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ABSTRACT

An exploratory study of the round-jet/plane-wall flow field has

been conducted. Impingement angles, between the axisymmetric jet

axis and the plane wall, from zero to 15 degrees have been examined

for nozzle heights of 0. 75, 1. 0, 1. 5 and 2. 0 diameters and for (i) a

fully developed pipe flow and (ii) a relatively uniform exit velocity

condition. Velocity measurements have been used to define isotach

contours and to determine mass, momentum and energy flux values

for the near field (i. e., within five diameters) of the jet. Surface

pressure measurements have been used to define surface pressure

forces and jet centerline trajectories. The geometric and flow condi-

tions examined and the interpretation of the results have been moti-

vated by the externally blown flap STOL aircraft application.
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1. INTRODUCTION

1. 1. STOL Aircraft - The Application Problem

Contemporary transportation requirements have led to consid-

erable interest in STOL aircraft. A recent article by Wick and Kuhn [ 1 ]

examines the general aspects of these aircraft. STOL aircraft are

characterized by the requirement of large lift at low forward speed.

The externally blownflap(see Figure 1) has been proposed as a techni-

cally feasible scheme to provide this condition. This configuration,

initially proposed by NACA personnel, has been extensively investigated

via wind tunnel model studies; see e. g., Smith [2].

For the externally blown flap configuration, the engine exhaust

is used to provide boundary layer control on the suction side of the flap

(or flaps) and to create the high velocity jet sheet from the trailing

edge of the flap. The success in obtaining these desired conditions is

dependent upon the wing-flap geometry and the flow field which is present

at this intersection. The flow field is dependent upon the location and

orientation of the engines, the influence of the external stream and the

upstream effects of the flap. The design problem is to select the appro-

priate geometric and flow conditions to obtain optimum take-off, cruise

and landing configurations. This is obviously a quite challenging aerody-

namic design problem; it has motivated the present study.

Complicated problems such as the selection of the proper loca-

tion and orientation of the engines for the externally blown flap are often

profitably approached via the strategy of reductionism. That is, the

complicated problem is simplified in such a manner that the most elemen-

tary form of the problem, which retains the basic characteristics of

the prototype conditions, is examined. The basic mechanisms which

are revealed by such a study are then used to interpret the behavior

of the prototype or a more complicated approximation of the desired

flow. The study by Albers and Potter [ 3 ], in which a two-dimensional

analysis of the externally blown flap is presented, provides one example

of this general approach. The results of their analysis can be used to

determine the desirable characteristics which must be provided by the

three-dimensional flow field of the prototype configuration. The present

study of the round-jet/plane-wall flow field is based upon this strategy.

This flow field, which is shown in Figure 2, has been the subject of a

1



rather extensive one-year exploratory study; the results of the study

are presented in this report.

1. 2. Background

There have been numerous studies of the interaction of a round

jet and flat plate but most have been for the condition where the jet is

perpendicular to the plate. Tani and Komatsu [4] and Chao and

Sandborn [5] have recorded mean and turbulence quantities for such

flows. A recent literature evaluation and further experimental results

have been reported by Gaunter, Hryack and co-workers [6] and [7]-. Ob-

liquely impinging jets for large (nearly perpendicular) angles have been

studied less extensively; very little information is available for small

angle oblique jets. These two categories are reviewed in the following

paragraphs.

Yakovlevskii and Krasheninnikov [8] in a study of a round jet

impinging on a flat plate at large angles have indicated that the lower

portion of the jet shows some reversed flow at an angle of 30-35 degrees.

Their pressure data and velocity data were mainly in support of their

interest in the flow at a considerable distance from the impingement

point and is too coarse to be of value to the present study. Donaldson

and Snedecker [9] have provided a rather extensive documentation of

nozzle height, mach number, and large angle (a = 90, 60, 45, 35 de-

grees) effects on an impinging jet. Because of the reversed flow con-

dition for angles larger than 30-35 degrees (an observation which they

substantiate), the majority of their work does not overlap with or contrib-

ute directly to the present study. The pertinent features of their study

are quoted along with the results presented herein.

Limited data on the interaction of a compressible jet with a plane

wall as well as the coalescence of two round jets is given in a paper on

jet propulsion by Squire [10]. The results for the round-jet/plane-wall

at a = 19. 5 degrees, h/d = 27. 4 indicated that the jet retains an axi-

symmetric form in the full jet before the plate is reached and in the upper

region away from the direct influence of the plate after the interaction

has occurred. Velocity data near the plate was apparently not available.

Crow and Champagne [11] have investigated the axisymmetric jet in

an effort to determine the possible existence of an orderly structure in

the near field. The study was motivated by jet noise considerations and

2



made use of a loud speaker driven oscillating plenum pressure con-

dition to search for the orderly structure. The volume flux data from

this study will be particularly pertinent for the interpretation of the present

results.

Alexander, Baron and Comings have reported an extensive series

of tests involving free jet flows [ 12]. They propose that the analytical

approach due to Reichardt provides an effective calculation scheme for

transport phenomena. As one aspect of this general study, they have

recorded a limited quantity of data for two round jets. The data are

recorded for the plane defined by the jet axes and the streamwise direc-

tion (except for a symmetry plane traverse at x/d = 30). The data is

reported for x/d > 10 and for a jet separation of (approximately) 2. 4d.

With the observation that the center plane is a plane of symmetry, they

indicated that the two-jet flow field will be similar to that with a wall

at the plane of symmetry. Their data for the latter case also commence

at x/d = 10 and are only for the above indicated planes. The data for the

case using the physical plane show somewhat greater velocities near the

plane than the completely free condition. This observation, not ex-

plained by the authors, may be due to the generation of streamwise

vorticity.

A wind tunnel simulation study by Raney and his associates [ 13]

was carried out at the British R. A. E. Farnborough to evaluate the ef-

fects of an underslung engine placed in rather close proximity to the

support wing. The investigation evaluated a configuration for an airbus,

and a straight wing (no flap) was used with jet-to-free-stream velocity

ratios between 1 and 2 (1 < us/ujet < 2); that is, a condition simulating

a high speed forward flight was investigated. The actual engine geometry

was simulated and an airfoil with upper and lower surface static taps

was used to determine the pressure distribution over the airfoil; these

were the object data for the study. An incidence angle (a) of four de-

grees was employed for the majority of the tests, and h/d values of

0. 65 to 0. 88 were investigated.

For the geometries and flow conditions evaluated, the upper

surface pressure distribution remained unchanged from the condition in

which only an airfoil was present. However, the lower surface pressure

distribution showed a strong dependence on the spacing (h/d) and velocity

3



(us/Uj) ratio. These dependencies were most pronounced for the mini-

mum and maximum portions of the investigated ranges. The stagnation

point of the attachment phenomena was also clearly evident for these

extreme conditions of their tests. It should be noted that STOL appli-

cations will involve much greater velocity ratios and possibly different

engine configurations than those tested. The data of Raney and associ-

ates may allow the effects of a non-zero u
s

to be evaluated for the round-

jet/plane-wall studies.

The near field of an axisymmetric jet has been investigated

by Sami et al. [14], Mean velocity profiles,- turbulence intensities, turbu-

lence kinetic energy budgets and turbulence scales are presented for

the region 0 < x/d < 10. The mean velocity data of [ 14] will be used

as reference data for the mass and energy flux values for the near field.

1. 3. Characteristics of the Round-Jet/Plane-Wall Flow Field

The flow field is determined by the appropriate geometric and

flow conditions imposed upon it. The geometric conditions are defined

by two parameters, the distance above the plate (h) normalized by the

jet exit diameter (d) and the angle between the jet axis and the plate

(a). The flow conditions are defined by the flow at the exit plane of the

jet and the ambient flow conditions (u s ) if any. The ambient velocity was

zero for the present study. The only universally defined exit flow con-

dition is that of a fully developed pipe flow; this case was investigated.

A second case, that of a uniform profile with boundary layers on the

nozzle wall was also investigated. For the latter condition, it would be

necessary to determine the state of the turbulent motion (i. e., the

second and higher order correlation functions) in order to characterize

the flow conditions. For nearly all jet studies, the mean velocity profile

and the longitudinal intensity represent the maximum information reported.

Studies by Bradshaw [15] and Flora and Goldschmidt [16] have re-

ported effects on the development of free shear flows due to the initial

turbulence structure, but this aspect of the problem is largely unknown

at present.

The flow field which results from the interaction of the jet with

the plate may be characterized by several phenomena. These several

phenomena are identified in the following subsections and are reported

in detail in the results section. Other phenomena which also serve to
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characterize this flow field will be briefly identified herein and more

extensively examined and reported as a part of the second year's

activity.

1. 3. 1. The Jet Trajectory

The characteristic of a jet to entrain ambient fluid will influence

the location of the intersection of the jet and the plate. The entrain-

ment of ambient fluid from the region between the jet and the plate results

in a non-axisymmetric reduced pressure field around the jet and a

consequent deflection toward the plate. (This effect is of course not as

important for a round jet as compared with a plane jet. )

1. 3. 2. Jet Spreading

As the jet impinges upon the plate, greater than ambient pres-

sures may be expected on and near the plate in the interaction region.

The resulting fluid accelerations that are required to balance the pres-

sure gradient and shear effects lead to a three-dimensional flow field

near the plate with possibly strong lateral flows (parallel to the plate

and perpendicular to the streamwise direction). Strong lateral flows

would result in a significant spreading of the jet. It can be expected

that the magnitude of this effect will be a strong function of the geo-

metric parameters.

1. 3. 3. Entrainment

In the region between the nozzle exit and the streamwise loca-

tion where the effect of the plate is felt, the entrainment (i. e., the

capture of and the transfer of vorticity fluctuations i to ambient

fluid with the consequent increase in the mass flux [17] gis dependent

upon the geometry and the nozzle exit conditions. However, once the

jet-plate interaction has occurred, the amount of entrainment, as indi-

cated by the mass flux values, will reflect the character of the jet

boundary exposed to the ambient fluid. The difference in mass flux

values between the free jet and the impinging jet cases will therefore

help to characterize the behavior of the jet and also its effect on its

environment.

1. 3. 4. Dissipation

The decreasing values for the flux of mean flow kinetic energy

reflect the dissipative processes within the jet. (In this sense, the

production of turbulent kinetic energy is considered dissipation in that

5



it represents an energy drain from the mean flow which will ultimately

be dissipated by the smnaller scale turbulence structure. ) Since the

flux of nlean flow kinetic energy is easily obtained from the present

measurements and since it helps to characterize (i. e., provides a

quantitative measure of) the velocity field, these values will be presented.

Since the production of turbulence kinetic energy will be altered by

the jet-plane interaction, the kinetic energy flux values may be instruc-

tive regarding the flow characteristics in these regions.

1. 3. 5. Other Phenomena

The production of mean streamwise vorticity is one of the poten-

tially most important features of this flow field. The production occurs

because the dominant mean vorticity in the jet is azimuthal (E03 in a

streamwise r, 0 , z coordinate system) and because in the region of the

stagnation point on the plate, the velocity gradients are such as to cause

stretching and reorientation of these vortex filaments. Specifically

au/80 is such that o0 au/80 > 0 for y > 0 and wo au/80 < 0 for y < 0.

This results in a pair of streamwise vortex filaments at a given x

location such that a secondary flow toward the plate and away from the

center line is created. Figure 3a shows such a development for a

characteristic vortex filament; the powder seeded jet of Figure 3b

shows the effect of the streamwise vorticity. The significance of this

phenomena is related to the desired boundary layer control. If the

streamwise vortex filaments could be caused to extend through the flap

gap, they would have the effect of energizing the boundary layer on the

suction side of the flap by inducing high velocity fluid to be swept down

to the flap surface. This would be similar to the effect achieved by the

vortex generators which have been installed on certain commercial air-

liners. Quantitative considerations of this effect will be considered in

a separate report.

A stagnation region on the plate will occur where a streamline

from the jet intersects the plate. This effect and the stagnation of the

entrained fluid as it meets the jet fluid result in rather complex sur-

face static pressure patterns. The integral effects of these pressures,

i. e., forces and moments, will be considered in this report. Detailed

considerations of the surface pressure patterns will be reported later.
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1. 4. Objectives and Scope

The externally blown flap for STOL aircraft provides the tech-

nological motivation for the present study; the optimal location and orien-

tation of the engine is the design problem which has directly stimulated

this investigation. The round-jet/plane-wall flow field has been identified

as one with some of the basic characteristics of the design problem.

The objectives of this study are to (i) identify the basic characteristics

of the round-jet/plane-wall flow field, and (ii) develop quantitative mea-

sures of these characteristics (see 1. 3. 1 - 1. 3. 5 for the characteristics).

Subsequent analysis will be able to develop sensitivity coefficients for

these measures which will express the influence of the flow and geomet-

ric conditions (see 1. 3 for the conditions).

