
NASA TECHNICAL

MEMORANDUM

NASA TMX-64637

..is®1'

UNIFORM RANDOM NUMBER GENERATORS

By William R. Farr
Preliminary Design Office

November 10, 1971

NASA

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

MSFC - Form 3190 (Rev June 1971)

https://ntrs.nasa.gov/search.jsp?R=19720010542 2020-03-23T14:22:59+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/80648215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO.

TM X- 64637
4. TITLE AND SUBTITLE

Uniform Random Number Generators

7. AUTHOR (S)

William R. Farr
9. P E R F O R M I N G O R G A N I Z A T I O N NAME AND ADDRESS

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

12. SPONSORING AGENCY N A M E AND ADDRESS

National Aeronautics and Space Administration
Washington, D. C. 20546

3. R E C I P I E N T ' S CATALOG NO.

5. REPORT DATE

November 10, 1971
6. P E R F O R M I N G O R G A N I Z A T I O N CODE

PD-DO-PF
8. PERFORMING O R G A N I Z A T I O N REPORT S

10. WORK U N I T NO.

11. CONTRACT OR GRANT NO.

13. TYPE OF REPORT & PERIOD COVERED

Technical Memorandum

14. SPONSORING AGENCY CODE

is . S U P P L E M E N T A R Y NOTES
Prepared by the Flight Mechanics Branch, Flight Performance and Mission Analysis Division,
Preliminary Design Office, Program Development.

16. A B S T R A C T

Methods are presented for the generation of random numbers with uniform and normal
distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930,
and CDC 3200 digital computers are also included. The generators are of the mixed-
multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

random, uniform, computer, subprogram, STAR Announcement
Fortran

ERICH E. GOERNER
Director, Preliminary Design Office

19. S E C U R I T Y CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page)

Unclassified ^v^:,;. f^ - ,ynclas^ified^; ^_
21. NO. OF PAGES 22. PRICE

17 $3.00

MSFC - Form 3292 (May 1969)

TABLE OF CONTENTS

Page

INTRODUCTION 1

THEORETICAL CONSIDERATIONS 1

FORTRAN CONGRUENT GENERATORS 4

GENERATION OF NORMAL VARIABLES 6

CONCLUSION 7

APPENDIX A: FORTRAN LISTING OF UNIVAC 1108 UNIFORM
GENERATOR 8

APPENDIX B: FORTRAN LISTING OF CDC 3200 UNIFORM
GENERATOR 9

APPENDK C: FORTRAN LISTING OF SDS 930 UNIFORM
GENERATOR 10

REFERENCES 11

BIBLIOGRAPHY 12

in

TECHNICAL MEMORANDUM X^

UNIFORM RANDOM NUMBER GENERATORS

INTRODUCTION

With the increased use of simulation and Monte Carlo methods in all the
various disciplines of engineering and science, the need for sequences of
numbers that appear to be drawn from particular probability distributions has
become increasingly more important. The production of these sequences of
numbers, or so-called "pseudo-random" numbers, must be simple, fast,
accurate, and, most importantly, reproducible. The purpose of this paper is
to present automated procedures for the production of these pseudo-random
numbers consistent with the above criteria. In automating the random number
generators, emphasis was placed upon the uniform distribution.

Most computer library subprogram generators are coded in complex *
machine language and therefore tend to increase, rather than alleviate, any
confusion existing on the generation of random variables. Presented herein
are Fortran subprograms for the generation of uniform pseudo-random numbers
on the unit interval [0, 1). The generators are of the mixed-multiplicative
congruential type, and the method is that of Marsaglia and Bray [1]. The
subprograms described are for the Univac 1108, the CDC 3200, and the SDS
930 digital computers. A method for generating normal random variables from
uniform variables is also included.

THEORETICAL CONSIDERATIONS

There are many methods for generating uniform random variables,
each having inherent advantages and disadvantages depending upon its utilization
[2]. The mixed-multiplicative congruential generator is discussed herein.
Because of varied opinions concerning the appropriateness of this type of
generator for certain Monte Carlo applications [3-5], the validity of these
particular applications will not be addressed. This discussion will consist of
the basic theory of this type of generator and how it may be used conveniently
via Fortran subprograms by the method of Marsaglia and Bray [1].

