

IOAN COPY: RETURN TO AFWL (DOUL) KIRTLAND AFB. N M.

# NAMER - A FORTRAN IV PROGRAM 

 FOR USE IN OPTIMIZING DESIGNSOF TWO-LEVEL FACTORIAL EXPERIMENTS GIVEN PARTIAL PRIOR INFORMATION
by Steven M. Sidik
Lewis Research Center
Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D: MARCH 1972


[^0]
## CONTENTS

Page
SUMMARY ..... 1
INTRODUCTION ..... 2
SYMBOLS ..... 3
REVIEW OF BAYES PROCEDURE AND STATEMENT OF COMPUTING PROBLEM ..... 4
ALGORITHM ..... 10
PROGRAM DESCRIPTION ..... 16
Main Program NAMER ..... 17
Subroutine PERM ..... 18
Subroutine REMAX ..... 18
Subroutine LINER ..... 19
INPUT DESCRIPTION ..... 20
OUTPUT DESCRIPTION ..... 23
SPECLAL LEWIS RESEARCH CENTER ROUTINES ..... 24
TIMING INFORMATION ..... 26
APPENDIXES
A - SAMPLE PROBLEM AND PROGRAM OU'TPUT ..... 27
B - FORTRAN LISTING ..... 36
C - PROGRAM SYMBOLS ..... 58
D - PROGRAM GENERAL FLOW DIAGRAM ..... 61
REFERENCES ..... 62

# NAMER - A FORTRAN IV PROGRAM FOR USE IN OPTIMIZING DESIGNS OF two-LEVEL FACTORIAL EXPERIMENTS GIVEN 

PARTIAL PRIOR INFORMATION
by Steven M. Sidik
Lewis Research Center

## SUMMARY

NAMER can be used to find the Bayes procedure for designing two-level fractional factorial experiments given partial prior information. The required prior information is
(1) A statement for each parameter giving a prior probability that it is not zero
(2) A statement of the probability of stopping at each contemplated stopping point
(3) A statement of the value to the experimenter of an unbiased estimate for each parameter
The steps of the design and performance of the experiment may be represented as a finite discrete game between the experimenter and nature. The decision space $E$ for the experimenter consists of the choice of initial defining parameter group, the choice of the sequence or sequences of subgroups that define the telescoping, the choice of physical-design variable matching, and the choice of parameter-estimator matching. The decision space N for nature consists of the choice of which of the parameters are zero and the choice of the stopping point of the experiment. The Bayes procedure maximizes the expected utility over all possible distinct choices of parameter-estimator matchings, physical-design variable matchings, and defining parameter groups for an assumed strategy for nature.

This report presents an algorithm and a computer program entitled NAMER which computes the expected utility of all possible physical-design variable matchings and parameter-estimator matchings for a specified choice of defining parameter groups. The matchings which maximize the expected utilities are saved and printed out. The computational procedure utilizes the group properties of the parameters and the standard ordering. Complete program documentation is presented including sample input and output and a sample problem illustrating the usage (appendix A), program listings (appendix B), a program symbol table (appendix C), and a general flow diagram of the computer program (appendix D).

## INTRODUCTION

The two-level fractional factorial designs represent a class of designs of experiments which yield estimates of first-degree effects and interactions for a small amount of experimentation. The main disadvantage of this class of designs is that the estimates (using linear least-squares estimators) are always estimates of aliased combinations of parameters. To make conclusions about single parameters it is necessary to have some information about the parameters from a source other than the experiment. If such information is available before the experiment is performed, it may be incorporated into the design of the experiment.

There are many situations in practice in which an experimenter may have varying amounts of information concerning the variables he wishes to investigate. Sidik and Holms (ref. 1) have developed some optimal design procedures when the prior information is
(1) A statement for each parameter giving a prior probability that it is not zero
(2) A statement of the probability of stopping at each contemplated stopping point
(3) A statement of the value to the experimenter of an unbiased estimate for each parameter
The steps of the design and performance of the experiment may be represented as a finite discrete game between the experimenter and nature. The decision space $\mathbf{E}$ for the experimenter consists of the choice of initial defining parameter group, the choice of the sequence or sequences of subgroups that define the telescoping, the choice of physical-design variable matching, and the choice of parameter-estimator matching. The decision space N for nature consists of the choice of which parameters are zero and the choice of the stopping point of the experiment.

The Bayes procedure maximizes the expected utility over all possible distinct choices of parameter-estimator matchings, physical-design variable matchings, and defining parameter groups for an assumed strategy for nature.

This report presents an algorithm and a computer program entitled NAMER which computes the expected utility of all possible physical-design variable matchings and parameter-estimator matchings for a specified choice of defining parameter group or groups. The computational procedure utilizes the group properties of the parameters and the standard ordering of the parameters.

The program can handle experiment designs for as many as nine factors and 32 stopping points. The relation among the stopping points is arbitrary so that, by proper input of data, multiply telescoping designs may be considered or as many as 32 singlestage designs may be analyzed simultaneously. The program output gives the physicaldesign variable matchings and the parameter-estimator matchings which are the Bayes decisions. Also those matchings which maximize the expected utility at each individual stopping point are printed out so that a security strategy may be specified.

If an experimental program has already begun so that a physical-design variable matching is specified, NAMER may still be used to change the choices of telescoping options based upon revised prior probabilities of stopping at each stopping point not yet reached.

The algorithm and program are fully described. Listings, sample input and output, and a sample problem illustrating the usage are given.

## SYMBOLS

B
B(h)
h

n
$\mathbf{P}[\mathrm{A}]$
$\operatorname{Pr}(\mathrm{A})$
$\mathrm{p}_{\mathrm{b}}$
$p_{i}$
$p_{s h}$
U

U(h)
$\mathrm{U}(\mathrm{i}, \mathrm{k})$
$u_{i}(h)$
$X_{A}, X_{B}, \cdots$
$\mathrm{X}_{1}, \mathrm{X}_{2}, \cdots \quad$ independent variables (physical)
$\otimes$
Y
$\beta_{\mathbf{I}}, \beta_{\mathbf{A}}, \beta_{\mathbf{B}}, \cdots$
full parameter group denotes stopping point of experiment number of factors (independent variables)
permutation of ordering $A$ probability of event A prior probability of a block effect not being zero probability that $\beta_{\mathbf{i}}$ is not equal to zero, $\operatorname{Pr}\left(\beta_{\mathbf{i}} \neq 0\right)$ parameter group and matching of variables group and matching of variables to $\beta_{\mathrm{k}}, \mathrm{k} \in \mathrm{i} \otimes \mathrm{B}(\mathrm{h})$ independent variables (design)
group operation
dependent (response) variable subgroup of B used at the $h^{\text {th }}$ stopping point of experiment set of standard-order subscripts of elements of $\beta_{\mathbf{i}} \otimes B(h)$ probability experiment will stop exactly at $h^{\text {th }}$ stopping point maximized expected utility over stopping points for a given defining maximized expected utility of $h^{\text {th }}$ stage for a given defining parameter
expected utility gained by assigning estimator for alias set $\beta_{i} \otimes \mathrm{~B}(\mathrm{~h})$
utility assigned to an unbiased estimate of $\beta_{i}$ at $h^{\text {th }}$ stopping point
parameters in a model equation relating design variables to dependent variable
$\beta_{i} \otimes B(h) \quad$ coset (alias set) obtained by multiplying all elements of $B(h)$ by $\beta_{i}$
$\beta_{0}, \beta_{1}, \cdots$ parameters in a model equation relating physical variables to dependent variable
$\delta$ random variable with mean zero and finite variance
$\epsilon \quad$ element of

## REVIEW OF BAYES PROCEDURE AND STATEMENT OF COMPUTING PROBLEM

In a full factorial experiment with $n$ independent variables $X_{A}, X_{B}, \cdots$, each restricted to assuming only two values, there are $2^{n}$ possible distinct combinations of values. It is common practice to say the independent variables can assume either a "high" level or a "low" level. Each of the $2^{n}$ distinct combinations of levels is called a treatment combination. From such an experiment it is possible to estimate the $\beta^{\prime}$ s in an equation of the form
$\mathbf{Y}=\beta_{\mathbf{I}}+\beta_{\mathbf{A}} \mathbf{X}_{\mathbf{A}}+\beta_{\mathbf{B}} \mathbf{X}_{\mathbf{B}}+\beta_{\mathbf{B A}} \mathbf{X}_{\mathbf{B}} \mathbf{X}_{\mathbf{A}}+\beta_{\mathbf{C}} \mathbf{X}_{\mathbf{C}}+\beta_{\mathbf{C A}} \mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{A}}+\beta_{\mathbf{C B}} \mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{B}}$

$$
\begin{equation*}
+\beta_{\mathrm{CBA}} \mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{B}} \mathbf{X}_{\mathrm{A}}+\cdots+\beta \ldots \mathrm{CBA} \cdot \mathrm{X}_{\mathbf{C}} \mathbf{X}_{\mathrm{B}} \mathrm{X}_{\mathrm{A}}+\delta \tag{1}
\end{equation*}
$$

where $\delta$ is a random variable with mean zero and finite variance. (Note that the ordering of the subscripts is the reverse of that normally used. The reason for this will be explained shortly.)

A regular fractional replicate of the full factorial design does not allow separate estimation of all the $\beta^{\prime}$ s. Certain linear combinations of them can be estimated, however. The particular set of linear combinations which can be estimated depends upon the treatment combinations composing the fractional replicate or, equivalently, upon the choice of the design of the experiment. For example, a one-half replicate experiment on four independent variables would provide eight estimators which might be estimators of (depending upon the particular fraction):

$$
\left.\begin{array}{ll}
\left(\beta_{\mathbf{I}}+\beta_{\mathrm{DCBA}}\right) & \left(\beta_{\mathrm{C}}+\beta_{\mathrm{DBA}}\right)  \tag{2}\\
\left(\beta_{\mathrm{A}}+\beta_{\mathrm{DCB}}\right) & \left(\beta_{\mathrm{CA}}+\beta_{\mathrm{DB}}\right) \\
\left(\beta_{\mathrm{B}}+\beta_{\mathrm{DCA}}\right) & \left(\beta_{\mathrm{CB}}+\beta_{\mathrm{DA}}\right) \\
\left(\beta_{\mathrm{BA}}+\beta_{\mathrm{DC}}\right) & \left(\beta_{\mathrm{CBA}}+\beta_{\mathrm{D}}\right)
\end{array}\right\}
$$

From such estimators, nothing can be inferred about any single parameter without making some assumptions about the other parameter in the alias set.

The set of all $2^{n}$ contrasts which provide estimators of the parameters in a full factorial form a group under the appropriate operation. There is a one-to-one mapping from the group of contrasts onto the group B of parameters. Since the point of view of this report is based upon knowledge about parameters, it is more convenient for the development to be in terms of the parameter group. The operation defining a group with respect to the parameters is analogous to that used in the group of contrasts.

With every regular fractional replicate there is associated a defining parameter group (d.p.g.) which can be used to determine the aliased sets of parameters that can be estimated. Conversely, given a d.p.g., there is a regular fractional replicate associated with it.

Holms (ref. 2) and Holms and Sidik (ref. 3) present a technique called telescoping sequences of blocks. This allows an experimenter to perform a factorial experiment in stages, where the starting stage is a small fractional replicate and the final stage is some larger fraction. Each succeeding stage adds treatment combinations to those run in the preceding stages. In order to retain the orthogonality and the orthogonal blocking, each stage must be a power of two times the size of the preceding stage and all the treatments run must form a regular fractional replicate. In what follows, we will restrict ourselves to single telescoping and consider the $h^{\text {th }}$ stopping point to be the $h^{\text {th }}$ stage. In the case of multiple telescoping, this would not be true, in general, for there could be many stopping points in a stage and the relations between groups are more complex. This is not essential to the discussion, however; and we consider single telescoping only to keep the notation simple.

Denote the d.p.g. at the starting stage as $B(1)$ and the d.p.g. at the $h^{\text {th }}$ stage as $B(h)$. If the d.p.g. 's are such that $B(h+1)$ is a subgroup of $B(h)$, the sequence of regular fractional replicates corresponding to them will form a telescoping sequence of blocks under the rules established in Holms and Sidik (ref. 3). At the $\mathrm{h}^{\text {th }}$ stage, the treatment combinations run should form the fractional replicate defined by $B(h)$. The fractional replicate at the $\mathrm{h}+1$ stage can be achieved by adding to the treatment combinations defined by $B(h)$ those treatments in the replicate defined by $B(h+1)$ but not yet performed.

As the experiment progresses through the stages, the number of alias sets increases, while the number of $\beta^{\prime}$ 's in each alias set decreases. If the final stage is the full factorial, each parameter is separately estimable except that certain of the parameters are confounded with blocks. Whether block effects physically exist is a question the experimenter must answer.

It will be convenient at this point to introduce an alternate notation for equation (1). Let the $n$ independent variables be denoted as $X_{1}, \cdots, X_{n}$. Number the $2^{n} \beta^{\prime} s$ of
equation (1) from $\beta_{0}$ to $\beta_{2^{n}-1}$ and consider the following equation which is similar to equation (1):

$$
\begin{equation*}
\mathbf{Y}=\beta_{0}+\beta_{1} \mathbf{X}_{1}+\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{2} \mathbf{X}_{1}+\beta_{4} \mathbf{X}_{3}+\cdots+\beta_{2^{n}-1} \mathbf{X}_{n} \mathbf{X}_{\mathrm{n}-1} \cdots \mathbf{X}_{1}+\delta \tag{3}
\end{equation*}
$$

Equation (1) and equation (3) are both written in what is called the standard order. If the subscripts of the $\beta^{\prime}$ s are rewritten as n-digit binary numbers, it becomes quite obvious how the terms and coefficients of equation (3) are related. For example, let $\mathrm{n}=4$ and consider the following equation, where the subscripts on the $\beta$ 's are written as binary numbers:

$$
\begin{align*}
\mathbf{Y}=\beta_{0}+\beta_{1} \mathbf{X}_{1}+\beta_{10} & \mathbf{X}_{2}+\beta_{11} \mathbf{X}_{2} \mathbf{X}_{1}+\beta_{100} \mathbf{X}_{3}+\beta_{101} \mathbf{X}_{3} \mathbf{X}_{1}+\beta_{110} \mathbf{X}_{3} \mathbf{X}_{2} \\
& +\beta_{111} \mathbf{X}_{3} \mathbf{X}_{2} \mathbf{X}_{1}+\beta_{1000} \mathbf{X}_{4}+\beta_{1001} \mathbf{X}_{4} \mathbf{X}_{1}+\beta_{1010} \mathbf{X}_{4} \mathbf{X}_{2}+\beta_{1011} \mathbf{X}_{4} \mathbf{X}_{2} \mathbf{X}_{1} \\
& +\beta_{1100} \mathbf{X}_{4} \mathbf{X}_{3}+\beta_{1101} \mathbf{X}_{4} \mathbf{X}_{3} \mathbf{X}_{1}+\beta_{1110} \mathbf{X}_{4} \mathbf{X}_{3} \mathbf{X}_{2}+\beta_{1111} \mathbf{X}_{4} \mathbf{X}_{3} \mathbf{X}_{2} \mathbf{X}_{1} \tag{4}
\end{align*}
$$

In general, a $\beta$ whose subscript in binary notation has ones in the $i_{1}, i_{2}, \cdots, i_{k}$ locations from the right is the coefficient of the $\mathrm{X}_{\mathrm{i}_{1}} \mathrm{X}_{\mathrm{i}_{2}} \cdot \cdot \mathrm{X}_{\mathrm{i}_{\mathrm{k}}}$ interaction.

The set of all $2^{n}$ coefficients or parameters form a group B under the appropriate operation. In the alphabetic notation this operation $\otimes$ is simply commutative multiplication of the letter subscripts with the exponents reduced modulo 2. In the binary notation the operation may also be denoted $\otimes$ and defined as

$$
\begin{equation*}
\beta_{\mathrm{m}} \otimes \beta_{\mathrm{k}}=\beta_{\mathrm{m}_{\mathrm{n}} \mathrm{~m}_{\mathrm{n}-1}} \cdots \mathrm{~m}_{1} \otimes \beta_{\mathrm{k}} \mathrm{k}_{\mathrm{n}-1} \cdot \cdot \mathrm{k}_{1}=\beta_{\mathrm{d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}-1}} \cdots \mathrm{~d}_{1} \tag{5}
\end{equation*}
$$

where $d_{i}=\left(\mathrm{k}_{\mathrm{i}}+\mathrm{m}_{\mathrm{i}}\right)(\bmod 2)$. Thus $\beta_{\mathrm{CBA}} \otimes \beta_{\mathrm{DCB}}=\beta_{\mathrm{DC}^{2} \mathrm{~B}^{2} \mathrm{~A}}=\beta_{\mathrm{DA}}$, and $\beta_{0111} \otimes$ $\beta_{1110}=\beta_{1001}$. The defining parameter groups that define the fractional replicates at the various stopping points are subgroups of $B$. The aliased sets of parameters at each stopping point are the cosets of $B(h)$, which will be denoted $\beta_{i} \otimes B(h)$.

The principal reason for introducing these notations is that one major problem of finding an optimal design is one of finding an optimal matching of design variables to the physical variables of the particular experiment. The physical variables in an experiment will be denoted as $X_{1}, X_{2}, \cdots, X_{n}$. It is assumed that the experimenter decides that these are the only independent variables to be investigated. Each $X_{i}$ represents one of the physical variables and is fixed for the remainder of the experiment. For example,

$$
\begin{gathered}
\mathrm{x}_{1}=\text { Temperature } \\
\mathrm{X}_{2}=\text { Time } \\
\vdots \\
\mathrm{x}_{\mathrm{n}}=\text { Velocity }
\end{gathered}
$$

The design variables will be denoted as $X_{A}, X_{B}, X_{C}$, . . and so forth. These variables represent abstractions, and tables exist which tabulate experimental designs in terms of these design variables. When an experimenter consults one of these tables and chooses a design, he must then determine a matching of the design variables and the physical variables. Ordinarily the choice is arbitrary because the experimenter usually does not have prior information available which would indicate that one matching might be preferred to another. A combination of choices of d.p.g. 's, physical-design variable matching, and parameter-estimator matching completely specifies for the experimenter how to proceed with his experiment and estimation of parameters. Hence, such a combination of choices will be called a DESIGN.

Sidik and Holms (ref. 1) present an analysis of choosing a best DESIGN under the following conditions:
(1) For each $\beta_{i}$ of equation (3), the experimenter can specify the probability that $\beta_{i}$ is not equal to zero, $p_{i}=\operatorname{Pr}\left(\beta_{i} \neq 0\right)$.
(2) For each $h$ denoting a possible stopping point of the experiment, the experimenter can specify the probability of stopping exactly at the $h^{\text {th }}$ stopping point, $p_{\text {sh }}$.
(3) For each $\beta_{i}$ of equation (3) and each $h$, the experimenter can specify the value to him of obtaining an unbiased estimate of $\beta_{i}$. This is denoted by $u_{i}(h)$.

None of the $\beta^{\prime}$ 's may be separately estimated from a fractional factorial experiment unless some assumptions about certain of the $\beta^{\prime}$ s are introduced. Conditions (1) and (3) provide assumptions that will enable the experimenter to assign the estimator for an alias set to a single parameter from the alias set and evaluate the consequences of this.

