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SUMMARY

A numerical method has been used to calculate steady, three-dimen-
sional, viscous compressible flow fields about slender bodies at angle
of attack., The method is based on the equivalence principle, and on a
procedure developed earlier for solving the equations of two-dimensional
transient continuum motion (applied here to the Navier-Stokes equations).
The numerical technique, and the basic features of the equivalence
principle as applied to case of present concern, are both reviewed herein,
and the results of calculations of two slender body flow fields are pre-

sented.

The equivalence principle relates the axial coordinate of a steady
three-dimensional flow field to the time coordinate of two-dimensional
transient flow; thus,a given three~-dimensional problem becomes directly
analogous to a two-dimensional problem of flow about a cylinder (not
necessarily circular) that deforms with time. It is basic to the
validity of the equivalence principle that axial velocities do not differ
significantly at any point from the axial component of the free stream
velocity, a requirement that precludes the use of a no-slip condition at
the body surface in the axial direction. Accordingly, the flow fields
considered in the program, including separation and body vortex develop-
ment, were computed with a model that permits viscous crossflow together
with inviscid axial flow. An analysis of the errors introduced by such

a treatment is presented herein.

Numerical calculations were made and compared with experimental
results for an ogive-cylinder and an airplane fuselage configuration.
Flow conditions were M_ = 1.98, R_ = 4.68 x 106/ft, and o = 10° for the
ogive~cylinder, and M, = 2.50, R, = 9.1 x 106/ft, and o = 15° for the
fuselage configuration. lesults are presented as static pressure distri-
butions on the body surface, as velocity vector plots, and as contour maps
of the flow field at selected axial locations. Good agreement between

theory and experiment was obtained; maximum deviations of numerical
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surface pressures from corresponding experimental values were no more
than 6 percent of free stream dynamic pressure for both problems.
However, some differences were noted. Boundary-layer separation and
body vortex positions differed from experimental locations on the
ogive~cylinder, and the shock induced by the fuselage canopy was
predicted at a slightly different location. These differences are
considered attributable to neglect of axial viscous effects, exclusion
of turbulence phenomena, and the approximations introduced by the

equivalence principle in describing inviscid axial flow.
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1.0 INTRODUCTION

For highly maneuverable advanced aircraft (cf. figure 1), the
prediction of flow-field characteristics for nonsimple geometries at
high angles of attack and high flight Mach numbers transcends the
capabilities of linear theories. For example, there is a need for an
analytical or numerical method that provides an accurate,detailed descrip~-
tion of the vehicle flow field in order to determine both fuselage con-

figurations and inlet-~airframe integration effects.

Prediction of the three~dimensional flow field about a slender body
immersed in a supersonic airstream presents a formidable mathematical
problem to which no exact solution has been obtained, either analytically
or numerically. Successful numerical methods using the method of charac-
teristics and the equivalence principle have been developed for three-
dimensional, steady, inviscid flow fields. The work of Gallo and Rakich
(ref. 1) is representative of the characteristics approach, while
Van Dyke's extension ‘ref. 2) of the theory introduced by Hayes (ref. 3)

is representative of an approach that uses the equivalence principle.

In this research program the equivalence principle was used to
convert time~dependent viscous, compressible flow calculations in two
space dimensions to steady motion of a viscous, compressible fluid in
three space dimensions. The two-dimensional flow calculations were
obtained by numerically solving the time-dependent compressible Navier-

Stokes equations.



2,0 SYMBOLS

a Lagrangian coordinate

a Radius

A Surface area

A1 Abscissa of center of smaller circle of fuselage cross section
A5 Abscissa of center of canopy circle

Bl Ordinate of center of smaller circle of fuselage cross section

Bz(z') Ordinate of axis of the body with respect to the horizontal
reference line

Bé(z') Slope of axis of the body with respect to horizontal reference line

B5 Ordinate of center of canopy circle
B(x%,y,2) Surface of the body
C Local sound speed
C Drag coefficient, drag force
D q A
©c
c Lift coefficient, +iit force
L q A
o ¢
. s P-P
CP Pressure coefficient, @
o
cp Specific heat at constant pressure
c Specific heat at constant volume
v
d Diameter
d Displacement vector



E Specific internal energy
f2 Bounded oscillating function used to determine discretization error

Stagnation enthalpy

Direction cosines of the normal to the body's surface
in the x,y, and z directions, respectively

m Mass

M Mach number

M Momentum vector

IAMI Absolute error in Mach number

nx,ny,nz Direction'cosiges of the noFmal to a shock surface in the x, y
and z directions, respectively

N Cycle number

N Mesh point density

P Pressure

Ps Stagnation pressure

lAPl Absolute error in pressure

pp Pitot pressure

q Dynamic pressure, q = (1/2)pU2

R Reynolds number

Rl Radius of smaller circle of fuselage cross section

R2 Radius of larger arc of fuselage cross section

RS Radius of canopy circle

R(j,k) Position vector of the mesh point about a fuselage cross section

R'(j,k) Position vector of a mesh point about a circular cross section



S
S(x,y,t)
t

At

Entropy

Surface describing system of shock waves about a body

Time

Time step

Temperature

Velocity component in x direction

One=-dimensional velocity, U(a,t)

Velocity vector

Velocity component in the y direction

Specific volume

Volume

Velocity component in the z direction

Work rate

Coordinate normal to plane consisting of the 7%° reference line
and the perpendicular to that line

Coordinate

normal to the

reference line and the

Lagrangian coordinate, X

Coordinate
Coordinate
Coordinate

Coordinate

normal to 7%0
normal to the

along the 7%°

plane consisting of the horizontal
perpendicular to that line

= X(a,t)
reference line

horizontal reference line

reference line

along the horizontal reference line

Free~-stream angle of attack with respect to body axis



o Local angle of attack with respect to a horizontal reference line,

tan~1 [velocity in y' direction
\ (velocity in z' direction
. . ' -1 .veloci;y in x' direction
B Sideslip angle, tan (velocity in z' direction
c
Y Ratio of specific heats, —&
%
€ Discretization error in a property (eq. (29))
0 Density
T Maximum slope of surface of body with respect to the free=-stream
flow direction
( )s Stagnation condition
( )S Property downstream of a shock
( )o° Free=-stream condition
( )O Lagrangian coordinate at time zero
) Reduced variable
( >a Actual variable
( )c Variable associated with body cross section



3.0 THE NUMERICAL METHOD
3.1 FORMULATION OF EQUIVALENCE PRINCIPLE

The two-dimensional time-dependent equations of motion (independent
variables x,y,t) can be transformed directly to steady-state three-
dimensional (x,y,z) equations for slender bodies through the Hayes equi-
valence principle. The equivalence principle relates the steady-state
flow field over a slender body to an equivalent time=-dependent flow field
in one less space dimension, In particular, steady three-dimensional flow
about a body can be reduced under certain conditions to two-dimensional

time-dependent flow in a plane normal to the free-stream flow direction.

A simple example of the application of the equivalence principle is
illustrated in figure 2, namely that of steady flow over an axisymmetric
body at zero angle of attack. The steady~state two-dimensional axially
symmetric flow field is analogous to time~dependent one-dimensional
axially symmetric flow in a plane caused by an expanding cylinder., The
cross=-section plane of unsteady analogy moves downstream with free-stream
velocity and the outline of the moving boundary is given by the trace of
the original shape in the cross=-section plane. At the station z (see
fig. 2), the steady~state flow field in the cross-section plane is analogous
to the flow field about the expanding cylinder at the time, t = z/U,. To
make the equivalence analogy valid, the normal velocity of the expanding
cross section Un, is given by the product of the free-stream velocity and
the tangent to the surface. Far from the body, free-stream conditions

are imposed (i.e., P=P_, p= p, u=v=0).

According to convention, the free=stream flow direction is chosen
as the principal axis along which the linearization approximations for
equivalence are made. However, for bodies at angle of attack as illus-
trated in figure 3, it is more convenient to choose the body axis as the
principal axis, In planes normal to the body axis, the cross sections

can usually be defined in terms of a few simple analytic expressions,



which result in simple and accurate surface boundary conditions, and
facilitate the development of finite difference meshes about these cross
sections. Because of this choice, free-stream crossflow will exist as an
upstream boundary condition, but the choice of axis in no way affects the

accuracy of the results., This point is further discussed in Section 3.3,

it is convenient to discuss the equivalence principle in terms of
flow about a slender body of revolution at angle of attack, . Let the z
axis coincide with the axis of the body, and let the cross section of the
body lie in the x,y plane (see fig. 3). It is also assumed that the z
component of the local velocity vector is approximately equal to the z

component of the free-stream velocity vector, that is,
w = U_cos o (1)
Under this hypothesis, it follows that time-dependent flow in the x,y

plane transforms to time-independent motion in x,y,z space according to

the equations

z = U_cos ot (2)
y =y (3)
X = % (4)

This result — the equivalence principle — is derived for an inviscid fluid

in Appendix A,

In order for equations (2), (3), and (4) to represent a valid map-
ping between a flow field in x,y,t space and a flow field in x,y,z space,
the time-~dependent solution in the X,y plane must be augmented by a three-

dimensional boundary condition at the body surface

ﬁbUm cos o + zyv + zxu = 0 (5)



where zx, zy, zz are the direction cosines of the normal to the body
surface in the x,y, and z directions, respectively. Equation (5) states
that at the body, the component of the local velocity normal to the body
surface is zero., The application of the boundary condition (equation (5)),
in the x,y plane implies that the body cross section varies in time and
that the velocity normal to the surface is equal to -zzuw cos of £§ + zi
a normal velocity expression that reduces to the product of the axial

velocity (U, cos &) and the local tangent to the surface.

A second boundary condition, a comstraint on tangential flow at the
body surface, must also be specified. Since the full time~dependent Navier-
Stokes equations are solved in the x,y plane, a no-slip boundary condition

is imposed at the cross section of the body., We require that

vzx - uzy = 0 (6)
It is seen in Appendix A that the boundary equations (equations (5) and (6))
are compatible with the assumptions inherent in the equivalence principle
and permit a time-dependent viscous calculation to be made in the x,y plane.
Thus, with the inclusion of boundary equations (5) and (6), a solution of
the two-dimensional time-dependent Navier-Stokes equations is also the

solution to a problem of steady three-dimensional viscous flow.

