
Research Report
N 7 2 - 11210

2 d
9

6
PLANETARY QUARANTINE

SC-RR-710681
September 1971

A COMPUTERIZED PROGRAM FOR STATISTICAL
TREATMENT OF BIOLOGICAL DATA

F
EM

A. L Roark C O P X
Planetary Quarantine Systems Studies Division
M. C. Reynolds
Planetary Quarantine Applied Science Division

SANDIA LABORATORIES
OPERATED FOR THE UNITED STATES ATOMIC ENERGY COMMISSION BY SANDIA CORPORATION | ALBUQUERQUE. NEW MEXICO: LIVERMORE. CALIFORNIA

https://ntrs.nasa.gov/search.jsp?R=19720003561 2020-03-23T14:02:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/80649741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Issued by Sandia Corporation,
a prime contractor to the United States Atomic Energy Commission

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Atomic Energy Commission, nor any of
their employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness or usefulness of any information, apparatus, pro-
duct or process disclosed, or represents that its use would not
infringe privately owned rights.



SC-RR-710681

A COMPUTERIZED PROGRAM FOR STATISTICAL
TREATMENT OF BIOLOGICAL DATA

A. L. Roark
Planetary Quarantine Systems Studies Division

M. C. Reynolds
Planetary Quarantine Applied Science Division

Sandia Laboratories, Albuquerque, New Mexico 87115

Completed - September 1971

Abstract

Biologists frequently conduct experiments which measure the patterns
of inactivation of bacterial populations after exposure to a lethal environment.
This document discusses a computer program which calculates many of the
quantities that have proven to be useful in the analysis of such experimental
data.

This work was conducted under Contract No. W-12, 853, Planetary Programs,
Office of Space Science and Applications, NASA Headquarters, Washington,
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A COMPUTERIZED PROGRAM FOR STATISTICAL
TREATMENT OF BIOLOGICAL DATA

Introduction

In the programs now underway in the Planetary Quarantine Department, it is

frequently necessary to compare subtle changes in the destruction pattern of micro-
1 2

organisms. The use of standard pour plate techniques ' for microbial assay during

experimentation in some cases yields hundreds of data bits (plate counts).' These must

be reduced in a way that these successive samples taken during process application

represent the destruction rate of microorganisms as a consequence of the process.

This destruction rate is best described by a survivor curve since it relates the number

of surviving organisms at any time to the sterilization process. The survivor curve

is usually a y-axis plot of the logarithm of the number of organisms surviving the

sterilization treatment versus the equivalent process time on the x-axis. This pro-

cess time versus log of survivors or logarithmic model seems to be the most practical

representation of data since essentially all thermoradiation and most heat and radia-

tion sterilization has exhibited the logarithmic order of destruction. Consequently,

the comparison of treatments can be made on the basis of the slope of the survivor

curve or the D-value determined from the slope.

Based on this rationale, a computerized program has been developed to handle

the statistical aspects of the data reduction. With plate counts of each successive

sampling periods as an input, the program computes the mean value of the replicate

plate counts, the variance, standard deviation, upper and lower . 95 confidence inter-

vals and the coefficient of variation for each sampling interval. Based on the coef-

ficient of variation values for a sampling period, the dilution or data set exhibiting

the best values are selected for each period. These best sets are then used in com-

puting the survivor curve based on a least square fit of the logarithmic model.

Determination of Survivors

At any specific sampling period the procedure for assay is as follows: Four

replicate samples are generally used for each sampling period. Aluminum foils or

0. 020" thick square planchets are used as a substrate for the test organisms. After

exposure to the sterilization treatment the substrate material is placed in a beaker

with 10 ml sterile water and insonated for two minutes to suspend the organisms.

From this base suspension, measured amounts of the inoculum are transferred to



petri dishes or additional dilution blanks as required to result in plate counts be-

tween 30 and 300 colonies per plate. Within this range, the counts can be accurate,

and the possibility of interference of the growth of an organism with that of another

is minimized.