The congruential method is basically an arithmetric recurrence relation
involving integers in which each new number is generated from the previous
number by some deterministic approach. The recurrence relation is initiated
by some initial value and, at some subsequent point, will redevelop forming a
closed loop. The length of this closed loop is the period of the generator and,
hopefully, is nearly equal to the total integer population of the machine, which
is designated by m. . :

The deterministic approach of the congruential generators is the relation,

X. , = aX. + c mod (m) (0 ̂ X. < m) ,i+l i • \ / \ • x

which means that the expression aX. +c is to be divided by m and X. is set

equal to the remainder. To illustrate this, let m (modulus) •= 25, a
(multiplier) = 7, and c = 1, and let X = 3 be the initial value for

X = 7 x 3 + 1 mod (25) X = 22 ,

X0 = 7 x 22 + 1 mod (25) X0 = 5 ,
£i i

X = 7x5 + 1 mod (25) X = 11 , etc.
o o

Numbers on [0, 1) can be obtained by dividing by m. The method usually is
called multiplicative if c = 0 and mixed if c * 0. The modulus m is

normally taken as 2 for an n-bit binary machine and 10 for an n-digit
decimal machine. The constants a and c are chosen to provide speed, a
long period, and good statistical results [6].

A basic problem inherent in congruence method generators is that
choice of X , a, and c which will insure a maximum period. The following

theorem presented by Hull and Dorbell [2] solves this problem.

Theorem: The sequence defined by the congruence relation

X = aX. + c mod (m)

has full period m, provided

1. c is relatively prime to m

2. a = 1 mod (p) if p is a prime factor of m,

3. a = mod (4) if 4 is a factor of m.

Thus, if m is a power of 2, as on a binary machine, we need only to have c
an odd number and a = 1 mod (4). The proof of this theorem is included in
Reference [2].

The most favorable aspect of the congruence generators is the
characteristic that a sequence of random digits may be reproduced by simply
starting the generator with the same initial value. In the paper by Stockmal
[7], algorithms are presented that evaluate

X = f (i)

or

i = f" (X.) ,

where X. is the ith element of a congruential random number sequence.

These algorithms can be very useful when only certain parts of a Monte Carlo
simulation need to be repeated and the generation of the entire sequence of
random variables is not required.

Congruence generators have been widely used, and the results have
been favorable. An extensive list of references may be found in Reference 2.

FORTRAN CONGRUENT GENERA TORS

Marsaglia and Bray [1] developed a method of generating uniform
random variables by the congruence method utilizing a single Fortran
statement. They also describe Fortran programs that mix several such
generators.

Initially, consider the handling of integers by the SDS 930 digital
computer. Here, Fortran integers are stored in 24 bits, and the multiplication

24of 2 integers produces a 24-bit integer mod, 2 . When used in algebraic
expressions, the sign on an integer I is determined by the relation

if 0 ^.I < 223

-2 2 4
+ I

23 23which has a range from -2 to 2 - 1. ' We may therefore use the single
• •" ••' "! . 23 • • •'" ' 23' : ;

Fortran statement I = I*A for each random integer on -2 < I < 2 - 1 to
produce a new random integer thus giving the congruence relation

24 24X. = a X. mod (2). Finally dividing by 2 and adding 1/2 will produce

a uniform variate on [0, 1) ,

U = 1/2 + 1/2
24

The process is more complicated in the Unlvac 1108 digital computer
•where lj,s complement arithmetic is,used.;;.Here, multiplicatiqn of twp:36-

o^>

bit integers'yields the product nidd (2) but the sign'is handled by; - :

Therefore, steps must be taken to subtract the integer 1 at certain times to
*3fi

represent the proper remainders of 2 . The following instruction, which is a
correction by Grosenbaugh [8] to Marsaglia. and Bray' s original Fortran
instruction, handles this requirement satisfactorily:

I =. I * K.+ MINO (0, ISIGN (K-l, L))

The two functions MINO and ISIGN are standard Fortran library routines.
MINO determines the minimum value of a series of integer quantities, and
ISIGN transfers the sign of the second argument to the absolute value of the
first argument. The constant K can be chosen for maximum period as shown
by VanGelder [6J.