The three-dimensional boundary layer on the body surface has been
replaced by a two-dimensional boundary layer since the no~slip condition is
imposed at the body surface only in the crossflow direction., This
ad hoc description of the flow field is poor in the boundary layer.
However, its justification lies in the fact that it provides a mechanism
for effecting flow separation and the subsequent development of spiral
vortex sheets on the lee side of a body at angle of attack. To be sure,
solving the compressible Navier-Stokes equations in a crossflow plane is
much more realistic than the conventional approach of solving the Laplace

equation in this plane with experimentally (or otherwise) determined



circulation strengths. However, the accuracy of the viscous crossflow
description must be carefully documented by comparing the numerical

results with other calculations and with experimental data.

The computational procedure is then as follows. Initially we have
a uniform flow field in the x,y plane with a velocity in the y direction
equal in magnitude to U sin q. The slender-body cross section grows with
time in the x,y plane. At discrete times solutions of the full time-
dependent Navier=-Stokes equations are obtained such that the cross~section
surface boundary conditions(equations (5) and (6)) are satisfied; also,
the flow far from the cross section is uniform with a crossflow velocity
in the y direction equal to Uoo sin o. The time-dependent solution in the
%,y plane is then related to the steady three-dimensional flow field

about the body through the transformation equations (2), (3), and (4).
3.2 DESCRIPTION OF THE NUMERICAI. METHOD

The numerical method used to solve the time~dependent Navier~-Stokes
equations in two space dimensions is embodied in a computer code called
TAFTON 2PE'". The finite difference equations in the AFTON 2PE computer
code are based on a physical model of the continuum. The need for such a
model as a basis for numerical calculations of continuum motion has long
been recognized (refs. 4,5 and 6),and was filled after considerable effort
for continuum motion in all its generality, the model for two-dimensional
flow actually preceded the general case, and is recalled in some detail
below. The two-dimensional continuum model is not specific to the par-
ticular phenomenon under study here, nor even to the entire class of
motions governed by the Navier-Stokes equations; once a physical model of
the continuum is verified, its range of application extends to many
flow situations.

In the conventional use of physical models, it is assumed that the
partial differential form of the Navier-Stokes equations applies in general.
A physical model is then postulated for the particular phenomenon to be
studied and the Navier-Stokes equations are reduced to ordinary differen-

tial equations from which we obtain either an analytical or numerical



solution. The Legs-Reeves (ref. 7) near-wake model is a good example of
a conventional physical model. This model is concerned with the base
flow and near-wake subregions shown in figure 4. The model recognizes a
constant pressure shear-layer near the body separation point and a vis-
cous inviscid flow interaction near the wake-stagnation point. The bound-
ary layer equations are assumed to govern the flow in both regions. The
flow fields in both regions are solved separately and then joined together

through the pressure gradient in the streamwise direction.

For illustrative purposes, the space-time continuum model employed
in this research is presented in detail for the case of time-dependent one-
dimensional flow of a compressible, inviscid fluid. This model was implied
by a set of finite difference equations developed by von Neumann and Richt-
myer (refs, 8 and 9). A careful analysis of the von Neumann-Richtmyer

equations led to the continuum model employed here (refs. 4,5 and 10).

Finite difference analogs of the continuity equation, momentum
equation, and the First Law of Thermodynamics will be derived in a Lagrangian
coordinate system, Let a be the Lagrangian coordinate, and X(a,t) be the
Eulerian coordinate, That is, X(a,t) gives the position at time t, of a
fluid element that was originally at position a, Consider the Lagrangian
coordinates, a,, a,, and a;2 [a% =% (a; + a;)] shown in figure 5,

Since the system is Lagrangian, the mass between the trajectories labeled
a; and a, remains a constant., Let the one-dimensional space continuum be
represented by a discrete set of zones, designated ''thermodynamic' zones,
At time zero, let the boundaries of these zones be spaced at a constant
interval Aa along the X axis [see fig. 5] and denoted by aﬁ(ﬂ=0,1,2,3,
e..,L). Let each of the thermodynamic zones be one unit high and one
unit wide., Consider another set of zones designated "momentum" zomnes
superimposed on the thermodynamic zones, such that each momentum zone
surface always divides the mass of the thermodynamic zone which contains
this surface in half, A schematic diagram showing a momentum zone and

two thermodynamic zones at the time t is shown in figure 5, The

10



Eulerian coordinates which define the two thermodynamic zones are

X(az—l’t)’ X(az,t), and X(a while the Eulerian coordinates of the

z_*_l’t)’

momentum zone are X(az_%,t) and X(az+%,t).

The thermodynamic variables, such as internal energy, specific vol-
ume, and pressure, are assumed constant throughout a thermodynamic zone.
The velocity is assumed constant throughout a momentum zZone, Thus, thermo-
dynamic variables are in effect centered at the momentum zone surfaces;

4= P(az_%,
t), X(a ,t) which effectively acts at X(a, ,,t) [see fig. 5.
=2

that is, P t) denotes the pressure in the thermodynamic zone

X(az_l,
Momentum zone variables are in effect centered at the thermodynamic zone

surfaces; that is, U = U(az,t) denotes the particle velocity in the mo-

L

mentum zone X(a ,t), X(a t) which effectively acts at X(az,t).

% 2%
Since an explicit formulation is the goal, the variables of motiom
are not only displaced spatially (as discussed above), but they are dis-
placed in time as well, Let At denote the uniform time interval and
tn(n=0,1,2,...,N) denote the time after n uniform time intervals. The
variables associated with thermodynamic zones are defined at integer times;
that is, PZ_% = P(az_%,tn) denotes the pressure at the time t". The mo-

mentum zone variables are defined at half-integer times; that is,
n=%

£
Eulerian coordinate position X(a

-3 -1
= U(a £ ?) denotes the particle velocity at a time " %, and the
yE p Yy

-k
77,

U

2
Finite difference analogs of the continuity, momentum, and first law
equations follow directly from the physical model of the continuum pre=-
sented in figure 5. Since a Lagrangian coordinate system is employed,
the zones of figure 5 will be displaced continuously from their initial

positions; that is, a,,...,a; to coordinate positions X(al,t),...,X(aL,t).

L
- . n .
Let us calculate the properties at the time, t , for the thermodynamic

zone having Lagrangian coordinates az_l,a and the momentum zone having

£

Lagrangian coordinates a, 1,2 The initial values for this calculation
=2

5T

are

n-1 n-1 n=-1 n-1 n-1 n~1
£ Pory o Vo

Py Bgay Yoy

11



for the thermodynamic zones and

n n .o n~% . n-% _n-%
Xpo1o X Xppgo Upgo Uy 2 Uy

for the momentum zones. The objective is to update these variables by one

time step in an explicit mannmer,

The finite difference analog to the conservation of mass is derived

from the expression for the volume change of thermodynamic zone a a

41 "4
n n=-1 n-% n-%
- = -U
Vz_% VZ-% (Uz 4-1 At N
where
n-1 . n-1
Vz_; volume of zone az_l,az at time t
V2 volume of zone a a, at time t"
L% £-1°72
Based on equation (7), and the fact that the mass of material in the
thermodynamic zone az_l,az has the constant value Py Aa, we find that
n n~l n-% n-%
ETRS ) ) Y1 8
Po At Aa
where Po is the density at time zero, and vz , is the specific volume of
=2
material in the zone at time t° (note that (p Aa)vn L = vt ).
o =% 4%

For an inviscid, adiabatic fluid, the first law equation for a sys=-

tem in equilibrium is applicable:

DE Dv
bt - "~ Por (%a)

The First Law finite difference analog to equation (9a) is derived by
first writing down a finite difference analog to the term -P(Dv/Dt) and
then equating this to the rate of change of internal energy in the zone.
Since the zone mass is constant and the pressure is homogeneous in a

thermodynamic zone, the term ~P(Dv/Dt) becomes



n n-1y/ n~% n-%
(_ P Ay.) oy B (v - U (9%
At Paes m‘e'__',5
where
mz_% = P, Aa
On the basis of equation (9b), the finite difference First Law equation
becomes
n n~1 n n-1 n-% n~%
-~ i 2 -
oo (g3 = Epo) - H(Rh + PR )(07F - U7 (10
At - Aa
where Ez-i is the specific internal energy of thermodynamic zone a, 1,az.
-k -
The equation of state for a perfect gas is:
Pv
E = (Y_l (11)

Finally, the finite difference equation of motion for momentum zome

b :
a1 a£+% ecomes

n n=-1
M, -M
L -
) - L _ (PZ-; - PLQ) (12)
where
n-% _ 1lfn n-l)
Poy T Z(PJL-% * Py
n=% _ 1lf{n n-1
Pz+% h 2(P1,+3§ + Pz+%)

n . . .
and MZ defines the momentum in zone az at time tn.

Equations (8), (10), and (12), derived from the physical model pre-
sented in figure 5 are solved in the following manner, First, the

o n
specific volume, v

PR is calculated from equation (8). Then, the
=2

13



n
2%

equations (10) and (11). The continuity and first law equations

pressure P; 1, and specific internal energy E are calculated from
2

are then solved for specific volume and pressure in all thermodynamic

zones. Based on the pressure field, equation (12) can be solved for the
1
momentum M; . The particle velocity Uz+2

extrapolation formula

is found from the forward

M
L -L
ufz = 25‘&‘”3 5 (13)
£
where
mz = po Aa
nt%

Integration of the particle velocity U with time establishes the new

Eulerian position, Xz+l.

all the initial values cited above can be updated by one time step and

£
This can be done for all momentum zones. Thus,

the process repeated.

The success of this method coupled with the failure of other more
recent numerical schemes to improve upon it, led Trulio and Trigger to a
careful analysis of these finite difference equations in order to dis-
cover the reasons for their success. They found that the finite differ~-
ence equations possessed the same self-~consistency property of form as
the original differential equations from which they were derived, that is,
the finite difference equations for momentum conservation and the first
law implied an exact conservation of total energy (internal and kinetic)
finite difference equation (ref. 4). In other words, the continuity,
momentum, first law, and conservation of total energy relations are
redundant by one. In most other numerical schemes if one tries to derive
a conservation of total energy relation from finite difference analog of
momentum conservation and the first law, error terms, usually assumed to
be "second order', are produced. These numerical error terms are believed

to be a primary source of the difficulties encountered in many other

14



numerical schemes. Appendix B demonstrates the self-consistency property

of the finite difference equations (8) to (13).

