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SUMMARY 

A numerical  method  has  been  used  to  calculate  steady,  three-dimen- 

sional,  viscous  compressible  flow  fields  about  slender  bodies  at  angle 

of  attack.  The  method  is  based  on  the  equivalence  principle,  and on a 

procedure  developed  earlier  for  solving  the  equations  of  two-dimensional 

transient  continuum  motion  (applied  here  to  the  Navier-Stokes  equations). 

The  numerical  technique,  and  the  basic  features  of  the  equivalence 

principle  as  applied  to  case  of  present  concern,  are  both  reviewed  herein, 

and  the  results  of  calculations  of  two  slender  body  flow  fields  are  pre- 

sented. 

The  equivalence  principle  relates  the  axial  coordinate  of  a  steady 

three-dimensional  flow  field  to  the  time  coordinate  of  two-dimensional 

transient  flow;  thus,  a  given  three-dimensional  problem  becomes  directly 

analogous  to  a  two-dimensional  problem  of  flow  about  a  cylinder  (not 

necessarily  circular)  that  deforms  with  time.  It  is  basic  to  the 

validity  of  the  equivalence  principle  that  axial  velocities  do  not  differ 

significantly  at  any  point  from  the  axial  component  of  the  free  stream 

velocity,  a  requirement  that  precludes  the  use  of  a  no-slip  condition  at 

the  body  surface  in  the  axial  direction.  Accordingly,  the  flow  fields 

considered  in  the  program,  including  separation  and  body  vortex  develop- 

ment,  were  computed  with  a  model  that  permits  viscous  crossflow  together 

with  inviscid  axial  flow.  An  analysis  of  the  errors  introduced  by  such 

a  treatment  is  presented  herein. 

Numerical  calculations  were  made  and  compared  with  experimental 

results  for  an  ogive-cylinder  and  an  airplane  fuselage  configuration. 

Flow  conditions  were M, = 1.98, R, = 4.68 x 10 /ft, and cy = 10 for  the 

ogive-cylinder, and M, = 2.50, R, = 9 .1  x 10 /ft,  and a = 15  for  the 

fuselage  configuration. .:esults are  presented  as  static  pressure  distri- 

butions  on  the  body  surface,  as  velocity  vector  plots,  and  as  contour  maps 

of  the  flow  field  at  selected  axial  locations.  Good  agreement  between 

theory  and  experiment  was  obtained;  maximum  deviations  of  numerical 
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surface  pressures  from  corresponding  experimental  values  were  no  more 

than 6 percent  of  free  stream  dynamic  pressure  for  both  problems. 

However,  some  differences  were  noted.  Boundary-layer  separation  and 

body  vortex  positions  differed  from  experimental  locations  on  the 

ogive-cylinder,  and  the  shock  induced  by  the  fuselage  canopy  was 
predicted  at a  slightly  different  location.  These  differences  are 
considered  attributable  to  neglect  of  axial  viscous  effects,  exclusion 

of  turbulence  phenomena,  and  the  approximations  introduced  by  the 
equivalence  principle in describing  inviscid  axial flow. 
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1.0 INTRODUCTION 

For  highly  maneuverable  advanced  aircraft  (cf.  figure  1) , the 
prediction  of  flow-field  characteristics  for  nonsimple  geometries  at 
high  angles  of  attack  and  high  flight  Mach  numbers  transcends  the 

capabilities  of  linear  theories.  For  example,  there  is  a  need  for  an 
analytical  or  numerical  method  that  provides  an  accurate,detailed  descrip- 

tion  of  the  vehicle flow  field  in  order  to  determine  both  fuselage  con- 
figurations  and  inlet-airframe  integration  effects. 

Prediction  of  the  three-dimensional  flow  field  about  a  slender  body 

immersed  in a  supersonic  airstream  presents  a  formidable  mathematical 
problem  to  which  no  exact  solution  has  been  obtained,  either  analytically 

or  numerically.  Successful  numerical  methods  using  the  method  of  charac- 

teristics  and  the  equivalence  principle  have  been  developed  for  three- 
dimensional,  steady,  inviscid  flow  fields.  The  work  of  Gallo  and  Rakich 

(ref. 1) is  representative  of  the  characteristics  approach,  while 

Van  Dyke's  extension  (ref. 2) of the  theory  introduced  by  Hayes  (ref. 3 )  

is  representative  of  an  approach  that  uses  the  equivalence  principle. 

I n  this  research  program  the  equivalence  principle  was  used  to 

convert  time-dependent  viscous,  compressible  flow  calculations  in  two 
space  dimensions  to  steady  motion  of a  viscous,  compressible  fluid  in 

three  space  dimensions.  The  two-dimensional flow  calculations  were 

obtained  by  numerically  solving  the  time-dependent  compressible  Navier- 

Stokes  equations. 
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2.0 SYMBOLS 

Lagrangian  coordinate 

Radius 

Sur  face  area 

Abscissa  of  center  of  smaller  circle  of  fuselage  cross  section 

Abscissa of center  of  canopy  circle 

Ordinate of center of smaller  circle  of  fuselage  cross  section 

Ordinate  of  axis of the  body  with  respect  to  the  horizontal 
reference  line 

Slope  of  axis  of  the  body  with  respect to horizontal  reference  line 

Ordinate  of  center of canopy  circle 

B(X,Y,Z) Surface  of  the  body 

C Local  sound  speed 

cL 

Drag  coefficient, drag  force 
4mAc 

Lift  coefficient, lift  force 
qmAc 

cP Pressure  coefficient, P - P, 
n 
'103 

C 
P 

Specific  heat  at  constant  pressure 

C Specific  heat  at  constant  volume 
V 

d Diameter 

d - Displacement  vector 

2 



I 

E 

f 2  

rn 

M 

N 

N 

P 

pS 

P I  
pP 

4 

R 

Spec i f ic   in te rna l   energy  

Bounded o s c i l l a t i n g   f u n c t i o n   u s e d  t o  de t e rmine   d i sc re t i za t ion   e r ro r  

Stagnat ion  enthalpy 

Direct ion  cosines   of   the   normal   to   the  body's   surface 

Mass 

i n   t h e   x , y ,  and z d i rec t ions ,   r e spec t ive ly  

Mach number 

Momentum vec tor  

Absolu te   e r ror   in  Mach number 

Di rec t ion   cos ines  o f  t h e  normal t o  a shock  surface  in   the x, y 
and z d i rec t ions ,   r e spec t ive ly  

Cycle number 

Mesh po in t   dens i ty  

Pressure  

Stagnat ion  pressure 

Absolu te   e r ror   in   p ressure  

P i t o t   p r e s s u r e  

Dynamic pressure ,  q = (1/2) pU 

Reynolds number 

Radius  of smaller c i r c l e  of   fuse lage   c ross   sec t ion  

Radius  of  larger arc of   fuselage  cross   sect ion 

Radius of canopy c i r c l e  

Pos i t i on   vec to r  of t h e  mesh point  about a fuse lage   c ross   sec t ion  

Pos i t i on   vec to r  of a mesh point  about a c i r cu la r   c ros s   s ec t ion  

2 
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u 
V 

X 

Y 

Y' 

Z 

ZI 

Entropy 

Surface  describing  system  of  shock  waves  about a body 

Time 

Time  step 

Temperature 

Velocity  component  in  x  direction 

One-dimensional  velocity, U(a,t) 

Velocity  vector 

Velocity  component  in  the  y  direction 

Specific  volume 

Volume 

Velocity  component  in  the z direction 

Work  rate 

Coordinate  normal  to  plane  consisting  of  the 7%' reference  line 
and  the  perpendicular  to  that  line 

Coordinate  normal  to  the  plane  consisting  of  the  horizontal 
reference  line  and  the  perpendicular  to  that  line 

Lagrangian  coordinate,  X = X(a,t) 

Coordinate  normal  to 7%' reference  line 

Coordinate  normal  to  the  horizontal  reference  line 

Coordinate  along  the  horizontal  reference  line 

Free-stream  angle  of  attack  with  respect  to  body  axis 

4 



Y 

e 

P 

7 

Local   angle   o f   a t tack   wi th   respec t   to  a ho r i zon ta l   r e f e rence   l i ne ,  

-1 /ve loc i ty  i n  y' d i r e c t i o n  
tat: ( ve loc i ty  i n  z t  d i r e c t i o n  

v e l o c i t y   i n  x' d i r e c t i o n  S ides l ip   ang le ,   t an  v e l o c i t y  in  z'  d i r e c t i o n  

Rat io  of s p e c i f i c   h e a t s ,  L 
cV 

D i s c r e t i z a t i o n   e r r o r   i n  a property  (eq.  (29)) 

Densi ty  

Maximum slope  of   surface of body w i t h   r e s p e c t   t o  the  free-stream 
flow d i r e c t i o n  

Stagnat ion  condi t ion 

Property  downstream o f  a shock 

Free-stream condi t ion  

Lagrangian  coordinate a t  t i m e  zero 

Reduced v a r i a b l e  

Actua l   var iab le  

Var iab le   assoc ia ted   wi th  body cross   sec t ion  
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3.0 THE NUMERICAL METHOD 

3.1 FORMULATION OF EQUIVALENCE PRINCIPLE 

The  two-dimensional  time-dependent  equations  of  motion  (independent 

variables  x,y,t)  can be  transformed  directly  to  steady-state  three- 

dimensional  (x,y,z)  equations  for  slender  bodies  through  the  Hayes  equi- 

valence  principle.  The  equivalence  principle  relates  the  steady-state 

flow  field  over a slender  body  to an  equivalent  time-dependent  flow  field 

in  one  less  space  dimension. In particular,  steady  three-dimensional  flow 
about a body  can  be  reduced  under  certain  conditions  to  two-dimensional 

time-dependent  flow  in a plane  normal  to  the  free-stream  flow  direction. 

A simple  example  of  the  application  of  the  equivalence  principle  is 

illustrated  in  figure 2, namely  that  of  steady  flow  over an  axisymmetric 

body  at  zero  angle  of  attack.  The  steady-state  two-dimensional  axially 

symmetric  flow  field  is  analogous  to  time-dependent  one-dimensional 

axially  symmetric  flow in a plane  caused  by an expanding  cylinder.  The 

cross-section  plane  of  unsteady  analogy  moves  downstream  with  free-stream 

velocity  and  the  outline  of  the  moving  boundary  is  given  by  the  trace  of 

the  original  shape  in  the  cross-section  plane.  At  the  station z (see 

fig. 2), the  steady-state  flow  field  in  the  cross-section  plane  is  analogous 

to  the  flow  field  about  the  expanding  cylinder  at  the  time, t = z/U,. To 

make  the  equivalence  analogy  valid,  the  normal  velocity  of  the  expanding 
CI-oss section U is  given  by  the  product  of  the  free-stream  velocity  and 

the  tangent  to  the  surface.  Far  from  the body,  free-stream  cohditions 

are  imposed  (i.e., P = Pa, p = p,, u = v = 0). 

n’ 

According  to  convention,  the  free-stream  flow  direction is chosen 

as the  principal  axis  along  which  the  linearization  approximations  for 

equivalence  are  made.  However,  for  bodies  at  angle of attack  as  illus- 

trated  in  figure 3 ,  it  is  more  convenient  to  choose  the  body  axis  as  the 

principal  axis. In planes  normal  to  the  body  axis,  the  cross  sections 

can  usually  be  defined  in  terms  of a few  simple  analytic  expressions, 

6 



which  result  in  simple  and  accurate  surface  boundary  conditions,  and 

facilitate  the  development  of  finite  difference  meshes  about  these  cross 

sections.  Because  of  this  choice,  free-stream  crossflow will exist as an 

upstream  boundary  condition,  but  the  choice  of  axis in  no  way  affects  the 
accuracy  of  the  results.  This  point is  further  discussed  in  Section 3.3 .  

It  is  convenient  to  discuss  the  equivalence  principle  in  terms  of 

flow about a slender  body of revolution  at  angle of attack, a. Let  the z 

axis  coincide  with  the  axis  of  the  body,  and  let  the  cross  section  of  the 

body  lie in the  x,y  plane  (see  fig. 3 ) .  It is  also  assumed  that  the z 

component of the  local  velocity  vector  is  approximately  equal  to  the z 

component  of  the  free-stream  velocity  vector,  that is, 

w = u cos (y 
W 

Under  this  hypothesis,  it  follows  that  time-dependent  flow  in  the  x,y 
plane  transforms to time-independent  motion  in  x,y,z  space  according  to 
the  equations 

Y = Y  (3)  

x =  X ( 4 )  

This  result - the  equivalence  principle - is  derived  for an inviscid  fluid 
in  Appendix A. 

In order  for  equations (Z),  (3 )  , and ( 4 )  to  represent  a  valid  map- 
ping  between  a  flow  field  in  x,y,t  space  and  a  flow  field  in  x,y,z  space, 

the  time-dependent  solution  in  the  x,y  plane  must  be  augmented  by  a  three- 
dimensional  boundary  condition  at  the  body  surface 

RZU, cos (y + R v + Rxu = 0 
Y 
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where R x ,  J?, are  the  direction  cosines of the  normal  to  the  body 

surface  in  the  x,y,  and z directions,  respectively.  Equation (5) states 

that  at  the  body,  the  component  of  the  local  velocity  normal  to  the  body 

surface  is  zero.  The  application  of  the  boundary  condition ( equation (5)), 

in  the  x,y  plane  implies  that  the  body  cross  section  varies in  time  and 

J?,y3 z 

that  the  velocity  normal  to  the  surface  is  equal  to -RzUo, cos cy/,/A; + 
a  normal  velocity  expression  that  reduces  to  the  product  of  the  axial 

velocity (u, cos a) and  the  local  tangent  to  the  surface. 