Changing the matching of physical and design variables will usually change the alias sets. For example, if the matching for $n=4$ is

$$
\begin{aligned}
& \mathrm{x}_{1}=\mathrm{x}_{\mathrm{A}} \\
& \mathrm{x}_{2}=\mathrm{x}_{\mathrm{B}} \\
& \mathrm{X}_{3}=\mathrm{x}_{\mathrm{C}} \\
& \mathrm{x}_{4}=\mathrm{x}_{\mathrm{D}}
\end{aligned}
$$

then the alias set $\left(\beta_{\mathrm{A}}, \beta_{\mathrm{B}}, \beta_{\mathrm{DBA}}, \beta_{\mathrm{D}}\right)$ is mapped into $\left(\beta_{0001}, \beta_{0010}, \beta_{1011}, \beta_{1000}\right)=$ $\left(\beta_{1}, \beta_{2}, \beta_{11}, \beta_{8}\right)$. But the matching

$$
\begin{aligned}
& x_{1}=x_{B} \\
& x_{2}=x_{A} \\
& x_{3}=x_{D} \\
& x_{4}=x_{C}
\end{aligned}
$$

maps $\left(\beta_{\mathrm{A}}, \beta_{\mathrm{B}}, \beta_{\mathrm{DBA}}, \beta_{\mathrm{D}}\right)$ into $\left(\beta_{0010}, \beta_{0001}, \beta_{0111}, \beta_{0100}\right)=\left(\beta_{2}, \beta_{1}, \beta_{7}, \beta_{4}\right)$.
Before considering how best to match physical and design variables, let us assume that some such matching has been made. Then consider the problem of matching estimators and parameters at the $h^{\text {th }}$ stopping point. The d.p.g. is $B(h)$ and the alias sets are all those distinct cosets of the form $\beta_{\mathrm{i}} \otimes \mathrm{B}(\mathrm{h})=\left\{\beta_{\mathrm{i}_{1}}, \beta_{\mathrm{i}_{2}}, \ldots, \beta_{\mathrm{i}_{\mathrm{m}}}\right\}$. If the parameter $\beta_{\mathrm{k}} \epsilon \beta_{\mathrm{i}} \otimes \mathrm{B}(\mathrm{h})$ and the estimator for that alias set is assigned to $\beta_{\mathrm{k}}$, then, assuming independence, the prior probability that the estimator will be unbiased is


Since $u_{i}(h)$ is the utility of an unbiased estimate of $\beta_{i}$ at the $h^{\text {th }}$ stopping point,

$$
\begin{equation*}
\mathrm{U}(\mathrm{i}, \mathrm{k})=\mathrm{u}_{\mathrm{k}}(\mathrm{~h}) \prod_{\mathrm{j} \in \mathrm{i} \otimes \mathrm{~B}(\mathrm{~h})}^{\mathrm{j} \neq \mathrm{k}} \mid{ }^{\left(1-p_{j}\right)} \tag{6}
\end{equation*}
$$

is the expected utility of the decision to assign the estimator for the alias set $\beta_{\mathrm{i}} \otimes \mathrm{B}(\mathrm{h})$ to the parameter $\beta_{\mathrm{k}}$. Thus the Bayes strategy is to assign the estimator to the parameter of the alias set which maximizes this expected utility. One case deserves special mention.

Suppose an estimator is confounded with a block effect. It may be safely assumed that an unbiased estimate of a block effect has no utility to the experimenter. Let the prior probability of the block effect being nonzero be denoted by $\mathrm{p}_{\mathrm{b}}$. Then this information can be incorporated into the decision procedure by computing the expected utility as

$$
\begin{equation*}
U(i, k)=u_{k}(h)\left[\prod_{\substack{j \in i \otimes \in B(h) \\ j \neq k}}\left(1-p_{j}\right)\right]\left(1-p_{b}\right) \tag{7}
\end{equation*}
$$

where $p_{b}=\operatorname{Pr}$ (the block effect does not equal 0 ).
With respect to block effects, it is important to note that, depending upon how the block parameters are defined, the estimator for the d.p.g. may also be confounded with blocks. Let $U\left(i, k_{\max }\right)=\max [U(i, k): k \in i \otimes B(h)]$, where the $U(i, k)$ are computed as in equation (6) or equation (7), as appropriate. Then, for the assumed physical-design variable matching and the given d.p.g., the maximized expected utility at the $h^{\text {th }}$ stopping point may be denoted by

$$
\begin{equation*}
\mathrm{U}(\mathrm{~h})=\sum \mathrm{U}\left(\mathrm{i}, \mathrm{k}_{\max }\right) \tag{8}
\end{equation*}
$$

where the summation is over all the distinct cosets at the $h^{\text {th }}$ stopping point. By condition (2) (p. 7) it is also assumed that the experimenter can specify the probabilities of stopping exactly at each of the stopping points. Thus,

$$
\begin{equation*}
\mathrm{U}=\sum_{\mathrm{h}} \mathrm{p}_{\mathrm{sh}} \mathrm{U}(\mathrm{~h}) \tag{9}
\end{equation*}
$$

represents the maximized expected utility of the resulting DESIGN.
The Bayes procedure for choosing an optimal DESIGN is to compute the expected utility for each choice of DESIGN and then use any one which yields a maximum expected utility. This can be done by computing $U$ as defined in equation (9) for each choice of physical-design variable matching and all possible distinct (that is, not equivalent under a permutation of letters) choices of d.p.g. 's. NAMER computes $U$ for all possible physical-design variable matchings for a specified set of d.p.g.'s. Repeated application of NAMER to different choices of d.p.g. 's would then allow the experimenter to carry out the full Bayes procedure if he wished. Thus the computing problem is that of mechanizing the evaluation of $U$ for all the matchings of design variables to physical variables.

## ALGORITHM

The generation and evaluation of all the matchings of the physical and design variables present two computing problems. The first problem is the generation of all the matchings. This really amounts to computing all permutations of the design variables. The second problem is that of evaluating any given permutation.

The information necessary to evaluate a particular matching is (1) what parameters are in the alias sets, (2) the prior probabilities of the parameters, (3) the utility of unbiased estimates of each parameter, (4) the alias sets confounded with blocks, and (5) the prior probabilities of each block parameter not being zero. The computing procedure used by NAMER uses the group properties of the parameters and binary notation for the subscripts of the parameters. The parameters arranged in the standard order are uniquely identified by the standard-order subscript. Thus, arrays called PROB and UTIL may be set up such that the $J^{\text {th }}$ entries are $p_{J-1}$ and $u_{J-1}$, respectively. Also, arrays called BLOCK and PBLOCK may be set up which indicate the alias sets confounded with blocks and the probabilities associated with them. Then when information about $\beta_{J}$ is needed to compute the expected utilities of equation (6) or (7), it can be immediately retrieved.

For the remainder of this discussion consider only a single stopping point since the following procedure will simply be repeated for each stopping point: To determine the alias sets, the d.p.g. must be known. Suppose the d.p.g. is stored in an array called DPG. The numbers in the array DPG are the standard-order subscripts of the parameters in the d.p.g. when the standard order is computed with respect to the design variables. For example, suppose the d.p.g. for the stopping point under consideration is $\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{CBA}}, \beta_{\mathrm{DCB}}, \beta_{\mathrm{DA}}\right\}$, and the matching to be evaluated is

$$
\begin{aligned}
& \mathrm{X}_{1}=\mathrm{X}_{\mathrm{A}} \\
& \mathrm{X}_{2}=\mathrm{X}_{\mathrm{C}} \\
& \mathrm{X}_{3}=\mathrm{X}_{\mathrm{B}} \\
& \mathrm{X}_{4}=\mathrm{X}_{\mathrm{D}}
\end{aligned}
$$

Then the set of standard-order subscripts would be $\{0000,0111,1110,1001\}$ or $\{0$, $7,14,9\}$. Since the d.p.g. must always contain the identity or $\beta_{\mathrm{I}}$, this is redundant information to store. Hence, the numbers which should be stored in DPG are 7, 14, and 9.

The operation $\otimes$ defined by equation (5) can be defined by the Exclusive Or (IEXOR) function (defined on p .24 ), which is available in almost all computing languages. Thus to identify the alias set corresponding to any specified parameter, say $\beta_{\mathrm{J}}$, all that is needed is to compute the Exclusive Or between $J$ and each number in DPG. The result will be the standard-order subscripts of the parameters aliased with $\beta_{J}$.

If we specify that the numbers in BLOCK are the standard-order subscripts (with respect to the design variables) of one parameter from each of the alias sets confounded with blocks and that the respective elements of PBLOCK are the prior probabilities of the block parameters, then the same use of Exclusive Or can be applied. For example, suppose the d.p.g. under consideration is that given previously, $\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{CBA}}, \beta_{\mathrm{DCB}}\right.$, $\left.\beta_{\mathrm{DA}}\right\}$. Also suppose it is known that $\left\{\beta_{\mathrm{BA}}, \beta_{\mathrm{C}}, \beta_{\mathrm{DCA}}, \beta_{\mathrm{DB}}\right\}$ and $\left\{\beta_{\mathrm{DC}}, \beta_{\mathrm{DBA}}, \beta_{\mathrm{B}}\right.$, $\left.\beta_{\mathrm{CA}}\right\}$ are each confounded with block parameters with prior probabilities of 0.50 . Then one element from each of the two alias sets may be chosen to represent it. Suppose they are $\beta_{\mathrm{BA}}$ and $\beta_{\mathrm{DC}}$. Then BLOCK(1) should be set to 11$)_{2}=3$, and $\operatorname{BLOCK}(2)$ should be set to 1100$)_{2}=12$; and $\operatorname{PBLOCK}(1)=\operatorname{PBLOCK}(2)=0.50$.

It is now an easy task to compute the expected utilities of equations (6) and (7). It remains to find all the distinct alias sets in some economical manner. To do so, set up an array denoted T 1 which is $2^{\mathrm{n}}$ words long. This will be used as an indicator array to indicate if a parameter has been found in an alias set so far. Begin the computation for the stopping point by setting $U(h)=0.0$ and initializing the $T 1$ array to some value, say zero.

For each block effect set the element given by BLOCK in $\mathbf{T 1}$ to some indicator value not equal to the initialization value, say IRUN; and compute the Exclusive Or of that element and every value in DPG. This will yield the standard-order subscripts of all the parameters in the alias set. To indicate that these parameters have been identified as members of an alias set, set the locations of $T 1$ corresponding to these parameters equal to IRUN. These standard-order subscripts and the value in PBLOCK indicate where to find the probabilities and utilities necessary for making the optimal estimatorparameter matching according to equation (7). Compute the expected utilities, identify the maximum, and add this value to $\mathrm{U}(\mathrm{h})$.

Now begin searching T1 until a value not equal to IRUN is found. Suppose the subscript of this value is $K$. Then compute the EXOR of K-1 with each number in DPG. Along with K-1 itself, this will yield the standard-order subscripts of all parameters in the alias set containing $\beta_{\mathrm{K}-1}$. To indicate that these parameters have been identified as members of an alias set, set the locations of T1 corresponding to these parameters equal to IRUN.

These standard-order subscripts provide the information needed to find the probabilities and utilities necessary for making the optimal estimator-parameter matching. Compute the expected utilities, identify the maximum, and add this value to $\mathrm{U}(\mathrm{h})$.

Now continue searching T1 from the location $K+1$ for another value not equal to IRUN. This will find the next parameter in the standard order which has not yet appeared in an alias set. Thus, the preceding evaluation procedure should be repeated until the end of the T 1 array is reached. At that point, all the distinct alias sets will have been identified and evaluated once and only once. The value of $U(h)$ will then be the total maximized expected utility for the $h^{\text {th }}$ stopping point corresponding to the optimal estimator-parameter matchings for the current physical-design variable matching. This same procedure is simply repeated for each stopping point and then $U=\sum p_{\text {sh }} U(h)$ may be calculated. The matchings of physical-design variables which provide the largest values of $U(h)$ and $U$ may be kept updated in several arrays. Then when all the permutations are completed, the optimal matchings will be available.

What must now be developed is a procedure for generating all the matchings of physical to design variables in some economical manner. Since all the permutations are to be evaluated, the result does not depend upon which matching is done first or in what order they are generated. Thus the starting permutation and the order of generation may be whatever is most convenient computationally. A simple convention used in NAMER is to begin with the matching

$$
\begin{gathered}
\mathrm{X}_{1}=\mathrm{X}_{\mathrm{A}} \\
\mathrm{X}_{2}=\mathrm{X}_{\mathrm{B}} \\
\cdot
\end{gathered}
$$

The distinction has been made previously that the alphabetic subscripts are for the design variables and the numeric subscripts for the physical variables. Thus the preceding starting convention has both sets of variables in the standard ordering. Suppose the d.p.g. at a given stopping point is $\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{CBA}}, \beta_{\mathrm{DCB}}, \beta_{\mathrm{DA}}\right\}$. Then for the matching

$$
\left.\begin{array}{l}
x_{1}=x_{A}  \tag{10}\\
x_{2}=x_{B} \\
x_{3}=x_{C} \\
x_{4}=x_{D}
\end{array}\right\}
$$

the DPG array contains 0111 for $\left(\beta_{\mathrm{CBA}}\right), 1110$ for $\left(\beta_{\mathrm{DCB}}\right)$, and 1001 for $\left(\beta_{\mathrm{DA}}\right)$. To
evaluate a different matching, say

$$
\left.\begin{array}{c}
x_{1}=x_{A} \\
x_{2}=x_{C} \\
x_{3}=x_{D}  \tag{11}\\
x_{4}=x_{B}
\end{array}\right\}
$$

the DPG array should contain 1011 for ( $\beta_{\mathrm{CBA}}$ ), 1110 for ( $\beta_{\mathrm{DCB}}$ ), and 0101 for ( $\beta_{\mathrm{DA}}$ ). The latter DPG can be derived from the former by permuting the binary digits according to the same permutation that gives the ordering $X_{B}, X_{D}, X_{C}, X_{A}$ starting with $X_{D}, X_{C}$, $X_{B}, X_{A}$. Recall that the binary digits are numbered from right to left. Thus the different matchings of variables can be achieved by constructing all the $n$ : permutations of the rightmost $n$ binary bits in the numbers in DPG. The same procedure applies to the BLOCK array for the same reasons.

Ord-Smith (ref. 4) has presented a survey of a number of possible permutation algorithms. Of these, the best for the purposes of NAMER is the one by Trotter (ref. 5). Trotters' algorithm computes all the permutations as a sequence of adjacent transpositions. To see why this is best, consider how to achieve the permutation of the binary bits by means of arithmetic and logical machine operations. Let $M$ be the number to be changed and express it in binary as $M=m_{n} m_{n-1} . . m_{j} m_{j-1} . . m_{1}$ and suppose the digits $m_{j}$ and $m_{j-1}$ are to be transposed. Compute

$$
\begin{aligned}
& \begin{array}{rlllllll}
\mathrm{n} & & & & \mathrm{j} & \mathrm{j}-1 & 1 \\
\mathrm{~J}
\end{array}=\operatorname{AND}\left(\begin{array}{llll}
0 & 0 & 0
\end{array}\right) \\
& \mathrm{n} \quad \mathrm{j} \quad \mathrm{j}-1 \\
& K=\operatorname{AND}(1 \quad 1 \quad 1 \ldots 0 \quad 0 \ldots 1, M) \\
& \mathrm{I}=\mathbf{I} / \mathbf{2} \\
& \mathrm{J}=\mathrm{J} * 2 \\
& M=I+J+K=m_{n} m_{n-1} \cdots m_{j-1} m_{j} \cdots m_{1}
\end{aligned}
$$

Notice that the shifting of the digits $\mathrm{m}_{\mathrm{j}}$ and $\mathrm{m}_{\mathrm{j}-1}$ is accomplished by the multiplication and division by 2. If the permutations were not the result of transpositions of adjacent digits, a more general shift function would be needed or the use of powers of 2 would be needed. These would take more time to execute and/or more logic to control than the current method. This is an important consideration since the computing of the permutations accounts for a substantial portion of the computing job.

A third major problem involved in the program is that of providing the necessary output from the calculations in an economical and useful manner. To explain what NAMER does it will be convenient to introduce some notations for, and properties of, permutations. Let $A$ denote the set of the first $n$ letters of the alphabet arranged in order; that is, $A=\{A, B, C, D, .$.$\} . Let an ordering of A$ be the set of the first n letters of the alphabet arranged in some arbitrary order. Let a permutation on A or any particular ordering of $A$ be a function denoted as

$$
P=\left(\begin{array}{lllll}
1 & 2 & 3 & \cdots & \cdots  \tag{12}\\
i_{1} i_{2} i_{3} & \cdots & \cdots & i_{n}
\end{array}\right)
$$

which means to take the $j^{\text {th }}$ element of the ordering and make it the $i_{j}^{\text {th }}$ element for $\mathrm{j}=1,2$, . . . n. Thus a permutation is a function which maps the set of all possible orderings of A one-to- one onto itself. Since the upper line of equation (12) is redundant, the notation for $P$ is often reduced to $P=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$.

A transposition is a permutation which interchanges exactly two elements of $A$. Any permutation can be expressed as a product of transpositions of the form ( $1, \mathrm{i}_{1}$ ) $\left(2, i_{2}\right) \ldots\left(n, i_{n}\right)$. Here $\left(j, i_{j}\right)$ is an abbreviated notation for

$$
\left(\begin{array}{lllllllll}
1 & 2 & \cdots & \cdot & \cdots & i_{j} & \cdots & n \\
1 & 2 & \cdots & i_{j} & \cdots & \cdots & \cdots & \ldots
\end{array}\right)
$$

The product of transpositions may be expressed as a transposition vector $\left\langle i_{1}, \ldots, i_{n}\right\rangle$. As an illustration note

$$
\begin{aligned}
P & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 2 & 4
\end{array}\right) \\
& =(1,3)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 2 & 4
\end{array}\right) \\
& =(1,3)(2, \\
& 3)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 5 & 3 & 4
\end{array}\right) \\
& =(1,3)(2,3)(3,5)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 5
\end{array}\right) \\
& =(1,3)(2,3)(3,5)(4,5)(5,5)=\langle 3,3,5,5,5\rangle
\end{aligned}
$$

Then $P[A B C D E]=[B D A E C]$ directly and

$$
\begin{aligned}
(1,3)(2,3)(3,5)(4,5)(5,5)[\mathrm{ABCDE}] & =(1,3)(2,3)(3,5)(4,5)[\mathrm{ABCDE}] \\
& =(1,3)(2,3)(3,5)[\mathrm{ABCED}] \\
& =(1,3)(2,3)[\mathrm{ABDEC}] \\
& =(1,3)[\operatorname{ADBEC}] \\
& =[\mathrm{BDAEC}]
\end{aligned}
$$

as a sequence of transpositions. This illustrates the equivalence of the two ways of expressing $P$. It is obvious that the permutation expressed as a product of transpositions is most convenient for this computer application. Let NDPG be the number of defining parameter groups. Then the orderings $\mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{NDPG}+1}$ which yield the largest overall expected utility $\left(\mathrm{O}_{1}\right)$ and the largest utilities at each stopping point $\left(\mathrm{O}_{2}, \ldots\right.$, , $\mathrm{O}_{\mathrm{NDPG}+1}$ ) are the information the statistician seeks.