The determination of viable population from the resultant plate count is made

as follows:

Using the arrangement of dilution*. Figure 1, the inoculum from each

of the four replicate samples for a single time period is plated in du-

plicate. Consequently, there are eight plates for each sampling period

at a single level of dilution. Sometimes as many as three dilutions are

plated out with the best set of data used as the surviving population at

that sampling period.

' FOIL OR PLANCHET

'lO ml STERILE H,0

L
"0" DILUTION 1 ml
SURVIVORS • f — ̂

10 x PLATE (zzZ?
COUNT

"1" DILUTION 0.1 ml
SURVIVORS •
100 x PLATE
COUNT

TOTAI 10 ml

SURVIVORS •
PLATE COUNT

1 ml r\

99 ml

f

i
99

"2" DILUTION
1 ml SURVIVORS •

O 1000 x PLATE
COUNT

0. 1 ml —

"3" DILUTION
1 ml SURVIVORS •

? 10000 x PLATE
S COUNT

j
ml

1 ml

0.1 ml

'"4" DILUTION
SURVIVORS •
100,000 x
PLATE COUNT

"5" DILUTION
SURVIVORS •
1,000, 000 x
PLATE-COUNT"

Figure 1. Sample Assay and Dilution Procedure

*For consistency in the input data, the total survivor plate counts will be
assigned on order of dilution of n-l".



Statistical Methods

If we consider a single microorganism of a given type, we see that its loss of

viability in a lethal environment is a random event. This fact has been explained in

terms of natural variations between microorganisms brought about, in part, by their

past history and by the hypothesis that loss of viability is due to the occurrence of
4

chemical reactions . In modeling the inactivation of microorganisms, researchers

have usually attempted to derive expressions for the probability of single spore sur-

vival as a function of time of exposure to a given environment.

As we have pointed out earlier, instead of looking at the inactivation of a single

spore, an experimenter considers the number of survivors in a given population as a

function of time. We shall let the random variable N(t) be the number, of survivors

at time t and let p(t) represent the probability of single spore survival at time t. The

model we shall assume defines the conditional probability as

/N \ N -k
Prob. |N(t) = k | N ( 0 ) = N ! = ( , ° [p(t>] [1 - p(t)] ° . (1)

O \K /

Using the definition of conditional probabilities we have

Prob. |N(t) = k} = / , Prob. JN(0) = N j Prob. (N(t) = k|N(0) = N } . (2)
N =0

o

Combining (1) and (2) yields

N -k

Prob. {N(t) = k} = ° [P(t)] ^ ' P(t)l ° Prob- 'N(0) = N

We are usually interested in the expected value of the number of survivors as a func

tion of time. Using the expression (3) it can be shown that

E(N(t)) = E(N(0)) p(t) . (4)

This is the basic expression for our model. In particular, the most widely used

expression for the probability of single spore survival is provided by what is known



as the log model. Using this model we would have

P(t) - ic

and thus (4) becomes

E(N(t))= E(N(0» !0 y . (4 ' )

In this model, D is assumed to be a fixed parameter for a microorganism belonging

to a homogeneous population.

Let us return for a moment to the experimental method used and consider the

quantities we wish to compute for each dilution and each time period. Let us define

x. .(t .) = number of colonies on plate i of dilution i
*J *

at sampling period H,

1=1, . ... M

j = 1, . - . , K

where

M = number of sampling periods

K = number of dilutions at sampling period I

N = number of plates of dilution j for sampling period I

and

t. = time of sampling period t, (in any units desired).

The mean of the plate counts for a particular dilution and sampling period is

•^V-sr;

while the variance of the distribution of plate counts can be approximated by the sample

variance which is given by



N.