A second  boundary  condition,  a  constraint  on  tangential  flow  at  the 

body  surface,  must  also  be  specified.  Since  the  full  time-dependent  Navier- 

Stokes  equations  are  solved  in  the  x,y  plane,  a  no-slip  boundary  condition 

is  imposed  at  the  cross  section  of  the  body. We require  that 

vix - ua = 0 
Y 

It is  seen  in  Appendix A that  the  boundary  equations  (equations (5) and (6)) 
are  compatible  with  the  assumptions  inherent  in  the  equivalence  principle 

and  permit a  time-dependent  viscous  calculation  to  be  made  in  the  x,y  plane. 

Thus,  with  the  inclusion  of  boundary  equations (5) and (6), a  solution  of 

the  two-dimensional  time-dependent  Navier-Stokes  equations  is  also  the 

solution  to a  problem of steady  three-dimensional  viscous  flow. 

The  three-dimensional  boundary  layer  on  the  body  surface  has  been 

replaced  by a  two-dimensional  boundary  layer  since  the  no-slip  condition  is 

imposed  at  the  body  surface  only  in  the  crossflow  direction.  This 

ad hoc  description  of  the  flow  field  is  poor in the  boundary  layer. 
However,  its  justification  lies  in  the  fact  that  it  provides  a  mechanism 

for  effecting  flow  separation  and  the  subsequent  development  of  spiral 

vortex  sheets on the  lee  side  of a body  at angle of  attack. To be  sure, 

solving  the  compressible  Navier-Stokes  equations  in  a  crossflow  plane  is 

much  more  realistic  than  the  conventional  approach  of  solving  the  Laplace 

equation  in  this  plane  with  experimentally  (or  otherwise)  determined 
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circulation  strengths.  However,  the  accuracy  of  the  viscous  crossflow 

description  must  be  carefully  documented  by  comparing  the  numerical 

results  with  other  calculations  and  with  experimental  data. 

The  computational  procedure  is  then  as  follows.  Initially  we  have 

a  uniform  flow  field  in  the  x,y  plane  with  a  velocity  in  the  y  direction 
equal  in  magnitude  to Urn sin (Y. The  slender-body  cross  section  grows  with 
time  in  the  x,y  plane.  At  discrete  times  solutions  of  the  full  time- 
dependent  Navier-Stokes  equations  are  obtained  such  that  the  cross-section 

surface  boundary  conditions  equations (5) and (6))  are  satisfied;  also, 
the  flow  far  from  the  cross  section  is  uniform  with  a  crossflow  velocity 
in  the y direction  equal  to Uco sin cy. The  time-dependent  solution  in  the 

x , y  plane is then  related  to  the  steady  three-dimensional flow field 

about  the  body  through  the  transformation  equations (2) , ( 3 ) ,  and ( 4 ) .  

( 

3.2 DESCRIPTION OF THE NUMERICAL  METHOD 

The numerical  method  used to solve  the  time-dependent  Navier-Stokes 

equations  in  two  space  dimensions  is  embodied  in  a  computer  code  called 
rrAF'TON 2PE". The  finite  difference  equations  in  the AFTON 2PE computer 

code  are  based on a  physical  model  of  the  continuum.  The  need  for  such  a 

model as a  basis  for  numerical  calculations of continuum  motion  has long 

been  recognized  (refs. 4,5 and  6),and  was  filled  after  considerable  effort 

for  continuum  motion  in all its  generality,  the  model  for  two-dimensional 
flow actually  preceded  the  general  case,  and  is  recalled in some  detail 
below.  The  two-dimensional  continuum  model  is  not  specific to the  par- 

ticular  phenomenon  under  study  here,  nor  even  to  the  entire  class  of 

motions  governed  by  the  Navier-Stokes  equations;  once  a  physical  model  of 
the  continuum is verified,  its  range  of  application  extends  to  many 

flow  situations 
In the  conventional  use  of  physical  models,  it  is  assumed  that  the 

partial  differential  form  of  the  Navier-Stokes  equations  applies in general. 

A physical  model  is  then  postulated  for  the  particular  phenomenon  to  be 

studied  and  the  Navier-Stokes  equations  are  reduced  to  ordinary  differen- 
tial  equations  from  which  we  obtain  either  an  analytical  or  numerical 
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solution.  The  Lees-Reeves  (ref. 7) near-wake  model is a good  example  of 

a  conventional  physical  model.  This  model  is  concerned  with  the  base 

flow and  near-wake  subregions  shown  in  figure 4 .  The  model  recognizes  a 

constant  pressure  shear-layer  near  the  body  separation  point  and  a  vis- 

cous  inviscid  flow  interaction  near  the  wake-stagnation  point.  The  bound- 

ary  layer  equations  are  assumed  to  govern  the flow in both  regions.  The 

flow  fields  in  both  regions  are  solved  separately  and  then  joined  together 

through  the  pressure  gradient  in  the  streamwise  direction. 

For  illustrative  purposes,  the  space-time  continuum  model  employed 

in this  research  is  presented in detail  for  the  case  of  time-dependent  one- 

dimensional  flow  of  a  compressible,  inviscid  fluid.  This  model  was  implied 

by a set of  finite  difference  equations  developed  by  von  Neumann  and  Richt- 

myer  (refs. 8 and 9 ) .  A careful  analysis  of  the  von  Neumann-Richtmyer 

equations  led  to  the  continuum  model  employed  here  (refs. 4,5 and 1 0 )  . 
Finite  difference  analogs  of  the  continuity  equation,  momentum 

equation,  and  the  First Law of Thermodynamics  will  be  derived  in  a  Lagrangian 
coordinate  system. Let  a  be  the  Lagrangian  coordinate,  and X(a,t)  be  the 

Eulerian  coordinate.  That  is, X(a,t) gives  the  position  at  time t, of  a 

fluid  element  that  was  originally  at  position  a.  Consider  the  Lagrangian 

coordinates, al, a2, and  a+ [a, = , (al + a;,)] shown  in  figure 5. 
Since  the  system  is  Lagrangian,  the  mass  between  the  trajectories  labeled 

a, and  a2  remains a constant.  Let  the  one-dimensional  space  continuum  be 

represented  by a  discrete  set  of  zones,  designated  zones, 

At  time zero, let  the  boundaries of  these  zones  be  spaced  at  a  constant 

interval  Aa  along  the  X  axis  [see  fig. 5 1  and  denoted  by a (&0,1,2,3,  

..., L). Let  each  of  the  thermodynamic  zones  be  one  unit  high  and  one 

unit  wide.  Consider  another  set of  zones  designated  "momentum"  zones 

superimposed on the  thermodynamic  zones,  such  that  each  momentum  zone 

surface  always  divides  the  mass  of  the  thermodynamic  zone  which  contains 

this  surface  in  half. A schematic  diagram  showing a momentum  zone  and 

two  thermodynamic  zones  at  the  time t is  shown  in  figure 5. The 

R 
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Eulerian  coordinates  which  define  the  two  thermodynamic  zones  are 
X(aAe1, t),  X(aa,  t), and  X(ag+ly t) while  the  Eulerian  coordinates  of  the 

momentum  zone  are X(a  t) and  X(aA+%, t). a-f 
The  thermodynamic  variables,  such  as  internal  energy,  specific  vol- 

ume,  and  pressure,  are  assumed  constant  throughout  a  thermodynamic  zone. 
The  velocity  is  assumed  constant  throughout a  momentum  zone.  Thus,  thermo- 

dynamic  variables  are  in  effect  centered  at  the  momentum  zone  surfaces; 

that  is, Pa = P(aa-+,  t) denotes  the  pressure  in  the  thermodynamic  zone 
X(aR-l,t),  X(a,,t) which  effectively  acts  at X(a t) [see  fig. 5;. 

Momentum  zone  variables  are  in  effect  centered  at  the  thermodynamic  zone 

surfaces;  that  is, UR = U(aa,t)  denotes  the  particle  velocity  in  the mo- 
mentum  zone  X(aR-t,t),  X(a,-4,t)  which  effectively  acts  at  X(aR,t). 

a-4 

Since  an 

are  not on ly  d 

placed  in  time 

explicit  formulation  is  the  goal,  the  variables of motion 

isplaced  spatially  (as  discussed  above),  but  they  are  dis- 

as well. Let At denote  the  uniform  time  interval  and 
n t (n=0,1,2, ..., N) denote  the  time  after  n  uniform  time  intervals.  The 

variables  associated  with  thermodynamic  zones  are  defined  at  integer  times; 

that  is, Pn = P(aa-+, t ) denotes  the  pressure  at  the  time t . The  mo- 
mentum  zone  variables  are  defined  at  half-integer  times;  that  is, 

ui-’ = U(aR, t n-’) denotes  the  particle  velocity  at  a  time t“-’, and  the 
Eulerian  coordinate  position X(a 

n n 
a-e-4 

a’ 
n-%) 

Finite  difference  analogs  of  the  continuity,  momentum,  and  first  law 
equations  follow  directly  from  the  physical  model  of  the  contintun  pre- 

sented  in  figure 5. Since  a  Lagrangian  coordinate  system  is  employed, 
the  zones  of  figure 5 will  be  displaced  continuously  from  their  initial 
positions;  that  is,  al,..  .,a  to  coordinate  positions X(a,,t), ..., X(aL,t). 
Let  us  calculate  the  properties  at  the  time, t , for  the  thermodynamic 
zone  having  Lagrangian  coordinates  ag,l,ag  and  the  momentum  zone  having 
Lagrangian  coordinates  a 

L- n 

a-yaa+y The  initial  values  for  this  calculation 

are 
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for the  thermodynamic  zones  and 

for  the  momentum  zones.  The  objective  is  to  update  these  variables  by  one 

time  step  in an explicit  manner. 

The  finite  difference  analog  to  the  conservation  of  mass  is  derived 

from  the  expression  for  the  volume  change  of  thermodynamic  zone  a  a A-1' a* 

where 

Vn-  1 volume  of  zone  a  A-l,aa at  time t 

A-19aA at  time t 

n-  1 
a-4 

a-?i Vn  volume  of  zone  a n 

Based on  equation (7), and  the  fact  that  the  mass of material  in  the 

thermodynamic  zone  a has  the  constant  value p Aa,  we find  that R-lYaA 0 

where p is  the  density  at  time zero, and v is  the  specific  volume  of 

material  in  the  zone  at  time t (note  that ( p o  Aa)vA,+ = Va-+). 

n 
0 n A-4 n 

For  an  inviscid,  adiabatic  fluid,  the  first  law  equation  for  a sys- 

tem  in  equilibrium  is  applicable: 

DE = - p -  Dv Dt Dt 

The  First  Law  finite  difference  analog  to  equation  (9a)  is  derived  by 

first  writing  down  a  finite  difference  analog  to  the  term  -P(Dv/Dt)  and 

then  equating  this  to  the  rate  of  change  of  internal  energy  in  the  zone. 

Since  the  zone  mass  is  constant  and  the  pressure  is  homogeneous  in a 

thermodynamic  zone,  the  term  -P(Dv/Dt)  becomes 



where 

m - 
a-4 - Po h 

On the  basis of  equation (9b) ,  the  finite  difference  First Law equation 

becomes 

At ha 

where En'' is  the  specific  internal  energy  of  thermodynamic  zone a 1-4 A-l'aR' 
The  equation of state  for  a  perfect  gas  is: 

E = -  Pv 
Y- 1 (11) 

Finally,  the  finite  difference  equation  of  motion  for  momentum  zome 

a a  becomes: A-3' A+% 

M i  - M A  n-  1 
n-% - pn-3 

At = (PA-% A+%) 

where 

and M defines  the  momentum  in  zone  a  at  time t . n 
R 

n 
a 

Equations (8), (19, and  (12),  derived  from  the  physical  model  pre- 

sented  in  figure 5 are  solved in the  following  manner.  First,  the 
specific  volume,  v is calculated  from  equation (8). Then,  the n 

a+' 
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pressure P and  specific  internal  energy E are  calculated  from 

equations (10) and (11). The  continuity  and  first  law  equations 
are  then  solved  for  specific  volume  and  pressure  in  all  thermodynamic 

zones.  Based on the  pressure  field,  equation  (12) can be  solved  for  the 

momentum M n a '  The  particle  velocity Unf' is  found  from  the  forward 

extrapolation  formula 

n n 
A-3 , a-k 

a 

where 

mA = po Aa 

Integration  of  the  particle  velocity Un+' with  time  establishes  the new 

Eulerian  position, This can  be  done  for  all  momentum  zones.  Thus, 

all  the  initial  values  cited  above  can  be  updated by one  time  step  and 

the  process  repeated. 

p+l .e 
A .  

The  success  of  this  method  coupled  with  the  failure  of  other  more 

recent  numerical  schemes  to  improve  upon  it,  led  Trulio  and  Trigger  to  a 

careful  analysis  of  these  finite  difference  equations  in  order  to  dis- 

cover  the  reasons  for  their  success.  They  found  that  the  finite  differ- 

ence  equations  possessed  the  same  self-consistency  property  of  form  as 

the  original  differential  equations  from  which  they  were  derived,  that  is, 

the  finite  difference  equations  for  momentum  conservation  and  the  first 

law  implied an exact  conservation  of  total  energy  (internal  and  kinetic) 

finite  difference  equation  (ref. 4 ) .  In other  words,  the  continuity, 

momentum,  first  law,  and  conservation  of  total  energy  relations  are 

redundant  by  one. In most  other  numerical  schemes  if  one  tries  to  derive 
a  conservation  of  total  energy  relation  from  finite  difference  analog  of 

momentum  conservation  and  the  first  law,  error  terms,  usually  assumed  to 

be  "second  order",  are  produced.  These  numerical  error  terms  are  believed 

to  be a primary  source  of  the  difficulties  encountered in  many  other 
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numerical  schemes.  Appendix B demonstrates  the  self-consistency  property 

of  the  finite  difference  equations (8) to (13) .  