The CDC 3200 digital computer handles integers exactly as does the
Univac 1108. However, the CDC 3200 stores integers as 24 bits, therefore
the only change required is the power of 2 in all equations.

These one-line Fortran generators may be incorporated directly into
programs easily as they are, but Marsaglia and Bray obtained better statistical
results upon combining several generators. As an example, consider the
following SDS 930 generator:

L = L * ML

M M * MM

J 1 + LABS (L)/216

24
U = 1/2 +[N(J) f L + M] /2

K = K * MK

N(J) = K ,

The array N is a 128-element array filled with random numbers previously
assigned by a one-line generator. In the procedure, J is used to choose from
the N array; J comes from the random integer L after division by the
appropriate power of 2. The desired random variable U is formed from the

sum of the randomly chosen N array element, the random integer L used to
find J, and a third additional random integer M. The used element of N is
replaced by the random integer K. Similar procedures are used for the Univac
1108 and CDC 3200 generators.

Subprogram listings are given for the Univac 1108, CDC 3200, and SDS
930 generators in Appendices A, B, and C, respectively. All three
subprograms are called in the exact same manner, so that a computer program
may be converted to run on several machines by simply inserting the
appropriate generator. Initially, the subprograms must be given a non-zero
integer to establish the internal 128-cell array. An odd number in the millions
gives excellent statistical results. The initial call to a generator does not
produce a useful result. Uniform random variables on the unit interval [0, 1)
may be obtained by calling the generator with a zero integer argument. To
repeat a sequence of variables, the generator is simply reinitialized with the
same initial value.

GENERATION OF NORMAL VARIABLES

As in the case of the uniform pseudo-random number generator, there
are a variety-of ways to generate normally distributed random variables. A
method of normal variable generation by Box and Muller [9, 10] is discussed
here. Their method is simple, fast, and requires very little memory storage.

The following method is used to generate a pair of random deviates
(X , X?) from the same normal distribution starting from a pair of uniformly

distributed random variables (U , U) distributed [0, 1).
•1. ft

X. = (-2InUJ^ cos (2 TT U0)
1 1 &

X0 = (-2inU)* sin (2 TT U.) .
ft 1 ft

The pair (X , X) will be normally distributed [0, l] and are very reliable in
\ ft

the tails of the distribution. The estimated speed is 6.01 milliseconds per
variable on a CDC 3200 digital computer.

CONCLUSION

Methods have been shown and subprograms have been developed for the
fast, simple, and reproducible generation of pseudo-random numbers for
uniform and normal probability distributions. The accuracy of the numbers
must not be assumed to be 100 percent for all utilizations, because potential
error sources do exist. Marsaglia [5] presents results that indicate that
every multiplicative generator has a defect that makes it unsuitable for certain
Monte Carlo applications. Other remote error possibilities are stated in the
references. However, for most applications the generators presented herein
give accurate results.

.7

APPEND IX A

FORTRAN LISTING OF UNIVAC 1108 UNIFORM GENERATOR

FUNCTION RANUJ> . . • RAN 10
c x RAN 20
C UNIFORM .RANDOM NUMBER GENERATOR FOR THE UNIVAC 1108 ' ': RAN 30
C ' • • • R A N 4 0
C FIRST CALL MUST BE OF THE FORM X = RAN(J), WHERE J IS AN RAN 50
c INITIAL INTEGER VALUE. SUBSEQUENT CALLS MUST BE OF'THE FORM RAN 60
C ^ X = R A N < 0 > . . R A N 7 0
C RAN 80

DIMENSION M(128> RAN 90
JsJJ RAN 100
IF (J.EQ.O) GO TO 2 RAN 110
DO 1 Isl.128 RAN 120
J = J*227157*MINO<0-.ISIGN(227156,J» RAN 130