3?<V =

L=I y
(5)

Similarly, the standard deviation is approximated by the sample standard deviation

which is given by

r^
(6)

To be more precise, let cr (t .) be the variance in the plate counts (this includes
3 £

natural variation as well as any errors). The sample variance is a random variable

which depends on the counts of the replicate plates. It can be shown that

Another desirable quantity for each dilution at each time interval is the confi-

dence interval for the mean. This confidence interval is given for a particular time

period by the expression

kS/V
(7)

It is well known that as the number of samples, N. , becomes larger the para-
3*

meter k for the a confidence limit should be chosen as the 100 a/2 percentage point

of the normal distribution. Thus, for the . 95 confidence, k = 1. 96 if N is large.
.Unfortunately, the number of plates of a given dilution at a given sampling time .is.

usually small. In this case, the 100 a/2 percentage point of the Student's t-distribution

with N - 1 degrees of freedom is more appropriate for k. Thus we can approximate
3*1

k to sufficient accuracy by



k = X 1 + X2 + 1 ^ (X2 + 3)(5X
2 + D

. 4 (N^"1} 96(NjJ .-»' J

(8)

where X is the 100 a/2 percentage point of the normal distribution. For our . 95

confidence interval we let X = 1. 96 in (8) to get our k for (7).

A good measure of the amount of spread in a particular set of data has been
5

found to be the relative standard deviation . This is more commonly known as the

coefficient of variation. For each sampling period and each dilution it is defined to

be

s.(t )
C-(t ) = -U_ .3 vv

In calculating the fit to the data of our "straight line" model, we wish to use the dilu-

tion at each time period which has the "tightest" data. We shall use the coefficient

of variation as an index of the spread. Therefore, we let

xv
and

where J is chosen to minimize C.(t ) for j = 1, .... K . Let the order of this
. J * ^

dilution (as defined in Figure 1) be d
Jb

We are now prepared to again consider the problem of applying our model to

the data. Let

Y(t£) = X(t£) x 10 (9)

Then Y(t ) is an estimate of E(N(t )). In our model we wish to use Y(t ), 1=1, . . . , M
Jv J& >O

to determine E(N(0)) and D as accurately as possible and to obtain some measurements

of the statistical variations. Taking the natural log on both sides of (41) we obtain

log E(N(t» = log (E(N(0)) -I- -yt , (10)

10



where
2.303

7 = ( IDD

With this model in mind, let us consider the equation

y(t) = a+ j8t + e (12)

where e is a random variable representing the variation of the measured values about

the line a + ]8t.

Comparing (10) and (12) we see that we are assuming that

a = log (E(N(0))

or

E(N(0)) = e" (13)

and

a 2.303 , , . .
j8 = -*jj— = 7 • , (14)

The random variable e in (12) represents the variation of the mean of the plate counts

from the log model. This is assumed to be independent of time. This is consistent

with assuming that the distribution of the variation in plate counts from the log model

is independent of time. Let

Then y is a sampled value of the random variable log E(N(t )). Let us assume that
jfc a

e is normally distributed and that

E(c) = 0.

For later convenience, let the variance of the distribution of e be represented by
2

We are now prepared to calculate a and /3. The following definitions will prove

valuable:

11



M

M

M M

3. b= - - - (17)
(v~*>2

6
theorem tells us that a and b coincide with the maximum likelihood estimates of

4. a = y - bt (18)

The quantities a and b depend on the samples used. The Gauss-Markoff
6

;m tells us that a and b coincide wi

a and j3 and that they are unbiased, i. e. ,

E(a) = a.

and

E(b) = /3.

Letting

Z(t) = a + bt

and defining the standard error of estimate, S , by

M

-——™—o — • : r r s " )

2 2
the Gauss-Markoff theorem also tells us that S • is an unbiased estimate of a ,

i.e. ,

p 2
E(S . ) = a .

ylt e.

12



In addition to the Gauss-Markoff theorem, our assumptions on e imply that a

and b are also the minimum variance unbiased estimates of a and j3 respectively

from among the class of all linear estimates. The standard deviation in b, which is

given by

M

<v~t)2

can be approximated by the standard error in the slope,

sb =
/ MJE

T 2=1

Similarly, the standard deviation of the distribution of a.

*
can be approximated by the standard error in a ,

V S y , t / M + M

where S . is given by (19).
«/ I

It is also desirable in many applications to have a measure of how closely the

variation in the log of the means of plate counts can be explained on the basis of only

the variation of time in the lethal environment. The correlation coefficient, r, is

defined by

quantity S shall be called the standard error in the estimated intercept.
cL

13.



