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COLLISIONAL EXCITATION OF THE HIGHLY

EXCITED HYDROGEN ATOMS IN THE

DIPOLE FORM OF THE SEMI CLASSICAL IMPACT

PARAMETER AND BORN APPROXIMATIONS

Kazem Omidvar

Laboratory for Space Physics

NASA, Goddard Space Flight Center

Greenbelt, Maryland 20771

Received 1971

ABSTRACT

Expressions for the excitation cross section of the highly excited states of

the hydrogenlike atoms by fast charged particles have been derived in the dipole
approximation of the semi classical impact parameter and the Born approxima-
tions, making use of a formula for the asymptotic expansion of the oscillator
strength of the hydrogenlike atoms given by Menzel. When only the leading term
in the asymptotic expansion is retained, the expression for the cross section
becomes identical to the expression obtained by the method of the classical col-
lision and correspondence principle given by Percival and Richards. Compari-
sons are made between the Bethe coefficients obtained here and the Bethe co-
efficients of the Born approximation for transitions where the Born calculation
is available. Satisfactory agreement is obtained only for n - n + 1 transitions,
with n the principal quantum number of the excited state.
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I. INTRODUCTION

A knowledge of accurate values for the excitation cross section of highly

excited states of the hydrogenlike atoms by electron impact is necessary in

order to understand the conditions under which the observed radio frequency

transitions between the highly excited states of these atoms in the interstellar

ionized region, or similar processes in the solar corona, take places. Using

the classical collisions and the correspondence principle Percival and Richards

(1970) give an expression for the excitation cross section valid for high impact

energies. Similar expression is given by Presnyakov and Urnov (1970) making

use of the impact parameter approximation and an atomic model based on an

harmonic oscillator.

The work that is being reported here gives solution of the same problem in

the dipole approximation of the semi classical impact parameter and Born ap-

proximations, making use of the asymptotic expansion of the hydrogenlike oscil-

lator strength given by Menzel (1968, 1969). The results of the calculation are

checked against the results of the Born approximation.

In collisional excitation the Born approximation becomes valid when the

incident energy is some 50 times larger than the excitation energy. The Born
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cross section then should not differ from the actual cross section by more than

a few percent. In low impact energy excitation of highly excited states of atoms

another consideration should be taken into account. Due to the closeness of

their energy levels, many excitation channels are strongly coupled to each other,

and validity of a two channel approximation such as the Born approximation be-

comes questionable (Seaton, private communication).

Nevertheless, here we assume the validity of the Born approximation at high

impact energies, and compare the results of the dipole approximation, itself an

approximation to the Born approximation, with the results of the full Born ap-

proximation. Insteadof comparingthe cross sectionalvalues for the two approx-

imations, it is more convenient and more useful to compare the corresponding

Bethe coefficients which are independent of the mass, charge, and energy of the

projectile. In Table I this comparison has been made.

We have also shown that when the leading term in the expansion of the oscil-

lator strength is retained, the result of the impact parameter dipole approxima-

tion becomes identical to the result of the classical collision and correspondence

principle method given by Percival and Richards.

II. FORMULATION AND RESULTS

Let n be the initial and n' the final principal quantum numbers of a hydrogen-

like atom with atomic number Z in collision with a charged particle with charge

Z'e, e being the absolute value of the electronic charge. According to the dipole

form of the semi classical impact parameter method the excitation cross section
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between these two levels is given by (Seaton, 1962)

(n - n') = 27Tr p(n - n') bdb (1)
b bmin

where b is the impact parameter and

((Z'e2.2 )W K' >)2 4 M Ry-h 2 f (bE)p(n - n') [<n' I r n> 2 x - fV (2)
3t12 5 2 me E e 4

with r the position vector of the bound electron, M, E, and V the reduced mass,

the relative energy, and the relative velocity of the system, me the electronic

mass, and AE the excitation energy. The function f(x) is defined by

f(x) = x 2 [K 0
2 (x) + K 1

2 (x )] (3)

where KO(x) and K1 (x) are modified Bessel functions.

The matrix in (2) represents the expectation value of r between sub-levels

of n and n', averaged with respect to the initial states and summed with respect

to the final states, namely

<n' ! r!n>!2= 1 i - <n ' ''l n, s2 nlA
n2" a.m V'm '

where ev' and mm' are the azimuthal and magnetic quantum numbers.
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Introducing s by s = n' - n then for both n and n' large and s small the

matrix in (4) is given by (Menzel 1968, 1969)

I< I r In>2=3 a2 1.5s+A(s) (5)2& (1 3sk3 J , (s~) J (s) g(s), g(s) + A2 sn 

where a = n 2 aO/Z is the atomic radius before excitation and a o the Bohr radius.