The range of flow and geometric conditions are 0 ' a - 15

degrees, 0 5 h/d 5 2, 0 5 x/d ' 5 (see Figure 2 for definitions). Flow

visualization studies using a powder-seeded jet with planar illumination

to observe the jet cross-sectional shape have been conducted to define

what cases were of interest. Quantitative data for velocity and plate

surface static pressure measurements have been obtained. From these

data, the following quantities, which serve as both measures of the flow

field characteristics and variables of intrinsic interest, have been com-

puted:

i) isotach contours to provide a visual representation of the jet

representation,

ii) a phenornenological model for the description of the axisym-

metric portion of the velocity field,

iii) mass, momentum and energy flux ratios,

iv) pressure force exerted on the plate and descriptions of the jet

trajectory.

2. ANALYTICAL CONSIDERATIONS

This investigation can be described as an exploratory-experimental

study of a three-dimensional turbulent shear flow. The role of analysis

for this study is to provide a framework to organize, interpret and

present the experimental data. This will be accomplished by using

fundamental relationships -- the conservation laws -- and a phenomeno-

logical theory -- the Reichardt Hypothesis. These considerations are

given in 2. 1 and 2. 2.
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2. 1. The Control Volume Formulation of the Conservation Laws

For the round-jet/plane-wall flow field and for nearly all flow

fields of engineering interest, the required information is the behavior

of the fluid in a region in space and not the behavior of an individual

particle (or a collection of particles) passing through the region. How-

ever, the laws of mechanics are fundamentally known in terms of indi-

vidual or collections of particles. For example, the familiar expression,

F = ma, clearly involves quantities defined in terms of an identified mass

element. Such relationships are described in "material coordinates"

whereas information regarding the behavior of the fluid in a region of

space requires "spatial coordinates." The control volume formulation

provides the formal procedure to transform the material coordinates

description of the conservation laws into a spatial coordinate descrip-

tion. The Reynolds transport theorem, which accomplishes this trans-

formation is given by Equation (1) in terms of the extensive (i. e., mass

dependent) property N. The other symbols in the equation are 9]: N per
-0.* A

unit mass, p: density, V: volume, v: velocity, n: an outward drawn

unit normal. The time-rate-of-change-of N is given by

DN d C A
d pdV + T] pv ^ ndA (1)

Dt dt C. V. SC. S

The C. V. and C. S. stand for control volume and control surface, respec-

tively. The four conservation laws and their contribution to the present

investigation are given in the following subsections. Since this flow field

is steady (time independent) the first term on the right hand side is zero.

The essence of utilizing this approach for a general fluid mechanics

problem is in the selection of the control volume; Figure 4 shows the

control volume selected for the round-jet/plane-wall flow field.

2. 1. 1. Conservation of Mass

The mass, M, of a collection of particles is obviously constant;

therefore DM/Dt = 0 and r] = mass/unit mass = 1. For these conditions,

Equation (1) becomes

(^A
0 = pv . n dA . (2)

C. S.
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Entrainment of ambient fluid was one of the phenomena discussed in

Section 1. 3. This is quantified by Equation (2) in that the mass efflux

at the plane x = x will be greater than that entering from the jet, x = 0,

by the amount entrained through the other portions of the control surface.

The mass flux from the jet and the exit mass flux from the control volume

are obtainable from the experimental data.

2. 1. 2. Conservation of Momentum

The sum of the mass times the (vector) velocity for each particle,

N, is the resultant momentum of the collection of particles. The mo-

mentum per unit mass, rq, is velocity and the net force on the collection

of particles, F,. is equal to the time-rate-of-change of the momentum

of the fluid particles. The term "conservation" indicates that the mo-

mentum of an isolated system, e. g., the universe, is constant. For

this steady flow problem

F = v pv . n dA (3)
C. S.

The z-component of Equation (3) expresses the primary balance between

the net pressure force on the plate and the net change of the z-component

momentum flux, Jz through the control volume; the effects due to

entrainment can be expected to be of secondary importance except for

negligibly small a values. Since the asymptotic condition is Jz = 0

for x -· o , a zero J value will indicate that the plate is effectively

infinite in length as regards the turning of the jet. If a zero J value
z

is not obtained, then the downstream section of the plate will affect

the flow at the local x station and the conditions of the present study

may differ from those associated with a finite length of plate. These

considerations are discussed in 4. 5.

The x-component equation expresses the balance between the

force terms, that is the shear force on the plate and the streamwise

pressure gradient effects and the x-component of the momentum flux.

It will be shown that the x-component forces are negligibly small, hence

the x-component momentum flux can be used as a reference value for the

flow field.

9



2. 1. 3. Conservation of Moment-of-Monlentum

A moment-of-momentum can be ascribed to each particle. Let

the symbol r represent the distance from an arbitrary origin to the

particle and N be the moment-of-momentum of the collection of parti-

cles. M is defined as the net moment on the collection of particles,

hence

M = p(r x v) v . n dA (4)
C. S.

Equation (4) can be used to identify the effective location, i. e.,

Zm, of the x-component momentum flux as it leaves the control volume.

That is, from the measured pressure distribution and the contribution of

the pressure to the moment on the control volume and from suitable

assumptions regarding the entrainment effects, the distance zm may be

calculated. The relationship of this height to the effective center of

the axisymmetric portion of the jet is compared in the results section, 4. 5.

2. 1. 4. Conservation of Energy

The rate of heat transfer, Q, and the rate of work done by the

control volume, Ws, may be related to the time rate of change of energy

in the control volume.

C -2 A p A
Q -W = , p [u/ + v gz + p/p] v . n dA (5)

C. S.

where u
0

is the internal energy per unit mass. Some subtle arguments

are required for the rate of work effects which result in the p/p term

as part of the flux quantities. For the round-jet/plane-wall flow field,

W = 0 and the net flux values for p/p and gz are negligible. Con-s
sequently, the net flux of kinetic energy through the control volume is

balanced by the internal energy and heat flux terms; these latter terms

are equal to the dissipation of the mean flow kinetic energy. Conse-

quently, the flux of kinetic energy, which may be readily evaluated

from the available velocity data, provides a measure of the dissipative

effects in the flow field.
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2. 2. The Reichardt Inductive Theory

The equations which describe the point-by-point velocity field

for a linearly viscous, incompressible (Newtoniar~ fluid -- the Navier-

Stokes equations -- are well known. These equations describe the in-

stantaneous motion of alaminar or turbulent flow; they may be written

in Cartesian tensor form as

au. azu.
1 + U a 1 ap + v (6)

at 3 axj i p ax. ax.ax.
1 J J

For the round-jet/plane-wall flow field, these equations contain far more

information than is desired; specifically, they describe the instantaneous

velocity and pressure fields. The instantaneous fields may be described

as the superposition of the time mean ui, p and instantaneous Ci., P
1

fields as

u.i = u + ii ; p =
p+ + (7a;7b)

from which the Reynolds equations may be derived as

au. a u.1 a a a.a.-. a -1 ap + Ui u . (8)at X.'+ 5 -- u.fX.1at j ax. i p x ax.+v ax. ax. i J
3 1 3 3 J

The term -p (.: i), which originates in the non-linear acceleration term,

is termed the Reynolds stress tensor. The presence of this term has

been referred to as the "closure problem" since there are no fundamen-

tally correct universal or special-case formulations to relate it to the

mean velocity field; that is, there is no fundamentally correct consti-

tutive equation. There have been several ad-hoc proposals for such a

relationship; these are the mixing length for vorticity and momentum,

the eddy viscosity and a von Karman technique (to relate the first and

second derivatives of the mean velocity) and they are all motivated by

more or less reasonable physical arguments which are not sustained

in detail when compared to experimental observations. These are ex-

amined by Hinze (see Chapter 5 [ 18] ). An alternative hypothesis was

advanced by Reichardt [ 19] which claimed no physical motivation but

yielded a diffusion equation for free shear flows and an exponential form

for the mean velocity distribution which agreed satisfactorally with
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wake, jet and shear layer data. The Reichardt hypothesis was general-

ized by Baron and Alexander [ 20] and has most recently received vigor-

ous attention by Sforza and co-workers in a major evaluation and redi-

rection of turbulent mixing engineering research. The most recent report

by Mons and Sforza [21] provides an extensive description of both the

generalized Reichardt formulation and results of turbulent jet mixing

studies by this group.

Briefly, the extended Reichardt hypothesis is (for the instan-

taneous velocity components)

3u 2

u v = - (x) r (9)

for which case Equation (6) may be rewritten as (for the time average

of u z)

2 2
a- a r2 ( 0)axu + A(x) u 0 (10)

This is seen to be a parabolic or diffusion equation. Three boundary

conditions are required; specifically an initial condition, which is ob-

tained from the exit (or other) profile, and conditions for u Z (r) based

on the geometry of the problem. For example au 2 (o)/ar 0 and

u (a ) = 0 for a jet. The velocity field of a free shear flow is indepen-

dent of the initial conditions for sufficiently large downstream distances;

this is not the case for the near field. The presence of the initial con-

dition and the available flexibility in the choice of A(x) provide a

format which makes it relatively easy to describe the initial region

of a jet via this semi-empirical description. Trentacoste and Sforza

[22] report marked success in terms of evaluating the initial velocity

fields for different free jets.

The Reichardt hypothesis will be used to compute the axisymmetric

portion of the jet which is not influenced by the plate for the round-

jet/plane-wall flow field. The availability of this scheme will facilitate

interpolation and extrapolation of the data.
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3. EXPERIMENTAL FACILITY

3. 1. Flow Systems

3. 1. 1. Flow Visualization

Two flow systems were used for the round-jet/plane-wall studies.

A preliminary flow visualization study was performed to establish the

gross response of the flow field to changes in the geometric parameters;

a separate facility was used to obtain quantitative data.

A schematic description of the flow visualization facility is

shown in Figure 5. The air was seeded with powder by using a jet pump

shown schematically in Figure 6. The powder flow is induced by the high

velocity air stream in the inner tube. This configuration provided a

repeatable powder density which was constant over the time required to

obtain the photographs. The jet tube is 1/4 in. (0. 635 cm. ) in diameter

and 10 in. (25. 4 cm. ) in length. The exit velocity was approximately

150 ft. /sec. (45. 5 mps). Photographs were taken of the cross-sectional

profiles, in x = constant planes, of the seeded jet. The cross-sectional

profiles were made visible by illuminating the powder with a thin (. 15 cm. )

sheet of light produced by passing the beam of a 500 mw argon laser

through a cylindrical lens. A photographic record of the jet's shape

was made at each diameter for 0 - x/d - 5 (see Figure 3b). The

Reynolds number is the only parameter which is required to establish

similarity between the visualization and quantitative studies since the

geometric parameters are identical and the two flow fields are incom-

pressible. The Reynolds numbers differ by approximately a factor of

seven which is not significant since they are large (u(0) d/v - 105

quantitative; 2 x 104: visualization) and since the bulk of the flow is

not directly influenced by viscous shear effects. Characteristic

photographs from this portion of the study are presented in Figure 3b.

3. 1. 2. Quantitative Study

The second flow system, shown in Figure 7, was used for

quantitative measurements of surface static pressures and mean

velocities. High pressure air, produced by means of a multiple stage

centrifugal blower was ducted through a counterflow heat exchanger were

placed in a separate room in order to ensure constant ambient condi-

tions near the test facility during the course of a run. A plenum

13



chamber was used to remove the large scale pressure fluctuations

from the flow. The fully developed pipe exit condition was obtained

by a 12 ft. long, 2 in. (5. 08 cm. ) I. D. extruded aluminum pipe giving

exit velocities of about 120 ft. /sec. (36 m/sec. ). The pipe was supported

such that h/d values between 0 and 2 could be obtained.

The flow system for the uniform exit profile consisted of a 6-

inch (15. 24 cm. ) I. D. extension of the plenum chamber terminated by

a short radius contraction to a 12-inch (30. 48 cm. ) pipe (see Figure 8).

This configuration provided a compromise between a uniform exit

condition and a geometry which minimized blockage effects (i. e. , for en-

trainment) and allowed small values of h/d and a to be physically obtained.

A large plate, hinged on a base. of aluminum channel to provide

variable angles a, served as the plane-wall. A portion of the plate

was movable and was driven in the y-direction by a stepping motor geared

through a precision threaded shaft and follower arrangement. As shown

in Figure 9, two rows of surface static pressure taps, parallel to the

x-axis and 4 inches (10. 16 cm. ) apart were used for the static pressure

data. The taps in each row were located on 1/4 inch (. 635 cm. ) centers

for six inches (15. 24 cm. ) and 1/2-inch (1. 27 cm. ) centers beyond six

inches (15. 24 cm. ). The rows were staggered so that, if symmetry

was assumed, a spacing as fine as 1/8 inch (. 3175 cm. ) in the x-

direction could be obtained.