M M

1=1
r -

/

V
"

M M M M _~E ( ~ "
2=1 ji=l £=1

Q

Feller proves the following statements can be made concerning r:

1. |r| * 1

2. r = ± 1 implies that there exists constants p and 9 such that

y = pt + 6 (except for a set of lines which have zero probability

of occurring).

In addition, it can be shown that if y and t are independent, then r = 0. The

converse of this statement is not true, however.

Let us return for a moment to the probability of single spore survival. Most

microbiologists are interested in the D-value of the population. We have shown that

we can approximate the D-value by

D = 1 _ 2. 303
b log1(J e " b

In addition, the standard error in the estimated D is given by

2. 303 Su D Su
o _ _ b _ _ b

D T2 b~ 'b

Another feature which it is sometimes desirable to have available is the con-
f*

fidence band about the curve representing the model. This is also easily computed

Let

V*s - s ' "S z < t J " y|t

Then the upper 95% confidence line is given by

14



and the lower by

where k is given by the Student's t-distribution of degree M-2. For the .95 confidence

interval k is approximated by

r 9 o 9 1
,__ , ,L . X2 + l , (X2 + 3)(5x' + l)

(M-2) 9 6 ( M _ 2 ) 2

where X = 1. 96.

The Program •

The flow chart for the program is given in Figure 2. This is self-explanatory.

The input is prepared in the manner illustrated in Figure 3. The output is described

in Figure 4 using the notation of the previous section.

Figure 5 provides an example of the input data while Figure 6 gives the output

from the use of the progtam on this example.

Finally, a graphical representation of the data, the model, and the . 95 confi-

dence interval is shown graphically in Figure 7.

15
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I
24 NOVEMBER 1970

8
0.0

1
8
3

265. 282. 29?. 267. 250. 277. 265. 285,
3.0

1
8
?

67. 58. 62. 57. 51. 75. 80. 72.
6.0

1
8
?

58. 63. . 80. 83. 62. 66. 75. 63.
9.0

1
8
1

278. 212. 197. 201. 214. 255. 236. 231,

8
1

48. 37. 37. 25. 25. 21« 42. 29.
1 5.0

1
8
0

116. 135. 87. 62. 95. 82. 85. 84.
18.0

?
8
0

26. 16. 1?. 14, H. 10. 18. 9.
4

-1 • - • •
157. 117. 92. 162.
?1 .0

1
4

-1
51. SO. 9^. 89.

Figure 5. Example of Input Data
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2* NOVEMBER 1970

DATA SET : 1
TIME* 0 .000
»0. DIL,= l

NUMBER D A T A POINTS' 9
CRDER OF OIL. : i

D A T A
265.00 262.00 292.00 267.00 2 S O . O O 277.00

MEANr 272.875 VARIANCE' 135.0 S.O.' 13.6 UPPER
CIL. CHOSEN : 3

DATA SET = 2
TIME' 3.000
NO. OIL.* 1

NIMBER DATA POINTS:
ORDER OF OIL. = 3

DATA
67 .00 58.00 62.00

MEAN' 65.250 V A R I A N C E ^
CIL. CHOSEN ' 3

265.00
95 C.I.

285.00
281.. 2 LOHER .95 C. I.« 261.9 CV =

8

57.
99. it

00 SI.
S.D.=

0 0
10

75.00 80 .00
0 UPPER .95 C.I.

72 .00
73.6 LOhER .95 C.I. 56.9 CJ .1520

C A T A SET : 3
TIME* 6 . 0 0 0

NO. OIL.: i
NUMBER D A T A POINTS:

ORDER OF OIL. =
D A T A

58.00 6].00
MEAN: 68.750
CIL. CHOSEN

80.00
VARIANCE:

2

93.00
96.2 S.

66.00
.3 UPPER

75.00
,95 C.I.

63.00
76.5 LONER .95 C. I. 61.0 CJ

DATA SET ' i.
TIME= 9.000
NO. CIL.: i

NUMBER DATA POINTS: 9
CRDER OF OIL. : 1

DATA
276.00 212.00 197.00 201.110 2l«..00 255.00

MEAN: 223.000 VARIANCE: 777.7 S.U.: 27.9 UPPER
CIL. CHOSEN : 1

236.00
,95 C.I.