Js (s) is the Bessel function of equal order and argument and Js (s) is the first

derivative with respect to the argument. A(s) are constants of order of unity given

by Menzel (1969). Substitution of (5) into (2) gives

p(n - n') =Z'2 M ( +) 4 J 
Me 3 3E b2

To evaluate the cross section given by (1) we choose bmin to be equal to a.

A different choice for b . and of the same order of magnitude as a makes little

difference in the high energy values of the cross section. Making use of a formula

for an integral over the squared of the Bessel's functions (Morse and Feshbach,

1953) we obtain the following expression for the cross section

a(n - n') 16Z' 2MRy 4 t+ s J (s)J.(s) g aE aE\ saAE
Ta 2 3Z2 m E n)

K
1 tV/

7' 0 e

By putting g(s) = 1 Equation (7) becomes identical to the expression for the

cross section given by Percival and Richards (the right hand side of their ex-

pression should be multiplied by a factor of n4 ). Since the impact parameter
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method is valid when the incident momentum is much larger than the momentum

of the orbiting electrons, and the dipole approximation is valid when the momen-

tum transferred to the atom is small, we conclude that the results of Percival

and Richards are also valid under the same conditions and provided n > 1.

Making use of the relation

a E\2 4M a2 nE2 (8)
hVti- 4 me a Ry E

and the validity criteria for the impact parameter method and the dipole approxi-

mation it can be seen that aAE/(hV) <<1 always, except for the rare occasion

that the incident velocity is much less than the orbital velocity. Then an expan-

sion of the modified Bessel functions in (7) about the origin, as has been done by

Percival and Richards, is permissible and will yield

(o(n-n')= 8 Z' 2 MRy 4 n g(s)4 ((S m a2oy.
= - +n + g(s)rn .04 *(9)

0 eTT aO 3 Z2m E n 3 M a2 (E2

It should be emphasized that for the range of the incident energy that (7) is valid,

(9) can be used instead (Percival and Richards have a factor of 4.5 instead of the

factor of 5.04 in (9). The reason for this discrepancy is not understood).

To show more clearly the dependence of the cross section on the impact

energy it is convenient to write (9) in the form
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o(n - n') _Z' 2 M Ry FA(n, n') tn me E + B(n, n' (10a)
7 a 2 Z2 m E Z2 Ry 

0 e

where A(n, n') and B(n, n') are pure numbers depending on n and n' only and

are given by

A(n,n ') 8 n 4 +-) s Js(s)J (s) g(s),3 ns

B(n,n') =A(n, n') Pn [5.04 (1 - n2/n'2) - 2 ] . (10b)

A numerical table for M(s) = 4/3 s - 2 Js(s) J'(s) is given by Menzel (1969).

Similarly, the numerical values of g(s) defined by (5) can be obtained using this

reference.

To drive the dipole form of the Born approximation we start with the ex-

pression for the Born approximation given by

kl+k 2 iq'r dq
aB(n - n' ) = z2 <n' e | n)l 2 (11)

E/Ry m kl - k2m 3

with k1 the wave number of the relative motion before collision related to E by

kl 2 = ao- 2 (M/me) (E/Ry), (12)

and k2 the wave number of the relative motion after collision related to k 1 by

kl2 - k22 = ao
-

2 (M/me) (AE/Ry), (13)
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and 1Tq the momentum transfer between the particles. The matrix in (11) in

analogy to (4) is defined by

iq * r > 'i2 ' r iq r
|<n l e In 2 _ en' 'm'e / nm> 2

IIn' I e n1n Lm i'm <tM VM·e,, (14)

with tm V, 'm' defined before.

When ao2 kl2 >> (M/m ) (AE/Ry) we have from (12), up to the first order

terms,

k - k 2 [M/(2me ao 2 kl)] AE/Ry, k 1 +k 2 - 2k
I

.1 2 ~~1 *

The radial part of the integral <n' exp (iq · r) I n> decreases exponentially

when I r I becomes greater than the atomic radius a = n2 ao/Z. Following Bethe

(1930) we expand exp (iq · r) under the integral sign and introduce a parameter

qo such that

[M/(2mea
o

2kl)] AE/Ry << qO < < Z/(n2a0), (16)

then (11) can be written in the form

8 M 22
cTB(n - n') 8/R i (nz' n n

E/Ry m 3 ,p

2meao 2 qok lRy

MAE

(17)T 2k 1 n i+f~~kj ~ iq' r 1 q
[Kn P i e ~ ~' I n>i d

I3
+ · n q>1

2

8
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In deriving (17) the range of integration in (11) has been divided into two