The movable plate section was also used to drive the hot-wire

rake support head, (see Figure 10) in the y-direction for the mean velo-

city traverses. The rake of four hot-wire probes was positioned in x

and z and then traversed across in the y-direction at 0. 1 inch (. 254 cm. )

intervals taking readings for 10 seconds at each point.

3. 2. Instrumentation and Data Acquisition System

A schematic representation of the data acquisition and recording

system is shown in Figure 11. Decker 308 pressure transducers were

used for the measurement of the dynamic pressure.at the nozzle exit

and the static pressures on the plate. Units whose output provided

10 volts for differential pressures of 3 and 0. 3 inches of water were used.

In order to make a record of the plate static pressures, two

transducers were used to monitor a pair of static taps while the plate

was traversed with respect to the jet. In order to gain maximum
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efficiency for these measurements, the transducer outputs were moni-

tored by an on-line 1800 computer (real time); continuously up-dated

meanvalueswere calculated for each pressure reading and the input

signal was sampleduntil a stationary value was obtained. Upon the at-

tainment of a stationary value, that is when

TT 1/2

[1/T ~ p'
2

(y) dt] 0 .03 p (y),
0

a signal was generated in the computer to drive the y-position stepping

motor to its new position. Increments of A y = 0. 1 inch (0. 254 cm. )

were used. The computer simultaneously recorded the number of readings

to obtain a stationary value, the mean and r. m. s. pressure values, as

well as the position coordinates for subsequent processing. A trans-

verse span of 4 inches could be covered by this procedure; consequently,

the two rows of static taps covered an 8-inch width under the jet flow.

A similar procedure was used for the mean velocity data using

a rake of four, vertically-mounted single hot-wire probes. .The rake

was mounted on a traverse head which allowed positioning in the x and

z directions and which was driven by the movable plate in the y-direction.

The analog voltage signal for the mean velocity data was pro-

duced by four constant temperature anemometers, two channels, Thermo-

Systems, Inc. Model 1054A (linearized), one Disa 55D05 anemometer

with a Disa 55D15 linearizer and one Disa 55A01 anemometer with a Disa

55D15 linearizer. These signals were fed to the computer where aver-

ages were computed for 10 seconds at a point. This averaging time

represents a compromise between the time required for a stationary

signal in the outer region of the jet and the total time required for the

quantity of data recorded. The acceptable data scatter in the velocity

traverses justifies the selection of the averaging time.

4. RESULTS

4. 1. Introduction

The round-jet/plane-wall flow field is an idealization of the

externally blown flap configuration. The prototype problem involves a

more complicated flow field since the air foil is of finite length and the

flap will exert some upstream influence. Its more complicated nature
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means that 1) the total flow pattern depends on more variables and is

more sensitive to these flow and geometric variables and 2) the under-

lying dominant mechanisms of the flow will be obscured by this complexity

in terms of analyzing experimental test results for a prototype condition.

Two separate, although not distinct, objectives have been established

and pursued for the round-jet/plane-wall flow field: 1) to establish the

character of this flow (there is virtually no information in the literature

regarding the details of such a flow at small incidence angles) and

2) to identify the primary mechanisms responsible for the character

of the flow. That is, the two objectives are to determine the "what"

and the "why" of the flow field.

The present report is to provide a characterization of the flow

field to achieve maximum relevance to the engine blown flap application

to synthesize the considerable amount of primary data generated in the

experimental program. A second report, which requires additional

special tests and further analysis, will seek to establish the mecha-

nisms which govern this flow field. If these mechanisms can be identi-

fied, then the complicating effects of the prototype can be assessed. This

will contribute to the analysis of test results for the prototype configu-

ration and allow a more rational design to be effected.

The results communicated in the present report are derived

from velocity measurements in planes of constant x or from surface

pressure taps located in the plane-wall. The geometric parameters

which define this problem are the inclination angle of the jet a and the

dimensionless height of the jet axis above the plane-wall h/d. The

flow parameters are defined by the condition of the surrounding fluid

(namely, quiescent air with the same properties as the jet for the present

study) and the fluid dynamic conditions at the nozzle exit. The effect

of the nozzle exit condition was examined by using a fully developed

pipe flow and a relatively uniform velocity profile as the exit con-

ditions. The exit velocity profiles are indicated on Figures 28 and 29.

The necessity for schemes to synthesize the primary data can

be appreciated from the following. Each hot-wire probe of the four

wire rake was positioned at 40 locations in a y traverse (-2 in. - y

S 2 in. ). Two z positions, and when required a second y traverse of
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2 in. - y - 6 in., were used for the rake at a given x location. The

result was a minimum of (40 . 4 . 2 =) 320 data points per x location per

geometric condition. Traverses were made at x/d locations of 0

(approximately), 1, 2, 3, 4, 5 for 8 geometric conditions using the uni-

form nozzle and 7 conditions using the fully developed nozzle. Hence

the total number of velocity data points to be interpreted is (320 . 6

[8 + 7]) = 3. 0 x 104. In addition, the pressure data usually involved

10 or more traverses per geometric and exit profile condition which

contributed an additional 4 x 103 data points.

Four basic synthesizing schemes have been developed. These

are presented in the remainder of Section 4 using the following format.

1) Purpose: a description of the scheme and its contribution

to establishing the character of the flow.

2) Data Processing: a description of the computations and analy-

sis of the data to convert it from the primary form into that

required by the particular scheme.

3) Discussion: a consideration of the results in terms of their

contribution to the definition of the flow field characteristics.

4) Relevance: special interpretations not covered in (3) which

serve to relate the results of the particular scheme to the engine

blown flap configuration.

4. 2. Isotach Contours

4. 2. 1. Purpose

An isotach contour is a curve of constant velocity magnitude;

for this study, they have been generated for planes of constant x/d.

These contours are to provide a graphical representation of the jet

and, by comparing the isotachs between x/d stations or between cases

for different geometric or flow conditions, they are to provide a graphi-

cal format to show the response of the jet to different conditions. This

scheme synthesizes the multiple traverses at a given x location into

a single figure and shows the three-dimensional character of the flow

field with much greater clarity than would be achieved by a presentation

of the u(y) data.
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4. 2. 2. Data Processing

The primary data is a 10 second average of the voltage output

of a given wire mounted parallel to the z axis and located at x, y,

z in the flow field. The computer averaged voltage is converted into

a velocity from the calibration table for the linearized wire. (The

table is the voltage-velocity relationship stored at 0. 25 fps intervals

in the memory of the IBM 1800 computer. ) The calibration scheme is

quite accurate and the resulting data is sufficiently smooth to justify

the 10 second averaging time. However, the interpretation of a single

wire in the presence of the strong pitch and yaw effects of the present

flow field is rather difficult. Champagne [23] has provided a formalism

to interpret the output voltage of a linearized wire in terms of the mean

and fluctuating velocity components of the flow. The resulting expression,

carried out to third order terms for the fluctuating velocities is

quite complicated. In terms of the present study, it serves as a warn-

ing that the averaged output of the single wire cannot be accurately

interpreted as the velocity except in regions of relatively low intensity.

As a first approximation, the recorded velocity can be interpreted

as the magnitude of the velocity in the yz plane since

2 2 2 1/2
Q) (cosZp - 2sin p) (11)

measured

where p is the angle between the time mean streamwise velocity (Qs)

and the normal to the wire and K - 0. 2. The first correction term

is the normal turbulence intensity which can be expressed in the
-2 -2 1/2/

present nomenclature as (u + v ) /Qs. Therefore, to the order of
-2 -2 1/2

Equation (11), the wire responds to (u + v ) and the level curves

of this function form the isotachs.

The error in neglecting the turbulent fluctuation contribution

is dependent upon the relative intensity; hence, a large percentage

error is possible at the edge of the jet. However, approximately the

same relative errors will occur for the different geometric and flow

conditions which facilitates the comparison between cases.

The approximate velocity magnitudes of the present study have

been generated by the relatively straight forward techniques described
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above. In order to obtain a significant improvement in the accuracy

of the values, considerable effort must be expended including a multiple

positioned single wire or a dual (x or v) wire configuration combined

with appropriate interpretive routines to extract the velocity com-

ponents. The necessary sophistication and additional effort would have

considerably reduced the comprehensiveness of the cases investigated

and would have been incompatible with the exploratory nature of this

initial study.

The isotachs were defined by a search routine which located

the y locations of a given ratio for u/u(0) for a given value of z (i. e.,

from a y traverse) at a given x value. The y-z locations so identified

were recorded and a compass was used to locate the center of the

isotachs at a given x. The estimated uncertainty for this process is

±. 03 in.

4. 2. 3. Discussion

The circular patterns of the isotachs (see Figures 12 to 27) near

the nozzle exit and for those cases where the jet does not come in close

proximity to the plate are to be expected. The regularity of the isotachs

indicates that the multiple wire rake and the calibration procedure pro-

vide reliable velocity data. This observation indicates the general

reliability of the data acquisition and processing techniques; quantitative

measures of the techniques are provided by the flux measurements.

A rather striking result is the maintenance of the circular iso-

tach pattern for the upper portion concurrently with a strong deformation

of the isotach pattern for the lower portion of the jet. The factors

causing a deformation are shear stress and pressure gradient effects.

The shear stress is clearly a "near field" effect and can be expected to

slowly erode the circular pattern as shown by the data. The pressure

field will remain uniform (at the atmospheric value) except in the region

near the plate where the streamline curvature effects will result in

increased pressure values. The experimental results indicate that

the pressure gradients in this region are relatively large, the flow is

apparently turned with a relatively small radius of curvature.

The distortion of the lower portion of the isotachs clearly shows

the developing secondary flow and the associated production of streamwise

vorticity as discussed in Section 1. 3. 5 and as shown schematically in
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Figure 3a. The secondary flow carries the high velocity fluid away

from the y- 0 plane; the magnitude of this transport is shown by the deviation

of the isotach contour from the circular arc defined by the upper portion

of the jet. An approximate boundary for the region of the secondary flow

is indicated by the region of the distorted isotach patterns.

4. 2. 4. Relevance

The major contribution of the isotachs is their ability to graphically

communicate the type of flow regime to be expected for a given a, h/d

and x/d. Unlike some of the quantitative measures of the jet to be

presented in later sections, the isotachs are rather insensitive to the

nozzle exit conditions. Since the objective of the externally blown flap is

to provide a portion of the fan exhaust to energize the flap, the velocity

field presented to the flap gap region is quite important. The isotach

contours provide an indication of this; the effect of the finite airfoil

and the upstream effect of the flap will, of course, modify these results

for the prototype flow field.

The spreading of the jet along the surface of the plate for the

small h/d, large a conditions may prove attractive for the STOL appli-

cation. For this, a deflectable jet, a gimballed nozzle or a solid ex-

tension of the air foil followed by the flap(s) might be required to also

allow for the desired cruise condition geometry.

4. 3. The Extended Reichardt Hypothesis

4. 3. 1. Purpose

As shown by the isotach contours, the upper portion of the jet

retains an axisymmetric character even though the lower portion of the

flow is distorted by the jet-plate interaction. The purpose of this sec-

tion is to evaluate the Reichardt hypothesis with regard to its ability to

calculate the free jet profiles and to determine whether the same for-

mulation can be used for the upper portion of the jet. The studies by

Sforza and co-workers [21 ], [22 ] and Baron and Alexander [20 ]

would indicate that this formulation is quite useful for free jets.

4. 3. 2. Features of the Data Processing

The pertinent equations may be taken from the report by Mons

and Sforza [ 21 ] .
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pvu - A(x) 8(puu) (3)*
A8 

ax~I- (puu A (x) a aOx (ppuu)) (5)*r r

Initial condition

f (r') for r' < d/2

for r' < d/2
at x=0: puu ='j ° for r' > d/2 (6)*

Boundary conditions

apuu - 0 as r - a, uu = 0 at r =0. (7)

From [ 21 ]: "A(x) is unknown and mus-t be obtained by.-comparison between

theory and experiment. For convenience, we introduce the trans-

formation [24]
x

X = S A(x') dx'
or

(8) *

dX = A(x) dx

Under the transformation (8)*, Equation (5)* becomes

a(puu) 1 a a 9
ax - r ar [r- (puu)] (

The solution of (9) for arbitrary initial conditions [25 ] is

-1 2pux { -- I exp - { r P1 exp exp - { } I( -fu(r')r'dr' (10)*

rr'
where Io( -* is a modified Bessel function of order zero and has the

form I (z) = 2 (1/2 z) m/ml r (m+1). [26] "
m= 0O

*Equation numbers from Mons and Sforza [21 ] .
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Two inputs are required for this system of equations, viz., the

initial velocity profile f(r') and a functional form for the transfer length.