The program included in this report does not print all the information for every permutation since this would be much too large a volume of output. All that is saved are the orderings $\mathrm{O}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, \mathrm{NDPG}+1)$. The initial letter-factor matching is the assignment of the $i^{\text {th }}$ letter of the alphabet to $i$. After all the permutations are performed and evaluated, the program returns the order of the letters and the d.p.g. 's to their original state.

Then permutations $P_{i}$ must be found to effect reorderings upon $A=\{A, B, C, D$, E, ...\} to achieve $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots \mathrm{O}_{\mathrm{NDCG}+1}$ in some efficient manner. Let

$$
\begin{aligned}
& \mathrm{P}_{1}[\mathrm{~A}]=\mathrm{O}_{1} \\
& \mathrm{P}_{2}[\mathrm{~A}]=\mathrm{P}_{2}\left[\mathrm{P}_{1}^{-1}\left[\mathrm{P}_{1}[\mathrm{~A}]\right]\right]=\mathrm{O}_{2} \\
& \mathrm{P}_{\mathrm{i}}[\mathrm{~A}]=\mathrm{P}_{\mathrm{i}}\left[\mathrm{P}_{\mathrm{i}-1}^{-1}\left[\mathrm{P}_{\mathrm{i}-1}[\mathrm{~A}]\right]\right]=\mathrm{O}_{\mathrm{i}}
\end{aligned}
$$

and define $\mathrm{O}_{0}=\mathrm{A}, \mathrm{P}_{0}=(1,2, \ldots, \mathrm{M})$. Then the sequence of permutations $\mathbf{P}_{\mathrm{i}}\left[\mathbf{P}_{\mathbf{i}-1}^{-1}\left[\mathbf{O}_{\mathrm{i}-1}\right]\right]$ should be determined. If $\mathbf{P}=\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$, then $\mathbf{P}^{-1}=\left(\mathrm{r}_{1}, \ldots\right.$, $r_{m}$ ), where $r_{p_{i}}=i$. That is, $r_{j}$ is the subscript of the location in $P$ which contains $j$. If $Q=\left(q_{1}, \ldots, q_{m}\right)$ and $P^{-1}=\left(r_{1}, \ldots, r_{m}\right)$, then $Q P^{-1}=\left(s_{1}, \ldots, s_{m}\right)$, where $s_{i}=q_{r_{i}}$. That is, to get $s_{j}$, find the character in the $j^{\text {th }}$ position of $P^{-1}$ and then go to that location in $Q$ to find $s_{j}$. Putting the two operations together - if

$$
\begin{aligned}
& \mathbf{P}=\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right) \\
& \mathbf{Q}=\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right)
\end{aligned}
$$

then

$$
\mathrm{QP}^{-1}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}\right)
$$

where $s_{i}=q_{r_{i}}$. That is, find the subscript of the location in $P$ which contains $i$ and go to that location of $Q$ to find $s_{i}$.

## PROGRAM DESCRIPTION

The NAMER program is composed of the main program NAMER and five subroutines: BLOK, LINER, PERMUT, REMACH, and RECT. They will be discussed in some detail after the following brief descriptions:

Program name
NAMER • Main program

| BLOK |  |
| :--- | :--- |
| PERM | PERMUT |
| REMAX | REMACH |
|  |  |
| LINER | LINE |

ERECT RECT

Purpose
Input; evaluation of each permutation; identifies and and saves optimal matchings; overall program control.

Block data subprogram.
Determines permutations and permutes DPG and BLOCK arrays.

Achieves rematchings of physical-design variables; outputs detailed description of matchings of physical-design variables and estimatorsparameters by appropriate calls to LINE and ALINE.

Prints one line of output identifying an estimable parameter and the utility of the assignment of the estimator to the parameter.

If two or more members of an alias set are tied for maximum utility, ALINE identifies the remainder not printed by LINE.

Prints summary output table of the Bayes matching of physical to design variables, the optimal matchings for each stopping point, and the utilities.

## Main Program NAMER

NAMER is the main program and is divided into 16 major sections, as indicated by the comments cards in the listing.

Sections 1 to 10. - Read and write input information.
Section 11. - This section is the heart of the program, where each d.p.g. is evaluated and its contribution to the total expected utility computed for a given permutation of the letters. The section is divided into two subsections, 11A and 11B. Section 11A chooses the parameter-estimator matching for the alias sets which are confounded with blocks. Section 11B does the same for the remainder of the alias sets. The computations for IUTILF $=1,2$ are less complicated than those for IUTILF = 3, 4, 5. Thus these cases are separated in the program. See section 7 of the input description for further explanation of IUTILF.

Section 12. - The expected utility of this ordering (PBAYEX) and the expected utilities at the stopping points (PSUMX(-)) are compared to the best utilities to this point (PBAYES AND PSUM(-)). If any one or more is larger than the best so far, the current appropriate utility is placed in PBAYES or PSUM(-) and the ordering (indicated by the contents of IALPHA(-)) is saved in ISAVEP(-, I). The convention is that $\operatorname{ISAVEP}(-, 1)$ saves the ordering which gave the best weighted utility and ISAVEP(-, I + 1) saves the ordering which gave the best utility for the $I^{\text {th }}$ d.p.g.

Section 13. - This section permutes the current letter-variable relation for the appropriate class or classes. If all possible distinct permutations have been realized, control passes to section 16. If not all permutations have been realized, control passes to section 14.

Section 14. - If current execution time exceeds that allowed, go to section 15. Otherwise go to section 11 to evaluate the current ordering.

Section 15. - All essential information is punched on cards to permit a restart of this case on another computer run beginning with the current ordering.

Section 16. - Print current clock time and call REMACH.

## Subroutine PERM

This subroutine uses a FORTRAN translation of Trotter's routine (ref. 5) to permute the elements in an array as a sequence of transpositions of adjacent elements. The first two blocks are the logic which determines which two adjacent elements are to be transposed. The third block (beginning with line 44) is where the arrays IALPHA, DPG, and BLOCK are actually permuted.

## Subroutine REMAX

This subroutine uses the information saved in section 12 of NAMER to recompute the utilities of the optimal matchings.

Section 1. - At this point, the DPG and BLOCK arrays contain the same values they had as initial input data. The permutation required to achieve the first optimal ordering is computed and stored in KPERM(-).

Section 2. - Write the letter-variable matching.
Sections 3 and 4. - Translate permutation vector into transposition vector, and permute BLOCK and DPG arrays.

Section 5. - Performs same function as section 11 of NAMER except that calls to LINE and ALINE are made as appropriate.

Section 6. - Output overall expected utility and expected utilities for each d.p.g. Section 7. - Compute next permutation and shift to section 2.
To illustrate sections 1, 3, and 7 of REMAX consider the following example:

$$
\begin{aligned}
& \mathrm{O}_{1}=\left[\begin{array}{llll}
4 & 1 & 3 & 2
\end{array}\right]=\mathrm{P}_{1}[\mathrm{~A}] \\
& \mathrm{O}_{2}=\left[\begin{array}{lllll}
3 & 4 & 1 & 5 & 2
\end{array}\right]=\mathrm{P}_{2}[\mathrm{~A}] \\
& \mathrm{O}_{3}=\left[\begin{array}{lllll}
4 & 1 & 3 & 2 & 5
\end{array}\right]=\mathrm{P}_{3}[\mathrm{~A}] \\
& \mathrm{O}_{4}=\left[\begin{array}{lllll}
4 & 3 & 2 & 1 & 5
\end{array}\right]=\mathrm{P}_{4}[\mathrm{~A}] \\
& \mathrm{O}_{5}=\left[\begin{array}{lllll}
1 & 4 & 5 & 2 & 3
\end{array}\right]=\mathrm{P}_{5}[\mathrm{~A}]
\end{aligned}
$$

The sequence of values is as follows:

| Sequence | KPERM | KKSAVE | K2CYCL | Ordering |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{P}_{1}=(24315)$ | $\mathrm{P}_{1}=(24315)$ | $\{24345\}$ | $[41325]$ |
| 2 | $\mathrm{P}_{2}=(35124)$ |  |  |  |
| 3 | $\mathrm{P}_{2} \mathrm{P}_{1}^{-1}=(23154)$ | $\mathrm{P}_{2}=(35124)$ | $\{23355\}$ | $[34152]$ |
| 4 | $\mathrm{P}_{3}=(24315)$ |  | $(31254)=\mathrm{P}_{3} \mathrm{P}_{2}^{-1}$ |  |
| 5 | $\mathrm{P}_{3} \mathrm{P}_{2}^{-1}=(31254)$ | $\mathrm{P}_{3}=(24315)$ | $\{33355\}$ | $[41325]$ |
| 6 | $\mathrm{P}_{4}=(43215)$ |  |  |  |
| 7 | $\mathrm{P}_{4} \mathrm{P}_{3}^{-1}=(14235)$ | $\mathrm{P}_{4}=(43215)$ | $\{14445\}$ | $\{43215]$ |
| 8 | $\mathrm{P}_{5}=(14523)$ |  |  |  |
| 9 | $\mathrm{P}_{5} \mathrm{P}_{4}^{-1}=(25413)$ | $\mathrm{P}_{5}=(14523)$ | $\{25455\}$ | $[14523 \mid$ |

## Subroutine LINER

This is a double-entry subroutine with entry points LINE and ALINE. LINE is called by output once for each alias set. The entries of the calling vector are the standard-order subscript number of the parameter in the alias set to which the estimator should be assigned and the expected utility of that assignment. The standardorder subscript is then used to identify the parameter in terms of the interaction of the independent variables it measures. This identification is then printed in numerical form and in Hollerith form using the first six characters of each factor identification card. The utility is also printed.

ALINE is called whenever there are two or more parameters aliased which give the same maximized expected utility. The call to LINE causes one of the aliased parameters to be identified and the expected utility of the estimator to be printed. The call to ALINE causes the remaining parameters to be identified. They are, however, identified only by the numerical form of their interaction.

## INPUT DESCRIPTION

The following is a detailed description of the input data necessary to run a problem. There are nine basic sets of input data. Each is described in detail here. An example of the type of problem to which this program may be applied is given in reference 1 and a similar problem is discussed in appendix A. A sample set of data for this problem is given in table I. A pictorial illustration of the input deck setup is given in figure 1. Multiple cases may be run back-to-back. The last card of the last case should have ENDALL punched in the first six columns.

The nine basic sets of input data are as follows:
(1) IDENTIFICATION (13A6, A2) (IDENT). This is one card; all 80 columns are used for Hollerith identification of problem.
(2) MAXIMUM TIME (F6.0) (TMAXX). This is the maximum machine time in minutes permitted for this case. If this time is exceeded and the case is not fully evaluated, all pertinent information is punched on cards to permit a restart of the program.
(3) TYPE OF RUN (16) (ITYPRN).
(3A) SPECIFIED MATCHING (9A1) (XT3). A " 1 " for ITYPRN indicates this is a regular first-time run and data sets 4 to 9 will be read. A ' 2 ' indicates this is a restarted case and only those cards punched by the previous run need be read. A " 3 " indicates that only one matching will be evaluated. This matching is specified on the 3A card with the first $n$ letters of the alphabet (excluding I) in the first $n$ columns of the card in the order appropriate to the matching desired.

For example, if to indicate an evaluation of the following matching is desired

$$
\begin{aligned}
& \mathrm{X}_{1}=\mathrm{X}_{\mathrm{B}} \\
& \mathrm{X}_{2}=\mathrm{X}_{\mathrm{A}} \\
& \mathrm{X}_{3}=\mathrm{X}_{\mathrm{D}} \\
& \mathrm{X}_{4}=\mathrm{X}_{\mathrm{C}}
\end{aligned}
$$

one card would be supplied with BADC in the first four columns.
(4) NUMBER OF FACTORS (16) (NFAC). Up to nine factors can be considered.
(5) FACTOR IDENTIFICATIONS (13A6, A2) (FAC). One card for each factor. The first six characters of each card are used as output identification, so they should serve as useful abbreviations.
(6) NUMBER OF CLASSES (16) (NCLASS).
(6A) NUMBER IN EACH CLASS (916) (NSUBI). NCLASS is the number of classes of factors. If this is 1 , input set 6 A is not read. If the number of classes is more than one, card 6A specifies the number of factors in each class. The factors within a class will be permuted among each other, but permutations between classes will not be permitted. The first NSUBI(1) factors will be assumed to belong to the first class, the next NSUBI(2) to the second class, and so forth. Holms and Sidik (ref. 6) present an experiment in which there are two classes of variables which could not be mixed. Most experiments have only one class.
(7) NUMBER OF NONZERO PROBABILITIES, UTILITY FUNCTION, AND CONSTANT (NPIN, IUTILF, UCOEF) (2I6, F10.9). The number of parameters with nonzero prior probabilities is specified in the first six columns. The choice of utility function is indicated in the second six columns. UCOEF is used in defining utility function 5 and is given in the next 10 columns. Each parameter with a nonzero prior probability or utility is identified in terms of the integer subscripts of the independent variables in the interaction with which it is associated. See the input set (8) description for further information. The possible choices of utility function here are
(a) IUTILF = 1

$$
u_{i}=\left\{\begin{array}{l}
1.0 \text { for unbiased estimators } \\
0.0 \text { for biased estimators }
\end{array}\right.
$$

(b) IUTILF $=2$
$u_{i}=\left\{\begin{array}{l}p_{i} \text { for unbiased estimators } \\ 0.0 \text { for biased estimators }\end{array}\right.$
(c) $\operatorname{IUTILF}=3$

$$
u_{i}=\left\{\begin{array}{l}
x_{i} \text { for unbiased estimators } \\
0.0 \text { for biased estimators }
\end{array}\right.
$$

where $x_{i}$ is given with the $p_{i}$ in input set (8).
(d) IUTILF $=4$

$$
u_{i}=\left\{\begin{array}{l}
p_{i} x_{i} \text { for unbiased estimators } \\
0.0 \text { for biased estimators }
\end{array}\right.
$$

where $x_{i}$ and $p_{i}$ are given in input set (8).
(e) IUTILF = 5

$$
u_{i}=\left\{\begin{array}{l}
U C O E F \cdot x_{i}+(1-U C O E F) p_{i} \text { for unbiased estimators } \\
0.0 \text { for biased estimators }
\end{array}\right.
$$

where $x_{i}$ and $p_{i}$ are given in input set (8) and it is assumed $0.0 \leq$ UCOEF $\leq 1.0$.
It should be noticed that these utility functions do not depend upon the stopping point as implied by condition (3) on page 7. To provide a capability of making the utility function depend upon the stopping point, the user can weight the stopping points by use of the weighting values $W T(I)$ read in input set (9B). Thus the $u_{i}(h)$ used in the program are computed as $u_{i}(h)=u_{i} * W T(h)$.
(8) PRIOR PROBABILITIES AND UTILITIES (9I1, 2F10.0) (IT1, P, UT). Each parameter with nonzero prior probability is identified in terms of the integer subscripts of the independent variables in the interaction with which it is associated. These subscripts may be supplied in any order anywhere in the first nine columns of the card. The prior probability and the utility follow with 10 columns each, in F10.0 format. The utility need not be specified if IUTILF = 1 or 2 as previously described, for the program then supplies the utility. If IUTILF $=3,4$, or 5 , the utility must be specified explicitly. For example, suppose the $X_{2} X_{3} X_{5}$ interaction parameter $\beta_{10110}=\beta_{22}$ is assumed to satisfy $\mathbf{P}\left(\beta_{22} \neq 0\right)=0.850$ with utility of 0.95 . Then the card input could be bbb5b2b3b. 850bbbbbb. 95. If the prior probability of a parameter being nonzero is zero, no data need be supplied for that parameter.
(9) NUMBER OF DEFINING GROUPS (I6) (NDPG). For each d.p.g. (as many as 32 permitted) there must be one set of inputs 9A to 9E.
(9A) IDENTIFICATION OF STOPPING POINT (4A6) (IDDCG).
(9B) NUMBER OF GENERATORS, PRIOR PROBABILITY OF STOPPING, WEIGHTING VALUE (I6, F6.6, F6.0) (NGEN, PSTOP, WT). If the d.p.g. corresponds to a $(1 / 2)^{\mathbf{r}}$ fractional replicate, r independent generators must be supplied. Program limitations restrict NGEN to values less than or equal to seven.
(9C) THE GENERATORS OF THE d.p.g. (9A1). The generators are supplied in terms of the first NFAC letters of the alphabet on the first nine columns of the card. There is one card per generator. For example, if the d.p.g. at a particular stopping point is $\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{EDCBA}}, \beta_{\mathrm{CBA}}, \beta_{\mathrm{ED}}, \beta_{\mathrm{DA}}, \beta_{\mathrm{ECB}}, \beta_{\mathrm{DCB}}, \beta_{\mathrm{EA}}\right\}$, three generators are sufficient; and one such choice might be $\beta_{\mathrm{CBA}}, \beta_{E D}$, and $\beta_{D A}$. Three cards which
will define the above d.p.g. might be

AbBbC<br>ED<br>bbAbbD

The order and position of the letters is unimportant as long as they are on the first nine columns of the card. If the number of generators is zero, no type-9C cards are read.
(9D) NUMBER OF BLOCK PARAMETERS (I6) (NBLOCK).
(9E) IDENTIFICATION OF ALIAS SETS CONFOUNDED WITH BLOCK EFFECTS AND THE PRIOR PROBABILITY ASSOCIATED WITH THE BLOCK EFFECTS (9A1, F5.5) (XT3, PBLOCK). Any single parameter from an alias set which is confounded with a block effect may be input in terms of the first NFAC letters of the alphabet in the first nine columns of one card. This is followed by the prior probability of the block effect on the next five columns. There is one card for each block effect that has a nonzero prior probability. If the alias set is the d.p.g., the first nine columns may be left blank.

## OUTPUT DESCRIPTION

The first part of NAMER output is the printout of the input data. This is followed by NDPG +1 printouts. The first set is for the Bayes DESIGN which optimizes the overall expected utility. The subsequent sets are for the DESIGNS that optimize the expected utilities for the individual stopping points. Each of these sets of output consists of the following:
(1) The optimal matching
(2) Tables of the parameters chosen to be estimated and the expected utilities of these choices
(3) The overall expected utility and the expected utilities at the stopping points

For example, the first two pages of the sample output in appendix $A$ indicate the input data. The next two pages provide the information about the Bayes DESIGN, as the label indicates. The Bayes matching is seen to be

$$
\begin{aligned}
& X_{1}(\text { TEMP })=X_{C} \\
& X_{2}(\text { PRESS })=X_{D}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{X}_{3}(\text { TIME })=\mathrm{X}_{\mathrm{B}} \\
\mathrm{X}_{4}(\text { VEL })=\mathrm{X}_{\mathrm{E}} \\
\mathrm{X}_{5}(\mathrm{ANGLE})=\mathrm{X}_{\mathrm{A}}
\end{gathered}
$$

Then for d.p.g. number one (which is the $1 / 4$ replicate of the full factorial) the choices of parameters to be estimated are indicated. Each parameter is identified in terms of the integer subscripts of the independent variables in the interaction with which it is associated. They are also identified by the Hollerith identifications input in section (5) of the input, and the utility of the choice is printed at the far right of each line. Thus the first line of output for d.p.g. number one indicates that the coefficient of $X_{1} X_{2} X_{3}=X_{C} X_{D} X_{B}$ has been chosen from its alias set as the parameter to be estimated. This interaction is the TEMP $\times$ PRESS $\times$ TIME interaction, and the expected utility of this choice is 0.20 . This utility value does not include the weighting factor at this point.