In addition  to  self-consistency of form,  the  numerical  method  has 
the  following  properties: 

(a) Since  the  method  is  explicit,  stability  criteria  must  be  met 

in order  to  obtain  physically  meaningful  numerical  results. 

In  general,  the  time  step  must  be  small  enough so that a 
sound  signal  cannot  cross  a  zone  in  a  time  step  (refs. 8 and 9). 

(b) The  numerical  error  has  been  correlated  for  this  scheme. It 

has  been  found  that  the  absolute  error  in  a  property  is  in- 
versely  proportional  to  the  linear  mesh  point  density  to  the 

three-halves  power  (ref. 1 0 ) .  

The  physical  model,  from  which  equations (8) to (13) have  been 

derived  has  been  extended  to  two  space  dimensions  (ref.ll). In that  work, 
specific  finite  difference  equations  were  formulated  and  their  self- 

consistency  properties  demonstrated.  Because  they  provide  a  base  for  the 
present  calculation,  a  brief  description  of  the  derivation  of  these  equa- 

tions  will  be  presented. 

Consider  two-dimensional  flow  of a viscous,  compressible  fluid  in 

the x,y plane. A s  in  the  one-dimensional  case,  let  us  divide  the  continuum 

into  two  types  of  zones;  namely,  quadrilateral  zones  and  momentum  zones 
(see  figure 6). The  assumptions  governing  this  analysis  are  as  follows: 

(a)  All  zones  are  polygons. 

(b) The  density,  specific  internal  energy,  pressure,  stress  tensor, 

and  velocity  derivatives  are  homogeneous in  a  quadrilateral 

zone. 

(c) The  velocity  vector  is  homogeneous  in  a  momentum  zone. 

(d) The  zones  have  unit  thickness  normal to the  plane  of  motion. 
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As  in  the  one-dimensional  case  the  continuity  and  first  law  equa- 

tions  are  solved  for  each  quadrilateral zone to  determine  the  density, 

specific  internal  energy,  and  stress. When the  stress  tensor  depends 

only on  strain,  the  first  law  equation  corresponds  to  that  of  thermo- 

dynamics.  However,  for  a  stress-rate  of  strain  dependence,  the  first  law 

equation  is a  relationship  involving  internal  energy"  which  results  from 

subtraction  of  the  kinetic  energy  equation  from  the  conservation  of  total 

energy  equation.  Based  on  the  stress  tensors  in  each of the  four  quadri- 

lateral  zones  which  comprise  a  momentum  zone  (see  fig. 61, the  momentum 

equation  is  solved  for  each  momentum  zone. To accommodate  the  equivalence 

prhciple boundary  conditions,  the  finite  difference  equations  in 

AYTGK ZPF: are written  in a. generalized  coordinate  system  where  the  four 

mesh pints comprising  a  quadrilateral  zone  can  move  with  arbitrary 

velocity.  The mmerical method  is  described  in  detail  for a generalized 

coordinate  system  and an  Eulerian  coordinate  system  in  two  places 

(rr;Es, 11 and 1 2 )  

.lr 

AS.: or' tho salient  properties 05 the  numerical  method  described  in 

;.h.e one-dimensional  example  are  preserved  in  two-dimensions  and  will  also 

be  preserved  in  three  spatial  dimensions;  in  that  respect  the  numerical 

theory is internally  consistent,  The  momentum  and  first  law  finite  dif- 

ference  equations  in  two  dimensions  imply  an  exact  finite  difference 

equation for total  energy. The  stability  criteria  are  the  same  as  in  the 

one-dimensional  case.  The  one-dimensional  correlation  of  absolute 

numerical  error  in  a  property  extends  directly  to  two  dimensions. In two 

dimensions  the  absolute  numerical  error  is  inversely  proportional  to  the 

area  mesh  point  density  to  the  three-quarters  power  (ref. 12). The 

AFTON  2PE  finite  difference  equations  at  interior  mesh  points  are  pre- 

sented in  Appendix C. 

3 .3  ORDER OF ERROR OF THE NUMERICAL METHOD 

In this  section  the  order  of  error  of  the  numerical  method  is 

determined.  The  numerical  error  is  defined  as  the  absolute  difference 

between  the  actual  value of a  quantity  and  the  value  computed  numerically 

* ~ ~ ~~~ ~~ 

The  specific  internal  energy  is  the  difference  between  total  and 
kinetic  energy. 
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The e r r o r   i n   t h i s  method stems from three   sources ,   the   equiva lence   p r in-  

c i p l e ,   d i s c r e t i z a t i o n   e r r o r s ,  and  neglect  of axial v i scous   e f f ec t s  and 

turbulence phenomena.  The e r ro r s   i nhe ren t  in  the   equiva lence   p r inc ip le  

l i e  in   t he   neg lec t   o f   t he   ve loc i ty   pe r tu rba t ion   a long   t he   f r ee - s t r eam 

flow  direction  and  have  been  deduced by  Van  Dyke ( r e f .  2). The discreti-  

z a t i o n   e r r o r  i s  def ined as the   d i f f e rence  between t h e   e x a c t   s o l u t i o n   t o  

the  continuum  motion  equivalence  principle  equations  for a given  system, 

and the   va lues   o f   the   f low  var iab les  computed  from a f i n i t e   d i f f e r e n c e  

approximat ion   to   these   equat ions   o f   mot ion;   d i scre t iza t ion   e r ror   resu l t s  

b a s i c a l l y  from t h e   s u b s t i t u t i o n  of a d i s c r e t e  set of   points   for   the 

space-time  continuum. The er rors   in t roduced  by neglec t ing   ax ia l   v i scous  

e f f e c t s  and turbulence phenomena manifest  themselves  in  the  accuracy  with 

b;hich separa t ion   po in t   loca t ions  and vor tex   cen ter   t ra jec tor ies   can  'be 

predicted.   Since  the determination of the  accuracy  of  the method is of 

primary  importance, a l l  t h ree  sources o f  errox i..~ll? be d i s c u s s e d  a: SOTW 

length. 

3.3.1 Equivalence  Pr inciple   Errors  

To deduce the   o rder   o f   e r ror   in  t h e  neglec t  of t he   ve loc i ty   pe r tu r -  

3atiozl along the   f ree   s t ream  f low  d i rec t ion ,  Van  Dyke introduced wfiat he 

termed  "reduced"  independent  and  dependent  variables,  and  he  redefined 

the  funct ions  descr ibing  the body and  shock-wave sur faces .  To ob ta in  

these  reduced  var iables ,   consider  a coordinate  syscem  where the  z a x i s  i s  

al igned  with  f ree-s t ream  f low  direct ion,  L e t  tl-,: surface  of   the body b e  

described by B(x,y,z) = 0,  and let   the  complete  system  of  shock waves be 

described by S(x,y,z) = 0. I n  this  coordinate  system  the  reduced 

va r i ab le s  are as follows: 
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where 7 is  the  maximum  slope  of  the  body  surface  with  respect  to  the  free- 

stream  flow  direction.  This  transformation  of  variables  was  introduced 

into  the  continuity,  momentum,  and  first  law  equations  for  an  inviscid 

fluid.  Reduced  parameters  were  considered  of  order  one  or  less  and  terms 

that  contained T~ explicitly  were  discarded. A set  of  reduced  equations, 

linear  in w and  derivatives  with  respect  to z, resulted. 
If the  reduced  equations  are  rewritten  in  terms  of  the  actual  un- 

barred  parameters,  and  the  substitution z = Uwt is  made,  the  time-depend- 

ent  equations of  motion  in  two  space  dimensions  result. 

The  boundary  conditions  for  the  reduced  equations  are  as  follows: 

At  the  body  surface 

at E = o  

Far  upstream  of  the  body 

The  parameters Mw and T of  the  full  problem  enter  the  reduced 

problem  only in the  combination  ma^, which  appears  only  in  the  upstream 
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boundary  condition  on  (eq. 20). Since  must  be  of  order  one  or less 

fo r   t hese   equa t ions   t o   be   va l id ,  Mar, must be   o f   o rder   onz   o r   g rea te r   for  

t h i s   t h e o r y   t o   b e   c o n s i s t e n t  far upstream of t h e  body. If th i s   cons i s t ency  

condi t ion  i s  s a t i s f i e d ,   t h e  maximum e r r o r   i n  a reduced  variable  must  be 

of  the  order T’, because terms of  order T’ have  been  omitted i n   t h e  

reduct ion.   Since Mrn7 i s  of   o rder   un i ty ,   an   e r ror   o f   o rder  T’ implies   an 

e r r o r  of  order  l/(MZ).  Hence, the  theory becomes more accura te  as t h e  

f r e e  stream Mach number goes up. Since  supersonic  flow  problems are 

so lved   in   th i s   paper ,   th i s   source  of er ror ,   a l though small, will not  be 

negl ig ib le .  Based  on the  T“ e r r o r  law,  the maximum e r r o r s   i n   t h e   s t a t i c  

pressures  and l o c a l  Mach numbers are der ived below. 

The abso lu te   d i f f e rence  between the  actual   reduced  pressure,  
- 
’a 3 

and the  reduced  pressure  calculated from this   theory,   P ,  i s  
- 

Combining equations  (16) and  (21) y i e l d s  

where 9, is  the  f ree-s t ream dynamic pressure  [ (?;)prnU:]. Therefore ,   the  

a b s o l u t e   e r r o r   i n   t h e   p r e s s u r e   i s  as follows: 

\Pa - P \ M 2q-7 
4 

Since  experimental and numerical   local Mach numbers are compared i n  

t h i s   r e s e a r c h   e f f o r t ,  it i s  important   to   determine  the  order  of e r r o r   i n  

the Mach number. The Mach number, M y  is  defined as 

= i u ”  + v2 + ,214 
C 
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where C is  the  local  sound  speed.  From  Bernoulli's  equation,  the  local 

sound  speed can  be  expressed  in  terms of the  components of local  velocity 

where Cm is  the  free-stream  sound  speed.  Introducing  the  reduced  veloci- 

ties :, 7 ,  and w from  equations (15)  into  equations ( 2 3 )  and ( 2 4 )  yields 

the  relation  for  the  Mach  number  in  terms  of  reduced  velocities. 

Since ii, 7,  and G are  of  order  one,  terms in -r4 could  be  neglected  in 

equation ( 2 5 )  . 

Equation ( 2 6 )  can  be  linearized  in  terms  of  changes  in ii, 7, and V 
by employing  a  first-order  Taylor's  expansion.  Let Ma  represent  the 

actual  local Mach  number  and  M  represent  the  value  computed by  this  numeri- 

cal  method.  From  a  first-order  Taylor's  expansion 

The  coefficients  of  equation (27) can be determined by differentiation of 

equation ( 2 6 )  a i d  evaluation  of  the  derivatives  at  the  values  u = v = 1, 

w = 0 ,  since  barred  planar  quantities  are  assumed  of  order  one,  and  the 

perturbation  velocity 6 is  assumed  to be near  zero.  The  final  equation  is  as 
follows : 

" 

- 
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where 

lml = lMa - MI 
3.3.2 Discretization  Errors 

The  discretization  error in the  two-dimensional  time-dependent 
equations of Section 3 . 3 . 1  is  based  on  a  general  rule  that  relates  the 

error to the  density of mesh  points  employed  in  the  numerical  integration 
process.  The  derivation  of  this  error  rule  can be found in references 
10 and 12; the  relation  is  as  follows: 

E = f,N -3 /4 

where E is  the  absolute  discretization  error  in  a  given  property, N is  the 
two-dimensional  mesh  point  density  (i.e.,  number of zones  per  unit  area of 

the x,y  plane),  and f, is a bounded  oscillatory  function. If the  same 
problem  is run  with  two  different  meshes,  that  is,  a  medium  and  fine  mesh; 

the  function f, can  be  evaluated  from  the  values  of a property  and  mesh 
point  densities  of  the  medium  and  fine  meshes  at  the  same  point  in  space 

and  time.  For  the  case  where  the  static  pressure  error  is  required, 

where  P  is  the  fine  mesh  pressure,  P  is  the  medium  mesh  pressure, N is 

the  mesh  point  density of the  medium  mesh,  and Nf is  the  mesh  point  density 
for  the  fine  mesh. 

f  m  m 

3 . 3 . 3  Errors  Due  to  Neglect  of  Axial  Viscous  Effects  and  Turbulence 

The  error  introduced  by  neglecting  axial  viscous  effects  and  turbu- 

lence  phenomena  is  the  most  difficult of the  three  sources  of  error  to 
evaluate.  Therefore,  no  formal  attempt  was  made  to  evaluate  this  error 
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IIIIIII Ill1 I 

on  analytical  and/or  numerical  grounds.  The  numerical  results  for  the 

problems  solved  in  this  paper  were  compared  to  experimental  data. 

Deviations  in  separation  point  locations  and  vortex  center  trajectories 

were  noted,  and  on  the  basis of physical  arguments,  the  primary  causes  of 

the  deviations  were  explained. 