The initial velocity profile is dependent upon the nature of the nozzle and

the approach flow conditions; for this analysis, it is considered to be a

known function given by experimental data. The diffusion length must

be chosen somewhat arbitrarily. Its form does not affect the momentum

flux; therefore, it is not constrained by fundamental laws. Its magni-

tude does affect the effective spread or entrainment rate and conversely

the dissipation rate for the jet. For the far downstream region, the

X function behaves as x2 which results in a self-preserving form for the

velocity profile. A series approximation would therefore involve x2

as the highest power for X. Motivated by the series expansion form,

an expression for X was formulated as

x/d = C
o

+ Clx/d + C 2 (x/d)Z (12)

where C = 0 since X results from the integral over x of some function A.

It should be stressed that this form is arbitrary; fractional or exponen-

tial powers of x may be even more suitable to use to approximate this

function. The values of C 1 and C2 were evaluated from the uniform flow

data by a trial and error process of calculating a u(x, r ) distribution

for 0 s x/d S 5 and obtaining the "best fit" to the experimental data

in this x range.

4. 3. 3. Discussion

The exit profile and the data used for the trial and error process

were for the uniform nozzle exit condition and a =9 degrees and h/d

= 1. The values calculated from Equation (9) and the data of

several uniform exit profile conditions is shown in Figure 28. Only

the experimental data which demonstrated conservation of the measured

momentum flux (that is, reliable data) were used for this figure.

Unlike a functional form to fit experimental data in the self-

preserving region, this formulation must determine the absolute value

of the velocity, not a fractional value of the (otherwise obtained) center

line value. The agreement between the calculated and measured values

is considered to be good. The requirement of determining two coeffi-

cients is a reasonable input to be expected of a phenomenological theory
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especially since one X formulation for a given class of exit profile

conditions should be sufficient for any member of the class.

The data of Figure 28 also show that the analytical formulation is

valid for the condition of a disturbed lower portion of the flow field.

That is, the formulation provides reasonably good agreement with the

data for a=9, h/d=l for which significant distortions occur in the lower

portion of the jet.

Figure 29 presents a comparison of the solution for Equation

(9)* using the fully developed pipe exit condition for f(r') and the same

X function determined for the uniform flow condition. The curves show

a consistent trend wherein the experimental data are below the analytical

values for small r and above the analytical values for large r. The selec-

tion of different C 1 and C
2

values in (12) could be expected to again

force agreement between the analytical and experimental values. The

purpose of Figure 29 is to show that the transfer length and hence the

X function is dependent upon the character of nozzle exit condition.

4. 3. 4. Relevance

The ability to calculate the velocity field for the upper portion of

the jet as it approaches the flap gap would appear to be of considerable

utility for the interpretation, if not the prediction, of test results which

indicate the jet-flap interaction. For this, the present study indicates

that the free jet characteristics of the nozzle exit profile and sufficient

downstream profiles to determine X (x) will be required.

4. 4. Flux Ratios

4. 4. 1. Purpose

The properly normalized flux of mass, momentum and energy

across a given x=constant plane provide a quantitative measure of the

entire, three-dimensional, jet field. (These flux values are given by

the integrals on the right hand side of Equations 2, 3, and 5 where

the area of integration is a plane of constant x and not the control

surface. Since these flux ratios depend upon all the velocity data for

a given x=constant plane, they also provide a synthesis of the data into

a given numerical value for the flux ratio. (Unlike free, axisymmetric

jet studies, the data of interest cannot be expressed by a single traverse.))

Hence, in the same manner in which an isotach contour is required

instead of a radial traverse, an area, and not a radial, integration is
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required for the flux ratio.

The flux ratios can serve to characterize the present jets

(in the region where they are not directly affected by the plate) with

respect to the near fields of jets reported in the literature. Also, the

jet-plate interaction may be assessed in terms of its effect on the flux

ratios as compared with their behavior for no direct influence of the

plate and the effect of the nozzle exit condition may be assessed in terms

of the effect of this flow parameter on the flux values.

4. 4. 2. Data Processing

Extensive data processing considerations were required for the

computation and the presentation of the flux ratio values. In addition,

flux ratio values were calculated for similar data reported in the litera-

ture. These considerations are summarized in this subsection; they are

fully reported in Appendix A.

The detailed considerations, regarding the interpretation of the

linearized hot-wire voltage in terms of a velocity magnitude, presented

in 4. 4. 2. 1 applies directly to the data processing required for the flux

ratios. The mass flux requires the integration of u(xo, y, z) over the

plane of x . Since no corrections for yaw or turbulence intensity effects

were made, the indicated mass flux values can be expected to be too

large. The magnitude of the error is difficult to estimate; a nominal

value of 6 percent for the maximum would seem reasonable. The error

is probably relatively constant between different configurations; hence,

a comparison based on the relative values will provide a somewhat more

reliable measure of the flow field character. The mean velocity yaw

effect, v, and the transverse turbulent velocity v2 will cause errors in

the evaluation of the momentum flux. The longitudinal intensity term

u is part of the actual momentum flux and therefore does not represent

an error in the measured value. The expected error for the momentum

flux is smaller than that for the mass flux since the integral is the square

of the velocity and (v/u) is uniformly much smaller than 1. 0 except

in the entrainment region. The evaluation of the energy flux is, for

this reason, even more accurate since the third power of the velocity

is involved.

It was necessary to establish a cut off criteria in order to exclude

the contribution of the entrainment velocity to the flux value, that is



v . n = 0 but I v n i 0 in the entrainment region. Also, integration

schemes to exploit the axisymmetric character of the full or upper

portion of the jet were developed. The details of these operations are

given in Appendix A.

The accuracy of the flux integrals depend upon the correctness

of the local velocity and the ability to form an area integral from sepa-

rate y traverses. Consequently, some ambiguity must be expected.

Two procedures were used to standardize the data for presentation and

further processing. The data for the x = constant planes which demon-

strated apparently correct isotachs and negligible pressure effects

(such that the momentum flux was conserved) were used to define a

standard momentum flux as the average J(o) value for the above des-

cribed cases. This value was normalized by J and was only dependent

on the nozzle configuration. The values calculated by this process were

X -J(o)/J = 0.809 uniform (13)

Xfd--J(o)/J° = 0.676 fully developed (14)

The second procedure made use of the streamwise invariance

of the x-component momentum flux J as determined by (1) an auxiliary

test of the maximum wall shear force magnitude and (2) a calculated

estimate for the maximum pressure force acting on a yz plane. Since

the J value is defined as
x

Jx(o) = J(o) cos a (15)

and since

dJ
x

dx = 0 (16)

the measured values of Jx(x) provide an integral check on the accuracy

of the data. If the computed value of Jx i Jx(O) then some error exists

in the velocity data or the integration process. If the error results from

the integration process or an irregular velocity error, then no rational

procedure to correct the mass and energy flux values is known. If the

error is in velocity and if the error recorded is proportional to the
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true velocity value (and if the integration schemes are valid), then the

mass and energy flux values can be corrected as shown below. The

appendix gives a more detailed account of the motivation for and the

analytical aspects of this correction procedure.

Let u be the measured x-component velocity and let

u = uT + 6 (17)

where uT = the true velocity and 6 the difference error. If 5U is

proportional to uT (i. e., 6 UT) then the momentum flux is

J = k pu T dA
(18)

= k JT Muk J T for § ~ u
Tu T

where k = [1 + (6 /uT)2] and JT is the value given by (15). Similar

considerations lead to

E T = E(x)/k3/2 for 6u u (19)

MT M(x)/k 1 /
2

for 5 u uT (20)T~ x)/k u Tu

The normalizing scheme of (19) and (20) is used for the presen-

tation of the flux data. This usage is motivated by the consideration

that the correction is valid if k = 1 and no other rational correction is

known if k i 1. The flux data are presented in two separate plots for

each nozzle configuration; the data are separated according to whether

or not the computed k value is within the range I k - 11 S 0. 03. If the

k value is outside this range and if 6 is not proportional to UT, then the

data must be considered for their qualitative, not quantitative, value.

The trends of the data must serve as the guide for this evaluation.

4. 4. 3. Discussion

The mass and energy flux ratio values are presented in Figures

30 to 33. Two separate figures have been prepared for each nozzle exit

condition; the data for the condition I k - 11 < 0. 03 is separated from

the data which fall outside this range. This grouping does not neces-

sarily segregate the data into accurate and inaccurate groupings;
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rather, it separates the data into more and less degrees of certainty

with regard to its accuracy. That is , to show that the groupings are

fallible, it there is proportionality between S
u

and uT, then the data for

I k - 1 I > 0. 03 is as reliable as those cases defined by the three percent

error band for the momentum flux. Conversely, the nonlinearity of

the momentum flux integrand means that for the condition 6 i: 0,

k = 1. 0 is possible.

4. 4. 3. 1. The Effect of the Nozzle Exit

The effect of the nozzle exit condition on the mass and energy

flux values can be evaluated from those cases of essentially constant

momentum flux and negligible direct influence of the plate. These

cases have been used to define the (least squares evaluated) straight

lines on Figures 30 and 3Z. These linear variations were not expected;

they do facilitate this and other comparisons. It should be noted that

neither mass flux curve is constrained to pass through (0, 1). However,

the ratio of the maximum to the average velocity for a fully developed

pipe flow in the Reynolds number range of the present study is 0. 817

which compares very closely with the (J(O)/J 0 )l/2 value of (0. 6764)1/2

= 0. 8224.

The slope of the mass rate of flow curve is the spatial entrain-

ment rate of ambient fluid. A significant difference between the uniform

and fully developed nozzle exit! conditions is evidenced by these results.

The entrainment rates for the uniform and the fully developed exit

conditions were 0. 134 and 0. 174, respectively. This is a difference

of about 30 percent!

The entrainment of ambient fluid is, in the most fundamental

sense, a transfer of vorticity by viscous diffusion. The entrainment

rate depends upon the contamination rate of ambient fluid which, in

turn, is dependent upon the spatial gradient of the vorticity fluctuations

and the total surface area available for the transfer. Although the uniform

flow case would appear to have steeper velocity gradients and therefore

probably larger spatial gradients of vorticity fluctuations, the large

scale turbulence structure at the exit of the fully developed nozzle would

provide a relatively larger surface area for the diffusion of vorticity.

Hence, the larger entrainment rate for the fully developed condition is

a reasonable result.
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4. 4. 3. 2 Comparisons with Earlier Studies

The computed mass and energy flux values for the earlier

studies are presented in Figures 34 and 35 the linear curves defined

for the present data are included for reference purposes. The data of

Alexander et al. shows a strikingly constant momentum flux and a quite

linear M(x) variation. The x=l data of Sami et al. results in a momen-

tum flux value which is much smaller than the other x stations which

show consistent momentum flux values. This pattern would be compati-

ble with a vena contracta effect. This explanation is also supported by

pressure measurements x = 1 and by the shape of the nozzle. The

relatively large jump in the J value between x = 0 and x/d - 3 for the

Mons and Sforza data is not readily explained; the error is appar-

ently caused by the displacement effect associated with an impact tube

in a strong velocity gradient [ 26 ] . This explanation would be com-

patible with the decreasing values calculated in [ 21 ] for J(x) and the

equality of J(O) and J(x) for large x values. If this is the source of the

error, then the use of k1 / Z is not a formally valid correction but

will cause the indicated value to tend toward the true value.

The data from these earlier studies are compatible with two

intuitive estimates for the effect of the initial and geometric conditions

on the near field entrainment rate. The initial conditions have been

examined in terms of the present data; specifically, if the flow contains

large structure turbulence at the exit plane, then it will probably have

a greater entrainment rate as compared with a more quiescent flow.

Secondly, if the entrainment can proceed parallel to the jet axis, then

the entrainment rate will be greater than the perpendicular entrainment

condition of a jet exhausting from a wall. The turbulence structure at

the exit plane was not reported for any of these studies; however, it can

be estimated that the Alexander et al. investigation involved a rather

strongly disturbed exit condition since their 5: 1 (diameter) contraction

nozzle was fed by a pipe. The disturbance levels for the Mons and Sforza

and the Sami et al. studies are difficult to estimate although the former

utilized two banks of settling screens in the plenum ahead of the small

radius contraction for the orifice hole (plenum diameter - contraction

radius = 0. 625 inches, orifice diameter = 0. 363 inches) and the latter
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used a large plenum with a small contraction ratio nozzle.

The data of Crow and Champagne [ 11] were generated from a

nozzle shape quite similar to that of Alexander, et al.; however, the

nozzle exit flow condition was quite different for [ 11]. The intensity

of streamwise fluctuations [u 2 ] 1/2/u(0) for [11] was approximately

0. 005, with a locally large value in the shear layer (0. 08) at the location

x/d = 0. 025. For this condition, the entrainment rate was 0. 136 for

the first two diameters. Their data showed a gradual increase in the

entrainment rate with a (supposed) asymptotic value of 0. 292 being at-

tained for x/d ' 6. The rather different behavior of their flow (i. e.,

a non-linear growth in the mass flux) as compared with the other prior

studies and the present data may result from the very thin laminar

boundary layer at x = 0 for their studv. For the case of 2 percent

forcing, i.e. [U ] 1/Z/u(O) = 0. 02, the initial entrainment rate was approxi-

mately 0. 2, for 0 < x/d < 2, and showed a non-linear behavior resul-

ting in a "final" entrainment rate of approximately 0. 27. The trend

associated with the forcing condition is compatible with the interpreta-

tions of the present study that the near field entrainment rate is depen-

dent upon the disturbance level of the flow at x = 0.