Below the detailed output for the three d.p.g.'s are printed the overall expected utility and the utilities for each of the d.p.g. 's for this matching.

Similar output provides the detailed output for the designs which maximize the expected utilities for each of the stopping points. The format and arrangement are the same as that described for the Bayes matching. This is followed on the last page by a summary table providing the various matchings, their expected overall utilities, and expected utilities at the stopping points.

## SPECIAL LEWIS RESEARCH CENTER ROUTINES

Some of the following functions and subroutines available in the FORTRAN IV Version 13 language at the Lewis Research Center may not be available (or not available in FORTRAN) at other computer installations. Thus, their usage is explained, and the user can write functions or subroutines providing the same capabilities in a language compatible with the available computer.

The functions and subroutines available at Lewis are the following:
(1) AND(A, B). A real function of the Real or Integer variables A and B. Like bit positions of $A$ and $B$ are compared. A 1 is placed in those positions of the result where there are 1 's in both $A$ and $B$, and a zero is placed in the result otherwise.
(2) $\operatorname{IEXOR}(A, B)$. An integer function of the Real or Integer arguments $A$ and $B$. Like bit positions of $A$ and $B$ are compared. A 1 is placed in those positions of the result where exactly one of $A$ or $B$ is a 1 , and a zero is placed in the result otherwise.
(3) $\operatorname{LALS}(\mathrm{N}, \mathrm{X})$. An integer function of Integer N and Real or Integer X . The contents of $X$ are shifted to the left $N$ places and zeros put into the vacated rightmost positions.
(4) $\operatorname{IARS}(\mathrm{N}, \mathrm{X})$. An integer function of Integer N and Real or Integer X . The contents of $X$ are shifted to the right $N$ places and zeros put into the vacated leftmost positions.
(5) BCREAD(X1, X2) and BCDUMP(X1, X2, K). These subprograms provide for input and output in absolute binary. A call to BCREAD(X1, X2) causes cards to be read in binary format at the rate of 22 words per card. The data are stored sequentially in the core, beginning with the address of the variable X 1 and ending with the address of the variable X2. A call to BCDUMP(X1, X2, K) causes cards to be punched in binary format at the rate of 22 words per card. The data are taken sequentially from the core, beginning with the address of variable X 1 and ending with the address of variable X 2 . $K$ provides card numbering control and is always set to zero by NAMER.

As an example of the usage of these routines, consider the first call to BCREAD in section 10 of NAMER. DUMP1(1) is equivalenced to NFAC. NFAC is the first variable of nine variables in the labeled common block B1. LD1 is set to 9 at the start of NAMER. Thus, the call BCREAD (DUMP1(1), DUMP1(LD1)) causes the variables NFAC, NCLASS, NN, NDPG, PBAYES, and so forth, to be read from unit 5 in binary format.
(6) TIME1(X). This subroutine enables the programmer to read the storage cell clock. The following illustrates the procedure for using TIME1 to calculate elapsed time.

## CALL TIME1 (X1)

CALL TIME1 (X2)

Then

$$
\begin{gathered}
\mathrm{X} 2-\mathrm{X} 1=\text { Clock pulses } \\
\frac{\mathrm{X} 2-\mathrm{X} 1}{60}=\text { Elapsed time in seconds } \\
\frac{\mathrm{X} 2-\mathrm{X} 1}{3600}=\text { Elapsed time in minutes }
\end{gathered}
$$

(7) $\mathrm{OR}(\mathrm{A}, \mathrm{B})$. A real function of the real or integer arguments A and B . Like bit positions of $A$ and $B$ are compared. A 1 is placed in those positions of the result where either or both of $A$ and $B$ are a 1. A zero is placed in those positions of the result wherever both $A$ and $B$ are zero.

## TIMING INFORMATION

Several sample problems using single telescoping were run on NAMER to estimate the amount of time required by the program. For these problems, the first stage was assumed to be the smallest experiment large enough to estimate all main effects, and the last stage was the full factorial. Each problem was run once using utility function 2 and once using utility function 3 . The results are summarized in table II and figure 2.

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, November 8, 1971, 132-80.

## APPENDIX A

## SAMPLE PROBLEM AND PROGRAM OUTPUT

Consider a five-factor experiment involving

$$
\begin{aligned}
& \mathrm{X}_{1}=\text { Temperature } \\
& \mathrm{X}_{2}=\text { Pressure } \\
& \mathrm{X}_{3}=\text { Time } \\
& \mathrm{X}_{4}=\text { Velocity } \\
& \mathrm{X}_{5}=\text { Angle }
\end{aligned}
$$

Suppose that the experimenter's facilities are such that he can only perform four treatment combinations at one time and be reasonably sure that experimental conditions are homogeneous. Thus his experiment should be designed as a blocked factorial design with blocks of size four. Assume also that he has enough materials at one time to perform eight treatment combinations, but no more, and that batches of uniform material are not available in quantities that will supply more than eight treatment combinations. Then the blocks of the experiment might be as shown in the illustration, where the two columns represent two different test facilities and the four rows represent four different batches of raw material.

Column blocks
(test facilities)


The difference between the first block and the second block in a row is due to performing the experiment in two different test facilities. The differences between rows are due to possible effects of new batches of materials. Suppose the experimenter feels that there is a probability of 0.50 of there actually being a test facility block effect. Let the probability of there being an effect due to differing batches of raw materials be 1.0 . Assume further that the probability of an interaction between these block effects is specified as zero. The stopping points of the experiment at each stage are
(1) Stage one, after completion of blocks (1, 1), (1, 2)
(2) Stage two, after completion of blocks (1, 1), (1, 2), (2, 1), (2, 2)
(3) Stage three, after completion of the full factorial

Based upon his available resources and upon past histories of some similar projects he has worked on, the experimenter feels probabilities in the following table are appropriate:

| Coefficient of- | Standard-order subscript | Prior probability of being nonzero |
| :---: | :---: | :---: |
| $\mathrm{x}_{0}$ | 0 | 1.00 |
| $\mathrm{x}_{1}$ | 1 | . 80 |
| $\mathrm{x}_{2}$ | 2 |  |
| $\mathrm{x}_{2} \mathrm{x}_{1}$ | 3 |  |
| $\mathrm{x}_{3}$ | 4 |  |
| $\mathrm{X}_{3} \mathrm{x}_{1}$ | 5 |  |
| $\mathrm{x}_{3} \mathrm{x}$ 2 | 6 |  |
| $\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1}$ | 7 | $\dagger$ |
| $\mathrm{X}_{4}$ | 8 | 1.0 |
| $\mathrm{x}_{4} \mathrm{X}_{1}$ | 9 | . 50 |
| $\mathrm{x}_{4} \mathrm{x}_{3}$ | 12 | . 50 |
| $\mathrm{x}_{4} \mathrm{x}_{3} \mathrm{X}_{1}$ | 13 | . 40 |
| $\mathrm{X}_{5}$ | 16 | 1.0 |
| $\mathrm{x}_{5} \mathrm{x}_{1}$ | 17 | . 40 |
| $\mathrm{X}_{5} \mathrm{x}_{3}$ | 20 | . 30 |
| Stopping probabilities: $\mathrm{p}_{1 \mathrm{~s}}=0.30, \mathrm{p}_{2 \mathrm{~s}}=0.40$, $\mathrm{p}_{3 \mathrm{~s}}=0.30$ |  |  |

All the other coefficients have zero prior probability.

Assume the purpose of the experiment is to maximize the response. Also assume that the cost of the experiment is about proportional to the number of treatment combinations run. Then a reasonable choice for utility function might be

$$
u_{i}(h)= \begin{cases}p_{i} / n_{h} & \text { if unbiased } \\ 0 & \text { if biased }\end{cases}
$$

where $n_{h}$ is the number of treatment combinations. To achieve this using NAMER, use utility function 2 and for the weighting values at the stages use $1 / n_{h}$.

Rather than investigating all the possible nonequivalent d.p.g. 's and their telescoping options, the best matchings of physical-design variables and parameters to estimators will be determined for the following choices of d.p.g. 's:

$$
\begin{gathered}
\mathbf{B}(1)=\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{CBA}}, \beta_{\mathrm{EDC}}, \beta_{\mathrm{EDBA}}\right\} \\
\mathbf{B}(2)=\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{EDBA}}\right\} \\
\mathrm{B}(3)=\left\{\beta_{\mathrm{I}}\right\}
\end{gathered}
$$

Using the d.p.g. $\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{CBA}}, \beta_{\mathrm{DCB}}, \beta_{\mathrm{DA}}, \beta_{\mathrm{EDC}}, \beta_{\mathrm{EDBA}}, \beta_{\mathrm{EB}}, \beta_{\mathrm{ECA}}\right\}$ for block (1, 1) and the rules presented in reference 3 , it may be shown that the following assignment of treatment combinations will lead to the block confounding presented in the table:

| Block | Treatment |
| :---: | :--- |
| $(1,1)$ | $(1)$, dca, ecb, edba |
| $(1,2)$ | ba, dcb, eca, ed |
| $(2,1)$ | db, cba, edc, ea |
| $(2,2)$ | da, c, edcba, eb |
| $(3,1)$ | a, dc, ecba, edb |
| $(3,2)$ | b, dcba, ec, eda |
| $(4,1)$ | dba, cb, edca, e |
| $(4,2)$ | d, ca, edcb, eba |


| Stage | Alias sets confounded with - |  |
| :---: | :--- | :--- |
|  | Test facility effect | Raw material effect |
| 1 | $\left\{\beta_{\mathrm{DA}}, \beta_{\mathrm{DCB}}, \beta_{\mathrm{ECA}}, \beta_{\mathrm{EB}}\right\}$ | $\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{CBA}}, \beta_{\mathrm{EDC}}, \beta_{\mathrm{EDB}}\right\}$ |
| 2 | $\left\{\beta_{\mathrm{DA}}, \beta_{\mathrm{EB}}\right\}$ | $\left\{\beta_{\mathrm{I}}, \beta_{\mathrm{EDBA}}\right\}$ |
|  |  | $\left\{\beta_{\mathrm{CBA}}, \beta_{\mathrm{EDC}}\right\}$ |
| 3 | $\left\{\beta_{\mathrm{DA}}\right\}$ | $\left\{\beta_{\mathrm{I}}\right\}$ |
|  |  | $\left\{\beta_{\mathrm{CBA}}\right\}$ |
|  |  | $\left\{\beta_{\mathrm{EDBA}}\right\}$ |
|  |  | $\left\{\beta_{\mathrm{EDC}}\right\}$ |

The sample FORTRAN data sheets given in table II supply the data necessary to run this problem as described. The sample output for this problem follows.
i
NAMER OUTPUT NAMER SAMPLE PROBLEM
PROGRAM WILL DUMP FOR RESTART IF NOT FINISHED IN
2. MINUTES.

CURRENT EXECUTIDN TIME O. 00
THERF ARF 5 FACTORSO THEY ARE.O.

| 7 | TEMP | SOURCE TEMPERATURE |
| :--- | :--- | :--- |
| ? | PRFSS | SOURCE PRESSURE |
| 3 | TIME | TIME DURATION |
| 4 | VEL | SOURCE VELOCITY. |
| 5 | ANGLE | ANGIE OF INJECTI ON |

15 PARAMETERS WITH NON-ZERD PRIOR PROBABILITIES AND UTILITIES
UTILITY FUNCTION 2

| 0 | 1,000000 | 1.000000 |
| ---: | ---: | ---: |
| 1 | 0.800000 | 0.800000 |
| 2 | 0.800000 | 0.800000 |
| 17 | 0.800000 | 0.800000 |
| 3 | 0.800000 | 0.800000 |
| 13 | 0.800000 | 0.800000 |
| 73 | 0.800000 | 0.800000 |
| 127 | 0.800000 | 0.800000 |
| 4 | 1.060000 | 1.000000 |
| 14 | 0.500000 | 0.500000 |
| 34 | 0.500000 | 0.500000 |
| 124 | 0.400000 | 0.400000 |
| 5 | 1.000000 | 1,000000 |
| 15 | 0.400000 | 0.400000 |
| 35 | 0.300000 | 0.300000 |

2 DEFINING PARAMETER GROUPS

```
1/4 RFP--ROW l
DPE 1
    ? GFNERATORS
    PROB OF STOPPING 0.30000 HEIGHT 0.125000
        CBC
THERE ARE 2 BLOCK PARAMETERS
AD \(\quad 0.50000\)
```




THIS MATCHING MAXIMIZES THE EXPECTED VALUE AT THE 1 STOPPING PCINT $1 / 4$ REP--ROW 1

| VARIABLE | SHCULD BF CALLED |  |
| :---: | :---: | :---: |
| 2 TFMP | 0 |  |
| h PRFSS |  | A |
| 3 TIMF |  | $B$ |
| 4 VFL |  | $C$ |
| 5 ANGLE |  | E |

DEFINING PARAMETER GROUP NO。 1
$1 / 4$ REP-ROH


OEFINING PARAMETER GROUP NO. 2
1/? REP-R ROWS 1,?


DEFINING PARAMETER GROUP NO. 3



FOR THE ABOVE PERMUTATION THE EXPECTED UTILITY IS 0. 37074
THF EXPECTEC UTILITIFS AT THE STOPPING POINTS ARE.*
OEFINING PARAME TER GROUP
O DEFINING PARAMETER GROUP ? $\quad 0.41000$ DEFTNING PARAMETER GROUP 3 3

THIS MATCHING MAXIMIZES THE FXPECTED VALUE AT THE 2 STOPPING PQINT $1 / 2$ REP-- ROWS 2.2

| VARIABL F | SHOULD BE CALLED |
| :---: | :---: |
| 1 TFMP | C |
| ? PRFSS | 8 |
| 2 TIME | D |
| 4 VFI | A |
| 5. $\triangle$ NGLE | F |
| DEFININT PARAMFTER | GRIUP NJ. 1 |
| T/4 REP--ROW ! | * * * * * * * |
| *1*2*? |  |
| 0* |  |
| * 1 |  |
| *? |  |
| *4 |  |
| *2 |  |
| * 5 |  |
| *2*3 |  |



DEFINING PARAMETER GROUP NO. 2
1/9 RFP- RTMS 1,?


DEFINING PARAMETER GRIUUP NO。 3


|  | *? | * 3 |  |  |  | PRESS | TIME | VEL |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * 1 | *2 | * 3 | * 4 |  | TEMP | PRESS | TIME | VEL |  | C |
|  |  |  |  | * 5 |  |  |  |  | ANGLE | 1.000000 |
| * 1 |  |  |  | * 5 | TEMP |  |  |  | ANGLE | C. 400000 |
|  | * 2 |  |  | * 5 |  | PRESS |  |  | ANGLE | C |
| *) | *2 |  |  | * 5 | TEMP | PRESS |  |  | ANGLE | c |
|  |  | * 3 |  | * 5 |  |  | TIME |  | ANGLE | C. 300000 |
|  | *? | * 3 |  | * 5 |  | PRESS | TIME |  | ANGLE | c |
| * 1 | *2 | * 7 |  | * 5 | TEMP | PRESS | TIME |  | ANGLE | $C$ |
|  |  |  | * 4 | * 5 |  |  |  | VEL | ANGLE | C |
| * 1 |  |  | * 4 | * 5 | TEMP |  |  | VEL | ANGLE | C |
|  | *2 |  | * 4 | * 5 |  | PRESS |  | VEL | ANGLE | 0 |
| *1 | * |  | *4 | * 5 | TEPP | PRESS |  | VEL | ANGLE | C |
|  |  | * 3 | * 4 | * 5 |  |  | TIME | VEL | ANGLE | c |
| *1 |  | *3 | * 4 | * 5 | TENP |  | TIME | VEL | ANGLE | C |
| * 1 | *? | * 3 | * 4 | *5 | TENP | PRESS | TIME | VEL | ANGLE | 0 |

FOR THF ABOVE PERMUTATION THE EXPECTED UTILITY IS 0.41934
THE EXPECTER UTILITIES AT THE STOPPING POINTS ARE..
DEFINING PARAMEIER GROUP
DEF INTNG PARAMETEP GROUP

| DEF INING PARAMETER GROUP | 1 | 0.31500 |
| :--- | :--- | :--- | :--- |
| DEFINING PARAMETEP GROUP | 2 | 0.59062 |
| DEFINING PARAMETER GROUP | 3 | 0.29531 |

THIS MATCHING MAXIMIZES THE EXPECTED VALUE AT THE 3 STOPPING POINT FULL--ALL ROWS
VARIABLE
$\triangle$ TLFMP
1 PPFSS
3 TIMF
4 VFL

SHOILD BE CALLED

4 VFL
ANGLE
ALED
C
$D$
$B$
$E$
$A$

DEFINING PARAMETER GROUP NO. 1
$1 / 4$ RFP--RNW 1


OEFINING PARAMETER GROUP NO. 2
1/フ REP-- ROWS 1,?