In this  research  effort  the  effects of mesh  point  density  on  the 

discretization  error  were  not  investigated;  each  problem  of  the  program 

was  run  with  only  one  mesh.  Therefore,  the  order of error  of  the  numeri- 

cal  method,  which  was  established  by  comparing  the  numerical  results  with 

experimental  ones,  included  all  three  sources of errors. 
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4.0 CALCULATIONS MADE AND RESULTS OBTAINED 

4.1 DESCRIPTION OF  PROBLEMS SOLVED 

The  AFTON-2PE  computer  code,  modified  to  accommodate  the  equivalence 

principle  boundary  conditions,  was  applied  first  to  the  flow  field  about 
an ogive-cylinder  configuration  and  second,  to a fuselage  geometry  repre- 
sentative  of an advanced  tactical  fighter  plane. In both  problems,  air, 
represented as a  gamma  law  gas ( Y =  1.4), was  considered  and  adiabatic  flow 

was  assumed  throughout  the  flow  field.  For  the  ogive-cylinder  problem 
the  free-stream  Mach  number  was  1.98,  the  angle  of  attack  was 10' with 

respect  to  the  axis of the  body,  and  the  free-stream  Reynolds  number  was 
4.68 X 10 /ft.  For  the  fuselage  problem  the  free-stream Mach number  was 

2.5, the  angle  of  attack  was 1 5 O  with  respect  to  the  horizontal,  and  the 

free-stream  Reynolds  number  was 9.1 x 10 /ft. In this  section  the  cross- 
sectional  shapes  for  both  problems  are  defined  and  in  the  next  section  the 

finite  difference  meshes  generated  about  these  cross  sections  are  described. 

6 
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The  axisyrmnetric  ogive-cylinder  configuration  is  composed  of an 

ogive  which  is  three  maximum  cylinder  diameters  long  and  a  cylinder 7 . 3  

diameters  long.  This  configuration  is  schematically  illustrated in 
figure 7, where  the  equations  which  describe  the  variation  of  the  radius 

of  the  body  with  axial  distance  are  also  indicated. In this  problem  the 
axis  of  the  body,  which  is  straight  in  this  case,  was  chosen  as  the 

principal  axis  for  the  equivalence  analogy  between  the  steady  and  unsteady 
flows. 

The  fuselage  had  a  drooped  nose  which  resulted  in  a  curved 
central  axis  of  the  body.  This  geometry  is  schematically  illustrated 

in  figure 8. The  central  axis of the  body  is  composed  of  a  straight 

portion,  inclined 7% from  the  horizontal,  and  a  curved  portion  which 
begins  at  a  horizontal  station  of 15 inches  (see  figure 8.) To avoid 
introducing  curvature  effects  'into  the  equations of  motion,  the 7%' 
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reference  line  was  chosen  as  the  principal  axis  for  the  equivalence 

analogy. In this  coordinate  system,  the  angle  of  attack  of 15 with 

respect  to  the  horizontal  becomes 7% with  respect  to  the 7%' reference 

line;  hence, cd = 7% . The  canopy,  included  in  this  problem,  is 

indicated  in  the  cross  sections  normal  to  the 7% reference  line  shown 

in figure 8. 

0 

0 

0 

0 

X7e 'uselage  configuration has  cross-sectional  shapes  normal 
0 to  the 7% reference  axis  whose  peripheries  can  be  approximated  by 

circular  arcs  aEd  straight  lines. In fact,  the  fuselage  cross  section 

is circular  to a horizontal  station of 9.44 inches  from  its  nose,  is 

asyrrnetric  betweeE hor izcnta l  stations 9-44  and 10.88, and  includes a 

circular- canopy between  horizontal  stations 10.88 and 30.68. The  fuse- 

lage  crcss sect ion at a horizontal  station  at  the  canopy  location  is 

shown  schematically  in  figure 9 .  The  parameters  describing  this  peri- 

phery  are  also  indicated  in  the  figure.  These  parameters  have  been 

curve-fitted as functions  of  distance  along  the  central  axis  of  the 

fuselage. The curve  fits of the  cross-sectional  parameters  are  pre- 

sented  in  Appendix D. 

4.2 MESHES USED 

A subroutine  of  the AFTON 2PE computer  code  has  been  developed 

for  generating  finite-difference  meshes  around  an  asymaetric  half- 

body of a  general  fuselage-shaped  cross  section.  This  subroutine  is 

based  on  previous  work  on  finite-difference  mesh  development  for  a 

circular  cylinder  (ref. 1 2 ) .  The  general  cross-sectional  shape  of  the 

half-body  is  assumed  to  consist  of  two  circular  arcs,  two  straight- 

line  segments  tangent t o  the  circular  arcs,  and a  circular  canopy 

(see  figure 9 ) .  The  procedure  adopted in the  calculation was as  follows: 

The  area of the  half-body  was  computed  and  a  half-circle  of  equivalent 
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area  was  located  with  its  center  at  the  coordinate  origin. The finite- 
difference  mesh  for  this  half-circle  was  calculated  from  a  modified 

stream  function  and  potential  function  from  potential  flow  theory 
about  a  cylinder. The  problem  was  to  transform  the  cylinder  mesh  into 

a  new  mesh around  the  asymmetric  half-body  according  to  some  suitable 
rule  of  transformation. In the  subroutine  developed,  each  half-circle 
mesh  point  (designated  hereafter as an  "unprirned"  mesh  point)  was 

transformed  into  a  half-body  mesh  point  (designated  hereafter as a 
"primed" mesh point) in the  following  manner.  First,  the  p2ripher-y 

of the  half-body  shape  was  divided  into as many  equal  arcs as the 

half-circle  periphery.  Then,  surface  vector  dlsplacenents  were 

obtained  between  corresponding  unprimed  points  on  the.  half-circie 
and  primed  points on the  asymmetric  half-body.  Based on these  surface 

vector  displacements,  unprimed  mesh  points in the  flow  field  were 
displaced  to  their  primed  locations.  Consider an unprimcd mesh  point 

in the flow  field  having  a  position  vector & ( j  ,k) , where  the  integer, 
k, is  associated  with  a  potential-like  line, and the  integer, j ,  is 

associated  with  a  streamline-like  line.  Let  the  slwface  vector 

displacement  corresponding  to  the  same k line be :lonoted  as d(k). 
The  position  vector  of  the  primed  point R'(j,k) is  determined  from 
the  following  equation: 

where  a  is  the  radius  of  the  half-circle  and R (  j,k) is the  magnitude 
of  the  position  vector &(j ,k). 
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The  finite-difference  meshes  for  the  ogive-cylinder  were  composed 

of 35 j lines  and 90 k lines  and  continuously  deformed  with  the  radius  of 
the  body.  The  initial  radius  was 0.00046875 foot  and  the  maximum  radius 

was 0.046875 foot.  Since  the  ogive-cylinder  cross  section  is  circular, 

only  the  equations  of  the  mesh  generating  subroutine  which  pertained  to 

the  circular  cylinder  mesh  points  (unprimed  mesh  points)  were  used to 

continually  calculate  new  meshes  as  the  radius  of  the  cross  section 

changed.  The  finite-difference  mesh  in a cross-sectional  plane  normal  to 

the  body  axis  at a radius  of  0.01  foot  is  shown  in  figure  10.  The  finite- 

difference  mesh  corresponding  to  the  maximum  radius (0.046875 ft) is 

indicated  in  figure  11. 

The finite-difference  meshes  for  the  fuselage  configuration  were 

composed  of 35 j lines  and 99 k lines  and  continuously  deformed  as  the 
body  cross-sectional  shape  deformed.  The  mesh-generating  subroutine  of 

the AFTON 2PE computer  code  continually  calculated  new  meshes  as  the 

fuselage  shape  deformed.  The  finite-difference  mesh  in  the  cross-sectional 
plane  normal  to  the  central  axis  at a horizontal  station 7 inches  from  the 

nose  of  the  fuselage  is  shown  in  figure  12.  At  this  station  the  fuselage 

cross  section  is  circular.  The  finite-difference  mesh  corresponding to a 

horizontal  station 25 inches  from  the  fuselage  nose  is  shown  in  figure  13. 

The  canopy  is  also  indicated  in  this  figure. 

4.3 BOUNDARY CONDITIONS  AND  INITIAL  CONDITIONS 

In the  x,y  planes,  the  finite-difference  meshes  are  bounded by an 

upstream  boundary, a lateral  boundary,  and a boundary  composed  of  the 

symmetry  line  of  the  cross  section  and  the  body  cross  section  itself. 

The  density  and  specific  internal  energy  are  given  their  free-stream 
values  at  the  upstream  boundary  while  the  velocity  of  material  normal  to 

this  boundary, vm, is  evaluated  from 

vm 
= Um sin Q 
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where cy is  the  angle of attack  with  respect  to  the  principal  axis. 

Equations (5) and (6) are  satisfied at the  body's  surface,  while  the  fluid 

is  allowed  to  slide  without  friction  at  the  system's  lateral  boundary  and 
symmetry  lines.  The  downstream  boundary  condition  was  based on the  method 

of characteristics. It was  used  previously in  low-speed  wake-flow  calcula- 
tions  and  gave a good  approximation  to  the  flow  in  this  region.  References 
12 and 13 describe  this  downstream  boundary  condition  in  some  detail. 

The  initial  conditions  for  both  problems  consisted  of a uniform  flow 

field  in  the  (x,y)  plane  with  zero  x-component  the  velocity  and  the y- 

component  the  velocity  given  by  equation  (32).  The  density  and  specific 
internal  energy  were  given  their  free  stream  values.  In  both  problems 

the  initial  cross  sectional  radius  was  approximately  one-hundredth  of  the 

maximum  cross  sectional  radius. 

4.4 RESULTS OF OGIVE-CYLINDER PROBLEM 

The  ogive-cylinder  problem  was  the  first  attempted  in  this  study. 

This  problem  was a good  test of the  method  in  that  vortices  had  been 

experimentally  observed  to  occur  on  the  leeward  side of the  body.  The 
crossflow  Mach  number  was 0.344 and  the  crossflow  Reynolds  number  was 
0.7625 x 10 based  on  the  maximum  diameter  of  the  body.  The  problem  was 

run 3406 cycles  (i.e.,  time  steps) on the  UNIVAC  1108  computer,  requiring 
approximately  10  hours  of  computer  time.  Solutions  were  obtained  from 
the  body's  nose  to an  axial  station 8.35  maximum  cylinder  diameters  down- 

stream. At this  cross-sectional  plane a well-developed  pair of  vortices 

were  calculated.  The  problem  duplicated  the  body  geometry  and  free-stream 
conditions  of a wind-tunnel  test  (ref. 14). In  general,  agreement  between 
numerical  and  experimental  data  was  good,  providing  evidence  that  the 
numerical  method  is  applicable  to  bodies  for  which  separation  and  subse- 

quent  development  of  spiral  vortex  sheets  occur. 

4.4.1 Qualitative  Behavior of Numerical Flow Field 

5 

To investigate  the  qualitative  behavior  of  the  flow  fieid,  it  was 

convenient  to  exhibit  the  data in the  form ofvector plots of the  velocities 

of the  fluid  particules;  the  tail of each  vector  corresponds  to a mesh  point. 
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The  sequence of events  as  one  moves  down  the  axis of the  body  is  described 

by  figures 14 to 17. In figure 14 the  flow  field  is  shown  at  a  station 

0.502 maximum  cylinder  diameters  from  the  nose  of  the  body.  Although  the 

finite-difference  mesh  is  relatively  coarse  with  respect  to  the  radius  of 

the  body  at  this  station,  the  bow  shock  is  indicated as  well  as  the  expan- 

sion  which  occurs  on  the  leeward  side. In figure  15,  at  a  station 2.99 

maximum  body  diameters,  where  the  ogive  section  ends,  the  bow  shock  is 

better  defined.  Figure  16  shows  the  flow  field  at a  station  of 4.92 maxi- 

mum diameters,  where  separation  first  appears on the  leeward  side  of  the 

body.  The  spiral  vortex  sheets  that  develop on the  leeward  side of the 

body  are  indicated  in  figure  17.  The  formation of the  bow  shock,  the 

leeward  expansion,  and  subsequent  development  of  the  spiral  vortex  sheets 

are  all  in  qualitative  accord  with  experimental  observations.  The  accur- 

acy of  these  numerical  results  is  considered  below. 

4.4.2 Surface  Pressure  Comparisons 

Numerical  pressure  distributions  around  the  body  are  compared  to 

experimental  data  at  various  axial  stations  in  figure  18.  As  can  be  seen 

from  the  figure,  quantitative  agreement  is  achieved  from  the  body  nose  to 

an  axial  station 4.92 diameters.  At  this  station  the  numerical  data  indi- 

cate  that  separation  had  occurred  on  the  leeward  side of the  body  (see  the 

velocity  vector  plot  in  fig. 16), whereas  the  experimental  data  showed 

leeward  separation  at  a  station  approximately 6.00 diameters  aft  of  the 

body's  nose. As a  result, the  numerical  pressure  data  on  the  leeward 

side  of  the  body  differed  slightly  from  the  experimental  data  between 

stations 4.92 and 6.00 diameters  down  the  body  axis.  At  stations  greater 
than 6.00 diameters  from  the  cylinder's  nose,  the  experimental  data  also 

showed  separated  flow,  and  the  numerical  and  experimental  pressure  coeffi- 

cient  data  were  in  close  agreement  7.63  diameters  from  the  nose  of  the 

cylinder. 

