrm{R}}{ }^{4}}$

6.0 REFERENCES

1. P. F. Thompson, T. J. Walsh, "Characterization of Attitude Control Propulsion System, MSC/TRW Task 705-1," TRW Technical Report Number 17618-H179-R0-00, June 1971.
2. P. F. Thompson, R. C. Turley, "Steady State Attitude Control Propulsion Systems Computer Program Documentation and User's Manual, "TRW Technical Report 17618-H179-RO-00, Volume II.

6.0 REFERENCES

1. P. F. Thompson, T. J. Walsh, "Characterization of Attitude Control Propulsion System, MSC/TRW Task 705-1," TRW Technical Report Number 17618-H179-R0-00, June 1971.
2. P. F. Thompson, R. C. Turley, "Steady State Attitude Control Propulsion Systems Computer Program Documentation and User's Manual," TRW Technical Report 17618-H179-R0-00, Volume II.

A Reproduced Copy OF

Reproduced for NASA by the
NASA Scientific and Technical Information Facility