With regard to the entrainment region geometry, the Alexander

et al. study and the Crow and Champagne study allowed for basically

parallel entrainment; the Mons and Sforza orifice was in a plane 10

diameters larger than itself and the Sami et al. orifice was in an effectively

infinite wall. Consequently, both the probable disturbance level and

the geometric effects contribute to the large entrainment rate for the

Alexander et al. study; the influence of the individual effects are

suggested by a comparison between [ 12] and [ 11 ] to show the flow

condition effects and between [ 12] and the fully developed data to show

the geometric effects.

The combination of the previous and present experimental re-

sults does allow an interesting interpretation about the indirect effect

of the infinite plate. Specifically, it appears that the presence of the

plate significantly inhibits the mass entrainment even for a condition

wherein no direct effect is apparent in the surface pressures or the iso-

tach patterns. A control volume of unit length defined with regard to (x,

0, z ) as the r = 0 location and with boundaries R.j rS R L and OS 0 e v
c j L~~~~~~~~~~~~
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(where O =0 is parallel to the plane of the plate) is useful for indicating

this effect. This is similar to the control volume shown in Figure 4

except that the lower surface is at z and not z=O. For a steady flow,

the flux of mass into the control volume is identical to the flux of mass

out of the control volume. This mass flux is equal to the entrainment

rate. The area available for entrainment is equal to

Entrainment area = iTRL + Zzc (21)

and since Zzc/rTRL - 0 as RL -* oa, the mass entrained in the far field

of the upper half plane is approximately the total mass entrainment.

Therefore, the entrainment rate for the round-jet/plane-wall flow

field (dM/dx) can be expected to be characterized as

dM < dM dM
1/2) dx free jet dx present < dfc free jet '(28)

This indicates that even though the jet may be displaced a significant

distance above the plate, the (effectively) infinite lateral extent of the

plate can have a marked effect on the entrainment since the effective

entrainment area is reduced compared with that of a free jet.

This analysis suggests that the geometric effects are signifi-

cant since the disturbance level of the fully developed condition in the

present study is probably greater than that in the Alexander et al.

investigation. This conclusion should be evaluated experimentally.

This was not done for the present study since the traverse device would

not accomodate such an evaluation. It will be done for part II of this

investigation.

In the "far" downstream region of a free jet, a condition of

self-preservation is attained for which the velocity field may be des-

cribed by the conditions (see Townsend [27] for a more complete dis-

cussion of self-preservation):

u = u f (r/1 ) (self-preservation) . (23)

In this region for an axisymmetric turbulent jet,
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u ' x 1 x , and M(x) -x (24)

It has been strongly suggested, but not proved, that the coefficients

for the above proportionalities are independent of the nozzle conditions

[27 ]. A very clever study by Ricou and Spalding [28] has identified

the coefficient for the mass flux such that

M() = 0. 32 x/d (25)
M(O)

Consequently, if the "independence of origin" hypothesis is valid, the

near field entrainment rate for all the cited cases is lower than the

asymptotic rate and the initially linear region must possess a non-linear

intermediate region of growth to achieve the required growth rate far

downstream.

The smaller rate in the near field is reasonable in terms of a

relationship between the corrugations of the bounding surface and the

net entrainment rate. That is, the scale of the turbulent structure

(A) is (apparently) an increasing fraction of the jet radius for increasing

x until the ratio A/1 0 attains a constant value in the self-preserving

region.

There is not sufficient information to determine whether or not

the asymptotic entrainment rate is independent of the conditions at the

origin. If it is not, then an experimental configuration as employed

by Ricou and Spalding would necessarily be used for each different

nozzle. However, the significantly smaller entrainment rate for the

near field and the effect of the initial and geometric conditions is clearly

established.

4. 4. 3. 3. The Direct Effect of the Jet-Plate Interaction

The data which are not used to define the characteristics of the

uniform and fully developed jet conditions are available to characterize

the jet-plate interaction effects. The qualitative trend that the mass

flux is reduced is both expected and observed. The corresponding

observation that the energy flux decreases at a lesser rate is analy-

tically required since a relative decrease in the integral of u accompanied

by the constancy of the u integral requires that the integral of u3 be
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relatively increased. Physically, these observations can be explained

in terms of limitation in the area over which entrainment can occur

(re the mass flux) and a protection of the high velocity fluid by inhibiting

the turbulent shear effects (re the energy flux). The shear effects

will be locally greater near the plate for a jet-plate interaction but

they will not affect as much fluid as does the free-shear field of the jet.

This latter observation is supported by the formulation (see Cor rsin

[29] )

M "dA (26)M

where A is an integral scale of the turbulence. The influence of the

plate is to reduce A and hence the magnitude of the turbulent shear

effe ct.

The quantitative effects are not as easily defined because of

the ambiguities of the data. The fully developed cases do show a rather

consistent and clear trend in which the stronger jet-plate interactions

cause deviations from the linear portion of the M(x) curve for smaller

x/d values. The apparently greater accuracy in data for the fully

developed condition was not expected since a spurious jet temperature

effect on the hot-wire readings was identified after the majority of the

fully developed data were acquired; that is, the air was heated by approxi-

mately 10-15 degrees Fahrenheit in the blower and flow system and this

changed the effective overheat value for the wire. A linearized analysis

(for small A T) showed that such an effect would not alter the zero

value but would affect the slope of the linearized hot-wire calibration

curve. This correction was made to the data by a computer routine

which corrected each hot-wire slope to that value indicated by the

measured velocity u0 . This correction procedure is known to contribute

some inaccuracy since the mixing of the jet with ambient fluid reduces

this temperature error. However, since the Jx(x) value was used for

the normalization scheme, the net corrections (apparently) provide

reasonably accurate results. The heat exchanger shown in Figure 7

was added before the acquisition of the uniform exit condition data.

The irregularities for the uniform exit condition may result from the

steeper mean flow gradients for this case which would result in greater
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inaccuracies in forming an area integration from discrete, z-location

traverses.

4. 4. 4. Relevance

The flux ratios have shown that the exit conditions have a rather

marked effect on the entrainment rate for the near field of a jet and

the somewhat lesser effect on the energy flux ratios would imply

that the primary effect of the nozzle condition is evidenced in the outer

portion of the jet. Since the engine blown flap configuration makes use

of the near field of a jet and since the outer region of the jet will be

important in defining the jet-jet interaction for multiple engines, it is

felt that this effect is of importance for the application problem.

Energy flux data for the condition of a direct jet-plate interaction

show that the high velocity fluid near the "centerline" of the jet is

"conserved;" that is, the velocities above the plate remain relatively

large outside of the three-dimensional boundary layer on the plate.

This is inferred to be quite significant for the application problem since

high velocities near the plate (air foil) are desirable in order to ener-

gize the boundary layer on the suction side of the flap via the high

velocity fluid passed through the flap gap. This would indicate that

a short length before attachment is desirable.

The measured entrainment rates will provide an indication of

the entrainment velocities. From these, the effect of the jet entrain-

ment on the modification of the "inviscid" flow around the airfoil can be

estimated. The comparison of the M(x) values determined from the

earlier studies and the indicated geometric effects on the interpretation

of near field jet data provide cause for general caution in the interpre-

tation of experimental data for such flow fields.

4. 5. Results Dependent Upon Surface Pressure Values

4. 5. 1. Purpose

Surface pressure measurements have been made for a wide

range of geometric and flow conditions. These data have allowed the

determination of (1) surface pressure forces, (2) the magnitude of the

z component momentum flux and (3) the location of the effective x-

component momentum flux as functions of x for the various conditions.

The surface force provides a measure of the jet-plate interac-

tion and additional aspects of the nozzle exit effects are provided by these
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data. The indicated force loadings may also be pertinent for the struc-

tural design of the air foil. The z-component momentum flux (J ) has

an asymptotic value of zero for large x. Therefore, the numerical

values for this quantity provide a measure of the effective development

length of the flow field for a given x location. The measured pressure

values and the z-component momentum flux along with certain assump-

tions regarding the entrainment allow the effective location (z
m

) of

the x-component momentum flux to be determined from the moment-of-

momentum equation. The effective location will be identical with the

geometric axis of the nozzle until the lateral force effects of the jet-

plate interaction cause the jet to curve. A comparison of the zm and

z values allows a comparison between the turning effect on the entire

jet (Zm) as compared with the behavior of the center line defined by

the upper portion of the jet (z ).

4. 5. 2. Data Processing

The pressures on the plate were measured in steps of 0. 1

inch for a y traverse and in integer multiples of 1/8 inch as a function

of x. (This assumes symmetry of the flow field as noted in Section 3. )

These rather fine spacings and the computer averaged values

of p(x, y, t) to define p(x, y) have resulted in data of considerable

reliability. The normalized pressure force (F ) is defined as

F (x) x co
'p(R_1 pdydx (27)
J(0) - J(0) S d

The z-component of momentum has been calculated using the

pressure data and the control volume of Figure 4. For this, the

Bernoulli equation is required to relate the entrainment velocity (Q )

to the pressure outside the jet (pe) as

-e 2 2 (28)
Paim - P = (Qe

2

Qat (28)

and since the gage pressure is required for the calculation of the

pressure force and since Qatm- 0, the gage pressure (p ) is

Q2
e 

(29)(e~g '
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The z-component momentum equation is

p dA - Al+ J-A +Ae- Ap dA Pe k * ndA = Jz(x) + J(O) sina 3 PVe . k v n dA
A A e

P e

(30)
where gage pressures are assumed, A is the area of the plate, and Ae

p e
is the entrainment area (i. e., the dome shape of Figure 4). The

assumption is made that

A
v = I Qe n

e

hence

(v kv .n) = Q2 An
e e e

and the entrainment pressure and flux integrals of (30) can be combined

for the general normalized equation as

z 1 _ AdA-J() (=() p dA = J(O) (x) + sin 2() PQ k . n dA
J(O) (A OA e

P e

(31)
This equation allows the J (x)/J(O) values to be computed from the mea-

sured pressure data and the estimated entrainment velocites which are

based on the entrainment rates discussed in Section 4. 4. 3.

The moment-of-momentum equation can be used to define the

location of the x-component momentum flux (z ). Using the control

volume of Figure 4 and summing moments about the axis of the nozzle

at x=O

A p x dA = (h - m) Jx + x J 2 p(r x ve) v . n dA
P e

(32)

Note that the entrainment integral is zero except for the plane x =0;

hence, its contribution is negligible. This equation can be normalized

by using J(O) and d. The effective location of Jx, (i.e., Zm) can be

seen to be dependent primarily on the pressure data since Jx is a con-

stant for a given nozzle and JZ is defined in terms of the pressure and

Q e' The normalized equation is
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J(O) d(h-z J(O)J (i) p (x/d) dA d (cosa) + d 
p

and can be written in a form to emphasize that the pressure effects

will result in a positive or negative desplacement from the extended

axis of the jet h(x) = h - xtan a. That is,

m h 1 z
d - d J(O) cosa SA P(d d J(+ )

p

and using equation (31) for Jz,

h x s n +1 
d d ad +o 2J(O) SA PQe * A

(33)

J(O) cosa , dA
p

4. 5. 3. Discussion

4. 5. 3. 1. Pressure Force and z Component Momentum Flux

The pressure force values are shown in Figures 36 to 44.

The initial region of each curve involves an essentially zero force value

indicating no direct effect of the jet on the plate. The initial region

is followed by a region of negative pressure force which is an indication

of the entrainment effects. For larger x values, the pressure force

increases and approaches the asymptotic limit defined by J -- 0 for

x - aco in (31). This asymptotic value can be approximated by neg-

lecting the entrainment effects; for this assumption

F
P -~ sin a for x - a . (34)

J(0)

This asymptote is shown on the figures for the pressure force.

A general pattern is evidenced by these figures in which the

negative portion for the fully developed exit condition is rather pronounced

as compared with that for the uniform exit condition. This is compati-

ble with the entrainment rate results of Section 4. 4. 3 which indicated

a significantly greater rate for the fully developed exit profile con-

dition.
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The approximate asymptotic value for F is independent of the

nozzle exit condition, however, the figures show that the character

of the pressure force is quite dependent upon this flow parameter.