4 . 4 . 3  The  Flow  Field  About  the  Ogive-Cylinder 

The  circumferential  positions of the  separation  points  and  vortex 

centers  vary  with  axial  location  in  a  manner  determined  experimentally  by 

measurements  of  pitot  pressure  at  various  body  cross  sections.  Corres- 
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ponding  separation  point  and  vortex  center  positions  were  also  found  from 

velocity  plots of the  numerical  flow  field.  The  calculated  separation 
points  and  vortex  centers  were  found  to  lie  about 20 closer  to  the  wind- 

ward  side  than  the  corresponding  experimental  values as seen  in  figure 19. 

For  example,  in  a  crossflow  plane 8 .3  diameters  down  the  body  axis,  the 
numerical  separation  point  and  vortex  location  were  109  and 137', 

respectively,  while  the  corresponding  experimental  values  were  130  and 
160°. The  discrepancy  between  measured  and  calculated  separation  point 

and  vortex  center  positions,  while  not  very  large,  is  perhaps  the  least 
satisfactory  feature  of  the  calculation.  The  difference  is  due  to 
viscous  effects  of  axial  motion  being  neglected  as  well as to  the  exclu- 

sion  of  turbulence  phenomena. 

0 

0 
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The  flow  field  predicted  numerically  is  laminar.  However,  the 
actual  flow  field  is  turbulent  as  a  result of both  axial  and  crossflow 

viscous  effects. In the  numerical  method  axial  motion  is  treated as if 
the  flow  were  inviscid.  For  laminar  flow,  separation  would  begin on the 

leeward  side  of  the  body  at an  axial  station  upstream  of  the  station  at 
which  turbulent  separation  begins.  Also,  the  separation  point  would  be 
closer to the  windward  side  when  the  flow  is  laminar.  From  the  pressure 

coefficient  data  for a  circular  cylinder  (ref.  15),  it  was  found  that  in 
turbulent  flow  at  a  Reynolds  number  of  6.7 x  10 , separation  occurred  at 
120°;  in  laminar  flow  at a  Reynolds  number  of 1.85 x 10 , separation 
occurred  at 90 . Thus,  the  difference  between  the  numerical  and  experi- 
mental  separation  positions  is  in  qualitative  agreement  with  the  differ- 

ence  between  laminar  and  turbulent  separation  positions.  To  obtain  more 

realistic  theoretical  predictions,  it  will,  therefore,  be  necessary to 

generalize  the  equivalence  principle  to  account  for  turbulent  effects  due 
to  axial flow; it is  felt  that  the  principle,  which  was  generalized  for 

this  program  by  including  Newtonian  viscosity  in  the  crossflow  equations, 

could  be  extended  satisfactorily  by  the  addition  of  eddy  viscosity  terms. 
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4 . 4 . 4  Accuracy  of  the  Ogive-Cylinder  Calculations 

Based on the  equivalence  principle  theory, an error  analysis of: the 

surface  pressure  results  of  figure 18 was  made.  The maximum slope  of  the 
ogive-cylinder  body  with  respect  to  the  free-stream  flow  direction  was 
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28.92 which  corresponds  to a = 0.552, and  occurs  on  the  windward  side 

of  the  body  at  the  nose.  For  this  value  of T, the  hypersonic  similarity 

parameter M,T is  1.09,  which  satisfies  the  consistency  condition  of  the 

theory.  Since  consistency  is  satisfied,  the  maximum  absolute  error  in 

the  surface  static  pressures, IAP 1, that  one  should  expect  from  this 

theory  is  about 19 percent  of  the  free-stream  dynamic  pressure  [see 

eq. ( 2 1 ) ] .  The  maximum  absolute  error  in  surface  static  pressure,  or 

maximum  difference  between  numerical  and  experimental  pressures,  for  each 

of  the  cross  sections  of  figure 18 is presented  in  table 1. Table 1 

shows  that  the  errors  are  very  much  less  than  the  maximum  error  calcu- 

lated  from  the  equivalence  principle  theory  of Van Dyke. It is  believed 

that  the  static  pressure  errors  in  the  vicinity  of  the  body's  nose  would 

be of the  order  of  19  percent  and  would  decay  rapidly as T decreased. 

For  example,  at  the  station 0.502 diameters,the  parameter T is 0.481, 

which  results  in a predicted  absolute  maximum  error  of  11  percent  of 

free-stream  dynamic  pressure.  Therefore,  the  numerical  results  are  con- 

sistent  with  the  equivalence  principle  theory  of  Van  Dyke. 

0 

TABLE 1. MAXIMUM SURFACE PRESSURE ERROR IN 
VARIOUS CROSS-SECTIONAL PLANES 

Axial  station, IAP I /q x 100, 
maximum  cylinder  diameter  percent 

0.502 
2.990 
1.289 
3.970 
4.920 
5.830 
7.630 

4.4.5 Drag  and  Lift  Coefficients 

Drag  and  lift  coefficients  were  determined on the  basis  of  numerical 

pressure  data  only;  shear  stress  effects  were  not  included.  To  compute 

these  coefficients,  the  pressure  coefficients  on  the  ogive-cylinder  surf- 

ace  were  numerically  integrated  to  determine  the  lift  and  drag. 
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Comparison  of  the  numerical  and  experimental  coefficients,  as  shown  in 

figure 20, was  found  to  be  very  satisfactory. The  coefficients  of  total 

drag  from  the  two  sources  proved  to  be  almost  identical  functions  of 
distance  from  the  nose  of  the  ogive.  Differences  in  the  lift  coefficient 

curves  began  to  be  significant  at a distance  of  about 2.75 diameters 
from  the  nose  of  the  ogive,  increased  to a maximum  at  about 4.5 diameters, 

and  then  decreased;  the  numerical  lift  coefficient  was  approximately 5.8 

percent  higher  than  that  measured  at  about 4.5 diameters  from  the  ogive 
nose,  and  about 2 percent  higher  at 8.35 diameters  from  the  nose. 

An overestimated  lift  coefficient  is  consistent  with  the  fact  that 

separation  occurred  earlier  in  the  numerical  flow  field  than  in  the 
experimental  field.  Lift  coefficients  are  calculated  from  pressure 
forces  on  the  surface  of  the  body,  as  projected  in a plane  parallel  to 

that  of  free-stream  flow.  Since  the  area  of  the  appropriate  projection 
is  almost  entirely  derived  from  the  body's  long  cylinderical sur€ace, 

and  separation  takes  place  on  that  surface,  separation  that  occurs  too 

early  increases  the  lift. 

On the  other hand, the  drag  coefficient  should  be  relatively  inde- 
pendent  of  the  location  of  separation.  Since  the  ogive  becomes  cylindri- 

cal  at a station 3.0 diameters  from  its  nose,  the  projected  surface  area 

normal  to  the  direction  of  free-stream  flow  is  very  small  for  the  long 
cylindrical  surface  aft  of  this  station,  and  the  corresponding  pressure 
forces  contribute  very  little  to  the  total  drag.  Quantitative  agreement 

in  the  pressure  drag  coefficients  is,  therefore,  physically  reasonable. 

4.5 RESULTS OF FUSELAGE PROBLEM 

For  the  fuselage  problem  the  crossflow Mach  number  was 0.288 and 

the  crossflow  Reynolds  number  was  1.15 x  10 /ft.  Cross-section  flows 

have  been  calculated  in  this  problem  in  planes  normal  to  the 7 4  refer- 
ence  line  to a horizontal  station  19.5  inches  aft of the  nose.  At  this 

station  the  curve  bounding  the  body's  surface  represents an asymmetric 
fuselage  configuration  with a canopy. To reach  this  station  the  problem 

was  run 2079 cycles  (time  steps) on the UNIVAC 1108 computer.  This  cal- 
culation  required  approximately 6 hours of computer  time. 
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4.5.1 Qualitative  Behavior  of  Numerical Flow Field 

From  velocity  vector  plots of the  cross-sectional  flow  field,  the 

qualitative  behavior of the  fuselage  flow  can be examined. The  sequence of 

events  as  one  moves  downstream  along  the 7%' reference  line  of  the  fuselage 

is  indicated in figures 21 to 25. The  vectors  in  these  figures  correspond 

to  the  particle  velocities  of  the flow at  each  mesh  point  of  the  finite 

difference mesh; the  tail  of  each  vector  corresponds  to  the  mesh  point. 

Initially,  a  bow  shock  forms  at  the  nose  and  an  expansion  fan,  caused  by 

the  interaction  between  the  expanding  body  and  the  crossflow,  appears  on 

the  leeward  side. This is indicated in figure 21 at a  station 1.135 inches 

from  the  fuselage  nose.  This flow  pattern  continues  as  the  fuselage  cross 

section  grows  until  it  reaches  the  canopy  which  induces  a  shock  wave in the 

flow  field  (see  fig. 23). A s  the  canopy  radius  reaches  maximum  (fig. 24) 

and  starts  to  decrease,  a  rarefaction  develops in the flow field  above 

the  canopy,  leading  to  the  formation  of  vortices  (fig. 25). 

4.5 2 Surface  Pressure  Comparison 

The  quantitative  behavior of the  predicted  flow  about  the  fuselage 

was  ascertained  by  comparing  the  numerical  results  to  experimental  mea- 

surements. The  fuselage  configuration of figure 6 was  tested  in  the 

Ames 8- by 7-Foot  Wind  Tunnel.  Static  pressures  were  measured  along  the 

surface  of  the  fuselage,  and  flow-field  measurements  with  conical  probes 

were  made  in  cross-sectional  planes  normal  to  the  norizontal  reference 

line  at  a  station  19.5  inches  aft  of  the  fuselage  nose. The  static- 

pressure  instrumentation  of  the  fuselage  forebody  surface  is  sketched  in 

figure 26. The  pressure  taps  were  located  in  cross-sectional  planes 

normal  to  the  horizontal  reference  line.  The  point  of  intersection  of 

the 74 reference  line  with  this  cross-sectional  plane  defined  the  axis 

from  which  pressure  tap  locations  were  measured  along  the  periphery  of 
the  cross  section.  Pressure  taps  were  located  -goo, -60' -30°, Oo, and 
+24O from  this  axis  (see  fig. 26). Thus,  with  respect  to  stations  along 

the  horizontal  reference  line,  the  instrumentation  was  located  along  the 

five  planes  indicated  in  figure 26. 
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Numerical  and  experimental  distributicns  of  surface  pressure  coeffi- 

cients  are  compared  in  figure 27 along  the  five  planes  of  figure  26. It 
is seen  that  excellent  agreement has been  achieved  along  the -goo, -60°, 

and -30 planes.  The  numerical  and  experimental  pressure  coefficients 

agree  along  the 0 plane  until  station 18. Along  the 24O plane  there  is 
a  discrepancy  at  station 15. These  discrepancies  can  be  attributed  to 
two  sources: (a) a  canopy  shock  wave-axial  boundary-layer  interaction, 

which  occurs  experimentally  but  not  numerically,  and (b) a  slightly dif- 
ferent  calculated  canopy  shock  location  which  will be described  in  more 
detail  in  the  discussion  of  the  flow-field  results.  The  canopy  shock- 

axial  boundary-layer  interaction  spreads  the  shock  pressure  rise  over  a 

greater  distance  than  calculated. 
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4.5.3 Accuracy of the  Fuselage  Calculations 

A s  in the  case  of  the  ogive-cylinder  problem,an  error  analysis was 

made of the  surface  static  pressures.  The  maximum  slope of the  fuselage 

geometry  with  respect to the  free-stream  flow  occurred  on the windward 
side  of  the  body  at  its  nose  (see  fig. 8). Its  value  was 22 , which 
corresponds  to -r = 0.400 and M=T = 0.998. Therefore,  the  consistency 

condition  of  the  theory  is  satisfied.  According  to  equation (221, the 

maximum  absolute  error  then  becomes 5 percent of the  free-stream  dynamic 
pressure. On the  basis  of  the  results  of  figure 27, the  maximum  error, 
lAP\/qa, in  each of the  planes  was  determined  and  the  values  are  tabulated 

in  table 2. It is  seen  from  the  table  that  the  errors  recorded  are  con- 
sistent with the  maximum  error  calculated  from  the  equivalence  principle 

theory. 

0 

TABLE 2. M A X I "  SURFACE PRESSURE ERROR ALONG THE 
FIVE PLANES OF FIGURE 33 

Plane, deg  IAP 1/q, x 100, percent 

- 90 - 60 - 30 
0 
24 

2.0 
2.3 
3.4 
5.6 
5.8 
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At  first  glance  the  relatively small errors  of  table 2 are  surprising 

in  lieu of the  fact  that  hypersonic  small  disturbance  theory  is  applied  at 

supersonic  speed. One would  expect  linearized  supersonic  theory  to  apply 

in  this Mach  number  range.  However, an analysis  of  the  errors  shows  that 

linearized  supersonic  theory  is  only  slightly more accurate  than  hyper- 

sonic  small  disturbance  theory  for  the  fuselage  problem.  The  error  in 

linearized  supersonic  theory  is  of  the  order 7 (ref. 2 ) ,  which  results  in 

a  maximum  absolute  error  in  the  static  pressure  of 4% of  free  stream 

dynamic  pressure.  Therefore,  for  a  relatively  thick  class of bodies 

(which  includes  most  fuselage  geometries),  where  the  hypersonic  similarity 

parameter  is  of  order  unity,  both  hypersonic  small  disturbance  theory  and 

linearized  supersonic  theory  give  satisfactory  results. 