In addition to self-consistency of form, the numerical method has

the following properties:

(a) Since the method is explicit, stability criteria must be met
in order to obtain physically meaningful numerical results,
In general, the time step must be small enough so that a

sound signal cannot cross a zone in a time step (refs. 8 and 9).

(b) The numerical error has been correlated for this scheme. It
has been found that the absolute error in a property is in-
versely proportional to the linear mesh point density to the

three~halves power (ref. 10).

The physical model, from which equations (8) to (13) have been
derived has been extended to two space dimensions (ref.1l). In that work,
specific finite difference equations were formulated and their self-
consistency properties demonstrated, Because they provide a base for the
present calculation, a brief description of the derivation of these equa-

tions will be presented.

Consider two=-dimensional flow of a viscous, compressible fluid in
the x,y plane., As in the one-dimensional case, let us divide the continuum
into two types of zones; namely, quadrilateral zones and momentum zones
(see figure 6). The assumptions governing this analysis are as follows:

(a) All zones are polygons.

(b) The density, specific internal energy, pressure, stress tensor,
and velocity derivatives are homogeneous in a quadrilateral

zone,
(¢c) The velocity vector is homogeneous in a momentum zone,

(d) The zones have unit thickness normal to the plane of motion.

15



Ag in the one-dimensional case the continuity and first law equa-
tions are solved for each quadrilateral zone to determine the density,
specific internal energy, and stress, When the stress tensor depends
only on strain, the first law equation corresponds to that of thermo-
dynamics. However, for a stress-rate of strain dependence, the first law
equation is a relationship involving internal energy* which results from
subtraction of the kinetic energy equation from the conservation of total
energy equation. Based on the stress tensors in each of the four quadri-
latreral zones which comprise a momentum zone (see fig. 6), the momentum
equation is solved for each momentum zone. To accommodate the equivalence
principle boundary conditions, the finite difference equations in
AFTON ZPE are written in a generalized coordinate system where the four
mesh points comprising a quadrilateral zone can move with arbitrary
velocity. The numerical method is described in detail for a generalized
coordinate system and an Eulerian coordinate sysitem in two places

{refs. 11 and 12).

A1l of the salient propertiss of the numerical method described in
the one-dimensional example are preserved in two-dimensions and will also
be preserved in three spatial dimensions; in that respect the numerical
theory is internally consistent. The momentum and first law finite dif-
ference equations in two dimensions imply an exact finite difference
equation for total emergy. The stability criteria are the same as in the
one-dimensional case, The one-dimensional correlation of absolute
numerical error in a property extends directly to two dimensions. In two
dimensions the absolute numerical error is inversely proportional to the
area mesh point density to the three-quarters power (ref. 12). The
AFTON 2PE finite difference equations at interior mesh points are pre-

sented in Appendix C.
3.3 ORDER OF ERROR OF THE NUMERICAL METHOD

In this section the order of error of the numerical method is
determined. The numerical error is defined as the absolute difference

between the actual value of a quantity and the value computed numerically

*
The specific internal energy is the difference between total and
kinetic energy.
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The error in this method stems from three sources, the equivalence prin-
ciple, discretization errors, and neglect of axial viscous effects and
turbulence phenomena, The errors inherent in the equivalence principle
lie in the neglect of the velocity perturbation along the free-stream
flow direction and have been deduced by Van Dyke (ref. 2). The discreti-
zation error is defined as the difference between the exact solution to
the continuum motion equivalence principle equations for a given system,
and the values of the flow variables computed from a finite difference
approximation to these equations of motion; discretization error results
basically from the substitution of a discrete set of points for the
space~time continuum. The errors introduced by neglecting axial viscous
effects and turbulence phenomena manifest themselves in the accuracy with
which separation point locations and vortex center trajectories can be
predicted. ©Since the determination of the accuracy of the method is of

rimary importance, all three sources of errer will be discussed ar sowe
p y 2

length,
3.3.1 Equivalence Principle Errors

To deduce the order of error in the neglect of the velocity pertur-
bation along the free stream flow direction, Van Dyke introduced what he
termed '"'reduced" independent and dependent variables, and he redefined
the functions describinglthe body and shock-wave surfaces. To obtain
these reduced variables, consider a coordinate sysvem where the z axis is

aligned with free-stream flow direction. Let th. surface of the body be

i

described by B{(x,y,z) 0, and let the complete system of shock waves be
described by S(x,y,z) = 0. In this coordinate system the reduced

variables are as follows:

X = x/q
T o= y/t (14)
zZ = z
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u = U_ti(%,7,%)
v o= U_TH&,¥,%) (15)
v o= U_[1+ 2%(&,7,5)]
P o= PyMErRR(,F,2) (16)
P = pp(&Y,2) (17)
B = B(%,7,%)

- (18)
S = S(x,y,Z)

where 1 is the maximum slope of the body surface with respect to the free-
stream flow direction. This transformation of variables was introduced
into the continuity, momentum, and first law equations for an inviscid
fluid. Reduced parameters were considered of order one or less and terms
that contained 7° explicitly were discarded, A set of reduced equations,

linear in w and derivatives with respect to z, resulted.

If the reduced equations are rewritten in terms of the actual un-
barred parameters, and the substitution z = U,t is made, the time~depend-

ent equations of motion in two space dimensions result.

The boundary conditions for the reduced equations are as follows:

At the body surface

S8, 5B, 3B _ 5 -
U 3R + v > + i Q at B =20 (19)
Far upstream of the body
1
P -
yME e
as Z - -~ (20)
P~ 1

The parameters Moo and 7 of the full problem enter the reduced

problem only in the combination M _r, which appears only in the upstream
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boundary condition on P (eq. 20). Since P must be of order onme or less

for these equations to be valid, M_T, must be of order onz or greater for
this theory to be consistent far upstream of the body. If this consistency
condition is satisfied, the maximum error in a reduced variable must be

of the order 7°, because terms of order T° have been omitted in the
reduction. Since M_T is of order unity, an error of order 7° implies an
error of order 1/(MZ). Hence, the theory becomes more accurate as the

free stream Mach number goes up. Since supersonic flow problems are

solved in this paper, this source of error, although small, will not be
negligible. Based on the T° error law, the maximum errors in the static

pressures and local Mach numbers are derived below,

The absolute difference between the actual reduced pressure, Pa’

and the reduced pressure calculated from this theory, f, is
lE; - P[ ~ o 21D
Combining equations (16) and (21) yields

lp. - P
‘P-‘%—a——g——%q—
quT
where q_ is the free-stream dynamic pressure [(%)papi]. Therefore, the

absolute error in the pressure is as follows:

P -P| ~ 2q°°74 (22)

Since experimental and numerical local Mach numbers are compared in
this research effort, it is important to determine the order of error in

the Mach number. The Mach number, M, is defined as

1
2 2 252
(u® + VC + w) (23)
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where C is the local sound speed. From Bernoulli's equation, the local
sound speed can be expressed in terms of the components of local velocity
2 _ 2 _XY=1[ = 2 2 _ 2
c = Cm > [u + v° 4w Um] (24)
where C_ is the free=-stream sound speed. Introducing the reduced veloci-
ties u, ¥, and w from equations (15) into equations (23) and (24) yields

the relation for the Mach number in terms of reduced velocities.

N

(1 + 4% + 277 + 1°%% + 1%5°)

Moo= T (25)
) - - - - - 2
Eﬂm - (X-E—l) TEERTE o+ 20+ V% o+ uz)]
Since W, V, and W are of order ome, terms in T* could be neglected in
equation (25).
%
1+ 2025 + 5 -2
M o~ T° (2% V< + 4°) (26)

-2 - - - -
M_T - (3;E—l> (2% + ¥° + G°)
Equation (26) can be linearized in terms of changes in u, v, and W
by employing a first-order Taylor's expansion. Let Ma represent the
actual local Mach number and M represent the value computed by this numeri-~

cal method. From a first~order Taylor's expansion
Moo~ M4 (2 o+ (& w o+ (& = (27)
/e = ov/- oW
u,v u

The coefficients of equation (27) can be determined by differentiation of
equation (26) and evaluation of the derivatives at the values u= v = 1,
w = 0, since barred planar quantities are assumed of order one, and the

perturbation velocity w is assumed to be mear zero. The final equation is as

follows:
dam| 374(1+———Y51Mi)
Mm N i (28)
[1 -(y - 1)7%{2]2 (1+ 27°)7
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where
|ma] = I, - mi
3.3.2 Discretization Errors

The discretization error in the two-dimensional time-dependent
equations of Section 3.3.1 is based on a general rule that relates the
error to the density of mesh points employed in the numerical integration
process, The derivation of this error rule can be found in references
10 and 12; the relation is as follows:

e = £N/4 (29)

where g is the absolute discretization error in a given property, N is the
two-dimensional mesh point density (i.e., number of zones per unit area of
the x,y plane), and f, is a bounded oscillatory function. If the same
problem is run with two different meshes, that is, a medium and fine mesh;
the function f, can be evaluated from the values of a property and mesh
point densities of the medium and fine meshes at the same point in space

and time. TFor the case where the static pressure error is required,

\Pf - Pml
-3/4 -3/4
f - Nm l

£, (30)

|

where Pf is the fine mesh pressure, Pm is the medium mesh pressure, Nm is
the mesh point density of the medium mesh, and Nf is the mesh point density

for the fine mesh.