Apparently, the slope of the F curve is greater for the uniform case
P

if the joint conditions 1) small streamwise distances to the plate and

2) a relatively rapid (not a glancing) approach to the plate are met. The

uniform exit condition shows a less steep rise in the pressure force

curve if the opposite conditions obtain. The following sequence of

cases (designated as a, h/d) are cited in support of the above generaliza-

tion. Note that 9, 1 provides a condition of nearly identical F p(x)/J(O)

values, that is, it is a reference condition for the terms "small" and

"rapid" in (1) and (2) above. The cases are (i) 6, 0. 75; (ii) 3, 0. 75;

(iii) 12, 1. 5; (iv) 9, 1; (v) 6, 1; and (vi) 9, 1. 5.

The x-location of the maximum slope would also serve to charac-

terize the F (x) curve. This x dependence appears to respond to a

more complex set of causal factors since no pattern has been identified.

The existence of an approximate asymptotic value for F /J(O)

allows the magnitude of F p(x)/Fp (o ) to be used as a measure of the

development length of the flow field; the shape of the curve indicates

the rate of development. An alternate representation of the develop-

ment length is provided by the values of J /J(O) sina presented in Table 1.

(The asymptotic value of J is zero, i. e., J (G ) = 0. ) The tabular

format has been prepared to allow an assessment of the effect of the

geometric and flow conditions on the development length for a given x/d

location.

The development length and the degree of attainment of asymp-

totic condition is an,important factor in assessing the generality of these

results. The present study was performed using an effectively infinite

plate. When the condition J = 0 is attained, the flow would be parallel
z

to the plate and the plate would be effectively infinite in length as regards

the end condition affecting the upstream flow. If J3 * 0 at the x loca-

tion of the plate termination, then the present results could not be con-

sidered applicable without further information. For example, if

1A finite plate would not only introduce an additional geometric parameter;
more importantly it would require the specification of the flow condition
at the termination of the plate.
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the plate exhausts to a relatively high velocity (u ) streaming flow
S

(i. e., if w(x)/u < < 1) then the streaming flow would serve as an

extension of the plate and the present results would be applicable.

If u = 0, then the termination of the pressure field will have some up-

stream effect and the present results would necessarily be applied

with caution. The smaller the J value in Table 1, the less important

are the conditions at the end of a plate of length x/d.

4. 5. 3. 2. Location of x-Component Momentum Flux

The Zm values are presented in three figures,(see 45 to 47)

in order to provide a comparison between z and z for a given nozzle

condition and to compare z values for the different nozzle conditions.
m

The former plots compare a measure of the jet locations which depend

upon the entire jet, i. e. z , with one which is only a measure of the upper

portion of the jet, i. e. z . The vertical scale for these plots is exaggerated

to show the small deviations from the geometric axis of the jet defined

by h(x). The z values have an uncertainty of ±0. 03 in. about the best

straight line through the data points. (This accounts for positioning

errors in the generation of the original data. The z values are not

so affected since they are computed from the pressure data. ) The proba-

ble uncertainty in the z values depends upon the thermal drift which

occurred between the frequent rezeroings of the transducer. (The

transducer is linear to within less than one percent. ) Considering the

pressure reading to be expressed as p = PT + 5 and examining the

maximum percentage error in terms of the deviation of z from h(x),

one can conclude from (31) that the maximum error will occur at that

x location where the pressure terms pass through zero. Since the zm

data agrees quite well with h(x) in this region it is inferred that the

probable error in Zm is very small.

The deviation of the zm values from the h(x) curves is considered

to be an accurate measure of the jet turning as a result of the jet-plate

interaction. In general, the z c values tend to follow the geometric axis

for a longer streamwise distance. This, is reasonable; it confirms the

earlier observation that the pressure effects are, in general, confined

to the region below the center line of the jet as defined by z or h(x).

Figure 47 shows the effect of the nozzle exit on the Zm values;

the effect is seen to be quite small with the exception of the region where
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z < h(x), i. e., where the entrainment causes the jet to approach the

plane wall. This observation supports the earlier conclusion that the noz-

zle condition primarily affects the low velocity fluid near the edge of the jet.

4. 5. 4. Relevance

The importance of the nozzle exit condition on the force distribu-

tion and the development length of the flow field provide an indication

of factors which can influence the test results from the externally

blown flap configuration. The force magnitudes represented by these

measurements will also provide order of magnitude estimates and an

indication of possible geometric influences for the pressure forces to be

expected for a prototype configuration. The definition of the "flow

development" measures in terms of F p(X)/F p( ) and J (x) will provide

guidelines for the interpretations of these data in terms of the application

problem. The agreement between z and h(x) supports the use of the

Reichardt analysis to compute the upper portion of the jet field.

5. SUMMARY AND CONCLUSIONS

The round-jet/plane-wall flow field investigation reported herein

has been motivated by the externally blown flap configuration for STOL

aircraft. The study has been primarily experimental; analytical con-

siderations have been used to define measures of the flow field charac-

teristics. This application problem has been used as a guide for the

selection of the investigated geometric and flow conditions. The appli-

cation problem has also served to structure the processing of the experi-

mental data and the measures used to characterize the flow field. The

results are presented in a common format which includes the following

four elements for each of the four characterizations of the flow field

1) purpose, 2) data processing, 3) discussion (of the results)

and 4) relevance (to the externally blown flap application problem).

The following conclusions are supported by the results of this

study.

1) The condition of the flow at the exit plane of the nozzle has

an apparently significant effect on the jet. This effect is most

pronounced for the outside or low velocity portion of the jet.

This is shown by the mass flux ratios and by the pressure force

values.
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2) The x-component of the momentum flux is essentially con-

served for all the cases of the present study. The mass and

energy flux values show that the jet-plate interaction "protects"

the high velocity fluid near the plate surface.

3) The upper portion of the jet is relatively unaffected by

the jet-plate interaction. The axis of the jet (defined as the cen-

ter of isotach pattern) is not appreciably affected by the presence

of the plate. The Reichardt analysis can be used to compute the

axisymmetric portion of the velocity field even for strong dis-

tortions of the lower portion of the jet.

4) Measures for the development length of the flow field show

that the jet-plate interaction is still developing at x/d = 5 for

nearly all of the cases investigated. This must be considered

when applying the present results with those generated by an

investigation of the prototype.
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APPENDIX A

Data Processing for the Flux Ratios

A. 1 INTEGRATION PROCEDURES

Considerable care was required for the computer integration of

the data for the flux ratios. Since the individual points were generated

in steps of 0. 1 in, a direct application of the Simpson rule was warranted.

However, the y traverses were made over a physical distance of

-2 in < y ' 2 in and consequently the wires, in general, recorded trans-

verse entrainment velocities at the extremities of these traverses. In
-z -z --Z

this region, the approximation that (u + v ) u is clearly in error.

(The inclusion of these spurious readings was responsible for errors

up to = 15 percent in some of the early data processing for this study.

A cut-off condition that could be logically determined by a processing

routine was required; the development of this routine is described below.

A second possible source of error for the integration of the experimental

data was the insufficient number of traverses for large z; that is, the

upper isotach patterns were circular but the uppermost z location formed

a chord for the circular pattern. Consequently, some velocity data was not

directly included in the individual traverses.

The cut-off criterion was established on the basis that the entrain-

ment velocity could be described as cylindrically symmetric and hence

(velocity magnitude) (r) = K (1A)

where r is measured from the isotach center for that x location. The

value of K for a given y traverse was determined by proceeding with the

computation from the outside of the jet toward the center and evaluating

an average K from the individual rQ products. The edge of the jet was

defined as the location for which two successive K values deviated by

more than 10 percent from the average; two values were required to

guard against a spurious velocity value.
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The velocity data which was corrected for the cut-off condition

was integrated by one of three techniques. These schemes were developed

to account for the possibility of incomplete data in the upper portion

of the jet and to take advantage of the smoothing effects provided by

the axisymmetric assumption.

For those conditions which resulted in negligible distortion of

the isotach pattern, the entire flow field was assumed to be axisym-

metric. The data points which were stored according to their y loca-

tion for a traverse at a given z value were converted to an r, 9 desig-

nation with the r value measured from the center of the isotach circles.

A u(r) velocity distribution was then obtained by averaging the contri-

butions from the various traverses. That is,

1 N
u(r) -N u(r, i) (2A)

i= 1

c y2] 1/2
where r = [(z )2 + y] and i. = tan' (i. - Zc)/Y

i
The data in this

form allowed a direct integration for the mass, momentum, or energy

flux values.

A second technique was used for those cases which exhibited an

axisymmetric condition for the upper half (z > z ) but not the full

plane. The u(r) averaging and the axisymmetric integration were per-

formed for the upper-half plane; these values were added to the results

of a cartesian coordinate integration technique utilized for the lower

portion of the jet.

The mass flux for the lower portion of the jet will be used as

an example of the technique; it can be expressed as

z co

M(O i z < z ) = S , p u dydz . (3A)

Since the data were available in the form of y traverses at different

z locations, it was convenient to integrate the primary data with respect

to y to obtain

cD

M(z) = pu dy (4A)
-CD
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The integration with respect to z can be constructed by fitting a second

order equation to the M(z) values as

M(,) = a + b, + cE,2 (5A)

and then performing the integration over the area as

zz z3 z3

M(O 5 z S Zc) = ,, M()dl + 1/2 [ MI()d + M 2 ()d

zi 2

+ 1/2 Ls5 M 2 ( ( )d3d� ] .M3(6A)d

z
3

z
3

where M 1(,) is the second order equation determined by the first three

z location traverses, M
2
is determined by the traverses at the second,

third and fourth z locations, etc. until all the z traverses in the lower

portion of the jet are accounted for.

The third integration technique involves the application of the

method described by (3A) to (6A) for the entire flow field. The third

technique is used for all cases which do not show a circular isotach

pattern for the upper portion of the jet. The isotach data for a = 12,

h/d = 1, uniform shows these three situations. Specifically, the data

for x/d = = 0, 1 show the condition wherein the full jet is axisymmetric,

x/d = 2, 3 show the condition wherein the upper portion is axisymmetric

and the lower portion is not and x/d = 4, 5 show the condition requiring

a cartesian integration of the data.

A. 2. Presentation of the Flux Ratios

The integration techniques described in A. 1 represent the

most accurate processing scheme given the available data; however,

the values so determined may not be accurate as a result of the rela-

tively coarse z spacing of the traverses and because of the inability to

determine the velocity magnitude in the high turbulent intensity, strongly

three-dimensional regions of the flow. Consequently, an independent

evaluation of the probable accuracy or internal consistancy of the flux

ratios is desirable.

As shown in the following, the physical effects which lead to a

reduction in the magnitude of the x-component momentum flux (Jx)
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can be shown to be negligible with respect to J (O). Consequently Jx

is a constant. Since J x(x) can be calculated from the velocity traverse

data, an integral evaluation of the accuracy of the data is available.

The special considerations which show that J is constant and an analysis

leading to a plausible correction for the data is presented below.

The magnitude of the x-component momentum flux can be reduced

by two physical effects: t'he surface shear stress 7 acting over the

plate surface and the static pressure force acting on a plane of constant

x. The magnitude of the surface shear effect was determined by a special

test. A small plate was supported by four light cords such that the fully

developed nozzle exit and the conditions a=18 degrees, h/d = 1 were

obtained. The initial orientation of the plate was such that its plane was

perpendicular to the gravitational field. The cords formed a parallelo-

gram as the plate was displaced by a force in its own plane. Conse-

quently, the length of the cords (L), the weight of the plate (W) plus

the normal force caused by the pressure on the plate (F p) and the dis-

placement of the plate (6) caused by the action of the shear force on

the plate (F
s

) were sufficient to calculate F as a function of the momen-

tum flux of the jet J(O). Specifically,

F
s

= 2 z2)1/2 (W + F )
(Lz

(7A)

L /

F _
S

W+ F
p
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The results of this evaluation, for what was considered to be a worst

case, showed that F /J(O) < 1. 5 percent.

The maximum pressure force was estimated from data for the

condition a = 15 degrees, h/d = 1. For this, the pressure distri-

bution at x/d = 2. 625 was selected (since it possessed the maximum

average pressure) and a pressure force was calculated from the assump-

tion that

p(y, z) = p(y, 0) - P(y'- z for 0 Z Zc
(Z_-Zc) c

The pressure force over the plane of constant x (F ) was then evaluated

as

z co

F yz = p(y, z) dydz (8A)

When this value was normalized on J(0), the pressure force was found to

be approximately 2. 5 percent of J(O). Unlike the shear force which

monotonically increases with x, the pressure force F will reach a
yz

maximum value and then decrease. Since this value was determined

for the most extreme conditions of the present study, it is concluded

that the reduction of the x-component momentum flux is negligible for

all cases.