DEFININF, PARAMETER GRDUP NO. 3
FULI --ALL ROHS



SUMMARY DUTPLT TABLE


| C | D | C | C |
| :--- | :--- | :--- | :--- |
| C | A | B | 0 |
| E | B | D | C |
| E | C | A | E |
| A | E | E |  |

EXDFCTEN UTILITY
IVFR STOPPTNG PTS

|  | 0.42169 | 0. 37074 | 0.41934 | 0.42169 |
| :---: | :---: | :---: | :---: | :---: |
| FXPECTEN UTILITY |  |  |  |  |
| AT FACH | STOPPING PT |  |  |  |
| , | 0.31500 | 0. 39850 | 0.31500 | 0.31500 |
| \% | $0.59 C E ?$ | 0.41000 | 0.59062 | 0.59062 |
| 3 | 0.30212 | 0.29062 | 0.29531 | 0.30312 |
| CURRENT | EXECUTION |  |  |  |

## APPENDIX B

## FORTRAN LISTING

\& IBFTC RLOK

\$IPFTC NAMFR DFBUG
RTMMON/BDATA/ POWFRST111, I ALPHA(9),
MASK, NEG ..... 1
$X$ IIJNIN, IUNOUT, ..... 2
COMMON/RI/ NFAC,NCLASS,NN,NDPG,PBAYES,IRUN,PBAYEX, IUTILF,UTSWCH ..... 2
COMMON/R2, DPG(128, 32), BLOCK(128,32), IDPG(32), NBLOCK(32), IP(9), ..... 4
$\mathrm{XID}(9), N S U R I(9), L P E R M(9), I I(10), \operatorname{PSTOP}(32), W T(32), P S U N X(32), \operatorname{PSUM}(32)$ ..... 5
COMMON /RFST/PROR(512), T1 (512), PBLOCK(128,32), ISAVEP(9,33), ..... 6
X UTIL(E12), ULIST(128), IULIST(128), IDDCG(4,32) ..... 7
INTEGER POWERS, TI. DPG, BLOCK ..... 8
LOGICAL UTSWCH, LPERM ..... 9
PFAL IDENT ..... 10
EQUIVALENCE $(X, I X)$ ..... 11
DIMENSIDN DUMP1(1), DUMP2(1) ..... 12
EOUIVALENCF (DUMPI(1), NFAC), (DUMP2 (1), IDPG(1)) ..... 13
ПIMFNSION ITI(9), XT3(9) , IDENT(14) ..... 14
DATA BLANK/6H /,ENDCRD/GHENDALL/ ..... 15
COMMON/LINX/ XNOUT(5), HOLOUT(9),FAC(14,9) ..... 16
C ..... 17
 ..... 18
Lnl=9 ..... 19
CALL TIMEI(TSTART) ..... $2 C$
$T M A X=0.0$ ..... 21
$\operatorname{Ln})=$ ³9 ..... 22
C ..... 23
 ..... 24
c ..... 25
r. NAMER SECTION 1 ..... 26
$r$ ..... 27
10 READ(IUNIN,5000) IDENT ..... 28
IF (IDFNT(1).EQ.ENDCRD) STOP ..... 29
WR ITF (IUNOUT, 5005 ) IDENT ..... 30
$C$ ..... 31
 ..... 32
$r$
33
C. NAMFR SECTIIN ? ..... 34
CDก $12 \mathrm{~J}=1.5$

```
    14 HOL\capUT(J)=RLANK 40
        READ(IUNIN,501O) TMAXX TMAX + TMAXX M, 41
        READ(IUNIN,501O) TMAXX TMAX + TMAXX M, 41
        TMAX=TMAX + TMAXX 42
        HP.ITF(IIJNOUT,50?0I TMAXX 4?
        CALL TIMEI(TPRINT) 44
        TPRINT=(TPRINT-TSTART)/3600.0 45
        WRITF(IUNDUT,5C25) TPRINT 46
C
```



```
C.
C NAMER SECTION 3
C
    READ(IUNIN,5045) ITYPRN
    GO TO (30,154,?0), ITYPRN
        20 RFAN(IUNIN,5070) (XT3(K),K=1.9)}5
C
C************************************************************************
C
C NAMER SECTION 4
    30 REAO(IUNIN,5045) NFAC
            IF(INFAC.IT.I) OOR. (NFAC.GT.9)) GO TO 8020
            WRITE\IUNOUT, 50501 NFAC
            IF(ITYPRN,NF, 3) GO TO 38
            O\cap 35 K=1,NFAC
            Oח 3* L=1,NFAC
            LL=1
            IF(XT3(K),FQ.ALPHA(L)) r, TO 34 67
            IF(XT3(K),FQ_ALPHA(L)) r, TO 34 67
    33 CONTINUF
            GO TO &OMO
                68
                            6G
    24 ISAVFP(K,1)=LL 7C
    34 ISAVFP(K,1)=LL 7C
    25 CONTINUE
    2a RONTINUE
r
```



```
72
73
C NAMFR SFCTION 5
r nח 4O J=T,NFAC
    RFAD(IUNIN,5000) (FAC(I,J),I=1,14)
    WPITF(IUNOUT,5055) J, (FAC (I,J),I=1.,14) EC
    4O CONTINLE
C
```


C

```
r
r. NAMFR SECTITN 5
r
    |\1|=1
    IPFFM(1)=, TRIJF%
    NS|PI(VI=NFAC
    NIBI( )=NFAC ( ) 90
    REAN(IUNIN,5\45) NCLASS 90
    IF(INCLASS.LTOII.ORO(NCLASSOCT.9)) GOTO 8030 91
    IF{NCLASS-1.1 60,60,50
    92
    50 PFAD(TUNIN,5O4E) (NSUBT(I),I=1,NCLASS)
            WRTTF(IUNOUT, TOOOI NCLASS,(NSUBI (I),I=I,NCLASS)
            \cap\cap 55 J=1,NCLASS 95
            LPERM(J)=0TRUF. 96
            IY(J+I)=IT(J)+NSUBI(J) 97
    55 CTNTINLF 98
    \angleO NN= つ**NFAC OS
            Oח 6F J=1,NN 1OC
            T\J)=C 101
            ORHR(J )=1 0 102
            UTIL(J)=0 0 1C3
    6F CONTINUF. lC4
r.
105
```



```
l0t
```

r NAMER SECTION 7 107
C NAMER SECTION 7 108
RFAO(IUNIN,5043) NPIN,IUTILF,UCOEF 110
WRITEI IUNCUT,6045) NDIN,IUTILF 111
UTSWCH=。FALSF。
112
IF((IUTIIF.LTO\) OOR, (IUTILF.GT.5)) GOTO8035
IF((NPIN,LF,O)OOR_(NDINOGT,NN)) GO TO 9032 1.14
IFI(UROFF,LT.O.O):OR, (UCNFFOGT.1.01) GO TO 8033 lls
IFIIUTILF,GF, 3) UTSWCH= OTRUF.
IF(IUT ILFOEQ,5) WRITE (IUNOUT,7010) UCOFF 117
Oח OO J=?,NDIN 118
REAN(IUNIN,50\&0) (ITI(I),I=1,9),P,UT 11G
IFIPOGT,TOOIADR,(POITOO,O)I GO TO 6038 120
I=0
121
TT=0 122
KK=n 123
nn 67 K=1,9 124
KKX=1r-k 12E
KI= ITI(KKX) + , 12G
I=T + PNWFRS(KI)
127
TF(KT-1) K7,67,KG
6@ IT= IT + ITY(KKX)*90**KK 129
KK=KK+?
130
\& CONTINUF
I= I+1 132
8! %пT TП (R2,94,8\&,9タ,87),IUTILF 133
R? リTIL(I)=1,0 134
GO Tत \&و
8ム UTIL(T)=P 136
RO TO \&G
* UTIIII=UT 138
OпTH PQ 135
87 HTIL(I)= UC\capFF*UT+(1.O-UCOFF)*P 14C
GO Tn 90
Q IJTILIII=UT\&P 142
99 CONTINIF 143
WRITF(IUNOUT,G06O) IT,P,IJTILII) 144
PR\capB(II=`.O-P
OO CONTINUF 146
C

```

```

C
NAMER SECTIDN \&
REATIILNIN,504E) NDPG 152
GO Tत \&9 135
136
137
147
148
149
O
IF(INDPGOLT, 1)\&OR, (NOPGOGTO32)) GO TO 8140 153
WP.ITE(IUNDUT,6065) NDPG 154
กา 150 I=l,NDPr
155
PFADITUNIN,5000) (IDNC,GIK,I),K=1,4) 156
WRTTF(IUNCUT,6064) (IONCG(K,I),K=1,4)
RFAD(IUNIN,5065) NGFN,PSTOP(I),WT(I)
IF((NGFNOLTGO)\&DR,(NGFNOGTOMINO(NFAC,7))) GOTO 8150

```

```

        WP ITF( IIJNOUT,GCGS) I,NGEN,PSTOP (I),WT(I) 161
        IOOGIII= 2**NGFN-1
    r
r
r** * * * * * * * * * * * * * * * * * * * * * * * *
r}r\mathrm{ N. NAMER SFCTION RA
r. NAMER SFCTION RA
IF(NRFA) IOK,TCG,91
218
OO 105 J=3,NGEN
REAN(IUNIN,5070) (XT3(K),K=1,9)
157
l5\&
162
r** 16
*****164
RA let
HF(NOFA) IOK,TCG.91 IGE
169
QEA\cap(IUNTN,5070) (XT3(K),K=1,9) 17C
WP TTE(IUN\capUT, 6070) (XT2(K),K=1,9) 171
K T=0
223
\capn 100 K=1,9, - 172
n7 100 K=1,9
173

```141\(1 \in \epsilon\)IF（NRFA）IOK，TCG． 911.67

Q！กO \(105 \mathrm{~J}=3, \mathrm{NGEN} \quad 169\)
QEAC（IUNTN，5070）（XT3（K），K＝1，9）17C
\(K=0 \quad 172\)
กา \(100 \mathrm{~K}=1,9\)
173
```

            0n 94 L=1,10 174
            ルに, L=\,0
                    175
                    IF(XTZ(K)_FQ ALPHA(L)) rn TO 98 17%
    94 CONTINUE
                    177
            GO TM PO50
                            178
    0日KKT=LL+1 179
    KI = KI + POWFRS(KKI) 18C
    OO CONTINUF 181
    ODG(J,I)= KI 182
    105 CONTINUE 183
    10&IDI=IMPGII) 184
    IF(INI-1, 121,1?1,109 185
    100 KP=4
    V1= NGFN
    186
    LPTR=NREN+1
    LLFN=0
    DO 120 J=?,NGEN 19C
    KK=\-1 191
    IF(\capPr,(J,I),FQ。DPG(1,I)) GOTO 8060 192
    n\cap 1?0 K=1,KK 193
    \capPF(LPTR,I)=IEXOR(DPG(J,I),DPG(K,I)) 1S4
    IFINPG(LPTP,I)_FO NPG(I,I))GO TO 8060 ISS
    1"n LPTR=LPTR+1
        l96
        TF(LLFNOFOOOI Gח TO 118 &G7
        OO 115 K=1,LL.FN
        198
        N=NGFN+K 1GS
            NPG(LPTR,I)=IFXOR (DPG(J,I),DPG(N,I))
            2CC
            IF(INPG(LPTR,I),FO.OPS(I,I))GOTO 8060 201
    1, IPTR=LPTR+1 202
    119 LLFN=?*LLFN+KK
    * OO rONTTNUF
        203
    < ()
    r

```

```

C
r NAMFR SFC,TION GB
1?1 RFAD(IUNTN,5045) NRLOCK(1)
NR = NBLOCK(I)
NA NBLOCK(I)
IF((NR,TT\&O), OR\&(NROGT.NN)) GOTC 8170, 212
WRITF(IUNOUT,GO8OI NR 213
IF(NB) 1 ¢0,'50,1?? 214
1つ) nח 140 J=1,NR
215
PEAN(IUNTN,5070) (XT3(K),K=1,9), PALOCK(J,I) 21E

```

```

    WRITF(IUNOUT, &O70)(XT3(K),K=1,9),PBLOCK(J,I)}21
    KI=0
        219
    n\cap 130 K=1.q 22C
    nn 124l=?.10 221
    LL=1 222
    ```

```

    T CA CONTINUF 224
    rOTO &O70 225
    ? ク\rhoKKI=LL.+' 226
    KI = KI + PחWFRSIKKI) 227
    * TONTINUF 228
    BLOCKII,TI = KI 229
    * CONTTNUF 230
    TRO CONTINEF
        IF(ITYOPN,EQ.3) CALL ONCF($10) 232
    r
233
r,*************************************************************************
r
235
r NAMFR SERTION Q
r
OBAYFS 237
OBAYFS=C=O 238
\# 15? I=`,NOPG; 239
PS!JM(I)=0.0
24C

```

\(\begin{array}{ll}\text { r IFII } 2035,1 \in 7,171 & 308 \\ & 309\end{array}\)
    -67 PSUMX(I) = PSIMMX(I) +UTIL(KII)*(I, O-PRLOCK(K,I) 310

r. 312
r. IF BLDCK PARAMETER HAS PRIOR PROB=1.0 THERE CAN RE NO UTILITY 313
C FOR THIS ESTIMATOR。 JUST TAG ALIASES。 314
    フフリIF(PBLOCK (K, I I-1。0) 1.76, 173,173
316
    172 กп \(174 \mathrm{IK}=\), \(\mathrm{InI} \quad 317\)
    \(J J=I E X O P(K I, D P G(I K, I))+1\) ? 318
    TIIJJ) \(=\) IRUN 319
    174 C.חNTINLF \(\quad 320\)
    Gク TH 276 321
C. 322

C 324
\(r\) INITIALITE BEFORE FINDING OPTIMAL MATCHING OF PARAMETER TOESTIMAT 325
\(17 R\) PS PRCRIKTI)
326
    17A PS = PRCRIKTI) 327
    \(P R=P S \quad 328\)
    IILIST(I)= UTILIKII) 330
    78 IST \(\triangle R=1\) 233
    \(P R=10335\)
\(r\) 行 337

\(r\) ( r ( 33 S

\(r\) 342
    IFRUTShCHI ro Tח 200 343
    Dก \(87 K K=1\), IDI 344
    IF(PROR(JJ) 2035,184, 18? 347
    JF(PRПP(JJ)-PS) 196,796,1.87 349
    \(1 \rho \& I S T A R=I S T A R+1 \quad 350\)
    \(194 I S T A R=I S T A R+1 \quad 350\)
    \([M \Delta X=\mathrm{J} . \mathrm{J}\)
                            352
\(r . \quad 354\)
C. CПMPIJTF UTII.ITY 355
\(r\) 356
    TF(ISTAR-1) 190,192, 276 357
    \(700 \mathrm{PR}=\mathrm{PR} / \mathrm{PR}\) OB ( IMAX)
    358
    1Oว PSIJMXII)=PSIJMX(I)+PR*UTIL(IMAX)*(I。O-PBLOCK(K,I)) 35G
\(3 \in 0\)
361


C FOR ARBITPARY UTILITY FUNCTIONS COMPUTE UTILITY FOR EACH MATCHING \(3 \in 4\)
C
    วOO ПП \(20 G K K=2, I D I ' \quad 3 \in 6\)
    \(J J=I F \times \cap R(K I, D P G(K K-1, I))+1 \quad 367\)
    \(\begin{array}{ll}J J=I F X \cap R(K I, D P G(K K-I, T))+1 & 367 \\ T I(J J)=T Q U N & 368 \\ I I I L C T(K K I=J J & 369\end{array}\)
    IF(PROR(JJ)) \(204,204,202\) 370
    \(\rightarrow 0 \supset P R=P R * P P \cap B(J J) \quad 371\)
    ULIST(KK)= IITIL(J.) 372
    Gח \(\because\) O 206 ( 73
IF BLDCK PARAMETER HAS PRIOR PROB＝1． 0 THERE CAN AE NO UT IL ITY 322

\(\stackrel{C}{r}\) INTTIALITF BEFORE FINNING OPTIMAL MATCHING OF PARAMETER TO ESTIMAT 324\(P R=P S\)
TULIST 1\()=K I T\)

    TULIST(I)= KIT 329IULST（I）＝UTIL（KII）330

    TSTAP = C 331
TSTAP＝C ..... 31

    TF(DS) 1.78,178,779 332
TF（DS）178，178，179 ..... 332

    UI IST(1)=-1)TIL(KII) 334
Ut IST（1）＝－1）TIL（KII） ..... 334
\(P R=1 \quad 0\) ..... 335

    779 IMAX=KII 336337
 ..... 338
335\(r\) FIR UTILITY FUNCTIONS 1．\(\triangle N D 2\) 2 PARAMETER WITH MAXIMUM PROBABILITY

\(r\) HAS MAXIMUM IITILITYの 341 ..... 341\(r\)IFIUTShC．HI rO TO 200342Dก \(87 \mathrm{KK}=1\) ，IDI344

    \(J J=I F X \cap R(K I, D P G(K K, I))+1345\) ..... 345

    TIUJJ) \(=\) IRUN 346 ..... 346IF（PROR（JJ）） \(2035,184,18 ?\)\(\begin{array}{rl}192 & P R=P R * P R \cap B(J J) \\ & \text { TF（PRחP（JJ）－PS）196，196，1．87 }\end{array}\)347

    \(19 \rightarrow P R=P R * P R \cap B(J J) \quad 348\) ..... 34819\＆ISTAR＝ISTAR＋350

    -RFPS=PROR(JJ) 351IMAX＝J．J352

    1R7 CONTINLE 353
1RT CONTINLE ..... 353C．COMDUTF UTII．ITY355
356TF（ISTAR－1）190．192，？263571०？PSIJMXI I）＝PSUMX（I）＋PR＊UTIL（IMAX）＊（1。O－PBLOCK（K，I））359\(3 \in 0\)

    Gח T T 2 2 K

\(r\)
CC\(r\)362
363
364\(c\)\(J J=I F \times \cap P(K I, D P G(K K-1, I))+1\)367
IILICT（KK）＝JJ ..... 369（ILIST（KK）＝UTIL（J．J）372
gח Tn \(20 \in\) ..... 373
```

    OO4 ISTAR= ISTAR+1 374
            IUIST(KK)= -UTIL(JJ) 375
            2OF CONTINUE 37E
    r377

```
C FIND MATCHING THAT MAXIMIZES UTILITY ..... 378
\(r\) ..... 379
```IF（ISTAR－1）208，214，2？6
```

208 On 210 KK＝1．，InIt． ..... 381
$J J=I U L I S T(K K)$ ..... 382
ULTST（KK）＝ULIST（KK）＊PR／PROB（JJ） ..... 383
30 CONTINUF ..... 384
$U M \Delta X=0.0$ ..... 385
D 2？ $2 \mathrm{KK}=1, \mathrm{IDII}$ ..... 386
IF（ULICT（KK）－UMAX）212．212．211 ..... 387
$\rightarrow 1$ ，UMAX＝ULIST（KK） ..... 388
21？CONTINUF ..... 389
PSUMX（I）＝PSUMX（I）＋（JMAX＊（1．00－PBLOCK（K，I）） ..... 390
 ..... 391
$r$ ..... 392
$r$ ..... 393
214 On $276 \mathrm{KK}=1$ ，IOII ..... 394
$K S=K K$ ..... 395
TST＝AND（ULIST（KK），NEG） ..... 396
$T S T=O R(T S T, M A S K)$ ..... 397
IF（TST）？ $19,2035,216$ ..... 398
376 CONTINUE ..... 399
2． $\boldsymbol{R}$ PSIJMX（I）$=$ PSUMX（I）－ULIST（KS）＊PR＊（1．0－PBLDCK（K，I）） ..... 400
2つ6 CONTINUE ..... 401
$r$ ..... 402
C＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ..... 403
27日 IF（IDI）229，229，245 ..... 405

```404\(c\)
```

406
$r *$ ..... 407

```\(r\)
```

$r$ NAMER SECTION ILB ..... 40 C
C BITICK PARAMETERS HAVE NOW BFEN ACCOUNTED FOR ..... 41 C
C CONTINUF COMP UTYNG UTILITY FOR REMAINING PARAMETERSO ..... 411
COMPUTE UTILITY FOR FULL FACTORIAL ..... 412

```279 IFIIUTILF。NF。JI r，TO 330412
```