3.3.3 Errors Due to Neglect of Axial Viscous Effects and Turbulence

The error introduced by neglecting axial viscous effects and turbu-
lence phenomena is the most difficult of the three sources of error to

evaluate. Therefore, no formal attempt was made to evaluate this error
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on analytical and/or numerical grounds. The numerical results for the
problems solved in this paper were compared to experimental data.
Deviations in separation point locations and vortex center trajectories
were noted, and on the basis of physical arguments, the primary causes of

the deviations were explained,

In this research effort the effects of mesh point density on the
discretization error were not investigated; each problem of the program
was run with only one mesh, Therefore, the order of error of the numeri-
cal method, which was established by comparing the numerical results with

experimental ones, included all three sources of errors.
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4.0 CALCULATIONS MADE AND RESULTS OBTAINED
4,1 DESCRIPTION OF PROBLEMS SOLVED

The AFTON-2PE computer code, modified to accommodate the equivalence
principle boundary conditions, was applied first to the flow field about
an ogive-cylinder configuration and second, to a fuselage geometry repre-
sentative of an advanced tactical fighter plane, In both problems, air,
represented as a gamma law gas (¥ = 1.4), was considered and adiabatic flow
was assumed throughout the flow field. For the ogive-cylinder problem
the free-stream Mach number was 1.98, the angle of attack was 10° with
respect to the axis of the body, and the free-stream Reynolds number was
4.68 x 106/ft. For the fuselage problem the free-stream Mach number was
2.5, the angle of attack was 15° with respect to the horizontal, and the
free-stream Reynolds number was 9.1 x 106/ft. In this section the cross-
sectional shapes for both problems are defined and in the next section the

finite difference meshes generated about these cross sections are described.

The axisymmetric ogive-cylinder configuration is composed of an
ogive which is three maximum cylinder diameters long and a cylinder 7.3
diameters long. This configuration is schematically illustrated in
figure 7, where the equations which describe the variation of the radius
of the body with axial distance are also indicated. 1In this problem the
axis of the body, which is straight in this case, was chosen as the
principal axis for the equivalence analogy between the steady and unsteady

flows.

The fuselage had a drooped nose which resulted in a curved
central axis of the body. This geometry is schematically illustrated
in figure 8., The central axis of the body is composed of a straight
portion, inclined 7%0 from the horizontal, and a curved portion which
begins at a horizontal station of 15 inches (see figure 8.) To avoid

. T, . . o
introducing curvature effects into the equations of motion, the 7%
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reference line was chosen as the principal axis for the equivalence
analogy. In this coordinate system, the angle of attack of 15° with
respect to the horizontal becomes 7%0 with respect to the 7%0 reference
line; hence, ¢ = 7%0. The canopy, included in.this problem, is
indicated in the cross sections normal to the 7%0 reference line shown

in figure 8.

The fuselage configuration has cross-sectional shapes normal
to the 7%0 reference axis whose peripheries can be approximated by
circuiar arcs and straight lines. 1In fact, the fuselage cross section
is circular to a horizontal station of 9.44 inches from its nose, is
asymmetric between horizental stations 92.44 and 10.88, and includes a
circvlar canopy between horizontal stations 10.88 and 30.68. The fuse-
lage cross section at a horizontal station at the canopy location is
shown schematically in figure 9. The parameters describing this peri-
phery are alsc indicated in the figure. These parameters have been
curve-fitted as functions of distance along the central axis of the
fuselage. The curve fits of the cross-sectional parameters are pre-

sented in Appendix D.
4.2 MESHES USED

A subroutine of the AFTON 2PE computer code has been developed
for generating finite~difference meshes around an asymmetric half-
body of a general fuselage-shaped cross section. This subroutine is
based on previous work on finite-difference mesh development for a
circular cylinder (ref. 12). The general cross~sectional shape of the
half-body is assumed to consist of two circular arcs, two straight-
line segments tangent to the circular arcs, and a circular canopy
(see figure 9). The procedure adopted in the calculation was as follows:

The area of the half-body was computed and a half-circle of equivalent
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area was located with its center at the coordinate origin. The finite~
difference mesh for this half-circle was calculated from a modified
stream function and potential function from potential flow theory
about a cylinder. The problem was to transform the cylinder mesh into
a new mesh around the asymmetric half-body according to some suitable
rule of transformation., 1In the subroutine developed, each half-circle
mesh point (designated hereafter as an "unprimed" mesh point) was
transformed into a half-body mesh point (designated hereafter as a
"primed'" mesh point) in the following manner. First, the pasriphery

of the half-body shape was divided into as many equal arcs as the
half-circle periphery. Then, surface vector displacements were
obtained between corresponding unprimed points on the half-circle

and primed points on the asymmetric half-body. Based on these surface
vector displacements, unprimed mesh points in the flow field were
displaced to their primed locations. Consider an unprimed mesh point
in the flow field having a position vector R(j,k), where the integer,
k, is associated with a potential~like line, and the integer, j, is
associated with a streamline-like line. Let the surface vector
displacement corresponding to the same k line be itenoted as d(k).

The position vector of the primed point R'(j,k) is determined from

the following equation:

2
R = RGLD + 40| 555 (31)

where a is the radius of the half-circle and R(j,k) is the magnitude
of the position vector R(j,k).
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The finite-~difference meshes for the ogive-~cylinder were composed
of 35 j lines and 90 k lines and continuously deformed with the radius of
the body. The initial radius was 0.00046875 foot and the maximum radius
was 0.046875 foot. Since the ogive~cylinder cross section is circular,
only the equations of the mesh generating subroutine which pertained to
the circular cylinder mesh points (unprimed mesh points) were used to
continually calculate new meshes as the radius of the cross section
changed, The finite-difference mesh in a cross=-sectional plane normal to
the body axis at a radius of 0,01 foot is shown in figure 10, The finite~-
difference mesh corresponding to the maximum radius (0.046875 ft) is

indicated in figure 11,

The finite~difference meshes for the fuselage configuration were
composed of 35 j lines and 99 k lines and continuously deformed as the
body cross-sectional shape deformed. The mesh-generating subroutine of
the AFTON 2PE computer code continually calculated new meshes as the
fuselage shape deformed. The finite-difference mesh in the cross-sectional
plane normal to the central axis at a horizontal station 7 inches from the
nose of the fuselage is shown in figure 12, At this station the fuselage
cross section is circular. The finite-difference mesh corresponding to a
horizontal station 25 inches from the fuselage nose is shown in figure 13,

The canopy is also indicated in this figure,
4,3 BOUNDARY CONDITIONS AND INITIAL CONDITIONS

In the x,y planes, the finite~difference meshes are bounded by an
upstream boundary, a lateral boundary, and a boundary composed of the
symmetry line of the cross section and the body cross sectipn itself,
The density and specific internal energy are given their free-stream
values at the upstream boundary while the velocity of material normal to

this boundary, Vs is evaluated from

v = U_ sin o (32)
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where ¢ is the angle of attack with respect to the principal axis.
Equations (5) and (6) are satisfied at the body's surface, while the fluid
is allowed to slide without friction at the system's lateral boundary and
symmetry lines, The downstream boundary condition was based on the method
of characteristics. It was used previously in low~speed wake-flow calcula-
tions and gave a good approximation to the flow in this region. References

12 and 13 describe this downstream boundary condition in some detail.

The initial conditions for both problems consisted of a uniform flow
field in the (x,y) plane with zero x-component the velocity and the y-
component the velocity given by equation (32). The density and specific
internal energy were given their free stream values. 1In both problems
the initial cross sectional radius was approximately one-hundredth of the

maximum cross sectional radius.
4.4 RESULTS OF OGIVE-CYLINDER PROBLEM

The ogive=-cylinder problem was the first attempted in this study.
This problem was a good test of the method in that vortices had been
experimentally observed to occur on the leeward side of the body., The
crossflow Mach number was 0.344 and the crossflow Reynolds number was
0.7625 x 105 based on the maximum diameter of the body. The problem was
run 3406 cycles (i.e., time steps) on the UNIVAC 1108 computer, requiring
approximately 10 hours of computer time. Solutions were obtained from
the body's nose to an axial station 8.35 maximum cylinder diameters down-
stream. At this cross-sectional plane a well-developed pair of vortices
were calculated. The problem duplicated the body geometry and free-stream
conditions of a wind-tunnel test (ref. 14). In general, agreement between
numerical and experimental data was good, providing evidence that the
numerical method is applicable to bodies for which separation and subse-
quent development of spiral vortex sheets occur,.
4.4.1 Qualitative Behavior of Numerical Flow Field

To investigate the qualitative behavior of the flow field, it was
convenient to exhibit the data in the form of vector plots of the velocities

of the fluid particules; the tail of each vector corresponds to a mesh point,
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The sequence of events as one moves down the axis of the body is described
by figures 14 to 17. 1In figure 14 the flow field is shown at a station
0.502 maximum cylinder diameters from the nose of the body. Although the
finite-difference mesh is relatively coarse with respect to the radius of
the body at this station, the bow shock is indicated as well as the expan-
sion which occurs on the leeward side, In figure 15, at a station 2.99
maximum body diameters, where the ogive section ends, the bow shock is
better defined. Figure 16 shows the flow field at a station of 4.92 maxi-
mum diameters, where separation first appears on the leeward side of the
body. The spiral vortex sheets that develop on the leeward side of the
body are indicated in figure 17. The formation of the bow shock, the
leeward expansion, and subsequent development of the spiral vortex sheets
are all in qualitative accord with experimental observations. The accur-

acy of these numerical results is considered below.
4.4.,2 Surface Pressure Comparisons

Numerical pressure distributions around the body are compared to
experimental data at various axial stations in figure 18. As can be seen
from the figure, quantitative agreement is achieved from the body nose to
an axial station 4.92 diameters., At this station the numerical data indi=-
cate that separation had occurred on the leeward side of the body (see the
velocity vector plot in fig. 16), whereas the experimental data showed
leeward separation at a station approximately 6,00 diameters aft of the
body's nose. As a result, the numerical pressure data on the leeward
side of the body differed slightly from the experimental data between
stations 4.92 and 6.00 diameters down the body axis. At stations greater
than 6.00 diameters from the cylinder's nose, the experimental data also
showed separated flow, and the numerical and experimental pressure coeffi-
cient data were 1in close agreement 7.63 diameters from the nose of the
cylinder.