The centerline velocity at the nozzle exit u(O) was set at a value in

the range u(0) = 120 + 2 fps for each geometric condition. Since the

velocity field is insensitive to Reynolds number for these conditions and

the exit velocity is essentially constant, the u(0) may be used to normalize

the primary data for a given nozzle exit condition. Also, a unique

relationship should exist between a momentum flux defined using this

maximum velocity J(O) and the actual momentum flux from the nozzle

J(0). (If-the exit profile were uniform across the plane of the nozzle

exit, the two would be identical. ) Since the momentum flux is constant

before the jet interacts with the plate, the J(0) value can be evaluated

from a large number of measured values, namely those x stations

which show a well defined isotach pattern and which do not show an in-

crease in pressure on the plate.
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The "true" J(O) value is

1I 1
J(0) = Z Jx(a, h/d, x/d)i cos i(9A)N i=l x (9sa

where J is the value determined from an integration of the primary data

because of the response of the wire (Section 4. 2. 2). This evaluation

has resulted in the values

J(O)/JO = 0. 809. for the uniform nozzle (1OA)

and

J(O)/J = 0. 676 for the fully developed nozzle (11A)

The normalized momentum flux values (Jx(x)/J(O)cos a) evaluated

at any station in the flow field should be unity; that is

co aco

J(O) cos a SO S P dydz = 1 (12A)

A value other than 1. 0 indicates that some sort of error exists in the

original data or in the processing routine. The existence of an error

in the velocity magnitude can be accounted for by the formulation

u = UT+ 6
u

where uT is the true value of the velocity and u is the
measured value. If the error is proportional to the true velocity magni-

tude, i. e., if 6 /u
T= constant, then the momentum flux J(x ) can be

expressed as

J (x) = kJT (x)

since

J = puZ dA

=P(UT + 6 u) dA

= (1 + 6 /U)2 pUT dA

- kSpuTdA (13A)
--S 2Td
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Since the true value of the normalized momentum flux is known to be

unity, the value of k may be determined from the integration of the

experimental data. The mass and energy flux values can be evaluated

on the basis of the same assumption for 6u

M(x) = SpudA

P(u 6 u) dA

k/2 Sp uT dA (14A) 

and E(x) = Spu3dA

k3/Z SPuT dA (15A)

Consequently, if a given set of data does not provide a normalized

momentum flux value of unity and if it is assumed that the velocity error

6 is proportional to UT, then the computed mass and energy flux

values can be corrected by the use of (14A) and (15A) as

MT(x) = M(x)/kl/Z (16A)

ET(X)= E(x)/k 3/ . (1 7A)

If the assumption that 6 is proportional to uT is not valid, then

(16A) and (17A) are not valid and there is no technique to rationally

correct the mass and energy flux values.

A proportional error would result if the ambient air at the probe

location were different from the air temperature for the calibration

condition (this assumes a linear response to the temperature difference

and hence a relative small (< 10 ° C) temperature change.) A propor-

tional error would also exist if the flow rate from the blower were altered.

(This is rather improbable but not impossible; the exit velocity (u(O))

was not checked at the termination of every run. )

The normalizing scheme of (16A) and (17A) is used for the presen-

tation of the data. For the condition of proportionality between uT and 6u,
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this correction is justified and consistent trends in the data should be in

evidence; for the condition 6
u

= 0, J - JT and the correction is irrele-.

vant. For the condition where 6
u

is not proportional to uT no other

correction appears to be rational; therefore, the data for such a case

can be considered for its qualitative, not quantitative contribution.

A. 3 Evaluation of the Flux Ratios for Previous Studies.

In order to compare the data of the present study to the results

of earlier investigations, the normalization scheme involving k must

be applied to the earlier studies.

The data of Sami et al. and Mons and Sforza was scaled from the

several plots of u(x, r) in their papers. Alexander, et al. [ 12] pro-

vided tabular values of u(x, r). For these, Simpson Rule integration

routines were used to determine the flux and k values.
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Z-COMPONENT MOMENTUM/SINIALPHA)
15.000
12.000

ALPHA 9.000
6.000
3.000
0o000

0.50000 0.75000 1.00000

Z-COMPONENT MOMENTUM/SIN(ALPHA)
15.000
12.000

ALPHA 9.000
6.000
3.000
0.000

0,50000 0.75000 1.00000

Z-COMPONENT MOMENTUM/SINIALPHA)
15.000
12.000

ALPHA 9.000
6.000
3.000
0.000

- 0.99999
- 1.00000

0.000000

0.50000 0.75000 1.00000 1.50000 2.00000
H/D

Z-COMPONENT MOMENTUM/SIN(ALPHA)
15*000
12.000

ALPHA 9.000
6.000 - 0.60765
3.000 - 0.74821
0.000 0000000

- 0.10517

- 0.61194
- 0. 9245
- 0.96427

0.000000

0.50000 0.75000 1.00000

Z-COMPONENT MOMENTUM/SIN(ALPHA)
15.000
12.000

ALPHA .9.000
6.000 - 0.38323
3.000 - 0.50039
0.000 0000000

- 1.23213
- 0.87497

0.000000

0.50000 0.75000 1.00000

Z-COMPONENT HOMENTUM/SIN(ALPHA).
15.000
12.000

ALPHA 9.000
6.000
3.000
00000 0000000

- 1,41309 - 0.97193
- 0.73271

0.50000 0.75000 1.00000 1.50000
H/D

Table 1. a. Normalized J values to show the effective development
length for the uniform nozzle exit condition (Jz/J(O) sin a).
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x/d = 1

- 0.99999

x/d = 2

- 0.80419

- 0.99999

- 0.99999

2.00000

- 1.00529

2.00000

1.01222

- 1.00000
- 0.99999

1.50000
H/D

- 1.00951
- 1.00192
- 0.99999

1.50000
H/D

- 1.00922
- 1.00471
- 0.99938

x/d = 3

- 0.39684

- 0.86540
- 0.99999
- 1.00000

0.000000

x/d = 4

- 0.92929
- 1.00707
- 0.99814

1.50000
H/D

x/d = 5

2.00000

- 0.68396
- 0.94577
- 1.00061

1.50000
H/D

x/d = 6

2.00000

2.00000



x/d - I

Z-COlMPONENT MnMFNTUM/SINIALPHA)
15.000
1?.000

ALPHA q.000
6.000 - 0.99999

3.000- 1.00000 - 1.00000
0.000 0.00000

0.50000 0,75000

Z-COMPONENT MOMENTUM/SINIALPHA)
15.000
12.000

ALPHA 9.000
6.000 - 0.94906
3.000- 0.78155 - 1.06855

x/d = 2 0.000 0.00000

0.50000 0.75000

- 0.qq999

1.00000 1.50000 2.00000
H/D

- 0.99999
- 1.14371
- 0.99999

- 0.99999
-. 099999
- 0.99999

1.00000 1.50000
H/D

- 0.99999
- 1.00000
- 1.00000

2.00000

Z-COMPONENT MOMENTUM/SIN(ALPHA)
15.000
12.000

ALPHA 9.000
6.000 - 0.75791 -
3.000- 0.59022 - 0.99070 -
0.000 0.00000

0.87519
1.13051
1.07225
0.00000

0.50000 0.75000 1.00000

Z-COMPONENT MOMENTUM/SIN(ALPHA)
15.000
12.000

ALPHA 9.000
6.000 - 0.55041 -
3.000- 0.39153 - 0.84778 -

x/d = 4 0o000 0.00000

- 0.94033
0.62151 - 1.00971
0.99402 - 1.03662
1.06332
0.000000

0.50000 0.75000 1000000

Z-COMPONENT MOMENTUM/SIN(ALPHA)
15.000
12.000

ALPHA 9.000
6.000 - 0.34967 -
3.000- 0.18936 - 0.67969 -
0.000 0.00000

0.37006
0.78143
0.97979
0.00000

0.50000 0.75000 1.00000

Z-COMPONENT MOMENTUM/SIN(ALPHA)
15.000
12.000

ALPHA 9.000
6.000 - 0.17319 -
3.000 0.00816 - 0.50772 -
0O000 0.00000

0.15981
0.55339
0.83373
0.000000

1.50000
H/D

- 0.72149
- 0.92051
- 1.03995

1.50000
H/D

- 0.46072
- 0.73887
- 0.99001

0.50000 0.75000 1.00000 1.50000
H/D

Table 1. b. Normalized J values to show the effective development length

for the fully developed nozzle exit condition (Jz/J(O) sin a).
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x/d = 3

- 1.01113
- 1.01432
- 1.02154

1.50000
H/D

- 1.00657
- 1.00790
- 1.01000

2.00000

x/d = 5

- 1.00085
- 1.01273
- 1.01775

2.00000

- 0.87263
- 0.99729
- 1.02847

2.00000

- 0.59647
- 0.88841
- 1.01775

2.00000

x/d = 6



A

B

Figure 1. Externally blown flap
STOL aircraft configuration.
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z

jet

infinite plate

V = i v+k
V = i u+ j v+ kw

Figure Z. The round-jet/plane-wall flow field, coordinate
system and nomenclature.
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characteristic

Figure 3a. Hypothesized development of a characteristic vortex filament.
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b) x/d = 1

\.11
0'

a) x/d ::::: 0

d) x/d = 3

a
C
~ \\\} \)~C\ \'> \-'to

~\}\ ,,\..

e) x/d = 4

c) x/d = 2

f) x/d = 5

Figure 3b. The cross section of a powder seeded jet (as shown by a plane sheet of light) to demonstrate
the existence of streamwise vorticity. a = 6, hid = O. 75.



V1
-J

a) x/d ::= 0

NOT REPRODUCIBLE

d) x/d = 3

b) x/d = 1

e) x/d = 4

c) x/d = 2

f) x/d = 5

Figure 3c. The cross section of a powder seeded jet (as shown by a plane sheet of light) to demonstrate
the existence of streamwise vorticity. a = 12, hid = 1. 5.
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SIDE FRONT
Figure 4. Control volume for the analysis of the round-jet/plane-wall

flow field.
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from jet
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Flow visualization facility.Figure 5.



to jet
lb

high pressure
air

entrained air-powder
mixture

Jet pump for the powder seeded jet.Figure 6.



heat blowe r

flexible tubing
to plenum

movable plate section
with static taps

a setting

pipe (fully developed) 4

--- tube (uniform)- ,~' ' h setting

tube (uniform)

aluminum base

Figure 7. Quantitative data acquisition flow system.
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1 5/8 R \\
Z Places

I -12

SCALE: HALF

Detail of uniform flow nozzle.Figure 8.



extension
plate

test
y-traverse plate
drive system\

computer driven
stepping motor

static taps 4" e

Figure 9. Facility detail for surface state pressure measurements.
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Probe Support Head,
x-z position

___ Jet
(fully
developed)

Hot- Wire Rake Movable Test Plate,
y-traverse

Figure 10. Hot-wire rake and z-position traverse head.
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Probe Cables

static taps

Four Hot-Wire
Anemometers

e(t)'- u(t)

Pressure
Transducer

Read-out
e(t)"p(t)

x, y,

Data Record:

z of probe u, or

p (x, y, o)

Figure 11. Data acquisition and recording system.

65

IBM 1800

w/A-D converter



Symbol O0 * A* VA _ O Lo O

u/u(0) 0.990. 98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ).05

h(x) = h - x tan a z = z location of the
5 - isotach.

4

3

2

h(x)

o I I ' . I__
3 2 1 0 -1

a) x/d - 0

Figure 12. Isotach contours, a = 0, h/d = 0. 75, uniform.

-circle center

-2 -3
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h(x) = h - x tan a
5

4

3

0 _ th(x)

3 2 1 0

b) x/d = 1

z = z location of the
c isotach-circle center

-1 -2 -3
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Symbol O _ * a+ O La O 0

u/u(0) 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

h(x) = h - x tan a z = z location of the
5 c isotach-circle center

4

3

1 , -- c M"
h(x)

0 [ I

3 2 1 0 -1 -2 -3
c) x/d = 2
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h(x) = h - x tan a
5

4

3

00

1'

3 2 1 0

d) x/d = 3

z = z location of the
c isotach-circle center

-1 -2 -3
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o,. * I* V A*DA,+ Ov&h L
0.990. 98. 9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

- x tan a I z = z location of the

z

h(x)

c isotach-circle center

0

e) x/d = 4
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Symbol o0a A __ _av * La O I

u/u(O) D. 99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05
h(x) = h - x tan I z = z location of the

z

h(x)

2 1

C isotach-circle center

-1 -2 -3

f) x/d ='5
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Symbo

u/u(O)

h(x) = h

i O 04 + A * A A* O O0

0.99 0. 980.9 0.8 0.7 0.6 0.5 0."4 0.3 0.2 0.1 0.05

L - x tan a z = z location of the
c isotach-circle center

h(x)
_ --- c

3 2 1 0 -1 -2 -3

a) x/d = 0

Figure 13. Isotach contours a = 3, h/d = 0. 75, uniform.
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Symbo.

h(x) = h

I.I 0 Ia * *a+ OAO 
. 990. 90.9 0.8 0.7 0.6 0. 5 0.4 0.3 0. 2 0.1 . 05

- x tan a z = z location of the
isotach-circle center

h(x)
c.

