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FLOW RESISTANCE OF PERFORATED PLATES 

IN TANGENTIAL FLOW 

By Marvin Budoff 

George Washington University 

and 

William E. Zorumski 
Langley Research Center 

SUMMARY 

Flow resistance of four perforated plates with constant open area (2.18 percent) 
was studied experimentally at Langley Research Center as a function of the normal flow 

through the plates and the number and geometry of the holes, with tangential flow across 

the plate surface as a parameter. 

An increase in flow resistance was found as normal-flow Mach number increased 
from 10-4 to 10-1. Increasing the tangential-flow Mach number from Oto 0.44 resulted 

in further increases in the flow resistance of the plates. 

Flow resistances found for normal flow into the tangential-flow duct were higher 

than for the same normal flow out of the duct, indicating a discontinuity in flow resis

tance when normal flow was reversed. This discontinuity increased as tangential flow 
increased. 

For the four plates studied, the number of holes ranged from one to 64 and the hole 

diameters ranged from 0.63 cm for the single-hole sample to 0.08 cm for the 64-hole 
sample. Hole depth was kept constant at 0.32 cm. It was observed that at the higher 

tangential-flow Mach numbers, the flow resistance decreased as the number of holes in 
the plate increased. In addition, the rate of increase in the flow-resistance discontinuity 
was found to be less for the plates with the most holes, suggesting a leveling off of this 

effect as the number of holes increases and hole diameter decreases. 

INTRODUCTION 

Much concern in recent years has been expressed over the high noise levels ema
nating from jet engines. One way of dealing with this problem involves the reduction of 
the noise, particularly fan noise radiated from the inlet and fan discharge ducts, through 

acoustical treatment of the nacelle. Considerable work has, therefore, been done to 



determine the acoustic characteristics of possible lining materials for jet engine ducts, 

as indicated in reference 1. 

The acoustic behavior of candidate duct-lining materials is dependent on the fluid 
flow within the duct. In a jet-engine duct, a steady flow of fluid is induced tangentially 
across the surface of the acoustic material. In addition, the acoustic field induces an 
oscillating flow through the material. The interaction between these flow fields produces 
changes in the acoustic properties of the material. 

In recent studies concerning nonlinear acoustic effects in porous materials 

Zorumski and Parrott (ref. 2) have noted, based on their own data and earlier studies 

by others working in similar areas, that the acoustic properties of a rigid porous solid 
can be described completely, in the absence of tangential flow, by two nonlinear functions 

of instantaneous velocity - the resistance function and reactance function. Zorumski 
and Parrott further found that the instantaneous resistance is independent of frequency 
and is, therefore, equivalent to the flow resistance of the material. The flow resistance 

can be defined as the ratio of the pressure drop across a material to the steady airflow 
velocity through the material. The results of some work with acoustic materials by 
Feder and Dean (ref. 3) show a very close correspondence between the acoustic and flow 

resistances in the presence of tangential flow. 

It was the purpose of this study to investigate experimentally the change in acoustic 

properties of perforated plates resulting from the interaction of flows normal and tangen

tial to the plates. The easily measured flow resistance of the material was used as a 

measure of the acoustic resistance in order to simplify the experimental procedure. 
Flow-resistance changes resulting from reversing the flow through the sample are also 
studied and presented. The acoustic materials studied are four perforated plates with 
different numbers of holes and with a constant open area maintained. This allows addi
tional observations to be made concerning the effects of varying the hole number and size 
on the flow resistance of the material studied. 

SYMBOLS 

A0 open-area ratio of samples 

c speed of sound (STP), 331.6 m/sec 

M center-line Mach number of tangential-flow velocity 

Mn Mach number of average normal-flow velocity 
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R 

V 

static pressure in branch channel, mm Hg or N/m2 

static pressure in tangential-flow channel, mm Hg or N/m2 

dynamic pressure in tangential-flow channel, mm Hg 

P1 - P2 
flow resistance of sample, V , rayls or kg/m2-sec 

average velocity of normal flow, cm/ sec 

standard characteristic impedance of air, 415 ray ls 

APPARATUS AND MEASUREMENT PROCEDURES 

Test Apparatus and Instrumentation 

Schematic illustrations of the equipment setup are shown in figures 1 and 2. A flow 

was induced by a vacuum source in a rectangular channel 7.62 cm wide and 3.81 cm high. 