1 N(I)sj RAN 140
LaJJ RAN 150
MaJJ RAN 160
KsJJ RAN 170

2 L = L*274693*MlNO(0, ISIGN(274692,L» RAN 180
MBM*243l33*MlNO<0, ISIQN(243132,M)) RAN 190
I»1ABS(D/268435456*1 RAN 200
ftAN=.5*FLOAT<N<I)+L+M>*,145519152E-10 RAN 210
K = K*249l49 + MlNO(0,ISIGN(249148,K)) RAN 220
N(I)=K RAN 230
RETURN v RAN 240
END RAN 250-

APPENDIXB

FORTRAN LISTING OF CDC 3200 UNIFORM GENERATOR

c
c
c
c
c
c
c

FUNCTION RANUJ)

UNIFORM RANDOM NUMBER GENERATOR FOR THE CDC 3200

FIRST CALL MUST BE OF THE FORM X e RAN(J). WHERE '0 IS AN
INITIAL INTEGER VALUE. SUBSEQUENT CALLS MUST BE OF'THE FORM
X = RAN<0).

MIMENSION Ndgej
JsJJ

. IF U.EQ.O) 3.1
1 UO 2 1=1.128

JsJ*227l57*MlNO(0,ISIGN(227156.J)>
2 N(l)sj
= KsJJ

20
30
40
50
60
7.0
80
90

LaJJ
3 L=L*274693+MINO<0,ISlGN(274692,L»
. HBM*243l33+MlNO(0,ISlGN<243132,M))
. IoJA8S(L)/65636*l ;

NAN=.5*FLOAT(N<I)+L*M)*,596046447E-07
K = K*249l49*MlNO<0,IS IGN<249148,K))
N(I)=K
RETURN
6ND

RAN
RAN
RAN
RAN
RAN
RAN
RAN
RAN
RAN
RAN 100
RAN 110
RAN 120
RAN 130
RAN 140
RAN 150
RAN 160
RAN 170
RAN 180
RAN 190
RAN 200
RAN 210
RAN 220
RAN 230'
.RAN 240
RAN 250-

APPENDIX C

FORTRAN LISTING OF SDS 930 UNIFORM GENERATOR

FUNCTION RAN(JJ) RAN 10
C RAN 20
C UNIFORM RANDOM NUMBER GENERATOR FOR THE SDS 930 RAN 30
C RAN 40
C FIRST CALL MUST BE OF THE FORM X « RAN(J). WHERE -J JS AN RAN 50
C INITIAL. INTEGER VALUE, SUBSEQUENT CALLS MUST 8E OF~THE FORM RAN 60
C X a RAN(O). RAN 70
C RAN 80

DIMENSION NU28> RAN 90
JeJJ RAN 100
IF (J) 1.3,1 RAN 110

1 DO 2 I»1»128.1 RAN 120
JsJ*65539 BAN 130

2 N<!>=J RAN 140

L»JJ RAN 150
M»JJ. RAN 160
K*JJ RAN 170

3 L«L*<357 RAN 180
MBM«9197 RAN 190
I»l+JABS(L)/65536 RAN/200
rtAN»0.5*FUOAT(N(n*L*M)*0,59604644E-07 RAN 210
K»K*10757 RAN 220
^(I)»K RAN 230
RETURN RAN 240

RAN 250-

10

REFERENCES

1. Marsaglia, George; and Bray, T. A.: One-Line Random Number
Generators and Their Use in Combinations. Comm. ACM, vol. 11,
no. 11, 1968, pp. 749-751.

2. Hull, T. E.; and Dorbell, A. R.: Random Number Generators. SIAM
Review, vol. 4, no. 3, 1962, pp. 230-248.

3. Coveyou, R. R.; and MacPherson, R. D.: Fourier Analysis of Uniform
Random Number Generators. J. ACM, vol. 14, no. 1, 1967, pp. 100-
119.

4. Greenberger, Martin: Method in Randomness. Comm. ACM, vol. 8,
no. 3, 1965, pp. 177-179.

5. Marsaglia, G.: Random Numbers Fall Mainly in the Planes. Proc.
Natl. Acad. Sci, vol. 60, no. 5, 1968.

6. Van Gelder, A.: Some New Results in Pseudo-Random Number
Generation. J. ACM, vol. 14, no. 4, 1967, pp. 785-792.

7. Stockmal, F.: Calculations with Pseudo-Random Numbers. J. ACM,
vol. 11, 1964, pp. 41-52.

8. Grosenbaugh, L. R.: More on Fortran Random Number Generators.
Comm. ACM, vol. 12, no. 11, 1969, p. 639.

9. Box, G. E. P.; and Muller, Mervin E.: A Note on the Generation of
Random Normal Deviates. Annals of Mathematical Statistics, vol. 29,
1958, pp. 610-611.