4.5.4 Contour  Maps  in  the Flow Field  of  the  Fuselage 

Contour  plots  of  the  local  pitot  pressure  ratio (p /P ) ,  local 

sideslip  angle (B)  , local  Mach  number (M) , local  angle  of  attack (cy ) , 
and  local  total  pressure  ratio  (Ps/Pso3)  were  generated  from  the  numerical 

results  and  compared  to  corresponding  contour  plots  from  experimental 

data.  The  comparisons  were  made  in  a  cross-sectional  plane  normal  to  the 

horizontal  reference  line  at a station 19.5 inches  from  the  fuselage  apex. 
See  figures 28 through 32.  The  above  parameters  are  defined in Appendix E. 

P so3 

e 

The  local  pitot  pressure,  P  is  effectively  the  stagnation  pressure 
P' 

measured  by a  probe  whose  axis  is  parallel  to  the  local  flow  direction. 

A s  in  the  case  of  the  surface  pressures  the  pitot  pressure  is  measured 

directly;  therefore,  it  provides  a  reliable  measurement  for  comparison. 

The  numerical  pitot  pressure  was  calculated  from  the  Rankine-Hugoniot 

equations  for  a  normal  shock,  where  upstream  of  the  shock,  the  local Mach 

number,  and  stagnation  pressure  were  assumed  to  exist.  The  numerical  and 

experimental  pitot  pressure  ratios (P /P ) of  figure 28 indicate  good 

agreement  in  the  lower  quadrant  of  the  flow  field,  where  the  two  sets  of 

contours  are  nearly  coincident  in  the  vicinity  of  the  body.  This 

P s w  

pp'psm 
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quantitative  agreement  is in accord  with  the  agreement  obtained  between 

surface  static  pressures  on  the -30 plane,  which  intersects  the  body  in 

this  region. In the  upper  quadrant  of  the  flow  field  there  is  a 

discrepancy  between  the  experimental  and  numerical  contours.  The  numeri- 

cal  results  indicate  that  the  canopy  shock  intersects  the  fuselage  surface 
above  that  point  indicated  by  the  experimental  data. The increased  down- 

ward  distance  of  travel  by  the  canopy  shock in the  experimental  case 
accounts  for  the  discrepancy  in  contours in the  upper  quadrant  of  the  flow 
field.  Although  axial-boundary  layer  effects  and  discretization  errors 
influence  the  canopy  shock  location,  it  is  believed  that  the  equivalence 

principle  approximation  of  neglecting  the  velocity  perturbation  along  the 
7% reference  line  is  the  primary  cause  of  this  discrepancy.  The  velocity 

perturbation  is  effectively  zero  upstream  of  the  body  apex,  hence,  the 

windward  oblique  shock  emanating  from  the  apex  was  calculated  correctly. 

However,  the  velocity  perturbation  is  positive  upstream  of  the  canopy, 
and  since  this  quantity  is  neglected  in  the  method,  the  calculated  canopy 
shock  must  be,  and is,  weaker  than  experimentally  measured. 

0 

0 

The  local  sideslip  angle, p, is  measured  in  the  cross-sectional 
plane  normal  to  the  horizontal  reference  line  and  is  the  flow  inclination 

in  the  x',z'  plane  (see  fig. 9). A s  in  the  case  of  the  pitot  pressures, 
the  comparison of the  experimental  and  numerical  sideslip  angle  contours 

shown  in  figure 29 indicates  that  the  predicted  flow  field  in  the  lower 

quadrant  is  nearly  correct.  Furthermore,  the  predicted  location o f  the 
canopy  shock  and  the  predicted  flow-field  contours  in  the  upper  quadrant 

deviate  from  experiment  as  in  the  pitot  pressure  comparisons. 

Contours of constant  Mach  number  and  constant  local  angle  of  attack 

with  respect  to  the  horizontal  reference  line  (see  fig. 8) are  presented 

in  figures 30 and 31, respectively. It is  seen  from  these  figures  that 
the  numerical Mach number  and  angle-of-attack  contours  do  not  match  the 
experimental  contours  even  in  the  lower  quadrant  of  the  flow  field.  This 

discrepancy  is  not  in  accord  with  the  surface  static  pressure  comparison, 
pitot  pressure  comparison,  and  sideslip  angle  comparison  discussed 
previously. 
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The  reasons  for  this  disagreement  can  be  found  in  discretization 

errors  in  the  numerical  method,  errors  introduced  by  the  equivalence 

principle  assumption,  and  errors  inherent  in  the  experiment  and  data 

reduction  process.  The  error  in Mach number  due  to  the  equivalence  prin- 

ciple  has  been  determined  previously  [see  eq. (28)]. Equation (28), 

evaluated  with 7 = 0.40 and Mm = 2.5, results  in  a  maximum  absolute  error of 

about 30 percent  of  the  free-stream  Mach  number. This corresponds  to an 

absolute Mach number  error  of  about 0.75. Consider  the  experimental 

contour  of  figure 30 for a  constant  Mach  number  of 2.50. It is seen  from 
figure 30 that  this  contour  coincides  with  the  numerical  contour  for a 

constant  Mach  number  of 2.40, which  results in an absolute  Mach  number 

difference  of 0.10. Thus,  the  observed  absolute  difference  in  Mach  num- 

ber  between  the  numerical  and  experimental  results  is within the 
maximum  error  one  would  expect  from  the  equivalence  principle  alone. 

Therefore,  one  must  conclude  that  errors  introduced  by  the  equivalence 

principle  assumption  account for the  major  part of these  discrepancies. 

The  calculated  local  total  pressure  recovery  contours (P /P ) are s s m  

shown  in  figure 32.  The  predicted  total  pressure  recovery  varies  from 

1.0  to 0.88 in  the  flow  field,  with  recoveries  near  1.0  throughout  most 
of the  flow  region.  This  parameter  is  the  most  difficult  to  calculate 

accurately  and  to  determine  experimentally.  Although  the  experimental 

data  for  this  fuselage  configuration  are  still  preliminary, an error 

analysis  indicates  that  the  values of Ps/P can  be  determined  only  with 

f 0.03. For  a  total  pressure  ratio  bandwidth  from 0.88 to 1.0, this 

error  is  too  large  to  yield  any  significant  contour  data.  Consequently, 
no  experimental  data  are  shown.  Future  refinement  of  the  set  of  conical 

probe  calibration  data  will  hopefully  reduce  this  error  to  a  more 

meaningful  level. 

s a  
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4.5.5 Lift  and  Drag  Coefficients 

Numerical  lift  and  drag  coefficients  for  the  fuselage  problem  are 

compared  to  corresponding  lift  and  drag  coefficients  determined  from 
inviscid,  linearized  supersonic  theory  for  flow  about  an  axisymmetric 

body  at  angle  of  attack  (ref. 16). Linearized  supersonic  theory was  used 

because  there  were  not  enough.pressure  data  to  determine  the  lift  and 

drag  experimentally.  The  lift  and  drag  coefficients  from  the  numerical 
method  were  determined  by  numerical  integration  of  the  surface  pressure 

coefficients  over  the  surface  and  are  based on a  cross-sectional  area 
corresponding  to  the  maximum  equivalent  radius  of  the  fuselage, 
a = 3 inches. A s  in the  case of the  ogive-cylinder  problem,  shear 

stress  effects  were  not  included.  It  is  seen  from  figure 33 that  the 
numerical  lift  coefficient  distribution  nearly  corresponds  to  that  from 

linearized  supersonic  theory. In view  of  the  fact  that  the  maximum 
absolute  static  pressure  errors  are  about  the  same  for  both  linearized 

supersonic  theory  and  hypersonic  small  distrubance  theory,  agreement  in 

the  lift  coefficient  is  expected.  On  the  other  hand,  the  numerical  drag 

coefficient  distribution  shows  greater  drag  than  the  distribution  from 

linearized  supersonic  theory. This  discrepancy  may  be  attributed  to  the 

fact  that  the  coefficients  determined  from  linearized  supersonic  theory 
have  been  further  specialized  to  the  case of very  slender  bodies  (ref. 16), 

which  is  not  true  for  this  geometry.  However,  this  comparison  does 
indicate  that  the  lift  and  drag  coefficients  calculated  by  the  numerical 

method of this  paper,  if  not  correct,  are  at  least  of  the  right  order. 

max 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

The  principal  conclusion  emerging  from  the  work  reported  here  is 

that a  promising  new  method  has  been  developed  for  calculating  flow  fields 

about  slender  bodies of arbitrary  geometry  in  the  supersonic  and  hyper- 

sonic  flight  regimes.  The  present  version  of  the  numerical  method  can 

adequately  predict  the  surface  pressures  and  flow  field  characteristics 

outside  the  boundary  layer  for  bodies  where  the  hypersonic  similarity 

parameter M,T is  unity  or  greater  and  for  free  stream  Mach  numbers 2 and 
above.  For  cases  where  boundary  layer  separation  and  the  subsequent 

formation  of  spiral  vortex  sheets  occur,  the  numerical  method  predicts  too 

early a  separation  which  results  in  small  inaccuracies  in  predicted  flow 

field  quantities  downstream  of  the  region  of  separation. 

The  basis  for  the  above  conclusion  lies  mainly  in  the  specific 

results  obtained  for  the  ogive-cylinder  and  the  fuselage  configurations. 

For  the  ogive-cylinder  problem  a  spiral  vortex  pair  was  computed  on  the 

leeward  side  of  this  body.  Although  axial  effects  caused  some  differ- 

ences  between  numerical  and  experimental  separation  regions  and  vortex 

center  positions,  in  general,  the  static  pressure  distributions  on  the 

body's surface,  the  lift,  and  pressure  drag  of  the  body  agreed  with  the 

corresponding  experimental  values;  the  surface  pressures  differed  by  no 

more  than 5 percent of free-stream  dynamic  pressure;  the  lift  coefficients 

differed  by no  more  than 6 percent;  and  the  drag  coefficients  by  no 

more  than 2 percent. From  velocity  vector  plots  of  the  cross-sectional 

flow  field  of  the  fuselage  configuration,  the  structure  of  the  flow  field 

seemed  correct,  at  least  qualitatively.  Furthermore,  comparisons  of  the 

numerical  static  pressure  distributions  on  the  fuselage  surface  were  in 

quantitative  agreement  with  experimentally  determined  distributions;  the 

maximum  error  in  the  static  pressure  was  no  more  than 6 percent  of  free 
stream  dynamic  pressure.  Contour  plots  of  pitot  pressures  were  of  the 

same  general  shape  as  the  experimental  contours  and  some  of  these  curves 
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coincided.  Finally,  the  pressure  drag  and  lift  distributions  seemed 

correct  when  compared  to  corresponding  drag  and  lift  coefficients  derived 

from  inviscid,  linearized  supersonic  flow  theory. 

The  justification  for  the  part  of  the  above  conclusion  which  per- 

tains  to  the  range of applicability  of  the  method, i.e., M-7 5: 1 and 
M 2 2, lies  mainly  in  the  fact  that  for  both  problems   ma^ e 1, M = 1.98, 

and Mm = 2.5) the  deviations  predicted  from  experimental  results  were 

contained  well  within  the  predicted  error  bounds  of  the  equivalence  prin- 
ciple,  Hence,  as  the  Mach  number Mm increases,  the Van  Dyke theory  tells 
us  that  the  predicted results  will  become  more  accurate.  However,  to 

strengthen  this  conclusion,  additional  comparisons  should  be  made  between 
numerical  and  experimental  data  at  other  flight  conditions  and for differ- 
ent  geometries  within  the  above  range of applicability. 

m a 

To realize  the  full  potential of this  numerical  method,  we  believe 
that  further  research is justified.  Three  areas of additional  research 
seem  promising.  First,  the  method  should  be  revised  and  include  the 

velocity  perturbation  on  the  principai axi.s along  which  the  equivalence 
analog  is  made.  The  inclusion of the  axial  velocity  perturbation  in  the 
finite  difference  equations of motion  will  improve  the  accuracy  of  the 

method  in  its  present  range  of  applicability  and  will  extend  the  method 

to  cases  where M c D ~  << 1 and  for  Mach  numbers  above  transonic. Hence,  a 
unified  method,  which  applies  throughout  the  supersnnic  and  hypersonic 

flight  regimes,  will  be  achieved. 

The  second  area  where  additional  research  seems  justified  concerns 

the  relationship  between  viscous  axial  and  crossflow  effects. In the 

ogive  cylinder  problem,  too  early  a  separation  was  calculated  considering 
only  viscous  crossflow  terms  which  were  assumed  laminar.  The  discrepancy 

in  the  separation  point  location  is  attributed  to  both  axial  viscous 
effects  and  turbulence.  However,  from  the  results  of  this  problem  it  was 

not  possible  to  determine  which  was  the  more  important  effect.  There- 
fore,  to  determine  the  relationship  between  viscous  axial  and  crossflow 
effects  it  is  necessary  to  solve an additional  problem  (both  numerically 
and  experimentally)  at  hypersonic  flight  conditions  and  in  the  laminar 
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flow  regime. At hypersonic  flight  conditions,  errors  in  the  equivalence 
principle  are  minimized;  thus,  deviations  between  numerical  and  experi- 

mental  results can be  attributed  entirely to the  neglect  of  axial  viscous 

effects. If these  deviations  are  large,  some  of  the more important  axial 

viscous  terms  can  be  retained  in  the  finite  difference  equations of 

motion. 

Finally,  turbulence  effects  can  be  included  in  the  finite  difference 

equations  of  motion  by  the  addition  of  eddy  terms, i.e., eddy  viscosity 

and  thermal  conductivity.  These  eddy  terms  would  be  based on empirical 

cur~stants  which  would  be  determined  from  comparisons  of  numerical  and 

experimental  results. 