PCIJMX（I）＝PSUMX（I）＋FLOAT（NN－NBLOCK（I）） ..... 414

```GO TO 1000415
```

$230 \mathrm{n} \cap 334 \mathrm{~K}=1$ ，NN

```416
```

IF（T）（K）－IRIJN）231，234，231 ..... 418

```417
```

231 DSUMX（I）＝PSUMX（I）＋UTIL（K） ..... 419
234 CONTINLF ..... 420
G TO 1000 ..... 421
C
 ..... 423
$C$ COMDUTF UTILITY FOR FRACTIONS ..... 424
$r$ FIND NEXT UNTAGGED PARAMETER ..... 425
426
345 ก $\quad 700 \quad K=1, N N$ ..... 427 ..... 42 E
IF（TI（K）－IRIJN）246，700，246 ..... 425
$\rightarrow 4 \in P S=P R \cap B(K)$ ..... $43 C$
$K M I=K-1$ ..... 431
$P R=P S$ ..... 432
ISTAR＝C ..... 432
IHLTSTIT）＝K ..... 434
IUIST（1）＝UTIL（K） ..... 435
IF（PS）248，？48，？50 ..... 436
249 TSTAR＝ 1 ..... 437
ULTST（1）＝－11TTL（K） ..... 438
PR＝5．0 ..... 435

```
    750 JM^X=K 44C
    IF(UTSWCH) Gח Tח 430 441
C
442
r--------------------------------------------------------------------------------
C 444
C. FOR UTILITY FUNCTIONS 1 AND 2, PARAMETER WITH NAXIMUM PROBABILITY 4S5
r. HAS MAXIMIMM UTILITY. 44E
C
    On 410 KK=`,IDI 448
    JJ=IEX\capRIKMI.,DPG(KK,II)+1 44!
    T1(JJ)=TRUN 450
    IF(PROP{JJ)| 380,390,380 451
    390 PR=PR*PRПR(JJ) 452
    IF(PROR(JJ)-PS 400,41C,410 453
    390 ISTAR =ISTAP+1 454
    400PS=PR\capR(JJ) 455
    TMX=J J 456
    410 CONTINUE 457
    GO TOO5 45年
C. 459
C----------------------~---------------------------------------------------------------
r
C FOR AREITRARY UTILITY FIJNCTIONS COMPUTE UTILITY FOR FACH MATCHING 4G2
r. 463
    420 DO 460 KK=2,IDI1 4, 4, 4
    JJ=IFXOR(KM), DPG(KK-I,I))+1 465
    T1(JJ)=IRUM! 4N6
    IULTST(KK)= JJ 467
            IF(PROR(JJ)) 450,450,440 468
    440 PR=PR*PR\capR(JJ) 469
    UIST(KK)= UTIL(JJ) 47C
    GTO 460 471
    450 ISTAR=ISTAR+1 472
    ULTST(KK)= - |TTL(JJ) 473
    4KO CONTTNUF
    %OTп EOO 475
C. 476
C
r---------------------------------------------------------------------------------------
```



```
r
C. INCREMENT UTILITY OF THIS DCG BY UTILITY CF ESTIMATER
C. 480
    505 IF{ISTAR-1) 520,530,700 481
    5)CPR= PR/PR\capB(IMAX)
4%2
    530 PSIMMX(I)=PSUMX(I)+PR*UTIL(IMAX) 483
    r,n T\cap 700 484
C
C
    600 IF(ISTAR -1) &20,660,700 488
C. 485
    M,487
```



```
            JJ= IULIST(KK) 490
            HLIST(KK)=1J.IST(KK)*PR/PROB(JJ) 491
    520 RTNTINUE 4, 492
    IMAX=0,0 493
    O\cap A4O KK=1,IDIT 494
    IF(ULIST(KK)-UMAX) 640,640,635 455
    AスE IIMAX= ULISTIKKI 49E
    G&O CONTINUF
497
    PSUMXII)= PSUMX(I)+UMAX 4GE
    GO TO 70C 4GG
    G60 DO 670 KK=1,IDII. EOC
    KC=KK 501 
    TST=ANT(ULIST(KKI,NFG) 502
        TST=חR (TST,MASK) 503
        TF(TST) 680, 2035,67C 504
    G70 CONTTNUE 505
    6Qク PSUMXPII= PSUMX(II - ULIST(KS)*PR EOE
\(T 1(J J)=I R U N\)
4 6 9
505 IF(ISTAR-1) 520,530,700
484
C. 485
    G7O CONTTNUE PSUMXPII ULISTIKSI*PR
```

```
        700 CONTINUE 507
    * ONC CTNTINUF
        50\varepsilon
    C 50S
```



```
    C 511
    C NAMFR SECTION 12 512
r 513
    PBAYFX=0.0 E14
    #\cap 10?C I=1,NDPG 515
    OSUMX{I!= PSUMX(I)*WT(I) 516
    PBAYFX= PBAYEX + PSUMXIII*PSTOP(I) 517
    10つ0 CONTINUF 518
    IF(PRAYEX-PRAYES) 1060,1060,1030 519
    T030 PRAYFS=PBAYEX
    OT 105C I=1,NFAC
    ISAVEP(T, 1)=IALPHA(I)
    050 CONTIN
    IOKO DO 1:CC I=1,NDPF; 524
    IF(PSUMX(I)-PSUM(I)) :100,1100,1070
        525
        1070 PSIMM(I)=DSUMXII) 526
        #n 1080 j=1,NFAC527
    ISAVEP(J,I+1)= IALPHA(J) 52e
    TORO CONTINUF
        52c
    1OO C,ONTTNUE 53C
C
```



```
C 5***************************************************)
C NAMER SECTION I2 534
C. 535
    #0 1,5C K=1,NCLASS
        536
        ISENO=II(K)
        CALL PEPMUT(IALPHA(ISEND),NSUBI(K I,LPERM(K I,ISEND) S3E
        IF(LPFRM(K)) GO T\cap 1150 53S
        GO Tn 2000 54C
    ITFO CONTINUF
    GO TO こ000 542
r
```



```
C. 545
C NAMFR SECTION 14 54E
C 547
    7000 CALL TIMFI(TNOW) 54&
    T={TNOW-TSTART:/3AOO, 54S
    IF(T-TMAX) 58,2010,2010 550
    C*********************************************************************************)
r
C NAMFR SFCTION 15 553
    20*0 R.ONTINUF 555
        WR ITF(IUNOUT,60901 T,IRUN 556
758
        WR ITF(IUNOUT,60901 T,IRUN 556
    CALL BCDUMP(DIIMPI(1),0UMPI(LDII,0)}55
    CALL BCNUMD(ПUMP?(!),DUMP?(LN2),0) 55E
    CALL BCDUMP(IALPHA(I.),IALPHA(NFAC),0)
    CALL BCDLMP(FAC(1,1),FAC(1,4,NFAC),0) 560
    CALL RCNUMPIPROR(II, PROB (NN),O} 561
    CALL BCOUMP(UTILIT),UTIL(NN),O)
    CALL RCDUMP (ISAVEP(1, 2.), ISAVEP(NFAC,11,0) 563
        CALL BCDUMPIIDOCG(1,T1,IDOCG(4,NDPGI,0) EG4
    D\cap 203C I =1,NDPG 565
    IOI=IOPG(I)
    NB=NBL חCK(I)
    567
    IF(IDI.NF.OI CALL BCOUMP(DPGII,II,DPG(IDI,II,O) 568
    CALL BCDUMP (ISAVEP(1,I+1),ISAVEP(NFAC,I+1),0))}56
    IF(NR,FQ.O) GO Tח 2030 570
    CAI.L BCDUMP(PRLOCK(I,I),PBLOCK(NB,I),O) 571
    CALL BCDUMP(BLDCK(1,I),BLDCK(NB ,I),0) 572
2020 CONTINUF 573
2035 ¢TOP E.74
552
7 6 0
```

r
C******\&******卆れ*****\&************************************************* 5% 576
C
C NAMFR SECTTON 1.6 57E
r.}57
3000 CONTINUF E\&C
CALL TIMETITPRINTI 58IL
TPRINT=( TPRINT-TSTART)/3600,0 582
WRITFPTUNOUT,5035) TORTNT 5\&3
CALI REMACH
CALL TIMEIITPRINTI
TPRINT=(TPRINT-TSTARTI/3600,0 5RE
WRITF(IUNOUT,50?51 TPRINT
GO TO 10
C

```

```

    5000 FORMAT(I3AG,1A2) 591
    5005 FGRMAT(14H1NAMFR OUTPUT 13AG,1A2/1H:}59
    50'0 FחRMAT (FG%O)}59
    5020 FORMAT\5OH PROGRAM WILL DUMP FOR RESTART IF NOT FINISHED IN F1O.O,
    X OH MINUTES. IIH 
    5025 FORMAT(?5H CURRENT EXECUTION TINE F12.2) SGE
    5020 FORMAT (L!)
    5040 FORMAT(39H THIS IS A RESTART OF A PREVIOUS CASE/1H S SOE
    5042 FORMAT(216,F10.91
    5045 FORMAT(CI6)
    5050 FORMAT(T1H THERE ARE I4,22H FACTORS. THEY ARE.O./IH I 6OI
    5055 FORMAT{1X,II.O,3X,13AG,A?)}60
    5060 FORMAT(9I1, 2F10.01
    5065 FORMAT(IA,FK,6,F6.0)
    5070 FOPMAT(GA7,F5.5)
    EC4
EOS
GO45 FORMATITHK I6,6IH PARAMETERS WITH NON-ZERO PRIOR PROBABILITIES AND GOE
X UTILITIES /IX/19H UTILITY FUNCTION I?)
60GO FORMAT (1X,I9,2G1406) 608
GOK5 FORMAT(1HK IG,26H OEFINING PARAMETER GROUPS /1X) EOS
6064 FORMAT (IHK 12O(1H-1/IHK 4AG)
6066 FORMAT(4HKDPG I3/4H I 3,11H GENERATORS /
X PIH PROB OF STOPPING F1O.5.13H El2
G070 FORMAT(5X, OA1, FTO.5) 613
GORO FORMAT (1OHKTHERE ARE I4, ITH BLCCK PARAMETERS /1X)
614
KOQO FJRMATI 35H TIME EXCEEDED, DUMPING FOR RESTART /I3H EXEC. TIME GIS
X FT. 2,5H MTNO / AH [RIJN = Il5I
6 1 6
7000 FORMAT{11HKTHERE ARF I 3,21H CLASSFS OF VARIABLES /5X.9I61) GIT
70T0 FORMATIGHK UCOEF=F12.9) 618

```

```

C FRRIR MFESAGES
C
QOVO FORMAT{4OH ILLEGAL CHARACTER IN SPECIFIED MATCHING?
GO TH 2035
GOTT 2035
OO>O FORMAT(33H NUMBFR OF FACTORS OUT OF RANGE I6)
\mathrm{ TO TH EO25 }
GO TM EO25
9030 FIRMAT(7OH NUMPER CLASSES DUT OF RANGE [6)
GO T\cap 2035
9032 WRITE(IUNOUT,90321 NPIN
OO32 FORMAT(48H IMOROPFR NIJMBFR OF NONZERO PRIOR PROBABILITIES I61 632
GOTH2035
M037 WRITET IUNNUT,90331 UCOFF 2035
GO Tח 2035
MO TN 2035
0033 FDRMAT (2OH UCOEF OUT OF RANGE G14.6) 635
GO TO 2035
9035 WRITEIIUNOUT,90351 IUTILF
9035 FOPMAT(33H UTILITY FUNCTION CHOICE ILLEGAL ISI
Gח TO 20?5
8038 WRITFI IUNOUT,903RI P 64C
5005 FORMAT $\{4 H 1$ NAMFR OUTPUT 3 AG， 1 A2／1H 592
593
E94
\& 5,M FS5
5025 FORMAT(?5H CURRENT EXECUTION TINE F12.2) SGE
597
599
O
603
607
60G
X TVH PROB OF STOPPING FIO.5.13H El2
6070 FORMAT(5X, OAI, F10.5)
6 2 0

```

```621
    9010 FORMAT,4OH ILIEGAL CHARACTER IN SPECIFIED MATCHING, ,
4OH ILLEGAL CHARACTER IN SPECIFIED MATCHING, 623
    624
\epsilon25
    Gח Tn 2035 630
6 2 8
629
630
6 3 5
6 3 6
637
63
639
584
584
585
            TPRINT=(TPRINT-TSTART)/3600,0 58G
6CC
E10
611
616
618
622
635
64C
835
```

教

```
    907R FORMAT(33H ILLEGAL. INPUT PRIOR PROBABILITY GL4.6) 641.
    GO TM 2035 642
    8050 WRITF(IUNOUT, 9050) E43
    9050 FOPMAT(52H IILEGAI. CHARACTER USED TO INPUT A GENERATOR FOR DPG)
        GกT TO 2025
    8060 WD ITF\ IUNOUT, 9060
-9060 FORMAT128H GENERATORS NOT INDEPENDENT 1 647
    G0 Tח 2035
    8070 WRITF(TUNOUT,9070)
    CHARACTER USED TO INPUT BLOCK EFFECT ,
    GO TO 2025
    9140 WPITFIIUNOUT, 91401 65% 6
    9140 FחRMATI2OH INVALID NO. OF DPGS I 653
        GO TO 2035
8150 WP ITE( IUNOUT, Q150)
9:50 FORMATI26H INVALID NO. OF GFNFRATORS 1, 656
    GO TO 2025
8160 WRITF (IUNOUT, 91601
6 5 7
BTKO WRITF(IUNNUT,9160) 658
0:60 FOPMATI?7H STOPPING PROB OUT OF RANGE ), 65G
    GO TM < CO25
9170 W
9,70 FORMATI2OH INVALID NO_ OF BLOCK EFFECTS , 66?
    GO TO 2035 663
8:80 WRITFYIUNOUT,91801 664
9.RO FODMAT(3IH BLDCK FFFFCT PROP OUT OF RANGE ) EES
    GO TO 20% 666
    ENO 667
```


## \$IRFTC L.INER

```
SUBRNUTINE LINF(I,U) 1
COMMON/BПATA/POHERS(11, ,I ALPHA(9), ALPHA110), IUNIN, IUNOUT,MASKK,NEG 2
COMMON/B?/ NFAC,NCLASS,NN,NDPG,PBAYES,IRUN,PBAYEX, IUTILF,UTSWCH 3
CTMMON/LINX/ XNOUT(5), HOLOUT(9),FAC(14,9)
DIMENSION XNUMER (Q),BLANK(3),BLOCKS(4)
ПATA(RLOCKS(I), I=:,41/GHCONFOU,6HNDED W, GHITH BL,6HOCKS
DATA(BLANK (I) , I \(=1,31 / 0777777606060,0606060777777,6 \mathrm{H}\)
```



```
16
```



```
\(\mathrm{X} \quad\) O6054C3777777, 0777777605404,0605405777777 , 0777777605406. \(\quad\),
X пкOE4C7777777, 0777777605410, 0605411777777, / 10
ПATA MASK/C3/, ZERD/6H 0* /,GMEAN/6HG MEAN/ 11
FOUIVALENCE \((X, I X),(Y, I Y) \quad 12\)
C
```