10. Muller, Morvin E.: A Comparison of Methods for Generating Normal
Deviates on Digital Computers. J. ACM, vol. 6, 1959, pp. 376-383.

11

BIBLIOGRAPHY

Chambers, R. P.: Random-Number Generation on Digital Computers. IEEE
Spectrum, vol. 4, no. 1, 1967, pp. 48-56.

Kronmal, Richard: Evaluation of a Pseudorandom Normal Number Generator.
J. ACM, vol. 11, no. 3, 1964, pp. 357-363.

Marsaglia, G.: Expressing a Random Variable in Terms of Uniform Random
Variables. Annals of Mathematical Statistics, vol. 32, no. 3, 1961, pp. 894-
898.

Marsaglia, G.; and Bray, T. A.: A Convient Method for Generating Normal
Variables. SIAM Review, vol. 6, no. 3, 1964, pp. 260-264.

Meyers, Paul L.: Introductory Probability and Statistical Applications.
Addison-Wesley Publishing Company, Reading, Mass., 1970, pp. 250-255.

12

APPROVAL

UNIFORM RANDOM NUMBER GENERATORS

By William R. Farr

The information in this report has been reviewed for security classifi-
cation. Review of any information concerning Department of Defense or Atomic
Energy Commission programs has been made by the MSFC Security Classifica-
tion Officer. This report, in its entirety, has been determined to be unclassi-
fied.

This document has also been reviewed and approved for technical
accuracy.

ROBERT M. CROFT
Acting Chief, Flight Mechanics Branch

WILLIAM D. GOLDSBY^R.
Deputy Chief, Flight Performance and
Mission Analysis Division

\

'ERICH E. GOERNER/V
Director, Preliminary Design Office

MES T. MURPHY
ting Director, Program Development

13
MSFC—RSA. Ala

o
K—
=)
CO

I—
to

g •2
"o

a

&
E

-A
E

R
O

-Y
M

r.

V
au

g

ta

&
E

-A
E

R
O

-Y
A

M
r.

K

au
f] •a

Si
E

-C
O

M
P

-S
D

M
r.

Z

ea
n

K

B
•3

•c

.&
T

S
-M

S
-I

L
M

is
s

R
ob

Si

.&
T

S-
 M

S
-I

P
M

r.

Z
ia

k

D
H
i

CO
H

J
<

u
g
H

ao
v»
aj

I-
•3o
1_
«*
T3 .£> CO
S3 S CO

S3 g§ £ «
1 °
o •

GO ft

£5\

3

9 a!.
SI

Sid -*s
.sg
?> mM a)
cs £

S g-

•S*
ft^
S,15
<o ..

?l
o <

(4
0)

§

u

H

8.
u
at

•a
(D

S 2
I.VJ

S
CO

K

•- SLl ^
Q <*>
*3 IO
rt co
fH

<u
fl) -1-1

Is
CO E2

^i o o '
o CD 3
2 H IH

0)
•O
"o
O

d)
ft

g oS -B-S 4i g (-1? ^ £ it
O 0) "Q CD
>4 ft to h

T3 (H g*-< cu g

lip!
J O ^ PQ ><

W 'a
d,ft

§

•g 2 | S
g ^ -

H "^ +S (3 *^ tj

< t - a f f l [i (i s] G Q C a

^ ^ ^ . ^ . ^ ^ ^ ^J . ^ S ' S S S S S
g S S 2 S S S S g

*

'S
Si
Q 'S

P
H

1

u

el
o !§

0)
tf

m
at

I

H Q
I

Q

wI ij
i

IH
<U

ss
ft S

s s* s ^u eo u

g s s-s
8| &3

gO g K^
. CO

K H £ £
§ Q

g

CD
bD

d)
ft

CO
H

Q
a

.2"o
o

1
a)

M

55i

d.
ft