A perforated plate was mounted in the side of the channel, 40 cm from the tangential-flow 
inlet. A pitot-pressure probe was located in the center of the channel measuring the 
static and dynamic pressures p2 and q2 at the midpoint of the sample. Pitot-pressure 

probes used in this experiment were made from tubing having a 0.301-cm outside diameter 

and a 0.191-cm wall thickness with static-pressure holes located 1.27 cm from the blunt 
nose and 4.23 cm from the probe-stem axis. At the sample the branch channel was con

nected to the vacuum source and also to a pressure source. By closing the vacuum source 

and opening the pressure source, the flow through the sample could be reversed. Three 
rotometer-type flowmeters were mounted in the branch-channel pipe network. These 
flowmeters could measure the average velocity across the sample, calculated on the basis 
of incompressible flow, ranging from 1 cm/sec to 103 cm/sec, which corresponds to the 
range of sound pressure level of 107 dB to 167 dB (free-space, plane wave propagation). 
A second pitot-pressure probe was located in the center of the branch channel with its 
static-pressure holes 3.81 cm from the sample. A digital voltmeter allowed direct 
readings of the pressure difference across the sample to be made. This pressure dif
ference, p1 - p2, was measured by a pressure transducer with a range of 100 mm Hg 
connected to the pitot static-pressure taps in the main channel and in the branch channel. 

Photographs of the actual equipment are shown in figures 3 and 4. 
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Figure 1.- Schematic drawing of apparatus. 

Sample 

Qz 

Pz 
Pilot tube 

Negative (outward) flow 

Figure 2.- Test section (40 cm from tangential-flow intake to sample). 



L- 71- 2402 .1 
Figure 3, - Photograph of test section, pressure sensors, signal 

conditioner, and digital voltmeter . 

L- 71 - 2404 .1 

Figure 4 . - Flowmeter arrangement ; manometer for determining 
tangential - f l ow Mach number . 
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Procedures and Measurements 

The center-line Mach number M of the tangential flow across the surface of the 

sample was determined from the difference in dynamic and static pressures q2 and p2 
measured in the main channel and read from a mercury manometer. Mach number pro

files were determined at the sample (located 40 cm from the air intake opening) to 

observe the uniformity of the tangential flow. Profiles for three tangential flows are 

shown in figure 5. 
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Figure 5.- Mach number profiles at sample for 
three tangential flows. 

The vacuum source was used to induce a flow through the sample outward from the 

tangential channel. With the tangential flow held constant, the average velocity of the 

flow through the sample was increased from 2 cm/ sec to 400 cm/ sec. This velocity was 

calculated from the flowmeter volume-rate measurements on the basis of incompressible 

flow. The difference in static pressures across the sample was read directly from the 

digital voltmeter in millimeters of mercury as the flow through the sample increased. 

The flow resistance R, or ratio of the pressure drop across the sample to the average 
p - P2 

airflow velocity fhrough the sample, could then easily be determined from R = 1 V 

Flow through the sample was then reversed by closing the vacuum to the branch channel 

and opening the pressure source, and again the flow was increased through the same 

velocity range of 2 cm/sec to 400 cm/sec. The Mach number of the average airflow 

velocity through the sample Mn was calculated and the normalized flow resistance 

R/p0 c was plotted against sinh-1(104Mn)· This allowed comparisons to be made of 

the symmeTry-ofThe plots of the flow-resistance changes resulting from the reversed 

flow through the sample. This procedure was followed for tangential-flow Mach num

bers of 0, 0.15, 0.29, and 0.44. 
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Test Specimens 

In order to observe the effect on flow resistance of the number and geometry of 

the holes , four aluminum plates were used. (See fig. 6.) The open-area ratio was kept 

Sample l Sample 2 Sample 3 Sample 4 

. . ,.. 

,. 
• • • • 

_, - - L-71-2405 .1 
Figure . - Samples of perforated plates . 

constant for all four samples at Ao = 2.18 percent. Plate depth and, therefore, hole 

depth, was 0.32 cm for all four plates. Sample 1 had a single hole of 0.63-cm diameter 

in the center of the 3.81- by 3.81-cm exposed plate area. Sample 2 had four 0.32-cm

diameter holes , sample 3 had sixteen 0.16 - cm-diameter holes, and sample 4 had sixty

four 0.08-cm-diameter holes. Other geometric factors are summarized below. 

Sample No. of Depth Reynolds number range 
holes Diameter (based on diameter) 

1 1 1/2 8.44 to 1688.40 
2 4 1 4.28 to 86.26 
3 16 2 2.14 to 43.13 
4 64 4 1.06 to 21.56 

RESULTS AND DISCUSSION 

The results obtained from the study are presented in figures 7 to 9. Figure 7(a) 

shows the variation in flow r esistance with normal velocity for sample 1. As expected, 

R increased with the average normal-velocity Mach number Mn in each direction of 

the normal flow, in the absence of tangential flow. With slight variations at the lower 

Mn values, similar results were found at tangential-flow Mach numbers of 0.15, 0.29, 
and 0.44. 