```
\(I X=I\)
IF(IX.FO.O) WRITF (IUNOUT,5005) ZERO,GMEAN,U
IF IIX.EO.OI RFTURN
\(N F=N F A C\)
JJ=?
NFi \(=N F-1\)
```



```
\(\mathrm{NF}=\mathrm{NF}-\) ? \(\quad 22\)
\(Y=A N O(M A S K, X) \quad 23\)
\(T Y=I Y+1 \quad 24\)
\(r\)
GO TO \((20,40,6 \mathrm{C}, 80), I \mathrm{Y}\)
25
26
\(20 \times N O U T(J J)=\) BLANK 3 ) 27
HOLПUT \(J\) ) = BLANK (3) 2 E
HOLПUT \((J+1)=\) BLANK 13\() \quad 29\)
\(9 \mathrm{TOC5} \quad 30\)
```

r ..... 3140 XNOUT（JJ）＝AND（BLANK（1），XNUNER（J））
HOL חUT $(J)=$ FAC $(1, J)$32
HOLDUT $(J+1)=$ BLANK（3） ..... 34
ro Tn cs ..... 35
$c$ ..... 36AO XNOUT（JJ）＝AND\｛BLANK（？）， $\operatorname{XNUMER(J+1)!}$
HחLПUT（J）＝BLANK（3） ..... 3837
HПLCUT $(J+1)=F A C(1, J+1)$ ..... 35
GOTO 95
41C
$80 \times$ NOUT $(J J)=$ AND $(X N U M E R(J), X N U M E R(J+1) 1$ ..... 42
HDLDUT $(\mathbf{s})=F A C(1, J)$ ..... 42
$\operatorname{HOLOUT}(J+1)=F A C(1, s+1)$ ..... 44
C ..... 4505 IX＝IAR $\leq(7, X)$
$J J=J J+1$ ..... 4746
100 CONTINUF ..... 48
IFINF） $500,130,105$ ..... 49
$305 \mathrm{X}=\mathrm{ANO}(\mathrm{MASK}, \mathrm{X})$ ..... 50
$I X=I X+1$ ..... 51
gn Tn（1110， 120 ）．I X ..... 52
170 XNOUT（JJ）＝BLANK（3） ..... 53
HOL OUT（NFAC）＝BLANK（7） ..... 54
Gก TO 130 ..... 55
120 XNOUT（JJ）＝AND（BLANK（1），XNIJMER（NFAC） ..... 56
HOL OUT（NFAC）＝FAC（T，NFAC） ..... 57
$r$$5 \varepsilon$$r$130 CONTINUF
WRITE（IUNOUT，5000）（XNOUT（I），I＝1，5），（HOLOUT（I），I＝1，9），U ..... 61
490 RFTURN ..... 62
5000 FПRMAT（1H 5A6，6X，9A6，G14，6） ..... 62
$50 \cap 5$ FORMAT（1H AG， $30 X, A 6,48 X, G 14,6)$ ..... 64
5010 FORMAT（IH 40X，AR） ..... 65
ENTRY ALINF（IA，IALIAS） ..... 66
DIMENSION IALIAS（1） ..... 67
DO 800 $K=1$ ．TA ..... 68
$I X=I A L I A S(K)$ ..... 69
IFIIX，EQ。O）WRITE（IUNOUT，5010）ZERO ..... 7 C
TF（IX。EQ．OI RETURN ..... 71$N F=N F A C$
$N F=N F A C$ ..... 72
$J J=1$ ..... 72
NFI＝NF－1 ..... 74
กी $700 \mathrm{~J}=\mathrm{I}$ ，NFI，？ ..... 75
$N F=N F-?$ ..... 76
$Y=A N D(M A S K, X)$ ..... 77
$I Y=I Y+1$ ..... 78
r．ח $\operatorname{TH}(\in 20,640,680,690)$ ，IY ..... 79
$6^{\circ} 0$ XNOUT（JJ）＝BLANK（3） ..... 8 C
GกT TO 695 ..... 81
640 XNOUT（JJ）＝AND（BLANK（1），XNUMER（J）） ..... 82
GO Tח tc． 5 ..... 83
660 XNOUT（JJ）＝AND（BLANK（2），XNIJMER（J＋1）t ..... 84
「ก Tח 695 ..... 85
GRO XNOUTIJJ）＝AND（XNUMFR（J），XNUMER（J＋I．）） ..... 86
GOE IX＝IARS（？，X） ..... 87
$J J=J, J+1$ ..... 89
700 CONTINUE ..... 89
IF（NF） $500,730,705$ ..... GC
$705 X=A N O(M A S K, X)$ ..... 91
$I X=T X+1$ ..... 92
ro $\mathrm{Tn}(710,720)$ ，I $x$ ..... 93
790 XNOUT（JJ）＝BLANK（3） ..... 94
Gก Tח 730 ..... 95
720 XNOUT（JJ）＝AND（BLANK（1），XNUMFR（NFACI） ..... 96
730 WRITF（IUNOUT， 850 ）（XNOUT（I），I＝1，5） ..... ¢ 7
ROD CONTINUE ..... 98
250 FIRMAT（40X，5A6） ..... Gs
RETUPN ..... 100
500 STRP ..... 101
END ..... 102
\＄T PFTC ERFCT
SURROUTINE RECT（N，X，Y，NFAC） ..... 1
DIMFNSION $X(9,33), Y(33,33), X O U T(9)$ ..... 2
COMMON／PDATA／PПWERS（11），IALPHA（9），ALPHA（10），IUNIN，IUNOUT，MASK，NEG ..... 3
ПATA JS／G／
LOGTCAL DUT4
MUT $=$ oFALSE。 ..... 6
JT IMFS $=0$ ..... 7
$J C \cap L=N$ ..... 8
$\mathrm{T} W=1$ ..... 5
5 IWW＝1 ..... 10
JNXT＝JCOL－9 ..... 11
JF\｛JNXTI 10，10，30 ..... 12
TC JP＝JCCL ..... 13OUT＝。TRUF。
GO Tn 5014${ }^{2} \mathrm{CJCOL}=\mathrm{JNXT}$16
$J P=10$ ..... 17
50 GO TO（52，54），IW ..... 18
5）$I W=J P-1$ ..... 19
WRITE（IUNOUT， 1001$)(J, J=1, I W)$ ..... 20
WR！TE（IUNOUT， 1002 ） ..... 21
T $\mathrm{W}=$＝ ..... 22
万n Tn 56 ..... 23
$54 \mathrm{~J}^{3}=\mathrm{JTIMFS}$ ..... 24
$J L=J^{1}+J^{D}-1$ ..... 25
WR ITE（IUNNUT， 1 CO 3 ）（J，J＝Jl，JL） ..... 26
WRITE（IUNOUT，1C02） ..... 27
56 n ？ $\mathrm{OC} \mathrm{I}=1$ ，NFAC ..... 28
กก $70 \quad J=1, J^{\circ}$ ..... 29
$J J=J T I N F S+J$ ..... 30
70 XOIJT（J）＝$x(T, J J)$ ..... 31
WRITF（IUNOUT， 1 CO5）（XOUT（K），K＝1，JP） ..... 32
100 CONTINUF ..... 33
WR ITF（IUNOUT， 10021 ..... 34
nn $200 \quad \mathrm{I}=1, \mathrm{~N}$ ..... 35
ก ！ $17 \mathrm{C} \quad \mathrm{J}=1 . \mathrm{JP}$ ..... 36
$J J=\mathrm{JTIMFS}+\mathrm{J}$ ..... 37
170 XחUT（J）＝Y（I，JJ） ..... 38
Gח TO（17？，174），IWN ..... 39
177 WRITF（IUNOUT， 1007 ）（XOUT（K），K＝1，JPI ..... 4 C
IWW＝？ ..... 41
WQ ITF（IUNOUT，ICO8） ..... 42
GO TM 200 ..... 43
$374 \mathrm{Jl}=\mathrm{I}-3$
WP ITE IUNOUT， 1009 ）J1，（XOUT（K），K＝1，JP）44
？OO CONTINUE ..... 46
IFIOUTI RFTIJRN ..... 47
JTIMFS＝dTIMFS＋JP ..... 48
Gก TO 5 ..... 49
 ..... 50
X＊12， 6 H ＊＊＊＊＊） ..... 51
1007 FORMAT（1H） ..... 52
1002 FחRMAT（21HISUMMARY OUTPUT TABLE／lHK／9（6H＊＊＊＊I2，6H＊＊＊＊＊） ..... 53
1005 FIRMMAT（EX，9（7X，A1，6X）） ..... 54
1007 FDRMATPTHKEXPECTED UTILITY／18H OVER STOPPING PTS／IHK／ ..... 55
 ..... 56
100я FחDMAT 1 IHKEXPFCTED UTILITY $/ 20 \mathrm{H}$ AT EACH STOPPING PT I ..... 57
 ..... 58
ENO ..... 5 ¢
\＆IPFTC PFRM DEBIJF
SUBROUTINE PERMUTIIA，N，LDG，ISENDI ..... 1
COMMON／BDATA／POWFRSIII）， IALPHA（9）． ALPHAl101， ..... 2
$X$ IIJNIN，IUNOUT， MASK， ..... NEG ..... 3
COMMON／B！／NFAC，NCLASS，NN，NDPG，PBAYES，IRUN，PBAYEX，IUTILF，UTSWCH ..... 4
COMMON／921 OPG（128，32），BLOCK（128，32），IDPG（32），NBLOCK（32），IP（9）， ..... 5
XIO（9），NSUBI（9），LPERM（9），II（10），PSTOP（32），WT（32），DSUNX（32），PSUM（32） ..... 6
INTEGER POWFRS，DPG，BLOCK ..... 7
LOGICAL LOG8
EQIIIVALENCE $(X, I X),(S I, I S),(S J, J S)$ ..... g
DIMFNSION IA（1），MASK1（15），MASK2（15） ..... 10
FOUFVALENCE（MASK2，PDWERS（2）） ..... 11
 ..... 12
X $07777777747,07777777717,07777777637,07777777477$ ， ..... 1.3x חフ777777177．07777776377／
C．
C．
  ..... 15 ..... 16
$\mathrm{NT}=\mathrm{N}$
［F（NT－1） $500,500,5$ ..... 18
5 IF（，NOT。LOG）GO TO 20 ..... 19
חก $10 \mathrm{~K}=$ ？，NT ..... 20
IP（K）$=0$ ..... 21
$i n(K)=1$ ..... 22
10 CONTINUF ..... 23
LOG＝FALSE． ..... 24
$r$ ..... 25
 ..... 26
$\rightarrow 0 K=0$ ..... 27
$3 C 1 Q=I P(N T)+I D(N T)$ ..... 28
$I P(N T)=I O$ ..... 25
IF（IQ－NT） $80,40,80$ ..... 3 C
40 ID（NT）$=-1$ ..... 31
45 IF（NT－ 1$) \in 0,60,50$ ..... 32
$5 \mathrm{C} \quad \mathrm{NT}=\mathrm{NT}-1$ ..... 33
GO Tn 30 ..... 34
6C $\quad \Pi=1$ ..... 35
LRG＝－TRUF。 ..... 36
GO TO 15 C ..... 37
90 IFITOI 150，85，150 ..... 38
Q 5 ID（NT）$=1$ ..... 35
$K=K+1$ ． ..... 40
ro TO 45 ..... 41
$r$ ..... 42
$C * * * * * * * * * * * * * *$ ..... 43
150 $10=10+K$ ..... 44
$T=I A(I Q)$ ..... 45
$I A(I Q)=I A(I Q+I)$ ..... 46
$I A(1 Q+1)=I$ ..... 47
$I ?=I S F N n+I Q$ ..... 48
$M:=M A S K!(T)-1)$ ..... 49
$M ?=M A S K 11 I 21$ ..... 50
$M 2=M A S K ?(T ?-1)$ ..... 51
חO $400 \quad I=1$ ，NПPG ..... 52
IOI＝IDPG（I） ..... 53
$I B=$ NBLПCK（I） ..... 54
$\stackrel{C}{C}$ ..... 55 ..... 56
$C$ ..... 57
IF（INI） $340,24 \mathrm{C}, 190$ ..... 58
190 DO $200 \mathrm{M}=1, \mathrm{IDI}$ ..... 59 ..... 59
$Y X=D P G(M, I)$ ..... 60
$S I=\triangle N C(M I, I X)$ ..... 61 ..... 61
$S J=\operatorname{AND}(M 2, I X)$ ..... 62
$X=A N C(M 3+I X)$ ..... E 3
$I S=I S * ?$ ..... 64
JS＝JS／？ ..... 65
$D P G(M, I)=I X+I S+J S$ ..... 66
2OO CONTINUF ..... 67
$r$ ..... 68
r． ..... 65350 O $300 \mathrm{M}=1$ ，IR
740 IF（IB） $4 \mathrm{CO}, 400,750$ ..... 71
$I X=B L \cap C K(M, I)$ ..... 72
$S T=A N C\left(M^{2}, I X\right)$ ..... 73
$S . I=A N D(M 2, I X)$ ..... 74
$X=A N D(M 3, I X)$ ..... 75
$I S=1 S *$ ？ ..... 76
JS＝JS／？ ..... 77
BLOCK $(M, I)=I X+I S+J S$ ..... 78
a OO CONTINUE ..... 79
400 CONTINUF ..... 80 ..... 80
5OC RFTUPN： ..... 81
FNn ..... 82
SIPFTC RFMAX DERIJG
SUBROUTINE RFMACH
COMMON／BCATA／ POWERS（111． IALPHA（9）， ALPHA（10）．1
IUNIN． I UNOUT， MASK， ..... NEG
COMMNN／BI．$/$ NFAC，NCLASS，NN，NDPG，PBAYES，IRUN，PBAYEX，IUTILF，UTSWCH ..... 4CПYMON／B2／חPG（128，32），BLDCK（1．28．32），IDPG（32），NBLOCK\｛32），IP（9），XTO\｛0），NSURI（0），LPERM（9），I I（10），PSTOP（32），WT（32），PSUMX（32），PSUM（32）
INTFGER POWERS, T1, DPG, BLOCK2
COMMON／REST／PROB（512），T1．（512），PBLOCK（1．28，32），ISAVEP（9．33），6
7

            X UTIL(E1? ? ULIST(129), IULIST(1.28), IDDCG(4, 32) ..... 8
    $c$TNTFGER POWERS，T1，DPG，BLOCK
CTMMON／LINXI XNOUT（5），HOLOUT（9），FAC（14，9） ..... 10
I OHICAL UTSWCH，ONLY！ ..... 11
DIMENSION KこCYCL（9），KPERM（9） ..... 12
DIMENSION MASKO（9），MASKII9：，KKSAVE（9） ..... 13
FOUIVALENCE（MASKO，POWERS（2）） ..... 14
DATA（MASKI（I），I＝1，9） $107777777776,07777777775,07777777773$, ..... 15
x ח7777777767，ח7777777757，07777777737，07777777677，07777777577， ..... 16
x n7777777377／ ..... 17
EQUIVALENCE $(X, I X),(I S, S I),(J S, S J)$ ..... 19
OIMFNS ION IALIAS（128），SUMALF $(9,33), \operatorname{SUMVAL}(33,33)$ ..... 19
C20
c ..... 21
C．RFMACF SFCTION 1 ..... 22
C23
ONLY1＝$F A L S F$ 。
NDPG1＝OALC ..... 25
NDPG1 $=$ NDPG +1 ..... 26
GD TR 4 ..... 27
FNTRY ONCE（＊） ..... 27
28
NOPGT＝ 1 ..... 29
DNI．Y＇$=0$ TRUF。 ..... 30

```
        4ח10 LL=1,NFAC 31
            KKS= ISAVFP(LL,?)
                32
            KPFRM(KKS)=LL
    O KKSAVE(KKS)=LL 34
r.
35
C**************************************************************************
r
    Oח 250C L=1,NDPG1. 38
C
C*********************辛****************************************************)
C 41
C REMACH SECTION 2 42
C R 43
    IFONLYY) GO TH 25 44
            NOUT= L-1 45
            IF(NOUT,EQ.OI WRITE(IUNOUT,5030) 4e
            IF(NOUT&NE.0) WRITE(IUNOUT,5035)NOUT,(IDDOCG(K,NOUT I,K=1,4)}
        55 WRITE(IUNOUT,4090) 48
            DO ,OO LL=1,NFAC 45
            KKS = ISAVEP(LL,L) 50
            WRITF(IUNOUT,4095)LL, FAC (1,LL),ALPHA(KKS) 5%
            SUMALF(LL,L)= ALPHA(KKS)
    IOO CONTINUE
c
C************************************************************************
r
c. RFMACI SFCTION
C
            On 120 LLL=1,NFAC 5c
```



```
            K?CYCL(LLL)= KPFRM(LLL) EO
            ON 1.!5 K= LLL,NFAC El
            IF(KPFRM(K)-LLL) 115,1,12,115
    1?2 KDFRM(K)= KPFRM(LLL) E?
            Gח TO 120
                                6 4
    115 CONTINUE ES
    10 CONTINUF66
r
6 7
C****************************************************************************
r
C REMACH SFCTION 4 70
6 9
r. 71
    NFI=NFAC-1 }7
    OП 158 LLL=1,NF1 73
    I=NFAC-LLL
        7 4
            J=KつCYCLII)}7
            KK=J-T 76
            IFIKKI 158,7.58,130 77
    13OMOT=MASKO(I)}7
            MOJ=MASKO(J) 7G
            MII=MASKI(I) 80
            MTJ=MASK?(J)
C. &2
```



```
r. 84
    NO 157 L4=1,NDPG 85
    I4=InPG(L4) 86
    IF(I4) 15?,15?,148 87
    14R OO 150 L5=1,I4 88
            IX= DPG(L5,L4) 89
            SI= AND(MOI, XI
                90
            SJ=AN[(MOJ,X) 919
            X=AND(AND(M1I,X),M\J) 92
            IS=IALSIKK,SI) 92
            JS=IARS(KK,SJ)
            DPGILG,I.4)=IX+IS+JS 95
    150 RONTINLE 96
C

\section*{TOO RONTINUE}
```

53
C．

```

``` 54
\(r\)
r．RFMACF SFCTION
C
กП 120 LLL＝1，NFAC
（LLL）
IF（KPFRM（K）－LLL）115，1．12，115 62
172 KDFRM（K）\(=\) KPFRM（LLL）E3
Gח TO 120
64
```

```30 CONTINUF
```
```E 8
```

r．
71

```
NFI＝NFAC－1
Пก 158 LLL \(=1\) ，NFI \(\quad 73\)
\(I=N F A C-L L L\) 74
\(J=K つ Y(L I) \quad 76\)
IFIKK I 158， \(.58,130\) 77
```

```MOJ＝MASKO（J）79
```

MI＝MASKI（I） ..... 0
82

```\(r\)
```

$r$ ..... 84

```I4＝InP C（L4）86
``` ..... 87
101 1 1515，
101 1 1515，
14 P DO \(150 \quad \mathrm{~L} 5=1, \mathrm{I} 4\) ..... 88
9
```\(S I=\) AND \(\operatorname{SOI}, X)\)
```

1

```\(X=A N D(A N D(M 1 I, X), M 1 J)\)
```

92

```\(\mathrm{S}=\mathrm{IA}\)DPG（L5，L．4）＝IX＋IS＋JS95
```

9
150 PONTINLE

```97
```

C**************** * * * * * * * * * * * 98
15? 14 = NPLOCK(L4)99

```
IFII4) 157, 155,155 ..... 10 C
155 Dी 156 L5=1, 14 ..... 101
I \(X=B L\) OCK \((L 5, L 4)\) ..... 102
SI= AND(MOI,X) ..... 103
\(S J=A N C(M D J, X)\) ..... 104
\(X=\operatorname{AND}\left(A N O\left(M^{1} I, I, X\right), M 1 J\right)\) ..... 105
\(I S=I \Delta L S(K K, S I)\) ..... 106
JS=IARS(KK,SJ) ..... 107
BL ПCK (L5, 1.4 ) \(=1 \mathrm{X}+\mathrm{I} \mathrm{S}+\mathrm{JS}\) ..... 108
156 CDNTJNUF ..... 109
1F7 CONTINUF ..... 110
158 CONTINUF ..... 111
\(r\) ..... 112
 ..... 113
\(r\) ..... 114
C REMACF SECTION 5 ..... 115
On 100 C T=1,NDPG ..... 116
117
```WQ ITE (IUNOUT,5020) I
```

118

```WRITF(IUNOUT, 5022) (IDOCG (K,I),K=1,4)
```

$I R!I A=I R I J N+1$ ..... 119 ..... 120
PSIJMX(J)=0.0 ..... 121
$\mathrm{NA}=\mathrm{NBL} \cap \mathrm{CK}(1)$ ..... 122
InI = InPG(I) ..... 123
$I \cap I^{\prime}=I O I+1$
C ..... 125
 ..... 126

```\(r\)127
```

$r$ ..... 128
IF(NB) $7010,728,166$ ..... 129
16f ..... 130
$K I=R t \operatorname{OCK}(K, I)$ ..... 131
$K I I=K I+1$ ..... 132
T1(KI?)=IRUN ..... 132
$1 A=0$ ..... 134
IF(IDI) 7010, : 67,71 ..... 135
$C$ ..... $13 \epsilon$
137

```r
```

138
167 IกIT $=k$ KI ..... 135
$(J=11 T I L(K I I) *(1.0-P B L O C K(K, I))$ ..... 140
G T П $2 ? 0$ ..... 141
C ..... 142
C- ..... 143
r

```144
```

771 IF(PALOCK $(K, I)-1001976,173,7010$ ..... 145
173 กn $174 \quad 1 K=1,10 I$ ..... 146
$J J=I E X O R(K I, O P G(I K, I))+1$. ..... 147
TI(IJ) = IRUN ..... 148
174 CONTINUE ..... 145
Inl: $=$ KI ..... 150
$u=0 \quad 0$ ..... 151
Gn T0 220 ..... 152
$r$ ..... 153
C ..... 154
r ..... 155
17 APS = PROBIKIT) ..... 156
$D R=P S$ ..... 157
IULIST(I)=KII. ..... 158
ULIST(1)= UTILIKIT) ..... 159
ISTAP = C ..... 160
I $A=0$ ..... 161
IF(PS) 178,178,179 ..... 162
178 ISTAR＝1 ..... 163
IUIST＝－UTIIIKII） ..... 164
IALIAS（1）＝KII． ..... 165
$\mathrm{PR}=1,0$ ..... $1 \in 6$
179 IMAX $=$ KII ..... 167
c ..... 168
c ..... 169
r ..... 170
IF（UTSKCH）TO TO 200 ..... 171On $187 \mathrm{KK}=1$ ，IDI
172
$J J=I F X O R(K I, D P G(K K, I))+1$ ..... 173
T1J」）$=$ IRIN
（JJ）$=$ IRUN ..... 174
IF（PROR（JJ））7010，184，18？ ..... 175
 ..... 176
IF（PROB（JJ）－PS）186，183，187 ..... 177
$183 \quad 1 A=1 A+1$ ..... 178
IALIAS（IA）＝JJ ..... 179
GO TO 187 ..... 180
184 ISTAR $=$ ISTAR＋1 ..... 181
IAL IAS（ISTAR）＝JJ ..... 182
186 PS＝PROB（JJ） ..... 183
TMAX＝JJ ..... 184
I $A=0$ ..... 185
187 CONTINEE ..... 186
r． ..... 187
C ..... 188
c
IFIISTAR－1）990，192．189 ..... 19 C18
$\mathrm{U}=0.0$
$\mathrm{U}=0.0$191
$\Gamma A=\Gamma S T A R-1$ ..... 192
INリT＝TMAX ..... 193
GO TO $2 ? 0$ ..... 194
TOC PR＝PR／PROB（IMAX） ..... 195
10）U＝PR＊（TIL（IMAX）＊（1．0－PBLOCK（K，I）） ..... 196
IOUT＝IMAX ..... 197
in $T n=20$ ..... 198
r． ..... 195
C ..... 20 C
$r$ ..... 201
200 DO 206 KK＝2，IDI？ ..... 202
JJ＝IEXOR（KI，OPG（KK－1，I））＋1 ..... 203
TI（JJ）＝IRUN ..... 204
IULIST（KK）＝JJ ..... 205
IF（PROR（JJ））7010，204，202 ..... 206
207 PR＝PR＊PROR（JJ） ..... 207
ULIST（KK）＝UTIL（JJ） ..... 208
rn Tח ミCも ..... 209
204 ISTAR＝ISTAR＋1． ..... 210
IAL TAS（ISTAR）$=\mathbf{J J}$ ..... 211
TMAX＝JJ ..... 212
IILIST（KK）＝－UTIL（JJ） ..... 212
？OE CONTINUE ..... 214
$r$ ..... 215
$r$ ..... 216
$r$ ..... 217
IFIISTAR－11 208，214，189 ..... $21 E$
$208 \mathrm{O} \cap 210 \mathrm{KK}=1$, InIT ..... 215
JJ＝IULIST（KK） ..... 220
ULIST（KK）＝ULIST（KK）\＃PRIPROB（JJ） ..... 221
2＇O CONTINUE ..... 222
$1, M A X=0,0$ ..... 223
INUT＝ICLIST（1） ..... 224
Dח $213 \mathrm{KK}=1$ ，IDII ..... 225
TF（IILIST（KK）－UMAXI 213，212，211 ..... 226
21，UMAX＝ULTST（KK） ..... 227
T $A=0$ ..... 228
INUT＝IULIST（KK） ..... 229
GO TO 213 ..... 230