3 2 1 0 -1 -2 -3

b) x/d = 1
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Symbol a0 *Vt LAo 00
u/u(0) 0.990. 980. 9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 .05

h(x) = h - x tan a z = z location of the5 _ _ isotach-circle center

4

3

2

h(x) 

O Ig0\X I I 

3 2 1 0 -1 -2 -3

c) x/d = 2
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Symbol |O 0 * A 4 * lol
u/u(0) 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 0.05

h(x) = h - x tan a z = z location of the
5 c isotach-circle center

4

3

2

h(x) z 

Oi I o

2 1 -1 -2 -3

d) x/d = 3

75

3



Symbol O * _ A . O a O 

u/u(0) 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

h(x) = h - x tan a z = z location of the
isotach-circle center

1 -2 -3

e) x/d = 4
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Symbol O U * Va O 0 O
u/u(O) 0.99 0.98J0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

h(x) = h - x tan a z = z location of the
5 isotach-circle center

4

3

2

~~1~~~~~~~~

h(x)

0, X

c~ ^pt-w al 
o l -l o .^W ̂  \ i g Of A a l -

2 -2 -3

f) x/d = 5
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Symbol O C _ _ A + V L* °OAI

u/u(0) .99 0.980.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 0.05

h(x) = h - x tan a z = z location of the
I · 

h(x)
-_ z

c

isotacn-circle center

3 2 1 0 - 1 -2 -3
a) x/d 0

Figure 14. Isotach contours a = 3, h/d = 0. 75, fully developed.
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Symbol O* 0 *0 V O a O 0
u/u(0) 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 0.05

h(x) = h - x tan a z = z location of the
5 c isotach-circle center

4

3

2

C

0 I I I I

3 2 1 0 -1 -2 -3

b) x/d = 1
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Symbol O9 * 0 0. 7 VA * 0 0 O 0
u/u(0) 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

h(x) = h - x tan a

h(x) -*Z

z = z location of the
isotach-circle center

c) x/d = Z
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Symbol O V * L O 0

u/u(0) 0.990.980.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

h(x) = h - x tan a z = z location of the
_ isotach-circle center

h(x)

_ cC

2 -2 -3

d) x/d = 3
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h(x) = h - x tan a

_ -. 
c

)

3

z = z location of the
isotach-circle center

2 -2

e) x/d = 4
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Symbol O * 0 * * VA * O O 

u/u(0) 0.990.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

h(x) = h - x tan a z = z location of the
_i _ c isotach-circle center

hj x __
C

z -2 -3

f) x/d = 5
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Symbol O *O UA VA * O O O

u/u(0) 0.9910.980.9 0.8 0.7 0.60.5 0.40. 0. 31 0.1 0.05

h(x) = h x tan a = z location of the
c isotach-circle center

C 

I 

0 I I I

3 2 1

Figure 15. Isotach contours a

0 -1

a) x/d = 0

= 3, h/d = 1, uniform.
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Symbol O lvaOa O O

u/u(O) l. 9910.980.9 10.8 0.7 0.6 0.5 10.4 0.3 0.2 0.1 0.05

h(x) h - x tan a z = z location of the
5 isotach-circle center

4

3

h(x)
.z

0 II

3 2 1 b) 0 - -2 -3
b) x/d = 1
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h(x) = h - x tan a

h(x)
- - -z

c

z = z location of the
c isotach-circle center

3 2 1 c) x/d Q 2 -1 - -2 -3
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Symbol 0 0 * _ 1 I V O O
u/u(0) 0. 99 0. 980. 9 0.8 0.7 0.6 0.5 0.4 0. 3 0. 0. I 0. 05

h(x) = h - x tan a z = z location of the
5 c isotach-circle center

4

3

2

h(x)

I I (ic

0 I I I. I I

3 2 1 0 -1 -Z -3
d) x/d = 3
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Symbol O 0 A V, ]l | O O O

u/u(0) 0.99 0.980.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 2 0.1 0.05

h(x) = h - x tan aj z = z location of the
c isotach-circle center

1 -1 -2 -3

e) x/d = 4
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Symbol O 0 * + A * La | 

u/u(O) 0. 99 0.980.9 0.8 0.7 0.6 0.5 0.4 0.3 .Z 0. 1 0.05

h(x) = h - x tan a I z = z location of the
5 __ isotach-circle center

4

3

h(x) c

0 I I

2 -2 -3

f) x/d = 5
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Symbol O* 0 * * A * OLO O

u/u(0) 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 0.05

h(x) = h - x tan a z = z location of the
5 isotach-cir

4

3

2 o -

00~~~~~

: 0
3 2 1 0 -1

a) x/d = 0

Figure 16. Isotach contours a = 3, h/d = 1, fully developed.

cle center

-2 -3
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Symbol O' _ I [ hI* O IO O

u/u(0) 0. 990. 980.9 0.8 0. 70. 6 0.5 0.4 0.3 2 1 0. 05

h(x) = h - x tan a z - z location of the
5 isotach-circle center

4

3

1'

0 I I A' I·

3 2 1 0 -1 -2 -3
b) x/d = 1
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Symbol O 0 *A VA*OAO 

u/u(O) 0.990.980.9 0. 8 0.7 0.6 0.5 0.4 0.3 10.2 0.1 0.05

h(x) = h - x tan a z = z location of the
5 isotach-circle center

4

3

h(x)
c

1

0

3 2 1 0 -1 -2 -3
c) x/d = 3
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Symbol OI| * |I IV l L0 A O | ¢ I

u/u(O) 0.9910.9830.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 . 05

h(x) = h x tan a z = z location of the
5 isotach-circle center

4

3

2

h(x) _ _ 

0' l

2 -2 -3

d) x/d = 5
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h(x) = h - x tan a

-- -z

- h(x)

z = z location of the
c isotach-circle center

3 2 1 0 -1 -2 -3
a) x/d O0

Figure 17. Isotach contours a = 3, h/d = 1. 5, fully developed.

94

5

4

3

2

1

0



h(x) = h - x tan a

z

h(x)

z = z location of the
c isotach-circle center

3 2 1 0 -1 -2 -3
b) x/d = 1
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h(x) = h - x tan a
5

4

~3~C

h(x)

1

3 2 1 0

c) x/d = 2

z = z location of the
c isotach-circle center

- 1 -2 -3
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h(x) = h - x tan a

0

0

c
h(x)

0

isotach-circle center

3 2 1 0 -1 -2 -3
d) x/d = 4
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Symbol 0 + A * 'O 0I&

u/u(0) V0.9910.980. 9 0.8 0.70. 6 0.5 0.4 0.310..2 0. 1 0.05

h(x) = h - x tan a z = z location of the
5 isotach-circle center

4

z

2 (X)
2

· _ 0 

0 I 1_ _ - _I 1 1I I 

3 2 1 0 -1 -2 -3
e) x/d = 5
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h(x) = h - x tan a

C

h(x)

z = z location of the
isotach-circle center

3 2 1 0 -l -2 -3
a) x/d = 0

Figure 18. Isotach contours a = 6, h/d = 0. 75, uniform.
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h(x) = h - x tan a

_ h(x) _a z
c

z = z location of the
isotach-circle center

3 2 1 0 -1 -2 -3

b) x/d = I
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Symbol

u/u(o)

h(x) = h
5

4

3

2

_ h(x)

C

3

O _ ea lV * o a O0
.99 0.980. 9 0.8 0.7 0.6 0.5 0. 4 0.3 0.2 O.1 0.05

- x tan a z = z location of the
isotach-circle center

2 1 -1 -2 -3

c) x/d = 2
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Symbol

u/u(O)

h(x) = h -
5

4

2

1

h(x) c

0 I

3

o 1 + _ ivai A, 0I 0 1
0.99 0.980.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 0.05

x tan a z = z location of the
c isotach-circle center

2 -2 -3

d) x/d = 3
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h(x) = h - x tan a

-ec 0) 
hw d 0

2

z = z location of the
c isotach-circle center

-2

e) x/d = 4
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Symbol 0 O _ A * vA 0

u/u(0) 0.99 0.980.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05

h(x) = h - x tan a z = z location of the
5

4

3

1'

0~~~

/

£) x/d = 5

isotach-circle center

0

-2 -3
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h(x) = h - x tan a

C

h~'_z
c

_

z' = z location of the
isotach-circle center

3 2 1 0 -1 -2 -3

a) x/d = 0

Figure 19. Isotach contours a = 6, h/d = 1. 5,
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h(x) = h - x tan a

- ..h -z
- h(x) C

z = z location of the
c isotach-circle center

3 2 1 0 -1 -2 -3
b) x/d = 1
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Symbol 0o * . A* V1 L O 

u/u(O) 0.99 0.980. 9 0.8 0.7 0 0.6 0.5 0.4 0.3 0. 0. 0. 05

h(x) = h - x tan a z' = z location of the
5 _c isotach-circle center

4

3

2 h(x)

C

0I I I

3 2 1 0 -1 -2 -3
c) x/d = Z
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h(x) = h - x tan a
5

4

3

2

1

0I [

3 2 1 0

d) x/d = 3
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Symbol 0 ~ ···~V A []A0~ O

u/u(O) 3.990.98).9 0.8 0.7 0;6 0.5 0.4 0.3 O.Z 0.1 3.05

h(x) = h - x tan a

c

hY x Z C

h(x)

z = z location of the
isotach-circle center

3 2 1 0 -1 -2 -3

e) x/d = 4
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, o1 O 4 *I·A *v-Al*OA O I
.9910.980.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05
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Figure 20. Isotach contours a = 9, h/d = 1, uniform.
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Figure 21. Isotach contours a = 9, h/d = 1, fully developed.

116

5

4

3

1

0



h(x) = h - x tan a

ETxr - zC

z = z location of the
c isotach-circle center

3 2 1 0 -1

b) x/d = 1

117

5

4

3

2

1

0

-2 -3



Symbol O _ * * m A* VAa OALa 0

u/u(O) 0. 990. 98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 0.05

h(x) = h - x tan a z = z location of the
c isotach-circle center

S)-z c

3 2 1 0 -1 -2 -3
c) x/d = 2

118

5

4

3

0



h(x) = h - x tan a

z h(x)

- h(x)

3

z = z location of the
isotach-circle center

2 -2

d) x/d = 3

119

5

4

3

2

1

0

-3



Symbol O * II * * |VA * | a °o

u/u(O) 0. 9910. 9 8 0. 9 o0.8 0. 7 o.0; 6 0.5 0. 4 0.3 o0.2 0. 1 0. 05

h(x) = h - x tan a z = z location of the
c isotach-circle center

___- z I
c

h(x) 8

2 -2 --3

e) x/d = 4

120

5

4

3

2

1

0

3



h(x) = h - x tan a

h(x) Z

z = z location of the
c isotach-circle center

3 2 1 0 -1

a) x/d = O

Figure 22. Isotach contours a = 12, h/d = 1, fully developed.
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Figure 23. Isotach contours a = 15, h/d = 1, uniform.
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Figure. 25. Isotach contours a = 15, h/d = 1. 5, fully developed.
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Figure 26. Isotach contours a- = 15, h/d = 2, uniform.

145

5

4

3

2

1

0



ki A. - % f2 _
n.x) = Il - x tan al

5

4

3

h-_- -zc

2

1

o I I I_
3 2 1 0

b) x/d = 1

z = z location of the
isotach-circle center

-1

146

-3



Symbol o| *OO 

u/u(O) 0. 9910.980.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 1 . 05

h(x) = h- x tan a - = z location of the
5 c isotach-circle center

4

3

2 h(x) 

I.0 I _I·

3 2 1 0 - 1 -2 -3

c ) x/d = 2

147



h(x) = h - x tan a
5

4

3

1'

0 I ' .1
3 2 1 0

d) x/d= 3

z' = z location of the
c isotach-circle center

-1 -2 -3

148



h(x) = h - x tan a

4

2

h(x)

3 2 1 O

e) x/d = 4

z -= z location of the
isotach-circle center

-1 -2 -3

149

I



h(x) = h - x tan c

_ h(x)
-- -c z

C

K

z = z location of the
c isotach-circle center

3 2 1 0 -1 -2 -3
a) x/d .0

Figure 27. Isotach contours, a = 15, h/d =.2, fully developed.
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Figure 28. u/u(O) vs. r/ro, uniform exit condition, for selected experimental
data and the Reichardt analysis.
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Figure 29. u/u(O) vs. r/r o
, fully developed exit condition, for selected experimental

data and the Reichardt analysis.
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Figure 30. Normalized mass and energy flux values, uniform, 0 < I k - 1 < 0. 03.
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Figure 31. Normalized mass and energy flux values, uniform, I k - 1 > 0. 03.
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Figure 32. Normalized mass and energy flux values, fully developed,
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Figure 34. Normalized mass flux values as evaluated from references [12], [14] and [ 21] .
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