Along  the  lines  just  sketched,  we  believe  that  an  efficient, 

reliable  capability can be  developed  for  predicting  viscous  flow  field 

characteristics  for  nonsimpie  geometries  throughout  the  supersonic  2nd 

hypersonic  flight  regimes 
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APPENDIX A 

THE EQUIVALENCE PRINCIPLE 

In   t h i s   s ec t ion   t he   equ iva lence   p r inc ip l e   fo r   s t eady ,   i nv i sc id  

three-dimensional  flow i s  derived. An Eulerian  coordinate  system  fixed 

wi th   r e spec t   t o   t he  body  and having i t s  z-axis   a long  the  axis  of the  body 

i s  used  throughout   this   sect ion  (see  f igure 2) .  

me equations  of  motion  for  steady,  inviscid  three-dimensional flow 

about a  body are:  

Cont inui ty  

d - (PU) + a (PV) -I- =& [p (U,COS CY + w)] = 0 
a 3 

ax Y 

Momentum 

F i r s t  Law 

av + v - + (w + U,COS a )  - = - - d V  av l a p  
U d x  aY a Z  p a Y  

u * + v  - + (w + u,cos a) - = - aw a w  
a x  dY a Z  P a2 

u 3E + v - + (w + u,cos a )  - = aE aE 
ax a Y  az 

- P  [ u- ;x (f) + v ($) + (w + u,cos a!) - 
:z (31 
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Boundary Conditions a t  Body 

I, 

(UwC0s CY -t w) az + v R + u a = 0 
Y X 

Boundary Conditions a t  Shock 

p, + p,~ , (~os  ct nZ + S i n  a n 1’ = pS 
2 

Y 

+ p s  [(u,cos cy + w n + v  n + u  n I’ s z s y   s x  

+ $  os a -I- i q  n + v n + u  n 
s z s y  s x  l2 

where E is  the  internai   energy p e r  un i t   mass ,  P is  the   p ressure ,  p i s  the 

dens i ty ,  U, i s  t h e   f r e e  stream speed, w i s  p e r t u r b a t i o n   v e l o c i t y   i n   t h e  

z -d i r ec t ion ,  v i s  t h e   v e l o c i t y   i n   t h e   y - d i r e c t i o n ,  u i s  t h e   v e l o c i t y   i n   t h e  

x -d i r ec t ion ,  and Rx, R and RZ a re   t he   d i r ec t ion   cos ines  of  the body  normal 

i n   t h e  x ,  y ,  and z d i r ec t ions   r e spec t ive ly .  The subsc r ip t  s r e f e r s  to 

prope r t i e s  downstream  of the  shock,  and a n  n a re   t he   d i r ec t ion   cos ines  

of  the  shock  normal i n   t h e  x, y ,  and z d i rec t ions   r e spec t ive ly .  

Y ,  

x’  y’ z 

Boundary Conditions  Far From  Body 

z = - , -  . w = U,Cos CY , v = U,Sin CY , u = 0 

Introducing  the  t ransformation  equat ions 

z = umcos CYt 

Y = Y  
x = x  I 
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and the  s lender  body assumption 

u, >> w 

into  equations  (Al)  thzough (A6) y i e l d s  

Continuity 

Momentum 

F i r s t  Law 

a 
a t  ax 

Boundary Conditions a t  Body 

cos cy u, RZ t u  ax + v  R = 0 
Y (A101 

Shock Conditions 

p,U,(- Cos CY Sin p + S i n  cy Cos l3) = p s ( v  n + u n - UmCos cy Sin  B) (Alla) s y   s x  
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P, + p,U,(- COS CY Sin B -k Sin CY cos B) = P 2 
S 

+ p (v n + u n - U,cos cy Sin B) 2 
s s y   s x  

POD urn(- Cos Q Sin B + Sin CY Cos $) 2 Y = -  Y - S 
2 Y - 1  P s  

P 
" + 

+ (v n + u  n - U,Cos Q Sin 6) 2 
s y   s x  

(Allb) 

(Allc) 

where: B is  the  angle  made  by  the  shock  surface  with  respect  to  the z-axis 

in  the  (y,z)  plane.  Equations  (A7) , (A8b)  (A8c) , and (As) are  independent 
of  w  and,  thus,  represent  the  equations  for  time-dependent  motion  in  the 

(x,y)  plane.  Therefore,  the  steady 3-D equations of motion  have  been  trans- 

formed  to  a  time-dependent 2-D set  of  equations.  The 3-D shock  boundary 

conditions  also  reduce  to  a  nonsteady  shock in the  (x,y)  plane  moving  with 

velocity  proportional U,Cos cy Sin $. In summary,  the  necessary  and 
sufficient  conditions  for  the  equivalence  principle  to  be  valid  are: 

a.  The  z-component  of  the  local  velocity  vector must  be 

approximately  equal  to  the  z-component  of  the  free  stream 

velocity  vector,  and 

b. the  time-dependent  solution  in  the  (x,y)  plane must  satisfy 

the  three-dimensional  boundary  condition  equation  (A10)  at 

the  body  surface. 

The calculational  procedure  for  inviscid  flow  is  then  as follows: 

First,  equations (A7),  (A8b) , (A8c) (A9) and  (A10)  are  solved  for  v,u,P, 

and p .  The  perturbation  velocity w may  be  subsequently  obtained  from  the 

Bernoulli  equation,  which  is 

(w + u,cos + v2 + u 2 
y E ,  

Y - l  P 2 = constant (A1 2) 

Therefore,  the  equivalence  between  a  steady-three-dimensional  flow  and  a 

time-dependent  two-dimensional  flow  is  proven. 
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If the conditions (a),  (b) are satisfied, viscous effects can  be 

included in the time-dependent calculations in the (x,y) plane without 

violating the equivalence principle assumptions. A no-slip boundary 
condition can  be applied at the surface of the cross section in the 

(x,y) plane in conjunction with the equivalence principle boundary 

condition  equation (A10). 
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APPENDIX B 

CONSERVATION OF TOTAL ENERGY 

I n  

f i n i t e  d 

th i s   s ec t ion   t he   s e l f - cons i s t ency   p rope r ty  of  form t h a t   t h e  

i f fe rence   equat ions  (8) t o  (13)  possess is  demonstrated. Th 

demonstration  proceeds i n   t h r e e  steps. F i r s t ,  t h e   f i n i t e   d i f f e r e n c e  

kinet ic   energy  equat ion i s  de r ived   fo r   t he  momentum zone a a- 1/2 ’ 

i s  

a Then t h e   f i n i t e   d i f f e r e n c e  F i r s t  Law equat ion is der ived   for  

t h i s  momentum zone. F ina l ly ,   t hese   r e l a t ions   a r e  added t o  determine 

t h e   f i n i t e   d i f f e r e n c e   e q u a t i o n  of t o t a l   e n e r g y   f o r   t h e  momentum zone 

a a 

&1/2’ 

a-1’ &1/2’ 

The k ine t ic   energy   equat ion   for  momentum zone aR-1,2, a&1/2 
can  be  derived  from momentum equation  (12)  which i s  c e n t e r e d   a t   t h e  

time tn-1/2. Equation  (12)  can  be  writ ten  in terms o f  v e l o c i t i e s  by 

employing the   forward   ex t rapola t ion   re la t ion ,   equa t ion   (13) ,  i . e . ,  

Mul t ip l ica t ion  of equat ion (B1) by U n-1/2 y ie lds   the   k ine t ic   energy  

equa t ion   fo r  momentum zone a  a 
a 

a- 1/2 ’ &1/2 * 

The F i r s t  Law equa t ion   fo r  momentum zone a a i s  a- 1/2 ’ &1/2 
der ived  as   fol lows:   the  internal   energy  for   this   zone  equals   half  

t he  sum of t he   i n t e rna l   ene rg ie s  of thermodynamic  zones a and 

ai ,   ahl  (see  equations (9)  and  (10)) . This   d iv is ion  of internal  energy 

comes d i r e c t l y  from the   r e l a t ionsh ip  between  thermodynamic  and momentum 

zones spec i f i ed  when the   phys ica l  model  of f i gu re  6 was postulated.  The 

a 
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-* term  for  momentum  zone  aa-1,2,  a11+1/2  comes  from  half  the - 
for  thermodynamic  zones  a  and a a The  First  Law  equation 

for  momentum  zone a a becomes : 

BV 
At 

a A' &l' 

R-1/2' Q+1/2 

1 
2 
" 

L J 

The  finite  difference  equation  for  conservation  of  total  energy 

for  momentum  zone  a a results  from  the  addition  of  equations 

(B2) and (B3) .  
R1/2'  &1/2 

where: 

Equation ( B 4 ) ,  derived  from  finite  difference  analogs  of  the 

First  Law  and  momentum  equations,  is  a  reasonable  finite  difference 
expression  for  total  energy  conservation.  The  rate  of  work  done on 

the  surface,  having  the  Lagrangian  coordinate  a  at  time  t n- 1/2 

is  the  product  of  the  time-averaged  pressure in the  thermodynamic 

zone  a 

R 1/2 9 

11-1' all and  the  space-average  velocity  between  surfaces  a R- 1 
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and  aR.  The in t e rna l   ene rgy  of t h e  momentum zone a a 

a t  time t , is ha l f   the   in te rna l   energy  of t h e  two  thermodynamic  zones 
R- 1/2 , h l / 2  n 

which  contain it. F ina l ly ,   t he   k ine t i c   ene rgy  of momentum zone 

a a t  time t , is  the  product of t h e   v e l o c i t i e s   a t   t h e  

su r face  a$, a t  times t n-1/2 and t n+1/2. It  is b e l i e v e d   t h a t   t h i s   s e l f -  

n 
R-1/2’ aRt1/2 

consis tency of  form p rope r ty ,   wh ich   t he   d i f f e ren t i a l   equa t ions   posses s ,  

and  which t h e   f i n i t e   e q u a t i o n s  preserve, is the   p r imary   reason   for   the i r  

success   in   numer ica l   ca lcu la t ion  of one-dimensional  time-dependent  flow 

f i e   I d s .  
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APPENDIX C 

AFTON 2PE FINITE DIFFERENCE EQUATIONS  AT INTERIOR MESH POINTS 

The AFTON 2PE f in i t e   d i f f e rence   equa t ions   a r e   p re sen ted   fo r  a 

generalized  coordinate  system. The f i e l d  of  motion i n  AFTON 2P i s  a c t u a l l y  

covered  with two c l o s e l y   r e l a t e d   f i n i t e   d i f f e r e n c e  meshes -- one fo r   t he  

c a l c u l a t i o n  of thermodynamic var iab les   such   as  stress, i . e . ,   q u a d r i -  

l a te ra l   zones ,  and the   o the r   fo r   t he   ca l cu la t ion  of kinematic   var iables  

l i k e  momentum, i . e . ,  momentum zones  (refs.  11 and 12).  Figure 4 i l l u s t r a t e s  

the  two types  of  meshes i n  two space  dimensions. The con t inu i ty  and f i r s t  

l a w  equations are app l i ed   t o   ca l cu la t e   p rope r t i e s  on a q u a d r i l a t e r a l  zone 

while  the  equations  of momentum and total   energy  conservation  are  used 

t o   c a l c u l a t e   p r o p e r t i e s  on  a momentum zone. In   the  for thcoming  analysis  

q u a d r i l a t e r a l  1, 2 ,  3 ,  4 and momentum zone a ,   b ,   c ,  d are   considered 

( see   f i gu re  4 ) .  The f in i te   d i f fe rence   equat ions   in   the   genera l ized  

coordinate  system  are  as  follows: 

Def in i t i ons  : 

- u = U(u,v) 

H 

W 

= S(X,Y) 

P 

Car tes ian   coord ina te   pos i t ion   re la t ive   to   the  
moving  frame 

ma te r i a l   ve loc i ty   r e l a t ive   t o   t he   l abo ra to ry  
frame 

in te rna l   energy  

u n i t   v e c t o r   i n   t h e   x - d i r e c t i o n   ( i . e . ,   t h e   p l a n e  of 
flow, and  normal to   the  f ree   s t ream  f low  re la t ive 
to   the  laboratory  f rame) 

to ta l   energy  

r a t e  of work 

mesh po in t   ve loc i ty   r e l a t ive   t o   t he   l abo ra to ry  
frame 

ma te r i a l   dens i ty  
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A 
k u n i t   v e c t o r  normal t o  (x,y) plane - 
m mass 

V volume 

M momen  tum - 

P v i s c o s i t y  

t time 

At  t imestep , t = t - to 

Y r a t i o   o f   s p e c i f i c   h e a t s  

P f l u id   p re s su re  

u' u' u ' x) y 9  xy 
v i scous   s t r e s ses  

P 

U' ' 

U P - u" 

( lo denotes   property a t  i n i t i a l  t i m e ,  to 

( 1 '  denotes   property a t  f i n a l  time, t ' 

denotes   property a ha l f  timestep b e f o r e   i n i t i a l  
time t 0 

denotes   property a ha l f  timestep b e f o r e   f i n a l  
t i m e  t ' 

0 denotes   t imestep,  a ha l f  t i m e s t e p  a f t e r   f i n a l  
t i m e  t ' 

E quat  ions 

- R '  = E ' @ '  , c ross   s ec t iona l  geometry) 

R = %(E' + E ) 0 - 
- s = (E' - EO)/At 
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where:  i=1,2,3,4  and,  €or  example, when i=l, i-1=4 

" a u - A  u + A  u + A  u + A  u 
a y   l y  1 2y 2 3y 3 4y 4 

- G v = A  v + A  v + A  v + A  v 
dx l x  1 2x 2 3x 3 4x 4 

& = A  v + A  v + A  v + A  v 
ay l y  1 2y 2 3y 3 4y 4 
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r= 
P =  ( y - 1 )  p E 1 ( C 3 4 )  
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t 1 1  
P 

U' = (2g /m ) - g 

H 1 = 1 (u u + +(ma 1 1  + 4 E: + mc + md E ~ )  
p -1  -1 (C44) 

- W43) 

1 1   1 1  
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APPENDIX D 
PARAMETRIC  REPRESENTATION OF FUSEIAGE  CROSS  SECTIONS 

In   t h i s   s ec t ion   t he   pa rame te r s  which descr ibe   the   fuse lage   c ross   sec t ions  

are spec i f i ed  as funct ions of d i s tance   a long   the  7%' r e fe rence  line (see 

f i g u r e  8) and t h e  7$O r e f e r e n c e   l i n e  is prescribed as a funct ion of ho r i zon ta l  

s t a t i o n .  The c ross   sec t ions   t aken  were perpendicular   to   the  7%' r e fe rence  

l ine   ( i . e .   z -ax is ,   f igure  8) . The parameters  of  each  cross  section w a s  de t e r -  

mined  from geometr ical   data  which were taken  f rom  the  design  blueprint  of t h e  

fuselage  geometry. 