Also apparent from figure 7(a) is the increase in flow resistance resulting from 

each rise in tangential-flow Mach number. This result is true for flow in either direc

tion through the sample. Note , however, that the increases were greater for positive 
(inward) flow through the s ample than for negative (outward) flow. This disparity in 

rate of increase led to progressively larger discontinuities in the flow resistance as 
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(b) Sample 2 (4 holes). 
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Figure 7,- Variation in flow resistance with normal velocity for several values of 
tangential-flow Mach number. The range of Mn in each direction is 10-4 to 10-l. 
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tangential flow increased. As a result, an inceptive "rectifier-type" effect was observed, 

with greater resistances found for flow in the inward direction than for the same flow 

velocity in the outward direction, and with the effect increasing for larger tangential flows. 

Figures 7(b), 7(c), and 7(d) show similar effects for the other samples with 4, 16, 

and 64 holes, respectively. However, for sample 4 (see fig. 7(d)) it was found that flow 

resistance decreased when tangential-flow Mach number increased from 0.29 to 0.44. 
Speculating on the cause for this inconsistency, note that sample 4 has the smallest diam
eter holes and the largest ratio of hole depth to diameter. This suggests that the incon
sistency in the test results for sample 4 may be explained in terms of the sample's geom

etry. Another possibility involves changes in density of the fluid around the sample, and 
an explanation may also involve compressibility effects at the higher tangential-flow 

Mach numbers. Further studies may indicate other explanations in terms of the ratio 

of duct height to hole diameter or the interaction between the greater velocity flows and 
instrumentation. 

At the lower tangential Mach numbers of 0 and 0.15, varying the number of holes 

and hole geometry did not produce significant changes in R/p0 c. However, as fig
ures 8(a) and 8(b) indicate, there were some notable changes in flow resistance at 
M = 0.29 and M = 0.44 as the number of holes and hole geometry varied, holding the 

open area constant. Interestingly, the trend in both cases was toward a decrease in flow 

resistance as the number of holes increased and hole size decreased. 
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Figure 8.- Variation in flow resistance with normal velocity. The range of Mn in each 
direction is 10-4 to 10-l. 
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It was noted previously that the discontinuity in flow resistance between equal posi

tive (inward) and negative (outward) flows increased as tangential flow increased for 
nearly all samples. Another aspect of this phenomenon is apparent in figure 9, which 
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Figure 9,- Discontinuity in flow resistance 
resulting from normal-flow reversal. 

shows this trend of increasing flow-resistance discontinuity for each of the samples. In 

the ranges tested, the plots are generally linear. For samples 1 and 2, however, the 

slopes are greater than for samples 3 and 4, in which the number of holes increased. 

This indicates that the "rectifier-type" effect noted earlier maintained a more nearly 
constant value for samples 3 and 4, rather than becoming significantly larger for 

increased tangential flows as is the case with samples 1 and 2. 

CONCLUDING REMARKS 

An experimental study was made at Langley Research Center to investigate the flow 

resistance of perforated plates in tangential flow. Based on the four perforated plates 
studied, flow resistance was found to increase with tangential flow. Flow resistance also 

increased with normal flow. Reversing the normal flow through the plate resulted in a 
flow-resistance discontinuity, with higher flow resistance for flow into the tangential-flow 
channel than for the same flow moving outward. Increasing the number of holes and 
decreasing the hole diameter appeared to cause significant flow-resistance changes, but 

only at the higher tangential-flow Mach numbers. The samples with more holes of small 
diameter had less increase in the flow-resistance discontinuity than did samples with 

fewer holes of larger diameter. 

Zorumski and Parrott (NASA TN D-6196) demonstrated that the nonlinear acoustic 

resistance was a function of only the normal velocity in the absence of tangential flow. 
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The present study has shown that the flow resistance is a function of two variables - the 

normal acoustic velocity and the tangential-flow velocity. Since the acoustic resistance 

and flow resistance are equal in the absence of tangential flow, this study implies that the 
acoustic resistance is also a function of both the normal and tangential velocities and that 
the flow resistance is a measure of the acoustic resistance in the presence of tangential 

flow. This result must be verified by acoustic tests. Also, the nonlinear reactance func
tion must be determined by acoustic tests in the presence of tangential flow in order to 
provide a complete description of the behavior of acoustic materials in the typical 

aircraft-engine environment. 

Langley Research Center, 

National Aeronautics and Space Administration, 
Hampton, Va., September 10, 1971. 
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