4,4.3 The Flow Field About the Ogive-Cylinder

The circumferential positions of the separation points and vortex
centers vary with axial location in a manner determined experimentally by

measurements of pitot pressure at various body cross sections. Corres-
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ponding separation point and vortex center positions were also found from
velocity plots of the numerical flow field. The calculated separation
points and vortex centers were found to lie about 20° closer to the wind-
ward side than the corresponding experimental values as seen in figure 19,
For example, in a crossflow plane 8.3 diameters down the body axis, the
numerical separation point and vortex location were 109° and 1370,
respectively, while the corresponding experimental values were 130° and
160°. The discrepancy between measured and calculated separation point
and vortex center positions, while not very large, is perhaps the least
satisfactory feature of the calculation, The difference is due to
viscous effects of axial motion being neglected as well as to the exclu-

sion of turbulence phenomena,

The flow field predicted numerically is laminar. However, the
actual flow field is turbulent as a result of both axial and crossflow
viscous effects. 1In the numerical method axial motion is treated as if
the flow were inviscid. For laminar flow, separation would begin on the
leeward side of the body at an axial station upstream of the station at
which turbulent separation begins. Also, the separation point would be
closer to the windward side when the flow is laminar. From the pressure
coefficient data for a circular cylinder (ref. 15), it was found that in
turbulent flow at a Reynolds number of 6.7 x 105, separation occurred at
1200; in laminar flow at a Reynolds number of 1.85 x 105, separation
occurred at 90°. Thus, the difference between the numerical and experi-
mental separation positions is in qualitative agreement with the differ-
ence between laminar and turbulent separation positions. To obtain more
realistic theoretical predictions, it will, therefore, be necessary to
generalize the equivalence principle to account for turbulent effects due
to axial flow; it is felt that the principle, which was generalized for
this program by including Newtonian viscosity in the crossflow equations,

could be extended satisfactorily by the addition of eddy viscosity terms,
4,44 Accuracy of the Ogive-Cylinder Calculations

Based on the equivalence principle theory, an error analysis of the
surface pressure results of figure 18 was made. The maximum slope of the

ogive-cylinder body with respect to the free-stream flow direction was
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28.92° which corresponds to a T = 0.552, and occurs on the windward side
of the body at the nose. For this value of T, the hypersonic similarity
parameter M T is 1.09, which satisfies the consistency condition of the
theory. Since consistency is satisfied, the maximum absolute error in
the surface static pressures, |AP|, that one should expect from this
theory is about 19 percent of the free-stream dynamic pressure [see

eq. (21)]. The maximum absolute error in surface static pressure, or
maximum difference between numerical and experimental pressures, for each
of the cross sections of figure 18 is presented in table 1, Table 1
shows that the errors are very much less than the maximum error calcu-
lated from the equivalence principle theory of Van Dyke, It is believed
that the static pressure errors in the vicinity of the body's nose would
be of the order of 19 percent and would decay rapidly as T decreased.
For example, at the station 0.502 diameters, the parameter T is 0.481,
which results in a predicted absolute maximum error of 11 percent of
free-stream dynamic pressure, Therefore, the numerical results are con-

sistent with the equivalence principle theory of Van Dyke.

TABLE 1, MAXTMUM SURFACE PRESSURE ERROR IN
VARIOUS CROSS-SECTIONAL PLANES

Axial station, |aP|/q x 100,
maximum cylinder diameter percent

0.502
2.990
1.289
3.970
4.920
5.830
7.630

WHrPUWLWREW

4.4 .5 Drag and Lift Coefficients

Drag and lift coefficients were determined on the basis of numerical
pressure data only; shear stress effects were not included. To compute
these coefficients, the pressure coefficients on the ogive~cylinder surf-

ace were numerically integrated to determine the lift and drag.
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Comparison of the numerical and experimental coefficients, as shown in
figure 20, was found to be very satisfactory. The coefficients of total
drag from the two sources proved to be almost identical functions of
distance from the nose of the ogive, Differences in the 1lift coefficient
curves began to be significant at a distance of about 2,75 diameters

from the nose of the ogive, increased to a maximum at about 4.5 diameters,
and then decreased; the numerical 1ift coefficient was approximately 5.8
percent higher than that measured at about 4,5 diameters from the ogive

nose, and about 2 percent higher at 8.35 diameters from the nose.

An overestimated lift coefficient is consistent with the fact that
separation occurred earlier in the numerical flow field than in the
experimental field. Lift coefficients are calculated from pressure
forces on the surface of the body, as projected in a plane parallel to
that of free-stream flow. Since the area of the appropriate projection
is almost entirely derived from the body's long cylinderical surface,
and separation takes place on that surface, separation that occurs too

early increases the lift,

On the other hand, the drag coefficient should be relatively inde~-
pendent of the location of separation, Since the ogive becomes cylindri-
cal at a station 3.0 diameters from its nose, the projected surface area
normal to the direction of free-stream flow is very small for the long
cylindrical surface aft of this station, and the corresponding pressure
forces contribute very little to the total drag. Quantitative agreement

in the pressure drag coefficients is, therefore, physically reasonable.
4.5 RESULTS OF FUSELAGE PROBLEM

For the fuselage problem the crossflow Mach number was 0.288 and
the crossflow Reynolds number was 1.15 x 106/ft. Cross~section flows
have been calculated in this problem in planes normal to the 7%0 refer=-
ence line to a horizontal station 19.5 inches aft of the nose, At this
station the curve bounding the body's surface represents an asymmetric
fuselage configuration with a canopy. To reach this station the problem
was run 2079 cycles (time steps) on the UNIVAC 1108 computer. This cal-

culation required approximately 6 hours of computer time.
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4,5.1 Qualitative Behavior of Numerical Flow Field

From velocity vector plots of the cross-sectional flow field, the
qualitative behavior of the fuselage flow can be examined. The sequence of
events as one moves downstream along the 7%° reference line of the fuselage
is indicated in figures 21 to 25. The vectors in these figures correspond
to the particle velocities of the flow at each mesh point of the finite
difference mesh; the tail of each vector corresponds to the mesh point.
Initially, a bow shock forms at the nose and an expansion fan, caused by
the interaction between the expanding body and the crossflow, appears on
the leeward side. This is indicated in figure 21 at a station 1.135 inches
from the fuselage nose. This flow pattern continues as the fuselage cross
section grows until it reaches the canopy which induces a shock wave in the
flow field (see fig. 23). As the canopy radius reaches maximum (fig. 24)
and starts to decrease, a rarefaction develops in the flow field above

the canopy, leading to the formation of vortices (fig. 25).
4.5.2 Surface Pressure Comparison

The quantitative behavior of the predicted flow about the fuselage
was ascertained by comparing the numerical results to experimental mea-
surements., The fuselage configuration of figure 6 was tested in the
Ames 8~ by 7=Foot Wind Tunnel., Static pressures were measured along the
surface of the fuselage, and flow~field measurements with conical probes
were made in cross~sectional planes normal to the norizontal reference
line at a station 19.5 inches aft of the fuselage nose. The static-
pressure instrumentation of the fuselage forebody surface is sketched in
figure 26. The pressure taps were located in cross-sectional planes
normal to the horizontal reference line. The point of intersection of
the 7%0 reference line with this cross=-sectional plane defined the axis
from which pressure tap locations were measured along the periphery of
the cross section. Pressure taps were located -900, -60° -300, 00, and
+24° from this axis (see fig. 26). Thus, with respect to stations along

the horizontal reference line, the instrumentation was located along the

five planes indicated in figure 26,
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Numerical and experimental distributicns of surface pressure coeffi=~
cients are compared in figure 27 along the five planes of figure 26. It
is seen that excellent agreement has been achieved along the -900, -600,
and -30° planes. The numerical and experimental pressure coefficients
agree along the 0° plane until station 18, Along the 24° plane there is
" a discrepancy at station 15, These discrepancies can be attributed to
two sources: (a) a canopy shock wave-axial boundary-layer interaction,
which occurs experimentally but not numerically, and (b) a slightly dif-
ferent calculated canopy shock location which will be described in more
detail in the discussion of the flow-field results. The canopy shock-

axial boundary-layer interaction spreads the shock pressure rise over a

greater distance than calculated.
4.5.3 Accuracy of the Fuselage Calculatioms

As in the case of the ogive-cylinder problem,an error analysis was
made of the surface static pressures. The maximum slope of the fuselage
geometry with respect to the free-stream flow occurred on the windward
side of the body at its nose (see fig. 8). Its value was 220, which
corresponds to T = 0.400 and M 7 = 0.998. Therefore, the consistency
condition of the theory is satisfied. According to equation (22), the
maximum absolute error then becomes 5 percent of the free-stream dynamic
pressure, On the basis of the results of figure 27, the maximum error,
|AP‘/qm, in each of the planes was determined and the values are tabulated
in table 2, It is seen from the table that the errors recorded are con-
sistent with the maximum error calculated from the equivalence principle

theory.

TABLE 2, MAXIMUM SURFACE PRESSURE ERROR ALONG THE
FIVE PLANES OF FIGURE 33

Plane, deg |oP}/q_ x 100, percent
- 90 2.0
- 60 2.3
- 30 3.4
0 5.6
24 5.8
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At first glance the relatively small errors of table 2 are surprising
in lieu of the fact that hypersonic small disturbance theory is applied at
supersonic speed, One would expect linearized supersonic theory to apply
in this Mach number range. However, an analysis of the errors shows that
linearized supersonic theory is only slightly more accurate than hyper-
sonic small disturbance theory for the fuselage problem. The error in
linearized supersonic theory is of the order 1 (ref. 2), which results in
a maximum absolute error in the static pressure of 4% of free stream
dynamic pressure. Therefore, for a relatively thick class of bodies
(which includes most fuselage geometries), where the hypersonic similarity
parameter is of order unity, both hypersonic small disturbance theory and

linearized supersonic theory give satisfactory results,
4.5,4 Contour Maps in the Flow Field of the Fuselage

Contour plots of the local pitot pressure ratio (Pp/E;m), local
sideslip angle (B), local Mach number (M), local angle of attack (ae),
and local total pressure ratio (Ps/Psw) were generated from the numerical
results and compared to corresponding contour plots from experimental
data. The comparisons were made in a cross-sectional plane normal to the
horizontal reference line at a station 19,5 inches from the fuselage apex.

See figures 28 through 32, The above parameters are defined in Appendix E.