A schematic   representat ion of t he   fu se l age   c ros s   s ec t ion  normal and the  

7%O r e f e r e n c e   l i n e  is  presented   in   f igure  9. In   f i gu re  9 the  parameters  which 

describe  the  cross  section  are  indicated.   These  parameters are defined as 

R3 (Z) 2 

In  the  case  being  considered,  B2(z) = % ( 2 )  = A5(2)  = 0, R2(z)-   R1(z)  = $(z) 

(Since  the  shape  suppl ied  has   f la t   s ides  and bottom), and R 2 ( z ) -   B 5 ( z )  S R 3 ( z ) .  

Furthermore, B (2) = R2 (z)  and R (z)   equal   zero  for  z less than  z2,  where z (=lo.  88") 

def ines   the   d i s tance   a long   the  7%' r e fe rence   l i ne  a t  which  the  canopy f i r s t  

appears. The fuselage  cross-sect ion is  c i r c u l a r   t o  z = 9.44 inches and 

asynnnetric  between z1 and z2. It proved  convenient to   def ine   these   parameters  

by another set of  functionsfrom a d i s t ance  of z = 15.05 inches onward. The 

equations  for  the  above  parameters  considered  units  of  inches and a r e  as 

follows : 

5 3 2 

1 

3 

coordinates of the   cen ter   o f   the  smaller c i r c u l a r  

a r c   i n   t he   fu se l age   pe r iphe ry  

r ad ius  of the   smal le r   c i rc le   o f   the   fuse lage   per iphery  

coordinates  of t he   cen te r  of t h e   l a r g e r   c i r c u l a r   a r c  

in   the  fuselage  per iphery 

r ad ius  of t he   l a rge r   a r c  

coordinates  of the  center  of t h e   a r c  of the  canopy 

canopy  rad  ius 
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- 

(i) Radius  of smaller c i rc le  of fuselage  per iphery 

where a = (1.7873231 x lo-') R1 
1 

aR1 = (7.0559487 x 2 

a = (-3.2209788 x R1 
3 

a4 R1 = (6.6039801 x lom2) 

R1 
a = (-7.5565592 X 5 

a = (5.1130544 x R1 
6 

(ii) Radius of larger arc 

12 R- 

R 

J a zJ 

a;' = (-2.1016895 x 

For 0 z 5 z3,  R2(z) = Z -J 
"J 

a8 R1 = (5.1489881 x 

R1 a = (-6.6633139 X 10 9 

R1 - (2.0697609 x l0'l2) 

-10) 

alCj - 
R1 

all = (4.7027051 x 10 - 14 ) 

aR1 = (-4.0954467 x 12 

where a = (3.4725590 x 10") 

az2 = (-1.0362533 x 10") 

R2 
1 

R2 
a = (3.6798959 X 3 

aR2 = (-7.4940700 x 4 

a = (9.1822566 x R2 
5 

- - 
a:' = (-7.2186739 x lom5) 

z 

a7 = (3.7708718 x 

a:2 = (-1.3236585 x 

aR2 = (3.0861620 x 10") 

R2 

9 

R2 
a10 = (-4.5831105 x 10 ) 

-11 

a:: = (3.9237683 x 

R2 
a12 = (-1.4741591 X 10 -15) 
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where a = (.1686363) R2 
1 

2 = (1.722509 x 

2 = 62.142585 x 10 ) -4 

(iii) Ordinate of center of smaller c i rc le  

B 
For 0 I z - <  z B1(z) = aJ1 zJ 3' J =1 

where a:' = (-1.5159906 X lo-') aB1 = (-4.1445421 x lom6) 7 

ai1 = (1.5449971 x lo-') a:' = (1.1565654 x 

a3 = (-5.9976730 x lom2) B1 aB1 = (-1.9920283 x 10") 
9 

a:' = (1.1907145 x a10 B1 = (1.9332318 x 10 ) -11 

B1 = (-1.3574646 x Bl 
a5 all = (-8.0938014 x 10 - 14) 

= (9.4391044 x 6 

where a = (.2135555) B1 
1 

a = (-2.376651 X loe2) B1 
2 

= (4.465725 x 3 
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APPENDIX E 

DATA REDUCTION  COMPUTER  CODE 

A data  reduction  computer  code  has  been  developed  to  reduce  the 
flow  field  data  of  Problems  211.0  and  212.0  to  meaningful  parameters. 

The  function  of  the  code  is  to  compute  the Mach number,  flow  angularity, 

total  pressure  recovery,  and  pressure  coefficient  in  cross  section  planes 

normal  to  the  body  axis.  These  parameters are to  be  calculated  from  the 

more  fundamental  AFTON  2PE  numerical  solution  data  (i.e.,  pressure, 

density,  velocity, etc.). 

The  data  reduction  code,  called "AMSD", performs  three  functions. 

First,  it  selects  and  reads  a  dump (i.e.,  the  flow  field  properties  at a 

particular  axial  station)  from  the  AFTON  2PE  dump  tape.  Then  it  calcu- 

lates  the  specific  internal  energy (E), density (p), pressure (p), and 

the  velocity  component (w) in  the  axial  direction  at  each  of  the  mesh 

points.  The  specific  internal  energy,  density,  and  pressure  are zone 

centered  in AFTON 2PE, s o  the  mass  and  internal  energy of the  momentum 

zones  must  first  be  evaluated  in  order  to  determine  the  specific  internal 

energy  and  density  at a  mesh  point (ref.l.0). The  pressure is then  determined 

from  the  perfect  gas  law.  Based  on  these  parameters  and  the  velocity  com- 

ponents  u  and v in  the  plane  of  calculation,  the  velocity  component w in 
the  axial  direction  can  be  evaluated  from  the  Bernoulli  equation  as  follows: 

where 

, 
a ,  

Y Y  
P Y  

P ,  

free  stream  velocity 
angle  of  attack  of  free  stream  flow  with  respect  to  body  axis 

ratio  of  specific  beats [ y  = (C  /Cv) ] 
pressure 

density 

P 
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where : 

am, free  stream  sound  speed 

Me f r e e  stream Mach number 

Equation  (El) i s  v a l i d   f o r  a weak shock  and  where v iscous   e f fec ts   a re   smal l .  

In   t he   og ive -cy l inde r   p rob lem  a t   an   ax ia l   s t a t ion   o f  .SO2 cylinder  diameters 

and a t  a point  on  the  dividing  s t reamline  1 .36  cyl inder   radi i   upstream  of   the 

c y l i n d e r ' s   c e n t e r ,   t h e   r a t i o  of   the   loca l   s tagnat ion   pressure  (P) t o   t he   f r ee  

s t ream  s tagnat ion  pressure (P ) i s  .92.  For  the  fuselage  problem  total  

pressure  recovery P /P v a r i e s  from .90 to  1.00. I t  i s  shown below tha t   t he  

entropy  change i s  direct ly   re la ted  to   the  total   pressure  recovery;   hence,   the  

entropy  change i s  small  in  both  problems and the weak shock  approximation i s  

Val id .  

Based  on the  propert ies   just   c i ted,   the   required  parameters   are   determined by 

the AMSD computer  code a t  each  of  the mesh poin ts ,  from the  fol lowing  re la t ions:  

S W 

s sa 

C 

where : 

' h  P I (zl 

hm = Ew +-  Pm 
P a  

and f i n a l l y   t h e   p r e s s u r e   c o e f f i c i e n t  is evaluated  from 

c -  P - Pa, 
P 2 

f ~ w  Um 
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where : 

C,  local  sound  speed 

C l o c a l   p r e s s u r e   c o e f f i c i e n t  

h ,   l oca l   en tha lpy  

S, entropy 

M, l o c a l  Mach number 

P I  

S u b s c r i p t   i n f i n i t y   n e a r   a n y   p r o p e r t y   r e f e r s   t o   f r e e  stream condi t ions,  

The loca l   angle   o f   a t tack  of the  f low, cye, and  the  local   angle  of s i d e  - 
s l i p  of the  f low, B, are measured in . the   coordinate   system  consis t ing of t h e  

ho r i zon ta l   r e f e rence   l i ne ,   t he   no rma l   l i ne   t o  it in   the   p lane   o f   symnet ry  of 

t h e  body,  and the  coordinate  normal to bo th   l i nes ,  i .e.,  X I ,  y s p  z' i nd ica t ed  

i n  f i g u r e  9. On t h i s   b a s i s  (Y and $ are defined as follows: e 

fix = u 

qy = v COS 8 + XJ S i n  0 

U, = -v  S i n  8 + w Cos 8 

e = tara-lB>(z' 1 
3 ; (z ' ) I  = l o c a l   s l o p e  cf c e n t r a l   a x i s   w i t h  respect t o  

ho r i zon ta l   r e f e rence   l i ne  

The pi4ot   pressure,   PpP  corresponds  to   the  s tagnat ion  pressure  measured 

by a probe whose axis is placed para l le l  t o  the   l oca l   f l ow  d i r ec t ion .  An 

apprcjximation of t he   ac tua l   p iZo t   p re s su re  can be  obtained by caus ing   the  

l o c a l   v e l o c i t y   v e c t o r  t o  go  through a normal shock. The r e l a t i o n  is as 

follows : 

6 2  
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FLOW FIELD IN FUSELAGE CROSS SECTION  PLANE 



APPLICATION OF THE 
EQUIVALENCE  PRINCIPLE TO AN AXISYMMETRIC BODY 

SHOCK  CROSS SECTION 

PLANE OF 
UNSTEADY ANALOGY 

\ BODY  CROSS SECTION 
OF RADIUS a 

SHOCK I I 

' n Z " L P  u n  = 

THREE  DIMENSIONAL STEADY  PROBLEM 
EQUIVALENT 

TWO DIMENSIONAL UNSTEADY PROBLEM 

FIGURE 2 



FLOW FIELD ABOUT AN AXISYMMETRIC BODY 
AT ANGLE  OF  ATTACK 

FIGURE 3 



FLOW REGIONS  ABOUT A BODY MOVING AT 
SUPERSONIC VELOCITY 
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FIGURE 4 



ONE-DIMENSIONAL,  TIME-DEPENDENT  MOTION 
IN  LAGRANGIAN COORDINATES 

PARTICLE TRAJECTORIES IN A 
LAGRANGIAN COORDINATE SYSTEM 

ai a a2 
EULERIAN COORDINATE, x (a, t) 

THERMODYNAMIC  AND  MOMENTUM ZONES FOR 
ONE-DIMENSIONAL  TIME-DEPENDENT  MOTION 

I 

I 
ZONE ZONE 

THERMODYNAMIC THERMODYNAMIC 
I 

1 
I ZONE I 
1 MOME#TUM I 

I 

t 
X x ( ( + - I l  t )  H a , ,  t )  x ($+I 1 t )  

FIGURE 5 



SCHEMATIC DIAGRAM OF A FINITE DIFFERENCE MESH 
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OGIVE-CY LlNDER BODY GEOMETRY 
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FIGURE 7 



SCHEMATIC OF FUSELAGE  CONFIGURATION 

FLOW CONDITIONS 
M, ~ 2 . 5  

Re, =9. I x 1oVft 
a=15" 
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FIGURE 8 



DEFINITION OF FUSELAGE  CROSS-SECTIONAL  PARAMETERS 
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X 

FIGURE 9 
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FINITE DIFFERENCE MESH FOR OGIVE-CYLINDER 
RADIUS 0.01 f t  

CROSS FLOW - 

FIGURE 10 



FINITE DIFFERENCE MESH FOR OGIVE-CYLINDER 
RADIUS 0.046875 f t 

CROSS FLOW - 

FIGURE 11 



FINITE DIFFERENCE MESH AT STA 7.0 

CROSS FLOW - 



FINITE DIFFERENCE MESH AT STA 25.0 

CROSS FLOW - 

FIGURE 13 



VELOCITY  VECTOR  PLOT OF FLOW FIELD 
0.502 MAX BODY DIAMETERS  FROM NOSE 

RADIUS 0.0145 f t  
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COMPARISON OF NUMERICAL AND EXPERIMENTAL LIFT 
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VELOCITY  VECTOR PLOT AT STA 1 . 1  35 
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VELOCITY VECTOR PLOT AT STA 10.0 
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VELOCITY  VECTOR PLOT AT STA 12.0 
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VELOCITY VECTOR PLOT AT STA 17.0 
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VELOCITY  VECTOR  PLOT AT STA 19.6 
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