parts; the first part running from k1 - k2 to qO, and the second from qO to k1 +

k2 . Due to (16), only the dipole term in the expansion of exp (ig , r) in the first

integral has non-vanishing values. Integrating this term and using (15), we find

the first term in the bracket of (17). The second integral cannot be integrated

easily, but in any case the cross section is independent of qo. From inequality

(16) it is evident that at high impact energies we can choose q0 independent of

the impact energy. With the help of (5) and (12) Equation (17) can then be

written in the following form

UB(n-n')_ Z'2 MRy B( )n e) BB(n,n /, (18a)

r a 2 Z2 m E 0 e

AB(n, n') 8 n4 + J (s) J (s) g(s),
3 (J

4 a 2 q 2 2 k
BB(n, n') AB(n,n

'

) fn q - + X<n e | In>12 dq
(I - n2/n'2) 2 2k q3

n >> 1 (18b)

Equations (17) and (18) have been derived within the validity of the Born

approximation. It is seen that AB (n, n ') is identical to A(n, n') given by (10b).

If we now make the approximation that q l 1/a instead of the second inequality

in (16), that is q0 is inversely proportional to the atomic radius, then (17) will

be an approximation to the Born approximation in the sense that in its first

term on the right hand side we have neglected contribution of all the multipoles

higher than the dipole. From Equation (18) it can be seen that the choice
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q0 ' 1/a has no effect on the value of A (n, n'), but it lowers the value of

BB (n, n') from its actual value. This is due to the neglect of the higher multi-

poles in the first term in the expression for BB (n, n'). In Table I where we

compare the Bethe coefficients derived here with the Bethe coefficients of the

Born approximation we find this in fact to be the case.

For qO= 1/a the value of the integral in the expression for BB (n, n') is

small. This is due to the fact that when q becomes several times larger than

the atomic radius, because of the factor exp (i q · r) the integrand of

<n' I exp (i q r) I n> will oscillate rapidly in its range, assuming positive

and negative values, and the integral will be small. With q0 = 1/a and the neglect

of the integral, BB (n, n') becomes the same as B(n, n') given by (10b) except

for an additional factor of 1.26 in the argument of the logarithm in (10b).

The Bethe coefficients in the Born approximation, AB (n, n ') and BB (n, n'),

for n = 1 - 9 and many values of n' in the range 2 - 20 are given by Omidvar

(1969). In Table I the ratios A(n, n')/AB (n, n') and B(n, n')/BB (n, n'), where

A(n, n') and B(n, n') are given by (10b), are given for a range of n from 5 to 9

and a range of s from 1 to 4. As is seen the A ratios range from 0.81 to 0.95.

The reason that these ratios are different from unity is the use of the asymptotic

expansion of the oscillator strength for calculation of A(n, n') instead of the

oscillator strength itself. The B ratios are, however, quite different from

unity except for the n - n + 1 transitions. The reason for the smallness of these

ratios is the approximation q0 = 1/a. Physically this approximation is equivalent
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to an arbitrary cut off of the large momentum transfers to the atom, and a

resulting smaller cross section.

We conclude that the dipole approximation of the semi classical impact

parameter or Born approximation gives as expected the A B (n, n ) coefficient

correctly, but not the BB(n, n') coefficient. Contribution to the cross section

coming from the BB(n, n') coefficient even at moderately high impact energies

is appreciable. Then an adequate description of the cross section by the dipole

approximation for moderately high impact energies, with a possible exception

of n - n + 1 transitions, can not be given. It has been shown that the method of

classical collision with correspondence principle is equivalent to the dipole

approximation.
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Table I

Ratios of the Bethe Coefficients. For each n and s = n
'

- n two numbers are

specified. The top number is A (n, n')/A B (n, n ) and the bottom number is

B(n, n')/B B (n, n'). A(n, n') and B(n, n') are the Bethe coefficients in the semi

classical impact parameter, and AB (n, n') and BB (n, n') are the corresponding

coefficients in the Born approximation.

5 6 7 8 9
s

0.9176 0.9292 0.9378 0.9451 0.9510
+1

0.8015 0.8015 0.8033 0.8069 0.8132

0.8646 0.8800 0.8922 0.9026
+2

0.4064 0.4111 0.4174 0.4250

0.8309 0.8460 0.8594 0.8713
+3

0.2741 0.2739 0.2768 0.2913

0.8064 0.8200 0.8326
+4

0.2117 0.2081 0.2079
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