The local pitot pressure, Pp’ is effectively the stagnation pressure
measured by a probe whose axis is parallel to the local flow directiomn.
As in the case of the surface pressures the pitot pressure is measured
directly; therefore, it provides a reliable measurement for comparison.
The numerical pitot pressure was calculated from the Rankine-Hugoniot
equations for a normal shock, where upstream of the shock, the local Mach
number, and stagnation pressure were assumed to exist., The numerical and
experimental pitot pressure ratios (PP/PSGP of figure 28 indicate good
agreement in the lower quadrant of the flow field, where the two sets of

Pp/Ps contours are mnearly coincident in the vicinity of the body. This
2]
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quantitative agreement is in accord with the agreement obtained between
surface static pressures on the -30° plane, which intersects the body in
this region, In the upper quadrant of the flow field there is a
discrepancy between the experimental and numerical contours. The numeri-
cal results indicate that the canopy shock intersects the fuselage surface
above that point indicated by the experimental data. The increased down-
ward distance of travel by the canopy shock in the experimental case
accounts for the discrepancy in contours in the upper quadrant of the flow
field. Although axial-boundary layer effects and discretization errors
influence the canopy shock location, it is believed that the equivalence
principle approximation of neglecting the velocity perturbation along the
7%0 reference line is the primary cause of this discrepancy. The velocity
perturbation is effectively zero upstream of the body apex, hence, the
windward oblique shock emanating from the apex was calculated correctly.
However, the velocity perturbation is positive upstream of the canopy,

and since this quantity is neglected in the method, the calculated canopy

shock must be, and is, weaker than experimentally measured,

The local sideslip angle, B, is measured in the cross-sectional
plane normal to the horizontal reference line and is the flow inclination
in the x',z' plane (see fig. 9). As in the case of the pitot pressures,
the comparison of the experimental and numerical sideslip angle contours
shown in figure 29 indicates that the predicted flow field in the lower
quadrant is nearly correct, Furthermore, the predicted location of the
canopy shock and the predicted flow~field contours in the upper quadrant

deviate from experiment as in the pitot pressure comparisons.

Contours of constant Mach number and constant local angle of attack
with respect to the horizontal reference line (see fig, 8) are presented
in figures 30 and 31, respectively. It is seen from these figures that
the numerical Mach number and angle-of-attack contours do not match the
experimental contours even in the lower quadrant of the flow field., This
discrepancy is not in accord with the surface static pressure comparison,
pitot pressure comparison, and sideslip angle comparison discussed

previously.
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The reasons for this disagreement can be found in discretization
errors in the numerical method, errors introduced by the equivalence
principle assumption, and errors inherent in the experiment and data
reduction process, The error in Mach number due to the equivalence prin-
ciple has been determined previously [see eq. (28)]. Equation (28),
evaluated with T = 0.40 and Mco = 2,5, results in a maximum absolute error
about 30 percent of the free-stream Mach number, This corresponds to an
absolute Mach number error of about 0.75. Consider the experimental
contour of figure 30 for a constant Mach number of 2,50, It is seen from
figure 30 that this contour coincides with the numerical contour for a
constant Mach number of 2,40, which results in an absolute Mach number
difference of 0.10. Thus, the observed absolute difference in Mach num-
ber between the numerical and experimental results is within the
maximum error one would expect from the equivalence principle alone,
Therefore, one must conclude that errors introduced by the equivalence

principle assumption account for the major part of these discrepancies,

The calculated local total pressure recovery contours (Ps/PSa) are
shown in figure 32, The predicted total pressure recovery varies from
1.0 to 0,88 in the flow field, with recoveries near 1.0 throughout most
of the flow region. This parameter is the most difficult to calculate
accurately and to determine experimentally. Although the experimental
data for this fuselage configuration are still preliminary, an error
analysis indicates that the values of PS/PSoo can be determined only with
+ 0.03. TFor a total pressure ratio bandwidth from 0,88 to 1.0, this
error is too large to yield any significant contour data. Consequently,
no experimental data are shown. Future refinement of the set of conical
probe calibration data will hopefully reduce this error to a more

meaningful level,
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4,5.5 Lift and Drag Coefficients

Numerical lift and drag coefficients for the fuselage problem are
compared to corresponding 1ift and drag coefficients determined from
inviscid, linearized supersonic theory for flow about an axisymmetric
body at angle of attack (ref. 16). Linearized supersonic theory was used
because there were not enough pressure data to determine the 1ift and
drag experimentally. The lift and drag coefficients from the numerical
method were determined by numerical integration of the surface pressure
coefficients over the surface and are based on a cross-sectional area
corresponding to the maximum equivalent radius of the fuselage,

a x = 3 inches. As in the case of the ogive-cylinder problem, shear
stress effects were not included. It is seen from figure 33 that the
numerical 1ift coefficient distribution nearly corresponds to that from
linearized supersonic theory. 1In view of the fact that the maximum
absolute static pressure errors are about the same for both linearized
supersonic theory and hypersonic small distrubance theory, agreement in
the 1ift coefficient is expected. On the other hand, the numerical drag
coefficient distribution shows greater drag than the distribution from
linearized supersonic theory. This discrepancy may be attributed to the
fact that the coefficients determined from linearized supersonic theory
have been further specialized to the case of very slender bodies (ref. 16),
which is not true for this geometry. However, this comparison does
indicate that the lift and drag coefficients calculated by the numerical

method of this paper, if not correct, are at least of the right order.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

The principal conclusion emerging from the work reported here is
that a promising new method has been developed for calculating flow fields
about slender bodies of arbitrary geometry in the supersonic and hyper-
sonic flight regimes. The present version of the numerical method can
adequately predict the surface pressures and flow field characteristics
outside the boundary layer for bodies where the hypersonic similarity
parameter M_r is unity or greater and for free stream Mach numbers 2 and
above. For cases where boundary layer separation and the subsequent
formation of spiral vortex sheets occur, the numerical method predicts too
early a separation which results in small inaccuracies in predicted flow

field quantities downstream of the region of separation,

The basis for the above conclusion lies mainly in the specific
results obtained for the ogive-cylinder and the fuselage configurations.
For the ogive=~cylinder problem a spiral vortex pair was computed on the
leeward side of this body. Although axial effects caused some differ-
ences between numerical and experimental separation regions and vortex
center positions, in general, the static pressure distributions on the
body's surface, the 1ift, and pressure drag of the body agreed with the
corresponding experimental values; the surface pressures differed by mno
more than 5 percent of free~stream dynamic pressure; the 1ift coefficients
differed by no more than 6 percent; and the drag coefficients by no
more than 2 percent, From velocity vector plots of the cross~sectional
flow field of the fuselage configuration, the structure of the flow field
seemed correct, at least qualitatively, Furthermore, comparisons of the
numerical static pressure distributions on the fuselage surface were in
quantitative agreement with experimentally determined distributions; the
maximum error in the static pressure was no more than 6 percent of free
stream dynamic pressure, Contour plots of pitot pressures were of the

same general shape as the experimental contours and some of these curves
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coincided. Finally, the pressure drag and lift distributions seemed
correct when compared to corresponding drag and lift coefficients derived

from inviscid, linearized supersonic flow theory.

The justification for the part of the above conclusion which per-
tains to the range of applicability of the method, i.e., Mcﬁ =21 and
M_ 2 2, lies mainly in the fact that for both problems (M_t =~ 1, M_= 1.98,
and M= 2,5) the deviations predicted from experimental results were
contained well within the predicted error bounds of the equivalence prin-
ciple. Hence, as the Mach number M increases, the Van Dyke theory tells
us that the predicted results will become more accurate., However, to
strengthen this conclusion, additional comparisons should be made between
numerical and experimental data at other flight conditions and for differ-

ent geometries within the above range of applicability.

To realize the full potential of this numerical method, we believe
that funrther research is justified. Three areas of additiomal research
seem promising. First, the method should be revised and include the
velocity perturbation on the primneipal axis along which the equivalence
analog is made, The inclusion of the axial velocity perturbation in the
finite difference equations of motion will improve the accuracy of the
method in its present range of applicability and will extend the method
to cases where MmT <« 1 and for Mach numbers above transonic, Hence, a
unified method, which applies throughout the superscnic and hypersonic

flight regimes, will be achieved,

The second area where additional research seems justified concerns
the relationship between viscous axial and crossflow effects. In the
ogive cylinder problem, too early a separation was calculated considering
only viscous crossflow terms which were assumed laminar, The discrepancy
in the separation point location is attributed to both axial viscous
effects and turbulence, However, from the results of this problem it was
not possible to determine which was the more important effect., There~
fore, to determine the relationship between viscous axial and crossflow
effects it is necessary to solve an additional problem (both numerically

and experimentally) at hypersonic flight conditions and in the laminar
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flow regime, At hypersonic flight conditions, errors in the equivalence
principle are minimized; thus, deviations between numerical and experi-
mental results can be attributed entirely to the neglect of axial viscous
effects, If these deviations are large, some of the more important axial
viscous terms can be retained in the finite difference equations of
motiomn.

Finally, turbulence effects can be included in the finite difference
equations of motion by the addition of eddy terms, i.e., eddy viscosity

and thermal conductivity. These eddy terms would be based on empirical

constants which would be determined from comparisons of numerical and
experimental results.

Ajong the lines just sketched, we believe that an efficient,
reliable capability can be developed for predicting viscous flow field
characteristics for nonsimple geometries throughout the supersonic and

hypersonic flight regimes,
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APPENDIX A

THE EQUIVALENCE PRINCIPLE

In this section the equivalence principle for steady, inviscid
three-dimensional flow is derived. An Eulerian coordinate system fixed
with respect to the body-and having its z=axis along the axis of the body

is used throughout this section (see figure 2).