231.00
251.2 LOkER .95 C.I. 2011.3 Cil

CATA SET : 5
TIME: 12.000
NO. OIL.: 1

NUMBER DATA POINTS: g
ORDER OF OIL. = 1

DATA
k6.00 37.00 37.00 25.00 25.00

MEAN: 33.000 VARIANCE: 39.1. S.D. = 9.5
CIL. CHOSEN : 1

CATA SET : 6
TIME: 15.000
NO. OIL.: i _

NLN8EK DATA POINTS* 6
ORDER OF OIL. = 0

DATA
116.00 135.00 37.00 62.00 95.00

MEAN: 93.250 VARIANCE: 506.5 S.D.= 22.5
CIL. CHOSEN : 0

21.00 1(2.00
UPPER .95 C.I.

82.00 85.00
UPPER .95 C.I.

29.00
".0.9 LONER .95 C.I. 25.1 CV :

81..00
112.0 LONER .95 C. I.

O A T A SET ' 7
TIME' 18.000

NO. OIL.: 2
NUMBER D A T A POINTS: 6

OROES OF OIL. = 0
O A T A

26.00 16.00 12.00 lit.
MEAN: 1I..500 VARIANCE: 30.9
NLMBER OATA POINTS: ".
ORDER OF OIL. * -1

OATA
157.00 117.00 92.00 162.

MEAN' 132.000 VARIANCE: 1116.7
CIL. CHOSEN : -1

OATA SET : 6
TIME' 21.000
(.0. OIL.: 1

NUMBER DATA POINTS: i,
OROES OF OIL. = -1

O A T A
51.00 50.00 93. a

" MEANi~ro.750 VARTANCE:
CIL. CHOSEN = -1

, 0 0
s.

oo
S.D.

10.00
UPPER

16.00
,95 C.I.

9.00
19.1 LONER .95 C.I.

33.1. UPPER .95 C.I.' 183.2 LONER .95 C.I.'

9.9 Cl

0.8 CJ

5.9.6 S.O.: 23.lt UPPER .95 C.I.' 106.7 LONER .95 C.I.: .3311.

SLOPE: -.521
CORR. COEF.«

0 VALUE: 1..I.21
.58018 STAND. ERii. IN EST.

T
0.
3.0000000000E»00
6. COQOOOOOOOEtOO
9. OOOOOOOOOOE*00
1. 2000000000E»01
1.5000000000E*01
1.8000000000E*01
2.1000000000E*01

SAMP
2.7297500000E>06
6.5250000000E»05
6.875aOODOOOE*Oi<
2.2800000000E«Oi>
3.3000000000E»03
9.32SOOOOOOOE<02
1.3200000000£»02
?.0750000000E»01

INTERCEPT: 2. 310«.308639E»06
SLOPE: .01896 STAND. ERR. CF
.95 CONF. INTERVAL

MODEL
2.310<i30S639E*Oe
<..6<i0957087<)E»OS
1.01<i3071530E»05
2. 125238836I>E«0>>
'..".529313'.17E»03
9.3300S60831E»02
1.95<>890a311E»02
i.. 09t007706re»01

.13595 STAND. ERR. IN EST. INTER.*

U F P E R
4.123l470l.59eE«06

l .<t820i<2<i8 l<<iE«05
2.9<.06330336E»Oi.
6.161395<t98l.E»03
1.3632i«97272E«03
3.126<.9261<.3E»02
7.3102238390E«01

L O N E R
1.29lS626333E»06
3.026697569SE»05
6.9<<16995170E<Oi i
1.5359<ili.317E«>l<.
3.2131991139E«03
6.39Sl .732390E«02
1.222331<>929E*02

Figure 6. Example of Output Data

20



to
OS
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103
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10

DRY HEAT INACTIVATION OF
BACILLUS SUBTILIS VAR. NIGER SPORES

AT 95°C IN NITROGEN

• DATA

UPPER 95% CONFIDENCE LIMIT

LOWER 95% CONFIDENCE LIMIT

MODEL

3 6 9 12 15 18 21 24

TIME, HOURS AT 95°C

Figure 7. Graphical Representation
of Program Output
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