```
    212IA=IA+1 231
    IALIAS(IA)=IULIST(KK) 232
    2* % CONTTNUE 233
    U]=IJMAX#(1,O-PBLOR,K(K,I)) 234
    r,O Tח 220 235
r. 23E
```



```
214 DO 216 KK=1, InII
238
    239
    KS=KK 240
    TST=AND(ULIST(KK),NFG) 241
    TST= OR(TST,MASK) 242
    IFITST) 218,>18,2!6 243
    716 CONTINUE 244
    31% IחUT=ILLIST(KSI 245
    |=-ULIST(KS)*PR*(1.O-PBLOCK(K,I)) 246
C}24
```



```
C 249
    720 PSUMX(I)=PSUMX(I)+U 250
        I\capITT = I\capUT-1 251
        CALL LINF(IOUT,"!) 252
        IF(IA) 226,226,22? 253
    2?2 ON 223 IIA= 1,IA 
        254
    CALL AIINE (IA,IALIAS) 256
    20 CONTINUF 257
r
```



```
258
r 260
    229 IF(InI) 7010,229,245 2t1
C************** 26* 2** 
    279 n7 240 K=1,NN
26?
    IF(TY(K)-IPINN) 230,240,730 264
    2.0 U=11TIL(K)
        265
    39 I\capUT= K-1 266
        DSIMMX(I)=P SUMX(I)+U 267
        CALL I.INF(INUT,U) 268
    240 CONTINUF
    GO Tח }100
    270
r
271
```



```
C
    345 חП 70C K=1,NN
272
\sigma2ム5 กП 70C \(K=1, N N\)274
```

IF(T1(K)-IRUN) 246.700,246 ..... 275
746 PS = PROB(K) ..... 276
$K M 1=K-1$ ..... 277
$\rho R=P S$ ..... 278
ISTAR = C ..... 279
$1 A=0$ ..... 280
IHLISTI? = K ..... 281
HLIST(1)= UTIL(K) ..... 282
f(C) PS) 248,249,250 ..... 283
74 © Y STAR = 1 ..... 284
IAL IAST: $=\mathrm{K}$ ..... 285
ILTST(T)= -UTIL(K) ..... 286
$D R=1.0$ ..... 287
250 TMAX=K ..... 288
IF (IJTSKCHI GO TO 430 ..... 289
r.
D $\cap$ 4:0 KK=1, IDI ..... 291

```290
```

$\mathbf{J J}=I E \times \cap R\left(K M^{+}, D P G(K K, I)\right)+1$ ..... 292
$T 1(J J)=$ TRUN
IF(PRQR(JJ)) $380,390,380$ ..... 294
2 $80 \quad P R=P R * P R O B(J J)$ ..... 295
IF(PRПB(JJ)-PS) $400,385,410$ ..... 296
295 I $A=I A+1$ ..... 297
IAI. IAS(IA) $=\mathrm{J} \mathrm{J}$ ..... 298
Gn Tn 410 ..... 295
390 ISTAR = ISTAR+1 ..... 200
IAI IAS(ISTAR)=JJ ..... 301
400 PS=PROR(JJ) ..... 302
IMAX=JJ ..... 303
[ $A=0$ ..... 304
4. 0 CONTINUE ..... 305
rOTO SC5 ..... $30 \in$
C ..... 307
C ..... 302
C. ..... 309
430 กก 460 KK=2, IDIl ..... 310
$J J=I F \times O R(K M 1, D P G(K K-1, I))+1$ ..... 311
T1(JJ) = IRUN ..... 312
IULIST(KK)= JJ ..... 312
[F(PRחB(JJ)) $450,450,440$ ..... 314
440 PR=PR*PROB(JJ) ..... 315
ULIST(KK)= UTIL(JJ) ..... 316
(G) Tח 460 ..... 317
450 ISTAR $=$ ISTAR +1 ..... 318
IAL [AS(ISTAR)=JJ ..... 310
[MAX = JJ ..... 220
ILL FST(KK)= -UTII(JJ) ..... 321
460 CONTINUF ..... 322
SO TO $\in O O$ ..... 2? 2
C. ..... 324
C ..... 325
$r$ ..... 326
505 TF(ISTAR-1) 520,530.510 ..... 327
$50 \quad \|=0 \cap 0$ ..... 328
$I A=I S T A R-1$ ..... 325
IOUT = IMAX ..... 330
GO TH GGO ..... 331
$570 \quad P R=P R / P R \cap B(I M A X)$ ..... 332
E2O 1]=PR*UTTL (IMAX) ..... 333
IOUT=IMAX ..... 334
กП TO 690 ..... 335
C ..... 336
r. ..... 337
$r$ ..... 338
+00 IF(ISTAR-1) $\in$ ? C, 66C,510 ..... 335
620 On $\mathrm{H}^{2} 0 \mathrm{KK}=1$. IDIT ..... 340
$J J=「 U L I S T(K K)$ ..... 341
ULIST(KK) = ULIST(KK) * PR/PROB(JJ) ..... 342
RフO CONTINUF ..... 343
JMAX $=0.0$ ..... 244
I $\cap \| T=I L L T S T(1)$ ..... 345
Пก $650 \mathrm{KK}=1$, InII. ..... 246
IF(ULIST(KK)-UMAX) 650,640,635 ..... 347
625 IIMAX = UL.IST(KK) ..... 348
$1 A=0$ ..... 345
IOUT=ILLISTIKK) ..... 35 C
60 Tח 650 ..... 351
640 I $A=I A+1$ ..... 252
$I A L I A S(I \Delta)=I U L I S T(K K)$ ..... 353
GEO CONTINLE ..... 354
U=IJMAX ..... 355
Gก Tח 490 ..... 356
r. ..... 357
r ..... 25 E
r. ..... 35 G
640 D $\quad 670 \mathrm{KK}=1$, IDII ..... 260
$K S=K K$ ..... 361
TST=AND(ULIST(KK),NFG) ..... 262
TST=חR (TST,MASK) ..... 363
TF(TSTI B8C, A8C, 670 ..... 364
670 CONTINUE ..... 365
KRC IDUT=IULIST(KS) ..... $36 \epsilon$
$U=-U I S T(K S) \neq P R$ ..... 367
$r$ ..... 369
C ..... 37 C
690 PSUMX(I) $=P$ SIJM X (I) $+U$ ..... 371
IOUT = I CUT- 1 ..... 372
CALL LINF(JOUT,U) ..... 273
IF(IA) 700.700,695 ..... 374
69500696 IIA=1, IA ..... 375
696 IALIAS(IIA)=IALIAS(IIA)-1 ..... 376
CALI ALINFIIA,IALIASI ..... 377
700 CONTINUE ..... 378
1000 CONTTNUE ..... 375

```C38 C
```

 ..... 381

```
r
C REMACF SECTION }383
```

$r$ ..... 384

```REMACF SECTION 6
```

PRAYEX $=0$ O 0 ..... 3 E5
Dก 10? C $I=1$, $\mathrm{M} \cap \mathrm{PG}$ ..... 386
PSUMX(I) = PSUMX(I)*WT(I) ..... 387
PRAYEX = PBAYEX + PSUMX(I)*PSTOP(I) ..... 388
SUMVAL (I + I,L)= PSUMX(I) ..... 389
1020 CONTINUF ..... 390
SUMVAL (1, L)= PBAYEX ..... $3 ¢ 1$
WR ITF (IUNTUT, 5000) PBAYEX ..... 392
WR ITE (IUNOUT, 5005) (I ,PSUMX(I),I=1,NDPGI ..... 393
$C$

```394
```

 ..... $3 C 5$
396

```\(C\)
```

C PFMACF SFCTION 7A ..... 397
TF(L-NDPG1) $105 \mathrm{C}, 2700,2700$ ..... 398
C ..... 399
$1050 \mathrm{D} \cap 1070 \mathrm{~L}=1$, NFAC ..... 400
$J=\{S A V E P(L L, L+1)$ ..... 401
KPFRM(J) $=L L$ ..... 402
1070 CONTINUE ..... 403
C. ..... 404
$r$ ..... 405
$r$ ..... 406
c. REMACF SFCTITN 7B ..... 407
กn 200 C L $=1$. NFAC ..... 409
กก $103 \mathrm{C} \quad 14=1$. NFAC ..... 409
IF(KKSAVF(L4)-LL) 090, C75,1080 ..... 410
1075 KフCYCL (LL) $=$ KPERM 1 L4) ..... 411
GO TO 2000 ..... 412
1090 CNNTINUE ..... 413
2000 CONTINUE ..... 414
C ..... 415
 ..... 416

```r417
```

C. REMACF SECTION TC, ..... 418
กn $301 \mathrm{C} L=1$, NFAC ..... 419
KKSAVE(LL)=KPERM(LL) ..... 420
KPFRM(LL) $=$ K PCYCL(LL) ..... 421
20'0 CONTINUF ..... 422
C ..... 423
 ..... 424
r

```425
```

2500 CONTINLF ..... 426
2700 IF(ONLYI) PFTURNY ..... 427
CALL RECT(NDPGI, SUMALF, SUMVAL,NFAC) ..... 428
RFTURN ..... 429
$r$ ..... 430
 ..... 431
5000 FORMAT 52 HL FOR THF ABOVE PERMUTATION THE EXPECTED UTILITY IS ..... 432
X ris. ..... 433
5005 FORMAT $53 H K$ THE EXPECTED UTILITIES AT THE STOPPING POINTS ARE.• $/$ ..... 434
$X$ ( $2 R H$ DEFINING PARAMETER GRDUP I $3.3 \times, G 140511$ ..... 435
5010 FORMATI16H ERROR IN OUTPUTI ..... 436
50.0 FORMAT ( $70 H K D F F I N I N G ~ P A R A M E T E R ~ G R O U P ~ N O . ~ I 3) ~$ ..... 437
502? FDRMAT (1H 4A6/60(2H *) ..... 438
5025 FOPMAT(65(2H-1) ..... 439
5030 FNRMAT (37H1 THIS MATCHING IS THE BAYES MATCHING I ..... 440
50? 5 FIRMAT (E 2HI THIS MATCHING MAXIMI ZES THE EXPECTED VALUE AT THE I2, ..... 441
$X 1$ GH STMPPING POINT 4A6, ..... 442
4095 FORMAT(IH TK, 1X,A6,19X,A1) ..... 443
4090 FПRMAT 138 HKVAR IABLE SHOULD BE CALLED ..... 444
 ..... 445
C ..... 446
r. FRROR MESSATE ..... 447
7010 WRITE(IUNOUT, R01.0) ..... 448
RO 10 FORMAT $152 H$ PROGRAM ERROR--PREVIOUSLY GOOD DAT A HAS BECOME BAD ) ..... 449
STOP ..... 450 ..... 450
FND ..... 451

## APPENDIX C

## PROGRAM SYMBOLS

This appendix presents a listing of the major program variables used in NAMER. Dimensioned variables have their dimensions specified.

ALPHA(10) First nine letters of the alphabet (excluding I) and a blank; used for output of optimal matchings.

BLOCK $(128,32) \quad$ Standard-order subscripts of representative members of alias sets confounded with blocks.

DPG(128,32) Standard-order subscripts of parameters in d.p.g. 's.
DUMP1, DUMP2
FAC(14, 9)
HOLOUT(9)

IALIAS(128)

IALPHA(9)

ID(9)
$\operatorname{IDDCG}(4,32)$
IDENT(14)
IDPG(32)
II(10)
IMAX, IOUT
IP(9)
IRUN
$\operatorname{ISAVEP}(9,33)$
ISTAR

ITYPRN
Type of run; see section 3 of INPUT DESCRIPTION.

IULIST(128)
IUNIN
IUNOUT
IUTILF
KKSAVE (9)
KPERM(9)
K2CYCL(9)
LD1, LD2

LPERM(9)
NBLOCK(32)
NCLASS

NDPG
NFAC
NN
NSUBI(9)
ONLY1
$\mathbf{P}$
PBAYES
PBAYEX
PBLOCK $(128,32)$
PR
PROB(512)
PSTOP(32)
PSUM(32)

PSUMX (32)
SUMALF $(9,33)$

Vector of subscripts of parameters in an alias set.
Variable input unit designation.
Variable output unit designation.
Choice of function; see section 7 of INPUT DESCRIPTION.
Saves permutation vector required to achieve optimal matching.
Permutation vector.
Transposition vector for permutation in KPERM.
Delimiters for DUMP1 and DUMP2 vectors; see section (5) of SPECIAL LEWIS RESEARCH CENTER ROUTINES.

Logical variables controlling calls to PERMUT.
Number of alias sets confounded with blocks for each d.p.g.
Number of classes of factors; see section 3 of INPUT DESCRIPTION.

Number of d.p.g.'s.
Number of factors.
$2^{\text {NFAC }}$
Number of factors per class.
Logical variable set to .TRUE. if only a single specified matching is to be evaluated.

Temporary storage of input prior probability.
Overall expected utility of best matching evaluated so far.
Overall expected utility of current matching.
Prior probabilities of block effects being nonzero.
Temporary storage used for calculation of $\rceil$ ( $1-p_{i}$ ).
Vector of $\left(1-p_{i}\right)$.
Probabilities of stopping exactly at each stopping point.
Expected utility at each stopping point of the best matching for that stopping point found so far.

Expected utility at each stopping point of the current matching.
Saves optimal orderings for output of summary table.

SUMVAL $(33,33)$ Saves expected utilities of various optimal orderings for output of summary table.

TMAX
TMAXX
T1(512)
UCOEF

ULIST(128)

UMAX
UT
UTIL(512)
UTSWCH

WT(32)

XNOUT(5)

Maximum total running time permitted.
Maximum running time for current case.
Indicator array used in finding all distinct alias sets.
Constant used to define utility function 5; see section 7 of INPUT DESCRIPTION.

Vector of utilities corresponding to choices of parameters indicated in vector IULIST.

Maximum of ULIST.
Temporary storage used in input of utilities.
Vector of $\mathbf{u}_{\mathbf{i}}$.
Logical variable used to indicate whether utility function 1 or 2 or utility function 3, 4 , or 5 is being used.
Weighting values for the stopping points; see section 7 of INPUT DESCRIPTION.

Temporary storage used in LINER for output of numerical identification of parameters chosen to be estimated.

## APPENDIX D

## PROGRAM GENERAL FLOW DIAGRAM



## REFERENCES

1. Sidik, S. M. ; and Holms, A. G.: Optimal Design Procedures for Two-Level Fractional Factorial Experiments Given Prior Information about Parameters. NASA TN D-6527, 1971.
2. Holms, Arthur G.: Designs of Experiments as Telescoping Sequences of Blocks for Optimum Seeking (As Intended for Alloy Development). NASA TN D-4100, 1967.
3. Holms, Arthur G.; and Sidik, Steven M.: Design of Experiments as "Doubly Telescoping' 'Sequences of Blocks with Application to a Nuclear Reactor Experiment. Technometrics, vol. 13, no. 3, Aug. 1971, pp. 559-574.
4. Ord-Smith, R. J.: Generation of Permutation Sequences: Part 1. Computer J., vol. 13, no. 2, May 1970, pp. 152-155.
5. Trotter, H. F.: Algorithm 115 - PERM. Comm. ACM, vol. 5, no. 8, Aug. 1962, pp. 434-435.
6. Holms, Arthur G. ; and Sidik, Steven M.: Design of Experiments as 'Doubly Telescoping"' Sequences of Blocks with Application to a Nuclear Reactor Experiment. NASA TN D-5369, 1969.

TABLE I. - SAMPLE INPUT FGA PROBLEM
DESCRIBED IN APPENDXX A


RUNNING OF SAMPLE PROBLEMS

| Utility function |  | Number of independent variables |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | 6 | 7 | 8 | 9 |
| 2 | Total time to evaluate all permutations, min | 0.02 | 0.23 | 3.90 | 60.32 | ----- |
|  | Time required to print out results, min <br> Number of d.p.g.'s | $0.04$ | 0.07 4 | 0.19 5 | 0.44 | ------ |
|  | Time to evaluate all permutations divided by number of d.p.g.'s, min | 0.005 | 0.058 | 0.780 | 12.06 | ${ }^{\mathrm{a}} 151.0$ |
| 3 | Total time to evaluate all permutations, min | 0.03 | 0.27 | 4.64 | 75.67 | ----- |
|  | Time required to print out results, min | 0.04 | 0.08 | 0.22 | 0.47 | ----- |
|  | Number of d.p.g.'s | 4 | 4 | 5 | 5 |  |
|  | Time to evaluate all permutations divided by number of d.p.g.'s | 0.008 | 0.068 | 0.928 | 15.13 | ${ }^{\text {a }} 224.0$ |

[^1]

Figure 1. - Pictorial representation of data card arrangement. (Asterisk denotes cards which are optional. Presence depends on input information contained on earlier cards.)


Figure 2. - Logarithm of average time required per defining parameter group as function of number of factors and choice of utility function.

```
012001 C1 U 08 720128 S00903DS
DEPT OF THE AIR FORCE
AF WEAPONS LAB (AFSC)
TECH LIBRARY/WLOL/
ATTN: R LOU BOWMAN, CHIEF
KIRTLAND AFB NM }8711
```

> "The aeronautical and space activities of the United States shall be $\therefore$ conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration stjall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-National Aeronautics and Space Act of 1958

## NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospacs applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]:    ${ }^{\mathrm{a}}$ Estimated from fig. 2.