The equations of motion for steady, inviscid three-dimensional flow

about a body are:

Continuity

o) el Q

3% (Pu) + 8—}: (pv) + 52 [p (U,Cos @ + w)] =0 (A1)
Momentum

u %& + v §§ + (w + U Cos &) %% = - % %E (A2a)
ug—}‘i—+v§§+(w+uchsa)g—lz’-=-pl-g% (A2b)
u %% + v %% + (w + U_Cos &) %% = - % %% (A2c)

First Law
u %% + v %% + (w + U Cos @) %% = (A3)

-P [u%{-(—é—)+v%§-<-l‘;>+(w+UwCoSd)%(%>]
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Boundary Conditions at Body

(U Cos & + w) ﬁz +v Ly + u EX =0 (A4ha)

Boundary Conditions at Shock

PeUs(Cos @ m, +Sina ) = P [(UuCos @ +w ) m, +von + un ] (a4b)

2 . 2
Pe + P U (Cos & n, + Sin ¢ ny) = PS

2
+ g [(UmCos o +w)m, +vn 4 usnx] (ALc)
—Y—‘I:f+iU2 (Cos @ n_ + Sina n)> A
Yy -1 Pe 2 T z vy v -1 pS
1 ) 2
+-§ [}Umuos o + ws) n, + vsny + usnx] (A4d)

where E is the internal energy per unit mass, P is the pressure, p is the

density, U _ is the free stream speed, w is perturbation velocity in the

©
z-direction, v is the velocity in the y-direction, u is the velocity in the
x-direction, and zx, Zy’ and EZ are the direction cosines of the body normal
in the x, y, and z directions respectively. The subscript s refers to

properties downstream of the shock, and n, ny, n are the direction cosines

of the shock normal in the x, y, and z directions respectively.

Boundary Conditions Far From Body

Z = -~ o : w = U_Cos & , v=70USino, u=20 (A5)

Introducing the transformation equations

z = UyCos at
y=y (A6)
X =X
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and the slender body assumption

U, >w

into equations (Al) through (A6) yields

CLontinuity
L L2 9 -
St + Se (pu) + 3y (pv) 4] A7)
Momentum
il ™ ow _ _lop(__1
ot +tu ox tv dy  p ot (UmCos d) (48a)
v, ., d__12
at+uax+vay— o 3y (A8b)
du . dw, du_ _13®
3t TUN TV dy  p ox (A8c)
First Law
or o2&, 3E__an1 (1 3 (1
St + u 3% + v 3y - P[Bt (p) + u - (p) + v > (pﬂ (A9)
Boundary Conditions at Body
Cosa U £ +uifd +v 4 =0 (A10)
® Tz b'd v

Shock Conditions

PeUs,(- Cos @ Sin B + Sin & Cos B) = pS(vSny + un - U Cos @ Sin B)  (Alla)
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il Ly

. . 2
P, +p, U, (- Cos @ S8in B + Sin & Cos B)" = PS

. 2
+ps(vsny + un - U_Cos ¢ Sin B) (All1b)

. . 2
v Ef +_U§( Cos o Sin B + Sin « Cos B) _ EE
Y - 1p, 2 Yy -1 Ps
. 2
+ (Vsny + un - U _Cos & Sin B) (Allce)

where: P is the angle made by the shock surface with respect to the z-axis
in the (y,z) plane. Equations (A7), (A8b), (A8c), and (A9) are independent
of w and, thus, represent the equations for time-dependent motion in the
(x,y) plane. Therefore, the steady 3-D equations of motion have been trans-
formed to a time-dependent 2-D set of equations. The 3-D shock boundary
conditions also reduce to a nonsteady shock in the (x,y) plane moving with
velocity proportional U_Cos @ Sin B. In summary, the necessary and

sufficient conditions for the equivalence principle to be valid are:

a. The z-component of the local velocity vector must be
approximately equal to the z-component of the free stream

velocity vector, and

b. the time-dependent solution in the (x,y) plane must satisfy
the three-dimensional boundary condition equation (Al0) at

the body surface.

The calculational procedure for inviscid flow is then as follows:
First, equations (A7), (A8b), (A8c), (A9), and (Al0) are solved for v,u,P,
and p. The perturbation velocity w may be subsequently obtained from the

Bernoulli equation, which is

(w + U_Cos d)z + v2 +u2

+ 5 = constant (A12)

<

<
1)
—
'O'l'ﬁ

Therefore, the equivalence between a steady-three-dimensional flow and a

time~dependent two-dimensional flow is proven.
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If the conditions (a), (b) are satisfied, viscous effects can be
included in the time-dependent calculations in the (x,y) plane without
violating the equivalence principle assumptions. A no-slip boundary
condition can be applied at the surface of the cross section in the
(x,y) plane in conjunction with the equivalence principle boundary

condition equation (Al0).
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APPENDIX B
CONSERVATION OF TOTAL ENERGY

In this section the self-consistency property of form that the
finite difference equations (8) to (13) possess is demonstrated. This
demonstration proceeds in three steps. First, the finite difference
kinetic energy equation is derived for the momentum zone aE—l/Z’
az+1/2. Then the finite difference First Law equation is derived for
this momentum zone. Finally, these relations are added to determine

the finite difference equation of total energy for the momentum zone
10 Fpe1/2°

The kinetic energy equation for momentum zone a£-1/2’ aZ+1/2
can be derived from momentum equation (12) which is centered at the
time tn-l/Z. Equation (12) can be written in terms of velocities by

employing the forward extrapolation relation, equation (13), i.e.,

n+l/2 -3/2
1 <UJZ j Ul,i@ )= pa-1/2 Pn-l/2 (B1)
24 bt £-1/2 H1/2 '
s . . n-1/2 . . .
Multiplication of equation (Bl) by UL yields the kinetic energy

equation for momentum zone a£-1/2’ aﬂ+1/2.

n+1/2  n-1/2 -1/2 n-3/2
my Yy Ue ) Yy
At 2 2
_ .n-1/2 n-1/2 _ n-1/2 .
= Uy <Pz-1/z Pi’/+1/2> (52)

The First Law equation for momentum zone a2-1/2’ a£+1/2 is
derived as follows: the internal energy for this zone equals half
the sum of the internal energies of thermodynamic zones a, s a, and
ag a5 (see equations (9) and (10)). This division of internal enmergy
comes directly from the relationship between thermodynamic and momentum

zones specified when the physical model of figure 6 was postulated. The
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Av Av
PKE term for momentum Zone a£-1/2’ ad,i1/p comes from half the PZE

for thermodynamic zones aL—l’ az and az, az+1. The First Law equation

for momentum zone a2—1/2’ aﬂ+1/2 becomes:

1 n n 1 n-1 n-1
5 (Bgo1p * EJz,+1/2> -3 (Ez-l/z +t B
oy At

n-1 n
1 (Pz.l/z + Pz-u;) (Un-1/2 i Un-1/2)
2 2 £ -1
n-1 n )
N (.PI/+1/2 * P12 (Un-1/2 ) Un-l/z) 53
2 A1 4 (B3)
The finite difference equation for conservation of total energy
for momentum zone aﬂl/Z’ a2+1/2 results from the addition of equations
(B2) and (B3).
n n-1
H, - H
( £ 4 )_ n-1/2 n-1/2>
"4 AL "(wll-l/z " Y172 (B4)
where:
-1/2 n+1/2
Hn—(En +E )l+UI;2 !
L~ 4-1/2 “H1/2) 2 2
n n-1 n-1/2 -1/2>
A2 Chorse * Prae) 07+ 0
~1/2 2 2
n n-1 n-1/2 n—l/Z)
ALz (Cherse * Tiige) U+ 9
L1/2 2 2

Equation (B4) , derived from finite difference analogs of the
First Law and momentum equations, is a reasonable finite difference
expression for total energy conservation. The rate of work done on
the surface, having the Lagrangian coordinate a9 1/2 at time tn-1/2’
is the product of the time-averaged pressure in the thermodynamic

zone a and the space-average velocity between surfaces a,

-1° 22 1
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and a,. Ehe internal energy of the momentum zone aZ-l/Z’ aﬂ+1/2
at time t , is half the internal energy of the two thermodynamic zones
which contain it. Finally, the kinetic energy of momentum zone

. n . P
32—1/2’ a£+1/2 at t:LmenE172 is th§+z7gduct of the velocities at the
surface ay, at times t and t . It is believed that this self-
consistency of form property, which the differential equations possess,
and which the finite equations preserve, is the primary reason for their

success in numerical calculation of one-dimensional time~dependent flow

fields.
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APPENDIX C

AFTON 2PE FINITE DIFFERENCE EQUATIONS AT INTERIOR MESH POINTS

The AFTON 2PE finite difference equations are presented for a
generalized coordinate system. The field of motion in AFTON 2P is actually
covered with two closely related finite difference meshes -- one for the
calculation of thermodynamic variables such as stress, i.e., quadri-
lateral zones, and the other for the calculation of kinematic variables
like momentum, i.e., momentum zones (refs. 11 and 12). Figure 4 illustrates
the two types of meshes in two space dimensions. The continuity and first
law equations are applied to calculate properties on a quadrilateral zone
while the equations of momentum and total energy conservation are used
to calculate properties on a momentum zone. In the forthcoming analysis
quadrilateral 1, 2, 3, 4 and momentum zone a, b, ¢, d are considered
(see figure 4). The finite difference equations in the generalized

coordinate system are as follows:

Definitions:

R = R(x,¥y) Cartesian coordinate position relative to the
moving frame

U = U(u,v) material velocity relative to the laboratory
frame

E internal energy

A . . . . .

i unit vector in the x-direction (i.e., the plane of
flow, and normal to the free stream flow relative
to the laboratory frame)

H total energy

W rate of work

S = 5(x,y) mesh point velocity relative to the laboratory
frame

o] material density
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APPENDIX D
PARAMETRIC REPRESENTATION OF FUSELAGE CROSS SECTIONS

In this section the parameters which describe the fuselage cross sections
are specified as functions of distance along the 7%° reference line. (see
figure 8) and the 7%0 reference line is prescribed as a function of horizontal
station. The cross sections taken were perpendicular to the 7%° reference
line (i.e. z=axis, figure 8). The parameters of each cross section was deter=
mined from geometrical data which were taken from the design blueprint of the

fuselage geometry.

A schematic representation of the fuselage cross section normal and the
7%0 reference line is presented in figure 9, 1In figure 9 the parameters which
describe the cross section are indicated. These parameters are defined as
follows:

(Al(z), Bl(z)), coordinates of the center of the smaller circular

arc in the fuselage periphery
Rl(z), radius of the smaller circle of the fuselage periphery

(AZ(Z)’ BZ(Z>)’ coordinates of the center of the larger circular arc

in the fuselage periphery
RZ(Z)’ radius of the larger arc
(A5(z), BS(Z))’ coordinates of the center of the arc of the canopy
R3(z), canopy radius

In the case being considered, BZ(Z) = A2(2) = A5(2) =0, Rz(z)- Rl(z) = qﬂz)
(Since the shape supplied has flat sides and bottom), and R2(z)- B5(z) < R3(z).
Furthermore, BS(Z) = R2(z) and R3(z) equal zero for z less than Zy» where zz(=10.88")
defines the distance along the 7%0 reference line at which the canopy first
appears. The fuselage cross=section is circular to z; = 9.44 inches and
asymmetric between zq and Zge It proved convenient to define these parameters
by another set of functioms from a distance of zg = 15.05 inches onward., The
equations for the above parameters considered units of inches and are as

follows:
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(i) Radius of smaller circle of fuselage periphery

12
For 0 £ z < 30.68, Rl(z) = Y,
=1
h Ry -1
where a;” = (1.7873231 x 10 ")
R -2
a," = (7.0559487 x 10™%)
R -2
a,t = (-3.2209788 x 107%)
Ry -2
a,’ = (6.6039801 x 10™%)
R
a51 = (~7.5565592 x 10~%)
R -5
a " = (5.1130544 x 107°)

of larger arc

(ii) Radius

12
For 0 < z < Zys Rz(z) = E a
=1
here 12 -1
wher a;” = (3.4725590 x 107")
Ry -1
a,” = (~1.0362533 x 107")
Ry -2
a; = (3.6798959 x 10 ©)
Ry -3
a,” = (=7.4940700 x 10 )
R
a52 = (9.1822566 x 10™%)
R2 = -5
a,” = (-7.2186739 x 107°)

J
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(-2.1016895 x 10~9)

(5.1489881 x 10™%)

0

(~6.6633139 x 10710y

(2.0697609 x 1071%)

(4.7027051 x 10”14

16

(=4.0954467 x 10" °)

(3.7708718 x 10°%)
(~1.3236585 x 10~7)

(3.0861620 x 10™°)

(=4.5831105 x 10 1)
(3.9237683 x 10™13)
15)

(~1.4741591 x 10"




3 R,
For z35 z <21, R2(z) = Z a;” z
T=1
h R,
where a;” = (.1686363)
R .
a22 = (1.722509 x 10™2)
R
a,? = ¢2.142585 x 10™%)

(iii) Ordinate of

center of smaller circle

o

where a =

o
—

o)
=

o
'—J

]
=

=

[+
O W v W PR W E N

For =z

where

11
3» Bl(z) = Z aJl zJ

J=1

-1 Bl -6
(-1.5159906 x 10~ 1) a,’ = (-4.1445621 x 107°)

-1 B, -7
(1.5449971 x 10™1) ag = (1.1565654 x 107)

-2 By -9
(=5.9976730 x 10~%) ag’ = (-1,9920283 x 107°)

-2 By -11
(1.1907145 x 10™%) a g = (1.9332318 x 10711

-3 By -14
(~1.3574646 x 10™°) a;] = (-8.0938014 x 107
(9.4391044 x 10™°)

3 B
13

219 Bl(z) = ng aJ 4

(.2135555)
(~2.376651 x 10~2)

(4.465725 x 10™3)
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APPENDIX E

DATA REDUCTION COMPUTER CODE

A data reduction computer code has been developed to reduce the
flow field data of Problems 211.0 and 212.,0 to meaningful parameters.
The function of the code is to compute the Mach number, flow angularity,
total pressure recovery, and pressure coefficient in cross section planes
normal to the body axis. These parameters are to be calculated from the
more fundamental AFTON 2PE numerical solution data (i.e., pressure,

density, velocity, etc.).

The data reduction code, called "AMSD", performs three functions.
First, it selects and reads a dump (i.e., the flow field properties at a
particular axial station) from the AFTON 2PE dump tape. Then it calcu-
lates the specific internal energy (E), density (p), pressure (p), and
the velocity component (w) in the axial direction at each of the mesh
points. The specific internal energy, density, and pressure are zone
centered in AFTON 2PE, so the mass and internal energy of the momentum
zones must first be evaluated in order to determine the specific internal
energy and density at a mesh point (ref,10). The pressure is then determined
from the perfect gas law. Based on these parameters and the velocity com=
ponents u and v in the plane of calculation, the velocity component w in

the axial direction can be evaluated from the Bernoulli equation as follows:

+

where

free stream velocity

angle of attack of free stream flow with respect to body axis

ratio of specific beats [y = (CP/CV)]

W< R

pressure

density

O
-
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2
K o= 2= [1+L;_-1- SinzaM%J

<

where:
aw, free stream sound speed

Mw, free stream Mach number

(E2)

Equation (El) is valid for a weak shock and where viscous effects are small.

In the ogive~cylinder problem at an axial station of .502 cylinder diameters

and at a point on the dividing streamline 1.36 cylinder radii upstream of the

cylinder's center, the ratio of the local stagnation pressure (P) to the free

stream stagnation pressure (Psm) is .92. For the fuselage problem total

pressure recovery Ps/Psw

varies from .90 to 1.00. It is shown below that the

entropy change is directly related to the total pressure recovery; hence, the

entropy change is small in both problems and the weak shock approximation is

valid.

Based on the properties just cited, the required parameters are determined by

the AMSD computer code at each of the mesh points, from the following relations:

M = [w2+u2+v21%
c

¢ = [v(y-1) E]*

B {_(s_-sg» (_Y_)}

Psew C 'Y‘-l
P
where:
x-ll
S$-Se _ h ., P, ¥
2 o= 10, |GD/GD
p
P
= + -
h E 0
Peo

and finally the pressure coefficient is evaluated from
P - Px
Cp —

%¥Pw U
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(E9)



where:

C, local sound speed

Cp, local pressure coefficient
h, local enthalpy

S, entropy

M, local Mach number

Subscript infinity near any property refers to free stream conditions.

The local angle of attack of the flow, o and the local angle of side -
slip of the flow, B, are measured in ‘the coordinate system consisting of the
horizontal reference line, the normal line to it in the plane of symmetry of
the body, and the coordinate normal to both lines, i.e., x', y', z' indicated

in figure 9. On this basis o and B are defined as follows:

-1
= = o Y
Q’e = tan e ) (E10)
z
-1 U
B = tan f;f% (E11)
-
where;
U, = u
Uy, = v Cos © +w Sin ©
U, = -v Sin © + w Cos €
9 = tan"lBy(z")
Bg(z") = local slope of central axis with respect to

horizontal reference line

The pitot pressure, Pp, corresponds to the stagnation pressure measured
by a probe whose axis is placed parallel to the local flow direction. An
approximation of the actual pitot pressure can be obtained by causing the
local velocity vector to go through a normal shock. The relation is as
follows:

[Q;Y+12 ] (P )

. 1IM2+2.0 Psw
2 ) Ol T (E12)
Psq 1 4+ 2Y(¢ -1)] v-1

¢y+1)
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FLOW FIELD IN FUSELAGE CROSS SECTION PLANE

FIGUTE 1
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APPLICATION OF THE
EQUIVALENCE PRINCIPLE TO AN AXISYMMETRIC BODY
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FLOW FIELD ABOUT AN AXISYMMETRIC BODY
AT ANGLE OF ATTACK
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FLOW REGIONS ABOUT A BODY MOVING AT
SUPERSONIC VELOCITY
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ONE-DIMENSIONAL, TIME-DEPENDENT MOTION
IN LAGRANGIAN COORDINATES

PARTICLE TRAJECTORIES IN A
LAGRANGIAN COORDINATE SYSTEM

|
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SCHEMATIC DIAGRAM OF A FINITE DIFFERENCE MESH
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OGIVE-CYLINDER BODY GEOMETRY
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SCHEMATIC OF FUSELAGE CONFIGURATION

FLOW CONDITIONS
Mg =2.5

Re =9.1x108/ft

a=15° + +

7.5° REFERENCE LINE

HORIZONTAL REFERENCE LINE

l | | |\ FuseLace
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DEFINITION OF FUSELAGE CROSS-SECTIONAL PARAMETERS
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FINITE DIFFERENCE MESH FOR OGIVE-CYLINDER
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FINITE DIFFERENCE MESH FOR OGIVE-CYLINDER
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FINITE DIFFERENCE MESH AT STA 7.0
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FINITE DIFFERENCE MESH AT STA 25.0
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VELOCITY VECTOR PLOT OF FLOW FIELD
0.502 MAX BODY DIAMETERS FROM NOSE
RADIUS 0.0145 ft
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FIGURE 14
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VELOCITY VECTOR PLOT OF FLOW FIELD
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VELOCITY VECTOR PLOT OF FLOW FIELD
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VELOCITY VECTOR PLOT OF FLOW FIELD
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PRESSURE COEFFICIENT, Cp

OGIVE-CYLINDER SURFACE PRESSURE DISTRIBUTION

-~ DATA OF JORGENSEN
AND PERKINS (REF 12)

—— NUMERICAL METHOD
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TRAJECTORIES OF SEPARATION AND VORTEX CENTER POINTS
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COMPARISON OF NUMERICAL AND EXPERIMENTAL LIFT

AND DRAG COEFFICIENT DISTRIBUTIONS
OGIVE-CYLINDER BODY

STATION, z/d

FIGURE 20
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VELOCITY VECTOR PLOT AT STA L.135
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VELOCITY VECTOR PLOT AT STA 17.0
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VELOCITY VECTOR
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STATIC PRESSURE INSTRUMENTATION ON FUSELAGE FOREBODY
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COMPARISON OF NUMERICAL AND EXPERIMENTAL
SURFACE PRESSURES

—— NUMERICAL RESULTS EXPERIMENT PLANE
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COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENT

CONTOURS OF LOCAL PITOT PRESSURE RATIO
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COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENT
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COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENT
CONTOURS OF LOCAL MACH NUMBER, M
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CANOPY
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CONTOURS OF LOCAL TOTAL PRESSURE RATIO, ps/psco
FUS STA 19.50
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LIFT AND DRAG COEFFICIENT DISTRIBUTIONS
FUSELAGE CONFIGURATION

—— NUMERICAL METHOD

——— INVISCID, LINEAR C
THEORY y

FUSELAGE CROSS SECTION
IS CIRCULAR UP TO THIS STATION

2 4 6 8 10 |2 14 16 18 20
STATION, in.

FIGURE 33



